WO2020027322A1 - 静電チャック装置および静電チャック装置の製造方法 - Google Patents

静電チャック装置および静電チャック装置の製造方法 Download PDF

Info

Publication number
WO2020027322A1
WO2020027322A1 PCT/JP2019/030485 JP2019030485W WO2020027322A1 WO 2020027322 A1 WO2020027322 A1 WO 2020027322A1 JP 2019030485 W JP2019030485 W JP 2019030485W WO 2020027322 A1 WO2020027322 A1 WO 2020027322A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding
electrostatic chuck
chuck device
point corresponding
holding surface
Prior art date
Application number
PCT/JP2019/030485
Other languages
English (en)
French (fr)
Inventor
佳祐 前田
雅樹 尾崎
昌幸 塩尻
剛志 渡辺
進一 前田
勇貴 金原
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN201980049649.3A priority Critical patent/CN112514046B/zh
Priority to KR1020217003187A priority patent/KR20210035202A/ko
Priority to US17/264,705 priority patent/US11471987B2/en
Priority to JP2020534773A priority patent/JP7001165B2/ja
Publication of WO2020027322A1 publication Critical patent/WO2020027322A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck device and a method for manufacturing the electrostatic chuck device.
  • Priority is claimed on Japanese Patent Application No. 2018-146324 filed on August 2, 2018, the content of which is incorporated herein by reference.
  • a wafer (plate-like sample) can be attached to a sample table (mounting table) and fixed, and the wafer can be maintained at a desired temperature.
  • An electrostatic chuck device is used.
  • This electrostatic chuck device includes a ring member (focus ring) disposed at an upper portion thereof, which is disposed on an outer peripheral portion of the wafer suction section so as to surround the wafer mounting surface.
  • the surface temperature of the focus ring also rises as in the case of the wafer. Due to this rise, a temperature difference occurs between the above-described temperature adjusting base portion and the focus ring, and as a result, in-plane variation of the wafer surface temperature may occur. Therefore, a technique for cooling the focus ring has been known in order to suppress an increase in the surface temperature of the focus ring.
  • Patent Document 1 describes an electrostatic chuck device provided with a second electrostatic suction means for suctioning a focus ring on an outer peripheral portion of a wafer.
  • the focus ring is attracted to the electrostatic chuck portion with a force greater than the force for attracting the wafer, and a cooling medium (cooling gas) is applied to the back surface of the focus ring.
  • the temperature of the focus ring is adjusted by spraying.
  • Patent Document 2 describes an electrostatic chuck device in which a gas supply unit that supplies a heat transfer gas is provided in each of a wafer suction unit and a focus ring that are suctioned by an electrostatic chuck unit.
  • a gas supply unit that supplies a heat transfer gas is provided in each of a wafer suction unit and a focus ring that are suctioned by an electrostatic chuck unit.
  • the temperature of the wafer suction unit and the temperature of the focus ring can be independently controlled.
  • the present invention has been made in view of the above circumstances, and provides an electrostatic chuck device capable of making the surface temperature of a plate-like sample uniform, and a method of manufacturing the same.
  • a first aspect of the present invention includes a mounting table provided with a mounting surface on which a plate-shaped sample is mounted, an annular focus ring, and cooling means for cooling the focus ring, Has a holding portion surrounding the periphery of the mounting surface, the holding portion has an annular groove surrounding the circumference of the mounting surface, and a through-hole opening on the bottom surface of the groove. Is provided, and in the holding portion, upper surfaces on both sides in the width direction of the groove are holding surfaces that are in contact with the focus ring and hold the focus ring, and the holding surface is closer to the inner circumference than the groove.
  • the electrostatic chuck device includes an inner peripheral surface and an outer peripheral surface on an outer peripheral side of the groove, and the holding surface satisfies the following conditions (i) and (ii). (I) In the cross section in the thickness direction, a straight line connecting a first point corresponding to the innermost periphery of the holding surface and a second point corresponding to the outermost periphery of the holding surface is formed in the cross section in the thickness direction.
  • thickness of the holding surface In the cross section in the vertical direction, the height of the first point corresponding to the innermost circumference ⁇ the height of the second point corresponding to the outermost circumference
  • the leak area of the inner peripheral surface and the leak area of the outer peripheral surface are less than 0.7 mm 2 .
  • the holding surface may be an electrostatic chuck device that satisfies the following condition (iii).
  • (Iii) (the shortest distance between the second point corresponding to the outermost periphery and the least-squares straight line obtained from the inner peripheral surface and the outer peripheral surface in the cross section in the thickness direction of the holding surface) ⁇ 4 ⁇ m .
  • the device according to the first aspect of the present invention is configured such that a plurality of protrusions extending in a thickness direction of the holding portion are provided on a bottom surface of the groove, and the protrusions are formed in a cross section of the holding surface in a thickness direction.
  • the height of the upper surface of the first reference point is equal to or less than the height of a straight line connecting the first point corresponding to the innermost circumference and the second point corresponding to the outermost circumference with respect to a horizontal reference plane. It may be an electric chuck device.
  • a second aspect of the present invention is a method of manufacturing the electrostatic chuck device according to the first aspect, wherein a mounting surface for mounting the plate-like sample is provided, and the mounting surface is provided around the mounting surface.
  • the length in the rotation axis direction is larger than the width direction length of the holding surface from the inner peripheral surface on which the focus ring is mounted to the outer peripheral surface.
  • the manufacturing method of the electrostatic chuck device is characterized in that a mounting surface for mounting a plate-like sample is provided, and a sintered body provided with a through hole around the mounting surface.
  • the step of determining the length of the grinding wheel, the length in the rotation axis direction of the grindstone is shorter than the length in the width direction of the holding surface, the step of selecting a grindstone, using the grindstone, the surface of the sintered body, A grinding step of forming a temporary holding surface around the periphery of the mounting surface, grinding around the periphery of the mounting surface, forming a temporary holding surface, and dug down the temporary holding surface of the sintered body, Forming a groove surrounding the periphery and forming a holding surface having the groove.
  • an electrostatic chuck device capable of making the surface temperature of a plate-like sample uniform, and a method for manufacturing the same.
  • FIG. 2 is a schematic partial enlarged view in which a region indicated by ⁇ in FIG. 1 is enlarged.
  • FIG. 2 is a schematic partial enlarged view in which a region indicated by ⁇ in FIG. 1 is enlarged.
  • FIG. 3 is a schematic perspective view illustrating a grinding step in an example of a preferred method of manufacturing the electrostatic chuck device according to the first embodiment.
  • FIG. 4 is a schematic perspective view illustrating a step of forming a groove in an example of a preferred method of manufacturing the electrostatic chuck device according to the first embodiment.
  • FIG. 7 is a schematic partial enlarged view in which a region indicated by ⁇ in FIG. 6 is enlarged.
  • FIG. 9 is a schematic cross-sectional view in an XZ plane showing an example of a shape having a duck tail on the outermost periphery of a holding surface in a holding unit of the electrostatic chuck device.
  • FIG. 4 is a schematic cross-sectional view on an XZ plane showing a measurement position in three-dimensional coordinates on a holding surface of a holding unit of the electrostatic chuck device.
  • FIG. 7 is a schematic partial enlarged view in which a region indicated by ⁇ in FIG. 6 is enlarged.
  • the characteristic portions may be enlarged for convenience, and the dimensional ratios and the like of the respective components are not necessarily the same as the actual ones. Absent. In addition, for the same purpose, parts that do not have a characteristic may be omitted in the drawings.
  • FIG. 1 is a schematic cross-sectional view in an XZ plane preferably showing the electrostatic chuck device of the present embodiment.
  • FIG. 2 is a partially enlarged view in which a region indicated by ⁇ in FIG. 1 is enlarged. In FIG. 2, for ease of explanation, the angle of the slope is enlarged.
  • the electrostatic chuck device 10 shown in FIG. 1 includes a mounting table 11, a focus ring 12, and a cooling unit 13.
  • the thickness direction of the mounting table 11 is the Z-axis direction
  • one direction orthogonal to the Z-axis direction is the X-axis direction (left-right direction in FIG. 1)
  • the direction orthogonal to the Z-axis direction and the X-axis direction is the Y-axis direction.
  • the Z-axis direction is a vertical direction.
  • the mounting table 11 shown in FIG. 1 is provided with a mounting surface 11a on which a plate-like sample W such as a semiconductor wafer is mounted.
  • the mounting table 11 includes the suction member 3 and the cooling base 5.
  • the suction member 3 includes a dielectric substrate 24 and an electrode layer 26.
  • the dielectric substrate 24 shown in FIG. 1 has a convex shape as a whole, in other words, the central portion protrudes and the end portions are low. That is, the mounting surface 11a is relatively higher than the holding surface 15a. There is one step between the mounting surface 11a and the holding surface 15a due to the difference in height between these surfaces.
  • the material for forming the dielectric substrate 24 is preferably a ceramic having heat resistance.
  • Such ceramics can be arbitrarily selected.
  • aluminum nitride (AlN), aluminum oxide (alumina, Al 2 O 3 ), silicon nitride (Si 3 N 4 ), zirconium oxide (ZrO 2 ), yttrium oxide ( Y 2 O 3 ), sialon, boron nitride (BN) or silicon carbide (SiC) is preferably used.
  • a composite material of silicon carbide and aluminum oxide is preferable as a material for forming the dielectric substrate 24 .
  • the dielectric constant of the dielectric substrate 24 can be increased, and the electrostatic attraction of the plate-shaped sample W tends to be good. Further, the risk of impurities in the plate-like sample W can be reduced.
  • one type may be used alone, or two or more types may be used in combination.
  • the average crystal grain size of the material for forming the dielectric substrate 24 is not particularly limited, but is, for example, preferably 10 ⁇ m or less, more preferably 6 ⁇ m or less, and still more preferably 2 ⁇ m or less. If the average crystal grain size of the material for forming the dielectric substrate 24 is 10 ⁇ m or less, chipping and shedding during processing are small, and a groove 16 described later tends to be easily formed.
  • the electrode layer 26 is preferably buried inside the dielectric substrate 24.
  • the volume resistivity of the electrode layer 26 is preferably 1.0 ⁇ 10 6 ⁇ ⁇ cm or less, and 1.0 ⁇ 10 4 ⁇ ⁇ cm or less. Is more preferred.
  • the material for forming the electrode layer 26 is preferably a conductive ceramic.
  • the conductive ceramics can be arbitrarily selected, but a composite sintered body of silicon carbide (SiC) and aluminum oxide (Al 2 O 3 ) or a composite of tantalum nitride (TaN) and aluminum oxide (Al 2 O 3 ) A sintered body, a composite sintered body of tantalum carbide (TaC) and aluminum oxide (Al 2 O 3 ), a composite sintered body of molybdenum carbide (Mo 2 C) and aluminum oxide (Al 2 O 3 ), and the like are preferable. No.
  • the thickness of the electrode layer 26 can be arbitrarily selected, but may be, for example, 10 ⁇ m to 50 ⁇ m. The thickness may be between 20 ⁇ m and 40 ⁇ m.
  • the suction member 3 has an electrostatic chuck section 14 and a holding section 15.
  • the electrostatic chuck unit 14 is preferably located at the center of the suction member in plan view.
  • the above-described electrode layer 26 is disposed on each of the electrostatic chuck unit 14 and the holding unit 15.
  • the electrode layer disposed on the electrostatic chuck portion 14 of the suction member 3 may be referred to as “electrode layer 26A”. Further, the electrode layer arranged on the holding portion 15 of the suction member 3 may be referred to as “electrode layer 26B”. Note that the term “electrode layer 26” simply refers to both the electrode layer 26A and the electrode layer 26B.
  • the electrode layer 26A and the electrode layer 26B may or may not be electrically connected. In this case, power may be supplied from different power supply terminals.
  • the upper surface (mounting surface) of the electrostatic chuck portion 14 of the dielectric substrate 24 is higher than the upper surface (holding surface) of the holding portion 15 of the dielectric substrate 24.
  • a power supply terminal 27 for energizing the electrode layer 26 is disposed on the electrostatic chuck section 14. By supplying electricity to the electrode layer 26 from the power supply terminal 27, the electrostatic chuck portion 14 of the dielectric substrate 24 can exhibit an electrostatic attraction force.
  • One end of the power supply terminal 27 is connected to the lower surface of the electrode layer 26A.
  • the other end of the power supply terminal 27 is electrically connected to an external power supply (not shown).
  • the periphery of the power supply terminal 27 is covered with an insulator 28.
  • the insulator 28 shown in FIG. 1 is a cylindrical housing.
  • the insulator 28 has a space for accommodating the power supply terminal 27 therein.
  • the power supply terminal 27 is insulated from the outside of the insulator 28.
  • the upper surface (the surface on the + Z side, that is, the surface farther from the suction member) of the electrostatic chuck portion 14 of the dielectric substrate 24 is the mounting surface 11a described above.
  • the holding portion 15 of the electrostatic chuck device 10 of the present embodiment is formed in an annular shape in plan view so as to surround the mounting surface 11a.
  • the holding portion 15 is preferably provided with a groove portion 16 and a plurality of through holes 25.
  • the through-hole is preferably arranged in the groove 16.
  • the groove 16 is formed in an annular shape in plan view so as to surround the periphery of the mounting surface 11a.
  • the cooling gas is diffused into the groove 16. As a result, the focus ring is cooled from the part in contact with the cooling gas.
  • the upper surfaces of the two portions on both sides in the width direction of the groove portion 16 are holding surfaces 15a that are in contact with the focus ring 12 and hold the focus ring 12.
  • the holding surface 15a prevents the cooling gas flowing through the groove 16 from leaking to the outside.
  • the holding surface 15 a includes an inner peripheral surface 15 b on the inner peripheral side of the groove 16 and an outer peripheral surface 15 c on the outer peripheral side of the groove 16.
  • a continuous band-shaped structure having the holding surface 15a may be referred to as a seal band 17.
  • the seal band 17 includes a seal band 17A that holds the focus ring on the outside and a seal band 17B that holds the focus ring on the inside of the seal band 17A.
  • the seal band 17 is in contact with the focus ring 12 at the holding surface 15a, and seals so that the cooling gas flowing through the groove 16 does not leak outside.
  • Each of the seal bands 17A and 17B has a ring shape (donut shape) in plan view.
  • the plurality of through holes 25 are open on the bottom surface 16 a of the groove 16.
  • the holding unit 15 in the electrostatic chuck device 10 of the present embodiment is formed by performing a grinding process described later on the raw material of the dielectric substrate 24.
  • the cooling base 5 in the electrostatic chuck device 10 of the present embodiment is provided in contact with the lower surface of the suction member 3.
  • the suction member 3 and the cooling base 5 can be combined by any method or material. For example, they may be bonded by a silicone-based adhesive.
  • the cooling base 5 shown in FIG. 1 has a disk shape. A plurality of flow paths 29 are provided in the cooling base 5.
  • the channel 29 is a channel for circulating a cooling medium such as water or an organic solvent. With this flow path, the heat of the suction member 3 can be released to the cooling base 5 and the suction member 3 can be cooled. As a result, the plate-shaped sample W mounted on the mounting surface 11a is cooled, and the temperature of the plate-shaped sample W can be kept low.
  • a cooling medium such as water or an organic solvent
  • the material for forming the cooling base 5 can be arbitrarily selected, and is not particularly limited as long as it is a metal having excellent heat conductivity, conductivity, and workability, or a composite material containing these metals.
  • a metal having excellent heat conductivity, conductivity, and workability or a composite material containing these metals.
  • aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS), titanium (Ti) and the like are preferably used.
  • the focus ring 12 is preferably controlled so as to have substantially the same temperature as the plate-shaped sample W in a processing step such as plasma etching in a semiconductor manufacturing process.
  • the focus ring 12 of the electrostatic chuck device 10 is disposed on the mounting table 11 in an annular shape so as to surround the mounting surface 11a.
  • the focus ring 12 in the electrostatic chuck device 10 of the present embodiment is arranged so as to entirely overlap the holding unit 15 when viewed in a plan view, and is held by the holding unit 15.
  • the inner diameter of the focus ring 12 is larger than the diameter of the electrostatic chuck 14 of the suction member 3.
  • the focus ring 12 is provided along the circumferential direction of the holding unit 15 described above.
  • the focus ring 12 is provided along the circumferential direction of the above-described groove 16.
  • the volume resistivity of the material for forming the focus ring 12 is preferably low.
  • the temperature of the focus ring 12 can be easily controlled, the thermal conductivity of the material for forming the focus ring 12 is preferably high.
  • a material for forming the focus ring 12 having such characteristics can be arbitrarily selected, and examples thereof include ceramics.
  • Preferred examples of the material include polycrystalline silicon and silicon carbide.
  • the electrostatic chuck device 10 is used for oxide film etching, polycrystalline silicon, silicon carbide, or the like is suitably used as a material for forming the focus ring 12.
  • the cooling means 13 in the electrostatic chuck device 10 of the present embodiment has a structure for sending a cooling gas into the plurality of through holes 25.
  • the inside of each of the plurality of through holes 25 is a gas flow path 20.
  • the plurality of gas passages 20 are for supplying a cooling gas to the groove 16.
  • the cooling gas used in the present embodiment can be arbitrarily selected.
  • a helium (He) gas is preferably used.
  • a cooling gas supply source 22 for supplying a cooling gas is connected to the plurality of gas channels 20 via a pressure control valve 23.
  • the pressure control valve 23 is a valve that adjusts the flow rate so that the pressure of the cooling gas becomes a predetermined pressure.
  • the number of the gas passages 20 for supplying the cooling gas from the cooling gas supply source 22 may be one or plural.
  • the cooling means 13 supplies a cooling gas to the groove 16 via the plurality of gas flow paths 20. Thereby, the cooling unit 13 can cool the focus ring 12.
  • the surface of the holding portion 15 has a difference in height between the inner circumference and the outer circumference due to the grinding process, and a duck tail generated at the outermost circumference (such as a duck tail, like a duck tail). It has been found that there is a case where an edge is jumped up) or a local concave portion is formed.
  • control is performed so as to minimize the height difference between the inner circumference and the outer circumference of the holding surface 15a, the duck tail generated at the outermost circumference, and the local recess. Is required.
  • the holding surface 15a in the electrostatic chuck device 10 of the present embodiment has a first point corresponding to the innermost periphery 15d of the holding surface 15a and a second point corresponding to the outermost periphery 15e of the holding surface 15a in a cross section in the thickness direction. Is a shape having a positive slope from the first point corresponding to the innermost circumference 15d of the holding surface 15a to the second point corresponding to the outermost circumference 15e of the holding surface 15a (the holding surface 15a Of the holding surface 15a from the first point corresponding to the innermost circumference 15d toward the second point corresponding to the outermost circumference 15e).
  • a straight line has a shape having a positive slope from the first point to the second point.
  • a formula (hereinafter, referred to as a height of a second point corresponding to the outermost periphery 15e of the holding surface 15a ⁇ a height of a first point corresponding to the innermost periphery 15d of the holding surface 15a) (hereinafter referred to as “the height of the first point”). 2) is from 0 ⁇ m to 10 ⁇ m.
  • condition (ii) it is preferable that the value obtained from the second equation is 0 ⁇ m or more and 9 ⁇ m or less.
  • the value is larger than 0 ⁇ m and 10 ⁇ m or less, 0.1 ⁇ m or more and 9.0 ⁇ m or less, 0.5 ⁇ m or more 8.5 ⁇ m or less, 1.0 ⁇ m or more and 8.0 ⁇ m or less, or 2.0 ⁇ m or less. It may be not less than 6.0 ⁇ m or not less than 3.0 ⁇ m and not more than 5.0 ⁇ m.
  • the value obtained from the second expression exceeds 10 ⁇ m, it becomes difficult for the focus ring 12 electrostatically attracted to the holding surface 15a of the holding unit 15 to follow the height difference of the holding surface 15a.
  • the cross section in the thickness direction of the holding surface 15a is a cross section in which the holding surface 15a is annular and passes through the center of the ring.
  • the height of a first point corresponding to the innermost periphery 15d of the holding surface 15a and the height of a second point corresponding to the outermost periphery 15e of the holding surface 15a are as follows: Arbitrary horizontal reference plane (arbitrary horizontal reference plane corresponds to, for example, a surface plate surface on which an electrostatic chuck device is placed in a coordinate measuring machine.
  • the horizontal reference plane is parallel to the XY plane.
  • the flat surface located opposite to the mounting surface of the suction member 3 may be used as the reference surface.)
  • the height of the holding portion 15 in the thickness direction are as follows:
  • Arbitrary horizontal reference plane arbitrary horizontal reference plane corresponds to, for example, a surface plate surface on which an electrostatic chuck device is placed in a coordinate measuring machine.
  • the horizontal reference plane is parallel to the XY plane.
  • the flat surface located opposite to the mounting surface of the suction member 3 may be used as the reference surface.
  • the height difference in the electrostatic chuck device 10 according to the present embodiment can be measured using a three-dimensional measuring device (trade name: XYZAX SVA NEX, manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B 6191.
  • a three-dimensional measuring device (trade name: XYZAX SVA NEX, manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B 6191.
  • the three-dimensional coordinates of the upper surface (holding surface) 15a of the outer seal band 17A and the inner seal band 17B in the width direction of the groove 16 are within 1 mm from the innermost circumference 15d of the holding surface 15a to the outer circumference.
  • an arbitrary point (referred to as point d) within 1 mm from the outermost periphery 15e of the holding surface 15a to the inner peripheral side of the holding surface 15a are measured.
  • the height difference is determined by the height of the second point corresponding to the outermost periphery 15e of the holding surface 15a ⁇ the innermost of the holding surface 15a in the cross section in the thickness direction of the holding surface 15a.
  • the height difference of the first point corresponding to the circumference 15d is calculated at 180 places, and the maximum value of the measured values is adopted.
  • the point a corresponds to a first point
  • the point d corresponds to a second point.
  • a straight line connecting the first point corresponding to the innermost periphery 15d of the holding surface 15a and the second point corresponding to the outermost periphery 15e of the holding surface 15a is formed by a first line in the cross section in the thickness direction.
  • the shape always has a positive slope from the point to the second point. That is, in the cross section in the thickness direction, the holding surface 15a has a portion (convex portion) protruding toward the focus ring 12 or a concave portion toward the cooling base 5 in the middle of a straight line connecting the first point and the second point. It does not have a recessed portion (recess).
  • the leak area of the inner peripheral surface 15b and the leak area of the outer peripheral surface 15c are less than 0.7 mm 2 .
  • condition (ii) The leak area of the inner peripheral surface 15b and the leak area of the outer peripheral surface 15c are preferably 0.6 mm 2 or less, more preferably 0.5 mm 2 or less.
  • the lower limit of the leak area can be arbitrarily selected as required, for example, 0.00 mm 2 and may also be 0.01 mm 2 or more, 0.05 mm 2 or more and, even 0.1 mm 2 or more good.
  • the focus ring 12 electrostatically attracted to the holding surface 15a of the holding unit 15 may have a local concave portion that cannot follow the holding surface 15a.
  • the area increases.
  • the gap in the seal band 17 of the holding section 15 increases, and the amount of leakage of the cooling gas from the gap increases.
  • the holding surface 15 a of the holding unit 15 has a large period of continuous irregularities due to the grinding process due to the influence of the flow path 29 of the cooling base provided on the mounting table 11. Structures (large undulations, in other words, gentle peaks and valleys) tend to form.
  • the focus ring 12 follows a large undulation by an electrostatic attraction force.
  • the period of the large undulations formed on the holding surface 15a is preferably 60 degrees or more. It is considered that when the undulation cycle is 60 degrees or more, the focus ring 12 can sufficiently follow the unevenness of the holding surface 15a.
  • the cycle of the undulation is 60 degrees or more, the number of peaks and bottoms of the undulation may be six or less, respectively.
  • the sum of sine curves having an arbitrary number of peak bottoms (peaks and valleys) in the circumferential direction of the angle is calculated.
  • the calculation result is compared with actual measurement data (three-dimensional data of the center of the inner peripheral surface 15b and the center of the outer peripheral surface 15c) of the shape (dimension) of the holding surface 15a of the holding unit 15, that is, fitting is performed. It is assumed that the difference between the measured data of the shape (dimension) of the holding surface 15a of the holding unit 15 and the fitting curve is “the shape that the focus ring 12 cannot follow” and the difference is defined as the leak area. (Example of how to determine the leak area) An example of how to determine the leak area will be described below.
  • the surface shape (dimension) of the holding surface 15a of the holding unit 15 is measured in the circumferential direction of the angle (in the holding surface 15a, in the circumferential direction of a circle around the center of the mounting table 11). Specifically, three-dimensional data of the center of the inner peripheral surface 15b and the center of the outer peripheral surface 15c are actually measured, and this is set as a fitting line 1. For example, in the actual measurement, the center of each surface may be measured at 180 points, and the line 1 may be formed from the measured values.
  • curve fitting is performed by the least squares method using an arbitrary number of sine curves (sine waves) having different periods (number of periods: T) (obtaining a fitting line 2).
  • the calculated curve of the concavo-convex shape indicates a large undulation shape that the focus ring can follow, and is used as a comparison.
  • the fitting line 2 is in contact with the fitting line 1 at one or more points, and is always disposed above the fitting line 1. Next, a leak area is obtained.
  • the curve fitting line 2 is always located above the curve fitting line 1 and is preferably arranged on the same graph so that the area between the two lines is minimized.
  • the area between the two lines can be the leak area.
  • the difference between the measured data of the shape (dimension) of the holding surface 15a of the holding unit 15 and the data indicated by the fitting curve 2 is assumed to be “the shape (dimension) that the focus ring 12 cannot follow”, The difference can be defined as a leak area. Note that the fitting curve 2 only needs to have a shape that the focus ring 12 can follow.
  • the gap between the holding surface 15a of the holding unit 15 and the focus ring 12 can be reduced by the holding surface 15a satisfying the above conditions (ii) and (ii). Thereby, the amount of the cooling gas leaking from the gap can be reduced. As a result, in the present embodiment, it becomes easier to control the pressure of the cooling gas. Therefore, the electrostatic chuck device 10 can easily control the temperature of the focus ring 12 and can make the surface temperature of the plate-shaped sample W uniform.
  • columnar protrusions 41 and 42 extending in the thickness direction of the holding unit 15 are provided on the bottom surface 16 a of the groove 16.
  • an arbitrary horizontal reference surface (the arbitrary horizontal reference surface corresponds to, for example, a surface plate surface on which an electrostatic chuck device is placed in a three-dimensional measuring machine).
  • the height is preferably equal to or less than the height (distance from the reference plane) connecting the second point corresponding to the outermost periphery 15e of the surface 15a.
  • the projections 41 and 42 are preferably formed of the same material as the dielectric substrate 24.
  • the protrusion 41 is provided on the inner peripheral side of the bottom surface 16 a of the groove 16, and the protrusion 42 is provided on the outer peripheral side of the bottom surface 16 a of the groove 16.
  • each of the protrusions may be one continuous annular shape, or may be a plurality of circular shapes, square shapes, or other shapes.
  • FIG. 3 illustrates a case where two protrusions 41 and 42 are provided on the bottom surface 16 a of the groove 16.
  • the electrostatic chuck device 10 of the present embodiment is not limited to this.
  • one or more protrusions may be provided only on the inner circumferential side or only on the outer circumferential side of the groove 16, and the protrusion may be provided on each of the inner circumferential side and the outer circumferential side of the groove 16.
  • One or more units may be provided.
  • the interval at which the protrusions are provided is not particularly limited.
  • the method for manufacturing the electrostatic chuck device of the present embodiment includes a grinding step and a step of forming the groove 16. As a process other than the grinding process and the process of forming the groove 16, a process performed by a known method of manufacturing an electrostatic chuck device can be performed.
  • FIG. 4 is a perspective view showing a preferred example of a grinding step in the method for manufacturing an electrostatic chuck device of the present embodiment.
  • the temporary mounting table 200 is ground while rotating the cylindrical grindstone G1.
  • the temporary mounting table 200 has a sintered body 150, a plurality of through holes 25, and a cooling base 5.
  • the mounting surface 11a (see FIG. 1) on which the plate-shaped sample W is mounted is provided on the sintered body 150, and a through hole 25 is provided around the mounting surface 11a.
  • the sintered body 150 is provided with an electrode layer 26B.
  • the sintered body 150 and the cooling base 5 are adhered to each other with an adhesive (not shown) such as silicone.
  • FIG. 4 shows a state in which the cylindrical grindstone G1 has already been rotated and the grinding has proceeded to some extent.
  • a rotary grinder or the like can be used as the cylindrical grindstone G1 .
  • a grindstone whose length in the rotation axis direction is shorter than the width direction length of the holding surface 15a from the inner peripheral surface 15b to the outer peripheral surface 15c on which the focus ring 12 is mounted.
  • the width (length in the width direction) of the grindstone can be arbitrarily selected as needed. For example, it may be 10 to 98%, or 20 to 90% of the length of the holding surface in the width direction.
  • the range is preferable, and may be in the range of 20 to 70%. It is not limited to these, and may be 10 to 60%, 20 to 40%, 30 to 50%, or the like.
  • the peripheral speed of the grindstone can also be arbitrarily selected. For example, it is preferably 10 to 200 m / s, more preferably 30 to 180 m / s, still more preferably 60 to 160 m / s, and particularly preferably 70 to 150 m / s. The speed is not limited to these, and may be 5 to 80 m / s, 20 to 110 m / s, or 40 to 140 m / s.
  • the type and condition of the grindstone can be arbitrarily selected. For example, a material having a higher hardness than alumina and a lower hardness than diamond is preferable. For example, silicon carbide is more preferable. In polishing, the position of the grindstone may be moved in the radial direction as necessary.
  • the temporary mounting table 200 is set so that the surface 150a around the mounting surface 11a satisfies the following conditions (ii) and (ii), for example. Grinding.
  • a straight line connecting a first point corresponding to the innermost circumference 150d of the surface 150a and a second point corresponding to the outermost circumference 150e of the surface 150a is: A shape having a positive slope from a first point corresponding to the innermost circumference 150d of the surface 150a toward a second point corresponding to the outermost circumference 150e of the surface 150a (a first shape corresponding to the innermost circumference 150d of the surface 150a).
  • the height of the first point corresponding to the height is 0 ⁇ m or more and 10 ⁇ m or less.
  • the leak area of the inner peripheral surface 150b of the surface 150a and the leak area of the outer peripheral surface 150c of the surface 150a are less than 0.7 mm 2 .
  • the peripheral speed of the grinding wheel G1 may be obtained by conducting a preliminary experiment. Specifically, a preliminary experiment is performed using a temporary mounting table having the same conditions, and a speed at which the surface 150a satisfies the above conditions (ii) and (ii) is obtained in advance. In the production, it is preferable to perform the production while setting the peripheral speed. For example, in a preliminary experiment, a plurality of different peripheral velocities and a plurality of different widths of grindstones were prepared, and in each combination, the manufacture and evaluation of the electrostatic chuck device were performed. May be selected. According to such a method, a very excellent electrostatic chuck device can be efficiently manufactured.
  • FIG. 5 is a schematic perspective view showing a step of forming the groove 16 in the method of manufacturing the electrostatic chuck device of the present embodiment.
  • the sintered body 150 is dug down by an arbitrarily selected method to form the groove 16 surrounding the mounting surface 11a.
  • rotary processing, blast processing, or the like can be used, and blast processing is particularly preferably used.
  • the medium used for the blasting can be arbitrarily selected, but aluminum oxide (alumina, Al 2 O 3 ), silicon carbide, glass beads and the like are preferable.
  • the media is preferably under 400 mesh (through 300 mesh).
  • the discharge pressure of the medium in the blasting is preferably, for example, 0.1 MPa or less, and more preferably 0.05 MPa or less.
  • the holding surface 15a of the obtained electrostatic chuck device 10 satisfies the above conditions (ii) and (ii).
  • an electrostatic chuck device that can make the surface temperature of the plate-like sample uniform can be manufactured.
  • a heater (not shown) may be provided in the holding unit 15 described above.
  • the temperature of the focus ring 12 can be controlled to be substantially the same as the temperature of the plate-shaped sample W.
  • FIG. 6 is a cross-sectional view in the XZ plane showing the electrostatic chuck device of the present embodiment.
  • FIG. 7 is a partially enlarged view in which a region indicated by ⁇ in FIG. 6 is enlarged.
  • the same components as those of the electrostatic chuck device according to the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
  • the same components as those of the electrostatic chuck device of the first embodiment shown in FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted.
  • the electrostatic chuck device 300 shown in FIG. 6 includes the mounting table 11, the focus ring 12, and the cooling unit 13.
  • the holding surface 15a of the electrostatic chuck device 300 of the present embodiment has a first point corresponding to the innermost periphery 15d of the holding surface 15a and a second point corresponding to the outermost periphery 15e of the holding surface 15a in a cross section in the thickness direction.
  • the holding surface 15a connects a first point corresponding to the innermost periphery 15d of the holding surface 15a and a second point corresponding to the outermost periphery 15e of the holding surface 15a in a cross section in the thickness direction.
  • the straight line has a shape having a negative slope from the first point to the second point.
  • a formula hereinafter, referred to as a height of a first point corresponding to the innermost circumference 15d of the holding surface 15a ⁇ a height of a second point corresponding to the outermost circumference 15e of the holding surface 15a) (hereinafter, referred to as “the height of the second point”). 3) is from 0 ⁇ m to 10 ⁇ m.
  • condition (i-ii) it is preferable that the value obtained from the third equation is not less than 0 ⁇ m and not more than 9 ⁇ m. If necessary, the value is larger than 0 ⁇ m and 10 ⁇ m or less, 0.1 ⁇ m or more and 9.0 ⁇ m or less, 0.5 ⁇ m or more 8.5 ⁇ m or less, 1.0 ⁇ m or more and 8.0 ⁇ m or less, or 2.0 ⁇ m or less. It may be not less than 6.0 ⁇ m or not less than 3.0 ⁇ m and not more than 5.0 ⁇ m.
  • the value obtained from the third equation exceeds 10 ⁇ m, it becomes difficult for the focus ring 12 electrostatically attracted to the holding surface 15a of the holding unit 15 to follow the height difference of the holding surface 15a.
  • the gap between the seal band 17 of the holding portion 15 becomes large. As a result, the amount of leakage of the cooling gas from the gap increases.
  • a straight line connecting the first point corresponding to the innermost periphery 15d of the holding surface 15a and the second point corresponding to the outermost periphery 15e of the holding surface 15a is formed by a first line in the cross section in the thickness direction.
  • the shape always has a negative slope from the point to the second point. That is, in the middle of the straight line connecting the first point and the second point, the holding surface has a portion (convex portion) protruding toward the focus ring 12 and a portion (concave portion) depressed toward the cooling base 5. Absent.
  • the holding surface 15a of the electrostatic chuck device 300 of the present embodiment has a leak area of the inner peripheral surface 15b and a leak area of the outer peripheral surface 15c of less than 0.7 mm 2 , similarly to the electrostatic chuck device 10 of the first embodiment. (Condition (ii)).
  • the leak area of the inner peripheral surface 15b and the leak area of the outer peripheral surface 15c are preferably 0.6 mm 2 or less, more preferably 0.5 mm 2 or less.
  • the lower limit of the leak area can be arbitrarily selected as needed, and the example shown in the first embodiment can be used similarly.
  • the holding surface 15a of the electrostatic chuck device 300 includes a second point corresponding to the outermost periphery 15e of the outer peripheral surface 15c in a cross section in the thickness direction of the holding surface 15a.
  • the shortest distance h) between the inner peripheral surface 15b and the least square line L obtained from the outer peripheral surface 15c is ⁇ 4 ⁇ m.
  • this may be referred to as condition (iii).
  • the shortest distance h (the shortest distance between the second point corresponding to the outermost periphery 15e of the outer peripheral surface 15c and the least square line L obtained from the inner peripheral surface 15b and the outer peripheral surface 15c in the cross section in the thickness direction of the holding surface 15a. h) is preferably 3 ⁇ m or less.
  • the shortest distance h may be 0.0 ⁇ m or more and less than 4.0 ⁇ m, 0.0 ⁇ m or more and 3.8 ⁇ m or less, 0.1 ⁇ m or more and 3.5 ⁇ m or 0.1 ⁇ m or more and 3.3 ⁇ m or less as necessary. Alternatively, it may be in a range of 0.2 ⁇ m or more and 3.0 ⁇ m or less.
  • a gap may be formed between the holding surface 15a of the holding unit 15 and the focus ring 12 electrostatically attracted, and the attraction force may be reduced.
  • the attraction force between the focus ring 12 and the holding surface 15a decreases, the gap between the holding portion 15 and the seal band 17 increases, and the amount of leakage of the cooling gas from the gap increases.
  • the height of the second point corresponding to the outermost periphery 15e of the outer peripheral surface 15c of the holding surface 15a is set to the inner peripheral surface of the holding surface 15a.
  • the state (the part thereof) higher than the least-squares straight line L from the center to the inner periphery of 15b and the outer peripheral surface 15c is referred to as a duck tail 15f.
  • the duck tail 15f of the holding surface 15a is measured using a three-dimensional measuring machine (trade name: XYZAX SVA NEX, manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B 6191. .
  • a three-dimensional measuring machine (trade name: XYZAX SVA NEX, manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B 6191.
  • the three-dimensional coordinates of the upper surface (holding surface) 15a of the outer seal band 17A and the inner seal band 17B in the width direction of the groove portion 16 are determined at three positions on the inner peripheral surface 15b in the radial direction of the holding surface 15a. And three locations on the outer peripheral surface 15c.
  • the inner peripheral surface 15b has a center (center point), an arbitrary point (point a) within 1 mm from the innermost periphery 15d, and a circumference 15g of the groove 16 on the inner peripheral surface 15b side.
  • the three-dimensional coordinates are measured for an arbitrary point (point b) within 1 mm from.
  • For (d point) three-dimensional coordinates are measured.
  • 180 points are measured at every 2 ° on the concentric circle.
  • measurement is performed at 6 ⁇ 180 points.
  • the measurement is preferably performed on a straight line passing through the center of the mounting surface.
  • a second point corresponding to the outermost periphery 15e of the outer peripheral surface 15c, three points of the inner peripheral surface 15b and two points of the outer peripheral surface 15c (the second point is referred to as the second point).
  • 180 points are measured for the shortest distance h from the least-squares straight line L obtained from the excluded points). Then, the maximum value of the measured values is adopted.
  • an electrostatic chuck device having a small or no duck tail can be provided.
  • the gap between the holding surface 15a of the holding unit 15 and the focus ring 12 can be reduced.
  • the amount of the cooling gas leaking from the gap can be reduced.
  • the temperature control of the focus ring 12 becomes easy, and the surface temperature of the plate-shaped sample W can be made uniform.
  • the electrostatic chuck device 300 of the present embodiment may be provided with columnar projections 41 and 42 extending on the bottom surface 16 a of the groove 16 in the thickness direction of the holding unit 15.
  • an arbitrary horizontal reference surface (the arbitrary horizontal reference surface corresponds to, for example, a surface plate surface on which an electrostatic chuck device is placed in a three-dimensional measuring machine).
  • the height of the upper surfaces 41a, 42a of the protrusions 41, 42 corresponds to the first point corresponding to the innermost circumference 15d of the holding surface 15a with respect to the arbitrary horizontal reference surface, and the holding surface. It is preferable that the height be equal to or less than the height of a straight line connecting the second points corresponding to the outermost periphery 15e of 15a.
  • the electrostatic chuck device 300 of the present embodiment is not limited to this.
  • one or more protrusions may be provided only on the inner circumferential side or only on the outer circumferential side of the groove 16, and the protrusions may be provided on the inner circumferential side and the outer circumferential side of the groove 16, respectively.
  • One or more units may be provided.
  • the interval at which the protrusions are provided is not particularly limited.
  • the manufacturing method of the electrostatic chuck device according to the present embodiment preferably includes a grinding step and a step of forming the groove 16.
  • the steps other than the grinding step and the step of forming the groove 16 may be the steps performed by a known method for manufacturing an electrostatic chuck device.
  • the electrostatic chuck device 300 of the present embodiment can be manufactured in the same manner as the above-described electrostatic chuck device 10. A description of the same steps as those in the manufacturing method for obtaining the above-described electrostatic chuck device 10 will be omitted.
  • the temporary mounting table 200 is set so that the surface 150a around the mounting surface 11a satisfies, for example, the following conditions (i-ii) to (iii). Grinding.
  • a shape having a negative slope from a point corresponding to 150d to a point corresponding to the outermost periphery 150e of the surface 150a (from a point corresponding to the innermost periphery 150d of the surface 150a to a point corresponding to the outermost periphery 150e of the surface 150a)
  • the height of the point corresponding to the innermost circumference 150d of the surface 150a ⁇ the height of the point corresponding to the outermost circumference 150e of the surface 150a) is 0 ⁇ m or more and 10 ⁇ m or less.
  • the leak area of the inner peripheral surface 150b of the surface 150a and the leak area of the outer peripheral surface 150c of the surface 150a are less than 0.7 mm 2 .
  • the peripheral speed of the grindstone G is preferably set to a speed at which the surface 150a satisfies the above conditions (i-ii) to (iii) by conducting preliminary experiments.
  • the difference between the curve obtained from the measured data of the shape (dimension) of the holding surface of the holding portion and the fitting curve is assumed to be “the shape that the focus ring cannot follow”, and the difference is defined as the leak area. .
  • the electrostatic chuck device was mounted on a plasma etching device, and a silicon wafer (ring-shaped sample) having a diameter of 350 mm was suction-fixed to a mounting surface of the electrostatic chuck device at an applied voltage of DC 2.5 kV.
  • He gas was introduced from the gas holes at a pressure of 6.66 kPa, and the amount of He gas leak was measured and evaluated under vacuum ( ⁇ 0.5 Pa).
  • the leak amount was measured using a mass flow controller (manufactured by Fujikin) under the conditions of a flow rate leak test method. In this evaluation, a sample having a He gas leak amount of 3.0 sccm or less was evaluated as “ ⁇ (good)”.
  • a sample having a He gas leak amount of more than 3.0 sccm and not more than 3.3 sccm was defined as “ ⁇ (OK)”. Further, a sample having a He gas leak amount of more than 3.3 sccm was regarded as a defective product, and was evaluated as “x (impossible)”. In addition, sccm represents a gas flow rate (unit: cm 3 ) per minute under the conditions of 0.1 MPa and 0 ° C.
  • the duck tail of the holding surface was measured using a three-dimensional measuring machine (trade name: XYZAX SVA NEX, manufactured by Tokyo Seimitsu Co., Ltd.).
  • a three-dimensional measuring machine (trade name: XYZAX SVA NEX, manufactured by Tokyo Seimitsu Co., Ltd.).
  • the three-dimensional coordinates of the outer upper surface (outer peripheral surface of the holding surface) and the inner upper surface (inner peripheral surface of the holding surface) in the width direction of the groove portion of the holding portion are determined in the radial direction of the holding surface.
  • the measurement was performed at three places on the surface and three places on the outer peripheral surface.
  • the three-dimensional coordinates of the inner peripheral surface at the center (center point), an arbitrary point within 1 mm from the innermost periphery (point a), and an arbitrary point within 1 mm from the groove side periphery (point b). was measured.
  • the three-dimensional coordinates of the outer peripheral surface are measured at the center (center point), any point within 1 mm from the outermost periphery (point c), and any point within 1 mm from the groove side circumference (point d). did.
  • 180 points were measured every 2 ° on the concentric circumference. That is, the measurement was performed at 6 ⁇ 180 points.
  • Example 1 A sintered body ( ⁇ 350 mm, made of Al 2 O 3 —SiC) having a through hole provided around the mounting surface and including an electrode layer arranged on the electrostatic chuck portion and an electrode layer arranged on the holding portion; A cooling base (made of aluminum) having a through-hole at a position overlapping the through-hole of the sintered body in a plane was laminated via a silicone-based adhesive. By heating this laminate at 100 ° C. for 5 hours, the sintered body and the cooling base were bonded.
  • the surface of the sintered body around the mounting surface was annularly ground (grinding) using a silicon carbide grinding wheel No. 1000 (grinding wheel) with a rotary grinder.
  • a silicon carbide grinding wheel No. 1000 grinding wheel
  • the silicon carbide grindstone one having a length in the rotation axis direction shorter than the length of the holding surface from the inner periphery to the outer periphery formed in a subsequent step was used.
  • the count of the silicon carbide grindstone the larger the number, the smaller the abrasive grains.
  • the grinding wheel peripheral speed (rotation speed) in the grinding was set to 80 m / s.
  • the width of the grindstone was 30% of the length of the holding surface from the inner circumference to the outer circumference. Polishing was performed while moving the position of the grindstone.
  • Example 1 blasting was performed on the ground surface around the mounting surface, and the sintered body was dug down to form a groove surrounding the mounting surface (a step of forming the groove).
  • the blasting was performed using a silicon carbide medium (400 mesh under (passing 300 mesh)) at a discharge pressure of 0.03 MPa.
  • Example 1 it was considered that the electrostatic chuck device was deformed into a convex shape. That is, when the deformation returned at room temperature after processing, the outer periphery of the holding surface became higher than the inner periphery.
  • Example 2 As a result of performing the same operation as in Example 1, the outer surface of the holding surface was lower than that of the inner surface. It is presumed that when slightly deformed due to the difference in thermal expansion between the suction member and the cooling base due to the heat generated by the grinding process, it was deformed into a concave shape.
  • Example 3 An electrostatic chuck device of Example 3 was manufactured in the same manner as in Example 1, except that the peripheral speed of the grindstone in the grinding was 110 m / s.
  • Example 4 An electrostatic chuck device of Example 4 was manufactured in the same manner as in Example 1 except that the width of the grindstone in the grinding was set to 60% of the length of the holding surface from the inner circumference to the outer circumference.
  • Example 5 Except that the grindstone width in the grinding process was set to 60% of the length of the holding surface from the inner periphery to the outer periphery, and the grindstone peripheral speed was set to 140 m / s, the same as in the first embodiment, An electrostatic chuck device was manufactured.
  • Comparative Example 1 (Reference Example) An electrostatic chuck device of Comparative Example 1 was manufactured in the same manner as in Example 1, except that the width of the grindstone in the grinding was set to 100% of the length of the holding surface from the inner circumference to the outer circumference.
  • Example 2 In the same manner as in Example 1, except that the grindstone width in the grinding process was set to 100% with respect to the length of the holding surface from the inner periphery to the outer periphery, and the grindstone peripheral speed was set to 110 m / s. An electrostatic chuck device was manufactured.
  • Comparative Example 3 was performed in the same manner as in Example 1 except that the width of the grindstone in the grinding process was set to 100% with respect to the length of the holding surface from the inner periphery to the outer periphery, and the peripheral speed of the grindstone was set to 140 m / s. An electrostatic chuck device was manufactured.
  • Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3.
  • the straight line connecting the innermost circumference of the holding surface and the outermost circumference of the holding surface has a shape with a negative slope from the innermost circumference to the outermost circumference, and the height difference between the innermost circumference and the outermost circumference of the holding surface (absolute value ) Is 0 ⁇ m or more and 10 ⁇ m or less.
  • the leak area is less than 0.7 mm 2 .
  • the duck tail is less than 4 ⁇ m.
  • the electrostatic chuck devices of Comparative Example 3 that does not satisfy all of the conditions (i) to (iii), Comparative Example 2 that does not satisfy the condition (ii), and Comparative Example 1 that does not satisfy the condition (iii) are composed of He gas.
  • the electrostatic chuck devices of Comparative Examples 2 and 3 which have a particularly large leak amount it is considered that it is difficult to control the pressure of the He gas and to make the surface temperature of the wafer uniform.
  • the holding portion Seal band 17A Outside portion in the width direction of the groove (outer seal band) 17B: Inside portion in the width direction of the groove portion (inside seal band) Reference Signs List 20 gas passage 22 cooling gas supply source 23 pressure control valve 24 dielectric substrate 25 through hole 26 electrode layer 26A in electrostatic chuck portion Arranged electrode layer 26B ... Electrode layer 27 arranged in holding section ... Power supply terminal 28 ... Insulator 29 ... Cooling base channel 30 ... Concave parts 41, 42 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

載置面が設けられた載置台とフォーカスリングと冷却手段とを備え載置台の保持部にその周囲を囲む円環状の溝部と溝部の底面に開口する貫通孔とが設けられ保持部において溝部の幅方向両側の上面はフォーカスリングと接触して保持する保持面であり保持面は溝部よりも内周側の内周面と溝部よりも外周側の外周面からなり保持面は条件(i)及び(ii)を満たす静電チャック装置。(i)保持面は厚さ方向の断面において保持面の最内周に対応する第1の点と保持面の最外周に対応する第2の点を結ぶ直線が、最内周に対応する第1の点から最外周に対応する第2の点に向かって、正の傾きまたは負の傾きを有する形状、0≦|保持面の厚さ方向の断面において最内周に対応する第1の点の高さ-最外周に対応する第2の点の高さ|≦10μm。(ii)内周面のリーク面積および外周面のリーク面積が0.7mm未満。

Description

静電チャック装置および静電チャック装置の製造方法
 本発明は、静電チャック装置および静電チャック装置の製造方法に関する。
 本願は、2018年8月2日に、日本に出願された特願2018-146324号に基づき優先権を主張し、その内容をここに援用する。 
 従来、半導体製造プロセスに用いられるプラズマエッチング装置では、試料台(載置台)にウエハ(板状試料)を取付けて、固定することができるとともに、そのウエハを所望の温度に維持することができる、静電チャック装置が用いられている。この静電チャック装置は、上部に、ウエハ載置面を囲んでウエハ吸着部の外周縁部に配置された、リング部材(フォーカスリング)を備えている。
 従来のプラズマエッチング装置では、静電チャック装置の載置台に固定されたウエハに、エッチングの為にプラズマを照射すると、そのウエハの表面温度が上昇する。そこで、ウエハの表面温度の上昇を抑えるために、静電チャック装置の温度調整用ベース部に冷却媒体を循環させて、ウエハを下側から冷却している。
 また、ウエハにプラズマを照射すると、ウエハと同様にフォーカスリングの表面温度も上昇する。この上昇により、上述の温度調整用ベース部とフォーカスリングとの間に温度差が生じ、その結果、ウエハの表面温度の面内バラつきが生じることがある。そこで、フォーカスリングの表面温度の上昇を抑えるために、フォーカスリングを冷却する技術が知られている。
 例えば、特許文献1では、ウエハの外周部にフォーカスリングを吸着するための第2の静電吸着手段を設けた、静電チャック装置が記載されている。特許文献1に記載の静電チャック装置では、静電チャック部に対して、フォーカスリングを、ウエハを吸着する力よりも大きい力で吸着させるとともに、冷却媒体(冷却ガス)をフォーカスリングの裏面に吹き付けることにより、フォーカスリングの温度を調整している。
 また、例えば、特許文献2では、静電チャック部により吸着されたウエハ吸着部とフォーカスリングのそれぞれに、伝熱ガスを供給するガス供給部を設けた、静電チャック装置が記載されている。特許文献2に記載の静電チャック装置では、ウエハ吸着部とフォーカスリングの温度を、それぞれ独立して制御することができる。
特開2002-033376号公報 特開2012-134375号公報
 近年、プラズマエッチング装置の高出力化により、ウエハに照射されるプラズマの熱エネルギーが増加し、フォーカスリングの表面温度がより高温になってきている。これに対し、冷却ガスの圧力を増加させてフォーカスリングを冷却する方法が採られることがある。しかしながら、特許文献1および特許文献2に記載されているような従来の静電チャック装置では、フォーカスリングの表面温度を充分に制御できないことがある。静電チャック装置は、さらなる改良が求められていた。
 本発明は、上記事情に鑑みてなされたものであって、板状試料の表面温度を均一にすることができる静電チャック装置およびその製造方法を提供する。
 上記課題を解決すべく、本発明者等が鋭意検討した結果、フォーカスリングの表面温度を充分に制御できない要因の1つとして、冷却ガスがリークしていることが分かった。また、冷却ガスの圧力を増加させると、冷却ガスのリーク量が増加することが分かった。そこで、以下の態様の静電チャック装置によれば、冷却ガスのリークを低減できることを見出し、本発明を完成させた。
 本発明の第一の態様は、板状試料を載置する載置面が設けられた載置台と、円環状のフォーカスリングと、前記フォーカスリングを冷却する冷却手段と、を備え、前記載置台は、前記載置面の周囲を囲んで設けられた保持部を有し、前記保持部には、前記載置面の周囲を囲む円環状の溝部と、前記溝部の底面に開口する貫通孔と、が設けられ、前記保持部において、前記溝部の幅方向両側の上面は、前記フォーカスリングと接触し前記フォーカスリングを保持する保持面であり、前記保持面は、前記溝部よりも内周側の内周面と前記溝部よりも外周側の外周面からなり、前記保持面は、下記条件(i)および(ii)を満たす静電チャック装置を提供する。
 (i)前記保持面は、厚さ方向の断面において、前記保持面の最内周に対応する第1の点と前記保持面の最外周に対応する第2の点を結ぶ直線が、前記最内周に対応する第1の点から前記最外周に対応する第2の点に向かって、正の傾きを有する形状、または負の傾きを有する形状であり、かつ0≦|前記保持面の厚さ方向の断面において、前記最内周に対応する第1の点の高さ-前記最外周に対応する第2の点の高さ|≦10μmを満足する。
 (ii)前記内周面のリーク面積および前記外周面のリーク面積が0.7mm未満である。
 本発明の一態様において、前記保持面は、下記条件(iii)を満たす静電チャック装置としてもよい。
 (iii)(前記保持面の厚さ方向の断面において、前記最外周に対応する第2の点と、前記内周面と前記外周面から得られる最小二乗直線との最短距離)<4μmである。
 本発明の第一の態様の装置は、前記溝部の底面に、前記保持部の厚さ方向に延びる複数の突起部が設けられており、前記保持面の厚さ方向の断面において、前記突起部の上面の高さが、水平な基準面を基準とするとき、前記最内周に対応する第1の点と前記最外周に対応する第2の点を結ぶ直線の高さ以下である、静電チャック装置としてもよい。
 本発明の第二の態様は、第一の態様の静電チャック装置を製造する方法であって、前記板状試料を載置する前記載置面が設けられ、前記載置面の周囲に前記貫通孔が設けられた焼結体、を有する仮載置台について、回転軸方向の長さが前記フォーカスリングを載置する前記内周面から前記外周面までの前記保持面の幅方向の長さよりも短い砥石を用いて、前記載置面の周囲の前記焼結体の表面を円環状に研削する研削工程と、前記焼結体を掘り下げて、前記載置面の周囲を囲む溝部を形成する工程と、を有する製法を提供する。
 より具体的には、第二の態様の静電チャック装置の製造方法は、板状試料を載置する載置面が設けられ、前記載置面の周囲に貫通孔が設けられた焼結体を有する、仮載置台を用意する工程と、前記載置面の周囲に形成される、フォーカスリングを載置するための保持面について、前記保持面の形成前に、保持面の幅方向の長さを決定する工程と、砥石の回転軸方向の長さが、前記保持面の幅方向の長さよりも短い、砥石を選択する工程と、前記砥石を用いて、前記焼結体の表面を、前記載置面の周囲にわたって、円環状に研削し、前記載置面の周囲を囲む、仮保持面を形成する研削工程と、前記焼結体の仮保持面を掘り下げて、前記載置面の周囲を囲む溝部を形成し、前記溝部を有する保持面を形成する工程と、を有する静電チャック装置の製造方法を提供する。
 本発明の一態様によれば、板状試料の表面温度を均一にすることができる静電チャック装置およびその製造方法が提供される。
第1の実施形態の静電チャック装置の好ましい例を示すXZ平面での概略断面図である。 図1のαで示す領域を拡大した概略部分拡大図である。 図1のαで示す領域を拡大した概略部分拡大図である。 第1の実施形態の静電チャック装置の好ましい製造方法の例における、研削工程を説明する、概略斜視図である。 第1の実施形態の静電チャック装置の好ましい製造方法の例における溝部を形成する工程を説明する、概略斜視図である。 第2の実施形態の静電チャック装置の好ましい例を示す、XZ平面での概略断面図である。 図6のβで示す領域を拡大した概略部分拡大図である。 静電チャック装置の保持部において、保持面の最外周にダックテイルを有する形状の例を示す、XZ平面での概略断面図である。 静電チャック装置の保持部の保持面において、三次元座標における測定位置を示す、XZ平面での概略断面図である。 図6のβで示す領域を拡大した概略部分拡大図である。
 以下、本発明に係る静電チャック装置およびその製造方法の実施の形態について、図面に基づき説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明を逸脱しない範囲で、数や位置や大きさや数値や比率や形状などについて、変更や省略や追加をする事ができる。
 なお、以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、同様の目的で、特徴とならない部分を省略して図示している場合がある。
(1)第1の実施形態
<静電チャック装置>
 図1は、本実施形態の静電チャック装置を好ましく示すXZ平面での概略断面図である。図2は、図1のαで示す領域を拡大した部分拡大図である。なお図2においては、説明を容易にするために、斜面の角度を大きくして示してある。
 図1に示す静電チャック装置10は、載置台11と、フォーカスリング12と、冷却手段13と、を備えている。
 なお、以下の説明においてはXYZ座標系を設定し、このXYZ座標系を参照しつつ、各部材の位置関係を説明する。この際、載置台11の厚さ方向をZ軸方向、Z軸方向と直交する一方向をX軸方向(図1における左右方向)、Z軸方向とX軸方向とに直交する方向をY軸方向、とする。本実施形態においては、Z軸方向は鉛直方向である。
[載置台]
 図1に示す載置台11は、半導体ウエハ等の板状試料Wを載置する載置面11aが設けられている。載置台11は、吸着部材3と、冷却ベース5と、を備えている。
[吸着部材]
 吸着部材3は、誘電体基板24と、電極層26と、を備えている。
 図1に示す誘電体基板24は、全体として凸状を形成しており、言い換えると、中心部が突出し端部は低くなっている。すなわち、載置面11aが保持面15aより相対的に高くなっている。載置面11aと保持面15aの間には、これらの表面の高低差によって、1つの段差がある。
 誘電体基板24の形成材料は、耐熱性を有するセラミックスが好ましい。このようなセラミックスとしては、任意に選択でき、例えば、窒化アルミニウム(AlN)、酸化アルミニウム(アルミナ、Al)、窒化ケイ素(Si)、酸化ジルコニウム(ZrO)、酸化イットリウム(Y)、サイアロン、窒化ホウ素(BN)または炭化ケイ素(SiC)の焼結体が好ましく挙げられる。
 中でも、誘電体基板24の形成材料は、炭化ケイ素と酸化アルミニウムとの複合材料が好ましい。この複合材料を使用すると、誘電体基板24の誘電率を高くすることができ、板状試料Wの静電吸着が良好となりやすい。また、板状試料Wに対する不純物のリスクを低く抑えることができる。
 誘電体基板24の形成材料は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 誘電体基板24の形成材料の平均結晶粒径は、特に限定されないが、例えば、10μm以下であることが好ましく、6μm以下であることがより好ましく、2μm以下であることがさらに好ましい。誘電体基板24の形成材料の平均結晶粒径が10μm以下であれば、加工時におけるチッピングや脱粒が少なく、後述する溝部16を形成しやすい傾向がある。
 電極層26は、誘電体基板24の内部に好ましく埋設されている。
 静電チャック装置10の使用温度下において、電極層26の体積固有抵抗値は、1.0×10Ω・cm以下であることが好ましく、1.0×10Ω・cm以下であることがより好ましい。
 電極層26の形成材料は、導電性セラミックスであることが好ましい。導電性セラミックスとしては、任意に選択できるが、炭化ケイ素(SiC)と酸化アルミニウム(Al)との複合焼結体、窒化タンタル(TaN)と酸化アルミニウム(Al)との複合焼結体、炭化タンタル(TaC)と酸化アルミニウム(Al)との複合焼結体、炭化モリブデン(MoC)と酸化アルミニウム(Al)との複合焼結体等が好ましく挙げられる。
 電極層26の厚さは任意に選択できるが、例えば、10μm~50μmであってよい。前記厚さは20μm~40μmであっても良い。
 吸着部材3は、静電チャック部14と、保持部15と、を有している。静電チャック部14は、平面視で吸着部材の中央に好ましく位置する。静電チャック部14および保持部15には、それぞれ上述の電極層26が配置されている。
 本実施形態において、吸着部材3の静電チャック部14に配置された電極層を「電極層26A」と称することがある。また、吸着部材3の保持部15に配置された電極層を「電極層26B」と称することがある。なお、単に「電極層26」というときには、電極層26Aおよび電極層26Bの両方を指している。
 電極層26Aと、電極層26Bとは電気的に接続されていてもよいし、電気的に接続されなくても良い。この場合、異なる給電用端子によって給電されても良い。
 誘電体基板24の静電チャック部14の上面(載置面)は、誘電体基板24の保持部15の上面(保持面)よりも、高い位置にある。
(静電チャック部)
 静電チャック部14には、電極層26に通電する給電用端子27が配置されている。給電用端子27から電極層26に通電することにより、誘電体基板24の静電チャック部14は、静電吸着力を発現できる。給電用端子27の一端は、電極層26Aの下面に接続されている。一方、給電用端子27の他端は、外部電源(図示略)に電気的に接続されている。
 給電用端子27の周囲は、絶縁碍子28により覆われている。図1に示す絶縁碍子28は、円筒状の筐体である。絶縁碍子28は、内部に給電用端子27を収容する空間を有している。これにより、給電用端子27を絶縁碍子28の外部と絶縁している。
 誘電体基板24の静電チャック部14の上面(+Z側の面、すなわち吸着部材から遠い方の面)は、上述の載置面11aである。
(保持部)
 本実施形態の静電チャック装置10における保持部15は、載置面11aの周囲を囲むように、平面視で円環状に形成されている。
 保持部15には、溝部16と、複数の貫通孔25とが好ましく設けられている。前記貫通孔は、溝部16中に好ましく配置される。
 溝部16は、載置面11aの周囲を囲むように、平面視で円環状に形成されている。溝部16には、冷却ガスが拡散される。これにより、冷却ガスと接触する部分から、フォーカスリングが冷却される。
 保持部15において、溝部16の幅方向両側にある、2つの部分の上面は、フォーカスリング12と接し、フォーカスリング12を保持する、保持面15aである。保持面15aでは、溝部16に流通する冷却ガスが外部にリークすることを抑制している。保持面15aは、溝部16よりも内周側の内周面15bと、溝部16よりも外周側の外周面15cからなる。
 本実施形態では、保持面15aを有する連続する帯状の構造体を、シールバンド17と称することがある。シールバンド17は、外側でフォーカスリングを保持するシールバンド17Aと、シールバンド17Aよりも内側でフォーカスリングを保持するシールバンド17Bからなる。シールバンド17は、その保持面15aでフォーカスリング12と接触し、溝部16に流通する冷却ガスが外部に漏れ出ないように封止する。シールバンド17Aと17Bは、平面視で、それぞれリング状(ドーナッツ状)である。
 複数の貫通孔25は、溝部16の底面16aに開口している。
 本実施形態の静電チャック装置10における保持部15は、誘電体基板24の原料に対して、後述の研削加工をすることにより、形成される。
[冷却ベース]
 本実施形態の静電チャック装置10における冷却ベース5は、吸着部材3の下面に接して、設けられている。吸着部材3と冷却ベース5とは、任意の方法や材料で結合できる。例えば、シリコーン系等の接着剤により接着されて良い。図1に示す冷却ベース5は、円盤状である。冷却ベース5には、複数の流路29が設けられている。
 流路29は、水や有機溶媒等の冷却用媒体を循環させる流路である。この流路により、吸着部材3の熱を冷却ベース5に逃がし、吸着部材3を冷却することができる。その結果、載置面11aに載置される板状試料Wが冷却され、板状試料Wの温度を低く抑えることができる。
 冷却ベース5の形成材料としては、任意に選択でき、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はない。例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS)、チタン(Ti)等が、好適に用いられる。
[フォーカスリング]
 フォーカスリング12は、半導体製造プロセスにおけるプラズマエッチング等の処理工程において、板状試料Wと略同一の温度になるように好ましく制御される。
 本実施形態の静電チャック装置10におけるフォーカスリング12は、載置台11の上に、載置面11aの周囲を囲むように、円環状に配置されている。本実施形態の静電チャック装置10におけるフォーカスリング12は、平面視した時に、その全体が保持部15と平面的に重なるように配置され、保持部15で保持される。フォーカスリング12の内径は、吸着部材3の静電チャック部14の径よりも大きい。
 本実施形態において、フォーカスリング12は、上述の保持部15の周方向に沿って、設けられている。また、フォーカスリング12は、上述の溝部16の周方向に沿って、設けられている。
 フォーカスリング12を載置台11に静電吸着し易いことから、フォーカスリング12の形成材料の体積抵抗率は、低いことが好ましい。また、フォーカスリング12の温度を制御し易いことから、フォーカスリング12の形成材料の熱伝導率は、高いことが好ましい。このような特性を有するフォーカスリング12の形成材料としては、任意に選択できるが、例えば、セラミックスが挙げられる。前記材料として、多結晶シリコン、炭化ケイ素等が、好ましく挙げられる。例えば、静電チャック装置10を酸化膜エッチングに用いる場合、フォーカスリング12の形成材料には、多結晶シリコン、炭化ケイ素等が好適に用いられる。
[冷却手段]
 本実施形態の静電チャック装置10における冷却手段13は、複数の貫通孔25に冷却ガスを送り込む構造を備えている。複数の貫通孔25の内側は、それぞれガス流路20となっている。
 複数のガス流路20は、溝部16に冷却ガスを供給するためのものである。本実施形態で用いられる冷却ガスとしては、任意に選択できるが、例えば、ヘリウム(He)ガスが好ましく挙げられる。
 複数のガス流路20には、冷却ガスを供給する冷却ガス供給源22が、圧力制御バルブ23を介して、接続されている。圧力制御バルブ23は、冷却ガスの圧力が所定の圧力になるように流量を調整するバルブである。なお、冷却ガス供給源22から冷却ガスを供給するガス流路20の数は、1本でも複数本でもよい。
 冷却手段13は、複数のガス流路20を介して溝部16に冷却ガスを供給する。これにより、冷却手段13は、フォーカスリング12を冷却することができる。
(保持部の構成)
 本発明者等が検討を行った結果、保持部15の表面には、研削加工に起因して、内周と外周の高低差や、最外周に発生するダックテイル(アヒルの尻のように、後端が跳ね上がっている形状)や、局所的な凹部が形成される場合があることが分かった。
 特に、保持面15aに形成される内周と外周の高低差や最外周に発生するダックテイル、および局所的な凹部は、冷却ガスがリークする要因となると推測される。そのため、本実施形態の静電チャック装置10においては、保持面15aの内周と外周の高低差や、最外周に発生するダックテイル、および局所的な凹部を、なるべく含まないように、制御することが求められる。
 本実施形態の静電チャック装置10における保持面15aは、厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線が、保持面15aの最内周15dに対応する第1の点から保持面15aの最外周15eに対応する第2の点に向かって正の傾きを有する形状(保持面15aの最内周15dに対応する第1の点から保持面15aの最外周15eに対応する第2の点に向かって高くなる形状)である。また、0≦|保持面15aの厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点の高さ-保持面15aの最外周15eに対応する第2の点の高さ|≦10μm、で表される式(以下、第1の式ということがある)も満足する(条件(i))。なお前記式では、絶対値が用いられている。すなわち、図2において、保持面15aは、厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線が、前記第1の点から前記第2の点に向かって、正の傾きを有する形状を有する。また同時に、(保持面15aの最外周15eに対応する第2の点の高さ-保持面15aの最内周15dに対応する第1の点の高さ)で表される式(以下、第2の式ということがある)から得られる値が、0μm以上10μm以下である。以下、これを条件(i-i)と称することがある。前記第2の式から得られる値は、前記第2の式から得られる値は、0μm以上9μm以下であることが好ましい。必要に応じて、前記値は、0μmより大きくかつ10μm以下や、0.1μm以上9.0μm以下や、0.5μm以上8.5μm以下や、1.0μm以上8.0μm以下や、2.0μm以上6.0μm以下や、3.0μm以上5.0μm以下であってもよい。前記第2の式から得られる値が10μmを超えると、保持部15の保持面15aに静電吸着したフォーカスリング12が、保持面15aの高低差に追従し難くなる。フォーカスリング12が保持面15aの高低差に追従し難くなると、保持部15のシールバンド17での隙間が大きくなる。その結果、その隙間からの冷却ガスのリーク量が多くなる。
 なお、本実施形態の静電チャック装置10において、保持面15aの厚さ方向の断面とは、保持面15aが円環状であって、その円環の中心を通る断面のことである。
 保持面15aの厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点の高さ、および保持面15aの最外周15eに対応する第2の点の高さとは、任意の水平な基準面(任意の水平な基準面とは、例えば、三次元測定機において静電チャック装置を載置する定盤面がこれに相当する。前記水平な基準面は、XY面に平行な面であればよく、吸着部材3の搭載面とは反対に位置する平らな底面を、基準面としても良い。)を基準とし、保持部15の厚さ方向の高さである。
 本実施形態の静電チャック装置10における高低差は、JIS B 6191に準拠し、三次元測定機(商品名:ザイザックス SVA NEX、株式会社東京精密製)を用いて測定できる。この測定において、まず、溝部16の幅方向の外側のシールバンド17Aおよび内側のシールバンド17Bの上面(保持面)15aの三次元座標について、保持面15aの最内周15dから外周側に1mm以内の任意の点(a点とする)と、保持面15aの最外周15eから内周側に1mm以内の任意の点(d点とする)を、測定する。また、同心円周上で、2°毎に、180箇所を、同様に測定する。
 本実施形態の静電チャック装置10において、高低差は、保持面15aの厚さ方向の断面において、保持面15aの最外周15eに対応する第2の点の高さ-保持面15aの最内周15dに対応する第1の点の高さの差を、180箇所を計算し、その測定値の最大値を採用する。前記a点は第1の点に対応し、前記d点は第2の点に対応する。
 保持面15aは、厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線が、第1の点から第2の点に向かって、常に正の傾きを有する形状をなしている。すなわち、保持面15aは、厚さ方向の断面において、第1の点と第2の点を結ぶ直線の途中で、フォーカスリング12側に突出する部分(凸部)や、冷却ベース5側に窪む部分(凹部)を有さない。
 本実施形態の静電チャック装置10における保持面15aは、内周面15bのリーク面積および外周面15cのリーク面積が、0.7mm未満である。以下、これを条件(ii)と称することがある。内周面15bのリーク面積および外周面15cのリーク面積は0.6mm以下であることが好ましく、0.5mm以下であることがより好ましい。リーク面積の下限は必要に応じて任意に選択できるが、例えば、0.00mmや、0.01mm以上であっても良く、0.05mm以上や、0.1mm以上であっても良い。
 内周面15bのリーク面積および外周面15cのリーク面積が0.7mm以上では、保持部15の保持面15aに静電吸着したフォーカスリング12が、保持面15aに追従できない局所的な凹部の面積が大きくなる。フォーカスリング12が保持面15aに追従できない局所的な凹部の面積が大きくなると、保持部15のシールバンド17での隙間が大きくなり、その隙間からの冷却ガスのリーク量が多くなる。
 本実施形態の静電チャック装置10では、保持部15の保持面15aは、載置台11に設けられた冷却ベースの流路29の影響により、研削加工に起因して、大きな周期の連続した凹凸構造(大きな周期のうねり、言い換えると、なだらかな山と谷)が形成される傾向がある。大きなうねりには、静電吸着力により、フォーカスリング12が追従する。
 本実施形態において、保持面15aに形成される大きなうねりの周期は60度以上であることが好ましい。うねりの周期が60度以上であることにより、フォーカスリング12が保持面15aの凹凸に十分追従できると考えられる。うねりの周期が60度以上であるとき、うねりのピークとボトムの数はそれぞれ6個以下であってもよい。
 本実施形態では、保持面の表面の評価のために、角度の周方向で、任意の数のピークボトム(山と谷)があるサインカーブの和を算出する。その算出結果と、保持部15の保持面15aの形状(寸法)の実測データ(内周面15bの中心と外周面15cの中心の三次元データ)とを比較、すなわち、フィッティングする。保持部15の保持面15aの形状(寸法)の実測データとフィッティングカーブとの差が「フォーカスリング12が追従できない形状」として仮定し、その差をリーク面積と定義する。
 (リーク面積の求め方の例)
 リーク面積の求め方の例を以下に述べる。
 保持部15の保持面15aの表面形状(寸法)を、角度の周方向(保持面15aにおける、載置台11の中心を軸とする、円の周方向)に測定する。具体的には、内周面15bの中心と外周面15cの中心の三次元データを実測して、これを、フィッティングライン1とする。例えば実測では、それぞれの面の中心を180箇所で測定し、実測値から前記ライン1を形成してもよい。
一方で、任意の数の、周期(周期の数:T)が互いに異なる複数のサインカーブ(サイン波)を用いて、最小二乗法でカーブフィッティングを行う(フィッティングライン2を得る)。この算出された凹凸形状の曲線(例:横軸が角度(0~360度)、縦軸が高さ)は、フォーカスリングが追従できる大きなうねりの形状を示しており、比較として使用される。フィッティングライン1がフィッティングカーブ2に近いほど、保持面のうねりにフォーカスリングが追従でき、すなわちリーク面積が小さいことを意味する。フィッティングライン2は、実測データから得られたフィッティングライン1との距離が、最も小さくなるものを選択できる。なお下記に述べるように、フィッティングライン2は、フィッティングライン1と、1点以上で接触しており、かつ、常にフィッティングライン1より上に配置される。
 次に、リーク面積を求める。カーブフィッティングライン2は、常にカーブフィッティングライン1よりも上に位置され、かつ2つのライン間の面積が最小になるように、同じグラフに好ましく並べられる。2つのライン間の面積を、リーク面積とすることができる。
 以上のように、保持部15の保持面15aの形状(寸法)の実測データと、フィッティングカーブ2によって示されるデータとの差が、「フォーカスリング12が追従できない形状(寸法)」として仮定され、前記差を、リーク面積と定義できる。
 なおフィッティングカーブ2は、フォーカスリング12が追従できる形状であればよい。一例として、「横軸が角度、縦軸が高さをしめすデータにおいて、360度で1周期(T=1、ピークとボトムが1つ)のサインカーブと、2周期(T=2、ピークとボトムが2つの)のサインカーブ、3周期(T=3、ピークとボトムが3つの)のサインカーブを用いて、最小二乗法で、フィッティング」した曲線が好ましく挙げられる。
 以上のように、保持面15aが上記条件(i-i)および(ii)を満たすことにより、保持部15の保持面15aとフォーカスリング12との隙間を少なくすることができる。これにより、この隙間からリークする冷却ガスの量を少なくすることができる。その結果、本実施形態では冷却ガスの圧力を制御しやすくなる。このため、静電チャック装置10は、フォーカスリング12の温度制御が容易となり、板状試料Wの表面温度を均一にすることができる。
 また、本実施形態の静電チャック装置10は、図3に示すように、溝部16の底面16aに、保持部15の厚さ方向に延びる柱状の突起部41,42が設けられることも好ましい。保持面15aの厚さ方向の断面において、任意の水平な基準面(任意の水平な基準面とは、例えば、三次元測定機において静電チャック装置を載置する定盤面がこれに相当する。)を基準とする、突起部41,42の上面41a,42aまでの高さが、前記任意の水平な基準面を基準とする保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線の高さ(基準面からの距離)以下であることが好ましい。突起部41,42は、誘電体基板24と同じ材料で形成されていることが好ましい。突起部41は溝部16の底面16aの内周側に設けられ、突起部42は溝部16の底面16aの外周側に設けられている。このような構造とすることにより、冷却ガスの流通を妨げることなく、保持部15の保持面15aにフォーカスリング12を静電吸着した場合に、突起部41,42とフォーカスリング12が接触し、保持部15とフォーカスリング12の接触面積が大きくなる。その結果、保持部15の保持面15aとフォーカスリング12の静電吸着を良好にすることができ、保持部15の保持面15aとフォーカスリング12との隙間を少なくすることができる。その結果、冷却ガスのリークを抑制し、冷却効率を向上させることができるとともに、突起部41,42の外径や配置を最適化することにより、フォーカスリング12(ひいては板状試料W)の表面温度を均一に制御することができる。突起部41,42の平面視でのそれぞれの形状は、任意に選択できる。例えば、前記突起部のそれぞれが、連続した1つの円環状であったり、又は、複数の円形や四角形やその他の形状であっても良い。
 なお、図3では、溝部16の底面16aに2つの突起部41,42が設けられている場合を例示した。本実施形態の静電チャック装置10はこれに限定されない。本実施形態の静電チャック装置10では、溝部16の内周側のみ、あるいは外周側のみに、突起部が1つ以上設けられていてもよく、溝部16の内周側および外周側それぞれに突起部が1つ以上設けられていてもよい。また、突起部を設ける間隔は、特に限定されない。
 以上のような構成によれば、板状試料の表面温度を均一にすることができる静電チャック装置とすることができる。
<静電チャック装置の製造方法>
 上述の静電チャック装置10が得られる製造方法の好ましい例を、図4および図5に基づいて説明する。
 本実施形態の静電チャック装置の製造方法は、研削工程と、溝部16を形成する工程と、を有する。研削工程および溝部16を形成する工程以外の工程としては、公知の静電チャック装置の製造方法で行われる工程を実施することができる。
 図4は、本実施形態の静電チャック装置の製造方法における研削工程の好ましい例を示す斜視図である。本実施形態の研削工程では、円筒状の砥石G1を回転させながら、仮載置台200を研削する。
 仮載置台200は、焼結体150と、複数の貫通孔25と、冷却ベース5と、を有している。焼結体150には、板状試料Wを載置する載置面11a(図1参照)が設けられ、載置面11aの周囲に貫通孔25が設けられている。また、焼結体150には、電極層26Bが設けられている。仮載置台200では、焼結体150と冷却ベース5とがシリコーン系等の接着剤(図示なし)により接着されている。なお図4は、既に円筒状の砥石G1を回転させ、研削をある程度進ませた状態が示される。
 本実施形態の静電チャック装置の製造方法における研削工程では、例えば、ロータリー研削機等を用いることができる。
 円筒状の砥石G1としては、回転軸方向の長さがフォーカスリング12を載置する内周面15bから外周面15cまでの保持面15aの幅方向の長さよりも短い砥石を用いる。
 砥石の幅(幅方向の長さ)は必要に応じて任意に選択できるが、例えば、保持面の幅方向の長さに対して、10~98%であってもよく、20~90%の範囲が好ましく、20~70%の範囲であっても良い。これらに限定されず、10~60%や、20~40%や、30~50%などであっても良い。
 砥石の周速度も任意に選択できる。例えば、10~200m/sが好ましく、30~180m/sがより好ましく、60~160m/sが更に好ましく、70~150m/sが特に好ましい。これらに限定されず、5~80m/sであったり、20~110m/sであったり、40~140m/sであっても良い。
 砥石の種類や条件は任意に選択できるが、例えば、アルミナより硬度が高くダイアモンドより硬度が低い材料であることが好ましく、例を挙げれば、炭化珪素であることがより好ましい。研磨において砥石の位置は、必要に応じて、径方向に移動させてよい。
 本実施形態の静電チャック装置の製造方法における研削工程では、載置面11aの周囲の表面150aが、例えば、下記条件(i-i)および条件(ii)を満たすように、仮載置台200を研削する。
(i-i)焼結体150の厚さ方向の断面において、表面150aの最内周150dに対応する第1の点と表面150aの最外周150eに対応する第2の点を結ぶ直線が、表面150aの最内周150dに対応する第1の点から表面150aの最外周150eに対応する第2の点に向かって正の傾きを有する形状(表面150aの最内周150dに対応する第1の点から表面150aの最外周150eに対応する第2の点に向かって高くなる形状)、かつ(表面150aの最外周150eに対応する第2の点の高さ-表面150aの最内周150dに対応する第1の点の高さ)が、0μm以上10μm以下である。
(ii)表面150aの内周面150bのリーク面積および表面150aの外周面150cのリーク面積が0.7mm未満である。
 通常、焼結体を砥石により研削すると、研削熱が発生する。砥石G1の周速度が速いほど、発熱量が大きくなる。発熱量が大きくなると、吸着部材3と冷却ベース5の熱膨張差に起因して、吸着部材3と冷却ベース5が変形することがある。この変形により、焼結体150の表面150aに高低差が生じることがある。また、砥石G1の周速度が速いほど、生産性は向上する。しかしながら、その反面、焼結体150の表面150aに局所的な凹部が発生することがある。
 砥石G1の周速度は、予備実験を行い得ても良い。具体的には、同じ条件を有する仮の載置台を用いて、予備実験を行い、表面150aが上記条件(i-i)および条件(ii)を満たすような速度を予め得ておき、その後の製造において、その周速度に設定して製造を行うとよい。例えば、予備実験においては、複数の異なる周速度と、複数の幅の異なる砥石を用意して、それぞれの組み合わせにおいて、静電チャック装置の製造と評価を行い、それらの結果から、好ましい結果を示した組み合わせを選択してよい。このような方法によって、非常に優れた静電チャック装置を、効率よく製造することができる。
 図5は、本実施形態の静電チャック装置の製造方法における溝部16を形成する工程を示す、概略斜視図である。本実施形態の静電チャック装置の製造方法における溝部16を形成する工程では、任意に選択される方法で、焼結体150を掘り下げて、載置面11aの周囲を囲む溝部16を形成する。本実施形態の静電チャック装置の製造方法における溝部16を形成する工程では、例えば、ロータリー加工やブラスト加工等を用いることができ、特にブラスト加工が好適に用いられる。
 ブラスト加工に使用されるメディア(媒体)としては、任意に選択できるが、酸化アルミニウム(アルミナ、Al)、炭化珪素、ガラスビーズ等が好ましい。メディアは、400メッシュアンダー(300メッシュを通過するもの)であることが好ましい。ブラスト加工におけるメディアの吐出圧力は、例えば、0.1MPa以下であることが好ましく、0.05MPa以下であることがより好ましい。
 以上のような方法によれば、得られる静電チャック装置10の保持面15aが上記条件(i-i)および条件(ii)を満たすものとなる。その結果、板状試料の表面温度を均一にすることができる静電チャック装置を製造することができる。
 以上に、本発明の第1の実施形態を説明したが、本実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は本実施形態によって限定されることはない。
 また、例えば、上述した保持部15には、ヒータ(図示略)が設けられていてもよい。
これにより、フォーカスリング12を加熱することにより、フォーカスリング12の温度を板状試料Wと略同一の温度に制御することができる。
(2)第2の実施形態
<静電チャック装置>
 図6は、本実施形態の静電チャック装置を示すXZ平面での断面図である。図7は、図6のβで示す領域を拡大した部分拡大図である。
 なお、図6において、図1に示した第1の実施形態の静電チャック装置と同一の構成には同一の符号を付して、重複する説明を省略する。また、図7において、図2に示した第1の実施形態の静電チャック装置と同一の構成には同一の符号を付して、重複する説明を省略する。
 図6に示す静電チャック装置300は、載置台11と、フォーカスリング12と、冷却手段13と、を備えている。
 本実施形態の静電チャック装置300における保持面15aは、厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線が、保持面15aの最内周15dに対応する第1の点から保持面15aの最外周15eに対応する第2の点に向かって負の傾きを有する形状であり、かつ0≦|保持面15aの厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点の高さ-保持面15aの最外周15eに対応する第2の点の高さ|≦10μm、で表される式(第1の式)も満足する(条件(i))。すなわち、図7において、保持面15aは、厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線が、第1の点から第2の点に向かって負の傾きを有する形状を有する。また同時に、(保持面15aの最内周15dに対応する第1の点の高さ-保持面15aの最外周15eに対応する第2の点の高さ)で表される式(以下、第3の式ということがある)から得られる値が、0μm以上10μm以下である。以下、これを条件(i-ii)と称することがある。前記第3の式から得られる値は、0μm以上9μm以下であることが好ましい。必要に応じて、前記値は、0μmより大きくかつ10μm以下や、0.1μm以上9.0μm以下や、0.5μm以上8.5μm以下や、1.0μm以上8.0μm以下や、2.0μm以上6.0μm以下や、3.0μm以上5.0μm以下であってもよい。前記第3の式から得られる値が10μmを超えると、保持部15の保持面15aに静電吸着したフォーカスリング12が、保持面15aの高低差に追従し難くなる。フォーカスリング12が保持面15aの高低差に追従し難くなると、保持部15のシールバンド17での隙間が大きくなる。その結果、その隙間からの冷却ガスのリーク量が多くなる。
 保持面15aは、厚さ方向の断面において、保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線が、第1の点から第2の点に向かって、常に負の傾きを有する形状をなしている。すなわち、第1の点と第2の点を結ぶ直線の途中で、保持面は、フォーカスリング12側に突出する部分(凸部)や、冷却ベース5側に窪む部分(凹部)を有さない。
 本実施形態の静電チャック装置300における保持面15aは、第1の実施形態の静電チャック装置10と同様に、内周面15bのリーク面積および外周面15cのリーク面積が0.7mm未満である(条件(ii))。内周面15bのリーク面積および外周面15cのリーク面積は0.6mm以下であることが好ましく、0.5mm以下であることがより好ましい。リーク面積の下限は必要に応じて任意に選択でき、第一の実施形態で示される例を同様に使用できる。
 本実施形態の静電チャック装置300における保持面15aは、図8に示すように、(保持面15aの厚さ方向の断面において、外周面15cの最外周15eに対応する第2の点と、内周面15bと外周面15cから得られる最小二乗直線Lとの最短距離h)<4μmである。以下、これを条件(iii)と称することがある。
 最短距離h(保持面15aの厚さ方向の断面において、外周面15cの最外周15eに対応する第2の点と、内周面15bと外周面15cから得られる最小二乗直線Lとの最短距離h)は、3μm以下であることが好ましい。なお前記最短距離hは、必要に応じて、0.0μm以上4.0μm未満や、0.0μm以上3.8μm以下や、0.1μm以上3.5μm以下や、0.1μm以上3.3μm以下や、0.2μm以上3.0μm以下等の範囲であっても良い。前記最短距離hが4μm以上では、保持部15の保持面15aと静電吸着したフォーカスリング12との間に隙間が生じ、吸着力が低下する可能性がある。フォーカスリング12と保持面15aの吸着力が低下すると、保持部15のシールバンド17での隙間が大きくなり、その隙間からの冷却ガスのリーク量が多くなる。なお、図8に示すように、保持面15aの厚さ方向の断面において、保持面15aの外周面15cの最外周15eに対応する第2の点の高さが、保持面15aの内周面15bと外周面15cの中心から内周にかけての最小二乗直線Lよりも高くなっている状態(その部分)を、ダックテイル15fと言う。
 本実施形態の静電チャック装置10において、保持面15aのダックテイル15fは、JIS B 6191に準拠し、三次元測定機(商品名:ザイザックス SVA NEX、株式会社東京精密製)を用いて測定される。この測定において、まず、溝部16の幅方向の外側のシールバンド17Aおよび内側のシールバンド17Bの上面(保持面)15aの三次元座標を、保持面15aの半径方向に内周面15bの3箇所と外周面15cの3箇所について測定する。ここでは、図9に示すように、内周面15bについて、中心(中心点)、最内周15dから1mm以内の任意の点(a点)、および溝16における内周面15b側の周15gから1mm以内の任意の点(b点)について、三次元座標を測定する。同様に、図9に示すように、外周面15cについて、中心、最外周15eから1mm以内の任意の点(c点)、および溝16における外周面15c側の周15iから1mm以内の任意の点(d点)について、三次元座標を測定する。また、同心円周上で2°毎に180箇所を測定する。すなわち、6×180箇所の測定を行う。なお前記測定は、載置面の中心を通る直線上にて好ましく測定される。
 さらに、保持面15aの厚さ方向の断面において、外周面15cの最外周15eに対応する第2の点と、内周面15bの3点と外周面15cの2点(前記第2の点を除いた点)から得られる最小二乗直線Lとの最短距離hを、180箇所測定する。そしてその測定値の最大値を採用する。本実施形態では、ダックテイルが小さい、あるいは有さない、静電チャック装置を提供できる。
 以上のように、保持面15aが上記条件(i-ii)~条件(iii)を満たすことにより、保持部15の保持面15aとフォーカスリング12との隙間を少なくすることができる。これにより、この隙間からリークする冷却ガスの量を少なくすることができる。その結果、本実施形態では冷却ガスの圧力を制御しやすくなる。このため、静電チャック装置300は、フォーカスリング12の温度制御が容易となり、板状試料Wの表面温度を均一にすることができる。
 また、本実施形態の静電チャック装置300は、図10に示すように、溝部16の底面16aに、保持部15の厚さ方向に延びる柱状の突起部41,42が設けられてよい。保持面15aの厚さ方向の断面において、任意の水平な基準面(任意の水平な基準面とは、例えば、三次元測定機において静電チャック装置を載置する定盤面がこれに相当する。)を基準とする、突起部41,42の上面41a,42aの高さが、前記任意の水平な基準面を基準とする保持面15aの最内周15dに対応する第1の点と保持面15aの最外周15eに対応する第2の点を結ぶ直線の高さ以下であることが好ましい。
 なお、図10では、溝部16の底面16aに2つの突起部41,42が設けられている場合を例示したが、本実施形態の静電チャック装置300はこれに限定されない。本実施形態の静電チャック装置300では、溝部16の内周側のみ、あるいは外周側のみに、突起部が1つ以上設けられていてもよく、溝部16の内周側および外周側それぞれに突起部が1つ以上設けられていてもよい。また、突起部を設ける間隔は、特に限定されない。
 以上のような構成によれば、板状試料の表面温度を均一にすることができる静電チャック装置とすることができる。
<静電チャック装置の製造方法>
 上述の静電チャック装置300が得られる製造方法を、図4および図5に基づいて説明する。
 本実施形態の静電チャック装置の製造方法は、研削工程と、溝部16を形成する工程と、を好ましく有する。研削工程および溝部16を形成する工程以外の工程は、公知の静電チャック装置の製造方法で行われる工程を実施することができる。
 本実施形態の静電チャック装置300は、上述の静電チャック装置10と同様にして製造することができる。上述の静電チャック装置10が得られる製造方法と同様の工程については説明を省略する。
 本実施形態の静電チャック装置の製造方法における研削工程では、載置面11aの周囲の表面150aが、例えば、下記条件(i-ii)~条件(iii)を満たすように、仮載置台200を研削する。
(i-ii)焼結体150の厚さ方向の断面において、表面150aの最内周150dに対応する点と表面150aの最外周150eに対応する点を結ぶ直線が、表面150aの最内周150dに対応する点から表面150aの最外周150eに対応する点に向かって負の傾きを有する形状(表面150aの最内周150dに対応する点から表面150aの最外周150eに対応する点に向かって負の傾きを有する形状)、かつ(表面150aの最内周150dに対応する点の高さ-表面150aの最外周150eに対応する点の高さ)が、0μm以上10μm以下である。
(ii)表面150aの内周面150bのリーク面積および表面150aの外周面150cのリーク面積が0.7mm未満である。
(iii)(焼結体150の厚さ方向の断面において、外周面150cの最外周150eに対応する点と、内周面150bと外周面150cから得られる最小二乗直線Lとの最短距離h)<4μmである。
 砥石Gの周速度は、予備実験を行い、表面150aが上記条件(i-ii)~条件(iii)を満たすような速度に設定するとよい。
 以上に、本発明の第2の実施形態を説明したが、本実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は本実施形態によって限定されることはない。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 以下の実施例および比較例では、冷却ガスとしてHeガスを用いた。
[保持面の最内周と最外周の高低差の測定]
 JIS B 6191に準拠し、
三次元測定機(商品名:ザイザックス SVA NEX、株式会社東京精密製)を用いた。まず、保持部の溝部の幅方向の外側の上面(保持面の外周面)、および内側の上面(保持面の内周面)のそれぞれの三次元座標を、保持面(内周面)の最内周から外周側に1mm以内の任意に選択される点(a点)と、保持面(外周面)の最外周から内周側に1mm以内の任意に選択される点(d点)について、測定した。また、同心円周上で2°毎に180箇所を測定した。すなわち、2×180箇所の測定を行った。
 実施例および比較例の静電チャック装置において、高低差は、保持面の最外周の高さ(d点)-保持面の最内周の高さ(a点)の差を、180箇所で計算し、その測定値の最大値を採用した。
[リーク面積の測定]
 JIS B 6191に準拠し、三次元測定機(商品名:ザイザックス SVA NEX、株式会社東京精密製)を用いて、保持面の内周面の中心と外周面の中心の三次元座標について、同心円上で2°毎に180箇所を測定した。
 角度の周方向で、任意の数の異なるサインカーブ、すなわち、ピークとボトムがある、互いに異なる複数のサインカーブを用いて、最小二乗法で、フィッティングラインを算出した。具体的には、周期が1、2又は3の、互いに異なる3つのサインカーブを用いた。
その算出結果から得たカーブ(フィッティングライン2)と、保持部の保持面の形状(寸法)の実測データ(内周面の中心と外周面の中心の三次元データ)から得たカーブ(フィッティングライン1)とを、フィッティングした。具体的には、保持部の保持面の形状(寸法)の実測データから得たカーブと、フィッティングカーブとの差を、「フォーカスリングが追従できない形状」として仮定し、その差をリーク面積とした。
[Heガスのリーク量の評価]
 静電チャック装置をプラズマエッチング装置に搭載し、静電チャック装置の載置面に直径350mmのシリコンウエハ(リング状試料)を、直流2.5kVの印加電圧で吸着固定した。この際、ガス孔よりHeガスを6.66kPaの圧力にて導入し、真空中(<0.5Pa)の条件で、Heガスのリーク量を測定し、評価した。リーク量の測定には、マスフローコントローラ(Fujikin社製)装置を使用し、流量式リークテスト法の条件によって測定した。
 この評価において、Heガスのリーク量が3.0sccm以下であるものを「○(良)」とした。
Heガスのリーク量が、3.0sccmより大きく、3.3sccm以下であるものを「△(可)」とした。
 また、Heガスのリーク量が3.3sccmを超えるものを不良品とし、「×(不可)」とした。
 なお、sccmは、0.1MPa、0℃の条件下における1分間あたりの気体の流量(単位:cm)を表す。
[ダックテイルの測定]
 JIS B 6191に準拠し、三次元測定機(商品名:ザイザックス SVA NEX、株式会社東京精密製)を用いて、保持面のダックテイルを測定した。
 この測定において、まず、保持部の溝部の幅方向の外側の上面(保持面の外周面)および内側の上面(保持面の内周面)の三次元座標を、保持面の半径方向に内周面の3箇所と、外周面の3箇所について測定した。
ここでは、内周面について、中心(中心点)、最内周から1mm以内の任意の点(a点)および溝側の周から1mm以内の任意の点(b点)にて、三次元座標を測定した。同様に、外周面について、中心(中心点)、最外周から1mm以内の任意の点(c点)および溝側の周から1mm以内の任意の点(d点)にて、三次元座標を測定した。また、同心円周上で2°毎に180箇所を測定した。すなわち、6×180箇所の測定を行った。
 さらに、外周面の最外周から、保持部を厚さ方向の断面で見た場合に、内周面の3点と外周面の2点(d点を除く点)から得られる最小二乗直線Lまでの最短距離hを、180箇所測定し、その測定値の最大値を採用した。
<静電チャック装置の製造>
[実施例1]
 載置面の周囲に貫通孔が設けられ、静電チャック部に配置された電極層およびを保持部に配置された電極層を備えた焼結体(φ350mm、Al-SiC製)と、焼結体の貫通孔と平面的に重なる位置に貫通孔が設けられた冷却ベース(アルミニウム製)とを、シリコーン系接着剤を介して積層した。この積層体を100℃で5時間加熱することにより、焼結体と、冷却ベースと、を接着した。
 次いで、載置面の周囲の焼結体の表面を、ロータリー研削機により炭化珪素砥石1000番(砥石)を用いて円環状に研削した(研削加工)。なお、炭化珪素砥石としては、回転軸方向の長さが、後段の工程で形成される内周から外周までの保持面の長さよりも、短いものを用いた。また、炭化珪素砥石の番手は、数が大きいほど砥粒が小さくなる。また、研削加工における砥石周速度(回転速度)を80m/sとした。砥石の幅を、内周から外周までの保持面の長さに対して30%とした。研磨は砥石の位置は移動しながら行われた。
 次いで、載置面の周囲の研削した面に、ブラスト加工を行い、焼結体を掘り下げて、載置面の周囲を囲む溝部を形成した(溝部を形成する工程)。ブラスト加工は、炭化珪素メディア(400メッシュアンダー(300メッシュを通過するもの))を用い、吐出圧力0.03MPaの条件にて行った。このようにして、実施例1の静電チャック装置を製造した。
 なお、研削加工の発熱により、吸着部材と冷却ベースは熱膨張差により若干変形する。
理由は定かではないが、凸状に変形する個体と凹状に変形する個体が発生する。実施例1の場合、静電チャック装置は、凸状に変形したものと考えられた。すなわち、加工後、室温にて変形が戻った際に、保持面が内周と比較して、外周が高い形状となった。
 溝部を形成する工程後に得られた溝部の幅方向の上面(保持面)について、(a)保持面の最内周と最外周の高低差、(b)リーク面積、(c)ダックテイル、(d)Heガスのリーク量を測定した。結果を表1に示す。
[実施例2]
 実施例1と同様の操作を実施した結果、保持面が内周と比較して、外周が低い形状となった。研削加工の発熱により、吸着部材と冷却ベースの熱膨張差により若干変形した際、凹状に変形したものと推察される。
[実施例3]
 研削加工における砥石周速度を110m/sとしたこと以外は、実施例1と同様して、実施例3の静電チャック装置を製造した。
[実施例4]
 研削加工における砥石幅を、内周から外周までの保持面の長さに対して60%としたこと以外は、実施例1と同様して、実施例4の静電チャック装置を製造した。
[実施例5]
 研削加工における砥石幅を、内周から外周までの保持面の長さに対して60%とし、砥石周速度を140m/sとしたこと以外は、実施例1と同様して、実施例5の静電チャック装置を製造した。
[比較例1](参考例)
 研削加工における砥石幅を、内周から外周までの保持面の長さに対して100%としたこと以外は、実施例1と同様して、比較例1の静電チャック装置を製造した。
[比較例2]
 研削加工における砥石幅を、内周から外周までの保持面の長さに対して100%とし、砥石周速度を110m/sとしたこと以外は、実施例1と同様して、比較例2の静電チャック装置を製造した。
[比較例3]
 研削加工における砥石幅を、内周から外周までの保持面の長さに対して100%とし、砥石周速度を140m/sとしたこと以外は、実施例1と同様して、比較例3の静電チャック装置を製造した。
 実施例1~実施例5および比較例1~比較例3の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、下記条件(i)および条件(ii)を満たす実施例1~5、および、下記条件(i)~条件(iii)を満たす実施例1~実施例5の静電チャック装置は、Heガスのリーク量が2.9sccm以下であり、Heガスのリーク量が少ないことが分かった。これにより、実施例1~実施例5の静電チャック装置では、Heガスの圧力を制御し易くなり、ウエハの表面温度を均一にすることができると考えられる。
(i)保持面は、厚さ方向の断面で見た場合に、保持面の最内周と保持面の最外周を結ぶ直線が最内周から最外周に向かって正の傾きを有する形状または保持面の最内周と保持面の最外周を結ぶ直線が最内周から最外周に向かって負の傾きを有する形状であり、かつ保持面の最内周と最外周の高低差(絶対値)が0μm以上10μm以下である。
(ii)リーク面積が0.7mm未満である。
(iii)ダックテイルが4μm未満である。
 一方、条件(i)~条件(iii)の全てを満たさない比較例3、条件(ii)を満たさない比較例2、条件(iii)を満たさない比較例1の静電チャック装置は、Heガスのリーク量が3sccmを超え、Heガスのリーク量が多いことが分かった。この結果より、実施例では、比較例よりも、ウエハの表面温度を均一にしやすいと考えられる。一方、特にリーク量が多かった、比較例2~比較例3の静電チャック装置では、Heガスの圧力を制御し難く、ウエハの表面温度を均一にし難いと考えられる。
 以上の結果から、本発明が有用であることが確かめられた。
 板状試料の表面温度を均一にできる静電チャック装置を提供できる。
3・・・吸着部材
5・・・冷却ベース
10,300・・・静電チャック装置
11・・・載置台
11a・・・載置面
12・・・フォーカスリング
13・・・冷却手段(冷却部材)
14・・・吸着部材の静電チャック部
15・・・保持部
15a,151a・・・上面(保持面)
15b・・・保持面における、溝部よりも内周側の内周面
15c・・・保持面における、溝部よりも外周側の外周面
15d・・・保持面の最内周
15e・・・保持面の最外周
15f・・・保持面のダックテイル
15g・・・溝の内周面側の周
15i・・・溝の外周面側の周
16・・・溝部
16a・・・底面
17・・・保持部のシールバンド
17A・・・溝部の幅方向の外側部(外側のシールバンド)
17B・・・溝部の幅方向の内側部(内側のシールバンド)
20・・・ガス流路
22・・・冷却ガス供給源
23・・・圧力制御バルブ
24・・・誘電体基板
25・・・貫通孔
26・・・電極層
26A・・・静電チャック部に配置された電極層
26B・・・保持部に配置された電極層
27・・・給電用端子
28・・・絶縁碍子
29・・・冷却ベースの流路
30・・・凹部
41、42・・・溝部の底面に設けられた突起部
41a、42a・・・突起部上面
32,132・・・碍子
150・・・焼結体
150a・・・載置面の周囲にある表面
150b、151b・・・載置面の周囲にある表面の内周面
150c、151c・・・載置面の周囲にある表面の外周面
150d、151d・・・載置面の周囲にある表面の最内周
150e、151e・・・載置面の周囲にある表面の最外周200・・・仮載置台
G1・・・砥石
h・・・最短距離
L・・・最小二乗直線
W・・・板状試料

Claims (8)

  1.  板状試料を載置する載置面が設けられた載置台と、
     円環状のフォーカスリングと、
     前記フォーカスリングを冷却する冷却手段と、を備え、
     前記載置台は、前記載置面の周囲を囲んで設けられた保持部を有し、
     前記保持部には、前記載置面の周囲を囲む円環状の溝部と、前記溝部の底面に開口する貫通孔と、が設けられ、
     前記保持部において、前記溝部の幅方向両側の上面は、前記フォーカスリングと接触し前記フォーカスリングを保持する保持面であり、
     前記保持面は、前記溝部よりも内周側の内周面と前記溝部よりも外周側の外周面からなり、
     前記保持面は、下記条件(i)および(ii)を満たす静電チャック装置;
     (i)前記保持面は、厚さ方向の断面において、前記保持面の最内周に対応する第1の点と前記保持面の最外周に対応する第2の点を結ぶ直線が、前記最内周に対応する第1の点から前記最外周に対応する第2の点に向かって正の傾きを有する形状、または負の傾きを有する形状であり、かつ0≦|前記保持面の厚さ方向の断面において、前記最内周に対応する第1の点の高さ-前記最外周に対応する第2の点の高さ|≦10μmを満足する;
     (ii)前記内周面のリーク面積および前記外周面のリーク面積が0.7mm未満である。
  2.  前記保持面は、下記条件(iii)を満たす、請求項1に記載の静電チャック装置。
     (iii)(前記保持面の厚さ方向の断面において、前記最外周に対応する第2の点と、前記内周面と前記外周面から得られる最小二乗直線と、の最短距離)<4μm
  3.  前記溝部の底面に、前記保持部の厚さ方向に延びる複数の突起部が設けられており、
     前記保持面の厚さ方向の断面において、
     前記突起部の上面の高さが、水平な基準面を基準とするとき、前記最内周に対応する第1の点と、前記最外周に対応する第2の点を結ぶ直線の高さ以下である、
    請求項1または2に記載の静電チャック装置。
  4.  請求項1~3のいずれ1項に記載の静電チャック装置を製造する方法であって、
     板状試料を載置する載置面が設けられ、前記載置面の周囲に貫通孔が設けられた焼結体を有する、仮載置台を用意する工程と、
     前記載置面の周囲に形成される、フォーカスリングを載置するための保持面について、前記保持面の形成前に、前記保持面の幅方向の長さを決定する工程と、
     砥石の回転軸方向の長さが、前記保持面の幅方向の長さよりも短い砥石を選択する工程と、
     前記砥石を用いて、前記焼結体の表面を、前記載置面の周囲にわたって、円環状に研削し、前記載置面の周囲を囲む、仮保持面を形成する研削工程と、
     前記焼結体の仮保持面を掘り下げて、前記載置面の周囲を囲む溝部を形成し、前記溝部を有する保持面を形成する工程と、
    を有する、静電チャック装置の製造方法。
  5.  仮載置台を用意する前記工程の前に、前記幅方向の長さを決定する工程と、前記砥石を選択する工程とを行い、
     前記幅方向の長さを決定する工程と、前記砥石を選択する工程の間に、
    複数の異なる周速度と、複数の異なる幅の砥石を用意して、それぞれの組み合わせで、静電チャック装置の製造と評価を行い、条件(i)と条件(ii)を満たす静電チャックの製造の条件を得る工程を含み、
     前記条件が、前記砥石を選択する工程と前記研削工程とで使用される、
    請求項4に記載の、静電チャック装置の製造方法。
  6.  条件(iii)に示される前記最短距離が0μmである、請求項1~3のいずれ1項に記載の静電チャック装置。
  7.  条件(i)が、0.1μm≦|前記保持面の厚さ方向の断面において、前記最内周に対応する第1の点の高さ-前記最外周に対応する第2の点の高さ|≦10μmを満足する、請求項1~3、及び6のいずれ1項に記載の静電チャック装置。
  8.  前記内周面のリーク面積および前記外周面のリーク面積が0.6mm以下である、請求項1~3、6及び7のいずれ1項に記載の静電チャック装置。
PCT/JP2019/030485 2018-08-02 2019-08-02 静電チャック装置および静電チャック装置の製造方法 WO2020027322A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980049649.3A CN112514046B (zh) 2018-08-02 2019-08-02 静电卡盘装置及静电卡盘装置的制造方法
KR1020217003187A KR20210035202A (ko) 2018-08-02 2019-08-02 정전 척 장치 및 정전 척 장치의 제조 방법
US17/264,705 US11471987B2 (en) 2018-08-02 2019-08-02 Electrostatic chuck device and electrostatic chuck device manufacturing method
JP2020534773A JP7001165B2 (ja) 2018-08-02 2019-08-02 静電チャック装置および静電チャック装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018146324 2018-08-02
JP2018-146324 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020027322A1 true WO2020027322A1 (ja) 2020-02-06

Family

ID=69230883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030485 WO2020027322A1 (ja) 2018-08-02 2019-08-02 静電チャック装置および静電チャック装置の製造方法

Country Status (5)

Country Link
US (1) US11471987B2 (ja)
JP (1) JP7001165B2 (ja)
KR (1) KR20210035202A (ja)
CN (1) CN112514046B (ja)
WO (1) WO2020027322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166270A (ja) * 2020-04-08 2021-10-14 東京エレクトロン株式会社 エッジリング、載置台及び基板処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542415B (zh) * 2019-09-20 2022-12-02 夏泰鑫半导体(青岛)有限公司 晶圆处理装置及半导体加工站
JP7390880B2 (ja) * 2019-12-05 2023-12-04 東京エレクトロン株式会社 エッジリング及び基板処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062237A (ja) * 2014-10-29 2015-04-02 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2017130687A (ja) * 2014-09-30 2017-07-27 住友大阪セメント株式会社 静電チャック装置
JP2018107433A (ja) * 2016-12-27 2018-07-05 東京エレクトロン株式会社 フォーカスリング及び基板処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559595B2 (ja) 2000-07-17 2010-10-06 東京エレクトロン株式会社 被処理体の載置装置及びプラズマ処理装置
JP5642531B2 (ja) 2010-12-22 2014-12-17 東京エレクトロン株式会社 基板処理装置及び基板処理方法
US20180182635A1 (en) * 2016-12-27 2018-06-28 Tokyo Electron Limited Focus ring and substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130687A (ja) * 2014-09-30 2017-07-27 住友大阪セメント株式会社 静電チャック装置
JP2015062237A (ja) * 2014-10-29 2015-04-02 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2018107433A (ja) * 2016-12-27 2018-07-05 東京エレクトロン株式会社 フォーカスリング及び基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166270A (ja) * 2020-04-08 2021-10-14 東京エレクトロン株式会社 エッジリング、載置台及び基板処理装置

Also Published As

Publication number Publication date
CN112514046B (zh) 2024-02-27
CN112514046A (zh) 2021-03-16
US20210308812A1 (en) 2021-10-07
US11471987B2 (en) 2022-10-18
JPWO2020027322A1 (ja) 2021-08-02
KR20210035202A (ko) 2021-03-31
JP7001165B2 (ja) 2022-01-19

Similar Documents

Publication Publication Date Title
US11848223B2 (en) Electrostatic chuck device and method for producing electrostatic chuck device
WO2020027322A1 (ja) 静電チャック装置および静電チャック装置の製造方法
US7068489B2 (en) Electrostatic chuck for holding wafer
JP6001675B2 (ja) 載置用部材およびその製造方法
JP5267603B2 (ja) 静電チャック
US11328948B2 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
SG190668A1 (en) Electrostatic chuck
JP2011119654A (ja) 静電チャック用基板及び静電チャック
JP5011736B2 (ja) 静電チャック装置
JP4540407B2 (ja) 静電チャック
JP2023545500A (ja) ベベル堆積低減のための裏側ガスリークバイ
TWI553774B (zh) Electrostatic sucker and wafer handling device
US11012008B2 (en) Electrostatic chuck device
KR102338223B1 (ko) 정전 척 장치
JP5279455B2 (ja) 静電チャック
JP6782157B2 (ja) 静電チャック
US20210074569A1 (en) Electrostatic puck and method of manufacture
US20160126117A1 (en) Sample holder
TWI817391B (zh) 降低局部靜電吸附力

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534773

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003187

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844240

Country of ref document: EP

Kind code of ref document: A1