WO2011090073A1 - 照明器具 - Google Patents

照明器具 Download PDF

Info

Publication number
WO2011090073A1
WO2011090073A1 PCT/JP2011/050872 JP2011050872W WO2011090073A1 WO 2011090073 A1 WO2011090073 A1 WO 2011090073A1 JP 2011050872 W JP2011050872 W JP 2011050872W WO 2011090073 A1 WO2011090073 A1 WO 2011090073A1
Authority
WO
WIPO (PCT)
Prior art keywords
led unit
led
light
heat dissipation
led chip
Prior art date
Application number
PCT/JP2011/050872
Other languages
English (en)
French (fr)
Inventor
浦野 洋二
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/522,641 priority Critical patent/US8573800B2/en
Priority to CN201180006512.3A priority patent/CN102713430B/zh
Priority to EP11734679.1A priority patent/EP2527729B1/en
Priority to KR1020127021033A priority patent/KR101383737B1/ko
Publication of WO2011090073A1 publication Critical patent/WO2011090073A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0055Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/04Fastening of light sources or lamp holders with provision for changing light source, e.g. turret
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/16Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting
    • F21V17/164Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting the parts being subjected to bending, e.g. snap joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Definitions

  • the present invention relates to a lighting fixture provided with a plurality of light emitting devices using LED chips.
  • the LED lamp 200dd disclosed in Patent Document 1 includes a light emitting device 1dd using an LED chip 10dd in a cylindrical pipe 201dd on one side of a long substrate 204dd. It is arranged in the longitudinal direction of 204dd.
  • a heat radiating member 205dd for radiating heat generated by the LED unit 202dd is also housed in the pipe 201dd.
  • the above-mentioned substrate 204dd is composed of a double-sided printed wiring board whose base material is glass epoxy resin, and the heat dissipation member 205dd is made of aluminum.
  • the light emitting device 1dd is a blue LED chip in which the LED chip 10dd emits blue light, and a phosphor (not shown) that emits yellow light when excited by the blue light from the LED chip 10dd on the resin package 11dd. )) Is mixed.
  • JP 2009-272072 A paragraphs [0012]-[0028] and FIGS. 1 and 2)
  • a heat radiating member 205dd for radiating heat generated in the light emitting device 1dd is housed in the pipe 201dd.
  • the size of the member 205dd is limited. Therefore, sufficient heat dissipation characteristics cannot be obtained, and the temperature of the light emitting device 1dd does not exceed the allowable temperature of the light emitting device 1dd (for example, the maximum junction temperature of the LED chip 10dd) even when the light emitting device 1dd having high luminance is used.
  • the LED lamp 200dd having the configuration shown in FIG. 16 requires the heat dissipation block 205dd, the LED lamp 200dd itself is expensive.
  • a lighting fixture including an LED lamp called a straight tube fluorescent lamp type LED lamp and a lamp dedicated to the LED lamp.
  • the present invention has been made in view of the above-mentioned reasons, and its purpose is to suppress an increase in the temperature of the LED chip, to increase the light output, and to suppress the peripheral portion of the light emitting device from becoming dark. It is in providing the lighting fixture which can do.
  • a lighting fixture of the present invention includes a long LED unit including a plurality of light emitting devices using LED chips on one side in the thickness direction, a fixture body, and an LED unit held by the fixture body.
  • the heat dissipation block is held by the reflecting plate, and the flat surface of the surface from which light is extracted from the light emitting device in the LED unit and the reflecting surface of the reflecting plate. There a peripheral portion of the embedded portion as flush.
  • the reflector has an embedded portion in which the LED unit is embedded and embedded in the shape corresponding to the outer peripheral shape of the LED unit, and the heat dissipation block is held by the reflector.
  • the size can be increased, and the heat generated in the light emitting device can be efficiently dissipated through the heat dissipating block, so that the temperature rise of the LED chip can be suppressed and the light output can be increased.
  • the planar portion of the surface from which light is extracted from the light emitting device in the LED unit and the peripheral portion of the embedding portion in the reflecting surface of the reflecting plate are flush with each other, the periphery of the light emitting device It becomes possible to suppress that a part becomes dark.
  • the LED unit is detachably attached to the heat radiating block in a state where the reflector is attached to the instrument body, and the other surface is in surface contact with the heat radiating block.
  • the LED unit is detachably attached to the heat radiating block in a state where the reflector is attached to the instrument body, it is possible to remove the reflector from the instrument body. Since the LED unit can be attached to and detached from the heat dissipation block, the LED unit can be easily replaced. Further, according to the present invention, since the other surface of the LED unit is in surface contact with the heat dissipation block, compared with a case where a part of the reflector is interposed between the LED unit and the heat dissipation block. Thus, thermal resistance can be reduced and heat dissipation can be improved.
  • planar size of the heat dissipation block is larger than the planar size of the LED unit.
  • the heat transferred to the heat dissipation block can be transferred to a wider range, so that the heat dissipation is improved.
  • the LED unit can be protected by the translucent cover.
  • the translucent cover has a diffusion function for diffusing light from the LED unit.
  • the reflection surface of the reflector can be illuminated more uniformly.
  • the LED unit includes a plurality of LED modules provided with the same number of the light emitting devices and having the same size as each other and arranged in parallel in the longitudinal direction of the embedded portion.
  • the present invention when one of the plurality of light emitting devices that has stopped lighting before the end of its life is generated, it is possible to replace not the entire LED unit but the LED module, thereby reducing the replacement cost. .
  • a circuit pattern that defines the connection relationship of the light emitting devices is formed on one surface side opposite to the heat dissipation block side, and a plurality of window holes into which the light emitting devices are inserted are thick.
  • a circuit board that penetrates in the direction, and the circuit board is formed with a mirror that reflects light from each of the light emitting devices on the one surface side, and the surface of the mirror is flush with the planar portion. Preferably there is.
  • each light emitting device is mounted on a circuit board that defines the connection relationship of each light emitting device in the LED unit, the thermal resistance from each light emitting device to the heat dissipation block.
  • the heat dissipation can be improved.
  • since the surface of the mirror formed on the circuit board is flush with the planar portion, the peripheral part of the light emitting device is prevented from being darkened due to the circuit board. It becomes possible.
  • the light emitting device includes an LED chip, a mounting substrate having a conductive pattern for supplying power to the LED chip on one surface side, the LED chip mounted on the one surface side, and a light distribution of light emitted from the LED chip
  • a light emitting color of the LED chip which is excited by the light emitted from the LED chip and transmitted through the sealing part and the optical member.
  • a dome-shaped color conversion formed of a phosphor that emits color light and a light-transmitting material, and disposed in such a manner that an air layer is interposed between the one surface side of the mounting substrate and the optical member.
  • the color conversion member is emitted from the LED chip and incident on the color conversion member through the sealing portion and the optical member.
  • the amount of light scattered to the optical member side and transmitted through the optical member can be reduced, and the light extraction efficiency as a light emitting device can be improved.
  • the reflecting surface of the reflecting plate can be illuminated by light scattered by the particles toward the reflecting surface of the reflecting plate and light emitted from the phosphor toward the reflecting surface.
  • the mounting substrate is made of a heat conductive material, and the LED chip is mounted on the mounting surface side of the LED chip in the heat transfer plate having the conductive pattern and the conductive pattern on which the LED chip is mounted via a submount member.
  • a wiring board comprising a wiring board having a window hole that exposes the submount member extending in the thickness direction, wherein the submount member has a larger planar size than the LED chip and overlaps the LED chip It is preferable that a reflection film that reflects light is formed around the substrate.
  • the LED chip is mounted on the heat transfer plate, the thermal resistance from the LED chip to the heat dissipation block is reduced as compared with the case where the LED chip is mounted on the wiring board. It is possible to improve heat dissipation.
  • the reflective film for reflecting the light from the LED chip is formed on the submount member, the light emitted from the LED chip is absorbed by the submount member. Therefore, the light extraction efficiency to the outside can be improved.
  • the said reflecting plate has the said embedding part by which it opens to the shape according to the outer periphery shape of the said LED unit, and the said LED unit is embedded.
  • the reflector has a recess.
  • the concave portion has a shape corresponding to the outer peripheral shape of the LED unit.
  • the recessed part is formed so that an LED unit may be embedded.
  • the reflector has a first height.
  • the first height is along the thickness direction of the LED unit.
  • the first height of the reflection plate is such that the planar portion of the surface from which light is extracted from the light emitting device in the LED unit and the peripheral portion of the embedded portion on the reflection surface of the reflection plate It is preferable that it is set to be one.
  • the reflecting plate has a height adjusting piece.
  • the height adjustment piece extends from the reflector toward the heat dissipation block.
  • the height adjusting piece extends in the thickness direction of the LED unit.
  • the height adjustment piece has the first height in the thickness direction of the LED unit.
  • the first height of the height adjusting piece is the same as the planar portion of the surface from which light is extracted from the light emitting device in the LED unit and the peripheral portion of the embedded portion on the reflecting surface of the reflecting plate. Is set to
  • the LED unit has a first thickness in the thickness direction of the LED unit.
  • the first height and the planar portion of the surface from which light is extracted from the light emitting device in the LED unit and the peripheral portion of the embedded portion in the reflecting surface of the reflecting plate are flush with each other. It is preferable that the first thickness is set.
  • the heat dissipation block preferably has a flat surface.
  • the reflector and the LED unit are mounted on the plane.
  • the first thickness is set equal to the first height.
  • the height adjustment piece further has a contact piece.
  • the contact piece extends in a direction crossing the thickness direction of the LED unit.
  • the contact piece is in surface contact with the heat dissipation block.
  • the height adjusting piece further has a contact piece.
  • the contact piece extends in a direction orthogonal to the thickness direction of the LED unit.
  • the contact piece is in surface contact with the heat dissipation block.
  • part of the heat transferred from the LED unit to the heat dissipation block can be efficiently radiated from the reflector. That is, the reflector can be used also as a heat radiating member. Therefore, the heat dissipation block can be made small. Thereby, weight reduction and cost reduction can be achieved.
  • the contact piece preferably extends from the height adjustment piece in a direction opposite to the LED unit.
  • the height adjusting piece preferably has a first end on one side in the height direction.
  • the contact piece extends from the first end of the height adjustment piece in a direction opposite to the LED unit.
  • the temperature of the contact piece rises. As the temperature of the contact piece increases, the contact piece expands. However, the contact piece extends in the direction opposite to the LED unit. Therefore, when the temperature of the contact piece rises, the contact piece expands in the direction opposite to the LED unit. In other words, the contact piece does not expand toward the LED unit. Thereby, the clearance gap between a reflecting plate and an LED unit can be kept constant. That is, even when the gap between the reflecting plate and the LED is set narrow, the contact piece does not apply force to the LED unit due to the contact piece expanding.
  • the reflecting plate preferably has a recess.
  • the concave portion has a shape corresponding to the outer peripheral shape of the LED unit.
  • the recess is formed so that the LED unit is embedded.
  • the concave portion defines the embedded portion.
  • the embedded portion preferably has a peripheral wall and a bottom wall.
  • the peripheral wall is defined as a height adjustment piece.
  • the bottom wall is defined as the contact piece.
  • the LED unit is in contact with the heat dissipation block through the bottom wall.
  • the light emitting device includes an LED chip, a mounting substrate on which the LED chip is mounted on one surface side, and an optical element fixed to the one surface side of the mounting substrate in such a manner that the LED chip is accommodated between the mounting substrate. It is preferable to have.
  • the optical element has an outer peripheral portion. The outer peripheral portion of the optical element is fixed to the one surface side of the mounting substrate. The planar portion of the surface from which light is extracted is defined by a portion outside the outer peripheral portion.
  • the optical element preferably has an optical member.
  • the optical member is configured to control the light distribution of the light emitted from the LED chip, and is fixed to one surface of the mounting substrate so that the LED chip is accommodated between the optical member and the dome. Is.
  • the optical element preferably further includes a color conversion member.
  • the color conversion member includes a phosphor and a translucent material, and the phosphor is excited by light emitted from the LED chip and emits light having a color different from the emission color of the LED chip.
  • the color conversion member is disposed in a form in which an air layer is interposed between the color conversion member and the optical member on the one surface side of the mounting substrate, and has a dome shape.
  • the lighting fixture further has an attaching means.
  • the LED unit is attached to the heat dissipation block by the attachment means.
  • the attachment means is preferably constituted by a spring.
  • the spring is configured to urge the LED unit toward the heat dissipation block.
  • the spring is preferably composed of a leaf spring.
  • the leaf spring has a first portion extending from the periphery toward the inside of the periphery. Accordingly, the LED unit is sandwiched between the first portion of the leaf spring and the heat dissipation block.
  • the leaf spring further has a second portion.
  • the second part extends from the first part in a direction opposite to the heat dissipation block.
  • the second part is located between the LED unit and the reflector.
  • the LED unit can be easily attached to the heat dissipation block. In this case, the LED unit can be easily detached from the heat dissipation block. The LED unit can be attached to the heat dissipation block so that the LED unit is in close contact with the heat dissipation block.
  • the lighting fixture has an attaching means.
  • the LED unit is in contact with the reflecting plate by an attaching means.
  • the embedded portion has a peripheral edge.
  • the peripheral edge has a first inner surface and a second inner surface.
  • the second inner surface is opposed to the first inner surface.
  • the attachment means is disposed on the first inner surface.
  • the LED unit is held by the attachment means and the second inner surface so as to come into contact with the second inner surface of the reflector.
  • the heat of the LED unit can be released to the heat dissipation block and the reflector.
  • the attachment means is preferably constituted by a spring.
  • the spring is configured to urge the LED unit against the second inner surface, whereby the LED unit comes into contact with the second inner surface of the reflector.
  • the lighting fixture of Embodiment 1 is shown, (a) is a schematic exploded perspective view, (b) is a principal part schematic sectional drawing. It is a principal part general
  • the light-emitting device in a lighting fixture same as the above is shown, (a) is a schematic sectional drawing, (b) is another schematic sectional drawing.
  • the lighting device in a lighting fixture same as the above is shown, (a) is a schematic plan view, (b) is a schematic front view, and (c) is a schematic side view.
  • (A) is principal part schematic sectional drawing
  • (b) is a perspective view of the attachment spring in (a) regarding the other structural example of a lighting fixture same as the above.
  • (A) is principal part schematic sectional drawing
  • (b) is a perspective view of the attachment spring in (a) regarding the other structural example of a lighting fixture same as the above.
  • the luminaire of this embodiment is a ceiling-embedded luminaire, and is a long fixture body 100 that is inserted into the back of a ceiling through a rectangular embedding hole 301 provided in a ceiling material 300 that is a construction material. It has.
  • the instrument body 100 is formed by bending both sides of a rectangular plate-like metal plate (for example, a chrome-free galvanized steel plate) in the short-side direction, and a cross section orthogonal to the longitudinal direction is opened downward. U-shaped.
  • the instrument main body 100 includes an elongated rectangular plate-shaped main piece 101 and a pair of side pieces 102 extending downward from both side edges of the main piece 101 in the width direction.
  • the material of the instrument main body 100 should just be a metal, and is not specifically limited.
  • the instrument body 100 has a main piece 101 with two bolt insertion holes 101a through which two mounting bolts 310 suspended from the ceiling are inserted.
  • the instrument body 100 can be coupled to the mounting bolt 310 by inserting the mounting bolt 310 through the bolt insertion hole 101 a and tightening the nut 108 through the washer 107 to the mounting bolt 310.
  • the main piece 101 of the instrument main body 100 is connected to an external power source (for example, an AC power source composed of a commercial power source, a DC power source, etc.), and a power line hole for drawing in a power source line 320 that is wired in advance on the back of the ceiling 101b is perforated.
  • an external power source for example, an AC power source composed of a commercial power source, a DC power source, etc.
  • the instrument main body 100 supplies power to a space surrounded by the main piece 101 and both side pieces 102 and a power supply terminal block 119 to which the power line 320 is connected, and the external power supply via the terminal block 119.
  • a lighting device 120 for lighting an LED unit 2 described later is housed.
  • the lighting device 120 is attached to the instrument main body 100 in a replaceable manner.
  • the lighting device 120 stores a printed wiring board 130 on which components (not shown) of a lighting circuit (not shown) for lighting the LED unit 2 are mounted, and the printed wiring board 130. Case 140.
  • the case 140 includes a body 141 made of a synthetic resin and having a front opening, and a cover 142 made of a synthetic resin and having a rear opening that is coupled to the front side of the body 141.
  • engagement claws 142a project from the rear edges of the side walls of the cover 142 in the short direction toward the rear, and the engagement claws 142a are formed on both side surfaces of the body 141 in the short direction.
  • the body 141 and the cover 142 are coupled by engaging with the recess 141a.
  • mounting pieces 143 for mounting the case 140 to the instrument main body 100 project in a direction along the longitudinal direction.
  • the mounting piece 143 has a mounting hole 143a through which a screw (not shown) whose tip is screwed into a screw hole (not shown) formed in the instrument body 100 is drilled.
  • the body 141 and the cover 142 of the case 1 are not limited to those formed of synthetic resin, but may be formed of metal and appropriately combined.
  • Two terminal devices 146 and 147 are mounted on the printed wiring board 130 in a portion not covered by the cover 142.
  • the terminal devices 146 and 147 are locking springs (not shown) that hold the wires separately between the terminal plates (not shown) to which the wires inserted from the wire insertion holes 146a and 147a are individually connected and the terminal plates.
  • a quick-connect terminal (not shown) consisting of (not shown) is internally provided.
  • a connection piece (not shown) extending from the terminal board is connected to the printed wiring board 130 by solder.
  • Each terminal device 146, 147 is formed with operation holes 146b, 147b for operating a release button (not shown) when releasing the state in which the electric wire is held by the spring force of the locking spring. Yes.
  • a release button (not shown) when releasing the state in which the electric wire is held by the spring force of the locking spring.
  • One terminal device 146 of the two terminal devices 146 and 147 constitutes a power supply side terminal device to which an electric wire from the terminal block 119 is connected, and the other terminal device 147 is for supplying power to the LED unit 2.
  • the load-side terminal device to which the electric wire 330 (see FIG. 4) is connected is configured.
  • the lighting fixture of this embodiment is a long LED unit 2 provided with a plurality of light emitting devices 1 using the LED chip 10 on one surface side in the thickness direction, and the light from the LED unit 2 attached to the fixture body 100.
  • a metallic reflector 110 that controls the light distribution to be a target.
  • the LED unit 2 includes the same number (eight in the illustrated example) of the light emitting devices 1 and a plurality (four in the illustrated example) of LED modules 2a having the same size.
  • the reflecting plate 110 is formed of a steel plate and is coated with a so-called highly reflective white powder, and the surface of the coating film constitutes the reflecting surface 110a.
  • the material of the reflecting plate 110 is not particularly limited, and for example, aluminum may be adopted.
  • the reflector 110 is attached to two reflector adapters 160 attached to both ends of the instrument body 100.
  • the reflector adapter 160 is formed in a U shape that is opened downward, and the central piece 161 is attached to the instrument body 100 such that the longitudinal direction of the central piece 161 is perpendicular to the longitudinal direction of the instrument body 100.
  • the reflection plate 110 is attached to each central piece 161 of the reflection plate adapter 160 using attachment screws 165 formed of so-called thumb screws.
  • the reflection plate 110 is formed with an insertion hole 112 through which each mounting screw 165 is inserted, and the central piece 161 of the reflection plate adapter 160 is formed with a screw hole 161a into which each mounting screw 165 is screwed. ing.
  • the reflector 110 is formed in a bowl shape with the lower surface side opened and both ends in the longitudinal direction closed, and a collar part 111 is extended outward from the lower end part, and is inserted into the embedding hole 301 of the ceiling material 300.
  • the flange 111 comes into contact with the lower surface of the peripheral portion of the embedding hole 301 in the ceiling material 300.
  • the reflection plate 110 has an embedded portion 115 that is opened in a shape (elongated rectangular shape) corresponding to the outer peripheral shape of the LED unit 2 and in which the LED unit 2 is embedded.
  • the planar portion of the surface from which light is extracted from the light emitting device 1 in the LED unit 2 and the peripheral portion of the embedded portion 115 in the reflecting surface 110a of the reflecting plate 110 are flush with each other. This point will be described later.
  • a bowl-like translucent cover 180 that is formed of a translucent material (for example, acrylic resin) and covers the LED unit 2 is detachably attached to the reflecting plate 110.
  • a plurality of (here, four) coupling legs 181 each having a coupling claw 181a (see FIG. 2) at the distal end portion are extended from both end edges along the longitudinal direction.
  • the reflection plate 110 is formed with a coupling hole 113 into which the coupling leg 181 is inserted and locked.
  • each of the coupling legs 181 of the translucent cover 180 is inserted into the coupling hole 113 of the reflecting plate 110 and the coupling claw 181a is locked to the peripheral portion of the coupling hole 113, so that the translucent cover 180 is reflected by the reflecting plate.
  • the translucent cover 180 is detachably attached.
  • the both ends of the translucent cover 180 in the longitudinal direction are picked with both hands to release the locking state of the coupling claw 181a to the coupling hole 113, thereby translucent.
  • the cover 180 may be pulled down.
  • the lighting fixture of this embodiment is arrange
  • the heat dissipation block 150 is formed in a long plate shape, and has a plurality of fins 152 (see FIG. 2) on the side opposite to the LED unit 2 side.
  • the fins 152 are formed along the longitudinal direction of the heat dissipation block 150 and are arranged at an equal pitch in the short direction of the heat dissipation block 150.
  • the heat dissipating block 150 is fixed to the reflector 110 with a fixing screw (not shown). In short, the heat dissipation block 150 is held by the reflector 110.
  • the light emitting device 1 includes the LED chip 10 and conductor patterns 23 and 23 for supplying power to the LED chip 10 on one surface side, and the LED chip 10 is mounted on the one surface side. And a rectangular board-shaped mounting board 20.
  • the light emitting device 1 also includes an optical member 60 that controls the light distribution of the light emitted from the LED chip 10.
  • the optical member 60 is formed in a dome shape with a translucent material, and is fixed to the one surface side of the mounting substrate 20 so as to accommodate the LED chip 10 between the optical member 60 and the mounting substrate 20. In the space surrounded by the optical member 60 and the mounting substrate 20, the LED chip 10 and a plurality of (for example, two) bonding wires 14 electrically connected to the LED chip 10 are sealed.
  • the sealing part 50 made of a sealing material is enriched.
  • the sealing part 50 is made into a gel by adopting, for example, a silicone resin as a sealing resin.
  • the light emitting device 1 is also excited by light emitted from the LED chip 10 and transmitted through the sealing portion 50 and the optical member 60, and emits light of a color different from the emission color of the LED chip 10 and translucency.
  • a dome-shaped color conversion member 70 made of a material is provided.
  • the color conversion member 70 is disposed on the one surface side of the mounting substrate 20 so as to surround the LED chip 10 and the like with the mounting substrate 20.
  • the color conversion member 70 is disposed such that an air layer 80 is formed between the light emitting surface 60 b of the optical member 60 on the one surface side of the mounting substrate 20.
  • the mounting substrate 20 has an annular dam portion 27 protruding outside the optical member 60 on the one surface so as to dam the sealing resin overflowing from the space when the optical member 60 is fixed to the mounting substrate 20. Has been.
  • the LED chip 10 is a GaN-based blue LED chip that emits blue light, and uses an n-type SiC substrate having a lattice constant and a crystal structure close to GaN as compared to a sapphire substrate and having conductivity as a crystal growth substrate. Yes.
  • the LED chip 10 is formed of a GaN-based compound semiconductor material on the main surface side of a SiC substrate, and a light emitting portion made of a laminated structure portion having a double hetero structure, for example, is grown by an epitaxial growth method (for example, MOVPE method). Yes.
  • the LED chip 10 has an anode electrode (not shown) formed on one surface side (upper surface side in FIG.
  • the cathode electrode and the anode electrode are composed of a laminated film of a Ni film and an Au film.
  • the material for the cathode electrode and the anode electrode is not particularly limited as long as it is a material that can provide good ohmic characteristics. For example, Al or the like may be employed.
  • the structure of the LED chip 10 is not particularly limited. For example, after the light emitting portion is epitaxially grown on the main surface side of the crystal growth substrate, a support substrate (for example, a Si substrate) that supports the light emitting portion is fixed to the light emitting portion. Then, the crystal growth substrate or the like may be removed.
  • the mounting substrate 20 is made of a heat conductive material, and includes the heat transfer plate 21 on which the LED chip 10 is mounted via the submount member 30, and the conductor patterns 23 and 23 described above.
  • the wiring board 22 is fixed to the mounting surface side.
  • the outer peripheral shapes of the heat transfer plate 21 and the wiring substrate 22 are rectangular, and a rectangular plate-like submount member 30 having a planar size smaller than the heat transfer plate 21 is exposed at the center of the wiring substrate 22.
  • a window hole 24 is provided in the thickness direction.
  • the LED chip 10 is mounted on the heat transfer plate 21 via the submount member 30 disposed inside the window hole 24 of the wiring board 22. Therefore, the heat generated in the LED chip 10 is transferred to the submount member 30 and the heat transfer plate 21 without passing through the wiring board 22.
  • an alignment mark 21 c for increasing the positioning accuracy of the submount member 30 is formed on the one surface of the heat transfer plate 21.
  • the wiring board 22 and the heat transfer plate 21 may be fixed via, for example, a polyolefin-based fixing sheet 29 (see FIG. 5).
  • Cu is adopted as the heat conductive material of the heat transfer plate 21, but not limited to Cu, for example, Al may be adopted. In short, it is preferable to employ a metal having high thermal conductivity such as Cu or Al as the heat conductive material of the heat transfer plate 21.
  • the LED chip 10 is mounted on the heat transfer plate 21 such that the light emitting portion is on the side farther from the heat transfer plate 21 than the crystal growth substrate, but the light emission portion is more heat transfer than the crystal growth substrate. You may make it mount in the heat exchanger plate 21 so that it may become the side close
  • the above-mentioned wiring board 22 is provided with a pair of conductor patterns 23 and 23 for feeding power to the LED chip 10 on one surface side of an insulating base material 22a made of a polyimide film. Further, the wiring board 22 is laminated with a protective layer 26 made of a white resist (resin) covering the conductor patterns 23 and 23 and the insulating base material 22a where the conductor patterns 23 and 23 are not formed. . Therefore, since the light from the LED chip 10 and the light from the phosphor of the color conversion member 70 are reflected by the surface of the protective layer 26, the light emitted from the LED chip 10 and the phosphor is absorbed by the wiring board 22. Therefore, the light output can be improved by improving the light extraction efficiency to the outside.
  • each conductor pattern 23 and 23 is formed in the outer periphery shape a little smaller than half of the outer periphery shape of the insulating base material 22a.
  • FR4, FR5, paper phenol or the like may be employed as the material of the insulating base material 22a.
  • the protective layer 26 is patterned so that two portions of the conductor patterns 23 and 23 are exposed in the vicinity of the window hole 24 of the wiring substrate 22 and one portion of the conductor patterns 23 and 23 is exposed in the peripheral portion of the wiring substrate 22.
  • two rectangular portions exposed in the vicinity of the window hole 24 of the wiring substrate 22 constitute a terminal portion 23 a to which the bonding wire 14 is connected.
  • the circular part exposed in the part constitutes the external connection electrode part 23b.
  • the conductor patterns 23 and 23 of the wiring board 22 are constituted by a laminated film of a Cu film, a Ni film, and an Au film. Further, of the two external connection electrode portions 23b, the external connection electrode portion 23b (the right external connection electrode portion 23b in FIG.
  • the LED chip 10 is mounted on the heat transfer plate 21 via the above-described submount member 30 that relieves stress acting on the LED chip 10 due to a difference in linear expansion coefficient between the LED chip 10 and the heat transfer plate 21.
  • the submount member 30 is formed in a rectangular plate shape having a planar size larger than the chip size of the LED chip 10.
  • the submount member 30 has not only a function of relieving the stress but also a heat conduction function of transferring heat generated in the LED chip 10 to a range wider than the chip size of the LED chip 10 in the heat transfer plate 21. Yes. Therefore, the light emitting device 1 can efficiently dissipate the heat generated in the LED chip 10 through the submount member 30 and the heat transfer plate 21. Further, the light emitting device 1 can reduce the thermal resistance from the LED chip 10 to the heat dissipation block 150 as compared with the case where the LED chip 10 is mounted on the wiring board 22. Further, the light emitting device 1 includes the submount member 30, so that the stress acting on the LED chip 10 due to the difference in linear expansion coefficient between the LED chip 10 and the heat transfer plate 21 can be reduced.
  • the cathode electrode is provided on the surface of the submount member 30 on the LED chip 10 side, and is connected to the cathode electrode (not shown) and a metal wire (for example, a gold wire).
  • a metal wire for example, a gold wire.
  • An aluminum fine wire is electrically connected to one conductor pattern 23 via a bonding wire 14, and the anode electrode is electrically connected to the other conductor pattern 23 via a bonding wire 14.
  • the LED chip 10 and the submount member 30 may be bonded using, for example, solder such as SnPb, AuSn, SnAgCu, or silver paste, but may be bonded using lead-free solder such as AuSn, SnAgCu. It is preferable.
  • solder such as SnPb, AuSn, SnAgCu, or silver paste
  • lead-free solder such as AuSn, SnAgCu. It is preferable.
  • the submount member 30 is AlN and is bonded using AuSn
  • a pretreatment for forming a metal layer made of Au or Ag in advance on the bonding surface of the submount member 30 and the LED chip is necessary.
  • the submount member 30 and the heat transfer plate 21 are preferably joined using lead-free solder such as AuSn or SnAgCu, for example.
  • the pre-process which forms the metal layer which consists of Au or Ag previously on the joining surface in the heat exchanger plate 21 is required.
  • the material of the submount member 30 is not limited to AlN, and may be any material that has a linear expansion coefficient that is relatively close to 6H—SiC that is a material for a crystal growth substrate and a relatively high thermal conductivity. Si, CuW or the like may be employed.
  • the submount member 30 has the above-described heat conduction function, and the area of the surface of the heat transfer plate 21 on the LED chip 10 side is sufficiently larger than the area of the surface of the LED chip 10 on the heat transfer plate 21 side. Larger is desirable.
  • the thickness dimension of the submount member 30 is set so that the surface of the submount member 30 is farther from the heat transfer plate 21 than the surface of the protective layer 26 of the wiring board 22. is there. Therefore, it is possible to prevent the light emitted from the LED chip 10 from being sideways absorbed by the wiring board 22 through the inner peripheral surface of the window hole 24 of the wiring board 22.
  • the light emitted from the LED chip 10 is reflected around the portion where the LED chip 10 is bonded on the surface of the submount member 30 where the LED chip 10 is bonded (that is, the portion overlapping the LED chip 10).
  • a reflective film is formed.
  • the reflective film in the submount member 30 may be formed of, for example, a laminated film of a Ni film and an Ag film, but the material of the reflective film is not particularly limited.
  • the emission wavelength of the LED chip 10 It may be appropriately selected depending on the situation.
  • sealing resin that is the sealing material of the sealing portion 50 described above, a silicone resin is used, but it is not limited to the silicone resin, and for example, an acrylic resin may be used. Further, glass may be used as the sealing material.
  • the optical member 60 is a molded product of a translucent material (for example, silicone resin, glass, etc.) and is formed in a dome shape.
  • a translucent material for example, silicone resin, glass, etc.
  • the optical member 60 is formed of a silicone resin molded product, the difference in refractive index and the linear expansion coefficient between the optical member 60 and the sealing portion 50 can be reduced.
  • the material of the sealing part 50 is an acrylic resin, it is preferable to form the optical member 60 also with an acrylic resin.
  • the optical member 60 has a light emitting surface 60b formed in a convex curved surface shape that does not totally reflect the light incident from the light incident surface 60a at the boundary between the light emitting surface 60b and the air layer 80 described above. 10 and the optical axis coincide with each other. Therefore, the light emitted from the LED chip 10 and incident on the light incident surface 60a of the optical member 60 can easily reach the color conversion member 70 without being totally reflected at the boundary between the light emitting surface 60b and the air layer 80, The total luminous flux can be increased.
  • the light emitted from the side surface of the LED chip 10 propagates through the sealing portion 50, the optical member 60, and the air layer 80 to reach the color conversion member 70 and excites the phosphor of the color conversion member 70, or the phosphor. Or is transmitted through the color conversion member 70 without colliding with the phosphor.
  • the optical member 60 is formed to have a uniform thickness along the normal direction regardless of the position.
  • the color conversion member 70 is formed of a mixture obtained by mixing a translucent material such as a silicone resin and yellow phosphor particles that are excited by blue light emitted from the LED chip 10 and emit broad yellow light. It is composed of goods. Therefore, in the light emitting device 1, the blue light emitted from the LED chip 10 and the light emitted from the yellow phosphor are emitted through the outer surface 70 b of the color conversion member 70, and white light can be obtained.
  • the translucent material used as the material of the color conversion member 70 is not limited to a silicone resin, but an organic / inorganic hybrid in which, for example, an acrylic resin, glass, an organic component and an inorganic component are mixed and combined at the nm level or the molecular level. Materials etc. may be adopted.
  • the phosphor particles to be mixed with the translucent material used as the material of the color conversion member 70 are not limited to yellow phosphors.
  • white light can be obtained by mixing red phosphors and green phosphors.
  • the color rendering can be improved when the red phosphor and the green phosphor are mixed.
  • the color conversion member 70 has an inner surface 70 a formed along the light emitting surface 60 b of the optical member 60. Therefore, the distance between the light emitting surface 60b and the inner surface 70a of the color conversion member 70 in the normal direction is a substantially constant value regardless of the position of the light emitting surface 60b of the optical member 60.
  • the color conversion member 70 is shape
  • the color conversion member 70 may be fixed to the mounting substrate 20 with an end edge (periphery of the opening) on the mounting substrate 20 side using, for example, an adhesive (for example, silicone resin, epoxy resin).
  • the optical member 60 is disposed at a predetermined position on the mounting substrate 20 and the sealing resin 50 is cured to form the sealing portion 50.
  • the optical member 60 is fixed to the mounting substrate 20, and then color conversion is performed.
  • the member 70 is fixed to the mounting substrate 20.
  • bubbles voids may be generated in the sealing portion 50 during the manufacturing process, so it is necessary to inject a large amount of liquid sealing resin into the optical member 60.
  • the light emitting device 1 overflows from the space surrounded by the optical member 60 and the mounting substrate 20 when the optical member 60 is fixed to the mounting substrate 20 outside the optical member 60 on the one surface of the mounting substrate 20.
  • An annular dam portion 27 that dams up the sealing resin is provided. Note that the sealing resin accumulated in the space surrounded by the optical member 60, the dam portion 27, and the protective layer 26 on the one surface side of the mounting substrate 20 is cured to form the resin portion 50b in FIG. Become.
  • the dam portion 27 is formed of a white resist. Therefore, the light emitted from the LED chip 10 and the light emitted from the phosphor can be prevented from being absorbed by the weir portion 27, and the light output can be increased.
  • the dam portion 27 extends inward from the inner peripheral surface of the dam portion 27 to center the center of the dam portion 27 and the central axis of the optical member 60 (four in this embodiment).
  • the claw portions 27b are spaced apart in the circumferential direction and provided at equal intervals.
  • the dam portion 27 also serves as a positioning portion for the color conversion member 70.
  • the number of the above-mentioned centering claw portions 27b is not limited to four, but it is desirable to provide at least three.
  • the width dimension of the centering claw portion 27 b is small in order to increase the allowable amount of sealing resin that can be accumulated between the dam portion 27 and the optical member 60.
  • an annular groove for positioning the color conversion member 70 may be provided on the mounting substrate 20 without providing the dam portion 27.
  • the color conversion member 70 is formed with a notch 71 that engages with the weir 27 on the entire edge of the mounting substrate 20 side. Therefore, in the light emitting device 1 of the present embodiment, the positioning accuracy of the color conversion member 70 with respect to the mounting substrate 20 can be increased, and the interval between the color conversion member 70 and the optical member 60 can be shortened.
  • the notch 71 is open on the edge side and the inner surface 70a side of the color conversion member 70.
  • portions of the conductor patterns 23 and 23 on the mounting substrate 20 exposed outside the color conversion member 70 constitute the above-described external connection electrode portions 23b and 23b.
  • a circuit pattern 3b (see FIGS. 2 to 4) that defines the connection relationship of each light emitting device 1 is formed on one surface side opposite to the heat dissipation block 150 side.
  • a circuit board 3 is provided.
  • a plurality of window holes 3c through which each light emitting device 1 is inserted are provided in the circuit board 3 in the thickness direction.
  • the LED module 2a includes a base substrate 4 made of a strip-shaped metal plate on which a plurality of light emitting devices 1 and a circuit board 3 are arranged on one surface side in the thickness direction.
  • the opening size of each window hole 3 c is set to be slightly larger than the planar size of the mounting substrate 20 in the light emitting device 1.
  • Al is employ
  • the LED module 2a is detachably attached to the heat dissipation block 150 using attachment screws 8 made of metal screws.
  • a screw insertion hole 3 e having an inner diameter larger than the outer diameter of the head 8 a of the mounting screw 8 is formed in the circuit board 3, and the inner diameter is larger than the outer diameter in the base board 4.
  • a small screw insertion hole 4e is formed.
  • the heat radiating block 150 is formed with a screw hole 15e into which the tip of the mounting screw 8 inserted through the screw insertion holes 3e and 4e is screwed.
  • the head 8a of the mounting screw 8 and the inner peripheral surface of the screw insertion hole 3e of the circuit board 3 are separated from each other, and the creeping distance between the mounting screw 8 and the circuit pattern 3b of the circuit board 3 is increased.
  • the stress generated in the light emitting device 1 due to the mounting screw 8 can be reduced.
  • the circuit board 3 is attached to the base board 4 using assembly screws 7 made of resin screws (see FIGS. 2 and 4), and each light emitting device 1 is made of a filler such as silica or alumina.
  • an adhesive layer 92 made of a resin sheet for example, an organic green sheet such as an epoxy resin sheet highly filled with fused silica
  • the organic green sheet has electrical insulating properties, high thermal conductivity, high fluidity during heating, and high adhesion to uneven surfaces.
  • the heat capacity of the base substrate 4 is large, if the heating temperature of the organic green sheet is increased to about 170 ° C. and cured, the fixing performance between the light emitting device 1 and the base substrate 4 decreases, and the heating temperature is increased to about 150 ° C.
  • an insulating layer 91 made of an organic green sheet cured at 170 ° C. in advance on the one surface of the base substrate 4 is provided separately from the adhesive layer 92.
  • the adhesive layer 92 and the insulating layer 91 are interposed between the heat transfer plate 21 and the base substrate 4 of the light emitting device 1.
  • the adhesive layer 92 secures the fixing performance and the thermal conductivity, and the insulating layer. 91 ensures electrical insulation and thermal conductivity.
  • the circuit board 3 and the base board 4 in the LED module 2a are formed in the same outer peripheral shape. That is, the outer peripheral shape of the circuit board 3 and the base board 4 is an elongated rectangular shape.
  • the LED module 2a has a dimension in which the outer dimension of the LED unit 2 in the longitudinal direction is slightly smaller than a dimension that is an integral fraction of the dimension in the longitudinal direction of the embedded portion 15 (a quarter in the illustrated example).
  • the dimension in the short direction is slightly smaller than the dimension in the short side direction of the embedded portion 15.
  • the LED module 2a can be shared by a plurality of types of LED units 2 having different lengths in the longitudinal direction, and the cost can be reduced.
  • a mirror 3d (see FIGS. 2 and 4) for reflecting light from the light emitting device 1 is formed on the one surface side of the circuit board 3 described above.
  • the mirror 3d is formed of a white resist layer, and most of the circuit pattern 3d is covered with the mirror 3d.
  • the circuit board 3 has the circuit pattern 3b described above formed on one surface side of the organic insulating substrate.
  • the material of the organic insulating substrate of the circuit board 3 may be a glass epoxy resin such as FR4, but is not limited to the glass epoxy resin, and may be, for example, a polyimide resin or a phenol resin. .
  • a surface mount type Zener diode 331 and a surface mount type ceramic capacitor 332 for preventing overvoltage are provided on the circuit board 3 in each window. It is mounted in the vicinity of the hole 3c.
  • each external connection electrode portion 23 b is electrically connected to the circuit pattern 3 b of the circuit board 3 through the terminal plate 6.
  • a jumper pin may be used as the terminal board 6, a jumper pin may be used.
  • each LED module 2a is provided with a male connector 5a (see FIGS. 2 and 4) at one end in the longitudinal direction of the circuit board 3, and a female connector 5b (see FIG. 2) at the other end. Is provided.
  • the circuit board 3 is provided between one contact 5a1 of the male connector 5a and one contact (not shown) to which the one contact 5a1 is electrically connected in the female connector 5b. Between the other contact 5a2 of the male connector 5a and the other contact (not shown) to which the other contact 5a2 is electrically connected in the female connector 5b.
  • a circuit pattern 3b is formed so as to be short-circuited for the feed wiring. Therefore, a female connector 5c (see FIG. 4) having the same structure as the female connector 5b provided on the circuit board 3 is connected to the pair of electric wires 330 from the lighting device 120, and the female connector 5c is illustrated in FIG. Connected to the male connector 5a (see FIG. 4) of the leftmost LED module 2a in 1 (a), and provided with a connector (not shown) for short-circuiting the contacts of the female connector 5b of the rightmost LED module 2a Thus, power can be supplied from the lighting device 120 to the series circuits of all the LED chips 10 of the LED unit 2.
  • the lighting fixture of this embodiment is embedded in the planar part of the surface which takes out light from the light-emitting device 1 in the LED unit 2, and the reflective surface 110a of the reflecting plate 110, as shown in FIG.1 (b).
  • the peripheral part of the part 115 is flush with each other.
  • the surface that comes into contact with the surrounding medium (air) of the light emitting device 1 and the light is finally emitted, and the light that comes into contact with the surrounding medium (air) of the light emitting device 1
  • Both the finally reflected surface constitutes a surface for extracting light from the light emitting device 1
  • the surface of the protective layer 26 of the light emitting device 1 constitutes the planar portion of the LED unit 2.
  • the reflective plate 110 is disposed on the heat dissipation block 150 side from the peripheral portion of the embedded portion 115.
  • a height adjustment piece 116 is extended, and a contact piece 117 in surface contact with the heat dissipation block 150 is extended outward from the tip of the height adjustment piece 116.
  • the surface of the mirror 3d of the circuit board 3 is flush with the planar portion.
  • a wire introduction hole 110 b for passing the above-described pair of wires 330 is formed in the height adjustment piece 116 in the reflector 110.
  • the electric wire introduction hole 110b is opened in a circular shape having an inner diameter through which the male connector 330 can be inserted.
  • the reflector 110 has an embedded portion 115 that is opened in a shape corresponding to the outer peripheral shape of the LED unit 2 and in which the LED unit 2 is embedded, and the heat dissipation block 150 includes the reflector. 110, the size of the heat dissipation block 150 can be increased, and the heat generated in the light emitting device 1 is efficiently dissipated through the heat dissipation block 150, thereby suppressing the temperature rise of the LED chip 1. It is possible to increase the optical output.
  • the periphery of the light emitting device 1 It becomes possible to suppress that a part becomes dark.
  • the surface of the mirror 3d formed on the circuit board 3 is flush with the planar portion, it is possible to suppress the peripheral portion of the light emitting device 1 from being darkened due to the circuit board 3. It becomes.
  • each light emitting device 1 is mounted on a separate circuit board that defines the connection relationship of each light emitting device 1 in the LED unit 2, the thermal resistance from each light emitting device 1 to the heat dissipation block 150 can be reduced, The heat dissipation can be improved.
  • the air layer 80 is interposed between the dome-shaped color conversion member 70 and the optical member 60 as described above.
  • the light is scattered toward the optical member 60 side to be optical.
  • the amount of light transmitted through the member can be reduced, and the light extraction efficiency to the outside as the light emitting device 1 can be improved.
  • the reflecting surface 110a of the reflecting plate 110 can be illuminated by light scattered by the phosphor particles to the reflecting surface 110a side of the reflecting plate 110 and light emitted from the phosphor to the reflecting surface 110a side.
  • the thermal resistance is reduced as compared with the case where a part of the reflector 110 is interposed between the LED unit 2 and the heat dissipation block 150. It is possible to improve heat dissipation.
  • the plane size of the heat dissipation block 150 is set larger than the plane size of the LED unit 2, the heat transferred to the heat dissipation block 150 can be transferred to a wider range, and heat dissipation is improved.
  • the heat transferred from each light emitting device 1 can be transferred to a wider range. .
  • the contact piece 117 that is in surface contact with the heat dissipation block 150 from the embedded portion 115 in the reflection plate 110 is provided, part of the heat transferred from the LED unit 2 to the heat dissipation block 150 is also efficiently transmitted from the reflection plate 110. It is possible to dissipate heat well.
  • the heat radiating block 150 can be made small, and weight reduction and cost reduction can be achieved.
  • Al is adopted as the material of the reflecting plate 110, the thermal conductivity is higher than when a steel plate is used, and the heat generated in the LED unit 2 can be radiated more efficiently.
  • the LED unit 2 can be attached to and detached from the heat dissipation block 150 without removing the reflector 110 from the instrument body 100 in a state where the reflector 110 is attached to the instrument body 100, the replacement work of the LED unit 2 is facilitated. Moreover, when the thing which is not lighted before the lifetime among several light-emitting devices 1 generate
  • the lighting fixture of this embodiment is provided with the translucent cover 180 which covers the LED unit 2 and the peripheral part of the embedding part 115 in the reflecting plate 110
  • the translucent cover 180 is the reflecting plate 110. Removably attached to. Therefore, the LED unit 2 can be protected by attaching the translucent cover 180, and the translucent cover 180 may be removed from the reflector 110 when the LED unit 2 or the LED module 2a is replaced.
  • the translucent cover 180 is configured to have a diffusing function for diffusing light from the LED unit 2, the reflecting surface 110a of the reflecting plate 110 can be illuminated more uniformly.
  • the light diffusing material may be dispersed in the base material of the translucent cover 180.
  • the above-described LED unit 2 does not necessarily need to be configured by a plurality of LED modules 2a, and may of course not include one base substrate 4 and one circuit substrate 3.
  • the circuit pattern 3b may be formed so that the series circuits of all the LED chips 10 are inserted between the contacts 5a1 and 5a2 of the male connector 5a.
  • the plurality of light emitting devices 1 are connected in series.
  • the connection relationship between the plurality of light emitting devices 1 is not particularly limited.
  • the light emitting devices 1 may be connected in parallel or connected in series. And parallel connection may be combined.
  • the means for detachably attaching the LED unit 2 to the heat radiating block 150 is not limited to the example using the mounting screw 8 (see FIG. 1B) as described above, and for example, as shown in FIG. Alternatively, a leaf spring 118 formed by bending a strip-shaped metal plate may be used.
  • the dimension of the base substrate 4 is set longer than the dimension of the circuit board 3 with respect to the dimension of the LED unit 2 in the short direction.
  • the upper part of the height adjustment piece 116 has a cross-section L so that the distance between the upper parts on the heat radiation block 150 side of the height adjustment pieces 116 facing each other in the short direction of the LED unit 2 is longer than the distance between the lower parts.
  • the width dimension of the portion of the LED unit 2 in which the base substrate 4 is accommodated is made longer than the dimension in the short direction of the base substrate 4, and the width dimension of the portion in which the circuit board 3 is accommodated is shorter than that of the circuit board 3. It is longer than the dimension in the direction and shorter than the dimension in the short direction of the base substrate 4. Therefore, the LED unit 2 is held by the heat dissipation block 150 and the reflection plate 110.
  • the other height adjustment piece 116 (the height adjustment on the right side in the figure) in the upper part of the one height adjustment piece 116 (the height adjustment piece 116 on the left side in the figure).
  • a fixed piece 118a composed of a central portion in the length direction of the metal plate constituting the plate spring 118 is fixed to the surface facing the upper portion of the piece 116) by spot welding or the like.
  • the leaf spring 118 includes contact pieces 118b disposed at both ends in the length direction so as to be spaced apart from the height adjustment pieces 116 and contacting the side surfaces of the base substrate 4 in the short direction, and the fixed pieces 118a and the contact pieces.
  • thermo conductive sheet thermal conductive sheet
  • the base substrate 4 is placed in the embedded portion 115 in a state where the LED unit 2 is inclined from the horizontal plane.
  • the LED unit 2 is inserted after the side surface of the base substrate 4 is brought into contact with the contact piece 118b of the leaf spring 118 of one height adjusting piece 116 and the leaf spring 118 is elastically deformed against the spring force of the leaf spring 118. Then, the other side surface of the base plate 4 may be brought into contact with the other height adjustment piece 116 by the restoring force of the leaf spring 118.
  • the LED unit 2 when removing the LED unit 2, the LED unit 2 may be inclined and removed after the LED unit 2 is pushed toward the leaf spring 118 side. If a jig insertion part (hole or notch) into which the tip of a flathead screwdriver or the like can be inserted at the time of removal is provided on the circuit board 3 and the base board 4, the LED unit 2 can be easily pressed against the leaf spring 118 side. The force applied to the circuit board 3 can be reduced.
  • a pair of leaf springs 119 as shown in FIG. 9A may be used. Also in the example shown in FIG. 9A, the dimension of the base substrate 4 is set longer than the dimension of the circuit board 3 with respect to the dimension of the LED unit 2 in the short direction.
  • the leaf spring 119 is formed by bending a strip-shaped metal plate.
  • the leaf spring 119 is fixed to the upper portion of the height adjustment piece 116 by spot welding or the like, and the periphery of the base substrate 4 of the LED unit 2.
  • a J-shaped contact piece 119b that elastically contacts the portion, and the fixed piece 119a and the contact piece 119b are connected to each other by an inverted V-shaped connection piece 119c.
  • the height adjustment piece 116 of the reflecting plate 110 corresponds to the leaf spring 119 in order to reduce the gap formed between the reflecting surface 110a of the reflecting plate 110 and the planar portion of the LED unit 2. Only the portion to be recessed is recessed in a U shape in plan view. In the example shown in FIG.
  • the means for attaching the LED unit 2 to the heat dissipation block 150 is not limited to the above examples.
  • a screw insertion hole 150 e through which the attachment screw 8 is inserted may be provided in the heat radiating block 150, and a screw hole 21 e into which the tip of the attachment screw 8 is screwed may be provided in the heat transfer plate 21.
  • the contact piece 117 in the reflection plate 110 is connected to the height adjustment piece 116 by the contact piece 117 in contact with the heat dissipation block 115 in the reflection plate 110.
  • the LED unit 2 may be attached to the heat dissipation block 150 so that the other surface of the LED unit 2 is in close contact with the heat dissipation block 150.
  • the contact piece 117 is provided with a screw insertion hole 117 e through which the mounting screw 8 is inserted.
  • the reflector 110 when the reflector 110 is not used as a heat radiating member, as shown in FIG. 12, a structure that does not include the contact piece 117 described above may be employed. Further, in the case where white light can be emitted by the LED chip 10 alone, or when the phosphor is dispersed in the sealing portion 50, as shown in FIG. 13, a structure without the color conversion member 70 described above is provided. Can be adopted.
  • the heat transfer plate 21 and the heat dissipation block 150 of the light emitting device 1 are joined by the insulating layer 95 made of the organic green sheet. Are electrically isolated and thermally coupled.
  • a blue LED chip whose emission color is blue is used as the LED chip 10 and a SiC substrate is used as the crystal growth substrate.
  • a GaN substrate or a sapphire substrate is used instead of the SiC substrate.
  • the crystal growth substrate has a higher thermal conductivity than the case where a sapphire substrate, which is an insulator, is used as the crystal growth substrate. The thermal resistance of the substrate can be reduced.
  • the LED chip 10 has the anode electrode formed on the one surface side and the cathode electrode formed on the other surface side. The anode electrode and the cathode electrode are formed on the one surface side.
  • both the anode electrode and the cathode electrode can be directly connected to the conductor patterns 23 and 23 via the bonding wires 14.
  • emitted from LED chip 10 is not restricted to blue light, For example, purple light, ultraviolet light, etc. may be sufficient.
  • the submount member 30 is not necessarily provided.
  • the LED chip 10 having a chip size of 1 mm ⁇ is used and one LED chip 10 is disposed on the submount member 30.
  • the chip size and number of the LED chips 10 are particularly limited.
  • a plurality of LED chips 10 are arranged on one submount member 30 by adopting an LED chip 10 having a chip size of 0.3 mm ⁇ .
  • the LED chip 10 may be connected in series via the electrode pattern of the submount member 30 and a bonding wire (not shown).
  • the configuration of the LED unit 2 is not limited to the above-described examples. For example, as shown in FIG. But you can.
  • the circuit board 3 is attached to the heat dissipation block 150 using the attachment screws 8.
  • the circuit board 3 is provided with a screw insertion hole 3f through which the attachment screw 8 is inserted, and the heat dissipation block 150 is provided with a screw hole 115e into which the tip of the attachment screw 8 is screwed.
  • a rubber sheet-like heat dissipation sheet (thermal conductive sheet) 93 such as Sarcon (registered trademark) is connected to the LED unit 2. It is sandwiched between the heat dissipation block 150.
  • the LED unit 2 and the heat dissipation block 150 are thermally coupled via the heat dissipation sheet 93.
  • the light-emitting device 1 in FIG. 14 includes an LED chip 10, a mounting substrate 20 d on which the LED chip 10 is mounted, a hemispherical optical member 65 disposed so as to overlap the LED chip 10, and a color conversion member 70.
  • the optical member 65 is formed of silicone resin, the material of the optical member 65 is not limited to silicone resin, and may be glass, for example.
  • the optical member 65 reduces the refractive index difference between the LED chip 10 and the medium with which the light extraction surface of the LED chip 10 is in contact as compared with the case where the medium is air, thereby improving the light extraction efficiency from the LED chip 10. It is to improve.
  • the mounting substrate 20d is provided with a housing recess 20ad for housing the LED chip 10 on one surface, and an anode electrode (not shown) and a cathode electrode (not shown) of the LED chip 10 are electrically connected via bumps. It is constituted by a ceramic substrate on which wiring (not shown) to be formed is formed.
  • the LED chip 10 is flip-chip mounted on the mounting substrate 20d, and light is extracted through a sapphire substrate that is a crystal growth substrate.
  • the housing recess 20ad in the mounting substrate 20d is opened in a circular shape, and the opening area gradually increases as the distance from the inner bottom surface increases.
  • a sealing portion 55 made of a sealing material (for example, silicone resin) that seals the LED chip 10 is provided in the housing recess 20ad of the mounting substrate 20d, and the optical member 65 is sealed with the above-described sealing. The material is bonded to the mounting substrate 20d.
  • a sealing material for example, silicone resin
  • the color conversion member 70 is formed in a sheet shape and is hermetically sealed to the mounting substrate 20 d so as to cover the optical member 65.
  • the mounting substrate 20 d and the color conversion member 70 form a package, and the light emitting surface 70 b of the color conversion member 70 is a plane of the surfaces from which light is extracted from the light emitting device 1 in the LED unit 2.
  • the part of a shape is comprised.
  • the lighting fixture has the LED unit 2, the fixture body 100, the reflector 110, the lighting device 120, and the heat dissipation block 150.
  • the LED unit 2 is formed in a long shape.
  • the LED unit 2 includes a plurality of light emitting devices 1 on one surface side in the thickness direction. In other words, the LED unit 2 includes a plurality of light emitting devices 1 on the first surface in the thickness direction.
  • Each light emitting device 1 has an LED chip 10.
  • the reflector 110 is made of metal.
  • the reflector 110 is held by the instrument body 100.
  • the reflector 110 is configured to control the light from the LED unit 2 so as to achieve a target light distribution.
  • the lighting device 120 is attached to the instrument main body 100 in a replaceable manner.
  • the lighting device 120 is configured to light the LED unit 2.
  • the heat dissipation block 150 is disposed on the other side of the LED unit 2 in the thickness direction. In other words, the heat dissipation block 150 is disposed on the second surface in the thickness direction of the LED unit 2. The second surface is on the opposite side of the first surface.
  • the heat dissipating block 150 is attached so that the LED unit 2 can be replaced.
  • the heat dissipation block 150 is configured to dissipate heat generated by the LED unit 2.
  • the reflection plate 110 has an embedded portion 115.
  • the embedding part 115 is provided for embedding the LED unit 2.
  • the heat dissipation block 150 is held by the reflector 110.
  • the LED unit 2 has a surface for extracting light from the light emitting device 1.
  • the surface from which light is extracted has a planar portion.
  • the peripheral part of the embedding part 115 in the reflective surface 110a is flush with the planar part.
  • the reflective surface 110a has a reflective portion.
  • the reflective portion is located on the peripheral portion of the embedded portion 115. In other words, the reflective portion is located outside the outer periphery of the embedded portion 115.
  • the planar portion is flush with the reflective portion.
  • the reflection plate 110 has an embedded portion 115 that is opened in a shape corresponding to the outer peripheral shape of the LED unit 2 and in which the LED unit 2 is embedded. Further, the heat dissipation block 150 is held by the reflection plate 110. Therefore, the size of the heat dissipation block 150 can be increased. Therefore, the heat generated in the light emitting device 1 is efficiently radiated through the heat radiating block 150. That is, the temperature rise of the LED chip 10 can be suppressed and the light output can be increased. Further, the planar portion of the surface from which the light is extracted from the light emitting device 1 in the LED unit 2 and the peripheral portion of the embedding portion 115 in the reflecting surface 110a of the reflecting plate 110 are flush with each other. Therefore, it becomes possible to suppress that the peripheral part of the light-emitting device 1 becomes dark.
  • the reflector 110 has the embedded portion 115 that is opened in a shape corresponding to the outer peripheral shape of the LED unit 2 and in which the LED unit 2 is embedded.
  • the embedding part 115 has a predetermined shape.
  • the predetermined shape is formed so that the LED unit 2 is disposed inside the embedded portion 115.
  • the opening is provided so as to penetrate in the thickness direction of the reflecting plate 110.
  • the LED unit 2 is detachably attached to the heat dissipation block 150 in a state where the reflector 110 is attached to the instrument main body 100.
  • the other surface (second surface) is in surface contact with the heat dissipation block 150. Therefore, the heat dissipation of the LED unit 2 can be improved.
  • the lighting fixture has a bowl-like shape that is detachably attached to the reflecting plate 110 so as to cover the LED unit 2 and the peripheral portion of the embedded portion 115 in the reflecting plate 110.
  • the translucent cover 180 is provided.
  • the reflective portion is defined by a portion covered with the translucent cover 180.
  • the reflector 110 has a first height.
  • the first height is along the thickness direction of the LED unit 2.
  • the first height of the reflecting plate 110 is such that the planar portion of the surface from which the LED unit 2 extracts light from the light emitting device 1 and the peripheral portion of the embedding portion 115 on the reflecting surface 110 a of the reflecting plate 110. It is set to be flush.
  • the reflector 110 has a height adjusting piece 116.
  • the height adjustment piece 116 extends from the reflector 110 toward the heat dissipation block 150. Thereby, the height adjusting piece 116 extends from the reflector 110 along the thickness direction of the LED unit 2.
  • the height adjustment piece 116 has a first height in the thickness direction of the LED unit 2. Thereby, the height of the reflecting plate 110 is determined by the height adjusting piece 116.
  • the first height of the height adjustment piece 116 is a flat portion of the surface from which light is extracted from the light emitting device 1 in the LED unit 2 and the peripheral portion of the embedding portion 115 in the reflecting surface 110a of the reflecting plate 110. Are set to be flush with each other.
  • the LED unit 2 has a first thickness in the thickness direction of the LED unit 2.
  • the first height is set so that the planar portion of the surface from which light is extracted from the light emitting device 1 and the peripheral portion of the embedding portion 115 in the reflecting surface 110 a of the reflecting plate 110 are flush with each other.
  • the first thickness is set.
  • the heat dissipation block 150 has a flat surface.
  • the heat radiating block 150 has the reflector 110 and the LED unit 2 mounted on a plane.
  • the first thickness is set equal to the first height.
  • the height adjusting piece 116 further has a contact piece 117.
  • the contact piece 117 extends in a direction crossing the thickness direction of the LED unit 2.
  • the contact piece 117 is in surface contact with the heat dissipation block 150.
  • the height adjustment piece 116 further has a contact piece 117.
  • the contact piece 117 extends in a direction orthogonal to the thickness direction of the LED unit 2.
  • the contact piece 117 is in surface contact with the heat dissipation block 150.
  • part of the heat transferred from the LED unit 2 to the heat dissipation block 150 can be efficiently dissipated from the reflector 110 as well. That is, the reflecting plate 110 can be used as a heat radiating member. Therefore, the heat dissipation block 150 can be reduced. Thereby, weight reduction and cost reduction can be achieved.
  • the contact piece 117 extends from the height adjustment piece 116 in a direction opposite to the LED unit 2. .
  • the height adjusting piece 116 has a first end on one side in the height direction.
  • the contact piece 117 extends from the first end of the height adjustment piece 116 in a direction opposite to the LED unit 2.
  • the contact piece 117 When the heat is released from the heat dissipation block 150 to the contact piece 117, the temperature of the contact piece 117 rises. As the temperature of the contact piece 117 rises, the contact piece 117 expands. However, the contact piece 117 extends in the direction opposite to the LED unit 2. Therefore, when the temperature of the contact piece 117 rises, the contact piece 117 expands in the direction opposite to the LED unit 2. In other words, the contact piece 117 does not expand toward the LED unit 2. Thereby, the clearance gap between the reflecting plate 110 and the LED unit 2 can be kept constant. That is, even when the gap between the reflecting plate 110 and the LED is set narrow, the contact piece 117 does not contact the LED unit 2 due to the contact piece 117 expanding. Therefore, even when the gap between the reflecting plate 110 and the LED unit 2 is set narrow, the contact piece 117 does not apply force to the LED unit 2 due to the expansion of the contact piece 117.
  • the reflector 110 has a recess.
  • the concave portion has a shape corresponding to the outer peripheral shape of the LED unit 2.
  • the recess is configured such that the LED unit 2 is embedded.
  • a recess defines the embedded portion 115.
  • the embedding part 115 has a peripheral wall and a bottom wall.
  • the peripheral wall is defined as a height adjustment piece 116.
  • the bottom wall is defined as a contact piece 117.
  • the LED unit 2 is in contact with the heat dissipation block 150 through the bottom wall.
  • the light emitting device 1 includes an LED chip 10, a mounting substrate 20, and an optical element.
  • the mounting substrate 20 has the LED chip 10 mounted on one surface side.
  • the optical element is fixed to one surface side of the mounting substrate 20 so that the LED chip 10 is accommodated between the optical element and the mounting substrate 20.
  • the optical element has a peripheral portion.
  • An outer peripheral portion of the optical element is fixed to one surface side of the mounting substrate 20.
  • a planar portion of the surface from which the light is extracted is defined by a portion outside the outer peripheral portion.
  • the optical element has an optical member 60.
  • the optical member 60 is configured to control the light distribution of the light emitted from the LED chip 10.
  • the optical member 60 is fixed to one surface of the mounting substrate 20 so as to accommodate the LED chip 10 between the optical member 60 and the mounting substrate 20.
  • the optical member 60 has a dome shape.
  • the optical element further has a color conversion member 70.
  • the color conversion member 70 includes a phosphor and a translucent material. The phosphor is excited by light emitted from the LED chip 10 and emits light of a color different from the emission color of the LED chip 10.
  • the color conversion member 70 is disposed in such a manner that an air layer is interposed between the color conversion member 70 and the optical member 60 on the one surface side of the mounting substrate 20.
  • the color conversion member 70 has a dome shape.
  • the lighting fixture in the previous period has an attaching means.
  • the LED unit 2 is attached to the heat dissipation block 150 by the attachment means.
  • the attachment means is constituted by a spring.
  • the spring is configured to urge the LED unit 2 toward the heat dissipation block 150.
  • the spring is composed of a leaf spring 119.
  • the leaf spring 119 has a first portion (connecting piece 119c) extending from the periphery toward the inside of the periphery. Accordingly, the LED unit 2 is sandwiched between the first portion of the leaf spring 119 and the heat dissipation block 150.
  • the LED unit 2 can be easily attached to the heat dissipation block 150.
  • the LED unit 2 can be attached to the heat dissipation block 150 so that the LED unit 2 is in close contact with the heat dissipation block 150.
  • the leaf spring 119 further has a second portion (contact piece 119b).
  • the second part extends from the first part in a direction opposite to the heat dissipation block 150.
  • the second part is located between the LED unit 2 and the reflector 110.
  • the LED unit 2 can be easily detached from the heat dissipation block 150.
  • the lighting fixture further has attachment means.
  • the LED unit 2 is in contact with the reflecting plate 110 by attachment means.
  • the embedded portion 115 has a peripheral edge.
  • the peripheral edge has a first inner surface and a second inner surface.
  • the second inner surface is opposed to the first inner surface.
  • the attachment means is disposed on the first inner surface. The LED unit 2 is held by the attachment means and the second inner surface so as to come into contact with the second inner surface of the reflector 110.
  • the heat of the LED unit 2 can be released to the heat dissipation block 150 and the reflector 110.
  • the attaching means is constituted by a spring 118.
  • the spring 118 is configured to urge the LED unit 2 against the second inner surface, whereby the LED unit 2 comes into contact with the second inner surface of the reflector 110.
  • peripheral portion of the embedded portion on the reflecting surface of the reflecting plate is defined as a surface parallel to a planar portion of the surface from which light is extracted from the light emitting device in the LED unit.
  • peripheral portion of the embedded portion on the reflecting surface of the reflecting plate is defined in a region located inside the translucent cover.
  • the lighting fixture of this embodiment is a lighting fixture that is directly attached to the ceiling, and as shown in FIG. A main body 100, reflector adapters 170 provided at both ends of the instrument body 100 in the longitudinal direction, a reflector 110 having a V-shaped cross section attached to the reflector adapter 170 so as to cover the instrument body 100, and a reflector 110 And two LED units 2 held in the box.
  • the heat dissipation block 150 described in the first embodiment is provided for each LED unit 2.
  • the lighting fixture of the present embodiment is a so-called Fuji-type (mountain-type) lighting fixture, and the shapes of the reflector 110 and the reflector adapter 170 are different from those of the first embodiment.
  • symbol is attached
  • the main piece 101 of the instrument main body 100 is provided with two bolt insertion holes 101a as in the first embodiment.
  • the instrument body is inserted by inserting the mounting bolt 310 protruding from the construction surface into the bolt insertion hole 101a and tightening the nut 108 through the washer 107 to the mounting bolt 310.
  • 100 can be coupled to the mounting bolt 310.
  • the lighting device 120 in the present embodiment is connected to each LED unit 2 so as to light each LED unit 2.
  • the lighting device 120 is provided with two terminal devices 147 (see FIG. 7) described in the first embodiment.
  • the reflector adapter 170 is formed by bending a strip-shaped metal plate.
  • the reflection plate adapter 170 is attached to the attachment piece 171 facing the main piece 101 of the instrument main body 100 in a state of being attached to the instrument main body 100, and is a latch member that is rotatably attached to the reflection plate 110 at the top of the reflection plate 110.
  • a long hole-like locking hole 172 for locking 114 is formed.
  • the reflector adapter 170 is attached to the side piece 102 of the instrument main body 100 so that both ends thereof are perpendicular to the longitudinal direction of the main piece 101 of the instrument main body 100.
  • the longitudinal direction of the stop hole 172 is made to coincide with the longitudinal direction of the mounting piece 171. Therefore, the reflector 110 can be attached to and detached from the reflector adapter 170 by appropriately rotating the latch member 114.
  • the two LED units 2 are arranged so that their longitudinal directions are parallel to each other with the top of the reflector 110 sandwiched therebetween.
  • the temperature rise of the LED chip 10 can be suppressed, the light output can be increased, and the peripheral portion of the light emitting device 1 is prevented from being darkened. It becomes possible to do.
  • LED units 2 and the shape of the reflector 110 are not limited to the structures of the above embodiments.

Abstract

 LEDチップを用いた発光装置を厚み方向の一面側に複数備えた長尺のLEDユニットと、器具本体に保持された反射板と、LEDユニットを点灯させる点灯装置と、LEDユニットの他面側に配置されてLEDユニットが交換可能に取着されLEDユニットで発生した熱を放熱する放熱ブロックとを備える。反射板に、LEDユニットが埋め込まれる埋込部が形成されるとともに、放熱ブロックが、反射板に保持されている。LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とを面一としてある。

Description

照明器具
 本発明は、LEDチップを用いた発光装置を複数備えた照明器具に関するものである。
 従来より、天井などに施工されている一般照明用の照明器具の直管蛍光ランプに代えて、LEDチップを用いた発光装置を複数備え、当該複数の発光装置を直線状に配列した直線形LEDランプを用いることが提案されている(例えば、特許文献1)。
 また、上記特許文献1に開示されたLEDランプ200ddは、図16に示すように、円筒形のパイプ201dd内に、LEDチップ10ddを用いた発光装置1ddが長尺の基板204ddの一面側で基板204ddの長手方向に配列されている。また、このLEDランプ200ddは、LEDユニット202ddで発生した熱を放熱させるための放熱部材205ddもパイプ201dd内に収納されている。
 上述の基板204ddは、ガラスエポキシ樹脂を基材とした両面プリント配線板により構成されており、放熱部材205ddは、アルミニウムにより形成されている。また、発光装置1ddは、LEDチップ10ddが青色光を発光する青色LEDチップであり、樹脂製のパッケージ11ddに、LEDチップ10ddからの青色光により励起されて黄色光を放射する蛍光体(図示せず)が混入されている。
特開2009-272072号公報(段落〔0012〕-〔0028〕および図1,2)
 ところで、図16に示した構成のLEDランプ200ddでは、パイプ201dd内に、発光装置1ddで発生した熱を放熱させるための放熱部材205ddが収納されているが、照明器具に適合したランプ重量により放熱部材205ddのサイズが制限される。したがって、十分な放熱特性を得ることができず、高輝度の発光装置1ddを用いても発光装置1ddの温度が当該発光装置1ddの許容温度(例えば、LEDチップ10ddの最大ジャンクション温度)を超えないように各LEDチップ10ddへの入力電力を制限する必要があり、光出力の高出力化が難しかった。また、図16に示した構成のLEDランプ200ddは、放熱ブロック205ddが必要なので、LEDランプ200dd自体が高価となる。
 また、従来の直管蛍光ランプ用の照明器具の直管蛍光ランプに代えて、LEDランプを取り付ける場合には、直管蛍光ランプを点灯するための安定器をバイパスする工事が必要であり、LEDランプの普及の妨げになっている。また、直管蛍光ランプのランプ配光とLEDランプのランプ配光とが一致しないので、照明器具により照明された照明環境が異なり、直管蛍光ランプを用いた照明器具と同様のあかり空間が得られず、空間の雰囲気が変わってしまう。要するに、LEDランプを点灯させたときに、器具本体の備えている反射板におけるLEDランプの周辺部分が暗く、反射板を利用した照明演出が得られない(直管蛍光ランプに代えてLEDランプを取り付けると、照明器具の配光特性が変化してしまう)。また、発光装置の指向性が強くて下向きの光が強いため、被照射面に、照明器具と被照射面との間に存在する物体の影が出やすくなる。
 これに対して、直管蛍光灯型LEDランプと称するLEDランプと、当該LEDランプ専用の灯具とを備えた照明器具が提案されている。
 しかしながら、このような照明器具においても、LEDランプの放熱特性が当該LEDランプのランプ重量により制限され、光出力の高出力化が難しいという問題がある。
 本発明は上記事由に鑑みて為されたものであり、その目的は、LEDチップの温度上昇を抑制できて光出力の高出力化を図れ、且つ、発光装置の周辺部分が暗くなるのを抑制することが可能な照明器具を提供することにある。
 上記課題を解決するために、本発明の照明器具は、LEDチップを用いた発光装置を厚み方向の一面側に複数備えた長尺のLEDユニットと、器具本体と、器具本体に保持されLEDユニットからの光を目標の配光となるように制御する金属製の反射板と、器具本体に交換可能に取着されLEDユニットを点灯させる点灯装置と、LEDユニットの厚み方向の他面側に配置されてLEDユニットが交換可能に取着されLEDユニットで発生した熱を放熱する放熱ブロックとを備え、反射板が、LEDユニットの外周形状に応じた形状に開口されLEDユニットが埋め込まれる埋込部を有するとともに、放熱ブロックが、反射板に保持され、LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とを面一としてある。
 この発明によれば、反射板が、LEDユニットの外周形状に応じた形状に開口されLEDユニットが埋め込まれる埋込部を有するとともに、放熱ブロックが、反射板に保持されているので、放熱ブロックのサイズを大きくすることが可能となり、発光装置で発生した熱が放熱ブロックを通して効率的に放熱されることとなり、LEDチップの温度上昇を抑制できて光出力の高出力化を図れる。また、この発明によれば、LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とを面一としてあるので、発光装置の周辺部分が暗くなるのを抑制することが可能となる。
 前記LEDユニットは、前記反射板が前記器具本体に取り付けられた状態において前記放熱ブロックに対して着脱自在に取り付けられてなり、前記他面が前記放熱ブロックに面接触していることが好ましい。
 この発明によれば、前記LEDユニットは、前記反射板が前記器具本体に取り付けられた状態において前記放熱ブロックに対して着脱自在に取り付けられているので、前記反射板を前記器具本体から取り外すことなく前記LEDユニットを前記放熱ブロックに着脱できるから、前記LEDユニットの交換作業が容易になる。また、この発明によれば、前記LEDユニットの前記他面が前記放熱ブロックに面接触しているので、前記LEDユニットと前記放熱ブロックとの間に前記反射板の一部が介在する場合に比べて、熱抵抗を低減でき、放熱性を向上させることができる。
 前記放熱ブロックの平面サイズが前記LEDユニットの平面サイズよりも大きいことが好ましい。
 この発明によれば、前記放熱ブロックに伝熱された熱をより広い範囲に伝熱させることができるので、放熱性が向上する。
 前記LEDユニットと前記反射板における前記埋込部の周部とを覆う形で前記反射板に着脱自在に取り付けられた樋状の透光性カバーを備えることが好ましい。
 この発明によれば、透光性カバーにより前記LEDユニットを保護することができる。
 前記透光性カバーは、前記LEDユニットからの光を拡散させる拡散機能を有することが好ましい。
 この発明によれば、前記反射板の前記反射面をより均一に照らすことができる。
 前記LEDユニットは、前記発光装置を同じ数ずつ備えるとともに互いに同じ大きさに形成され前記埋込部の長手方向に並設された複数個のLEDモジュールにより構成されてなることが好ましい。
 この発明によれば、複数の前記発光装置のうち寿命前に点灯しなくなったものが発生した場合に、前記LEDユニット全部ではなく、LEDモジュール単位で交換することができるので、交換コストを低減できる。
 前記LEDユニットは、前記各発光装置の接続関係を規定する回路パターンが前記放熱ブロック側とは反対の一表面側に形成されるとともに、前記各発光装置それぞれが挿入される複数の窓孔が厚み方向に貫設された回路基板を備え、回路基板は、前記各発光装置からの光を反射するミラーが前記一表面側に形成されてなり、ミラーの表面が前記平面状の部位と面一であることが好ましい。
 この発明によれば、前記LEDユニットにおいて前記各発光装置の接続関係を規定する回路基板上に前記各発光装置が実装されている場合に比べて、前記各発光装置から前記放熱ブロックまでの熱抵抗を低減でき、放熱性を向上させることができる。また、この発明によれば、回路基板に形成されたミラーの表面が前記平面状の部位と面一であることにより、回路基板に起因して前記発光装置の周辺部分が暗くなるのを抑制することが可能となる。
 前記発光装置は、LEDチップと、一表面側にLEDチップへの給電用の導体パターンを有しLEDチップが前記一表面側に実装された実装基板と、LEDチップから放射された光の配光を制御する光学部材であって実装基板との間にLEDチップを収納する形で実装基板の前記一表面側に固着されたドーム状の光学部材と、光学部材と実装基板とで囲まれた空間に充実されLEDチップを封止した透光性の封止材料からなる封止部と、LEDチップから放射され封止部および光学部材を透過した光によって励起されてLEDチップの発光色とは異なる色の光を放射する蛍光体および透光性材料により形成したものであって実装基板の前記一表面側で光学部材との間に空気層が介在する形で配設されたドーム状の色変換部材とを備えることが好ましい。
 この発明によれば、ドーム状の色変換部材と光学部材との間に空気層が介在しているので、前記LEDチップから放射され封止部および光学部材を通して色変換部材に入射し色変換部材の蛍光体の粒子で散乱された光のうち光学部材側へ散乱されて光学部材を透過する光の光量を低減できて発光装置としての外部への光取り出し効率を向上でき、しかも、蛍光体の粒子で前記反射板の前記反射面側へ散乱された光および前記蛍光体から前記反射面側へ放射された光により前記反射板の前記反射面を照らすことができる。
 前記実装基板は、熱伝導性材料からなり前記LEDチップがサブマウント部材を介して実装される伝熱板と、前記導体パターンを有し伝熱板における前記LEDチップの実装面側に固着された配線基板であってサブマウント部材を露出させる窓孔が厚み方向に貫設された配線基板とで構成され、前記サブマウント部材は、前記LEDチップよりも平面サイズが大きく、前記LEDチップに重なる部位の周囲に光を反射する反射膜が形成されてなることが好ましい。
 この発明によれば、前記LEDチップが伝熱板に搭載されているので、前記LEDチップが配線基板に搭載される場合に比べて、前記LEDチップから前記放熱ブロックまでの熱抵抗を小さくすることができて放熱性を向上させることができる。また、この発明によれば、前記サブマウント部材に前記LEDチップからの光を反射する反射膜が形成されているので、前記LEDチップから放射された光が前記サブマウント部材に吸収されるのを防止することができて外部への光取り出し効率の向上を図れる。
 なお、「反射板が、LEDユニットの外周形状に応じた形状に開口されLEDユニットが埋め込まれる埋込部を有すること」は、発明の本質的部分ではない。すなわち、反射板は、LEDユニットが埋め込まれる埋込部を有することで足りる。
 そして、一実施形態において、前記反射板は、前記LEDユニットの外周形状に応じた形状に開口され前記LEDユニットが埋め込まれる前記埋込部を有する。
 また、一実施形態において、反射板は、凹部を有する。この凹部は、LEDユニットの外周形状に応じた形状を有している。そして、凹部は、LEDユニットが埋め込まれるように形成されている。
 前記反射板は、第1の高さを有している。第1の高さは、前記LEDユニットの前記厚み方向に沿っている。この場合において、前記反射板の前記第1の高さは、前記LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とが面一となるように設定されていることが好ましい。
 前記反射板には、高さ調整片を有していることが好ましい。高さ調整片は、前記反射板から前記放熱ブロックに向かって延出している。高さ調整片は、前記LEDユニットの厚み方向において延出している。高さ調整片は、LEDユニットの厚み方向において、前記第1の高さを有している。これにより、前記反射板の高さは、前記高さ調整片によって決定される。高さ調整片の前記第1の高さは、前記LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とが面一となるように設定されている。
 また、LEDユニットは、LEDユニットの厚み方向において第1の厚みを有している。この場合、前記LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とが面一となるように、前記第1の高さ及び前記第1の厚みが設定されていることが好ましい。
 前記放熱ブロックは、平面を有していることが好ましい。前記平面上に前記反射板及び前記LEDユニットが取り付けられている。第1の厚みは、前記第1の高さと等しく設定されている。
 この場合、LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とを面一としてあるので、発光装置の周辺部分が暗くなるのを抑制することが可能となる。
 前記高さ調整片は、さらに接触片を有していることが好ましい。接触片は、LEDユニットの厚み方向と交差する方向において延出している。接触片は、前記放熱ブロックと面接触している。
 また、高さ調整片は、さらに接触片を有していることが好ましい。接触片は、LEDユニットの厚み方向と直交する方向において延出している。接触片は、前記放熱ブロックと面接触している。
 この場合、LEDユニットから放熱ブロックに伝熱された熱の一部を反射板からも効率良く放熱させることが可能となる。即ち、反射板を放熱部材に兼用することができる。したがって、放熱ブロックを小さくすることができる。これにより、軽量化および低コスト化を図れる。
 前記接触片は、前記高さ調整片から、前記LEDユニットと反対の方向に向かって延出していることが好ましい。
 前記高さ調整片は、その高さ方向の一方に第1端を有していることが好ましい。接触片は、前記高さ調整片の前記第1端から、前記LEDユニットと反対の方向に向かって延出している。
 放熱ブロックから接触片に熱が逃がされたとき、接触片の温度が上昇する。接触片の温度上昇に伴い、接触片は膨張する。しかしながら、接触片は、LEDユニットと反対の方向に向かって延出している。従って、接触片の温度が上昇したとき、接触片は、LEDユニットと反対の方向に向かって膨張する。言い換えると、接触片は、LEDユニットの方向に向かって膨張することがない。これにより、反射板とLEDユニットとの間の隙間を一定に保つことができる。すなわち、反射板とLEDとの間の隙間を狭く設定した場合であっても、接触片が膨張することにより接触片がLEDユニットに対して力を与えることがない。
 前記反射板は、凹部を有していることが好ましい。凹部は、前記LEDユニットの外周形状に応じた形状を有している。凹部は、LEDユニットが埋め込まれるように形成されている。前記凹部が前記埋込部を定義する。
 前記埋込部は、周壁と底壁とを有していることが好ましい。周壁は、高さ調整片として定義される。底壁は、接触片として定義される。LEDユニットは、前記底壁を介して前記放熱ブロックと接触している。
 前記発光装置は、LEDチップと、LEDチップが一表面側に実装された実装基板と、前記実装基板との間にLEDチップを収納する形で実装基板の前記一表面側に固着された光学要素と、を有していることが好ましい。光学要素は、外周部分を有している。光学要素の前記外周部分は、前記実装基板の前記一表面側に固着されている。光を取り出す面のうちの前記平面状の部位は、前記外周部分よりも外側の部分で定義される。
 前記光学要素は、光学部材を有していることが好ましい。光学部材は、LEDチップから放射された光の配光を制御するように構成されており、実装基板との間にLEDチップを収納する形で前記実装基板の一表面に固着されており、ドーム状である。
 前記光学要素は、さらに、色変換部材を有していることが好ましい。色変換部材は、蛍光体と透光性材料とを含んでおり、前記蛍光体は、前記LEDチップから放射された光によって励起されて前記LEDチップの発光色とは異なる色の光を放射する。色変換部材は、前記実装基板の前記一表面側で光学部材との間に空気層が介在する形で配設されており、且つ、ドーム状である。
 前記照明器具は、さらに取り付け手段を有していることが好ましい。LEDユニットは、前記取り付け手段によって、前記放熱ブロックに対して取り付けられている。
 前記取り付け手段は、ばねで構成されていることが好ましい。ばねは、前記LEDユニットを前記放熱ブロックに向かって付勢するように構成されている。
 前記ばねは、板ばねで構成されていることが好ましい。板ばねは、前記周縁から前記周縁の内側に向かって延出している第1部分を有している。これにより前記LEDユニットは、前記板ばねの前記第1部分と前記放熱ブロックとの間で挟持される。
 前記板ばねは、さらに第2部分を有していることが好ましい。第2部分は、前記第1部分から、前記放熱ブロックと反対の方向に向かって延出している。第2部分は、前記LEDユニットと前記反射板との間に位置する。
 この場合、LEDユニットを、放熱ブロックに対して容易に取り付けることができる。また、この場合、LEDユニットを放熱ブロックから容易に取り外すことができる。そして、LEDユニットが放熱ブロックに密着するように、LEDユニットを放熱ブロックに対して取り付けることができる。
 前記照明器具は、取り付け手段を有していることが好ましい。LEDユニットは、取り付け手段によって、前記反射板に対して接触されている。
 前記埋込部は、周縁を有していることが好ましい。周縁は、第1の内面と第2の内面とを有している。第2の内面は、前記第1の内面と対向している。取り付け手段は、前記第1の内面に配置されている。LEDユニットが前記反射板の第2の内面と接触するように、前記取り付け手段と前記第2の内面とにより保持されている。
 この場合、LEDユニットの熱を、放熱ブロック及び反射板に対して逃がすことができる。
 前記取り付け手段は、ばねで構成されていることが好ましい。ばねは、前記LEDユニットを前記第2の内面に対して付勢するように構成されており、これにより、前記LEDユニットが前記反射板の第2の内面と接触する。
 この場合、LEDユニットや反射板が膨張しても、ばねによって力を逃がすことができる。
 LEDチップの温度上昇を抑制できて光出力の高出力化を図れ、且つ、発光装置の周辺部分が暗くなるのを抑制することが可能となるという効果がある。
実施形態1の照明器具を示し、(a)は概略分解斜視図、(b)は要部概略断面図である。 同上の照明器具の一部破断した要部概略分解斜視図である。 同上の照明器具の一部破断した要部概略斜視図である。 同上の照明器具の一部破断した要部概略斜視図である。 同上の照明器具における発光装置の概略分解斜視図である。 同上の照明器具における発光装置を示し、(a)は概略断面図、(b)は他の概略断面図である。 同上の照明器具における点灯装置を示し、(a)は概略平面図、(b)は概略正面図、(c)は概略側面図である。 同上の照明器具の他の構成例に関し、(a)は要部概略断面図、(b)は(a)における取付ばねの斜視図である。 同上の照明器具の他の構成例に関し、(a)は要部概略断面図、(b)は(a)における取付ばねの斜視図である。 同上の照明器具の他の構成例を示す要部概略断面図である。 同上の照明器具の他の構成例を示す要部概略断面図である。 同上の照明器具の他の構成例を示す要部概略断面図である。 同上の照明器具の他の構成例を示す要部概略断面図である。 同上の照明器具の他の構成例を示す要部概略断面図である。 実施形態2の照明器具を示し、(a)は概略分解斜視図、(b)は要部概略断面図である。 従来のLEDランプを示し、(a)は要部概略斜視図、(b)は概略断面図である。
 (実施形態1)
 以下、本実施形態の照明器具について図1~図7を参照しながら説明する。
 本実施形態の照明器具は、天井埋込型の照明器具であって、造営材である天井材300に貫設した長方形状の埋込穴301を通して天井裏に挿入される長尺の器具本体100を備えている。器具本体100は、矩形板状の金属板(例えば、クロムフリーの亜鉛鋼板など)の短手方向の両側を折曲することにより形成されており、長手方向に直交する断面が、下向きに開放されたU字状となっている。しかして、器具本体100は、細長の矩形板状の主片101と、当該主片101の幅方向の両側縁から下向きに延設された一対の側片102とを有している。なお、器具本体100の材料は、金属であればよく、特に限定するものではない。
 器具本体100は、主片101に、天井裏に吊り下げられた2つの取付ボルト310それぞれが挿通される2つのボルト挿通孔101aが穿孔されている。しかして、ボルト挿通孔101aに取付ボルト310を挿通して、該取付ボルト310に座金107を通してナット108を締め付けることにより、器具本体100を取付ボルト310に結合できる。また、器具本体100の主片101には、外部電源(例えば、商用電源からなる交流電源、直流電源など)に接続され天井裏に先行配線されている電源線320を引き込むための電源線用穴101bが穿孔されている。
 また、器具本体100は、主片101と両側片102とに囲まれた空間に、電源線320が接続される電源用の端子台119と、上記外部電源から端子台119を介して電力が供給され後述のLEDユニット2を点灯させる点灯装置120とが収納されている。ここで、点灯装置120は、器具本体100に対して交換可能に取着されている。
 点灯装置120は、図7に示すように、LEDユニット2を点灯させる点灯回路(図示せず)の構成部品(図示せず)が実装されたプリント配線板130と、プリント配線板130が収納されたケース140とを備えている。
 ケース140は、合成樹脂製であって前面開口したボディ141と、合成樹脂製であってボディ141の前面側に結合される後面開口したカバー142とにより構成されている。ここにおいて、カバー142の短手方向の両側壁の後縁から後方に向かって係合爪142aが突設され、係合爪142aがボディ141の短手方向の両側面に形成してある係合凹部141aに係合することによりボディ141とカバー142とが結合されている。
 ボディ141の長手方向の両端面の後部には、ケース140を器具本体100に取り付けるための取付片143が長手方向に沿う方向に突設されている。この取付片143には、器具本体100に形成されたねじ孔(図示せず)に先端部が螺合するねじ(図示せず)を挿通させる取付孔143aが穿孔されている。なお、ケース1のボディ141とカバー142とは、合成樹脂により形成したものに限らず、例えば、金属により形成して適宜結合するようにしてもよい。
 プリント配線板130には、2つの端子装置146,147が、カバー142により覆われていない部分に実装されている。端子装置146,147は、電線挿入孔146a,147aから挿入された電線が各別に接続される端子板(図示せず)と、上記端子板との間に各別に電線を保持する鎖錠ばね(図示せず)とからなる速結端子(図示せず)が内装されている。ここで、各端子装置146,147は、上記端子板から延設された接続片(図示せず)がプリント配線板130に半田により接続されている。また、各端子装置146,147には、上記鎖錠ばねのばね力により電線を保持した状態を解除する際に解除釦(図示せず)を操作するための操作孔146b,147bが形成されている。なお、上記速結端子および上記解除釦の構造は周知の構造を適宜採用すればよい。
 2つの端子装置146,147のうちの一方の端子装置146は、端子台119からの電線が接続される電源側の端子装置を構成し、他方の端子装置147は、LEDユニット2への給電用の電線330(図4参照)が接続される負荷側の端子装置を構成する。
 また、本実施形態の照明器具は、LEDチップ10を用いた発光装置1を厚み方向の一面側に複数備えた長尺のLEDユニット2と、器具本体100に取り付けられLEDユニット2からの光を目標の配光となるように制御する金属製の反射板110とを備えている。ここで、LEDユニット2は、発光装置1を同じ数(図示例では、8つ)ずつ備えるとともに互いに同じ大きさに形成された複数個(図示例では、4個)のLEDモジュール2aにより構成されている。なお、反射板110は、鋼板により形成され、いわゆる高反射白色粉体の塗装を施してあり、塗膜の表面が反射面110aを構成している。反射板110の材料は特に限定するものではなく、例えば、アルミニウムを採用してもよい。
 反射板110は、器具本体100の両端部に取り付けられた2つの反射板アダプタ160に取り付けられる。
 反射板アダプタ160は、下向きに開放されたU字状に形成され、中央片161が、当該中央片161の長手方向が器具本体100の長手方向に直交する形で器具本体100に取り付けられている。ここで、反射板110は、反射板アダプタ160の各中央片161に対して、所謂つまみねじからなる取付ねじ165を用いて取り付けられる。ここにおいて、反射板110には、各取付ねじ165が挿通される挿通孔112が形成されおり、反射板アダプタ160の中央片161には、各取付ねじ165が螺合するねじ孔161aが形成されている。
 反射板110は、下面側が開放され長手方向の両端部が閉じた樋状に形成され、下端部から外方へ鍔部111が延設されており、天井材300の埋込穴301に挿入され鍔部111が天井材300における埋込穴301の周部下面に当接する。
 ところで、反射板110は、LEDユニット2の外周形状に応じた形状(細長の長方形状)に開口されLEDユニット2が埋め込まれる埋込部115を有している。本実施形態の照明器具では、LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とを面一としてあるが、この点については後述する。
 また、反射板110には、透光性材料(例えば、アクリル樹脂など)により形成されLEDユニット2を覆う樋状の透光性カバー180が着脱自在に取り付けられている。透光性カバー180には、長手方向に沿った両端縁から、先端部に結合爪181a(図2参照)を有する複数(ここでは、4つ)の結合脚181が2つずつ延設され、反射板110には、結合脚181が挿入係止される結合孔113が形成されている。しかして、透光性カバー180の各結合脚181を反射板110の結合孔113に挿入して結合爪181aを結合孔113の周部に係止させることにより、透光性カバー180が反射板110に着脱自在に取り付けられる。透光性カバー180を反射板110から取り外す場合には、透光性カバー180の長手方向の両端部を両手で摘んで結合爪181aの結合孔113への係止状態を解除し、透光性カバー180を下方へ引き下げればよい。
 また、本実施形態の照明器具は、LEDユニット2の厚み方向の他面側に配置されてLEDユニット2が交換可能に取着されLEDユニット2で発生した熱を放熱する金属(例えば、Al、Cuなどの熱伝導率の高い金属)製の放熱ブロック150を備えている。放熱ブロック150は、長尺の板状に形成されており、LEDユニット2側とは反対側に複数のフィン152(図2参照)を有している。なお、各フィン152は、放熱ブロック150の長手方向に沿って形成されており、放熱ブロック150の短手方向に等ピッチで配列されている。
 ここにおいて、放熱ブロック150は、図示しない固定ねじにより反射板110に固着されている。要するに、放熱ブロック150は、反射板110に保持されている。
 発光装置1は、図5および図6に示すように、LEDチップ10と、一表面側にLEDチップ10への給電用の導体パターン23,23を有しLEDチップ10が上記一表面側に実装された矩形板状の実装基板20とを備えている。また、発光装置1は、LEDチップ10から放射された光の配光を制御する光学部材60を備えている。光学部材60は、透光性材料によりドーム状に形成されており、実装基板20との間にLEDチップ10を収納する形で実装基板20の上記一表面側に固着されている。光学部材60と実装基板20とで囲まれた空間には、LEDチップ10および当該LEDチップ10に電気的に接続された複数本(例えば、2本)のボンディングワイヤ14を封止した透光性の封止材料(例えば、封止樹脂など)からなる封止部50が充実されている。ここで、封止部50は、例えば、封止樹脂としてシリコーン樹脂を採用して、ゲル状とすることが好ましい。また、発光装置1は、LEDチップ10から放射され封止部50および光学部材60を透過した光によって励起されてLEDチップ10の発光色とは異なる色の光を放射する蛍光体および透光性材料により形成されたドーム状の色変換部材70を備えている。ここで、色変換部材70は、実装基板20の上記一表面側において実装基板20との間にLEDチップ10などを囲む形で配設される。更に説明すれば、色変換部材70は、実装基板20の上記一表面側において光学部材60の光出射面60bとの間に空気層80が形成されるように配設されている。また、実装基板20は、上記一表面において光学部材60の外側に、光学部材60を実装基板20に固着する際に上記空間から溢れ出た封止樹脂を堰き止める環状の堰部27が突設されている。
 LEDチップ10は、青色光を放射するGaN系青色LEDチップであり、結晶成長用基板としてサファイア基板に比べて格子定数や結晶構造がGaNに近く且つ導電性を有するn形のSiC基板を用いている。このLEDチップ10は、SiC基板の主表面側にGaN系化合物半導体材料により形成されて例えばダブルへテロ構造を有する積層構造部からなる発光部がエピタキシャル成長法(例えば、MOVPE法など)により成長されている。ここで、LEDチップ10は、一表面側(図6(a)における上面側)にアノード電極(図示せず)が形成され、他表面側(図6(a)における下面側)にカソード電極が形成されている。上記カソード電極および上記アノード電極は、Ni膜とAu膜との積層膜により構成してある。上記カソード電極および上記アノード電極の材料は特に限定するものではなく、良好なオーミック特性が得られる材料であればよく、例えば、Alなどを採用してもよい。LEDチップ10の構造は特に限定するものではなく、例えば、結晶成長用基板の主表面側に発光部などをエピタキシャル成長した後に発光部を支持する支持基板(例えば、Si基板など)を発光部に固着してから、結晶成長用基板などを除去したものでもよい。
 実装基板20は、熱伝導性材料からなりLEDチップ10がサブマウント部材30を介して実装される伝熱板21と、上述の導体パターン23,23を有し伝熱板21におけるLEDチップ10の実装面側に固着された配線基板22とで構成されている。
 伝熱板21および配線基板22の外周形状は矩形状であり、配線基板22の中央部には、伝熱板21よりも平面サイズが小さな矩形板状のサブマウント部材30を露出させる矩形状の窓孔24が厚み方向に貫設されている。要するに、LEDチップ10は、配線基板22の窓孔24の内側に配置されたサブマウント部材30を介して伝熱板21に搭載されている。したがって、LEDチップ10で発生した熱が配線基板22を介さずにサブマウント部材30および伝熱板21に伝熱されるようになっている。ここにおいて、伝熱板21の上記一面には、サブマウント部材30の位置決め精度を高めるためのアライメントマーク21cが形成されている。なお、配線基板22と伝熱板21は、例えばポリオレフィン系の固着シート29(図5参照)を介して固着すればよい。
 本実施形態では、伝熱板21の熱伝導性材料としてCuを採用しているが、Cuに限らず、例えば、Alなどを採用してもよい。要するに、伝熱板21の熱伝導性材料としては、CuやAlなどの熱伝導率の高い金属を採用することが好ましい。また、LEDチップ10は、発光部が結晶成長用基板よりも伝熱板21から離れた側となるように伝熱板21に搭載されているが、発光部が結晶成長用基板よりも伝熱板21に近い側となるように伝熱板21に搭載するようにしてもよい。光取り出し効率を考えた場合には、発光部を伝熱板21から離れた側に配置することが望ましい。しかし、本実施形態では結晶成長用基板と発光部とが同程度の屈折率を有しているので、発光部を伝熱板21に近い側に配置しても光の取り出し損失が大きくなりすぎることはない。
 上述の配線基板22は、ポリイミドフィルムからなる絶縁性基材22aの一表面側に、LEDチップ10への給電用の一対の導体パターン23,23が設けられている。また、配線基板22は、各導体パターン23,23および絶縁性基材22aにおいて導体パターン23,23が形成されていない部位を覆う白色系のレジスト(樹脂)からなる保護層26が積層されている。したがって、LEDチップ10からの光や色変換部材70の蛍光体からの光が保護層26の表面で反射されるので、LEDチップ10や蛍光体から放射された光が配線基板22に吸収されるのを防止することができ、外部への光取り出し効率の向上による光出力の向上を図れる。なお、各導体パターン23,23は、絶縁性基材22aの外周形状の半分よりもやや小さな外周形状に形成されている。また、絶縁性基材22aの材料としては、FR4、FR5、紙フェノールなどを採用してもよい。
 保護層26は、配線基板22の窓孔24の近傍において各導体パターン23,23の2箇所が露出し、配線基板22の周部において各導体パターン23,23の1箇所が露出するようにパターニングされており、各導体パターン23,23は、配線基板22の窓孔24近傍において露出した2つの矩形状の部位が、ボンディングワイヤ14が接続される端子部23aを構成し、配線基板22の周部において露出した円形状の部位が外部接続用電極部23bを構成している。なお、配線基板22の導体パターン23,23は、Cu膜とNi膜とAu膜との積層膜により構成されている。また、2つの外部接続用電極部23bのうちLEDチップ10の上記アノード電極が電気的に接続される外部接続用電極部23b(図5における右側の外部接続用電極部23b)には、「+」の表示が形成されている。一方、LEDチップ10の上記カソード電極が電気的に接続される外部接続用電極部23b(図5における左側の外部接続用電極部23b)には、「-」の表示が形成されているので、発光装置1における両外部接続用電極部23b,23bの極性を視認することができ、誤接続を防止することができる。
 ところで、LEDチップ10は、LEDチップ10と伝熱板21との線膨張率の差に起因してLEDチップ10に働く応力を緩和する上述のサブマウント部材30を介して伝熱板21に搭載されている。ここで、サブマウント部材30は、LEDチップ10のチップサイズよりも大きな平面サイズの矩形板状に形成されている。
 サブマウント部材30は、上記応力を緩和する機能だけでなく、LEDチップ10で発生した熱を伝熱板21においてLEDチップ10のチップサイズよりも広い範囲に伝熱させる熱伝導機能を有している。したがって、発光装置1は、LEDチップ10で発生した熱をサブマウント部材30および伝熱板21を介して効率良く放熱させることができる。また、発光装置1は、LEDチップ10が配線基板22に搭載される場合に比べてLEDチップ10から放熱ブロック150までの熱抵抗を小さくすることができる。また、発光装置1は、サブマウント部材30を備えていることにより、LEDチップ10と伝熱板21との線膨張率差に起因してLEDチップ10に働く応力を緩和することができる。
 サブマウント部材30の材料としては、熱伝導率が比較的高く且つ絶縁性を有するAlNを採用している。これに対して、LEDチップ10は、上記カソード電極がサブマウント部材30におけるLEDチップ10側の表面に設けられ上記カソード電極と接続される電極パターン(図示せず)および金属細線(例えば、金細線、アルミニウム細線など)からなるボンディングワイヤ14を介して一方の導体パターン23と電気的に接続され、上記アノード電極がボンディングワイヤ14を介して他方の導体パターン23と電気的に接続されている。なお、LEDチップ10とサブマウント部材30とは、例えば、SnPb、AuSn、SnAgCuなどの半田や、銀ペーストなどを用いて接合すればよいが、AuSn、SnAgCuなどの鉛フリー半田を用いて接合することが好ましい。サブマウント部材30がAlNであって、AuSnを用いて接合する場合には、サブマウント部材30およびLEDチップにおける接合表面にあらかじめAuまたはAgからなる金属層を形成する前処理が必要である。また、サブマウント部材30と伝熱板21とは、例えば、AuSn、SnAgCuなどの鉛フリー半田を用いて接合することが好ましい。ここで、AuSnを用いて接合する場合には、伝熱板21における接合表面にあらかじめAuまたはAgからなる金属層を形成する前処理が必要である。
 サブマウント部材30の材料はAlNに限らず、線膨張率が結晶成長用基板の材料である6H-SiCに比較的近く且つ熱伝導率が比較的高い材料であればよく、例えば、複合SiC、Si、CuWなどを採用してもよい。なお、サブマウント部材30は、上述の熱伝導機能を有しており、伝熱板21におけるLEDチップ10側の表面の面積はLEDチップ10における伝熱板21側の表面の面積よりも十分に大きいことが望ましい。
 また、本実施形態における発光装置1では、サブマウント部材30の厚み寸法を、当該サブマウント部材30の表面が配線基板22の保護層26の表面よりも伝熱板21から離れるように設定してある。しかして、LEDチップ10から側方に放射された光が配線基板22の窓孔24の内周面を通して配線基板22に吸収されるのを防止することができる。
 また、サブマウント部材30においてLEDチップ10が接合される側の表面においてLEDチップ10との接合部位(つまり、LEDチップ10に重なる部位)の周囲には、LEDチップ10から放射された光を反射する反射膜が形成されている。しかして、LEDチップ10の側面から放射された光がサブマウント部材30に吸収されるのを防止することができ、外部への光取出し効率をさらに高めることができる。ここで、サブマウント部材30における反射膜は、例えば、Ni膜とAg膜との積層膜により構成すればよいが、反射膜の材料は特に限定するものではなく、例えば、LEDチップ10の発光波長に応じて適宜選択すればよい。
 上述の封止部50の封止材料である封止樹脂としては、シリコーン樹脂を用いているが、シリコーン樹脂に限らず、例えばアクリル樹脂などを用いてもよい。また、封止材料としては、ガラスを用いてもよい。
 光学部材60は、透光性材料(例えば、シリコーン樹脂、ガラスなど)の成形品であってドーム状に形成されている。ここで、本実施形態では、光学部材60をシリコーン樹脂の成形品により構成しているので、光学部材60と封止部50との屈折率差および線膨張率差を小さくすることができる。なお、封止部50の材料がアクリル樹脂の場合には、光学部材60もアクリル樹脂により形成することが好ましい。
 ところで、光学部材60は、光出射面60bが、光入射面60aから入射した光を光出射面60bと上述の空気層80との境界で全反射させない凸曲面状に形成されており、LEDチップ10と光軸が一致するように配置されている。したがって、LEDチップ10から放射され光学部材60の光入射面60aに入射された光が光出射面60bと空気層80との境界で全反射されることなく色変換部材70まで到達しやすくなり、全光束を高めることができる。また、LEDチップ10の側面から放射された光は封止部50および光学部材60および空気層80を伝搬して色変換部材70まで到達し色変換部材70の蛍光体を励起したり、蛍光体により散乱されたり、蛍光体には衝突せずに色変換部材70を透過したりする。なお、光学部材60は、位置によらず法線方向に沿って肉厚が一様となるように形成されている。
 色変換部材70は、シリコーン樹脂のような透光性材料とLEDチップ10から放射された青色光によって励起されてブロードな黄色系の光を放射する黄色蛍光体の粒子とを混合した混合物の成形品により構成されている。したがって、発光装置1は、LEDチップ10から放射された青色光と黄色蛍光体から放射された光とが色変換部材70の外面70bを通して放射されることとなり、白色光を得ることができる。なお、色変換部材70の材料として用いる透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用してもよい。また、色変換部材70の材料として用いる透光性材料に混合する蛍光体の粒子も黄色蛍光体に限らず、例えば、赤色蛍光体と緑色蛍光体とを混合しても白色光を得ることができ、赤色蛍光体と緑色蛍光体とを混合した場合の方が演色性を高めることができる。
 ここで、色変換部材70は、内面70aが光学部材60の光出射面60bに沿った形状に形成されている。したがって、光学部材60の光出射面60bの位置によらず法線方向における光出射面60bと色変換部材70の内面70aとの間の距離が略一定値となっている。なお、色変換部材70は、位置によらず法線方向に沿った肉厚が一様となるように成形されている。また、色変換部材70は、実装基板20側の端縁(開口部の周縁)を実装基板20に対して、例えば接着剤(例えば、シリコーン樹脂、エポキシ樹脂など)を用いて固着すればよい。
 ところで、上述の発光装置1の製造方法の一例について簡単に説明する。まず、LEDチップ10と各導体パターン23,23とをそれぞれ2本のボンディングワイヤ14を介して電気的に接続する。その後、配線基板22の窓孔24に連続して形成されている樹脂注入孔28(図5参照)からサブマウント部材30と配線基板22との隙間に封止部50の一部となる液状の封止樹脂(例えば、シリコーン樹脂)を注入した後に硬化させる。次に、ドーム状の光学部材60の内側に上述の封止部50の残りの部分となる液状の封止樹脂(例えば、シリコーン樹脂)を注入する。続いて、光学部材60を実装基板20における所定位置に配置して封止樹脂を硬化させることにより封止部50を形成するのと同時に光学部材60を実装基板20に固着し、その後、色変換部材70を実装基板20に固着する。しかしながら、このような製造方法でも、製造過程において封止部50に気泡(ボイド)が発生する恐れがあるので、光学部材60に液状の封止樹脂を多めに注入する必要がある。
 そこで、発光装置1は、実装基板20の上記一表面において光学部材60の外側に、光学部材60を実装基板20に固着する際に光学部材60と実装基板20とで囲まれた空間から溢れ出た封止樹脂を堰き止める円環状の堰部27を突設してある。なお、実装基板20の上記一表面側において光学部材60と堰部27と保護層26とで囲まれた空間に溜まった封止樹脂は、硬化させることにより図6(a)における樹脂部50bとなる。
 ここにおいて、堰部27は、白色系のレジストにより形成されている。しかして、LEDチップ10から放射された光や蛍光体から放射された光が堰部27で吸収されるのを防止することができ、光出力の高出力化を図れる。また、堰部27は、当該堰部27の内周面から内方へ延出し当該堰部27の中心と光学部材60の中心軸とをセンタリングする複数(本実施形態では、4つ)のセンタリング用爪部27bが周方向に離間して等間隔で設けられている。要するに、堰部27は、色変換部材70の位置決め部を兼ねている。ここで、上述のセンタリング用爪部27bの数は4つに限定するものではないが、少なくとも3つ設けることが望ましい。また、センタリング用爪部27bの幅寸法は、堰部27と光学部材60との間に溜めることが可能な封止樹脂の許容量を多くするために、小さいほうが望ましい。また、堰部27を設けずに、実装基板20に色変換部材70を位置決めする円環状の凹溝を設けてもよい。
 また、色変換部材70は、実装基板20側の端縁に、堰部27に係合する切欠部71が全周に亘って形成されている。したがって、本実施形態の発光装置1では、実装基板20に対する色変換部材70の位置決め精度を高めることができ、また、色変換部材70と光学部材60との間隔を短くすることができる。なお、切欠部71は、色変換部材70の端縁側と内面70a側とが開放されている。
 また、上述の実装基板20における導体パターン23,23は、色変換部材70よりも外側において露出した部位が上述の外部接続用電極部23b,23bを構成している。
 ところで、上述のLEDユニット2のLEDモジュール2aは、各発光装置1の接続関係を規定する回路パターン3b(図2~図4参照)が放熱ブロック150側とは反対の一表面側に形成された回路基板3を備えている。回路基板3には、各発光装置1それぞれが挿通される複数の窓孔3cが厚み方向に貫設されている。ここで、LEDモジュール2aは、複数の発光装置1および回路基板3が厚み方向の一面側に配置される短冊状の金属板からなるベース基板4を備えている。各窓孔3cの開口サイズは、発光装置1における実装基板20の平面サイズよりもやや大きく設定されている。なお、ベース基板4の材料としては、Alを採用しているが、これに限らず、例えば、Cuなどを採用してもよい。
 LEDモジュール2aは、金属製ねじからなる取付ねじ8を用いて放熱ブロック150に着脱自在に取り付けられている。ここで、LEDモジュール2は、回路基板3に、取付ねじ8の頭部8aの外径よりも内径が大きなねじ挿通孔3eが形成されるとともに、ベース基板4に、上記外径よりも内径が小さなねじ挿通孔4eが形成されている。一方、放熱ブロック150には、ねじ挿通孔3e,4eを挿通された取付ねじ8の先端部が螺合するねじ孔15eが形成されている。しかして、取付ねじ8の頭部8aと回路基板3のねじ挿通孔3eの内周面とが離間しており、当該取付ねじ8と回路基板3の回路パターン3bとの間の沿面距離を長くすることができ、しかも、取付ねじ8に起因して発光装置1に生じる応力を低減できる。LEDモジュール2aは、回路基板3が、樹脂製ねじからなる組立ねじ7(図2および図4参照)を用いてベース基板4に取り付けられるとともに、各発光装置1が、シリカやアルミナなどのフィラーからなる充填材を含有し且つ加熱時に低粘度化する樹脂シート(例えば、溶融シリカを高充填したエポキシ樹脂シートのような有機グリーンシート)からなる接着層92により、ベース基板4に接合されて熱結合されている。ここにおいて、有機グリーンシートは、電気絶縁性を有するとともに熱伝導率が高く加熱時の流動性が高く凹凸面への密着性が高いという性質を有している。しかしながら、ベース基板4の熱容量が大きいため、有機グリーンシートの加熱温度を170℃程度まで上げて硬化させると、発光装置1とベース基板4との固着性能が低下し、加熱温度を150℃程度まで下げて硬化させると発光装置1とベース基板4との間の電気絶縁性が低下する。すなわち、固着性能と電気絶縁性とがトレードオフの関係を有している。そこで、本実施形態では、接着層92とは別に、あらかじめベース基板4の上記一面上に170℃で硬化させた有機グリーンシートからなる絶縁層91を設けてある。要するに、発光装置1の伝熱板21とベース基板4との間には、接着層92と絶縁層91とが介在することとなり、接着層92により固着性能および熱伝導性を確保し、絶縁層91により電気絶縁性および熱伝導性を確保している。
 LEDモジュール2aにおける回路基板3とベース基板4とは、同じ外周形状に形成されている。すなわち、回路基板3およびベース基板4の外周形状は、細長の矩形状となっている。ここで、LEDモジュール2aは、LEDユニット2の長手方向の外形寸法が埋込部15の長手方向の寸法の整数分の1(図示例では、4分の1)の寸法よりもやや小さな寸法に形成されるとともに、短手方向の寸法が埋込部15の短辺方向の寸法よりもやや小さな寸法に形成されている。しかして、長手方向の長さの異なる複数種のLEDユニット2でLEDモジュール2aを共用することが可能となり、低コスト化を図れる。
 また、上述の回路基板3の上記一表面側には、発光装置1からの光を反射させるミラー3d(図2および図4参照)が形成されている。ここにおいて、回路基板3は、ミラー3dが、白色系のレジスト層により構成されており、回路パターン3dの大部分がミラー3dにより覆われている。また、回路基板3は、有機系絶縁基板の一表面側に上述の回路パターン3bが形成されている。ここにおいて、回路基板3の有機系絶縁基板の材料としては、例えば、FR4のようなガラスエポキシ樹脂を採用すればよいが、ガラスエポキシ樹脂に限らず、例えば、ポリイミド系樹脂、フェノール樹脂などでもよい。
 また、回路基板3には、発光装置1のLEDチップ10へ過電圧が印加されるのを防止するために、過電圧防止用の表面実装型のツェナダイオード331および表面実装型のセラミックコンデンサ332が各窓孔3cの近傍で実装されている。
 また、発光装置1は、図3および図4に示すように、各外部接続用電極部23bが端子板6を介して回路基板3の回路パターン3bと電気的に接続されている。なお、端子板6としては、ジャンパピンを用いてもよい。
 また、LEDユニット2は、全ての発光装置1が直列接続されるように隣り合うLEDモジュール2aの回路基板3同士を接続してある。ここにおいて、各LEDモジュール2aは、回路基板3の長手方向の一端部に雄型コネクタ5a(図2および図4参照)が設けられるとともに、他端部に雌型コネクタ5b(図2参照)が設けられている。これに対し、回路基板3は、雄型コネクタ5aの一方の接触子5a1と雌型コネクタ5bにおいて当該一方の接触子5a1が電気的に接続される一方のコンタクト(図示せず)との間の電路にLEDチップ10が挿入され、雄型コネクタ5aの他方の接触子5a2と雌型コネクタ5bにおいて当該他方の接触子5a2が電気的に接続される他方のコンタクト(図示せず)との間が送り配線用に短絡されるように、回路パターン3bが形成されている。したがって、点灯装置120からの一対の電線330に、回路基板3に設けられた雌型コネクタ5bと同じ構造の雌型コネクタ5c(図4参照)を接続しておき、当該雌型コネクタ5cを図1(a)における左端のLEDモジュール2aの雄型コネクタ5a(図4参照)に接続するとともに、右端のLEDモジュール2aの雌型コネクタ5bのコンタクト間を短絡するコネクタ(図示せず)を設ければ、点灯装置120から、LEDユニット2の全てのLEDチップ10の直列回路へ電力を供給することができる。
 ところで、本実施形態の照明器具は、図1(b)に示すように、LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とを面一としてある。ここで、本実施形態では、発光装置1において、当該発光装置1の周囲媒質(空気)に接し光が最終的に出射される面と、当該発光装置1の周囲媒質(空気)に接し光が最終的に反射される面との両方が、発光装置1から光を取り出す面を構成しており、発光装置1の保護層26の表面が、LEDユニット2の上記平面状の部位を構成している。ここにおいて、上記平面状の部位と反射板110の反射面110aにおける埋込部115の周部とを面一とするために、反射板110は、埋込部115の周部から放熱ブロック150側へ高さ調整片116が延設されており、放熱ブロック150に面接触する接触片117が高さ調整片116の先端部から外方に延設されている。また、本実施形態では、回路基板3のミラー3dの表面が上記平面状の部位と面一としてある。なお、本実施形態では、図4に示すように、反射板110における高さ調整片116に、上述の一対の電線330を通すための電線導入孔110bが形成されている。ここで、当該電線導入孔110bは、雄型コネクタ330を挿通可能な内径の円形状に開口されている。
 以上説明した本実施形態の照明器具では、反射板110が、LEDユニット2の外周形状に応じた形状に開口されLEDユニット2が埋め込まれる埋込部115を有するとともに、放熱ブロック150が、反射板110に保持されているので、放熱ブロック150のサイズを大きくすることが可能となり、発光装置1で発生した熱が放熱ブロック150を通して効率的に放熱されることとなり、LEDチップ1の温度上昇を抑制できて光出力の高出力化を図れる。また、LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とを面一としてあるので、発光装置1の周辺部分が暗くなるのを抑制することが可能となる。また、回路基板3に形成されたミラー3dの表面が上記平面状の部位と面一であることにより、回路基板3に起因して発光装置1の周辺部分が暗くなるのを抑制することが可能となる。しかも、LEDユニット2において各発光装置1の接続関係を規定する別途の回路基板上に各発光装置1を実装する場合に比べて、各発光装置1から放熱ブロック150までの熱抵抗を低減でき、放熱性を向上させることができる。
 また、本実施形態の照明器具における発光装置1は、上述のように、ドーム状の色変換部材70と光学部材60との間に空気層80が介在している。しかして、LEDチップ10から放射され封止部50および光学部材60を通して色変換部材70に入射し色変換部材70の蛍光体の粒子で散乱された光のうち光学部材60側へ散乱されて光学部材を透過する光の光量を低減できて発光装置1としての外部への光取り出し効率を向上できる。しかも、蛍光体の粒子で反射板110の反射面110a側へ散乱された光および蛍光体から反射面110a側へ放射された光により反射板110の反射面110aを照らすことができる。
 また、LEDユニット2の上記他面が放熱ブロック150に面接触しているので、LEDユニット2と放熱ブロック150との間に反射板110の一部が介在する場合に比べて、熱抵抗を低減でき、放熱性を向上させることができる。
 また、放熱ブロック150の平面サイズをLEDユニット2の平面サイズよりも大きく設定してあるので、放熱ブロック150に伝熱された熱をより広い範囲に伝熱させることができ、放熱性が向上する。ここにおいて、放熱ブロック150の短手方向の寸法をLEDユニット2の短手方向の寸法よりも長くすることにより、各発光装置1から伝熱された熱をより広い範囲に伝熱させることができる。
 また、反射板110における埋込部115から放熱ブロック150に面接触する接触片117を設けてあるので、LEDユニット2から放熱ブロック150に伝熱された熱の一部を反射板110からも効率良く放熱させることが可能となる。このように反射板110を放熱部材に兼用することができる場合には、放熱ブロック150を小さくすることができ、軽量化および低コスト化を図れる。ここで、反射板110の材料としてAlを採用すれば、鋼板を用いる場合に比べて熱伝導率が高くなり、LEDユニット2で発生した熱をより効率良く放熱させることができる。
 また、反射板110が器具本体100に取り付けられた状態において、反射板110を器具本体100から取り外すことなくLEDユニット2を放熱ブロック150に着脱できるから、LEDユニット2の交換作業が容易になる。また、複数の発光装置1のうち寿命前に点灯しなくなったものが発生した場合に、LEDユニット2全部ではなく、LEDモジュール2a単位で交換することができ、交換コストを低減できる。
 ここにおいて、本実施形態の照明器具は、LEDユニット2と反射板110における埋込部115の周部とを覆う透光性カバー180を備えているが、透光性カバー180は、反射板110に着脱自在に取り付けられている。したがって、透光性カバー180を取り付けることによりLEDユニット2を保護することができ、LEDユニット2もしくはLEDモジュール2aを交換する際には、透光性カバー180を反射板110から取り外せばよい。また、透光性カバー180が、LEDユニット2からの光を拡散させる拡散機能を有するように構成すれば、反射板110の反射面110aをより均一に照らすことができる。なお、透光性カバー180が拡散機能を有するようにするためには、例えば、透光性カバー180の母材に光拡散材を分散させておけばよい。
 また、本実施形態の照明器具は、器具本体100および反射板アダプタ150として、従来の直管蛍光ランプ用の照明器具と同様の構造のものを用いることができるので、当該従来の照明器具と同様に簡単に施工できる。また、反射板110の外形寸法を既存の照明器具と同じ外形寸法に設定しておけば、既に設置されている従来の照明器具に代えて施工することも可能となり、天井材300の埋込穴301を有効に利用することができ、天井材300の再施工を不要とすること可能となる。
 上述のLEDユニット2は、必ずしも、複数のLEDモジュール2aにより構成する必要はなく、ベース基板4と回路基板3とを1つずつ備えていないものでもよいことは勿論であり、この場合には、雄型コネクタ5aの接触子5a1,5a2間に全てのLEDチップ10の直列回路が挿入されるように回路パターン3bを形成してもよい。なお、本実施形態では、複数の発光装置1を直列接続しているが、複数の発光装置1の接続関係は特に限定するものではなく、例えば、並列接続するようにしてもよいし、直列接続と並列接続とを組み合わせてもよい。
 ところで、LEDユニット2を放熱ブロック150に着脱自在に取り付ける手段は、上述のように取付ねじ8(図1(b)参照)を用いた例に限らず、例えば、図8(a)に示すように、短冊状の金属板を折曲して形成した板ばね118を用いてもよい。図8(a)に示した例では、LEDユニット2の短手方向の寸法に関してベース基板4の寸法を回路基板3の寸法よりも長く設定してある。また、LEDユニット2の短手方向において互いに対向する高さ調整片116の放熱ブロック150側の上部同士の距離が下部同士の距離よりも長くなるように、高さ調整片116の上部を断面L字状の形状としてある。つまり、LEDユニット2におけるベース基板4が収納される部位の幅寸法をベース基板4の短手方向の寸法よりも長くし、回路基板3が収納される部位の幅寸法を回路基板3の短手方向の寸法よりも長く且つベース基板4の短手方向の寸法よりも短く設定してある。したがって、LEDユニット2は、放熱ブロック150と反射板110とにより保持される。
 ここで、図8(a)の例では、一方の高さ調整片116(同図の左側の高さ調整片116)の上部における他方の高さ調整片116(同図の右側の高さ調整片116)の上部との対向面に、上述の板ばね118を構成する金属板の長さ方向の中央部からなる固定片118aをスポット溶接などにより固着してある。板ばね118は、上記長さ方向の両端部に高さ調整片116から離間して配置されベース基板4の短手方向の側面に接触する接触片118bを備えており、固定片118aと接触片118bとの間がV字状の連結片118cにより連結された形状に形成されている。また、LEDユニット2と放熱ブロック150との間の熱抵抗のばらつきを低減するために、例えば、サーコン(登録商標)のようなゴムシート状の放熱シート(熱伝導シート)93をLEDユニット2と放熱ブロック150とで挟持している。しかして、LEDユニット2と放熱ブロック150とは放熱シート93を介して熱結合される。
 したがって、図8(a)の構成を採用する場合、LEDユニット2(LEDモジュール2a)を放熱ブロック150に取り付けるには、LEDユニット2を水平面から傾けた状態でベース基板4を埋込部115に挿入してベース基板4の側面を一方の高さ調整片116の板ばね118の接触片118bに接触させ、板ばね118のばね力に抗して板ばね118を弾性変形させてからLEDユニット2を放熱ブロック150側へ押し込み、その後、板ばね118の復帰力によりベース板4の他方の側面を他方の高さ調整片116に当接させればよい。逆に、LEDユニット2を取り外す場合には、LEDユニット2を板ばね118側へ押してから、LEDユニット2を傾けて取り外せばよい。なお、取り外し時にマイナスドライバなどの先端部を挿入可能な冶具挿入部(穴や切欠部)を回路基板3およびベース基板4に設けておけば、LEDユニット2を板ばね118側へ容易に押し付けることができ、回路基板3にかかる力を低減できる。
 また、LEDユニット2を放熱ブロック150に着脱自在に取り付ける手段の他の例としては、図9(a)に示すような一対の板ばね119を用いてもよい。図9(a)に示した例でも、LEDユニット2の短手方向の寸法に関してベース基板4の寸法を回路基板3の寸法よりも長く設定してある。
 板ばね119は、短冊状の金属板を折曲することにより形成されており、高さ調整片116の上部にスポット溶接などにより固着される固定片119aと、LEDユニット2のベース基板4の周部に弾接するJ字状の接触片119bとを備え、固定片119aと接触片119bとの間が逆V字状の連結片119cにより連結された形状に形成されている。ここにおいて、反射板110の高さ調整片116は、反射板110の反射面110aとLEDユニット2の上記平面状の部位との間に形成される隙間を小さくするために、板ばね119に対応する部位のみ平面視U字状に凹ませてある。図9(a)に示した例においてLEDユニット2を放熱ブロック150に取り付ける際には、LEDユニット2の短手方向に並んでいる板ばね119の接触片119の先端間の間隔が拡がるように指等により板ばね119を弾性変形させた状態で、LEDユニット2を水平面から傾けた状態でベース基板4を埋込部115に挿入してから、LEDユニット2を放熱ブロック150側へ押し込めばよい。なお、取り外し時には、LEDユニット2の短手方向に並んでいる板ばね119の接触片119の先端間の間隔が拡がるように指等により板ばね119を弾性変形させた状態で、LEDユニット2を傾けて取り外せばよい。
 放熱ブロック150にLEDユニット2を取り付ける手段は、上述の各例に限らない。例えば、図10に示すように、放熱ブロック150に取付ねじ8を挿通させるねじ挿通孔150eを設け、伝熱板21に取付ねじ8の先端部が螺合するねじ孔21eを設けてもよい。また、図10の構成に代えて、図11に示すように、反射板110において放熱ブロック115に接触する接触片117により高さ調整片116同士を連結するように、反射板110における接触片117にLEDユニット2の他面が密着する形でLEDユニット2を放熱ブロック150に取り付けるようにしてもよい。この図11の構成では、接触片117に、取付ねじ8を挿通するねじ挿通孔117eを設ける。
 また、反射板110を放熱部材として兼用しない場合には、図12に示すように、上述の接触片117を備えていない構造を採用してもよい。また、LEDチップ10単体で白色光を放射できる場合や、封止部50に蛍光体を分散させている場合には、図13に示すように、上述の色変換部材70を備えていない構造を採用することができる。ここで、図12および図13の例では、発光装置1の伝熱板21と放熱ブロック150とを上記有機グリーンシートからなる絶縁層95により接合してあり、伝熱板21と放熱ブロック150とが電気的に絶縁され且つ熱結合している。
 なお、上述の例では、LEDチップ10として、発光色が青色の青色LEDチップを採用しており、結晶成長用基板としてSiC基板を採用しているが、SiC基板の代わりにGaN基板やサファイア基板を用いてもよく、SiC基板やGaN基板を用いた場合には結晶成長用基板として絶縁体であるサファイア基板を用いている場合に比べて、結晶成長用基板の熱伝導率が高く結晶成長用基板の熱抵抗を小さくできる。また、上述のLEDチップ10は、上記一表面側に上記アノード電極が形成され、上記他表面側にカソード電極が形成されているが、上記一表面側にアノード電極およびカソード電極が形成されていてもよく、この場合には、アノード電極およびカソード電極の両方ともボンディングワイヤ14を介して導体パターン23,23と直接接続することができる。また、LEDチップ10から放射される光は青色光に限らず、例えば、紫色光、紫外光などでもよい。
 また、LEDチップ10と実装基板20における伝熱板21との線膨張率の差が比較的小さい場合にはサブマウント部材30は必ずしも設ける必要はない。上述の発光装置1では、LEDチップ10としてチップサイズが1mm□のものを用いサブマウント部材30上に1個のLEDチップ10を配置しているが、LEDチップ10のチップサイズや数は特に限定するものではなく、例えば、LEDチップ10としてチップサイズが0.3mm□のものを採用するようにして、1個のサブマウント部材30上に複数個のLEDチップ10を配置し、これら複数個のLEDチップ10をサブマウント部材30の電極パターンおよび図示しないボンディングワイヤを介して直列接続するようにしてもよい。
 また、LEDユニット2の構成は、上述の各例に限らず、例えば、図14に示すように、金属ベースプリント配線板からなる回路基板3上に複数の発光装置1を表面実装した構成のものでもよい。
 この図14の例では、取付ねじ8を用いて回路基板3を放熱ブロック150に取り付けてある。ここにおいて、回路基板3には、取付ねじ8が挿通されるねじ挿通孔3fが設けられ、放熱ブロック150には取付ねじ8の先端部が螺合するねじ孔115eが設けられている。また、LEDユニット2と放熱ブロック150との間の熱抵抗のばらつきを低減するために、例えば、サーコン(登録商標)のようなゴムシート状の放熱シート(熱伝導シート)93をLEDユニット2と放熱ブロック150とで挟持している。しかして、LEDユニット2と放熱ブロック150とは放熱シート93を介して熱結合される。
 図14における発光装置1は、LEDチップ10と、LEDチップ10が実装された実装基板20dと、LEDチップ10に重ねて配置された半球状の光学部材65と、色変換部材70とを備えている。ここにおいて、光学部材65は、シリコーン樹脂により形成されているが、光学部材65の材料はシリコーン樹脂に限らず、例えば、ガラスなどでもよい。なお、光学部材65は、LEDチップ10と当該LEDチップ10の光取り出し面が接する媒質との屈折率差を当該媒質が空気の場合に比べて小さくして、LEDチップ10からの光取り出し効率を向上させるものである。
 実装基板20dは、LEDチップ10を収納する収納凹所20adが一表面に設けられ且つLEDチップ10のアノード電極(図示せず)およびカソード電極(図示せず)がバンプを介して電気的に接続される配線(図示せず)が形成されたセラミック基板により構成してある。要するに、LEDチップ10は、実装基板20dにフリップチップ実装されており、結晶成長用基板であるサファイア基板を通して光が取り出される。ここにおいて、実装基板20dにおける収納凹所20adは、円形状に開口され且つ内底面から離れるにつれて開口面積が徐々に大きくなっている。また、実装基板20dの収納凹所20ad内には、LEDチップ10を封止した封止材料(例えば、シリコーン樹脂など)からなる封止部55が設けられており、光学部材65は上記封止材料により実装基板20dに接着されている。
 色変換部材70は、シート状に形成されており、光学部材65を覆うように実装基板20dに気密的に封着されている。この発光装置1は、実装基板20dと色変換部材70とでパッケージを構成しており、色変換部材70の光出射面70bが、LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位を構成している。
 以上述べたように、照明器具は、LEDユニット2と、器具本体100と、反射板110と、点灯装置120と、放熱ブロック150とを有している。LEDユニット2は、長尺状に形成されている。LEDユニット2は、厚み方向の一面側に、複数の発光装置1を備えている。言い換えると、LEDユニット2は、厚み方向における第1面に、複数の発光装置1を備えている。各発光装置1は、LEDチップ10を有している。反射板110は、金属製である。反射板110は、器具本体100に保持されている。反射板110は、LEDユニット2からの光を目標の配光となるように制御するように構成されている。点灯装置120は、器具本体100に交換可能に取着されている。点灯装置120は、LEDユニット2を点灯させるように構成されている。放熱ブロック150は、LEDユニット2の厚み方向の他面側に配置されている。言い換えると、放熱ブロック150は、LEDユニット2の厚み方向の第2面に配置されている。第2面は、第1面と反対側にある。放熱ブロック150は、LEDユニット2が交換可能に取着されている。放熱ブロック150は、LEDユニット2で発生した熱を放熱するように構成されている。反射板110は、埋込部115を有している。埋込部115は、LEDユニット2を埋め込むために設けられている。放熱ブロック150は、反射板110に保持されている。LEDユニット2は、発光装置1から光を取り出す面を有している。光を取り出す面は、平面状の部位を有している。反射面110aにおける埋込部115の周部は、平面状の部位と面一となっている。
 より具体的には、反射面110aは、反射部分を有している。反射部分は、埋込部115の周部に位置する。言い換えると、反射部分は、埋込部115の外周の外側に位置する。前記平面状の部位は、前記反射部分と面一となっている。
 この場合、反射板110が、LEDユニット2の外周形状に応じた形状に開口されLEDユニット2が埋め込まれる埋込部115を有する。また、放熱ブロック150が、反射板110に保持されている。よって、放熱ブロック150のサイズを大きくすることが可能となる。したがって、発光装置1で発生した熱が放熱ブロック150を通して効率的に放熱されることとなる。すなわち、LEDチップ10の温度上昇を抑制できて光出力の高出力化を図れる。また、LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とを面一としてある。よって、発光装置1の周辺部分が暗くなるのを抑制することが可能となる。
 また、各図に示すように、反射板110は、前記LEDユニット2の外周形状に応じた形状に開口され前記LEDユニット2が埋め込まれる前記埋込部115を有している。
 言い換えると、埋込部115は、所定の形状を有している。所定の形状は、前記LEDユニット2を、埋込部115の内側に配置するように形成されている。
 また、開口は、反射板110の厚み方向において貫通して設けられている。
 また、LEDユニット2は、前記反射板110が前記器具本体100に取り付けられた状態において前記放熱ブロック150に対して着脱自在に取り付けられている。前記他面(第2面)が前記放熱ブロック150に面接触している。したがって、LEDユニット2の放熱性を向上させることができる。
 また、図1,2に示すように、照明器具は、LEDユニット2と前記反射板110における前記埋込部115の周部とを覆う形で前記反射板110に着脱自在に取り付けられた樋状の透光性カバー180を備える。
 言い換えると、前記反射部分は、透光性カバー180に覆われた部分で定義される。
 また、各図に示すように、反射板110は、第1の高さを有している。第1の高さは、前記LEDユニット2の前記厚み方向に沿っている。反射板110の前記第1の高さは、前記LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とが面一となるように設定されている。
 また、反射板110は、高さ調整片116を有している。高さ調整片116は、前記反射板110から前記放熱ブロック150に向かって延出している。これにより、前記高さ調整片116は、前記反射板110から、LEDユニット2の厚み方向に沿って延出している。高さ調整片116は、LEDユニット2の厚み方向において、第1の高さを有している。これにより、反射板110の高さは、前記高さ調整片116によって決定される。高さ調整片116の前記第1の高さは、前記LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とが面一となるように設定されている。
 また、LEDユニット2は、前記LEDユニット2の厚み方向において第1の厚みを有している。LEDユニット2において発光装置1から光を取り出す面のうちの平面状の部位と反射板110の反射面110aにおける埋込部115の周部とが面一となるように、前記第1の高さ及び前記第1の厚みが設定されている。
 また、各図に示すように、前記放熱ブロック150は、平面を有している。放熱ブロック150は、その平面上に前記反射板110及び前記LEDユニット2が取り付けられている。第1の厚みは、前記第1の高さと等しく設定されている。
 よって、発光装置1の周辺部分が暗くなるのを抑制することが可能となる。
 また、図1,2,3,8,9,10,14に示すように、高さ調整片116は、さらに接触片117を有している。接触片117は、LEDユニット2の厚み方向と交差する方向において延出している。接触片117は、前記放熱ブロック150と面接触している。
 言い換えると、高さ調整片116は、さらに接触片117を有している。接触片117は、LEDユニット2の厚み方向と直交する方向において延出している。接触片117は、前記放熱ブロック150と面接触している。
 この場合、LEDユニット2から放熱ブロック150に伝熱された熱の一部を反射板110からも効率良く放熱させることが可能となる。即ち、反射板110を放熱部材に兼用することができる。したがって、放熱ブロック150を小さくすることができる。これにより、軽量化および低コスト化を図れる。
 また、図1,2,3,8,9,10,14に示すように、前記接触片117は、前記高さ調整片116から、前記LEDユニット2と反対の方向に向かって延出している。
 また、高さ調整片116は、その高さ方向の一方に第1端を有している。接触片117は、前記高さ調整片116の前記第1端から、前記LEDユニット2と反対の方向に向かって延出している。
 放熱ブロック150から接触片117に熱が逃がされたとき、接触片117の温度が上昇する。接触片117の温度上昇に伴い、接触片117は膨張する。しかしながら、接触片117は、LEDユニット2と反対の方向に向かって延出している。従って、接触片117の温度が上昇したとき、接触片117は、LEDユニット2と反対の方向に向かって膨張する。言い換えると、接触片117は、LEDユニット2の方向に向かって膨張することがない。これにより、反射板110とLEDユニット2との間の隙間を一定に保つことができる。すなわち、反射板110とLEDとの間の隙間を狭く設定した場合であっても、接触片117が膨張することにより接触片117がLEDユニット2に対して接触することがない。したがって、反射板110とLEDユニット2との間の隙間を狭く設定した場合であっても、接触片117が膨張することにより接触片117がLEDユニット2に対して力を加えることがない。
 また、図10に示すように、反射板110は、凹部を有している。凹部は、LEDユニット2の外周形状に応じた形状を有している。凹部は、LEDユニット2が埋め込まれるように構成されている。凹部が前記埋込部115を定義する。
 また、埋込部115は、周壁と底壁とを有している。周壁は、高さ調整片116として定義される。底壁は、接触片117として定義される。LEDユニット2は、前記底壁を介して前記放熱ブロック150と接触している。
 また、発光装置1は、LEDチップ10と、実装基板20と、光学要素とを有している。実装基板20は、LEDチップ10が一表面側に実装されている。光学要素は、実装基板20との間にLEDチップ10を収納するように、実装基板20の一表面側に固着されている。光学要素は外周部分を有している。光学要素の外周部分は、前記実装基板20の一表面側に固着されている。前記光を取り出す面のうちの平面状の部位は、前記外周部分よりも外側の部分で定義される。
 また、光学要素は、光学部材60を有している。光学部材60は、LEDチップ10から放射された光の配光を制御するように構成されている。光学部材60は、実装基板20との間にLEDチップ10を収納する形で前記実装基板20の一表面に固着されている。光学部材60は、ドーム状である。
 また、光学要素は、さらに、色変換部材70を有している。色変換部材70は、蛍光体と透光性材料とを含んでいる。蛍光体は、前記LEDチップ10から放射された光によって励起されて前記LEDチップ10の発光色とは異なる色の光を放射する。色変換部材70は、前記実装基板20の前記一表面側で光学部材60との間に空気層が介在する形で配設されている。色変換部材70は、ドーム状である。
 また、図9に示すように、前期照明器具は、取り付け手段を有している。LEDユニット2は、前記取り付け手段によって、前記放熱ブロック150に対して取り付けられている。
 また、取り付け手段は、ばねで構成されている。ばねは、前記LEDユニット2を前記放熱ブロック150に向かって付勢するように構成されている。
 また、図9に示すように、ばねは、板ばね119で構成されている。板ばね119は、前記周縁から前記周縁の内側に向かって延出している第1部分(連結片119c)を有している。これにより、前記LEDユニット2は、前記板ばね119の前記第1部分と前記放熱ブロック150との間で挟持される。
 この場合、LEDユニット2を、放熱ブロック150に対して容易に取り付けることができる。そして、LEDユニット2が放熱ブロック150に密着するように、LEDユニット2を放熱ブロック150に対して取り付けることができる。
 また、図9に示すように、板ばね119は、さらに第2部分(接触片119b)を有している。第2部分は、前記第1部分から、前記放熱ブロック150と反対の方向に向かって延出している。第2部分は、前記LEDユニット2と前記反射板110との間に位置する。
 この場合、LEDユニット2を放熱ブロック150から容易に取り外すことができる。
 また、図8に示すように、照明器具は、さらに取り付け手段を有している。LEDユニット2は、取り付け手段によって、前記反射板110に対して接触されている。埋込部115は、周縁を有している。周縁は、第1の内面と第2の内面とを有している。第2の内面は、前記第1の内面と対向している。取り付け手段は、前記第1の内面に配置されている。LEDユニット2が前記反射板110の第2の内面と接触するように、前記取り付け手段と前記第2の内面とにより保持されている。
 この場合、LEDユニット2の熱を、放熱ブロック150及び反射板110に対して逃がすことができる。
 また、図8に示すように、取り付け手段は、ばね118で構成されている。ばね118は、前記LEDユニット2を前記第2の内面に対して付勢するように構成されており、これにより、前記LEDユニット2が前記反射板110の第2の内面と接触する。
 この場合、LEDユニット2や反射板110が熱で膨張しても、ばね118によって力を逃がすことができる。
 また、反射板の反射面における埋込部の周部は、LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と平行の面として定義されている。
 また、反射板の反射面における埋込部の周部は、透光性カバーの内側に位置する領域において定義されている。
 (実施形態2)
 本実施形態の照明器具は、天井直付けの照明器具であって、図15に示すように、下面側が開放された断面略U字形に形成され天井材300の下面からなる施工面に取り付けられる器具本体100と、器具本体100の長手方向の両端部に設けられた反射板アダプタ170と、器具本体100を覆うように反射板アダプタ170に取り付けられる断面V字状の反射板110と、反射板110に保持される2つのLEDユニット2とを備えている。ここにおいて、実施形態1にて説明した放熱ブロック150は、LEDユニット2ごとに設けられている。本実施形態の照明器具は、いわゆる富士型(山型)の照明器具となっており、実施形態1とは反射板110および反射板アダプタ170の形状が相違している。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
 器具本体100の主片101には、実施形態1と同様、2つのボルト挿通孔101aが穿孔されている。しかして、器具本体100を天井に取り付ける際には、ボルト挿通孔101aに施工面から突出している取付ボルト310を挿通して、該取付ボルト310に座金107を通してナット108を締め付けることにより、器具本体100を取付ボルト310に結合できる。
 また、本実施形態における点灯装置120は、各LEDユニット2を点灯させるように各LEDユニット2それぞれに接続される。要するに、点灯装置120には、実施形態1にて説明した端子装置147(図7参照)が2つ設けられている。
 また、反射板アダプタ170は、短冊状の金属板を折曲することにより形成されている。この反射板アダプタ170は、器具本体100に取り付けた状態で当該器具本体100の主片101に対向する取付片171に、反射板110の頂部において反射板110に回動自在に取り付けられたラッチ部材114が係止される長孔状の係止孔172が形成されている。ここで、反射板アダプタ170は、取付片171の長手方向が器具本体100の主片101の長手方向に直交するように両端部が器具本体100の側片102に取り付けされるものであり、係止孔172の長手方向を取付片171の長手方向に一致させてある。したがって、ラッチ部材114を適宜回動させることにより、反射板アダプタ170に対して反射板110を着脱することができる。
 また、2つのLEDユニット2は、反射板110の頂部を挟む形で互いの長手方向が平行になるように配置されている。
 以上説明した本実施形態の照明器具では、実施形態1と同様、LEDチップ10の温度上昇を抑制できて光出力の高出力化を図れ、且つ、発光装置1の周辺部分が暗くなるのを抑制することが可能となる。
 なお、LEDユニット2の数や反射板110の形状は、上記各実施形態の構造に限定するものではない。
 1 発光装置
 2 LEDユニット
 2a LEDモジュール
 3 回路基板
 3b 回路パターン
 3c 窓孔
 3d ミラー
 4 ベース基板
 10 LEDチップ
 20 実装基板
 21 伝熱板
 22 配線基板
 23 導体パターン
 24 窓孔
 30 サブマウント部材
 50 封止部
 60 光学部材
 70 色変換部材
 80 空気層
 100 器具本体
 110 反射板
 110a 反射面
 115 埋込部
 120 点灯装置
 150 放熱ブロック
 180 透光性カバー

Claims (30)

  1.  LEDチップを用いた発光装置を厚み方向の一面側に複数備えた長尺のLEDユニットと、器具本体と、器具本体に保持されLEDユニットからの光を目標の配光となるように制御する金属製の反射板と、器具本体に交換可能に取着されLEDユニットを点灯させる点灯装置と、LEDユニットの厚み方向の他面側に配置されてLEDユニットが交換可能に取着されLEDユニットで発生した熱を放熱する放熱ブロックとを備え、反射板が、LEDユニットが埋め込まれる埋込部を有するとともに、放熱ブロックが、反射板に保持され、LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とを面一としてあることを特徴とする照明器具。
  2.  前記反射板は、前記LEDユニットの外周形状に応じた形状に開口され前記LEDユニットが埋め込まれる前記埋込部を有していることを特徴とする請求項1に記載の照明器具。
  3.  前記LEDユニットは、前記反射板が前記器具本体に取り付けられた状態において前記放熱ブロックに対して着脱自在に取り付けられてなり、前記他面が前記放熱ブロックに面接触していることを特徴とする請求項1記載の照明器具。
  4.  前記放熱ブロックの平面サイズが前記LEDユニットの平面サイズよりも大きいことを特徴とする請求項1から請求項3のいずれかに記載の照明器具。
  5.  前記LEDユニットと前記反射板における前記埋込部の周部とを覆う形で前記反射板に着脱自在に取り付けられた樋状の透光性カバーを備えることを特徴とする請求項1から請求項4のいずれか1項に記載の照明器具。
  6.  前記透光性カバーは、前記LEDユニットからの光を拡散させる拡散機能を有することを特徴とする請求項5記載の照明器具。
  7.  前記LEDユニットは、前記発光装置を同じ数ずつ備えるとともに互いに同じ大きさに形成され前記埋込部の長手方向に並設された複数個のLEDモジュールにより構成されてなることを特徴とする請求項1から請求項5のいずれか1項に記載の照明器具。
  8.  前記LEDユニットは、前記各発光装置の接続関係を規定する回路パターンが前記放熱ブロック側とは反対の一表面側に形成されるとともに、前記各発光装置それぞれが挿入される複数の窓孔が厚み方向に貫設された回路基板を備え、回路基板は、前記各発光装置からの光を反射するミラーが前記一表面側に形成されてなり、ミラーの表面が前記平面状の部位と面一であることを特徴とする請求項1から請求項6のいずれか1項に記載の照明器具。
  9.  前記発光装置は、LEDチップと、一表面側にLEDチップへの給電用の導体パターンを有しLEDチップが前記一表面側に実装された実装基板と、LEDチップから放射された光の配光を制御する光学部材であって実装基板との間にLEDチップを収納する形で実装基板の前記一表面側に固着されたドーム状の光学部材と、光学部材と実装基板とで囲まれた空間に充実されLEDチップを封止した透光性の封止材料からなる封止部と、LEDチップから放射され封止部および光学部材を透過した光によって励起されてLEDチップの発光色とは異なる色の光を放射する蛍光体および透光性材料により形成したものであって実装基板の前記一表面側で光学部材との間に空気層が介在する形で配設されたドーム状の色変換部材とを備えることを特徴とする請求項1から請求項8のいずれか1項に記載の照明器具。
  10.  前記実装基板は、熱伝導性材料からなり前記LEDチップがサブマウント部材を介して実装される伝熱板と、前記導体パターンを有し伝熱板における前記LEDチップの実装面側に固着された配線基板であってサブマウント部材を露出させる窓孔が厚み方向に貫設された配線基板とで構成され、前記サブマウント部材は、前記LEDチップよりも平面サイズが大きく、前記LEDチップに重なる部位の周囲に前記LEDチップからの光を反射する反射膜が形成されてなることを特徴とする請求項9記載の照明器具。
  11.  前記反射板は、第1の高さを有しており、前記第1の高さは、前記LEDユニットの前記厚み方向に沿っており、
     前記反射板の前記第1の高さは、前記LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とが面一となるように設定されていることを特徴とする請求項1に記載の照明器具。
  12.  前記反射板は、高さ調整片を有しており、
     前記高さ調整片は、前記反射板から前記放熱ブロックに向かって延出しており、
     前記高さ調整片は、前記LEDユニットの厚み方向において延出しており、かつ、前記LEDユニットの厚み方向において、前記第1の高さを有しており、これにより、前記反射板の高さは、前記高さ調整片によって決定され、
     前記高さ調整片の前記第1の高さは、前記LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とが面一となるように設定されていることを特徴とする請求項1に記載の照明器具。
  13.  前記LEDユニットは、前記LEDユニットの厚み方向において第1の厚みを有しており、
     前記LEDユニットにおいて発光装置から光を取り出す面のうちの平面状の部位と反射板の反射面における埋込部の周部とが面一となるように、前記第1の高さ及び前記第1の厚みが設定されていることを特徴とする請求項12に記載の照明器具。
  14.  前記放熱ブロックは、平面を有しており、前記平面上に前記反射板及び前記LEDユニットが取り付けられており、
     前記第1の厚みは、前記第1の高さと等しく設定されていることを特徴とする請求項13に記載の照明器具。
  15.  前記高さ調整片は、さらに接触片を有しており、
     前記接触片は、LEDユニットの厚み方向と交差する方向において延出しており、
     前記接触片は、前記放熱ブロックと面接触していることを特徴とする請求項13に記載の照明器具。
  16.  前記高さ調整片は、さらに接触片を有しており、
     前記接触片は、LEDユニットの厚み方向と直交する方向において延出しており、
     前記接触片は、前記放熱ブロックと面接触していることを特徴とする請求項14に記載の照明器具。
  17.  前記接触片は、前記高さ調整片から、前記LEDユニットと反対の方向に向かって延出していることを特徴とする請求項15または請求項16のいずれかに記載の照明器具。
  18.  前記高さ調整片は、その高さ方向の一方に第1端を有しており、
     前記接触片は、前記高さ調整片の前記第1端から、前記LEDユニットと反対の方向に向かって延出していることを特徴とする請求項17に記載の照明器具。
  19.  前記反射板は、前記LEDユニットの外周形状に応じた形状を有しており、且つ、LEDユニットが埋め込まれるように構成されている凹部を有しており、前記凹部が前記埋込部を定義することを特徴とする請求項15に記載の照明器具。
  20.  前記埋込部は、周壁と底壁とを有しており、
     前記周壁は、高さ調整片として定義され、
     前記底壁は、接触片として定義され、
     前記LEDユニットは、前記底壁を介して前記放熱ブロックと接触していることを特徴とする請求項19に記載の照明器具。
  21.  前記発光装置は、LEDチップと、LEDチップが一表面側に実装された実装基板と、前記実装基板との間にLEDチップを収納する形で実装基板の前記一表面側に固着された光学要素と、を有しており、
     前記光学要素は、外周部分を有しており、
     前記光学要素の前記外周部分は、前記実装基板の前記一表面側に固着されており、
     前記光を取り出す面のうちの前記平面状の部位は、前記外周部分よりも外側の部分で定義されることを特徴とする請求項1に記載の照明器具。
  22.  前記光学要素は、光学部材を有しており、
     前記光学部材は、LEDチップから放射された光の配光を制御するように構成されており、実装基板との間にLEDチップを収納する形で前記実装基板の一表面に固着されており、ドーム状であることを特徴とする請求項21に記載の照明器具。
  23.  前記光学要素は、さらに、色変換部材を有しており、
     前記色変換部材は、蛍光体と透光性材料とを含んでおり、前記蛍光体は、前記LEDチップから放射された光によって励起されて前記LEDチップの発光色とは異なる色の光を放射し、
     前記色変換部材は、前記実装基板の前記一表面側で光学部材との間に空気層が介在する形で配設されており、且つ、ドーム状であることを特徴とする請求項22に記載の照明器具。
  24.  前記照明器具は、さらに取り付け手段を有しており、
     前記LEDユニットは、前記取り付け手段によって、前記放熱ブロックに対して取り付けられていることを特徴とする請求項1に記載の照明器具。
  25.  前記取り付け手段は、ばねで構成されており、
     前記ばねは、前記LEDユニットを前記放熱ブロックに向かって付勢するように構成されていることを特徴とする請求項24に記載の照明器具。
  26.  前記ばねは、板ばねで構成されており、
     前記板ばねは、前記周縁から前記周縁の内側に向かって延出している第1部分を有しており、これにより前記LEDユニットは、前記板ばねの前記第1部分と前記放熱ブロックとの間で挟持されることを特徴とする請求項25に記載の照明器具。
  27.  前記板ばねは、さらに第2部分を有しており、
     前記第2部分は、前記第1部分から、前記放熱ブロックと反対の方向に向かって延出しており、
     前記第2部分は、前記LEDユニットと前記反射板との間に位置することを特徴とする請求項26に記載の照明器具。
  28.  前記照明器具は、さらに取り付け手段を有しており、
     前記LEDユニットは、取り付け手段によって、前記反射板に対して接触されていることを特徴とする請求項1に記載の照明器具。
  29.  前記埋込部は、周縁を有しており、
     前記周縁は、第1の内面と第2の内面とを有しており、
     前記第2の内面は、前記第1の内面と対向しており、
     前記取り付け手段は、前記第1の内面に配置されており、
     前記LEDユニットが前記反射板の第2の内面と接触するように、前記取り付け手段と前記第2の内面とにより保持されていることを特徴とする請求項28に記載の照明器具。
  30.  前記取り付け手段は、ばねで構成されており、
     前記ばねは、前記LEDユニットを前記第2の内面に対して付勢するように構成されており、これにより、前記LEDユニットが前記反射板の第2の内面と接触することを特徴とする請求項29に記載の照明器具。
PCT/JP2011/050872 2010-01-19 2011-01-19 照明器具 WO2011090073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/522,641 US8573800B2 (en) 2010-01-19 2011-01-19 Lighting apparatus
CN201180006512.3A CN102713430B (zh) 2010-01-19 2011-01-19 照明装置
EP11734679.1A EP2527729B1 (en) 2010-01-19 2011-01-19 Illumination apparatus
KR1020127021033A KR101383737B1 (ko) 2010-01-19 2011-01-19 조명 기구

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-009403 2010-01-19
JP2010009403A JP5457851B2 (ja) 2010-01-19 2010-01-19 照明器具

Publications (1)

Publication Number Publication Date
WO2011090073A1 true WO2011090073A1 (ja) 2011-07-28

Family

ID=44306873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050872 WO2011090073A1 (ja) 2010-01-19 2011-01-19 照明器具

Country Status (6)

Country Link
US (1) US8573800B2 (ja)
EP (1) EP2527729B1 (ja)
JP (1) JP5457851B2 (ja)
KR (1) KR101383737B1 (ja)
CN (1) CN102713430B (ja)
WO (1) WO2011090073A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791631B2 (en) 2007-07-19 2014-07-29 Quarkstar Llc Light emitting device
JP6031666B2 (ja) * 2011-03-03 2016-11-24 フィリップス ライティング ホールディング ビー ヴィ ばね式led保持部を有する発光デバイス
JP5565395B2 (ja) * 2011-09-22 2014-08-06 豊田合成株式会社 発光装置および発光装置の製造方法
US9365766B2 (en) * 2011-10-13 2016-06-14 Intematix Corporation Wavelength conversion component having photo-luminescence material embedded into a hermetic material for remote wavelength conversion
WO2013078463A1 (en) 2011-11-23 2013-05-30 Quarkstar Llc Light-emitting devices providing asymmetrical propagation of light
JP5291268B1 (ja) 2011-12-16 2013-09-18 パナソニック株式会社 発光モジュールおよびこれを用いた照明用光源、照明装置
ES2583167T3 (es) * 2012-01-25 2016-09-19 Philips Lighting Holding B.V. Módulo de LED y luminaria que comprende dicho módulo
CN104718634A (zh) * 2012-10-19 2015-06-17 夏普株式会社 发光装置以及发光装置向散热器安装的安装构造
JP5520398B1 (ja) * 2013-01-22 2014-06-11 アイリスオーヤマ株式会社 Led照明装置
US9752757B2 (en) 2013-03-07 2017-09-05 Quarkstar Llc Light-emitting device with light guide for two way illumination
US20140160724A1 (en) * 2013-03-13 2014-06-12 Quarkstar Llc Fabrication of Light-Emitting Devices
CN104295947A (zh) * 2013-07-17 2015-01-21 晋宝电气(浙江)有限公司 一种使用带非安全电压条形光源的灯具
JP6475918B2 (ja) * 2014-02-05 2019-02-27 ローム株式会社 パワーモジュール
US10228097B2 (en) 2014-03-13 2019-03-12 Philips Lighting Holding B.V. Retrofit lighting assembly
JP2016219366A (ja) * 2015-05-26 2016-12-22 王▲喩▼楠Wang, Yu−Nan ライトストリップ及びそれを応用する照明装置
KR102413224B1 (ko) 2015-10-01 2022-06-24 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자, 발광 소자 제조방법 및 발광 모듈
JP6619641B2 (ja) 2015-12-14 2019-12-11 株式会社小糸製作所 光源ユニット、及び、それを用いた灯具
JP6581496B2 (ja) * 2015-12-22 2019-09-25 株式会社小糸製作所 光源モジュール、及び、それを用いた灯具
JP6509748B2 (ja) * 2016-01-04 2019-05-08 株式会社東芝 紫外線照射ユニット及び紫外線照射装置
JP6677816B2 (ja) 2016-10-25 2020-04-08 京セラ株式会社 発光素子搭載用基板、発光装置および発光モジュール
EP3355667A1 (de) * 2017-01-30 2018-08-01 Siemens Aktiengesellschaft Verfahren zur herstellung einer elektrischen schaltung und elektrische schaltung
DE102017107197A1 (de) * 2017-04-04 2018-10-04 Automotive Lighting Reutlingen Gmbh Verfahren zur Montage einer Laserdiode auf einem Kühlkörper, nach diesem Verfahren montierte Lichtaussendungseinheit und Kraftfahrzeugscheinwerfer mit einer solchen Lichtaussendungseinheit
DE102017009323A1 (de) * 2017-10-09 2019-04-11 IAD Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH Vorrichtung zur Befeuerung der Start- und Landebahnen sowie der Taxiway an Flughäfen
JP7113608B2 (ja) * 2017-11-08 2022-08-05 シチズン時計株式会社 Ledモジュール
JP6536851B2 (ja) * 2017-11-22 2019-07-03 東芝ライテック株式会社 照明器具
US10683988B2 (en) 2018-10-04 2020-06-16 Elemental LED, Inc. Mirrored LED lighting
DE202023105944U1 (de) 2023-10-16 2024-01-24 Lumileds Llc LED-Modul

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158533A (ja) * 2007-12-25 2009-07-16 Takehisa Saito 光発生装置
JP2009272072A (ja) 2008-05-01 2009-11-19 Rohm Co Ltd Ledランプ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654103U (ja) * 1992-03-06 1994-07-22 高立株式会社 蛍光灯型led投光器
JP2005100800A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Led照明光源
JP2007109413A (ja) * 2005-10-11 2007-04-26 Sharp Corp Ledバックライト装置及び該装置を備える画像表示装置
JP4749912B2 (ja) * 2006-03-29 2011-08-17 株式会社フジクラ 照明器具
CN2924304Y (zh) * 2006-04-14 2007-07-18 东南大学 点阵式布局的高亮度发光二极管照明灯具
US8425085B2 (en) * 2006-04-16 2013-04-23 Albeo Technologies, Inc. Thermal management of LED-based lighting systems
JP4008489B1 (ja) * 2007-04-23 2007-11-14 株式会社ビートソニック 車載用led照明装置
WO2009042303A1 (en) * 2007-08-13 2009-04-02 Everhart Robert L Solid-state lighting fixtures
KR100966374B1 (ko) * 2007-08-27 2010-07-01 삼성엘이디 주식회사 백색 led를 이용한 면광원 및 이를 구비한 lcd백라이트 유닛
EP2197045A4 (en) * 2007-08-28 2013-05-29 Panasonic Corp DEVICE EMITTING LIGHT
JP5113573B2 (ja) * 2008-03-24 2013-01-09 パナソニック株式会社 Led照明装置
CN101614329A (zh) 2008-06-27 2009-12-30 富准精密工业(深圳)有限公司 发光二极管灯具及其光引擎
CN101619842B (zh) * 2008-07-04 2011-03-23 富准精密工业(深圳)有限公司 发光二极管灯具及其光引擎
DE102009035516B4 (de) * 2009-07-31 2014-10-16 Osram Gmbh Beleuchtungsvorrichtung mit Leuchtdioden
DE102010002996A1 (de) * 2010-03-18 2011-09-22 Osram Gesellschaft mit beschränkter Haftung Lampenanordnung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158533A (ja) * 2007-12-25 2009-07-16 Takehisa Saito 光発生装置
JP2009272072A (ja) 2008-05-01 2009-11-19 Rohm Co Ltd Ledランプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527729A4

Also Published As

Publication number Publication date
US20120287602A1 (en) 2012-11-15
CN102713430B (zh) 2015-07-08
KR20120115385A (ko) 2012-10-17
US8573800B2 (en) 2013-11-05
KR101383737B1 (ko) 2014-04-08
JP5457851B2 (ja) 2014-04-02
EP2527729A4 (en) 2014-03-26
EP2527729A1 (en) 2012-11-28
JP2011150815A (ja) 2011-08-04
EP2527729B1 (en) 2015-05-27
CN102713430A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5457851B2 (ja) 照明器具
JP5374396B2 (ja) 照明器具
JP4497186B2 (ja) 照明器具
JP5149601B2 (ja) 発光装置
JP4204058B2 (ja) Led照明器具
JP4888280B2 (ja) 発光装置
JP5209910B2 (ja) Led照明器具
JP2007043125A (ja) 発光装置
WO2007004572A1 (ja) 発光装置
JP4650466B2 (ja) 照明器具
CN101346584A (zh) 具有led的照明器具
JP2007265961A (ja) 照明器具
JP5054331B2 (ja) Ledを用いた照明器具
JP4981600B2 (ja) 照明器具
JP5849238B2 (ja) ランプ及び照明装置
KR100997172B1 (ko) 엘이디 조명 및 램프의 효율적 방열을 위한 엘이디 소자와 엘이디 방열 장치 및 이를 이용한 엘이디 소켓 장치
JP4816394B2 (ja) スポットライト
JP2011159813A (ja) 発光装置
JP5180564B2 (ja) 発光装置
JP2007165937A (ja) 発光装置
JP2007088100A (ja) 照明器具
KR101868441B1 (ko) 조명 장치
KR101847042B1 (ko) 조명 장치
KR101580789B1 (ko) 조명기기
KR102050057B1 (ko) 발광 소자 패키지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006512.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13522641

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011734679

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127021033

Country of ref document: KR

Kind code of ref document: A