WO2021232496A1 - 核壳结构的彩色二氧化硅及其制备方法和应用 - Google Patents

核壳结构的彩色二氧化硅及其制备方法和应用 Download PDF

Info

Publication number
WO2021232496A1
WO2021232496A1 PCT/CN2020/094516 CN2020094516W WO2021232496A1 WO 2021232496 A1 WO2021232496 A1 WO 2021232496A1 CN 2020094516 W CN2020094516 W CN 2020094516W WO 2021232496 A1 WO2021232496 A1 WO 2021232496A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
dye
core
shell structure
pdadmac
Prior art date
Application number
PCT/CN2020/094516
Other languages
English (en)
French (fr)
Inventor
杨荟
阿金诺古·埃泽尔
金名亮
王新
水玲玲
吉尔斯西·米夏埃尔
穆尔瓦尼·保罗
Original Assignee
肇庆市华师大光电产业研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肇庆市华师大光电产业研究院 filed Critical 肇庆市华师大光电产业研究院
Publication of WO2021232496A1 publication Critical patent/WO2021232496A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0007Coated particulate pigments or dyes with inorganic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0005Coated particulate pigments or dyes the pigments being nanoparticles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0092Dyes in solid form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the invention relates to the technical field of preparation of dye-doped silica, and more specifically, to a novel colored silica with a core-shell structure and a preparation method and application thereof.
  • dye-doped silica particles Compared with free dyes, dye-doped silica particles have better photostability, water solubility, low toxicity and easy surface modification characteristics, so they have broad application prospects in bioimaging and sensor technology.
  • Several methods have been developed to incorporate luminescent dyes into a silica matrix to prepare dye-doped silica particles.
  • Van Blaaderen et al. prepared fluorescein isothiocyanate (FITC) doped silica nanoparticles for the first time through a covalent coupling method, and people also obtained fluorescent nanoparticles for the first time.
  • FITC and the silane coupling agent 3-aminopropyltriethoxysilane (APTES) were first coupled in a dark and nitrogen environment for 24 hours to obtain a FITC-APTES conjugate. Then, using ammonia water as a catalyst, the FITC-APTES conjugate and silicon source TEOS are catalyzed by ammonia water to hydrolyze and condense in an ethanol environment to obtain fluorescent nanoparticles.
  • the fluorescent dye When using this method, it must be noted that the fluorescent dye must have a functional group capable of coupling with the amino group of the silane coupling agent.
  • the fluorescent dye currently, there are few types of functional fluorescent dyes that can react with amino groups, and they are expensive, which greatly limits the application of this method.
  • Dimethyldiallylammonium chloride is a long-chain water-soluble polymer chemical with many positive charges. It is used to connect silica particles with negatively charged dyes, and it can be adsorbed by electrostatic force. The method adsorbs the dye in the silica particles. However, this method will have an impact on the uniformity of silica particles; in 2001, Tan's group prepared bipyridine ruthenium-doped silica nanoparticles with a uniformity of 63 ⁇ 4nm through electrostatic interaction.
  • the inverse microemulsion synthesis system is carried out in an aqueous environment, because water-soluble dyes usually have negative charges, such as hydroxyl, carboxyl and sulfonate groups. Since these groups have the same negative charge as the silica matrix, it is difficult for the dye to be combined, so the leakage phenomenon is very serious.
  • the covalent coupling method using the Stöber system must add surface functional groups for specific dyes or use a catalyst to promote the condensation reaction of the original functional groups with amino groups, so that the dye can be coupled with APTES.
  • Co-hydrolysis of the conjugate and TEOS to prepare doped silica particles After investigation, it is found that the dye molecules with specific functional groups are few and expensive, which is not suitable for large-scale applications.
  • this method can simply wrap the negatively charged dye into the silica particles, but due to its chargeability, it will affect the uniformity of the silica particles, causing the generated silica particles to aggregate together, which is very It is difficult to obtain controllable and uniform doped silica particles.
  • the controllable range of the particle size is small and the dye is easily leaked, this method is not considered here.
  • the prior art lacks a method for preparing monodisperse and uniform dye-doped colored silica particles with low cost, simple preparation process, easy availability of raw materials, controllable size, and formation of monodisperse and uniform dye-doped colored silica particles.
  • the technical problem to be solved by the present invention is to provide a low-cost, simple preparation process, easy-to-obtain raw materials, controllable size, and form monodisperse and uniform dye-doped silica particles. .
  • the primary objective of the present invention is to provide a new type of colored silica with a core-shell structure.
  • the second object of the present invention is to provide a method for preparing the above-mentioned novel core-shell structure colored silica.
  • the third objective of the present invention is to provide the application of the above-mentioned novel core-shell structure colored silica.
  • a new type of colored silica with a core-shell structure uses silica as a core, PDADMAC-dye premix as an inner shell layer, and silica as an outer shell layer.
  • PDADMAC polydimethyldiallylammonium chloride
  • PDADMAC polydimethyldiallylammonium chloride
  • the invention takes advantage of its properties of being easily soluble in water and strong cationic polyelectrolyte, and PDADMAC is used as a bridge connecting negatively charged silica particles and dye molecules with negatively charged functional groups.
  • the dye contains a negatively charged functional group.
  • the negatively charged functional group is a sulfonic acid group.
  • the present invention uses the electrostatic adsorption method of PDADMAC, but in a different way of thinking, instead of wrapping the dye in, it considers wrapping the dye on the surface of the silica particles to form colored silica particles with a core-shell structure.
  • PDADMAC electrostatic adsorption method
  • the dye molecule with the negative light energy group with sulfonic acid group is selected here.
  • PADAMAC is used as a bridge to connect silica particles and dye molecules with sulfonic acid groups, and then wrap a layer of silicon shell to protect the dye molecules and further applications.
  • the electrostatic adsorption method is used to prepare a pre-mixture of PDADMAC and dye during the formation of silica particles.
  • this preparation method affects the change of Zata potential and easily causes silica aggregation.
  • the invention is to first prepare silica particles, and then wrap the PDADMAC-dye premix on the surface, so as to ensure that the particle size of the final product prepared is consistent and uniform.
  • the size of the colored silica is based on a silica core with a controllable size.
  • the silica cores with different sizes can be prepared first, and finally the colored silica with different sizes can be obtained. .
  • the size of the colored silica is 50 nm to 2 ⁇ m.
  • the use of electrostatic The adsorption method needs to control the surface potential of the colored silica to be greater than 30mV, or less than -30mV to ensure the uniformity of the silica particles; therefore, preferably, the new core-shell structure of the colored silica of the present invention is The surface potential is greater than 30 mV, or less than -30 mV.
  • the present invention also provides a method for preparing the above-mentioned novel core-shell structure colored silica, which includes the following steps:
  • the dosage ratio of the dye and PDADMAC in step S1 is 1 ⁇ 2 ⁇ 10 -6 M: 3mg; this dosage ratio can ensure that the prepared colored silica has sufficient adsorption strength , And the dye will not agglomerate; more preferably, the dosage ratio of the dye to PDADMAC is 1.5 ⁇ 10 -6 M: 3 mg.
  • the mixing time of the dye and PDADMAC in step S1 is greater than 20 minutes.
  • the silica particle solution in step S1 is prepared by the Stöber synthesis method; step S3 is completed by the Stöber synthesis method; this method first uses the Stöber method to produce silica particles of different sizes, and the Stöber system synthesis
  • the method is currently the most widely used method for synthesizing silica.
  • This method uses tetraethoxysilane (TEOS) as the organic silicon source.
  • TEOS tetraethoxysilane
  • silica nanoparticles nucleate in the ethanol solution, and finally form a single Disperse silica nanoparticles, the particle size can be adjusted between 50 nm and 2 ⁇ m.
  • the method is simple and environmentally friendly, and has now become a recognized method for the synthesis of silica particles.
  • the mixing and stirring time of the PDADMAC-dye premix and the silica particle solution in step S2 is greater than 30 minutes; the mixing ratio is 0.3-2 ⁇ 10 -6 M: 100 mg, more preferably, The mixing ratio is 1.5 ⁇ 10 -6 M: 100 mg.
  • the thickness of the silica shell layer in step S3 is 5-20 nm; the thickness of the shell layer should not be too thin. If it is too thin, the leakage of the dye cannot be guaranteed. In addition, the thickness of the shell layer cannot be too thin. Too thick, too thick affects the performance of the dye color.
  • the method provided by this patent can be used to easily realize colored silica particles with different colors and controllable sizes, and the addition of different functional groups on the surface can be realized by wrapping the silica shell layer, and the application range is more broad.
  • the present invention also provides the application of the above-mentioned novel core-shell structure colored silica; preferably, the application fields include, but are not limited to, photocatalytic degradation, bioimaging, and sensor detection.
  • the present invention has the following beneficial effects:
  • the invention discloses a novel colored silica with a core-shell structure.
  • the colored silica uses silica as the core, PDADMAC-dye premix as the inner shell layer, and silica as the outer shell layer; Invented PDADMAC as a bridge between negatively charged silica particles and dye molecules with negatively charged functional groups.
  • Figure 1 is a schematic diagram of the preparation process of a novel core-shell structure colored silica
  • Figure 2 is a flow chart of the preparation of a new type of colored silica with a core-shell structure
  • Figure 3 shows the change of particle surface potential with dye/shell coating, and the study of the maximum adsorption capacity using the potential
  • Figure 4 shows the absorption spectrum of the direct blue 71 aqueous solution and the reflection spectrum of the blue silica particles with a core-shell structure
  • Figure 5 shows the size statistics of the silica particles after wrapping the PDADMAC-dye premix and the silica particles after wrapping the silica shell layer; the first row is the SEM image, and the second row is the particle size distribution statistics.
  • the present invention also provides a method for preparing the above-mentioned novel core-shell structure colored silica, which includes the following steps:
  • the experimental process of wrapping the silica shell layer is: disperse 100mg of silica particles obtained from S4 in 10ml of absolute ethanol, add 100 ⁇ l of ammonia (concentration of 30%), 815 ⁇ l of deionized water, and 100 ⁇ l of regular Ethyl acid. Heat in a water bath at 30 o C and stir for 12 hours.
  • Figure 4 compares the absorption spectrum of the aqueous solution of Direct Blue 71 with the reflectance spectrum of the new core-shell structure colored silica coated with Direct Blue 71. It can be determined that the dye has been successfully encapsulated.
  • Figure 5 is the SEM image after the PDADMAC-dye premix is wrapped, and the SEM image after the silica shell is wrapped. According to statistical analysis, the thickness of the shell is 10nm.
  • Direct blue 71 dye has 4 sodium sulfonate groups
  • amaranth dye has 3 sodium sulfonate groups, which can also achieve a strong adsorption effect, thereby obtaining magenta silica particles.
  • the direct blue 71 dye has 4 sodium sulfonate groups
  • the tartrazine dye has 2 sodium sulfonate groups and one carboxyl group. It can also achieve a strong adsorption effect, thereby obtaining yellow silica particles. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Cosmetics (AREA)

Abstract

一种核壳结构的彩色二氧化硅,以二氧化硅为核,以PDADMAC-染料预混物为内壳层,以二氧化硅为外壳层;将PDADMAC作为一个连接负电性的二氧化硅颗粒与带有负电官能团染料分子的桥梁,成功的将染料分子包裹在二氧化硅颗粒表面;随后再次在PDADMAC-染料预混物外包裹一层二氧化硅作为外壳层,从而最终制得核壳结构的彩色二氧化硅;该核壳结构的彩色二氧化硅性质稳定,染料不易泄露;本制备方法制得的核壳结构的彩色二氧化硅颗粒均一,可以广泛应用于催化、分子检测、生物监测、成像等领域。

Description

[根据细则37.2由ISA制定的发明名称] 核壳结构的彩色二氧化硅及其制备方法和应用 技术领域
本发明涉及染料掺杂二氧化硅制备技术领域,更具体地,涉及一种新型核壳结构的彩色二氧化硅及其制备方法和应用。
背景技术
染料掺杂的二氧化硅颗粒由于与游离染料相比具有更好的光稳定性,水溶性,低毒性和易于表面修饰的特性,因此在生物成像和传感器技术中具有广阔的应用前景。目前已开发出几种方法来掺入发光染料制成二氧化硅基质,以制备染料掺杂的二氧化硅颗粒。
1992年,Van Blaaderen等人通过共价偶联法首次制备了异硫氰酸荧光素(FITC)掺杂的二氧化硅纳米颗粒,人们也首次获得了荧光纳米颗粒。在该反应中,首先将FITC与硅烷偶联剂3-氨基丙基三乙氧基硅烷 (APTES)在黑暗和氮气环境中耦合24小时得到FITC-APTES偶联物。然后,以氨水为催化剂,将FITC-APTES偶联物和硅源TEOS在乙醇的环境中由氨水催化水解、缩合得到荧光纳米粒子。在使用该方法时,必须注意荧光染料必须具有能与硅烷偶联剂的氨基偶联的官能团。然而,目前能与氨基发生反应的功能基荧光染料种类较少,且价格昂贵,极大地限制了该方法的应用。
2005年,Rosenzweig小组首次在 Stöber 反应体系将菲啰啉联钌掺杂入无定型二氧化硅介质中,获得了尺寸可控、光稳定性好、几乎不漏染的二氧化硅颗粒。该方法基于带正电的有机金属染料与带负电的二氧化硅骨架之间的静电吸引。与共价偶联法相比,这种方法更为简单。但是考虑到金属有机类染料的种类较少,并不能满足大量需求。根据Liang等人提出了一种新型的吸附方法,因为大部分水溶性的染料是带负电的,而Stöber合成法获得二氧化硅颗粒由于表面的羟基所以带有大量的负电荷,人们发现,聚二甲基二烯丙基氯化铵(PDADMAC)是一种具有许多正电荷的长链水溶性高分子化学物,用于连接二氧化硅颗粒与带负电荷的染料,则可以利用静电力吸附法将染料吸附在二氧化硅颗粒之中。但是该方法会对二氧化硅颗粒的均一性产生影响;Tan小组在2001年,通过静电相互作用制备了均匀性为63±4nm的联吡啶钌掺杂二氧化硅纳米粒子。但是反相微乳液法合成系统是在水溶液地环境下进行地,由于水溶性染料通常具有负电荷,例如羟基、羧基和磺酸根。由于这些基团与二氧化硅基体具有相同的负电荷,因此染料很难被结合,因此渗漏现象非常严重。
经过上述方法汇总,人们发现使用Stöber体系的共价偶联法,必须针对特定的染料进行表面官能团的添加或者使用催化剂促进原有官能团与氨基进行缩合反应,这样才可以使得使染料与APTES的偶联物与TEOS共水解来制备掺杂的二氧化硅颗粒。经过调研发现,具有特定官能团的染料分子较少且价格昂贵,不适用于大规模的应用。对于静电吸附法,该方法可以简单的将负电染料包裹进二氧化硅颗粒,但是由于其带电性,会对二氧化硅颗粒的均一性产生影响,导致生成的二氧化硅颗粒聚集在一起,很难得到可控的,均一的掺杂二氧化硅颗粒。对于反相微乳液法,由于颗粒尺寸的可控范围小,且染料极易泄露,故在此不考虑该方法。
现有技术缺乏一种成本低、制备过程简单、原料易得、尺寸可控,且形成单分散、均一的染料掺杂的彩色二氧化硅颗粒的制备方法。
技术问题
针对上述现有技术存在的缺陷,本发明所要解决的技术问题是提供一种成本低、制备过程简单、原料易得、尺寸可控,且形成单分散、均一的染料掺杂的二氧化硅颗粒。
本发明的首要目的是提供一种新型核壳结构的彩色二氧化硅。
本发明的第二个目的是提供上述新型核壳结构的彩色二氧化硅的制备方法。
本发明的第三个目的是提供上述新型核壳结构的彩色二氧化硅的应用。
技术解决方案
本发明的目的是通过以下技术方案予以实现的:
一种新型核壳结构的彩色二氧化硅,所述彩色二氧化硅以二氧化硅为核,以PDADMAC-染料预混物为内壳层,以二氧化硅为外壳层。
PDADMAC(聚二甲基二烯丙基氯化铵)为强阳离子聚电解质,外观为无色至淡黄色粘稠液体。安全、无毒、易溶于水、不易燃、凝聚力强、水解稳定性好、不成凝胶,对pH值变化不敏感,有抗氯性。本发明利用其易溶于水、强阳离子聚电解质的性质,将PDADMAC作为一个连接负电性的二氧化硅颗粒与带有负电官能团染料分子的桥梁。成功的将染料分子包裹在二氧化硅颗粒表面;随后一方面为进一步保护染料分子不泄露,另一方面,由于二氧化硅纳米颗粒材料表面易于改性;再次在PDADMAC-染料预混物外包裹一层二氧化硅作为外壳层,从而最终制得新型核壳结构的彩色二氧化硅;该新型核壳结构的彩色二氧化硅不仅性质稳定,染料不易泄露,由于二氧化硅对可见光的精细散射特性,反射峰的强度显著增加,外壳层二氧化硅的存在使得复合颗粒比有机颜料更鲜艳。
优选的,所述染料含有带负电的官能团。
更优选的,所述带负电的官能团为磺酸基。
本发明利用PDADMAC的静电吸附法,但是换种思路,不考虑将染料包裹进去,而是考虑将染料包裹在二氧化硅颗粒表面,形成彩色的具有核壳结构的二氧化硅颗粒。前期经过市场调研,发现市场上的大部分染料都具有负电官能团。但是需要注意的是,负电管能团带电性越强,吸附效果越好,所以在此选择带有磺酸基团的负电光能团的染料分子。利用PADAMAC作为桥梁,连接二氧化硅颗粒与带有磺酸基团的染料分子,之后包裹一层硅壳从而实现保护染料分子以及进一步应用的目的。
现有技术中,利用静电吸附法制备过程,是在二氧化硅颗粒生成的过程中,加入PDADMAC和染料的预混合物,但这种制备方法影响Zata电位的变化,容易造成二氧化硅聚集,本发明则是先制备二氧化硅颗粒,之后再在其表面包裹PDADMAC-染料预混物,这样可以保证制备得到的终产物的颗粒尺寸一致,且均一。
所述彩色二氧化硅的尺寸由尺寸可控的二氧化硅核为基准,当应用目的或者应用场景不同时,即可先制备尺寸不同的二氧化硅核,最终获得尺寸不同的彩色二氧化硅。
优选的,所述彩色二氧化硅的尺寸为50nm~2μm。
传统静电吸附法中,二氧化硅容易发生团聚,从而显著影响得到的二氧化硅颗粒的均一性,这是因为没有考虑到制备得到的二氧化硅颗粒的表面电势,本发明研究发现,采用静电吸附方法,需要控制彩色二氧化硅的表面电势大于30mV,或者小于-30mV,以保证二氧化硅颗粒的均一性;因此,优选的,本发明所述的新型核壳结构的彩色二氧化硅的表面电势大于30mV,或者小于-30 mV。
本发明还提供上述新型核壳结构的彩色二氧化硅的制备方法,包括以下步骤:
S1. 将带负电官能团的染料分子溶解后,与PDADMAC混合得到PDADMAC-染料预混物;
S2. 将S1制备的得到的PDADMAC-染料预混物滴加到二氧化硅颗粒水溶液中,使二氧化硅颗粒充分吸收PDADMAC-染料预混物,得到表面带正电荷的彩色的二氧化硅颗粒;
S3. 采用常规方法,在表面带正电荷的彩色的二氧化硅颗粒表面包裹一层二氧化硅外壳层。
优选的,上述制备方法中,步骤S1所述染料与PDADMAC的用量比为1~2×10 -6M:3mg;在此用量比,能够保证制备得到的彩色的二氧化硅具备足够的吸附强度,且染料不会发生团聚;更优选的,所述染料与PDADMAC的用量比为1.5×10 -6M:3mg。
优选的,上述制备方法中,步骤S1所述染料与PDADMAC的混合时间大于20min。
优选的,上述制备方法中,步骤S1所述二氧化硅颗粒溶液采用Stöber合成法制得;步骤S3采用Stöber合成法完成;本方法首先采用Stöber方法来生产不同尺寸的二氧化硅颗粒,Stöber体系合成法是目前合成二氧化硅应用最为广泛的方法,该方法通过采用四乙氧基硅烷(TEOS)为有机硅源,在氨水催化下,二氧化硅纳米颗粒在乙醇溶液中成核,最终形成单分散二氧化硅纳米颗粒,颗粒的粒径可以在50 nm到2μm之间进行调控。该方法简单环保,目前已成为公认的二氧化硅颗粒得合成方法。
需要说明的是:具体合成过程,可以先制备PDADMAC-染料预混物,再利用Stöber方法来生产二氧化硅核;也可以先利用Stöber方法来生产二氧化硅核,再制备PDADMAC-染料预混物。
优选的,上述制备方法中,步骤S2所述PDADMAC-染料预混物与二氧化硅颗粒溶液的混合搅拌的时间大于30min;混合比为0.3~2×10 -6M:100mg,更优选的,所述混合比为1.5 ×10 -6M:100mg。
优选的,上述制备方法中,步骤S3所述二氧化硅外壳层的厚度为5~20nm;外壳层的厚度不能太薄,太薄则无法保证染料的不泄露,另外,外壳层的厚度也不能太厚,太厚影响染料颜色的表现。
在该实验中,使用本专利提供的方法,可以简便的实现不同颜色的,尺寸可控的彩色二氧化硅颗粒,并可以通过包裹二氧化硅壳层,实现表面不同官能团的添加,应用范围更广阔。
本发明还提供上述新型核壳结构的彩色二氧化硅的应用;优选的,所述应用领域包括但不限于光催化降解、生物成像、传感器检测。
有益效果
与现有技术相比,本发明具有以下有益效果:
本发明公开了一种新型核壳结构的彩色二氧化硅,所述彩色二氧化硅以二氧化硅为核,以PDADMAC-染料预混物为内壳层,以二氧化硅为外壳层;本发明将PDADMAC作为一个连接负电性的二氧化硅颗粒与带有负电官能团染料分子的桥梁。成功的将染料分子包裹在二氧化硅颗粒表面;随后一方面为进一步保护染料分子不泄露,另一方面,由于二氧化硅纳米颗粒材料表面易于改性;再次在PDADMAC-染料预混物外包裹一层二氧化硅作为外壳层,从而最终制得新型核壳结构的彩色二氧化硅;该新型核壳结构的彩色二氧化硅不仅性质稳定,染料不易泄露,而且由于外壳层二氧化硅的存在,使得颗粒的折射率发生改变,从外观上颜色更鲜艳;本发明的制备方法简便、好操作,原料易得,制得的新型核壳结构的彩色二氧化硅颗粒均一,能够达到单分散的目标,可以广泛应用于催化、分子检测、生物监测、成像等领域。
附图说明
图1为新型核壳结构的彩色二氧化硅的制备过程示意图;
图2为新型核壳结构的彩色二氧化硅的制备流程图;
图3为颗粒表面电势随着染料/壳层包裹后的变化,以及利用电势最大吸附量的研究;
图4为直接蓝71水溶液的吸收光谱与核壳结构的蓝色二氧化硅颗粒的反射光谱;
图5 为包裹PDADMAC-染料预混物之后的二氧化硅颗粒以及包裹二氧化硅外壳层之后的二氧化硅颗粒尺寸统计;第一排为SEM图,第二排为粒径分布统计图。
本发明的最佳实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例 1
本发明还提供上述新型核壳结构的彩色二氧化硅的制备方法,包括以下步骤:
S1. 利用Stöber方法来生产二氧化硅核:尺寸为270nm;
S2. 将0.5ml的3×10 -3M的直接蓝71水溶液与100μl的30mg/ml PDADMAC水溶液混合大于30min,得到PDADMAC-染料预混物;
S3. 将S2制备的得到的PDADMAC-染料预混物滴加到S1制备的二氧化硅核中,充分混合半小时(最低时间为半小时),得到染料包裹的彩色的二氧化硅颗粒,其中PDADMAC-染料预混物和二氧化硅核的混合比为0.5ml(3×10 -3M):10ml(10mg/ml);此时负电性的二氧化硅核立即变成正电性的彩色的二氧化硅颗粒;
S4. 去离子水清洗S3的产物多次直至上层溶液为澄清无颜色之后,将染料包裹的彩色的二氧化硅颗粒分散在无水乙醇中;
S5. 利用Stöber方法,在染料包裹的彩色的二氧化硅颗粒表面包裹一层10nm厚度的二氧化硅外壳层,此时含有外壳层的新型核壳结构的彩色二氧化硅则立即又变成负电性;具体的,包裹二氧化硅外壳层的实验过程为:将S4得到的100mg二氧化硅颗粒分散在10ml无水乙醇中,加入100μl氨水(浓度为30%),815μl去离子水,100μl正规酸乙酯。在30 oC的水浴加热中,搅拌12h。
  整个新型核壳结构的彩色二氧化硅的制备过程如图1所示。
此外,根据图3可以看到,二氧化硅颗粒表面的电荷随着包裹表面染料,包裹二氧化硅壳层,而发生电位正负的变化,说明染料和二氧化硅壳层成功的包裹在二氧化硅颗粒的表面,之后我们对其吸附量进行研究,当其达到一定程度之后,电荷不再发生变化,则说明,该点为二氧化硅颗粒吸附的极限点。
图4则是根据直接蓝71的水溶液的吸收光谱与包裹有直接蓝71的新型核壳结构的彩色二氧化硅的反射光谱做对比,可以确定,染料被成功地包裹进去。图5则是包裹PDADMAC-染料预混物之后的SEM图,与包裹二氧化硅壳层之后的SEM图,经统计分析,壳层厚度为10nm。
实施例 2
同样的方法,可以将直接蓝71,蓝色染料替换为品红色染料苋菜红。直接蓝71染料带有4个磺酸钠基团,苋菜红染料带有3个磺酸钠基团,同样可以达到很强的吸附效果,从而得到品红色的二氧化硅颗粒。
实施例 3
同样的方法,可以将直接蓝71,蓝色染料替换为黄色染料酒石黄。直接蓝71染料带有4个磺酸钠基团,酒石黄染料带有2个磺酸钠基团,一个羧基基团,同样可以达到很强的吸附效果,从而得到黄色的二氧化硅颗粒。

Claims (10)

  1. 一种新型核壳结构的彩色二氧化硅,其特征在于,所述彩色二氧化硅以二氧化硅为核,以PDADMAC-染料预混物为内壳层,以二氧化硅为外壳层。
  2. 根据权利要求1所述的新型核壳结构的彩色二氧化硅,其特征在于,所述染料含有带负电的官能团。
  3. 权利要求1或2所述的新型核壳结构的彩色二氧化硅的制备方法,其特征在于,包括以下步骤:
    S1. 将带负电官能团的染料分子溶解后,与PDADMAC混合得到PDADMAC-染料预混物;
    S2. 将S1制备的得到的PDADMAC-染料预混物滴加到二氧化硅颗粒水溶液中,使二氧化硅颗粒充分吸收PDADMAC-染料预混物,得到表面带正电荷的彩色的二氧化硅颗粒;
    S3. 采用常规方法,在表面带正电荷的彩色的二氧化硅颗粒表面包裹一层二氧化硅外壳层。
  4. 根据权利要求3所述的新型核壳结构的彩色二氧化硅的制备方法,其特征在于,步骤S1所述染料与PDADMAC的用量比为1~2×10 -6 M:3mg。
  5. 根据权利要求3所述的新型核壳结构的彩色二氧化硅的制备方法,其特征在于,步骤S1所述染料与PDADMAC的混合时间为大于20min。
  6. 根据权利要求3所述的新型核壳结构的彩色二氧化硅的制备方法,其特征在于,步骤S1所述二氧化硅颗粒溶液采用Stöber合成法制得;步骤S3采用Stöber合成法完成。
  7. 根据权利要求3所述的新型核壳结构的彩色二氧化硅的制备方法,其特征在于,步骤S2所述PDADMAC-染料预混物与二氧化硅颗粒溶液的混合比为0.3~2×10 -6M:100mg。
  8. 根据权利要求3所述的新型核壳结构的彩色二氧化硅的制备方法,其特征在于,步骤S3所述二氧化硅外壳层的厚度为5~20nm。
  9. 权利要求1或2所述的新型核壳结构的彩色二氧化硅的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述应用领域包括但不限于光催化降解、生物成像、传感器检测。
PCT/CN2020/094516 2020-05-22 2020-06-05 核壳结构的彩色二氧化硅及其制备方法和应用 WO2021232496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010442517 2020-05-22
CN202010442517.1 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021232496A1 true WO2021232496A1 (zh) 2021-11-25

Family

ID=72862308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094516 WO2021232496A1 (zh) 2020-05-22 2020-06-05 核壳结构的彩色二氧化硅及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111808436B (zh)
WO (1) WO2021232496A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232496A1 (zh) * 2020-05-22 2021-11-25 肇庆市华师大光电产业研究院 核壳结构的彩色二氧化硅及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1380133A (zh) * 2002-03-13 2002-11-20 华东理工大学 一种二氧化硅磁性微球及其制备方法
WO2008018716A1 (en) * 2006-08-09 2008-02-14 Korea Research Institute Of Bioscience And Biotechnology Sillica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same
CN101299366A (zh) * 2008-03-13 2008-11-05 复旦大学 磁性无机纳米粒子/沸石核壳型复合微球及其制备方法
CN101768437A (zh) * 2010-01-19 2010-07-07 无锡中德伯尔生物技术有限公司 以正电聚电解质为模板掺杂负电染料的SiO2纳米粒子及其制备方法
CN101817960A (zh) * 2010-03-17 2010-09-01 中国石油大学(华东) 一种核壳结构磁性复合纳米粒子的制备方法
US20160168385A1 (en) * 2013-07-29 2016-06-16 Sg Ventures Pty Limited Coated Particles and Method of Coating Particles
KR20170096755A (ko) * 2016-02-17 2017-08-25 주식회사 엘지화학 염료 나노캡슐, 이를 포함하는 컬러필터용 포토레지스트 조성물 및 이를 이용한 컬러필터
CN107735458A (zh) * 2015-05-08 2018-02-23 赢创德固赛有限公司 抗渗色二氧化硅和硅酸盐颜料及其制备方法
CN111808436A (zh) * 2020-05-22 2020-10-23 肇庆市华师大光电产业研究院 一种新型核壳结构的彩色二氧化硅及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062946B1 (en) * 2007-08-13 2012-06-06 Procter & Gamble International Operations SA Dye-loaded particles
CN103252199B (zh) * 2012-12-27 2015-04-01 苏州大学 一种无机二氧化硅/有机纳米粒子核壳结构的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1380133A (zh) * 2002-03-13 2002-11-20 华东理工大学 一种二氧化硅磁性微球及其制备方法
WO2008018716A1 (en) * 2006-08-09 2008-02-14 Korea Research Institute Of Bioscience And Biotechnology Sillica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same
CN101299366A (zh) * 2008-03-13 2008-11-05 复旦大学 磁性无机纳米粒子/沸石核壳型复合微球及其制备方法
CN101768437A (zh) * 2010-01-19 2010-07-07 无锡中德伯尔生物技术有限公司 以正电聚电解质为模板掺杂负电染料的SiO2纳米粒子及其制备方法
CN101817960A (zh) * 2010-03-17 2010-09-01 中国石油大学(华东) 一种核壳结构磁性复合纳米粒子的制备方法
US20160168385A1 (en) * 2013-07-29 2016-06-16 Sg Ventures Pty Limited Coated Particles and Method of Coating Particles
CN107735458A (zh) * 2015-05-08 2018-02-23 赢创德固赛有限公司 抗渗色二氧化硅和硅酸盐颜料及其制备方法
KR20170096755A (ko) * 2016-02-17 2017-08-25 주식회사 엘지화학 염료 나노캡슐, 이를 포함하는 컬러필터용 포토레지스트 조성물 및 이를 이용한 컬러필터
CN111808436A (zh) * 2020-05-22 2020-10-23 肇庆市华师大光电产业研究院 一种新型核壳结构的彩色二氧化硅及其制备方法和应用

Also Published As

Publication number Publication date
CN111808436B (zh) 2021-10-08
CN111808436A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US9068084B2 (en) Silica nanoparticles doped with dye having negative charge and preparing method thereof
CN101486903B (zh) 一种基于吡啶二羧酸的稀土发光纳米粒子的制备方法
Bagwe et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method
US8961825B2 (en) Fluorescent silica nanoparticles through silica densification
Nakamitsu et al. Ultrahigh‐sensitive compression‐stress sensor using integrated stimuli‐responsive materials
CN105199710A (zh) 一种荧光介孔二氧化硅复合纳米粒子及其制备方法
CN101993693B (zh) 用于pH比率探针的介孔二氧化硅荧光纳米粒子制备方法
Hu et al. Stable encapsulation of quantum dot barcodes with silica shells
CN101270281A (zh) 一种疏水性染料掺杂二氧化硅纳米粒子的制备方法
CN106495225B (zh) 一种用于磁共振显影的多糖杂化二氧化锰纳米粒子及其制法和用途
WO2021232496A1 (zh) 核壳结构的彩色二氧化硅及其制备方法和应用
CN103484101A (zh) 核壳结构荧光微球及其制备方法和应用
Yang et al. Highly Efficient Fabricating Amorphous Photonic Crystals Using Less Polar Solvents and the Wettability‐Based Information Storage and Recognition
Wang et al. Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules
Huang et al. Fabrication of PNIPAM-chitosan/decatungstoeuropate/silica nanocomposite for thermo/pH dual-stimuli-responsive and luminescent drug delivery system
CN114806544A (zh) 一种基于活化炔点击反应的发光纳米粒子及其制备方法
Zhu et al. A new synthesis method for bright monodispersed core-shell colored silica submicron particles
Zhang et al. Enhancement UV-resistance and hydrophobic of cotton fabrics through membrane formation by cationic colored nanospheres
CN102172497A (zh) 基于上转换发光纳米晶的荧光编码微球的制备方法
CN108034420A (zh) 无机纳米粒子包埋铽络合物杂化发光材料及其制备方法
CN101457139B (zh) 一种结构可控的高量子产率发光硅球及其制备方法
Li et al. Microgel–silica hybrid particles: Strategies for tunable nanostructure, composition, surface property and porphyrin functionalization
Yao et al. Tunable Photoluminescent, Water-Resistant and flexible films prepared using hollow Cellulose-Based microspheres encapsulating hydrophobic fluorescent dyes
Yang et al. A versatile strategy for loading silica particles with dyes and quantum dots
CN114854395B (zh) 发光可控的荧光材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937115

Country of ref document: EP

Kind code of ref document: A1