WO2011089752A1 - 静圧軸受装置および静圧軸受装置を備えたステージ - Google Patents

静圧軸受装置および静圧軸受装置を備えたステージ Download PDF

Info

Publication number
WO2011089752A1
WO2011089752A1 PCT/JP2010/065709 JP2010065709W WO2011089752A1 WO 2011089752 A1 WO2011089752 A1 WO 2011089752A1 JP 2010065709 W JP2010065709 W JP 2010065709W WO 2011089752 A1 WO2011089752 A1 WO 2011089752A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
bearing device
orifice
pressurized gas
hydrostatic bearing
Prior art date
Application number
PCT/JP2010/065709
Other languages
English (en)
French (fr)
Inventor
内村 勝次
伊藤 守
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to EP10843916.7A priority Critical patent/EP2527675B1/en
Priority to US13/574,462 priority patent/US8608382B2/en
Priority to KR1020127007329A priority patent/KR101267442B1/ko
Publication of WO2011089752A1 publication Critical patent/WO2011089752A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic

Definitions

  • the present invention relates to a high-accuracy hydrostatic bearing device and a stage equipped with a hydrostatic bearing device that floats, supports, and moves a moving body with respect to a fixed body by pressurized gas.
  • FIG. 9 shows an example of a conventional hydrostatic bearing device.
  • the hydrostatic bearing device 100 is formed so as to surround the fixed body 120 and the fixed body 120 formed in a prismatic shape, and is configured to be movable along the fixed body 120.
  • FIG. 9B is an enlarged sectional view taken along line XX of FIG. 9A.
  • a discharge port 111a that communicates with a pressurized gas supply source and discharges the pressurized gas, and the pressurized gas discharged from the discharge port 111a is distributed along the sliding surface 110a.
  • a static pressure pad 111 having a ventilation groove 111b is formed.
  • the ventilation groove 111b is formed in a rectangular cross-sectional groove having a groove depth of about 30 ⁇ m and a groove width of 1000 ⁇ m.
  • pressurized gas is discharged from the hydrostatic pad 111 into the bearing gap G ⁇ b> 1 formed between the sliding surface 110 a of the moving body 110 and the fixed body 120, thereby moving the moving body 110 to the fixed body 120. It can be lifted up and moved along the extending direction of the fixed body 120.
  • the hydrostatic bearing device 100 is a moving mechanism in which the moving body 110 and the fixed body 120 are not in contact with each other, vibration is hardly generated and high-precision positioning is possible.
  • the vibration of the moving body is caused by the pressurized gas flowing through the bearing gap G1 becoming unstable.
  • the pressurized gas has a stable flow in both the laminar flow region and the turbulent flow region, but in the intermediate region between them, the pressure fluctuation of the gas becomes intense and the flow becomes unstable.
  • Patent Document 1 discloses a flow path forming technique in which a turbulent flow is less likely to occur by improving the flow path pattern shape of the ventilation groove.
  • Patent Document 2 discloses a technique that reduces the viscosity resistance of the gas flow by reducing the surface roughness of the sliding surface of the static pressure pad and does not generate turbulent flow.
  • Patent Document 3 the turbulent flow is stabilized by eliminating the transition between turbulent flow and laminar flow by roughening the gas outflow part of the sliding surface of the static pressure pad with the idea opposite to Patent Document 1 or 2.
  • a technique for preventing a vibration by forming a basin is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-194059
  • Patent Document 2 Japanese Patent Laid-Open No. 6-307449
  • Patent Document 3 Japanese Patent No. 3260869
  • the surface roughness of the sliding surface is made rough as in the technique described in Patent Document 3, and the turbulent flow is positively performed. May form an intermediate region between laminar flow and turbulent flow. Since the vibration caused by the turbulent flow does not have a specific frequency and has a wide frequency of 10 to several tens of kHz, the resonance frequency of the hydrostatic bearing device cannot be excluded from the frequency band of the minute vibration. When the hydrostatic bearing device resonates due to this minute vibration, the vibration amplitude may increase to several 100 nm.
  • the present invention reduces the occurrence of vibration by configuring an orifice, a ventilation groove, and the like so that a laminar flow state is maintained in the entire region of the ventilation path of the pressurized gas based on the supply air pressure to be applied.
  • An object of the present invention is to realize a high-precision hydrostatic bearing device that can be prevented and a stage including the hydrostatic bearing device.
  • a bearing gap is provided between the sliding surfaces of the fixed body and the movable body, and pressurized gas is supplied to the bearing gap.
  • the hydrostatic bearing device is configured to float and move on the fixed body, and the movable body includes a main pipe that supplies pressurized gas and a main pipe that opens to a sliding surface.
  • An orifice provided at the discharge port for rectifying the pressurized gas; and a static pressure pad formed with a ventilation groove communicating with the orifice and distributing and supplying the pressurized gas discharged from the orifice to the bearing gap;
  • the ventilation groove includes an annular groove formed in an annular shape surrounding the orifice, and a plurality of holes extending radially toward the annular groove around the orifice and communicating the annular groove and the orifice.
  • a distribution groove, and the transfer groove The technical means is formed so as to be symmetric with respect to the moving direction center line of the moving body, and the cross-sectional shape in the width direction of the ventilation groove forms a convex curve away from the sliding surface. Use.
  • the pressurized gas is supplied by the main pipe provided in the moving body, and the pressurized gas is rectified by the orifice provided in the discharge port of the main pipe that opens on the sliding surface.
  • the bearing gap provided between the sliding surfaces of the fixed body and the moving body by a static pressure pad formed with a ventilation groove communicating with the orifice and supplying pressurized gas discharged from the orifice to the bearing gap.
  • the ventilation groove includes an annular groove formed in an annular shape surrounding the orifice, and a plurality of distribution grooves extending radially toward the annular groove around the orifice and communicating the annular groove and the orifice,
  • the pressurized gas discharged from the hydrostatic pad to the bearing gap can be made into a laminar flow with a uniform pressure distribution, so that a highly accurate hydrostatic bearing device capable of preventing the occurrence of vibration can be realized. it can. Furthermore, since the laminar flow can be stably maintained, the supply pressure of the pressurized gas can be increased, so that a highly rigid hydrostatic bearing device can be realized.
  • the sum of the cross-sectional areas in the width direction of the distribution grooves is equal to or larger than the cross-sectional area of the orifice.
  • the cross-sectional area of the orifice Since the relationship of S1 ⁇ n ⁇ S2 is established with S2, pressure loss is unlikely to occur when the pressurized gas discharged from the orifice flows into the distribution groove, so that a stable laminar flow can be maintained. And the occurrence of vibrations can be prevented.
  • the surface roughness of the ventilation groove is formed to be smaller than the surface roughness of the sliding surface of the movable body.
  • the surface roughness of the ventilation groove is formed to be smaller than the surface roughness of the sliding surface of the moving body, the flow of the pressurized gas compared to the sliding surface In the ventilation groove that tends to transition to turbulent flow, it is possible to make it difficult for the flow to be disturbed due to surface roughness, so that a stable laminar flow can be maintained and the occurrence of vibration can be prevented.
  • the surface roughness Ra (arithmetic average roughness) of the sliding surface is 0.2 to 0.6 ⁇ m
  • the surface roughness Ra of the ventilation groove is preferably 0.1 to 0.4 ⁇ m.
  • the annular groove is provided so as to surround from the ventilation groove to the bearing gap.
  • An exhaust groove that guides and discharges the supplied pressurized gas to the outside of the bearing gap, and is formed so as to be symmetric with respect to the moving direction center line of the moving body, and has a cross section in the width direction.
  • a technical means is used in which an exhaust groove having a convex curve in a direction away from the sliding surface and having a cross-sectional area equal to or larger than the cross-sectional area of the annular groove is used.
  • the pressure distribution of the pressurized gas can be efficiently exhausted outside the bearing gap so that the pressure distribution of the pressurized gas becomes uniform, and the flow rate of the pressurized gas can be stabilized. As a result, laminar flow can be stably maintained.
  • the bearing gap is set to 10 ⁇ m or less in the hydrostatic bearing device according to any one of the inventions according to the first to third aspects.
  • the laminar flow can be stably maintained, so that the bearing gap can be reduced.
  • the hydrostatic bearing device can be configured such that the bearing gap is 10 ⁇ m or less, which is smaller than the bearing gap of the conventional hydrostatic bearing device. Thereby, it can be set as a more rigid hydrostatic bearing apparatus.
  • the surface accuracy can be improved, so that a hydrostatic bearing device with higher rigidity and accuracy can be configured.
  • ceramic has a low thermal expansion compared to a metal material, a dimensional change due to a temperature change can be reduced, so that a hydrostatic bearing device with higher accuracy can be realized.
  • the stage includes the hydrostatic bearing device according to any one of the first to third aspects of the invention, and an object is mounted on the movable body along the fixed body.
  • the technical means of being configured to be movable is used.
  • the stage since the stage includes the hydrostatic bearing device according to any one of the first to third aspects of the invention, the stage has high rigidity and is driven and stabilized. It can be set as the favorable stage which suppressed generation
  • FIG. 2 is an enlarged explanatory view of an AA cross section of FIG. 1
  • FIG. 2B is an enlarged explanatory view of an orifice.
  • FIG. 4 is a cross-sectional explanatory view showing a cross-sectional shape in the width direction of the ventilation groove and the exhaust groove, which is a BB cross section of FIG. 3.
  • It is explanatory drawing which shows the relationship between the supply pressure of pressurized gas, and a consumption flow rate.
  • FIG. 9A is a perspective explanatory view
  • FIG. 9B is an enlarged explanatory view of the XX cross section of FIG. 9A.
  • the hydrostatic bearing device 1 includes a fixed body 20 formed in a prismatic shape, and a movable body 10 formed so as to surround the fixed body 20 and movable along the fixed body 20. And consist of
  • the moving body 10 and the fixed body 20 are made of ceramics such as alumina, for example. If the moving body 10 and the fixed body 20 are made of ceramics, the surface accuracy can be improved, so that turbulent flow is less likely to occur, and a highly accurate hydrostatic bearing device can be configured. In addition, since ceramic has a low thermal expansion compared to a metal material, a dimensional change due to a temperature change can be reduced, so that a highly accurate hydrostatic bearing device can be realized.
  • the moving body 10 includes a main pipe 13 that supplies pressurized gas, an orifice 14 that rectifies the pressurized gas, and the pressurized gas discharged from the orifice 14 in communication with the orifice 14. And a hydrostatic pad 30 that distributes and supplies gas to a bearing gap G formed between the sliding surface 10a of the moving body 10 and the fixed body 20.
  • the static pressure pad 30 is formed with a ventilation groove 11 composed of a distribution groove 11a and an annular groove 11b described later.
  • An exhaust groove 12 is formed on the outer periphery of the ventilation groove 11 to guide and exhaust the pressurized gas supplied from the ventilation groove 11 to the bearing gap G to the outside of the bearing gap G.
  • FIG. 2A the structure of the moving body 10 above the fixed body 20 is shown, but the same structure is formed on the lower sliding surface facing the fixed body 20 with the structure interposed therebetween.
  • a similar structure may be formed on the horizontal sliding surface.
  • the orifice 14 is provided in the discharge port 13a of the main pipe 13 that opens to the sliding surface 10a (the lower surface in the figure), and the discharge port 13a side has a tapered shape with little pressure loss. Is formed. Thereby, it rectifies
  • the main pipe 13 is formed in a tubular shape with a diameter of about 3 to 5 mm, and the orifice 14 is formed with a tip diameter of 0.2 to 0.3 mm.
  • a pressurized gas is supplied from the main pipe 13 through the orifice 14 to the hydrostatic pad 30, and is formed between the sliding surface 10 a of the moving body 10 and the fixed body 20 from the hydrostatic pad 30.
  • the movable body 10 is levitated on the fixed body 20 and moved along the extending direction of the fixed body 20 and can be positioned with high accuracy.
  • the pressurized gas discharged from the static pressure pad 30 to the bearing gap G is exhausted to the outside of the bearing gap G by the exhaust groove 12.
  • the hydrostatic bearing device 1 of the present invention has an orifice 14, a ventilation groove 11, and an exhaust so that a laminar flow state is maintained in the entire area of the pressurized gas ventilation path.
  • the configuration such as the shape of the groove 12 is designed. Hereinafter, a specific configuration will be described.
  • the sliding surface 10a is formed in a rectangular shape, and a static pressure pad 30 provided with a ventilation groove 11 and an exhaust groove 12 are formed on the sliding surface 10a.
  • the static pressure pad 30 is formed by a composite diaphragm that combines an orifice diaphragm and a surface diaphragm.
  • the ventilation groove 11 has an annular groove 11b formed in an annular shape surrounding the orifice 14 and a plurality of distribution grooves that extend radially toward the annular groove 11b around the orifice 14 and communicate the annular groove 11b with the orifice 14. 11a.
  • the annular groove 11b is formed in a circular shape, and 16 distribution grooves 11a are formed at a central angle of 22.5 °.
  • the ventilation groove 11 is formed so as to be symmetric with respect to the moving direction of the moving body 10 (left and right direction in the figure).
  • the exhaust groove 12 includes an annular exhaust groove 12a provided so as to surround the annular groove 11b, and an external exhaust groove 12b that communicates the annular exhaust groove 12a with the outside of the hydrostatic bearing device 1.
  • the exhaust groove 12 is formed in a shape that allows efficient exhaust to the outside so that the pressure distribution of the pressurized gas is uniform (FIG. 4).
  • the exhaust groove 12 is formed to be symmetric with respect to the moving direction center line of the moving body 10.
  • the annular exhaust groove 12a is preferably similar to the annular groove 11b in order to exhaust an amount corresponding to the pressurized gas discharged from the annular groove 11b so that the pressure distribution is uniform.
  • the circular groove 11b has a circular shape.
  • the radius R2 of the annular exhaust groove 12a is not less than the radius R1 of the annular groove 11b and a space larger than twice the width W1 (FIG. 4) of the annular groove 11b is secured, pressure loss and pressurized gas It is possible to achieve a good exhaust state in which the flow of air is not disturbed.
  • R2 ⁇ R1 2 to 10 mm, but good exhaust is possible and no vibration is generated.
  • the pressurized gas discharged from the main pipe 13 through the orifice 14 through the discharge port 13a is isotropically distributed in the static pressure pad 30 by the distribution groove 11a, and is distributed from the distribution groove 11a and the annular groove 11b to the bearing gap G.
  • the exhaust groove 12 exhausts the outside of the bearing gap G.
  • the pressure distribution of the pressurized gas in the bearing gap G can be made uniform by forming the ventilation groove 11 so as to be symmetric with respect to the moving direction center line of the moving body 10. Further, by providing the exhaust groove 12, the pressurized gas can be efficiently exhausted to the outside so that the pressure distribution of the pressurized gas becomes uniform, and the flow rate of the pressurized gas can be stabilized.
  • the vent groove 11 (only the annular groove 11b is shown in the figure) and the exhaust groove 12 (only the annular exhaust groove 12a is shown in the figure) have a cross-sectional shape in the width direction away from the sliding surface 10a.
  • a convex curve is formed.
  • the annular groove 11b has an arcuate cross section, and is formed so that the depth D1 is 10 ⁇ m or less and the width W1 is 300 to 500 ⁇ m.
  • the distribution groove 11a has a similar cross-sectional shape.
  • the ventilation groove 11 can be formed, for example, by processing with a grinding drill having a radius of 1 to 5 mm.
  • the pressurized gas flows out from the width direction of each groove to the bearing gap G. In this case, there is no pressure loss or air current turbulence, and laminar flow can be maintained.
  • the sum of the cross-sectional areas in the width direction of the distribution grooves 11a is formed to be equal to or larger than the cross-sectional area of the orifice 14.
  • the cross-sectional area of the distribution groove 11a is S1
  • there are 16 distribution grooves 11a so the relationship of S1 ⁇ 16 ⁇ S2 is established with the cross-sectional area S2 of the orifice 14.
  • the exhaust groove 12 is preferably equal to or larger than the cross-sectional area of the annular groove 11b in order for the annular exhaust groove 12a to exhaust an amount corresponding to the pressurized gas discharged from the annular groove 11b.
  • the cross-sectional shape of the annular groove 11b is an arc shape like the ventilation groove 11, and the depth D2 is 30 ⁇ m and the width W2 is 300 ⁇ m.
  • the corner of the boundary between the sliding surface 10a and the ventilation groove 11 or the exhaust groove 12 is chamfered and formed smoothly, the flow can be made more difficult to disturb, and the laminar flow state is stabilized. be able to.
  • the surface roughness of the ventilation groove 11 is formed to be smaller than the surface roughness of the sliding surface 10 a of the moving body 10. Therefore, in the ventilation groove 11 in which the flow of the pressurized gas is likely to transition to the turbulent flow compared to the sliding surface 10a, it is possible to make it difficult for the flow turbulence due to the surface roughness to occur. Can be maintained, and the occurrence of vibrations can be prevented.
  • the surface roughness Ra (arithmetic mean roughness) of the sliding surface 10a is 0.2 to 0.6 ⁇ m
  • the surface roughness Ra of the ventilation groove 11 is preferably 0.1 to 0.4 ⁇ m.
  • the laminar flow can be stably maintained, and high rigidity can be obtained even when the supply pressure of the pressurized gas is lowered. Therefore, by reducing the bearing gap G so as to be 10 ⁇ m or less, which is smaller than the bearing gap of the conventional hydrostatic bearing device, a more rigid hydrostatic bearing device can be obtained.
  • the hydrostatic bearing device 1 of the present invention has the above-described configuration, the pressurized gas discharged from the hydrostatic pad 30 to the bearing gap G can be made into a laminar flow with a uniform pressure distribution. It is possible to realize a hydrostatic bearing device 1 that can perform high-precision positioning that can prevent occurrence, for example, ultra-high-precision positioning of 10 nm or less. Furthermore, since the laminar flow can be stably maintained, the supply pressure of the pressurized gas can be increased, and thus the highly rigid hydrostatic bearing device 1 can be realized.
  • the stage which mounts an object on the moving body 10 using the hydrostatic bearing device 1 and is movable along the fixed body 20 is configured, it is highly rigid and suppresses the generation of vibrations during driving and in a static state.
  • the stage provided with the hydrostatic bearing device 1 can be suitably used for applications requiring high traveling accuracy, such as a scanning exposure apparatus and a liquid crystal panel inspection apparatus.
  • a multi-axis moving mechanism such as an XY stage can be formed by combining a plurality of hydrostatic bearing devices.
  • the cross-sectional shape of the ventilation groove 11 and the exhaust groove 12 is a convex shape with a smooth curve and can achieve a laminar flow, an elliptical arc or other curved shape can be adopted.
  • the arrangement shape of the ventilation groove 11 and the exhaust groove 12 may be symmetric with respect to the moving direction center line, and may be asymmetric in the direction perpendicular to the moving direction.
  • the number of distribution grooves 11a and external exhaust grooves 12b is arbitrary as long as the laminar flow can be maintained.
  • the cross-sectional shape of the distribution groove 11a and the cross-sectional shape of the annular groove 11b, or the cross-sectional shape of the annular exhaust groove 12a and the cross-sectional shape of the external exhaust groove 12b can be different as long as the laminar flow can be maintained. .
  • the exhaust groove 12 may not be provided.
  • various ceramics such as zirconia, silicon carbide, and silicon nitride can be used in addition to alumina. Moreover, it can also form with materials other than ceramics, for example, metal materials, such as stainless steel.
  • a rectangular column made of alumina ceramics having a purity of 99.8 %% and having a cross section of 42 mm ⁇ 42 mm and a length of 200 mm was used as the fixed body 20.
  • the moving body 10 was configured by combining four flat plates so as to surround the fixed body 20 with the same alumina ceramic.
  • the upper and lower flat plates have a width of 80 mm, a thickness of 20 mm, and a length of 80 mm.
  • the left and right flat plates are a flat plate having a width of 40 mm, a thickness of 20 mm, and a length of 80 mm.
  • Bearing mechanisms such as the static pressure pad 30 and the exhaust groove 12 are provided on the sliding surfaces 10a of the upper and lower flat plates.
  • the orifice 14 has a tip diameter of 0.3 mm.
  • the ventilation groove 11 is formed so that the cross section in the width direction has an arc shape with a depth of 10 ⁇ m and a width of 300 ⁇ m.
  • the bearing gap G was 2 ⁇ m.
  • the sliding surface 10a has a surface roughness Ra of 0.4 ⁇ m, and the ventilation groove 11 has a surface roughness Ra of 0.2 ⁇ m or less.
  • the consumption flow rate of the pressurized gas was evaluated.
  • the consumption flow rate is evaluated by measuring the amount of gas consumed by the compressed air discharged from the exhaust groove 12 and the bearing gap G when the supply pressure of the compressed air supplied from the main pipe 13 is changed. It was.
  • FIG. 5 is a measurement result of the consumption flow rate when the supply air pressure is changed in the range of 0.1 to 0.5 MPa.
  • the consumption amount of compressed air is reduced to about 2/3 that of the conventional hydrostatic bearing device, and the effect of reducing the consumption amount of compressed air was confirmed.
  • the bearing rigidity was evaluated.
  • the bearing rigidity was calculated by the following equation by measuring the amount of displacement that the moving body 10 sinks when a predetermined load is applied to the moving body 10 with an electric micrometer.
  • FIG. 6 shows the measurement results of the bearing rigidity when the supply air pressure is changed in the range of 0.1 to 0.5 MPa.
  • the bearing rigidity is about 1.6 times higher than that of the conventional hydrostatic bearing device, and in combination with the result shown in FIG. It was confirmed that this was a highly rigid hydrostatic bearing device.
  • FIG. 7 shows the measurement results of the vibration amplitude when the supply air pressure is changed in the range of 0.1 to 0.5 MPa. Until the supply pressure is up to 0.2 MPa, vibration hardly occurs in both cases. However, when it exceeds 0.3 MPa, the vibration amplitude becomes large in the conventional hydrostatic bearing device, and the vibration amplitude level becomes unusable at 0.5 MPa. On the other hand, in the hydrostatic bearing device 1 of the present invention, vibration hardly occurred even at 0.5 MPa. As described above, the hydrostatic bearing device 1 and the optimum setting of the present invention can stably operate the hydrostatic bearing device 1 at a vibration amplitude level of 10 nm or less.
  • the orifice 14 is maintained so that the laminar flow state is maintained in the entire region of the ventilation path of the pressurized gas.
  • the structure of the ventilation groove 11 and the exhaust groove 12 is designed, and the cross-sectional shape in the width direction of the ventilation groove 11 forms a convex curve in the direction away from the sliding surface 10a.
  • the ventilation groove 11 includes an annular groove 11b formed in an annular shape surrounding the orifice 14 and a plurality of holes extending radially toward the annular groove 11b around the orifice 14 and communicating the annular groove 11b and the orifice 14 with each other.
  • the pressurized gas discharged from the hydrostatic pad 30 to the bearing gap G can be made into a laminar flow with a uniform pressure distribution, so that a highly accurate hydrostatic bearing device 1 that can prevent the occurrence of vibration is realized. can do. Furthermore, since the laminar flow can be stably maintained, the supply pressure of the pressurized gas can be increased, and thus the highly rigid hydrostatic bearing device 1 can be realized.
  • the single configuration of the static pressure pad 30 is adopted.
  • the configuration is not limited to this, and a configuration in which a plurality of static pressure pads 30 are provided on one sliding surface 10a may be employed. it can.
  • four static pressure pads 30 can be arranged symmetrically.
  • the exhaust groove 12 in addition to the annular exhaust groove 12a and the external exhaust groove 12b, the second is formed in a cross so as to partition the region where the static pressure pad 30 is formed and communicates with the external exhaust groove 12b to assist the exhaust.
  • An external exhaust groove 12c is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

 加圧気体の通気経路の全領域で層流状態が維持されるように、オリフィス、通気溝などを構成することにより、振動の発生を防止できる高精度な静圧軸受装置および静圧軸受装置を備えたステージを実現する。 静圧軸受装置1において、加圧気体の通気経路の全領域で層流状態が維持されるように、オリフィス14、通気溝11及び排気溝12の形状などの構成を設計したものであり、通気溝11の幅方向の断面形状が摺動面10aから離れる方向に凸の曲線を形成し、また、通気溝11を、オリフィス14を囲み環状に形成された環状溝11bと、オリフィス14を中心に環状溝11bに向かって放射状に延設され、環状溝11bとオリフィス14とを連通する複数の分配溝11aとから、移動体10の移動方向中心線に対して対称となるように形成する。

Description

静圧軸受装置および静圧軸受装置を備えたステージ
 本発明は、加圧気体によって固定体に対して移動体を浮上させて支持、移動させる高精度の静圧軸受装置および静圧軸受装置を備えたステージに関する。
 従来より、高精度の位置決めが要求される加工装置、検査装置、半導体製造装置などにおいて、静圧気体を用いた静圧軸受装置が使用されている。図9に従来の静圧軸受装置の例を示す。図9(A)に示すように、静圧軸受装置100は、角柱状に形成された固定体120と、固定体120を取り囲むように形成され、固定体120に沿って移動可能に構成された移動体110と、からなる。図9(B)に、図9(A)のX-X断面拡大説明図を示す。移動体110の摺動面110aには、加圧気体の供給源と連通し加圧気体を吐出する吐出口111aと、吐出口111aから吐出された加圧気体を摺動面110aに沿って分配する通気溝111bとを備えた静圧パッド111が形成されている。通気溝111bは、例えば、溝深さが約30μm、溝幅が1000μmの矩形断面形状の溝に形成されている。
 静圧軸受装置100では、静圧パッド111から移動体110の摺動面110aと固定体120との間に形成される軸受間隙G1に加圧気体を吐出させて、移動体110を固定体120上に浮上させ、固定体120の延伸方向に沿って移動させることができる。このように、静圧軸受装置100は、移動体110と固定体120とが非接触な移動機構であるため、振動が発生しにくく高精度の位置決めが可能である。
 近年、静圧軸受装置を用いて、超高精度の加工、測定を行う際には、より高い位置決め精度、例えば、位置決め精度10nm以下、が要求されるようになっており、これまで問題とされていなかった移動体の微小な振動が問題となってきた。
 移動体の振動は、軸受間隙G1を流れる加圧気体が不安定な状態となることに起因している。加圧気体が、層流領域あるいは乱流領域ではいずれも安定した流れとなるが、両者の中間領域では気体の圧力変動が激しくなり、流れが不安定な状態となる。ここで、層流と乱流との遷移域はレイノルズ数Re=2000~3000にあるため、Re≦2000であれば、層流状態となる。層流状態では加圧気体はなめらかな流れとなるために、振動が生じることはない。
 このような静圧軸受装置における移動体の振動を抑制するために、例えば特許文献1には、通気溝の流路パターン形状を改良して乱流が発生しにくい流路形成技術が開示されている。
 特許文献2には、静圧パッドの摺動面の表面粗さを小さくすることにより、気体が流れる粘性抵抗を小さくし、乱流を発生させない技術が開示されている。
 特許文献3には、特許文献1または2と逆の発想で、静圧パッドの摺動面の気体流出部を粗面化することにより、乱流と層流との遷移をなくして安定した乱流域を形成して、振動を防止する技術が開示されている。
   特許文献1: 特開2003-194059号公報
   特許文献2: 特開平6-307449号公報
   特許文献3: 特許3260869号公報
 しかし、特許文献1に記載の技術のように、角部を有する流路パターン形状、矩形状の通気溝を用いた場合には、角部などにおいて軸受間隙の変化などをきっかけに加圧空気の流れが乱れやすく、特に静圧軸受の剛性を上げるために加圧気体の流量を増大させた場合に乱流が発生しやすくなり、振動が発生してしまうという問題があった。
 特許文献2に記載の技術のように静圧パッドの摺動面の表面粗さRaを0.1μm以下の非常に平滑な面に加工すると製造コストが増大するという問題があった。
 また、移動体と固定体との軸受間隙は移動体の走行中に変化しやすいため、特許文献3に記載の技術のように摺動面の表面粗さを荒くして、積極的に乱流を形成しても層流と乱流との中間領域になってしまうことがある。乱流により生じる振動は固有の振動数を持たず10~数10kHzという幅広い周波数の振動であるため、静圧軸受装置の共振周波数をこの微小振動の周波数の帯域外に外すことはできない。この微小振動により静圧軸受装置が共振した場合には、数100nmの振動振幅に増大することも起きうる。
 そこで、本発明は、適用する給気圧力に基づいて、加圧気体の通気経路の全領域で層流状態が維持されるように、オリフィス、通気溝などを構成することにより、振動の発生を防止できる高精度な静圧軸受装置および静圧軸受装置を備えたステージを実現することを目的とする。
 この発明は、上記目的を達成するために、第1の観点にかかる発明では、固定体と移動体との摺動面間に軸受間隙を設け、当該軸受間隙に加圧気体を供給することにより前記移動体を前記固定体上で浮上させ、移動可能に構成された静圧軸受装置であって、前記移動体は、加圧気体を供給する主配管と、摺動面に開口する主配管の吐出口に設けられ、加圧気体を整流するオリフィスと、前記オリフィスに連通し前記オリフィスから吐出された加圧気体を前記軸受間隙に分配して供給する通気溝が形成された静圧パッドと、を備え、前記通気溝は、前記オリフィスを囲み環状に形成された環状溝と、前記オリフィスを中心に前記環状溝に向かって放射状に延設され、前記環状溝と前記オリフィスとを連通する複数の分配溝と、からなり、前記移動体の移動方向中心線に対して対称となるように形成されており、前記通気溝の幅方向の断面形状が摺動面から離れる方向に凸の曲線を形成している、という技術的手段を用いる。
 第1の観点にかかる発明によれば、移動体に設けられた主配管により加圧気体を供給し、摺動面に開口する主配管の吐出口に設けられたオリフィスにより加圧気体を整流し、オリフィスに連通しオリフィスから吐出された加圧気体を軸受間隙に分配して供給する通気溝が形成された静圧パッドにより、固定体と移動体との摺動面間に設けられた軸受間隙に加圧気体を供給することにより移動体を固定体上で浮上させ、移動、位置決めをすることができる。
 ここで、通気溝の幅方向の断面形状が摺動面から離れる方向に凸の曲線を形成しているため、加圧気体が通気溝の幅方向から軸受間隙に流れ出る際に、圧力損失や気流の乱れがなく、層流を維持することができる。
 また、通気溝を、オリフィスを囲み環状に形成された環状溝と、オリフィスを中心に環状溝に向かって放射状に延設され、前記環状溝と前記オリフィスとを連通する複数の分配溝とから、移動体の移動方向中心線に対して対称となるように形成することにより、軸受間隙における加圧気体の圧力分布を一様にすることができる。
 これらにより、静圧パッドから軸受間隙へ吐出される加圧気体を圧力分布が一様な層流とすることができるので、振動の発生を防止できる高精度な静圧軸受装置を実現することができる。
 更に、層流を安定して維持することができるため、加圧気体の給気圧力を上げることができるので、高剛性の静圧軸受装置を実現することができる。
 第2の観点にかかる発明では、第1の観点にかかる発明の静圧軸受装置において、前記分配溝の幅方向の断面積の総和が、前記オリフィスの断面積以上である、という技術的手段を用いる。
 第2の観点にかかる発明によれば、分配溝の幅方向の断面積の総和が、オリフィスの断面積以上である、例えば、断面積S1の分配溝がn本ある場合に、オリフィスの断面積S2との間に、S1×n≧S2の関係が成立するため、オリフィスから吐出された加圧気体が分配溝に流入するときに圧力損失が生じにくいので、安定した層流を維持することができ、振動の発生を防止することができる。
 第3の観点にかかる発明では、第1の観点にかかる発明の静圧軸受装置において、前記通気溝の表面粗さが前記移動体の摺動面の表面粗さよりも小さくなるように形成されている、という技術的手段を用いる。
 第3の観点にかかる発明によれば、通気溝の表面粗さが移動体の摺動面の表面粗さよりも小さくなるように形成されているため、摺動面に比べて加圧気体の流れが乱流に遷移しやすい通気溝において、表面粗さに起因する流れの乱れを生じにくくすることができるので、安定した層流を維持することができ、振動の発生を防止することができる。例えば、摺動面の表面粗さRa(算術平均粗さ)が0.2~0.6μmの場合、通気溝の表面粗さRaは0.1~0.4μmであることが好ましい。
 第4の観点にかかる発明では、第1ないし第3の観点にかかる発明のいずれか1つに記載の静圧軸受装置において、前記環状溝を囲んで設けられ、前記通気溝から前記軸受間隙に供給された加圧気体を前記軸受間隙の外方に案内して排気する排気溝であって、前記移動体の移動方向中心線に対して対称となるように形成されており、幅方向の断面形状が摺動面から離れる方向に凸の曲線を形成しているとともに、断面積が前記環状溝の断面積以上である排気溝を備えた、という技術的手段を用いる。
 第4の観点にかかる発明のような排気溝を設けることにより、加圧気体の圧力分布が一様になるように、軸受間隙外へ効率よく排気でき、加圧気体の流量を安定させることができるので、層流を安定して維持することができる。
 第5の観点にかかる発明では、第1ないし第3の観点にかかる発明のいずれか1つに記載の静圧軸受装置において、前記軸受間隙を10μm以下とした、という技術的手段を用いる。
 第1ないし第3の観点にかかる発明のいずれか1つに記載の静圧軸受装置では、層流を安定して維持することができるため、軸受間隙を小さくすることができる。第5の観点にかかる発明のように、軸受間隙が従来の静圧軸受装置の軸受間隙より小さい10μm以下となるように静圧軸受装置を構成することができる。これにより、より高剛性の静圧軸受装置とすることができる。
 第6の観点にかかる発明では、第1ないし第3の観点にかかる発明のいずれか1つに記載の静圧軸受装置において、前記移動体及び固定体はセラミックスからなる、という技術的手段を用いる。
 第6の観点にかかる発明のように、移動体及び固定体をセラミックスにより構成すると、面精度を向上させることができるので、より高剛性で高精度な静圧軸受装置を構成することができる。
 また、セラミックスは金属材料に比べて低熱膨張であるため、温度の変化による寸法変化を小さくすることができるので、より高精度の静圧軸受装置を実現することができる。 
 第7の観点にかかる発明では、ステージが第1ないし第3の観点にかかる発明のいずれか1つに記載の静圧軸受装置を備え、前記移動体に物体を搭載して前記固定体に沿って移動可能に構成された、という技術的手段を用いる。
 第7の観点にかかる発明によれば、ステージが第1ないし第3の観点にかかる発明のいずれか1つに記載の静圧軸受装置を備えているので、高剛性で、駆動時及び静定状態での振動の発生を抑制した良好なステージとすることができる。
静圧軸受装置の斜視説明図である。 静圧軸受装置の断面説明図である。図1のA-A断面の拡大説明図であり、図2(B)はオリフィスの拡大説明図である。 静圧軸受装置の静圧パッド構造を示す平面説明図である。 図3のB-B断面であり、通気溝及び排気溝の幅方向の断面形状を示す断面説明図である。 加圧気体の給気圧力と消費流量との関係を示す説明図である。 加圧気体の給気圧力と軸受剛性との関係を示す説明図である。 加圧気体の給気圧力と移動体の振動振幅との関係を示す説明図である。 静圧軸受装置の静圧パッド構造の変更例を示す平面説明図である。 従来の静圧軸受装置の構造を示す説明図である。図9(A)は斜視説明図であり、図9(B)は図9(A)のX-X断面の拡大説明図である。
 以下、本発明の静圧軸受装置について、図を参照して説明する。 なお、本発明は以下の実施形態に限定されるものではない。
 図1に示すように、静圧軸受装置1は、角柱状に形成された固定体20と、固定体20を取り囲むように形成され、固定体20に沿って移動可能に構成された移動体10と、からなる。移動体10及び固定体20は、例えば、アルミナのようなセラミックスにより形成されている。移動体10及び固定体20をセラミックスにより構成すると、面精度を向上させることができるので、乱流が発生しにくくなり、高精度な静圧軸受装置を構成することができる。また、セラミックスは金属材料に比べて低熱膨張であるため、温度の変化による寸法変化を小さくすることができるので、高精度の静圧軸受装置を実現することができる。
 図2(A)に示すように、移動体10は、加圧気体を供給する主配管13と、加圧気体を整流するオリフィス14と、オリフィス14に連通し、オリフィス14から吐出された加圧気体を移動体10の摺動面10aと固定体20との間に形成される軸受間隙Gに分配して供給する静圧パッド30と、を備えている。
 静圧パッド30には、後述する分配溝11a及び環状溝11bからなる通気溝11が形成されている。通気溝11の外周には、通気溝11から軸受間隙Gに供給された加圧気体を軸受間隙Gの外方に案内して排気する排気溝12が形成されている。図2(A)では、固定体20の上方の移動体10の構造を示すが、固定体20を挟んで対向する下方の摺動面にも同様の構造が形成されている。ここで、水平方向の摺動面にも同様の構造を形成してもよい。
 図2(B)に示すように、オリフィス14は、摺動面10a(図では下面)に開口する主配管13の吐出口13aに設けられ、吐出口13a側が圧力損失の少ない先細りのテーパー形状に形成されている。これにより、吐出口13aから吐出される加圧気体が層流となるように整流している。本実施形態では、主配管13は直径3~5mm程度の管状に形成されており、オリフィス14は先端の直径が0.2~0.3mmに形成されている。
 静圧軸受装置1では、主配管13からオリフィス14を介して静圧パッド30に加圧気体を供給し、静圧パッド30から移動体10の摺動面10aと固定体20との間に形成される軸受間隙Gに加圧気体を吐出させることにより、移動体10を固定体20上に浮上させ、固定体20の延伸方向に沿って移動させるとともに高精度の位置決めをすることができる。静圧パッド30から軸受間隙Gに吐出された加圧気体は、排気溝12により軸受間隙Gの外方に排気される。
 本発明の静圧軸受装置1は、高精度な移動、位置決めを実現するために、加圧気体の通気経路の全領域で層流状態が維持されるように、オリフィス14、通気溝11及び排気溝12の形状などの構成を設計したものである。以下に、具体的な構成を説明する。
 図3に示すように、摺動面10aは矩形に形成されており、その摺動面10aに通気溝11を備えた静圧パッド30と、排気溝12とが形成されている。静圧パッド30は、オリフィス絞りと表面絞りとを組み合わせた複合絞りにより形成されている。
 通気溝11は、オリフィス14を囲み環状に形成された環状溝11bと、オリフィス14を中心に環状溝11bに向かって放射状に延設され、環状溝11bとオリフィス14とを連通する複数の分配溝11aと、を備えている。本実施形態では、環状溝11bは円形に形成されており、分配溝11aは中心角22.5°で16本形成されている。また、通気溝11は、移動体10の移動方向(図における左右方向)に対して対称となるように形成されている。
 排気溝12は、環状溝11bを囲んで設けられた環状排気溝12aと、環状排気溝12aと静圧軸受装置1の外部とを連通する外部排気溝12bと、を備えている。排気溝12は加圧気体の圧力分布が一様になるように、外部に効率よく排気できる形状に形成されている(図4)。排気溝12も通気溝11同様に、移動体10の移動方向中心線に対して対称となるように形成されている。
 環状排気溝12aは、環状溝11bから吐出される加圧気体に応じた量を圧力分布が一様になるように排気するために、環状溝11bと相似形であることが好ましい。本実施形態では、環状溝11b同様に円形とした。
 ここで、環状排気溝12aの半径R2は、環状溝11bの半径R1に加えて環状溝11bの幅W1(図4)の2倍以上大きい間隔が確保されていれば、圧力損失や加圧気体の流れが乱れることのない良好な排気状態とすることができる。後述する実施例では、R2-R1=2~10mmとしたが、良好な排気が可能であり、振動は発生しなかった。
 主配管13からオリフィス14を介して吐出口13aから吐出された加圧気体は、分配溝11aにより静圧パッド30内で等方的に分配され、分配溝11a及び環状溝11bから軸受間隙Gに吐出された後に、排気溝12により軸受間隙Gの外方に排気される。上述のように、通気溝11を移動体10の移動方向中心線に対して対称となるように形成することにより、軸受間隙Gにおける加圧気体の圧力分布を一様にすることができる。また、排気溝12を設けることにより、加圧気体の圧力分布が一様になるように、加圧気体を外部へ効率よく排気でき、加圧気体の流量を安定させることができる。
 図4に示すように、通気溝11(図では環状溝11bのみを示す)及び排気溝12(図では環状排気溝12aのみを示す)は、幅方向の断面形状が摺動面10aから離れる方向に凸の曲線を形成している。 
 本実施形態では、環状溝11bの断面形状は円弧状であり、深さD1は10μm以下、幅W1は300~500μmとなるように形成されている。分配溝11aも同様の断面形状を有している。通気溝11は、例えば、半径1~5mmの研磨ドリルなどで加工することにより形成可能である。
 ここで、通気溝11及び排気溝12の幅方向の断面形状が摺動面10aから離れる方向に凸の曲線を形成しているため、加圧気体が各溝の幅方向から軸受間隙Gに流れ出る際に、圧力損失や気流の乱れがなく、層流を維持することができる。
 分配溝11aの幅方向の断面積の総和は、オリフィス14の断面積以上であるように形成されている。例えば、分配溝11aの断面積をS1とすると、本実施形態では分配溝11aが16本あるので、オリフィス14の断面積S2との間に、S1×16≧S2の関係が成立する。これにより、オリフィス14から層流で吐出された加圧気体が分配溝11aに流入するときに圧力損失が生じにくいので、安定した層流を維持することができ、振動の発生を防止することができる。
 排気溝12は、環状排気溝12aが環状溝11bから吐出される加圧気体に応じた量を排気するために、環状溝11bの断面積以上であることを好ましい。本実施形態では、環状溝11bの断面形状は通気溝11同様に円弧状であり、深さD2は30μm、幅W2は300μmとなるように形成されている。
 更に、摺動面10aと通気溝11または排気溝12との境界の角部を面取りして滑らかに形成すると、より一層流れを乱れにくくすることができ、層流状態が安定となる形状とすることができる。
 また、通気溝11の表面粗さは、移動体10の摺動面10aの表面粗さよりも小さくなるように形成されている。これにより、摺動面10aに比べて加圧気体の流れが乱流に遷移しやすい通気溝11において、表面粗さに起因する流れの乱れを生じにくくすることができるので、安定した層流を維持することができ、振動の発生を防止することができる。 
 例えば、摺動面10aの表面粗さRa(算術平均粗さ)が0.2~0.6μmの場合、通気溝11の表面粗さRaは0.1~0.4μmであることが好ましい。
 本発明の静圧軸受装置1では、層流を安定して維持することができ、加圧気体の給気圧力を低くしても高剛性を得ることができる。そこで、軸受間隙Gを従来の静圧軸受装置の軸受間隙より小さい10μm以下となるように小さくすることにより、より高剛性の静圧軸受装置とすることができる。
 本発明の静圧軸受装置1では、上記の構成を備えるため、静圧パッド30から軸受間隙Gへ吐出される加圧気体を圧力分布が一様な層流とすることができるので、振動の発生を防止できる高精度、例えば、10nm以下の超高精度の位置決めを行うことができる静圧軸受装置1を実現することができる。
 更に、層流を安定して維持することができるため、加圧気体の給気圧力を上げることができるので、高剛性の静圧軸受装置1を実現することができる。
 そして、静圧軸受装置1を用いて移動体10に物体を搭載して固定体20に沿って移動可能なステージを構成すると、高剛性で、駆動時及び静定状態での振動の発生を抑制した良好なステージとすることができる。従って、静圧軸受装置1を備えたステージは、走査型露光装置や液晶パネルの検査装置など高い走行精度が要求される用途に好適に用いることができる。
 また、複数の静圧軸受装置の組み合わせにより、X-Yステージなどの多軸の移動機構を形成することもできる。
 通気溝11及び排気溝12の断面形状は、滑らかな曲線による凸形状で層流を達成できる形状であれば、楕円の弧やその他の曲線形状を採用することができる。
 通気溝11及び排気溝12の配置形状は、移動方向中心線に対称であればよく、移動方向に垂直な方向については非対称でもよい。
 分配溝11a、外部排気溝12bの本数は、層流が維持できる範囲内であれば任意である。分配溝11aの断面形状と環状溝11bの断面形状、または環状排気溝12aの断面形状と外部排気溝12bの断面形状は、層流が維持できる範囲内であればそれぞれ異なるものとすることができる。
 加圧気体の外部への安定した排気が達成されていれば、排気溝12を設けなくてもよい。
 固定体20及び移動体10を形成するセラミックスとしては、アルミナ以外にもジルコニア、炭化けい素、窒化けい素など各種セラミックスを用いることができる。また、セラミックス以外の材料、例えば、ステンレス鋼などの金属材料などで形成することもできる。
評価試験
 本発明の静圧軸受装置1の効果を、従来の静圧軸受装置100と比較した。
 本発明の静圧軸受装置1は、固定体20として、純度99.8 % のアルミナセラミックスからなる、断面が42mm×42mm 、長さが200mmの四角柱を用いた。移動体10は、同じアルミナセラミックスにより、固定体20を囲むように4枚の平板を組み合わせて構成した。上下の平板は、幅が80mm、厚さが20mm、長さが80mmであり、左右の平板は、幅が40mm、厚さが20mm、長さが80mmの平板である。静圧パッド30、排気溝12などの軸受機構は、上下の平板の摺動面10aに設けられている。オリフィス14は先端の直径が0.3mmに形成されている。通気溝11は、幅方向の断面が、深さ10μm、幅300μmの円弧状となるように形成されている。軸受隙間Gは2μmとした。また、摺動面10aの表面粗さはRa0.4μm、通気溝11の表面粗さはRa0.2μm以下に形成されている。
 まず、加圧気体の消費流量を評価した。消費流量の評価は、主配管13から供給される圧縮空気の給気圧力を変化させたときに、圧縮空気が排気溝12及び軸受間隙Gから排出される気体の消費量を測定することにより行った。図5は、給気圧力を0.1~0.5MPaの範囲で変化させたときの消費流量の測定結果である。本発明の静圧軸受装置1では、従来の静圧軸受装置よりも、圧縮空気の消費量がおおよそ2/3に低減されており、圧縮空気の消費量の低減効果が確認された。
 次に、軸受剛性を評価した。軸受剛性は、移動体10に所定の荷重を負荷したときに、移動体10が沈み込む変位量を電気マイクロメータで測定し、次式により算出した。
 軸受剛性(N/μm)=負荷荷重(kg)×9.8/変位量(μm)
 図6は、給気圧力を0.1~0.5MPaの範囲で変化させたときの軸受剛性の測定結果である。本発明の静圧軸受装置1では、従来の静圧軸受装置よりも、軸受剛性が約1.6倍と高くなっており、図5で示した結果と併せて、圧縮空気の消費流量が少なく、高剛性な静圧軸受装置であることが確認された。
 続いて、本発明の静圧軸受装置1と従来の静圧軸受装置の振動測定を行った。図7は、給気圧力を0.1~0.5MPaの範囲で変化させたときの振動振幅の測定結果である。給気圧力が0.2MPaまでは、両者ともに振動はほとんど発生していない。しかし、0.3MPaを超えると、従来の静圧軸受装置では振動振幅が大きくなり、0.5MPaでは使用不能な振動振幅レベルとなった。一方、本発明の静圧軸受装置1では、0.5MPaでも振動はほとんど発生しなかった。
 以上の通り、本発明の静圧軸受構造と最適設定により、静圧軸受装置1を10nm以下の振動振幅レベルで安定に作動させることができる。
効果
(1)本発明の静圧軸受装置1によれば、高精度な移動、位置決めを実現するために、加圧気体の通気経路の全領域で層流状態が維持されるように、オリフィス14、通気溝11及び排気溝12の形状などの構成を設計したものであり、通気溝11の幅方向の断面形状が摺動面10aから離れる方向に凸の曲線を形成しているため、加圧気体が通気溝11の幅方向から軸受間隙に流れ出る際に、圧力損失や気流の乱れがなく、層流を維持することができる。
 また、通気溝11を、オリフィス14を囲み環状に形成された環状溝11bと、オリフィス14を中心に環状溝11bに向かって放射状に延設され、環状溝11bとオリフィス14とを連通する複数の分配溝11aとから、移動体10の移動方向中心線に対して対称となるように形成することにより、軸受間隙Gにおける加圧気体の圧力分布を一様にすることができる。
 排気溝12を設けることにより、加圧気体の圧力分布が一様になるように、軸受間隙G外へ効率よく排気でき、加圧気体の流量を安定させることができるので、層流を安定して維持することができる。
 これらにより、静圧パッド30から軸受間隙Gへ吐出される加圧気体を圧力分布が一様な層流とすることができるので、振動の発生を防止できる高精度な静圧軸受装置1を実現することができる。
 更に、層流を安定して維持することができるため、加圧気体の給気圧力を上げることができるので、高剛性の静圧軸受装置1を実現することができる。
(2)静圧軸受装置1を用いて移動体10に物体を搭載して固定体20に沿って移動可能なステージを構成すると、高剛性で、駆動時及び静定状態での振動の発生を抑制した良好なステージとすることができる。
 上述の実施形態では、静圧パッド30が一つの構成を採用したが、これに限定されるものではなく、一つの摺動面10aに複数の静圧パッド30を備えた構成を採用することができる。例えば、図8に示すように、静圧パッド30を左右対称に4個配置することができる。このように静圧パッド30を複数個備えた構成では、加圧気体の排気の際に流れが乱れやすくなるので、排気溝12を設けることは必須である。本実施形態では、環状排気溝12a、外部排気溝12bに加え、静圧パッド30が形成される領域を区画するように十字に形成されるとともに外部排気溝12bと連通し排気を補助する第2外部排気溝12cが形成されている。これにより、加圧気体の排気がスムースになり加圧気体の流量を安定させることができるので、層流を安定して維持することができる。
1   静圧軸受装置
10  移動体
10a 摺動面
11  通気溝
11a 分配溝
11b 環状溝
12  排気溝
12a 環状排気溝
12b 外部排気溝
12c 第2外部排気溝
13  主配管
13a 吐出口
14  オリフィス
20  固定体
30  静圧パッド
G   軸受間隙

Claims (7)

  1.  固定体と移動体との摺動面間に軸受間隙を設け、当該軸受間隙に加圧気体を供給することにより前記移動体を前記固定体上で浮上させ、移動可能に構成された静圧軸受装置であって、
     前記移動体は、
      加圧気体を供給する主配管と、
      摺動面に開口する主配管の吐出口に設けられ、加圧気体を整流するオリフィスと、
      前記オリフィスに連通し前記オリフィスから吐出された加圧気体を前記軸受間隙に分配して供給する通気溝が形成された静圧パッドと、を備え、
     前記通気溝は、
      前記オリフィスを囲み環状に形成された環状溝と、
      前記オリフィスを中心に前記環状溝に向かって放射状に延設され、前記環状溝と前記オリフィスとを連通する複数の分配溝と、からなり、
     前記移動体の移動方向中心線に対して対称となるように形成されており、
     前記通気溝の幅方向の断面形状が摺動面から離れる方向に凸の曲線を形成していることを特徴とする静圧軸受装置。
  2.  前記分配溝の幅方向の断面積の総和が、前記オリフィスの断面積以上であることを特徴とする請求項1に記載の静圧軸受装置。
  3.  前記通気溝の表面粗さが前記移動体の摺動面の表面粗さよりも小さくなるように形成されていることを特徴とする請求項1に記載の静圧軸受装置。
  4.  前記環状溝を囲んで設けられ、前記通気溝から前記軸受間隙に供給された加圧気体を前記軸受間隙の外方に案内して排気する排気溝であって、
     前記移動体の移動方向中心線に対して対称となるように形成されており、
     幅方向の断面形状が摺動面から離れる方向に凸の曲線を形成しているとともに、断面積が前記環状溝の断面積以上である排気溝を備えたことを特徴とする請求項1ないし請求項3のいずれか1つに記載の静圧軸受装置。
  5.  前記軸受間隙を10μm以下としたことを特徴とする請求項1ないし請求項3のいずれか1つに記載の静圧軸受装置。
  6.  前記移動体及び固定体はセラミックスからなることを特徴とする請求項1ないし請求項3のいずれか1つに記載の静圧軸受装置。
  7.  請求項1ないし請求項3のいずれか1つに記載の静圧軸受装置を備え、前記移動体に物体を搭載して前記固定体に沿って移動可能に構成されたことを特徴とするステージ。
PCT/JP2010/065709 2010-01-22 2010-09-13 静圧軸受装置および静圧軸受装置を備えたステージ WO2011089752A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10843916.7A EP2527675B1 (en) 2010-01-22 2010-09-13 Static pressure bearing device and stage provided with same
US13/574,462 US8608382B2 (en) 2010-01-22 2010-09-13 Static-pressure bearing apparatus and stage comprising static-pressure bearing apparatus
KR1020127007329A KR101267442B1 (ko) 2010-01-22 2010-09-13 정압 베어링 장치 및 정압 베어링 장치를 구비한 스테이지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-011528 2010-01-22
JP2010011528A JP4992986B2 (ja) 2010-01-22 2010-01-22 静圧軸受装置および静圧軸受装置を備えたステージ

Publications (1)

Publication Number Publication Date
WO2011089752A1 true WO2011089752A1 (ja) 2011-07-28

Family

ID=44295018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065709 WO2011089752A1 (ja) 2010-01-22 2010-09-13 静圧軸受装置および静圧軸受装置を備えたステージ

Country Status (7)

Country Link
US (1) US8608382B2 (ja)
EP (1) EP2527675B1 (ja)
JP (1) JP4992986B2 (ja)
KR (1) KR101267442B1 (ja)
CN (1) CN102135137B (ja)
TW (1) TWI449851B (ja)
WO (1) WO2011089752A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197303A (ja) * 2019-05-30 2020-12-10 京セラ株式会社 ガイド部材
CN113550978A (zh) * 2021-06-25 2021-10-26 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9658048B2 (en) * 2014-04-04 2017-05-23 Hexagon Metrology, Inc. Coordinate measuring machine with carbon fiber air bearings
JP6455177B2 (ja) * 2015-01-23 2019-01-23 株式会社ジェイテクト 静圧流体軸受装置、静圧流体軸受装置を用いた工作機械用主軸装置
JP6577404B2 (ja) * 2016-04-05 2019-09-18 ファナック株式会社 絞りユニット及びこれを備えた静圧軸受装置並びに溝付きブロックの製造方法
CN106640971B (zh) * 2017-03-09 2019-06-28 中国工程物理研究院机械制造工艺研究所 一种静压气体止推轴承
CN108547870B (zh) * 2018-05-09 2019-03-29 哈尔滨工业大学 一种带有非等深节流腔的气浮支承导向装置
WO2021112759A1 (en) * 2019-12-07 2021-06-10 Akribis Systems Pte. Ltd. Ultra-low profile aerostatic bearing and the method of manufacturing the same
CN111285031B (zh) * 2020-03-11 2021-09-14 上海精测半导体技术有限公司 一种旋转台
KR20230140069A (ko) 2022-03-29 2023-10-06 주식회사 파티오 실험동물 사육용 케이지 원격 관리 제어 방법
WO2024090442A1 (ja) * 2022-10-26 2024-05-02 京セラ株式会社 静圧気体軸受装置
CN116453992B (zh) * 2023-06-09 2023-09-05 成都中嘉微视科技有限公司 一种稳流结构气浮板
CN116792408B (zh) * 2023-08-25 2023-11-03 江苏领臣精密机械有限公司 一种静压导轨节流结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307449A (ja) 1993-04-23 1994-11-01 Sony Corp 静圧気体軸受
JP3260869B2 (ja) 1992-12-24 2002-02-25 京セラ株式会社 静圧軸受装置
JP2002188632A (ja) * 2000-12-25 2002-07-05 Mitsubishi Heavy Ind Ltd 摺動装置
JP2003194059A (ja) 2001-12-28 2003-07-09 Nikon Corp エアパッド、エアベアリング、ステージ及び露光装置
JP2004169784A (ja) * 2002-11-19 2004-06-17 Nikon Corp 軸受装置、ステージ装置及び露光装置
JP2006029412A (ja) * 2004-07-14 2006-02-02 Nippon Thompson Co Ltd 静圧形直動案内ユニット

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459545A (en) * 1977-10-21 1979-05-14 Canon Kk Fluid bearing
US4606587A (en) * 1985-01-08 1986-08-19 Automated Quality Technologies, Inc. Precision air slide
NL8502650A (nl) * 1985-09-27 1987-04-16 Pelt & Hooykaas Gasleger alsmede hiervoor geschikt legerdeel.
DE3788331T2 (de) * 1986-09-30 1994-04-28 Canon Kk Aerostatisches Lager.
JP2724349B2 (ja) * 1990-01-17 1998-03-09 黒田精工株式会社 静圧空気軸受
JP2817103B2 (ja) 1990-03-12 1998-10-27 富士通株式会社 データ検索装置及びデータ検索方法
JPH0510330A (ja) 1991-06-29 1993-01-19 Canon Inc 静圧軸受装置
JPH06280876A (ja) * 1993-03-30 1994-10-07 Koyo Seiko Co Ltd 静圧気体軸受装置
JP3197145B2 (ja) * 1993-04-08 2001-08-13 三菱重工業株式会社 動圧気体軸受
JPH10103354A (ja) * 1996-09-27 1998-04-21 Nippon Steel Corp 静圧気体軸受け
US6164827A (en) * 1998-04-29 2000-12-26 Eitzenberger; Hans Aerostatic airbearing
GB9818097D0 (en) * 1998-08-19 1998-10-14 Corac Group Plc Improvements in and relating to bearing assemblies
JP2001004142A (ja) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd ガスコンロ
IL150889A (en) * 2000-02-01 2008-03-20 Toto Ltd Hydrostatic gas bearing, hydrostatic gas bearing device for use in vacuum environment and gas recovery method for the hydrostatic gas bearing device
JP2002039180A (ja) * 2000-07-24 2002-02-06 Sumitomo Heavy Ind Ltd 静圧軸受及びその製造方法並びに静圧軸受を用いた非接触案内装置
JP2003336628A (ja) * 2002-03-12 2003-11-28 Nippon Densan Corp 気体動圧軸受、スピンドルモータ、記録ディスク駆動装置、及びポリゴンスキャナ
US20040042689A1 (en) * 2002-08-30 2004-03-04 Hardinge Inc. Hydrostatic bearing for linear motion guidance
JP2004144188A (ja) * 2002-10-24 2004-05-20 Nippon Steel Corp 静圧気体軸受
JP2005032818A (ja) * 2003-07-08 2005-02-03 Canon Inc 静圧軸受、位置決め装置、並びに露光装置
JP4544951B2 (ja) * 2004-05-28 2010-09-15 京セラ株式会社 摺動装置およびこれを用いたモータ
JP2007078126A (ja) * 2005-09-15 2007-03-29 Tokyo Univ Of Science 非接触支持装置
TWM287393U (en) * 2005-09-27 2006-02-11 Ming-Chang Shih The plat air bearing with high load capacity and stiffness
CN100428057C (zh) * 2006-06-07 2008-10-22 上海微电子装备有限公司 一种调节气膜双向刚度的气浮支座
JP2010151322A (ja) * 2010-04-01 2010-07-08 Sigma Technos Kk Xyステージ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260869B2 (ja) 1992-12-24 2002-02-25 京セラ株式会社 静圧軸受装置
JPH06307449A (ja) 1993-04-23 1994-11-01 Sony Corp 静圧気体軸受
JP2002188632A (ja) * 2000-12-25 2002-07-05 Mitsubishi Heavy Ind Ltd 摺動装置
JP2003194059A (ja) 2001-12-28 2003-07-09 Nikon Corp エアパッド、エアベアリング、ステージ及び露光装置
JP2004169784A (ja) * 2002-11-19 2004-06-17 Nikon Corp 軸受装置、ステージ装置及び露光装置
JP2006029412A (ja) * 2004-07-14 2006-02-02 Nippon Thompson Co Ltd 静圧形直動案内ユニット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197303A (ja) * 2019-05-30 2020-12-10 京セラ株式会社 ガイド部材
JP7394705B2 (ja) 2019-05-30 2023-12-08 京セラ株式会社 ガイド部材
CN113550978A (zh) * 2021-06-25 2021-10-26 哈尔滨工业大学 一种紧凑型气动高速静压空气主轴

Also Published As

Publication number Publication date
CN102135137A (zh) 2011-07-27
EP2527675A1 (en) 2012-11-28
US20120301060A1 (en) 2012-11-29
EP2527675B1 (en) 2018-11-07
KR101267442B1 (ko) 2013-05-31
CN102135137B (zh) 2015-02-11
JP4992986B2 (ja) 2012-08-08
TWI449851B (zh) 2014-08-21
US8608382B2 (en) 2013-12-17
JP2011149500A (ja) 2011-08-04
KR20120116386A (ko) 2012-10-22
TW201126075A (en) 2011-08-01
EP2527675A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP4992986B2 (ja) 静圧軸受装置および静圧軸受装置を備えたステージ
JP6154944B2 (ja) 研磨装置
JP6001675B2 (ja) 載置用部材およびその製造方法
US8864324B2 (en) Substrate with lightweight structure
US8485864B2 (en) Double-side polishing apparatus and method for polishing both sides of wafer
KR20120120245A (ko) 반도체 프로세싱을 위한 코팅 물질을 갖는 가스 분배 샤워헤드
KR101642974B1 (ko) 양면 연마 장치
WO2020027322A1 (ja) 静電チャック装置および静電チャック装置の製造方法
TWI389240B (zh) The support of the workpiece
JP2009236178A (ja) 移動装置
JP6197580B2 (ja) キャリアプレート及びワークの両面研磨装置
WO2024090442A1 (ja) 静圧気体軸受装置
JP3660779B2 (ja) 静圧気体軸受装置
JP5972611B2 (ja) 直動浮上装置
JP5987528B2 (ja) 浮上装置
JPH06193635A (ja) 静圧軸受装置
JP2012199428A (ja) プラズマ処理装置用電極板
JP2005240825A (ja) 静圧気体直動軸受機構
JP2009143045A (ja) 構造部材およびその製造方法
WO2015125756A1 (ja) エアベアリング装置及び測定装置
JP2006052793A (ja) 支持装置及び加工機
Takino et al. Fabrication of Silicon Carbide Optics by Electrical Discharge Machining: Removal Characteristics of Silicon Carbide with Low Electrical Resistance
JPS61203258A (ja) セラミツクスの整面加工法
JP2009052741A (ja) スライド装置およびそれを用いた処理システム
JP2008272911A (ja) 測定用定盤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127007329

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010843916

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13574462

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE