WO2011088627A1 - 掺杂负电染料的二氧化硅纳米粒子及其制备方法 - Google Patents

掺杂负电染料的二氧化硅纳米粒子及其制备方法 Download PDF

Info

Publication number
WO2011088627A1
WO2011088627A1 PCT/CN2010/070648 CN2010070648W WO2011088627A1 WO 2011088627 A1 WO2011088627 A1 WO 2011088627A1 CN 2010070648 W CN2010070648 W CN 2010070648W WO 2011088627 A1 WO2011088627 A1 WO 2011088627A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyelectrolyte
dye
fluorescent dye
sio
positively charged
Prior art date
Application number
PCT/CN2010/070648
Other languages
English (en)
French (fr)
Inventor
杨文胜
梁经纶
李军
Original Assignee
无锡中德伯尔生物技术有限公司
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡中德伯尔生物技术有限公司, 吉林大学 filed Critical 无锡中德伯尔生物技术有限公司
Priority to US13/574,171 priority Critical patent/US9068084B2/en
Publication of WO2011088627A1 publication Critical patent/WO2011088627A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Definitions

  • the invention belongs to the technical field of luminescent nano materials, and particularly relates to SiO 2 nanoparticles doped with a negatively charged dye using a positively charged polyelectrolyte as a template and a preparation method thereof.
  • Dye-doped silica nanoparticles have a wide range of applications in the fields of biology, medicine, and photophysical chemistry. Doping the fluorescent dye in silica can improve its many properties: The dye is fixed in the SiO 2 medium and can be isolated from solvents, oxygen, etc., to improve the dispersibility and photostability of the dye (Nano Letter 2005, 15, 113-117); The dye microenvironment can be changed by adjusting the structure of the Si0 2 particles to improve the luminous efficiency and lifetime of the dye (Cze. ⁇ er., 2W3 ⁇ 4 , 77- ⁇ ); Si0 2 is non-toxic, chemically inert, and easy to surface functionalize. The range of applications of fluorescent dyes.
  • Van Blaaderen et al. used a silane coupling agent (Awg w'r 1992, 8, 2921-2931; J Colloid Interface Sci. 1993, 156, 1-18; Nano. Lett. 2005, 5, 113-117)
  • the valence coupling method anchors the dye molecules in the nano silica particles, and the method requires the dye molecules to have a functional group reactive with the silane coupling agent, which limits the types of the doping dyes and has no universality;
  • Rosenzweig et al. used electrostatic interactions ( ⁇ «g Mr 2005, 21, 4277-4288) to achieve doping of positively charged dyes in silica, but this method is not applicable due to the negative charge of the silica medium. Negatively charged dye.
  • Positively charged polyelectrolytes may be adsorbed on the surface of SiO 2, may be filled into the mesoporous pores of the SiO 2 material.
  • the positively charged polyelectrolyte-modified SiO 2 nanoparticles can adsorb negatively charged dyes to have specific optical properties (Cze. ⁇ erJWW, , ⁇ - ⁇ S), which are widely used in dye photophysics (J .Am.Chem.Soc.2000,122,5841-5848 and photochemical properties (Mater. Res. BuU. 2009, 44, 306-311).
  • the Si0 2 particles act only as a carrier and do not have a protective effect on the dye.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and to prepare a SiO 2 nanoparticle having a core-shell structure and doping a negative electroluminescent dye with a positively charged polyelectrolyte as a template; providing a simple and effective method, utilizing electrostatic force Doping a negative electroluminescent dye in silica; and simultaneously doping a plurality of dyes to control the doping amount of the dye, the particle size and morphology of the product.
  • the negative electroluminescent dye is dispersed in the cluster of the positively charged polyelectrolyte by electrostatic force to form a complex of the fluorescent dye and the polyelectrolyte, and then the composite is added to the prehydrolyzed
  • Si0 2 is adsorbed and grown on polyelectrolyte clusters.
  • Specific steps include: 1. Preparation of polyelectrolyte and negative electroluminescent dye complex solution; 2. Prehydrolysis of organic silicon source; 3. Prehydrolysis system of composite solution comprising polyelectrolyte and negative electroluminescent dye and organic silicon source (St0ber The system is mixed; 4. The hydrolyzed organosilicon source is adsorbed and condensed to form a negatively charged dye-doped SiO 2 particle.
  • the SiO 2 nanoparticle doped with a negatively charged dye using a positively charged polyelectrolyte as a template has a core-shell structure, and the inner core comprises a positively charged polyelectrolyte cluster doped with a negatively charged fluorescent dye and SiO 2 , and An optional negatively charged additive, the outer shell consists of SiO 2 , wherein the sum of the negative charges of the additive and the fluorescent dye is less than the positive charge of the polyelectrolyte cluster.
  • the polyelectrolyte cluster refers to a polyelectrolyte having a positively charged group quaternary amine group, such as polydimercaptopropyl ammonium chloride (PDADMAC), polyquaternium-7 (dimercapto) Allyl ammonium chloride-acrylamide copolymer), polyquaternium-2 (polyquaternary ammonium-containing urea-based polymer), etc.; polyelectrolyte with positively charged group quaternary amine group generally has a molecular weight of 10 to 50 Wan Dalton (Da).
  • PDADMAC polydimercaptopropyl ammonium chloride
  • polyquaternium-7 dimercapto Allyl ammonium chloride-acrylamide copolymer
  • polyquaternium-2 polyquaternary ammonium-containing urea-based polymer
  • polyelectrolyte with positively charged group quaternary amine group generally has a molecular weight of 10 to 50 Wan Dalton
  • the fluorescent dye is an organic dye having a negatively charged group, and the negatively charged group mainly refers to a sulfo group, a carboxyl group, a hydroxyl group and the like.
  • Fluorescent dyes include 8-hydroxy-1,3,6-trisulfopyridine (HPTS), 7-hydroxy-4-acetic acid coumarin (7-HCA cpd), fluorescein sodium salt (FL), sulforhodamine 101 ( Sulforhodamine 101) and the like, the present invention can also achieve simultaneous doping of a plurality of dyes.
  • the composite solution of the polyelectrolyte and the fluorescent dye is prepared by adding a polyelectrolyte solution to the alcohol-water mixture, adding a fluorescent dye solution under magnetic stirring, and continuously stirring for a suitable time to obtain a complex solution of the polyelectrolyte and the fluorescent dye.
  • the polyelectrolyte and the fluorescent dye may be an aqueous solution or an ethanol solution, and the volume ratio of the alcohol to water in the polyelectrolyte and the fluorescent dye complex solution is 7 to 10, and the polyelectrolyte is 0.1 to 0.4 mg/ml.
  • the prehydrolysis of the organic silicon source is carried out by adding ethanol, water and ammonia water to another container, and adding the siloxane under magnetic stirring for a suitable period of time to form a prehydrolysis system of the organic silicon source.
  • the molar ratio of ethanol, water, aqueous ammonia, and siloxane in the system is 161:55:1.5:1 ⁇ 2.
  • the coating of the organic silicon source is to add a complex solution of the polyelectrolyte and the fluorescent dye to the prehydrolysis system of the organic silicon source, and stir to continue the reaction for a suitable time to prepare the positively charged polyelectrolyte as a template negatively charged dye doped. Si0 2 nanoparticles.
  • the amount of siloxane in the prehydrolysis system is 720 to 1440 times that of the polyelectrolyte in the added complex solution, that is, the complex solution of the siloxane and the added fluorescent dye in the prehydrolysis system.
  • the ratio of the polyelectrolyte repeating unit is 720 to 1440:1.
  • the degree of ionization of quaternary ammonium polyelectrolyte clusters is not affected by the pH value of the system, and remains positive under alkaline conditions, acting as a bridge between soluble silicic acid oligomers and negatively charged fluorescent dyes.
  • the solvent ethanol used is a poor solvent for the polyelectrolyte, and the polyelectrolyte exists in the form of a compact cluster in the solvent, and has a substantially spherical shape.
  • the volume ratio of alcohol to water in the composite solution of polyelectrolyte and fluorescent dye is 7 ⁇ 10, which is similar to the ratio of alcohol to water in St6ber system, which can avoid the influence of polyelectrolyte template addition on St6ber system and improve the parallelism of the experiment. Regulatory. After mixing the polyelectrolyte with the fluorescent dye, stir 10 ⁇ 20 Minutes, ensure that the fluorescent dye is evenly dispersed in the polyelectrolyte, and avoid the local concentration of the fluorescent dye is too high.
  • the concentration of polyelectrolyte in the composite solution should be no more than 0.4 mg/ml, preferably 0.2 mg/ml, to avoid intermolecular cross-linking leading to aggregation of the template.
  • the maximum ratio of the charge molar ratio of the fluorescent dye to the polyelectrolyte (the ratio of the total number of negative charges of the fluorescent dye to the total number of positive charges of the polyelectrolyte) is such that both The composite formed by the mixing has zero static charge, and at this time, the composite of the polyelectrolyte and the fluorescent dye aggregates due to insufficient electrostatic repulsion.
  • the dye has no minimum amount of use, and generally takes a value greater than zero.
  • the ratio of the total number of negative charges of the fluorescent dye to the positive charge of the polyelectrolyte is preferably 0.62 or less. :1.
  • the less the amount of dye added the more uneven the morphology of the formed particles (see Figures 1, 2).
  • the charge molar ratio of the fluorescent dye to the polyelectrolyte is 0.25 or more, the positive charge of the polyelectrolyte is partially neutralized, and aggregation can be avoided.
  • a negatively charged additive may be added so that the total charge ratio is 0.25 or more, and the effect of avoiding aggregation can be achieved.
  • the St0ber system refers to a system in which an aqueous alcohol mixture is used, and NH 3 is used as a catalyst to hydrolyze and condense with an organic silicon source to form SiO 2 nanoparticles.
  • the silicone source is a siloxane such as tetraethyl orthosilicate (TEOS);
  • the alcohol in the alcohol-water mixture may be a fatty alcohol such as decyl alcohol or ethanol.
  • the NH 3 concentration of the prehydrolysis system is preferably a lower 0.14 M (mol/L).
  • the molar ratio of ethanol, water, ammonia water and siloxane in the St0ber system is preferably 161:55:1.5:1 ⁇ 2, in order to avoid the self-nucleation phenomenon. Health.
  • Stabilization of the composite of polyelectrolyte and fluorescent dye requires a minimum pre-hydrolysis time.
  • the numbers 0.062, 0.25, and 0.5 in each row are the charge molar ratios of the fluorescent dye to the polyelectrolyte, and the X in the table represents the flocculation;
  • the prehydrolysis time is less than the shortest time, the amount of soluble silica oligomer in the system is small, which is not enough to reverse the potential of the polyelectrolyte and the fluorescent dye complex, so that the template is aggregated; when the prehydrolysis time is longer than the shortest time, the polyelectrolyte template is adsorbed. After the soluble silicon potential is rapidly flipped (see Figure 3), the soluble silicon is further adsorbed and grown.
  • the prehydrolysis time of TEOS can be selected to be 15 to 25 minutes.
  • the stirring speed during the coating of the silicone source is preferably controlled below 100 rpm, in order to prevent the super-electrolyte-dye complex from accumulating due to excessive agitation; the total reaction time (calculated from the pre-hydrolysis of the organic silicon source until the reaction) The end is generally taken 24 hours, in order to ensure that the synthesis reaction is complete.
  • the resulting particles have a core-shell structure. Due to the limitations of current analytical methods, the location of the core-shell interface cannot be accurately determined, and conclusions can only be drawn through qualitative analysis.
  • the polyelectrolyte was added to the pre-hydrolyzed St0ber system, the potential was reduced to a minimum and remained unchanged after about 20 minutes, that is, the negatively charged SiO 2 was adsorbed on the polyelectrolyte, and the state of the particles was observed by electron microscopy (see Figure 4). ) , I We approximate that the particle size at this time is the size of the core.
  • the core components are polyelectrolytes, negatively charged dyes, and Si0 2 .
  • the subsequently grown shell is simply a Si0 2 shell.
  • the molecular weight of the polyelectrolyte determines the particle size of the final product.
  • the particle size of the product formed by using PDADMAC with a molecular weight of 100,000 to 200,000 Da can be used as a template. When it is 40 to 70 nm, and the PDADAC having a molecular weight of 400,000 to 500,000 Da is used, the product particle size can be 80 to 120 nm.
  • the amount of TEOS added can change the thickness of the Si0 2 shell outside the template, the amount of TEOS added is high, and the thickness of the silica shell is large.
  • the regrowth method can also be used to gradually grow the Si0 2 shell layer by adding TEOS multiple times.
  • the aggregation of the template leads to the morphology of the final particles and the non-uniformity of the particle size.
  • the template can pass the isoelectric point more quickly, thereby reducing template aggregation (see Figures 1, 2).
  • an additive such as ethylenediaminetetraacetic acid (EDTA) or a sodium salt thereof, citric acid or a sodium salt thereof may be added to the complex solution of the polyelectrolyte and the fluorescent dye, instead of the negative electroluminescent dye, the template potential may be lowered, and the reduction may also be achieved.
  • EDTA ethylenediaminetetraacetic acid
  • citric acid or a sodium salt thereof may be added to the complex solution of the polyelectrolyte and the fluorescent dye, instead of the negative electroluminescent dye, the template potential may be lowered, and the reduction may also be achieved.
  • the effect of template aggregation results in more uniform product particles.
  • the negative molar molar amount of the additive and the fluorescent dye should be less than the positive charge molar amount of the polyelectrolyte.
  • the molar ratio of the negative charge of the fluorescent dye to the additive to the positive charge of the polyelectrolyte may be between 0 and 1.
  • the value is preferably 0.62 or less. :1 , more preferably 0.25 to 0.62: 1.
  • Example 19 is the same as in Figure 2, and the experiment of adding EDTA disodium is taken as an example.
  • the molar ratio of the total negative charge of disodium EDTA to the fluorescent dye to the total positive charge of the polyelectrolyte is 0.5, and the final particle is shown in Fig. 5.
  • the visible morphology is significantly improved compared to Figure 2, and the particle size is significantly reduced.
  • Example 19 the calculation method of the doping amount and the total molar ratio of charges is as follows:
  • the molar ratio of the negative charge to the positive charge in Example 19 was 0.49 0.5
  • the doping amount of the fluorescent dye was 0.062.
  • the electrostatic interaction between the positively charged group of the polyelectrolyte and the negatively charged group of the fluorescent dye determines the amount of fluorescent dye doped in the silica medium (ie, the fluorescent dye in the complex solution of polyelectrolyte and fluorescent dye) The charge molar ratio of the polyelectrolyte).
  • Fluorescent dyes with sulfonic acid groups which have a strong effect on polyelectrolytes and can be doped in any amount within the charge saturation amount; fluorescent dyes with carboxyl groups Material, the interaction with the polyelectrolyte is relatively weak, and the maximum doping amount is reduced; the fluorescent dye with only the hydroxyl group, due to the weak acidity, the amount of negative ions dissociated in the ethanol solvent is small, and the effect with the polyelectrolyte is weak, The maximum doping amount is smaller.
  • Electrostatic force is a non-selective force by which multiple negatively charged dyes can be simultaneously doped in a polyelectrolyte core.
  • the present invention can be used in combination with other existing doping methods, and is also a feature of the present invention.
  • one-time layer doping of the dye is achieved by electrostatic force (see Fig. 8) or covalent coupling to dope other dyes.
  • a silica system doped with multiple dyes at the same time can be used to establish a simple and easy model platform for energy transfer and multicolor doping.
  • the method of the present invention is used in combination with a phosphorescent dye electrostatic force doping method to achieve layered doping of a phosphorescent dye and a fluorescent dye.
  • the specific process can be realized in three processes, namely, preparation of a composite solution of a polyelectrolyte and a fluorescent dye, pre-hydrolysis of a silicone source, and coating of a silicone source.
  • the first two processes are the same as the foregoing process;
  • the organic silicon source coating is a method of adding a complex solution of a polyelectrolyte and a fluorescent dye to a prehydrolysis system of a silicone source, and magnetic stirring at a speed of less than 100 rpm.
  • the reaction was carried out for 2 to 8 hours, and then a positively charged phosphorescent dye was added, and the magnetic stirring reaction was continued for 24 hours to effect layered doping of the fluorescent dye and the phosphorescent dye.
  • the method of the present invention is used in combination with a covalent coupling method to effect layered doping of different dyes.
  • the specific process can be realized in three processes, namely, preparation of a composite solution of a polyelectrolyte and a fluorescent dye, pre-hydrolysis of a silicone source, and coating of a silicone source.
  • the first two processes are the same as the foregoing process; the organic silicon source coating is a method of adding a complex solution of a polyelectrolyte and a fluorescent dye to a prehydrolysis system of a silicone source, and magnetic stirring at a speed of less than 100 rpm.
  • the reaction is carried out for 2 to 8 hours, and then the precursor solution of the conjugated fluorescent dye and the silane coupling agent is added, and the magnetic stirring reaction is continued for 24 hours to realize the layered doping of the fluorescent dye and the conjugateable fluorescent dye.
  • the preparation of the precursor solution after coupling the conjugated fluorescent dye and the silane coupling agent is a prior art, and specifically, a silane coupling agent and a conjugated fluorescent dye may be added to the anhydrous ethanol.
  • the ethanol solution was obtained by reacting for 12 hours under closed conditions.
  • the invention can effectively solve the problem of fluorescent dye leakage. Depending on the electrostatic force between the fluorescent dye and the polyelectrolyte, the fluorescent dye is trapped in the SiO 2 medium.
  • a fluorescent dye with a sulfonate such as HPTS, Sulforhodamine 101, etc.
  • the chargeability does not change with a change in pH, so the particles do not leak due to a change in pH.
  • fluorescent dyes with carboxylate or hydroxyl groups when the pH of the system is lowered to make it uncharged, the dye will not be trapped in the SiO 2 medium, which may cause leakage, but the electrostatic interaction between the carboxyl group or the hydroxyl group and the quaternary ammonium group will Its pKa is greatly reduced.
  • the hydroxyl group has a pKa of 7.8 in water, and the pKa is reduced to 4 after being compounded into the particles by the present invention, so when the pH of the system is in the range of 4 to 13, the hydroxyl group and The electrostatic force between the quaternary ammonium groups is not destroyed.
  • a negatively charged dye having only a hydroxyl group does not leak in a system having a pH of 4 to 13.
  • the pKa of the carboxyl group is generally lowered to 2 or less, and the leakage of the SiO 2 particles in a stable pH range of 2 to 13 can be effectively avoided. Leakage problems can be completely avoided in the pH range required for biomedical applications.
  • the final particles prepared by the method of the present invention can be stably dispersed in a common biological buffer solution (such as PBS phosphate buffer solution, Tris buffer solution, etc.) without leakage, indicating the range of biological applications.
  • a common biological buffer solution such as PBS phosphate buffer solution, Tris buffer solution, etc.
  • the salt concentration does not affect the electrostatic interaction between the dye and the polyelectrolyte, does not cause leakage, and the colloidal stability of the final particles is fully satisfactory for biological applications.
  • the method of the invention has universal applicability, can be widely applied to the doping of various fluorescent dyes with negatively charged groups in silicon dioxide, and can simultaneously dope multiple dyes to achieve dye doping amount, Controlling the particle size and morphology of the product, the prepared negatively charged dye-doped silica particles are spherical, uniform in particle size, easy in surface functionalization, and good in colloid formation, providing more for biomedical and theoretical research. select.
  • Example 1 is a transmission electron micrograph of a SiO 2 nanoparticle doped with a negatively charged dye using a positively charged polyelectrolyte as a template according to Example 1 of the present invention.
  • Embodiment 2 is a negatively charged dye doped with a positively charged polyelectrolyte as a template according to Embodiment 4 of the present invention; Transmission electron micrograph of Si0 2 nanoparticles (where the charge molar ratio of HPTS to PDADMAC is 0.062).
  • Figure 3 is a graph showing the surface potential versus time for a St0ber system pre-hydrolyzed for 25 minutes with a positively charged polyelectrolyte template (the St6ber system: ethanol, water, ammonia, orthosilicate molar ratio of 161: 55) : 1.5: 1.5, the reaction temperature was 25 ° C, and the charge molar ratio of HPTS to PDADMAC was 0.062, that is, the system of Example 4).
  • the St6ber system ethanol, water, ammonia, orthosilicate molar ratio of 161: 55
  • 1.5 1.5
  • the reaction temperature was 25 ° C
  • the charge molar ratio of HPTS to PDADMAC was 0.062, that is, the system of Example 4).
  • Figure 4 is a transmission electron micrograph of the PDADMAC-HPTS complex of different fluorescent dye contents of Examples 4, 2, 1 after 20 minutes after addition to the prehydrolyzed St6ber system.
  • Example 5 is a transmission electron micrograph of SiO 2 nanoparticles doped with a negatively charged dye using a positively charged polyelectrolyte as a template prepared in Example 19.
  • Figure 6 is a graph showing the change in the luminescence intensity of product particles of different dye doping amounts as a function of charge to polyelectrolyte charge molar ratio.
  • the charge molar ratio of the dye to PDADMAC is from left to right: 0.031, 0.062 (Example 4), 0.093, 0.123 (Example 3), 0.185, 0.25 (Example 2), 0.37, 0.5 (Example 1) .
  • Fig. 7 is a fluorescent optical expression of the dye-doped SiO 2 nanoparticles obtained in Examples 1, 6, and 7.
  • Figure 8 is a graph showing the fluorescence spectrum of a sample obtained by doping a different amount of Ru(phen) 3 in a shell layer using a composite of PDADMAC and HPTS as a core.
  • the prepared HPTS-doped spherical SiO 2 nanoparticles have good uniformity and an average particle size of 50 ⁇ 5 nm.
  • FIG. 1 is a transmission electron micrograph of the SiO 2 nanoparticles doped with a negatively charged dye using a positively charged polyelectrolyte as a template, wherein the charge molar ratio of HPTS to PDADMAC is 0.5.
  • the prepared HPTS-doped spherical SiO 2 nanoparticles have good uniformity and an average particle size of 50 ⁇ 5 nm.
  • Examples 1 to 4 changed the doping amount of the fluorescent dye.
  • the charge molar ratios of the fluorescent dye to the polyelectrolyte are 0.5, 0.25, 0.126, and 0.062, respectively.
  • the charge molar ratio of the fluorescent dye to the polyelectrolyte may be any value of 0.62:1 or less.
  • the luminescence intensity of the product particles of different dye doping amounts prepared in this range varies with the molar ratio of dye to polyelectrolyte charge as shown in Fig. 6.
  • the final particles obtained in Examples 1 to 4 had a core-shell structure.
  • the potential is 20 minutes.
  • the falling process of the clock is essentially flat (see Figure 3), indicating that the adsorption of the fluorescent dye by the polyelectrolyte cluster and the filling of the silica end at 20 minutes.
  • the morphology was observed to be approximately spherical by TEM and the size was approximately 24 nm (see Figure 4).
  • the difference in dye content has little effect on the morphology of the composite.
  • the near spherical particle size at this time is approximately regarded as the size of the core.
  • the shell layer grown thereafter is a simple Si0 2 layer. From this, the core-shell structure of the final particles was judged.
  • the ratio of alcohol to water in the composite solution of the polyelectrolyte and the fluorescent dye of Examples 3 and 5 was 8 and 10, respectively.
  • Examples 6 to 8 are doping different dyes.
  • Figure 7 shows, from left to right, the fluorescence spectra of the different dye-doped SiO 2 nanoparticles obtained in Examples 1, 6, and 7.
  • Example 9
  • the TEOS addition amounts of Examples 9 and 10 were 200 ⁇ l and 400 ⁇ , respectively, and the average particle diameter of the obtained product particles was 37 nm and 46 nm, respectively.
  • the TEOS addition amount may be any amount between 200 and 400 ⁇ , which may be different.
  • Product particles of particle size are examples of the TEOS addition amounts.
  • Examples 1, 11, 12 The size of the final product particles was adjusted by changing the molecular weight of the polyelectrolyte as a template.
  • the average particle size of the product particles were 50 nm, 80 nm, and 100 nm, respectively.
  • the dye-doped Si0 2 particle size is regulated by means of regrowth, and the TEOS addition amount can be changed within the range of 200 to 400 ⁇ M during the growth process. It is also possible to coat the multilayer Si0 2 by the regrowth method.
  • the prepared HPTS-doped spherical SiO 2 nanoparticles have good uniformity and an average particle size of 50 ⁇ 5 nm.
  • Examples 1, 14 are different quaternary ammonium salt polyelectrolytes as templates.
  • the other polyelectrolytes listed in the present invention were added in the same amounts as in Examples 1 or 14, and the final effects were also substantially the same.
  • a complex solution of the polyelectrolyte and the two fluorescent dyes is obtained; 8.4 ml of ethanol, 815 ⁇ M of water, 0.1 ml of ammonia water are added to the 20 ml glass bottle, and the time is started after adding 300 l of TEOS, and the magnetic stirring speed is controlled to be 200 rpm, 25 After a minute, 1 ml of the complex solution of polyelectrolyte and fluorescent dye was quickly added to the St0ber system, and after mixing, the magnetic stirring speed was adjusted to 50 rpm, and the reaction was continued for 24 hours.
  • Examples 15 and 16 are examples in which a plurality of dyes are simultaneously doped in a core composed of a polyelectrolyte and silica.
  • the plurality of dyes are specifically 1 to 9 in the negatively charged dyes such as 8-hydroxy-1,3,6-trisulfopyridine, 7-hydroxy-4-acetic acid coumarin, fluorescein sodium salt, and sulforhodamine 101. Both types can be doped.
  • the Ru(phen;> 3 solution may be added at any time between 2 and 8 hours after the complex solution of the polyelectrolyte and the fluorescent dye is added to the prehydrolyzed St0ber system, and the amount may be in the range of 0 to 2 ml.
  • Figure 8 is a fluorescence spectrum of product particles after addition of 0, 200, 800, 1200, 1500 ⁇ Ru(phen) 3 solution in the direction of the arrows.
  • the positively charged phosphorescent dye may also be Ru(bpy) 3 (bipyridinium), Ir(pph) 3 [tris(2-phenylpyridine) ruthenium], etc., and the amount of Example 17 the same.
  • the precursor solution coupled with FITC and APS may be added at any time between 2 and 8 hours after the complex solution of polyelectrolyte and fluorescent dye is added to the prehydrolyzed St0ber system.
  • the amount of the precursor solution may range from 0 to 2 ml.
  • the covalently coupled fluorescent dye may also be isothiocyanate rhodamine (RITC), rhodamine B, RBITC or the like.
  • the silane coupling agent may be ⁇ -aminopropyl hydrazine in addition to APS. Dioxaoxysilane, 3-aminopropyltriethoxysilane (APTS), and the like.
  • Examples 17 and 18 are the simultaneous application of the method and the phosphorescent dye electrostatic force doping method and the covalent coupling method, respectively, to realize layered doping of different dyes.
  • a solution of electrolyte and fluorescent dye complex add 8.4 ml of ethanol, 815 ⁇ water, 0.1 ml of ammonia water to a 20 ml glass vial, control the magnetic stirring speed to 200 rpm, add 300 ⁇ TEOS to start timing, and after 25 minutes, quickly add 1 ml.
  • the complex solution of polyelectrolyte and fluorescent dye was mixed and the reaction was continued at a stirring speed of 50 rpm for 24 hours.
  • FIG. 5 shows a transmission electron micrograph of the SiO 2 nanoparticles doped with a positively charged polyelectrolyte as a template in the present embodiment.
  • the effect of optimizing the morphology of the product particles can also be obtained by using EDTA, other sodium salts of EDTA, citric acid or a sodium salt thereof instead of EDTA disodium as an additive.
  • Example 1 Compared with Example 1, this example has different reaction times after adding only the organic silicon source, and the final result is the same.
  • the prepared HPTS-doped spherical SiO 2 nanoparticles have good uniformity and an average particle size of 50 ⁇ 5 nm.
  • the present embodiment was different in stirring time only after the addition of the fluorescent dye, and the obtained nanoparticles still met the requirements.
  • the stirring time is at least 10 minutes, and the desired result can be achieved within this range.
  • the charge molar ratio (i.e., dye doping amount) of the fluorescent dye to the polyelectrolyte of the present embodiment was 0.0062:1 , and the obtained particles had a core-shell structure as in Examples 1-4.
  • the fluorescent dye doping amount of this example was 0.62, and the homogeneity was good as with all SiO ⁇ rice particles having a dye doping amount of 0.25 to 0.62.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Silicon Compounds (AREA)

Description

掺杂负电染料的二氧化硅纳米粒子及其制备方法
技术领域
本发明属发光纳米材料的技术领域, 特别涉及以正电聚电解质为模板掺 杂负电染料的 Si02纳米粒子及其制备方法。
背景技术
染料掺杂二氧化硅纳米粒子在生物、 医学以及光物理化学理论研究等领 域具有广泛的应用。 将荧光染料在二氧化硅内掺杂可提高其很多性能: 染料 固定在 Si02介质中, 可与溶剂、 氧气等隔离, 提高染料的分散性和光稳定性 (Nano Letter 2005, 15,113-117); 可通过调节 Si02粒子结构来改变染料微环境, 提高染料的发光效率和寿命 (Cze . ^er.,2W¾ , 77- ^); Si02无毒、 具 有化学惰性、 易表面官能化, 可拓展荧光染料的应用范围。
实现染料分子在二氧化硅粒子内部稳定掺杂而不发生染料泄漏, 一直是 期待解决的技术问题。 Van Blaaderen 等人使用硅烷偶联剂( awg w'r 1992,8,2921-2931; J Colloid Interface Sci.1993, 156, 1-18; Nano. Lett.2005,5, 113-117),利用共价偶联的方式,将染料分子锚定在纳米二氧化硅 粒子内, 该方法要求染料分子具有可与硅烷偶联剂反应的官能团, 限制了可 掺杂染料的种类,不具有普适性; Rosenzweig等利用静电相互作用( ^«g Mr 2005, 21, 4277-4288) , 实现带正电染料在二氧化硅内的掺杂, 但由于二氧化 硅介质带负电荷, 所以该方法不适用于带负电的染料。
带有正电荷的聚电解质既可以吸附在 Si02表面,也可以填充入介孔 Si02 材料的孔道中。正电聚电解质修饰后的 Si02纳米粒子可以吸附带有负电荷的 染料, 使其具有特定光学性质(Cze . ^erJWW, ,^^-^ S), 被广泛的应用 于 染料光物 理 (J.Am.Chem.Soc.2000,122,5841-5848 和 光化 学 性质 (Mater.Res.BuU.2009,44, 306-311)的研究。 但此时 Si02粒子只起载体的作用, 对染料并不具有保护作用。
发明内容
本发明要解决的技术问题是克服背景技术的不足, 制备出具有核壳结构 的以正电聚电解质为模板掺杂负电荧光染料的 Si02纳米粒子;提供一种简单 有效的方法, 利用静电力在二氧化硅中掺杂负电荧光染料; 并可实现多种染 料的同时掺杂, 实现对染料掺杂量、 产物粒径及形貌的控制。
首先通过静电力作用, 将负电荧光染料均勾分散在正电聚电解质的团簇 中, 形成荧光染料与聚电解质的复合物, 然后将该复合物加入到经预水解的
St0ber体系中, 在聚电解质团簇上吸附、 生长 Si02。 具体步骤包括: 1.聚电 解质与负电荧光染料复合物溶液的制备; 2.有机硅源的预水解; 3.包括聚电解 质和负电荧光染料的复合物溶液与有机硅源的预水解体系 (St0ber体系) 的 混合; 4. 水解后的有机硅源吸附、 缩合, 形成负电染料掺杂的 Si02粒子。
本发明的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子,具有核 壳结构, 内核包含带正电的聚电解质团簇, 其掺杂有带负电的荧光染料和 Si02, 以及可选择的带负电的添加剂, 外壳由 Si02组成, 其中, 添加剂和荧 光染料所带负电荷之和小于聚电解质团簇所带正电荷。
所述的聚电解质团簇, 是指带有正电基团季胺基的聚电解质, 如聚二曱 基二烯丙基氯化铵(PDADMAC ) 、 聚季铵盐 -7 (二曱基二烯丙基氯化铵-丙 烯酰胺共聚物) 、 聚季铵盐 -2 (聚季铵含脲基聚合物)等; 带有正电基团季 胺基的聚电解质的分子量一般在 10〜50万道尔顿 (Da ) 。
所述的荧光染料, 是带负电基团的有机染料, 负电基团主要指磺基、 羧 基、 羟基等。 荧光染料包括 8-羟基 -1,3,6-三磺基吡(HPTS ) 、 7-羟基 -4-乙酸 香豆素(7-HCA cpd )、 荧光素钠盐(FL )、磺基罗丹明 101 ( Sulforhodamine 101 )等, 本发明亦可实现多种染料同时掺杂。
本发明的以正电聚电解质为模板掺杂负电荧光染料的 Si02纳米粒子的 制备方法, 经聚电解质与荧光染料的复合物溶液制备、 有机硅源的预水解、 有机硅源包覆的过程。 具体流程如图 9所示。
所述的聚电解质与荧光染料的复合物溶液制备, 是在醇水混合液中加入 聚电解质溶液, 磁力搅拌下加入荧光染料溶液, 持续搅拌适当时间, 得到聚 电解质与荧光染料的复合物溶液。 优选地, 聚电解质和荧光染料可以是水溶 液或者乙醇溶液, 并且聚电解质和荧光染料复合物溶液中醇水体积比 =7〜10、 聚电解质质量浓度 0.1-0.4 mg/ml。
所述的有机硅源的预水解, 是向另一个容器中加入乙醇、 水和氨水, 磁 力搅拌下加入硅氧烷, 反应适当的时间, 形成有机硅源的预水解体系。 优选 地, 该体系中乙醇、 水、 氨水、 硅氧烷的摩尔比为 161 :55: 1.5: 1〜2。
所述的有机硅源包覆, 是将聚电解质与荧光染料的复合物溶液加入到有 机硅源的预水解体系中, 搅拌继续反应适当时间, 制得以正电聚电解质为模 板负电染料掺杂的 Si02纳米粒子。 优选地, 预水解体系中硅氧烷的量按摩尔 比计为加入的复合物溶液中的聚电解质的 720〜1440倍, 即预水解体系中的 硅氧烷与加入的荧光染料的复合物溶液中聚电解质重复单元的比例为 720〜1440: 1。
季铵盐类聚电解质团簇的电离程度不受体系 pH值的影响, 在碱性条件 下仍保持带正电性, 担当可溶性硅酸寡聚物与负电荧光染料间的桥梁。 釆用 的溶剂乙醇为聚电解质的不良溶剂, 聚电解质在该溶剂中以紧缩的团簇形式 存在, 形状近似球形。
聚电解质与荧光染料的复合物溶液中醇水体积比为 7〜10 , 该比例与 St6ber体系中的醇水比相近, 可避免聚电解质模板加入对 St6ber体系产生影 响,提高实验的平行性及可调控性。 聚电解质与荧光染料混合后,搅拌 10〜20 分钟, 确保荧光染料在聚电解质中分散均匀, 避免荧光染料浓度局部过高。 复合物溶液中聚电解质质量浓度应不大于 0.4 mg/ml , 优选 0.2 mg/ml , 避免分 子间交联作用导致模板的聚集。
在聚电解质与荧光染料的复合物溶液中, 荧光染料与聚电解质的电荷摩 尔比(荧光染料带有负电荷的总数与聚电解质带有正电荷的总数的比值) 的 最大比例应满足使两者混合形成的复合物静电荷为零, 此时聚电解质与荧光 染料的复合物由于静电斥力不足而发生聚集。 染料没有最少使用量, 一般取 大于零的数值均可, 为了使复合物模板能够吸附足量的二氧化硅, 荧光染料 带有负电荷的总数与聚电解质带有正电荷的比值优选小于等于 0.62:1。 但是 染料加入量越少, 形成粒子的形貌越不均匀 (参见图 1、 2 ) , 当荧光染料与 聚电解质的电荷摩尔比大于等于 0.25时, 聚电解质正电荷被部分中和, 可以 避免聚集, 得到形貌均一的球形 Si02纳米粒子。 如果想要掺杂小于 0.25量 的染料并要求较好的均一性的话, 可以加入带负电的添加剂, 使总电荷比大 于等于 0.25, 也可以达到避免聚集的作用。
St0ber体系是指在醇水混合物中, 以 NH3作催化剂, 釆用有机硅源水解 缩合形成 Si02纳米粒子的体系。有机硅源为硅氧烷,如正硅酸乙酯(TEOS ) ; 醇水混合物中的醇可以是曱醇、 乙醇等脂肪醇。 为使包覆过程在较温和的条 件下进行,预水解体系的 NH3浓度优选为较低的 0.14 M(mol/L)。原因是在高 氨水浓度下, TEOS 的水解缩合速度很快, 体系迅速生成 Si02粒子, 加入 聚电解质后立即出现絮状沉淀, 聚电解质诱导了 Si02的聚集。 在低氨水浓度 条件下, TEOS 水解缩合速度较慢, 其水解后产物先生成较小的寡聚物 (统 称可溶性 Si02 ) , 这种水解后产物不会导致聚集, 反而会吸附在聚电解质团 簇上, 使其电位翻转, 从而实现胶体稳定性。
在保证胶体稳定性的前提下, 当有机硅源自身的生长速度大于有机硅源 在聚电解质团簇上的生长速度时, 就会产生自成核现象。 St0ber体系中乙醇、 水、 氨水、 硅氧烷的摩尔比优选 161:55:1.5: 1〜2, 是为了避免自成核现象的发 生。
聚电解质与荧光染料的复合物稳定包覆需要一个最短预水解时间。如表 1 所示, 各行中的数字 0.062、 0.25、 0.5为荧光染料与聚电解质的电荷摩尔比, 表中的 X代表絮沉; 代表正常。
表 1
Figure imgf000007_0001
由表 1可知, 荧光染料吸附量越多, 需要预水解时间越短。预水解时间小 于最短时间时, 体系中可溶性二氧化硅寡聚物数量较少, 不够使聚电解质与 荧光染料复合物的电位翻转, 使模板聚集; 预水解时间大于最短时间时, 聚 电解质模板吸附可溶性硅后电位快速翻转(参见图 3 ), 可溶性硅进一步吸附 和生长, 在聚电解质团簇内部填充后, 在团簇表面生长, 经 24小时形成负电 荧光染料掺杂的 Si02纳米粒子。 但如果预水解时间太长, 二氧化硅自身形成 较大的粒子影响对模板的包覆。 在预水解体系 N¾的浓度为 0.14M情况下, TEOS的预水解时间可选择为 15〜25分钟。
有机硅源包覆过程中的搅拌速度最好控制在 lOOrpm以下, 此举是为了防 止过快搅拌导致聚电解质 -染料复合物聚集; 总反应时间(从有机硅源的预水 解开始计算, 直至反应结束)一般取 24小时, 此举是为了确保合成反应完全。
最终形成的粒子具有核壳结构。 由于目前分析手段的局限, 无法准确确 定核壳界面位置, 只能通过定性分析得出结论。 当聚电解质加入到经预水解 的 St0ber体系中后, 20分钟左右电位降低到最小值并保持不变, 即负电的 Si02在聚电解质上完成吸附, 通过电镜观察此时粒子状态 (参见图 4 ) , 我 们近似的认为此时的粒子尺寸即为核的大小。 核的成分为聚电解质、 负电染 料以及 Si02。 后续生长的壳层只是单纯的 Si02壳层。
聚电解质的分子量大小可决定最终产物的粒径大小, 分子量越大形成的 团簇越大, 产物粒径越大, 利用分子量为 10万〜 20万 Da的 PDADMAC作 为模板形成的产物粒子粒径可为 40〜70 nm, 而釆用分子量为 40万〜 50万 Da 的 PDADMAC时, 产物粒径可为 80〜120 nm。 TEOS的加入量可改变模板外 的 Si02壳层厚度, TEOS加入量高, 二氧化硅壳层的厚度大。 亦可利用再生 长法, 通过多次加入 TEOS, 逐步生长 Si02壳层。
模板的聚集会导致最终粒子的形貌以及粒径的不均一。 通过增加荧光染 料的用量, 使模板表面电位更接近于零, 模板可以更迅速的通过等电点, 从 而减少模板聚集(参见图 1、 2 ) 。 此外也可在聚电解质与荧光染料的复合物 溶液中加入添加剂 , 如乙二胺四乙酸 ( EDTA )或其钠盐、 柠檬酸或其钠盐, 代替负电荧光染料降低模板电位, 也可以达到减少模板聚集的效果, 得到更 加均一的产物粒子。 同理, 其中添加剂与荧光染料的负电荷摩尔总量应该小 于聚电解质的正电荷摩尔量。 一般, 荧光染料与添加剂所带负电荷之和与聚 电解质所带正电荷的电荷摩尔比取 0〜1之间的数值均可, 为了保证能够吸附 足够的 Si02, 该值优选为小于等于 0.62:1 , 更优选为 0.25〜0.62: 1。 实施例 19以 与图 2完全相同条件, 并添加 EDTA二钠的实验为例, 使 EDTA二钠与荧光染 料的负电荷总数与聚电解质的正电荷总数摩尔比为 0.5 , 最终粒子见图 5 , 可 见形貌比图 2有了明显改善, 粒径明显减小。
以实施例 19为例, 掺杂量及电荷总摩尔比的计算方法如下:
1 )聚电解质的正电荷摩尔数:
PDADMAC加入质量为 20 μ 1 X 10 mg/ml = 0.2 mg
PDADMAC的单元摩尔量为 M = 161.5 g/mol
所以, 加入的 PDADMAC的正电荷单元数为: 0.2 mg / 161.5 g/mol = 1.238 10"& mol
由于 PDADMAC每个单元带有一个正电荷基团季铵基,所以加入的正电 荷摩尔量为 1.238 X 10"6 moL
2 ) 染料 HPTS的负电荷摩尔数:
HPTS加入质量= 10 μ 1 X 1 mg/ml = 0.01 mg
HPTS的摩尔质量 M = 524.39 g/mol
所以, 加入的 HPTS的摩尔量 = 0.01 mg / 524.39 g/mol = 1.91 10"8 mol 每个 HPTS分子带有四个负电荷, 所以总的负电荷摩尔数为:
1.91 X 10-8 mol 4 = 7.64 10"8 mol
3 )加入的添加剂 EDTA二钠的负电荷摩尔数:
EDTA二钠加入质量 = 330 μ 1 /5 x 0.75 mg/ml = 0.0495 mg
EDTA二钠的摩尔质量 M = 372.24 g/mol
所以, 加入的 EDTA二钠的摩尔量为 0.0495 mg/372.24 g/mol = 1.33 10"7 mol
每个 EDTA二钠分子带有四个负电荷, 所以总的负电荷摩尔数为: 1.33 X 10"7 mol 4 = 5.32 10"7mol
4 ) 负电荷总数为 7.64 x 10-8 mol + 5.32 x 10-7 mol = 6.08 10"7 mol 正电荷总数为 1.238 10"6 mol
因此, 实施例 19中负电荷与正电荷摩尔比例为 0.49 0.5 , 而荧光染料的 掺杂量为 0.062。
聚电解质的正电荷基团与荧光染料的负电荷基团间的静电作用强弱决定 着荧光染料在二氧化硅介质中的掺杂量(即聚电解质与荧光染料的复合物溶 液中荧光染料与聚电解质的电荷摩尔比) 。 带有磺酸基团的荧光染料, 与聚 电解质的作用强, 可以掺杂电荷饱和量以内的任意的量; 带有羧基的荧光染 料, 与聚电解质的作用力相对较弱, 最大掺杂量减少; 只带有羟基的荧光染 料, 由于酸性很弱, 在乙醇溶剂中解离出的负离子量少, 与聚电解质的作用 弱, 最大掺杂量更小。
静电力是一种无选择性的作用力, 借助该作用力可实现多种负电染料在 聚电解质内核中同时掺杂。另外本发明可以和现有其他的掺杂方法结合使用, 也是本发明的一个特点。 如在外壳生长过程中, 利用静电力作用 (参见图 8 ) 或共价偶联作用掺杂其他染料, 实现染料的一次性分层掺杂。 同时掺杂多种 染料的二氧化硅体系可为能量转移、 多色掺杂等研究建立简便、 易行的模型 平台。
本发明的方法与磷光染料静电力掺杂法结合使用, 实现磷光染料与荧光 染料的分层掺杂。 具体过程可以分三个过程实现, 即聚电解质与荧光染料的 复合物溶液制备、 有机硅源的预水解、 有机硅源包覆的过程。 其中前两个过 程与前述的过程相同; 所述的有机硅源包覆, 是将聚电解质与荧光染料的复 合物溶液加入到有机硅源的预水解体系中,以速度为小于 100 rpm磁力搅拌反 应 2〜8小时, 再加入正电磷光染料, 继续磁力搅拌反应至 24小时, 以实现荧 光染料与磷光染料的分层掺杂。
本发明的方法与共价偶联法结合使用, 可以实现不同染料的分层掺杂。 具体过程可以分三个过程实现, 即聚电解质与荧光染料的复合物溶液制备、 有机硅源的预水解、 有机硅源包覆的过程。 其中前两个过程与前述的过程相 同; 所述的有机硅源包覆, 是将聚电解质与荧光染料的复合物溶液加入到有 机硅源的预水解体系中, 以速度为小于 100 rpm磁力搅拌反应 2〜8小时, 再加 入可偶联的荧光染料与硅烷偶联剂偶联后的前驱物溶液, 继续磁力搅拌反应 至 24小时, 以实现荧光染料与可偶联荧光染料的分层掺杂。 这里的可偶联荧 光染料与硅烷偶联剂偶联后的前驱物溶液的制取是现有的技术, 具体的也可 以是向无水乙醇当中加入硅烷偶联剂和可偶联荧光染料的乙醇溶液, 封闭条 件下反应 12小时得到的。 本发明可以有效解决荧光染料泄漏问题。 依赖于荧光染料与聚电解质之 间的静电力作用, 荧光染料被束縛在 Si02介质中。 对于带有磺酸根的荧光染 料(如 HPTS、 Sulforhodamine 101等) 带电性不随 pH值改变而改变, 所以 粒子不会因 pH值改变而发生泄漏。 对于带有羧酸根或羟基的荧光染料, 当 体系 pH值降低使其不带电后, 染料将无法束縛在 Si02介质中, 可能导致泄 漏, 但是羧基或羟基与季铵基之间的静电力作用会使其 pKa的大幅度降低。 以 7-羟基 -4-乙酸香豆素为例, 其羟基在水中 pKa为 7.8, 通过本发明复合到 粒子中后 pKa降至 4, 所以当体系的 pH在 4〜13范围内时, 羟基与季铵基之 间的静电力作用都不会被破坏。 只带羟基的负电染料, 在 pH为 4〜13的体系 中不会发生泄漏。 羧基 pKa一般则会降低至 2 以下, 在 Si02粒子稳定的 pH=2〜13范围内, 都可以有效的避免泄漏。 生物医学应用需要的 pH范围内 可以完全避免泄漏问题。 另外, 实验表明, 以本发明方法制备的最终粒子可 以稳定的分散在常用的生物緩冲溶液中 (如 PBS磷酸盐緩冲溶液、 Tris緩冲 溶液等) , 并不发生泄漏, 说明生物应用范围的盐浓度不会影响染料与聚电 解质之间的静电相互作用, 不会导致泄漏, 并且最终粒子的胶体稳定性完全 可以满足生物应用需要。
本发明的方法具有普适性, 可广泛的应用于各种带有负电基团的荧光染 料在二氧化硅中的掺杂, 并可实现多种染料的同时掺杂, 实现染料掺杂量、 产物粒径及形貌的控制, 制得的负电染料掺杂的二氧化硅粒子为球形, 粒径 均匀, 表面官能化容易, 形成的胶体稳定性好, 为生物医学、 理论研究等提 供更多选择。
附图说明
图 1 为本发明实施例 1 制得的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的透射电镜图片。
图 2 为本发明实施例 4 制得的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的透射电镜图片 (其中 HPTS与 PDADMAC的电荷摩尔比为 0.062 ) 。
图 3为 St0ber体系预水解 25分钟后加入正电聚电解质模板情况下, 表 面电位随时间的变化曲线 (其中的 St6ber体系: 乙醇、 水、 氨水、 正硅酸 乙酯按摩尔比为 161: 55: 1.5: 1.5, 反应温度 25 °C , HPTS与 PDADMAC 的电荷摩尔比为 0.062, 即实施例 4体系 ) 。
图 4为实施例 4、 2、 1的不同荧光染料含量的 PDADMAC-HPTS复合物 加入到经过预水解的 St6ber体系后 20分钟时的透射电镜图片。
图 5为实施例 19制得的以正电聚电解质为模板掺杂负电染料的 Si02纳 米粒子的透射电镜图片。
图 6是不同染料掺杂量的产物粒子的发光强度随染料与聚电解质电荷摩 尔比的变化趋势。 其中染料与 PDADMAC 的电荷摩尔比从左往右分别为: 0.031、 0.062 (实施例 4 ) 、 0.093、 0.123 (实施例 3 ) 、 0.185、 0.25 (实施例 2 ) 、 0.37、 0.5 (实施例 1 ) 。
图 7为实施例 1、 6、 7所得到的染料掺杂 Si02纳米粒子的荧光光语。 图 8为实施例 17, 以 PDADMAC与 HPTS的复合物为核, 在壳层中掺 杂不同量的 Ru(phen)3所得到粒子的荧光光谱。
图 9为掺杂负电染料的 Si02粒子的结构以及制备流程图。
具体实施方式 以下是试验时, 需要用到的参数: (反应条件: 温度 25 °C , 1个大气压) 乙醇, 密度 0.79 g/ml, 分子量 46 g/mol;
水, 密度 1 g/ml, 分子量 18 g/mol;
氨水, 密度 0.91 g/ml, 质量分数 25%, NH3分子量 17 g/mol;
TEOS, 密度 0.931 g/ml, 分子量 208.33 g/mol; PDADMAC, 重复单元摩尔式量 161.5 g/mol。 实施例 1
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 lHPTS水溶液( 1 mg/ml ) , 搅拌 20分钟得到 聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 lTEOS开始记后开 始计时, 反应 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入 到 St6ber体系中, 混匀后以控制磁力搅拌速度为 50 rpm, 继续反应至 24小时。 制得的 HPTS掺杂的球形 Si02纳米粒子均一性好, 平均粒径在 50±5 nm。
图 1给出本实施例制得的以正电聚电解质为模板掺杂负电染料的 Si02纳 米粒子的透射电镜图片, 其中 HPTS与 PDADMAC的电荷摩尔比为 0.5。
实施例 2
在 20 ml玻璃瓶中加入 2.3 ml的醇 /水 =8的醇水混合液、 2.4 ml 乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500rpm ) 下加入 200 μΐ HPTS水溶液(lmg/ml ) , 搅拌 20分钟得到 聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 lTEOS开始记后开 始计时, 反应 25分钟后, 取 lml聚电解质与荧光染料的复合物溶液快速加入 到 St6ber体系中, 混匀后以控制磁力搅拌速度为 50 rpm, 继续反应至 24小时。 制得的 HPTS掺杂的球形 Si02纳米粒子均一性好, 平均粒径在 50±5 nm。
Figure imgf000013_0001
在 20 ml玻璃瓶中加入 3.2 ml的醇 /水 =8的醇水混合液、 1.6 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 lOO lHPTS的水溶液(1 mg/ml ) , 搅拌 20分钟, 得到聚电解质与荧光染料的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始 记时, 25分钟后, 快速加入 1 ml聚电解质与荧光染料的复合物溶液, 混匀后 在 50 rpm搅拌速度, 继续反应至 24小时。
实施例 4
在 20 ml玻璃瓶中加入 3.65 ml的醇 /水 =8的醇水混合液、 1.2 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500rpm ) 下加入 50 μΐ HPTS的水溶液( lmg/ml ) , 搅拌 20分钟, 得 到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水,控制磁力搅拌速度为 200 rpm,加入 300 μΐ TEOS开始计时, 25分钟后,快速加入 1 ml聚电解质与荧光染料的复合物溶液,混匀后在 50 rpm 搅拌速度, 继续反应至 24小时。
图 2给出本实施例制得的以正电聚电解质为模板掺杂负电染料的 Si02纳 米粒子的透射电镜图片, 其中 HPTS与 PDADMAC的电荷摩尔比为 0.062。
实施例 1〜4 改变的是荧光染料的掺杂量。 荧光染料与聚电解质的电荷 摩尔比分别为 0.5, 0.25, 0.126, 0.062。 除此之外, 荧光染料与聚电解质的电 荷摩尔比可以为小于等于 0.62:1的任意值。 在其他条件相同的情况下, 在此 范围内制备出的不同染料掺杂量的产物粒子的发光强度随染料与聚电解质电 荷摩尔比变化趋势见图 6。
实施例 1〜4制得的最终粒子具有核壳结构。 实施例 1、 2、 4中聚电解质与 荧光染料的复合物溶液加入到经过预水解的 St0ber体系中后, 电位经过 20分 钟的下降过程后基本持平(见图 3 ) , 说明聚电解质团簇对荧光染料的吸附和 二氧化硅的填充在 20分钟时结束。通过透射电镜观察此时刻形貌为近似球形, 尺寸大约 24 nm (见图 4)。 染料含量不同对复合物的形貌尺寸影响不大。 此时 的近球形粒子大小即近似地被视为核的大小。 此后生长的壳层为单纯的 Si02 层。 由此判断最终粒子的核壳结构。
实施例 5
在 20 ml玻璃瓶中加入 2.8 ml的醇 /水 =10的醇水混合液、 2 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500rpm ) 下加入 100 μΐ HPTS的水溶液( 1 mg/ml ) , 搅拌 20分钟, 得到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始 计时, 25分钟后, 快速加入 1 ml聚电解质与荧光染料的复合物溶液, 混匀后 在 50 rpm搅拌速度, 继续反应至 24小时。
实施例 3和 5 聚电解质与荧光染料的复合物溶液中的醇水比不同, 分别 为 8和 10。
实施例 6
在 20 ml玻璃瓶中加入 500 μΐ的醇 /水 =8的醇水混合液、 4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm )下加入 400 μΐ 7-羟基 -4-乙酸香豆素的水溶液( 2x l(T3M ) 。 搅拌 20分钟得到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 加入 300 μΐ TEOS后开始计时, 控制磁力 搅拌速度为 200 rpm, 搅拌 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶 液快速加入到 St6ber体系中,混匀后调小磁力搅拌速度至 50 rpm,继续反应至 24小时。
实施例 7
在 20 ml玻璃瓶中加入 3.2 ml的醇 /水 =8的醇水混合液、 1.6 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 100 μΐ荧光素钠盐的水溶液(1 mg/ml ) , 搅拌 20 分钟后得到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml 乙醇、 815 μΐ水、 0.1 ml氨水, 加入 300 μΐ TEOS后开始计时, 控制磁力搅拌 速度为 200 rpm, 搅拌 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快 速加入到 St6ber体系中, 混匀后调小磁力搅拌速度至 50 rpm, 继续反应至 24 小时。
实施例 8
在 20 ml玻璃瓶中加入 3.65ml的醇 /水 =8的醇水混合液、 1.2 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm )下加入 50μ1磺基罗丹明 101的水溶液( 1 mg/ml ) , 搅拌 20 分钟后,得到聚电解质与荧光染料的复合物溶液;向 20ml玻璃瓶中加入 8.4 ml 乙醇、 815 μΐ水、 0.1 ml氨水, 加入 300 μΐ TEOS后开始计时, 控制磁力搅拌 速度为 200 rpm, 搅拌 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快 速加入到 St6ber体系中, 混匀后调小磁力搅拌速度至 50 rpm, 继续反应至 24 小时。
实施例 6〜8是对不同染料进行掺杂。
图 7从左至右依次为实施例 1 , 6, 7所得到的不同染料掺杂 Si02纳米粒子 的荧光光谱。 实施例 9
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml 乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 μΐ HPTS水溶液( 1 mg/ml ) , 搅拌 20分钟后得 到聚电解质与 HPTS的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水,加入 200 l TEOS后开始计时,控制磁力搅拌速度为 200 rpm, 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber体系 中, 调节力搅拌速度为 50 rpm, 继续反应至 24小时。
实施例 10
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml 乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400μ1 HPTS水溶液(1 mg/ml ) , 搅拌 20分钟后得 到聚电解质与荧光染料的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 加入 400 μΐ TEOS后开始计时, 控制磁力搅拌速度为 200 rpm, 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber 体系中, 调节磁力搅拌速度为 50 rpm, 继续反应至 24小时。
实施例 9和 10的 TEOS加入量分别为 200 μ1、 400 μΐ, 得到产物粒子的平 均粒径分别为 37 nm、 46 nm, TEOS加入量可以是 200〜400 μΐ之间的任意量, 可以得到不同粒径的产物粒子。
实施例 11
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml 乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 20万〜 35万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 lHPTS水溶液(lmg/ml ) , 搅拌 20分钟后得 到聚电解质与荧光染料的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 加入 300 μΐ TEOS后计时, 控制磁力搅拌速度为 200 rpm, 25分钟后取 1 ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber体系中, 混匀后调节磁力搅拌速度为 50 rpm, 继续反应至 24小时。
实施例 12
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml 乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 40万〜 50万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 μΐ HPTS水溶液( 1 mg/ml ) , 搅拌 20分钟后得 到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 加入 300 μΐ TEOS后开始计时, 控制磁力搅拌速度为 200 rpm, 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber 体系中, 混匀后调节磁力搅拌速度至为 50 rpm, 继续反应至 24小时。
实施例 1 、 11、 12 即通过改变作为模板的聚电解质的分子量来调控最 终产物粒子的大小。 产物粒子平均粒径分别为 50 nm、 80 nm、 100 nm。
实施例 13
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 μΐ HPTS水溶液( lmg/ml ) 。 搅拌 20分钟后得 到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇, 815 μΐ水, 0.1 ml氨水, 加入 300 μΐ TEOS后开始计时, 控制磁力搅拌速度为 200 rpm, 25分钟时, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber 体系中, 混匀后调节磁力搅拌速度至 50 rpm, 在封闭的条件下继续反应至 12 小时, 得到大小约为 42 nm的 HPTS掺杂 Si02粒子。 向体系继续加入 70 μΐ水, 200 μΐ TEOS , 密封的条件下反应 12小时, 生 长成大约 6 nm的壳层, 最终形成 48 nm粒子。
此实施例为通过再生长的方式, 调控染料掺杂 Si02粒径, 在生长过程中 TEOS的加入量在 200〜400 μΐ范围内可以改变。 也可以利用再生长法包覆多层 Si02
实施例 14
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的聚季铵盐 -7水溶液,磁力搅拌(速度为 500 rpm )下加入 400 μΐ HPTS水溶液( 1 mg/ml ) , 搅拌 20分钟得到聚电解质与荧光染料的复合物 溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 控制磁力搅 拌速度为 200 rpm, 加入 300 μΐ TEOS后开始计时, 反应 25分钟后, 取 1 ml聚 电解质与荧光染料的复合物溶液快速加入到 St0ber体系中, 混匀后以控制磁 力搅拌速度为 50 rpm, 继续反应至 24小时。 制得的 HPTS掺杂的球形 Si02纳米 粒子均一性好, 平均粒径在 50±5 nm。
实施例 1、 14为不同的季铵盐类聚电解质作为模板。本发明中所列的其它 聚电解质加入量与实施例 1或 14相同, 最终效果也基本相同。
实施例 15
在 20 ml玻璃瓶中加入 2.3 ml的醇 /水 =8的醇水混合液、 2.4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 40万〜 50万 Da )水溶液, 磁力搅拌 的状态 (速度为 500 rpm ) 下加入 100 μΐ HPTS的水溶液( 1 mg/ml ) 、 100 μΐ 磺基罗丹明 101水溶液(2χ 10_3 Μ ) 。 搅拌 20分钟后, 得到聚电解质与两种 荧光染料的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml 氨水, 加入 300 μΐ TEOS后开始计时, 控制磁力搅拌速度为 200 rpm, 25分钟 后,取 l ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber体系中, 混匀 后调小磁力搅拌速度至 50 rpm, 继续反应至 24小时。
实施例 16
在 20 ml玻璃瓶中加入 2.3 ml的醇 /水 =8的醇水混合液、 2.4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 40万〜 50万 Da )水溶液, 磁力搅拌 的状态(速度为 500 rpm )下加入 100 μΐ 7-羟基 -4-乙酸香豆素的水溶液( 2x 1 (Τ3 Μ ) 、 100 μΐ荧光素钠盐的水溶液( 1 mg/ml ) 。 搅拌 20分钟后, 得到聚电解 质与两种荧光染料的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水,加入 300 l TEOS后开始计时,控制磁力搅拌速度为 200 rpm, 25分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入到 St0ber体系 中, 混匀后调小磁力搅拌速度至 50 rpm, 继续反应至 24小时。
实施例 15和 16是在聚电解质和二氧化硅组成的内核中对多种染料进行 同时掺杂的实施例。多种染料具体的说就是 8-羟基 -1,3,6-三磺基吡、 7-羟基 -4- 乙酸香豆素、 荧光素钠盐、 磺基罗丹明 101等负电染料中的 1〜2种, 且均可 实现掺杂。
实施例 17
在 20 ml玻璃瓶中加入 3.65 ml的醇 /水 =8的醇水混合液、 1.2 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 50 μΐ HPTS的水溶液( 1 mg/ml ) , 搅拌 20分钟, 得到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始 计时, 25分钟后, 快速加入 1 ml聚电解质与荧光染料的复合物溶液, 混匀后 在 50 rpm搅拌速度, 继续反应 2小时, 加入 Ru(phen)3 (菲啰啉联钌) (1 mg/ml)50 μΐ, 继续反应至 22小时。
可以在聚电解质与荧光染料的复合物溶液加入到经预水解的 St0ber体系 后的 2〜8小时之间的任意时刻加入 Ru(phen;>3溶液, 加入量的范围可以是 0〜2 ml, 图 8沿箭头方向分别为加入了 0、 200、 800、 1200、 1500 μΐ的 Ru(phen)3溶 液后产物粒子的荧光光谱。
除 Ru(phen)3外, 正电磷光染料还可以是 Ru(bpy)3 (联吡啶钌)、 Ir(pph)3 [三 (2-苯基吡啶)合铱]等, 用量与实施例 17相同。
实施例 18
向 4 ml无水乙醇当中加入 50 μΐ APS ( γ—氨丙基三乙氧基硅烷)和 1 ml FITC (异硫氰根荧光素, 1 mg/ml乙醇溶液)封闭条件下反应 12小时, 得到 荧光素和硅烷偶联剂偶联后的前驱物溶液, 荧光素和硅烷偶联剂偶联后的前 驱物溶液的制取是现有的技术; 在 20ml玻璃瓶中加入 3.65 ml 的醇 /水 = 8的 醇水混合液、 1.2 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌(速度为 500 rpm ) 下加入 100 μΐ 7-羟基 -4- 乙酸香豆素的水溶液(2χ 10·3 Μ ) , 搅拌 20分钟, 得到聚电解质与荧光染料 的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水, 控 制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始计时, 25分钟后, 快速加 入 1 ml聚电解质与荧光染料复合溶液的混合溶液, 混匀后在 50 rpm搅拌速度, 继续反应 2小时, 加入 l ml前驱物溶液, 继续反应至 22小时。
可以在聚电解质与荧光染料的复合物溶液加入到经预水解的 St0ber体系 后的 2〜8小时之间的任意时刻加入 FITC与 APS偶联后的前驱物溶液。 前驱物 溶液的量的范围可以是 0〜2 ml。
除 FITC外, 可共价偶联的荧光染料还可以是异硫氰根罗丹明 (RITC ) 、 异硫氰酸罗丹明 B ( RBITC )等。 硅烷偶联剂除 APS外还可以是 γ—氨丙基曱 基二曱氧基硅烷、 3-氨基丙基三乙氧基硅烷(APTS )等。
实施例 17、 18 分别是本方法与磷光染料静电力掺杂法、共价偶联法的同 时应用, 实现不同染料的分层掺杂。
实施例 19
在 20 ml玻璃瓶中加入 680 μΐ的醇 /水 =8的醇水混合液、 3.840 ml乙醇、 100 μΐ浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm )下加入 50 μΐ HPTS的水溶液( 1 mg/ml ) 、 330 μΐ二水合乙 二胺四乙酸二钠 (EDTA二钠) 的水溶液 (0.75 mg/ml), 搅拌 20分钟, 得到聚 电解质与荧光染料的复合物溶液; 向 20ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始计时, 25分钟后,快速加入 1 ml聚电解质与荧光染料的复合物溶液,混匀后在 50 rpm 搅拌速度继续反应至 24小时。
本实施例说明加入 EDTA二钠为添加剂能够优化产物粒子的形貌, 图 5给 出本实施例制得的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的透 射电镜图片。 用 EDTA、 EDTA的其他钠盐、 柠檬酸或其钠盐代替 EDTA二钠 作添加剂, 也可以取得优化产物粒子的形貌的效果。
实施例 20
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 μΐ HPTS水溶液( 1 mg/ml ) , 搅拌 20分钟得到 聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始记后开 始计时, 反应 15分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入 到 St0ber体系中, 混匀后以控制磁力搅拌速度为 50 rpm, 继续反应至 24小时。 制得的 HPTS掺杂的球形 Si02纳米粒子均一性好, 平均粒径在 50±5 nm。
本实施例与实施例 1相比, 仅加入有机硅源后的反应时间不同, 最终 得出的结果相同。
实施例 21
在 20 ml玻璃瓶中加入 0.5 ml的醇 /水 =8的醇水混合液、 4 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500 rpm ) 下加入 400 lHPTS水溶液( 1 mg/ml ) , 搅拌 10分钟得到 聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ 水、 0.1 ml氨水, 控制磁力搅拌速度为 200 rpm, 加入 300 μΐ TEOS开始记后开 始计时, 反应 15分钟后, 取 1 ml聚电解质与荧光染料的复合物溶液快速加入 到 St6ber体系中, 混匀后以控制磁力搅拌速度为 50 rpm, 继续反应至 24小时。 制得的 HPTS掺杂的球形 Si02纳米粒子均一性好, 平均粒径在 50±5 nm。
本实施例与实施例 1相比,仅加入荧光染料后搅拌时间不同, 所得的 纳米粒子仍然符合要求。 为了使染料均匀地分散在聚电解质团簇中, 搅拌 时间至少为 10分钟, 在此范围内均可达到符合要求的结果。
实施例 22
在 20 ml玻璃瓶中加入 4.055 ml的醇 /水 =8的醇水混合液、 840 μΐ乙醇、 100 μΐ浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da )水溶液, 磁力搅拌 (速度为 500rpm ) 下加入 5 μΐ HPTS的水溶液( 1 mg/ml ) , 搅拌 20分钟, 得 到聚电解质与荧光染料的复合物溶液; 向 20 ml玻璃瓶中加入 8.4 ml乙醇、 815 μΐ水、 0.1 ml氨水,控制磁力搅拌速度为 200 rpm,加入 300 μΐ TEOS开始计时, 25分钟后,快速加入 1 ml聚电解质与荧光染料的复合物溶液,混匀后在 50 rpm 搅拌速度, 继续反应至 24小时。
本实施例的荧光染料与聚电解质的电荷摩尔比例 (即染料掺杂量) 为 0.0062: 1 , 制得的粒子与实施例 1-4一样具有核壳结构。
实施例 23
在 20 ml玻璃瓶中加入 1.85 ml的醇 /水 =8的醇水混合液、 2.8 ml乙醇、 100 μΐ 浓度为 10 mg/ml的 PDADMAC (分子量为 10万〜 20万 Da ) 水溶液, 磁力搅拌(速度为 500 rpm ) 下加入 250 μΐ HPTS水溶液( 2 mg/ml ) , 搅拌 20分钟得到聚电解质与荧光染料的复合物溶液;向 20 ml玻璃瓶中加入 8.4 ml 乙醇、 815 μΐ水、 0.1 ml氨水,控制磁力搅拌速度为 200 rpm,加入 300 μΐ TEOS 开始记后开始计时, 反应 25分钟后, 取 1 ml聚电解质与荧光染料的复合物 溶液快速加入到 St6ber体系中, 混匀后以控制磁力搅拌速度为 50 rpm, 继续 反应 24小时。 制得的 HPTS掺杂的球形 Si02纳米粒子均一性好, 平均粒径 在 50 ± 5
此实施例的荧光染料掺杂量为 0.62, 与所有染料掺杂量为 0.25〜0.62的 SiO^ 米粒子一样, 均一性良好。

Claims

权利 要求 书
1、 一种以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子, 具有核 壳结构, 内核包含带正电的聚电解质团簇, 其掺杂有带负电的荧光染料和
Si02, 以及可选择的带负电的添加剂, 外壳由 Si02组成, 其中, 添加剂和荧 光染料所带负电荷之和小于聚电解质团簇所带正电荷。
2、一种如权利要求 1所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子, 其特征在于, 所述的聚电解质团簇为聚二曱基二烯丙基氯化铵、 聚季铵盐 -7或聚季铵盐 -2。
3、一种如权利要求 1所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子, 其特征在于, 所述的聚电解质分子量为 10〜50万 Da。
4、一种如权利要求 1所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子, 其特征在于, 所述添加剂为乙二胺四乙酸、 柠檬酸, 或它们的钠 盐。
5、一种如权利要求 1所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子,其特征在于,所述的荧光染料为 8-羟基 -1,3, 6-三磺基吡、 7-羟基 -4- 乙酸香豆素、 荧光素钠盐、 磺基罗丹明 101中的 1〜2种。
6、一种如权利要求 1所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子, 其特征在于, 所述荧光染料与添加剂所带负电荷之和与聚电解质 所带正电荷的电荷摩尔比为大于 0, 且小于等于 0.62:1, 优选 0.25:1〜0.62:1。
7、 一种以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方 法, 包括以下步骤:
1 )聚电解质与荧光染料的复合物溶液制备:在醇水混合液中加入带正电 的聚电解质溶液, 搅拌下加入带负电的荧光染料溶液, 得到聚电解质与荧光 染料的复合物溶液,其中荧光染料所带负电荷小于聚电解质团簇所带正电荷; 2 )有机硅源的预水解: 向另一个容器中加入乙醇、 水和氨水, 搅拌下加 入硅氧烷, 形成硅氧烷的预水解体系;
3 )有机硅源包覆: 将步骤 1 )所得聚电解质与荧光染料的复合物溶液加 入到步骤 2 ) 所得硅氧烷的预水解体系中, 搅拌继续反应, 制得以正电聚电 解质为模板掺杂负电染料的 Si02纳米粒子。
8、一种如权利要求 7所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子的制备方法, 其特征在于, 所述步骤 1 ) 中的聚电解质和荧光染料 复合物溶液中醇水体积比 =7〜10。
9、一种如权利要求 7所述的以正电聚电解质为模板掺杂负电染料的 Si02 纳米粒子的制备方法, 其特征在于, 所述步骤 1 ) 中的聚电解质溶液的质量 浓度 0.1〜0.4 mg/ml, 优选 0.2 mg/ml。
10、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 1 ) 的聚电解质与荧光染 料的复合物溶液制备过程中, 还包括加入带负电的添加剂的步骤, 其中添加 剂与荧光染料的负电荷摩尔总量小于聚电解质的正电荷摩尔量。
11、 一种如权利要求 10 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述荧光染料与添加剂所带负电荷 之和与聚电解质所带正电荷的电荷摩尔比大于 0, 且小于等于 0.62:1 , 优选 0.25:1〜0.62:1。
12、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 2)中预水解体系的 NH3 浓度为 0.14 mol/L, 预水解时间为 15〜25分钟。
13、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 2)中预水解体系的乙醇、 水、 氨水、 硅氧烷的摩尔比为 161: 55: 1.5: 1〜2。
14、 一种如权利要求 Ί 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 3)中的预水解体系中的硅 氧烷与加入的复合物溶液中的聚电解质的摩尔比为 720: 1-1440: 1。
15、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 1 ) 中加入荧光染料之后 的搅拌时间为 10〜20分钟。
16、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 3 ) 中的反应在密闭条件 下进行, 且还包括在反应过程中多次添加硅氧烷的步骤。
17、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 3 )的有机硅源包覆步骤, 是将聚电解质与荧光染料的复合物溶液加入到硅氧烷的预水解体系中 , 搅拌 反应 2〜8小时, 再加入正电磷光染料, 继续搅拌反应, 实现荧光染料与磷光 染料的分层掺杂。
18、 一种如权利要求 7 所述的以正电聚电解质为模板掺杂负电染料的 Si02纳米粒子的制备方法, 其特征在于, 所述步骤 3 ) 的有机硅源包覆, 是 将聚电解质与荧光染料的复合物溶液加入到硅氧烷的预水解体系中 , 搅拌反 应 2〜8小时, 再加入可偶联的荧光染料与硅烷偶联剂偶联后生成的前驱物溶 液, 继续搅拌反应, 实现荧光染料与可偶联荧光染料的分层掺杂。
PCT/CN2010/070648 2010-01-19 2010-02-11 掺杂负电染料的二氧化硅纳米粒子及其制备方法 WO2011088627A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/574,171 US9068084B2 (en) 2010-01-19 2010-02-11 Silica nanoparticles doped with dye having negative charge and preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010001649.7 2010-01-19
CN 201010001649 CN101768437B (zh) 2010-01-19 2010-01-19 以正电聚电解质为模板掺杂负电染料的SiO2纳米粒子及其制备方法

Publications (1)

Publication Number Publication Date
WO2011088627A1 true WO2011088627A1 (zh) 2011-07-28

Family

ID=42501538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070648 WO2011088627A1 (zh) 2010-01-19 2010-02-11 掺杂负电染料的二氧化硅纳米粒子及其制备方法

Country Status (3)

Country Link
US (1) US9068084B2 (zh)
CN (1) CN101768437B (zh)
WO (1) WO2011088627A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140212889A1 (en) * 2011-09-09 2014-07-31 Tohoku University Method for staining tissue
US20210048414A1 (en) * 2018-05-02 2021-02-18 Cornell University Ultrasmall nanoparticles and methods of making, using and analyzing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011109214A2 (en) * 2010-03-01 2011-09-09 University Of Florida Research Foundation, Inc. Near-ir indocyanine green doped multimodal silica nanoparticles and methods for making the same
CN104892815B (zh) * 2015-05-06 2018-04-13 吉林大学 表面带正电荷具有聚集诱导荧光增强性质的荧光纳米微球及其生物应用
KR101938284B1 (ko) 2015-06-15 2019-01-15 주식회사 엘지화학 형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치
KR20180086498A (ko) * 2015-12-29 2018-07-31 로레알 형광 미립자 물질
FR3046175B1 (fr) * 2015-12-29 2018-02-02 L'oreal Preparation d'un materiau particulaire fluorescent organosilicie
CN106908599B (zh) * 2017-02-21 2018-11-02 南昌大学 检测葡萄酒和葡萄汁中赭曲霉毒素a的免疫层析试纸条
CN107486112B (zh) * 2017-08-08 2020-01-21 浙江工商大学 一种不脱色的单分散彩色二氧化硅纳米微球的制备方法
WO2019218027A1 (en) * 2018-05-18 2019-11-21 Monash University Core-shell particles
CN108931512A (zh) * 2018-06-06 2018-12-04 华南师范大学 一种水杨酸-纳米金掺杂二氧化硅粒子荧光探针及其制备方法和应用
WO2021232496A1 (zh) * 2020-05-22 2021-11-25 肇庆市华师大光电产业研究院 核壳结构的彩色二氧化硅及其制备方法和应用
CN111921464B (zh) * 2020-06-01 2022-08-09 肇庆市华师大光电产业研究院 一种核壳结构的包裹纳米颗粒的二氧化硅及其制备方法和应用
WO2022059303A1 (ja) * 2020-09-17 2022-03-24 コニカミノルタ株式会社 蛍光ナノ粒子、および当該蛍光ナノ粒子を用いる染色方法
CN112919481B (zh) * 2021-01-29 2022-10-28 吉林大学 一种正电性的二氧化硅粒子的制备方法
CN113121728B (zh) * 2021-04-19 2021-12-07 华东理工大学 一种磷光材料及其制备方法
CN115090283B (zh) * 2022-07-25 2024-01-02 浙江新化化工股份有限公司 一种负载型核壳催化剂、其制备方法及其在催化环戊基丁内酯加氢中应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1767941A (zh) * 2002-11-26 2006-05-03 康乃尔研究基金会有限公司 基于二氧化硅的荧光纳米颗粒
CN1782020A (zh) * 2004-12-02 2006-06-07 中国科学院化学研究所 含有碲化镉荧光量子点的二氧化硅荧光微球及其制备方法
WO2007002690A2 (en) * 2005-06-24 2007-01-04 William Marsh Rice University Nano-encapsulated triggered-release viscosity breakers
CN101003729A (zh) * 2007-01-04 2007-07-25 吉林大学 双结构二氧化硅复合有机染料发光纳米粒子及其制备方法
CN101050358A (zh) * 2007-04-30 2007-10-10 吉林大学 一种染料可控掺杂二氧化硅纳米粒子的制备方法
WO2008018716A1 (en) * 2006-08-09 2008-02-14 Korea Research Institute Of Bioscience And Biotechnology Sillica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same
CN101463252A (zh) * 2009-01-08 2009-06-24 东南大学 一种染料掺杂型二氧化硅荧光纳米粒子的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760467A1 (en) * 2005-09-02 2007-03-07 Schering AG Optically fluorescent nanoparticles
CN101270281A (zh) * 2008-05-12 2008-09-24 吉林大学 一种疏水性染料掺杂二氧化硅纳米粒子的制备方法
CN101457139B (zh) * 2008-08-22 2012-06-13 吉林大学 一种结构可控的高量子产率发光硅球及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1767941A (zh) * 2002-11-26 2006-05-03 康乃尔研究基金会有限公司 基于二氧化硅的荧光纳米颗粒
CN1782020A (zh) * 2004-12-02 2006-06-07 中国科学院化学研究所 含有碲化镉荧光量子点的二氧化硅荧光微球及其制备方法
WO2007002690A2 (en) * 2005-06-24 2007-01-04 William Marsh Rice University Nano-encapsulated triggered-release viscosity breakers
WO2008018716A1 (en) * 2006-08-09 2008-02-14 Korea Research Institute Of Bioscience And Biotechnology Sillica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same
CN101003729A (zh) * 2007-01-04 2007-07-25 吉林大学 双结构二氧化硅复合有机染料发光纳米粒子及其制备方法
CN101050358A (zh) * 2007-04-30 2007-10-10 吉林大学 一种染料可控掺杂二氧化硅纳米粒子的制备方法
CN101463252A (zh) * 2009-01-08 2009-06-24 东南大学 一种染料掺杂型二氧化硅荧光纳米粒子的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140212889A1 (en) * 2011-09-09 2014-07-31 Tohoku University Method for staining tissue
US10551378B2 (en) * 2011-09-09 2020-02-04 Konica Minolta, Inc. Tissue staining method
US11435348B2 (en) 2011-09-09 2022-09-06 Konica Minolta, Inc. Tissue staining method
US20210048414A1 (en) * 2018-05-02 2021-02-18 Cornell University Ultrasmall nanoparticles and methods of making, using and analyzing same

Also Published As

Publication number Publication date
US9068084B2 (en) 2015-06-30
US20120292572A1 (en) 2012-11-22
CN101768437A (zh) 2010-07-07
CN101768437B (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2011088627A1 (zh) 掺杂负电染料的二氧化硅纳米粒子及其制备方法
Zhang et al. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing
CN107446572B (zh) 合成二氧化硅包覆有机-无机钙钛矿结构量子点的方法及其合成的量子点的应用
Lee et al. Preparation and characterization of surface modified silica nanoparticles with organo-silane compounds
JP5635675B2 (ja) 二重コアシェル蛍光材料およびその調製方法
US20140356272A1 (en) Volume production method for uniformly sized silica nanoparticles
Malfatti et al. Sol‐gel chemistry for carbon dots
CN101003729A (zh) 双结构二氧化硅复合有机染料发光纳米粒子及其制备方法
US20150274538A1 (en) Core-shell silica nanoparticles, method for manufacturing the same, method for manufacturing hollow silica nanoparticles therefrom, and hollow silica nanoparticles manufactured thereby
Yoo et al. Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores
CN105199710A (zh) 一种荧光介孔二氧化硅复合纳米粒子及其制备方法
CN109096766B (zh) 一种金纳米粒子复合有机硅树脂的制备方法
CN112961675A (zh) 溶胶-凝胶钝化提高钙钛量子点稳定性的方法
Chung et al. Water-borne composite coatings using nanoparticles modified with dopamine derivatives
Yang et al. Precise preparation of highly monodisperse ZrO 2@ SiO 2 core–shell nanoparticles with adjustable refractive indices
CN107140677A (zh) 一种功能器件用金属氧化物纳米颗粒的制备方法
JP2014185052A (ja) 中空シリカナノ粒子及びその製造方法
CN105195736B (zh) 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法
TWI403464B (zh) Preparation of Core - shell Structure Composite Particles
Rodriguez-Abreu et al. A combination of hard and soft templating for the fabrication of silica hollow microcoils with nanostructured walls
CN114525003B (zh) 一种光学薄膜及其制备方法
JP2009197142A (ja) 有機修飾シリカ微粒子およびその製造方法
KR100859763B1 (ko) 비치환 알킬기, 알케닐기 또는 알키닐기를 함유한 트리알콕시실란을 이용한 실리카 입자 표면의 소수성 제어방법 및 그 실리카 입자
Murase et al. Improved photostability of silica bead impregnated with CdSe-based quantum dots prepared through proper surface silanization
Yang et al. Nanocrystals encapsulated in SiO2 particles: silanization and homogenous coating for bio applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13574171

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10843669

Country of ref document: EP

Kind code of ref document: A1