WO2011087101A1 - 光硬化性樹脂組成物及び発光素子封止材 - Google Patents

光硬化性樹脂組成物及び発光素子封止材 Download PDF

Info

Publication number
WO2011087101A1
WO2011087101A1 PCT/JP2011/050578 JP2011050578W WO2011087101A1 WO 2011087101 A1 WO2011087101 A1 WO 2011087101A1 JP 2011050578 W JP2011050578 W JP 2011050578W WO 2011087101 A1 WO2011087101 A1 WO 2011087101A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photocurable resin
butadiene rubber
light
group
Prior art date
Application number
PCT/JP2011/050578
Other languages
English (en)
French (fr)
Inventor
寿彦 藏田
大森 直之
熱海 陽彦
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US13/522,116 priority Critical patent/US20120296000A1/en
Priority to CN2011800060986A priority patent/CN102712729A/zh
Priority to EP11732971.4A priority patent/EP2524933B1/en
Publication of WO2011087101A1 publication Critical patent/WO2011087101A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a photocurable resin composition and a light emitting device sealing material using the photocurable resin composition.
  • Sealing materials for electronic displays such as organic electroluminescent elements and inorganic electroluminescent elements, backlights for electronic devices such as mobile phones, digital video cameras, PDAs such as LEDs, display units such as large displays, road indicators,
  • a sealing material for general lighting, etc. it is required to have an effect of protecting light from external impacts, dust, moisture, etc., and at the same time improving the light extraction efficiency.
  • thermosetting epoxy resins see Patent Document 1
  • thermosetting silicone resins see Patent Document 2
  • ultraviolet curable urethane resins see Patent Document 3
  • thermosetting epoxy resin described in Patent Document 1 When the thermosetting epoxy resin described in Patent Document 1 is used as a sealing material for a light-emitting element, there is a problem that the heat resistance is insufficient and it cannot withstand long-term use.
  • thermosetting silicone resin described in Patent Document 2 When the thermosetting silicone resin described in Patent Document 2 is used, there is a problem that the adhesiveness and flexibility are insufficient, and thus convenience is lacking. Further, the thermosetting resin itself has a problem that the time required for curing is long and the productivity is poor.
  • the ultraviolet curable urethane resin described in Patent Document 3 when the ultraviolet curable urethane resin described in Patent Document 3 is used as a sealing material for a light-emitting element, the time required for curing is short and the productivity is increased, but the heat resistance is not sufficient, and discoloration due to heat is caused. This may cause problems such as affecting the luminance.
  • an object of the present invention is to provide a light-curable resin composition that can provide a light-emitting element sealing material that can improve productivity by shortening the time required for curing, and has excellent heat resistance and light transmittance, and the light. It is providing the light emitting element sealing material using a curable resin composition.
  • the inventors of the present invention require curing for a photocurable resin composition containing a terminal-modified hydrogenated styrene butadiene rubber and a specific photopolymerization initiator in a specific ratio. It has been found that a light-emitting element sealing material can be provided that can improve productivity with a short time, and that is excellent in both heat resistance and light transmittance.
  • the present invention relates to the following [1] to [5].
  • [1] Contains 100 parts by mass of (A) terminal-modified hydrogenated styrene butadiene rubber and (B) 0.1-13 parts by mass of an ⁇ -hydroxyalkylphenone photopolymerization initiator and / or an acylphosphine oxide photopolymerization initiator A photocurable resin composition.
  • [2] The photocurable resin composition according to the above [1], wherein the terminal-modified hydrogenated styrene butadiene rubber of the component (A) is a hydrogenated styrene butadiene rubber having (meth) acryloyloxy groups at both ends of the molecule. object.
  • the photocurable resin composition of the present invention requires a short time for curing, the productivity is enhanced and a light emitting device sealing material having excellent heat resistance and light transmittance can be provided.
  • the photocurable resin composition of the present invention comprises (A) 100 parts by mass of a terminal-modified hydrogenated styrene butadiene rubber and (B) an ⁇ -hydroxyalkylphenone photopolymerization initiator and / or an acylphosphine oxide photopolymerization initiator 0. 1 to 13 parts by mass are contained.
  • the terminal-modified hydrogenated styrene butadiene rubber as the component (A) is preferably one in which both ends of the hydrogenated styrene butadiene rubber are substituted with a photocurable functional group such as a (meth) acryloyl group.
  • the method for producing the terminal-modified hydrogenated styrene butadiene rubber is not particularly limited.
  • a hydroxyl group is introduced into the molecular terminal by reacting an unmodified hydrogenated styrene butadiene rubber with ethylene oxide or propylene oxide.
  • a method of reacting with a compound having a photocurable functional group such as a (meth) acryloyl group is preferred.
  • reaction with the compound having a photocurable functional group examples include a urethanation reaction with a hydrogenated styrene butadiene rubber having a hydroxyl group introduced at the molecular terminal and 2- (meth) acryloyloxyethyl isocyanate; a hydroxyl group at the molecular terminal Transesterification reaction of hydrogenated styrene butadiene rubber with methyl introduced and lower alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, etc .;
  • a terminal-modified hydrogenated styrene butadiene rubber can be obtained by a reaction of a prepolymer obtained by reacting a styrene butadiene rubber with an isocyanate compound and 2-hydroxyethyl acrylate.
  • the terminal-modified hydrogenated styrene butadiene rubber is preferably
  • the unmodified hydrogenated styrene butadiene rubber can be obtained by hydrogenating a styrene butadiene rubber or a styrene butadiene rubber having a hydroxyl group introduced at the molecular end.
  • the raw material styrene-butadiene rubber can be obtained by copolymerization of styrene and butadiene.
  • a known dilithium compound such as naphthalene dilithium and dilithiohexylbenzene and a solvent inert to the reaction.
  • 10 Examples include a method of copolymerizing styrene and 1,3-butadiene at -80 ° C.
  • a heterogeneous catalyst in which styrene butadiene rubber is supported on a carrier such as Raney nickel or Pt, Pd, Ru, Rh, Ni on a support such as carbon, alumina, diatomaceous earth Ziegler-type catalyst consisting of a combination of organometallic compounds consisting of Group 8-10 metals such as nickel and cobalt and organoaluminum compounds such as triethylaluminum and triisobutylaluminum or organolithium compounds: transitions such as titanium, zirconium and hafnium 50 in the presence of a known hydrogenation catalyst such as a metallocene catalyst comprising a combination of a metal bis (
  • the conjugated diene portion can be hydrogenated.
  • the hydrogenation rate of the styrene butadiene rubber or the styrene butadiene rubber having a hydroxyl group introduced at the molecular end is not particularly limited, but is preferably 80 to 100%, more preferably 90 to 100% from the viewpoint of heat resistance.
  • the weight average molecular weight of the terminal-modified hydrogenated styrene butadiene rubber is preferably 5,000 to 40,000, more preferably 10,000 to 30,000, and still more preferably 15,000 to 20,000.
  • a weight average molecular weight is the value calculated
  • the molecular weight distribution (Mw / Mn) is preferably 3 or less, more preferably 2 or less, and still more preferably 1.2 or less.
  • the weight average molecular weight of the terminal-modified hydrogenated styrene butadiene rubber is within this range, the viscosity of the terminal-modified hydrogenated styrene butadiene rubber does not become too high, and the handleability is good. Moreover, if the molecular weight distribution is 3 or less, it is easy to obtain reproducibility in mass production, and it becomes easy to obtain a copolymer having the same molecular weight.
  • the content of the structural unit derived from styrene in the terminal-modified hydrogenated styrene-butadiene rubber (hereinafter referred to as styrene content) is not particularly limited, but is preferably 10 to 40% by mass, more preferably based on the total structural unit. Is 10 to 30% by mass.
  • the photocurable resin composition of the present invention contains at least one of an ⁇ -hydroxyalkylphenone photopolymerization initiator and an acylphosphine oxide photopolymerization initiator as component (B).
  • an ⁇ -hydroxyalkylphenone photopolymerization initiator those represented by the following general formula (I) are preferable.
  • R 1 , R 1 ′ , R 2 and R 2 ′ each independently represent an alkyl group having 1 to 5 carbon atoms, or R 1 and R 2 , R 1 ′ and R 2 ′. Together represent an alkylene group having 1 to 5 carbon atoms. R 1 and R 1 ′ , R 2 and R 2 ′ may be the same or different.
  • W, Z and Z ′ each independently represents an alkylene group having 1 to 5 carbon atoms. Z and Z ′ may be the same or different.
  • m is 0 or 1.
  • n1 and n2 each independently represents 0 or 1.
  • Examples of the alkyl group having 1 to 5 carbon atoms independently represented by R 1 , R 1 ′ , R 2 and R 2 ′ include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a t-butyl group and the like. Can be mentioned. Among these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by R 1 and R 2 and R 1 ′ and R 2 ′ together include a methylene group, an ethylene group, a tetramethylene group, and a pentamethylene group.
  • a pentamethylene group is preferable.
  • the alkylene group having 1 to 5 carbon atoms each independently represented by W, Z and Z ′ include a methylene group, an ethylene group and a trimethylene group.
  • W is preferably a methylene group.
  • Z and Z ′ both are preferably a methylene group or an ethylene group, more preferably an ethylene group.
  • Preferred specific examples of the ⁇ -hydroxyalkylphenone photopolymerization initiator represented by the general formula (I) are shown below, but are not particularly limited thereto.
  • acylphosphine oxide photopolymerization initiator for example, those represented by the following general formula (II) or (III) are preferable.
  • R 3 , R 3 ′ and R 3 ′′ each independently represent an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • R 4 represents an alkyl group having 1 to 15 carbon atoms.
  • p1, p2 and p3 each independently represents an integer of 0 to 3.
  • q represents 0 or 1;
  • Examples of the alkyl group having 1 to 5 carbon atoms independently represented by R 3 , R 3 ′, and R 3 ′′ include a methyl group, an ethyl group, and various propyl groups (“various” means linear and all branched chains). The same applies hereinafter), and various butyl groups. Among these, a methyl group is preferable.
  • Examples of the alkoxy group having 1 to 5 carbon atoms independently represented by R 3 , R 3 ′ and R 3 ′′ include a methoxy group and an ethoxy group. Among these, a methoxy group is preferable.
  • Examples of the alkyl group having 1 to 15 carbon atoms represented by R 4 include a methyl group, an ethyl group, various propyl groups, various butyl groups, various hexyl groups, various octyl groups, various decyl groups, various dodecyl groups, and the like.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 4 to 10 carbon atoms is more preferable, and an alkyl group having 5 to 8 carbon atoms is more preferable.
  • p1 is preferably 3.
  • p2 is preferably 0 when q is 0, and preferably 3 when q is 1.
  • p3 is preferably 0.
  • both p1 and p2 are preferably 2.
  • Preferable specific examples of the acylphosphine oxide photopolymerization initiator represented by the general formula (II) are shown below, but are not particularly limited thereto.
  • Other photopolymerization initiators such as benzyl dimethyl ketal, ⁇ -aminoalkylphenone photopolymerization initiators, oxyphenylacetic acid ester photopolymerization initiators, and the like are used for cured products obtained from photocurable resin compositions. It was found that the light transmittance was poor and it was not useful as a light emitting device sealing material.
  • the photocurable resin composition of the present invention may contain these other photopolymerization initiators as long as the effects of the present invention are not lost.
  • the content thereof is preferably 5 parts by mass or less, more preferably 100 parts by mass with respect to 100 parts by mass of component (A), from the viewpoint of light transmittance of the light emitting device sealing material. Is 3 parts by mass or less, more preferably 1 part by mass or less.
  • the photocurable resin composition of the present invention may further contain a reactive diluent.
  • a reactive diluent a liquid photopolymerizable monovinyl monomer can be used.
  • the reactive diluent reduces the viscosity of the photocurable resin composition and facilitates application, and can be polymerized when the photocurable resin composition is photocured.
  • Specific examples of the reactive diluent include vinyl esters such as vinyl acetate, (meth) acrylic monomers, N-vinyl monomers, polythiol compounds, and the like.
  • Examples of the (meth) acrylic monomer include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, n-octadecyl ( (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl ( Examples include (meth) acrylates and esters of (meth) acrylic acid and polyhydric alcohols.
  • N-vinyl monomer examples include N, N-dimethylacrylamide, N-vinylpyrrolidone, N-vinylcaprolactam and the like.
  • the polythiol compound is not particularly limited as long as it has 2 to 6 mercapto groups in the molecule.
  • aliphatic polythiols such as alkanedithiol having about 2 to 20 carbon atoms; aromatics such as xylylenedithiol Polythiols; polythiols obtained by substituting halogen atoms of halohydrin adducts of alcohols with mercapto groups; polythiols comprising hydrogen sulfide reaction products of polyepoxide compounds; polyhydric alcohols having 2 to 6 hydroxyl groups in the molecule And polythiols formed by esterification with thioglycolic acid, ⁇ -mercaptopropionic acid, or ⁇ -mercaptobutanoic acid.
  • the component (C) is contained in the photocurable resin composition, the content thereof is preferably 5 to 70% by mass, more preferably 10 to 50% by mass with respect to the photocurable resin composition.
  • the photocurable resin composition of the present invention may further contain various additives.
  • additives include photosensitizers, inorganic fillers, thickeners, ultraviolet absorbers, antioxidants (anti-aging agents), N, N′-diphenylcarbodiimide, N, N′-ethylcarbodiimide, and the like. Examples thereof include carbodiimide compounds.
  • photosensitizers include amine compounds such as aliphatic amines and aromatic amines; ureas such as o-tolylthiourea; sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. Sulfur compounds; Nitriles such as N, N-disubstituted-p-aminobenzonitrile compounds; Phosphorus compounds such as tri-n-butylphosphine; Other nitrogen compounds such as N-nitrosohydroxylamine derivatives .
  • thickener By adding a thickener to the photocurable resin composition, thickening and thixotropic properties are imparted, and moldability can be improved.
  • the thickener include inorganic fillers and organic thickeners.
  • the inorganic filler include surface-treated fine silica of wet silica and dry silica, and natural minerals such as organic bentonite.
  • silica fine powder pulverized by a dry method for example, “Aerosil 300” (manufactured by Nippon Aerosil Co., Ltd.)]
  • fine powder obtained by modifying this silica fine powder with trimethyldisilazane for example, “Aerosil” RX300 "(manufactured by Nippon Aerosil Co., Ltd.) and the like
  • fine powder obtained by modifying the silica fine powder with polydimethylsiloxane for example
  • Aerosil RY300 “(manufactured by Nippon Aerosil Co., Ltd.)
  • the average particle diameter of the inorganic filler is preferably 5 to 50 ⁇ m, more preferably 5 to 12 ⁇ m, from the viewpoints of thickening and transparency.
  • the organic thickener include amide wax, hydrogenated castor oil, or a mixture thereof.
  • hydrogenated castor oil which is a hydrogenated product of castor oil (non-drying oil whose main component is ricinoleic acid)
  • ADVITOLOL 100 manufactured by Zudchemy Catalyst Co., Ltd.
  • Disaron (registered trademark) 305 (Made by Enomoto Kasei Co., Ltd.) and the like
  • higher amide waxes which are compounds obtained by substituting hydrogen of ammonia with an acyl group
  • Disaron (registered trademark) 6500 made by Enomoto Kasei Co., Ltd.
  • UV absorber- Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, benzoate compounds, triazine compounds, hydroxylamine compounds, and the like.
  • Antioxidant- Examples of the antioxidant include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
  • phenolic antioxidants examples include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ - (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 1,1,3-tris (2-methyl-4- Hydroxy-5-tert-butylphenylbutane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis -[Methylene-3- (3 ′, 5′-d
  • sulfur-based antioxidants include dilauryl 3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, and phosphorus-based oxidation
  • the inhibitor include triphenyl phosphite, diphenylisodecyl phosphite, phenylisodecyl phosphite, tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, Examples include -methylenebis (4,6-di-t-butylphenyl) octyl phosphite.
  • the total content is not particularly limited as long as the effect of the present invention is not lost, but with respect to 100 parts by mass of component (A). Usually, it is preferably 20 parts by mass or less, more preferably 10 parts by mass or less.
  • the photocurable resin composition of the present invention can be obtained by mixing the component (A) and the component (B) and, if necessary, the component (C) and the component (D). Since the photocurable resin composition of the present invention is excellent in heat resistance and light transmittance, it is particularly useful as a light emitting device sealing material.
  • the light emitting diode (LED) represented by the organic electroluminescent element and the inorganic electroluminescent element, and the laser diode (LD) used as a light source of communication and an optical disk are mentioned.
  • a light emitting device sealing material By using the photocurable resin composition of the present invention, a light emitting device sealing material can be produced. Specifically, for example, a photocurable resin composition obtained by mixing well in a mixer such as a planetary mixer is applied to a portion to be sealed of the light emitting element, cured by irradiation with active energy rays, It becomes a light emitting element sealing material.
  • the active energy rays include particle rays, electromagnetic waves, and combinations thereof.
  • the particle beam include an electron beam (EB) and an ⁇ ray
  • examples of the electromagnetic wave include an ultraviolet ray (UV), a visible ray, an infrared ray, a ⁇ ray and an X ray.
  • ultraviolet rays As active energy rays.
  • the ultraviolet light source include a xenon lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, and a microwave excimer lamp.
  • the active energy ray is preferably irradiated in an inert gas atmosphere such as nitrogen gas or carbon dioxide gas or an atmosphere in which the oxygen concentration is lowered, but can be sufficiently cured even in a normal air atmosphere.
  • the irradiation temperature is usually preferably 10 to 200 ° C.
  • the irradiation time is usually preferably 10 seconds to 60 minutes.
  • the integrated light quantity is usually preferably 1,000 to 20,000 mJ / cm 2 .
  • the mixture was heated to 50 ° C., polymerized for 1.5 hours, 108.0 ml of a 1 mol / L ethylene oxide cyclohexane solution was added, and the mixture was further stirred for 2 hours, and then 50 ml of isopropyl alcohol was added.
  • a hexane solution of the obtained copolymer is precipitated in isopropyl alcohol and sufficiently dried to give a styrene butadiene rubber having a hydroxyl group at the molecular end (styrene content: 20% by mass, weight average molecular weight 18,000, molecular weight distribution). 1.15) was obtained.
  • the catalyst residue was extracted and separated with 3 mol / m 3 hydrochloric acid, and further centrifuged to separate the catalyst residue by sedimentation. Then, a hydrogenated styrene butadiene rubber having a hydroxyl group at the molecular end is precipitated in isopropyl alcohol and further sufficiently dried to obtain a hydrogenated styrene butadiene rubber having a hydroxyl group at the molecular end (styrene content 20 mass%, weight average molecular weight). 16,500, hydrogenation rate: 98%, molecular weight distribution 1.1) was obtained.
  • Examples 1 to 4 Each component was mixed with the planetary mixer by the compounding quantity (unit: mass part) shown in Table 1 and Table 2, and the photocurable resin composition was obtained.
  • the obtained photocurable resin composition was formed into a film having a thickness of 1 mm or 2 mm after curing, and irradiated with active energy rays to obtain a cured product as a test piece.
  • a light source for active energy rays a metal halide lamp (device name “SE-1500M”, manufactured by Sen Engineering Co., Ltd.) was used, and an ultraviolet irradiation device (device name “UV1501BA-LT”, manufactured by Sen Engineering Co., Ltd.) was used.
  • the cured product obtained from the photocurable resin composition of the present invention has a higher light transmittance than the cured product obtained in the comparative example, and even when a test piece having a thickness of 2 mm is used. It can be seen that the light transmittance exceeds 80%, which is useful as a light emitting device sealing material.
  • Comparative Example 6 when the content of the component (B) was increased, the component (B) was not completely dissolved, and it is considered that the light transmittance was greatly reduced.
  • Example 1 Measurement of heat resistance
  • the transmittance of light having a wavelength of 400 nm after being held for 100 hours or 1000 hours was measured by the same method as described above, and the relative value when the initial value was taken as 100 was determined, and the heat resistance of the obtained cured product was evaluated.
  • the results are shown in Table 2. In addition, it shows that it is excellent in heat resistance, when the reduction
  • Example 1 Measurement of heat resistance
  • urethane acrylate (“Light Tack PUA-KH32M", manufactured by Kyoeisha Chemical Co., Ltd.) is used instead of the terminal-modified hydrogenated styrene butadiene rubber of component (A).
  • a cured product (thickness 2 mm) was obtained in the same manner except that it was, and in the same manner as in Test Example 1, the heat resistance of the obtained cured product was evaluated. The results are shown in Table 2.
  • the cured product obtained by curing the photocurable resin composition of the present invention has excellent heat resistance and is useful as a light emitting device sealing material.
  • the photocurable resin composition of the present invention is excellent in heat resistance and light transmittance, it is used as a sealing material for electronic displays such as organic electroluminescent elements and inorganic electroluminescent elements, mobile phones using LEDs, and digital video. It can be used as a backlight for electronic devices such as cameras and PDAs, a display unit such as a large display, a road indicator, and a light emitting element sealing material for general lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sealing Material Composition (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 硬化に要する時間が短くて生産性を高めることができ、耐熱性及び光透過性に優れる発光素子封止材を提供し得る光硬化性樹脂組成物、及び該光硬化性樹脂組成物を用いた発光素子封止材を提供する。具体的には、(A)末端変性水添スチレンブタジエンゴム100質量部及び(B)α-ヒドロキシアルキルフェノン系光重合開始剤及び/又はアシルホスフィンオキシド系光重合開始剤0.1~13質量部を含有する光硬化性樹脂組成物、及び該光硬化性樹脂組成物を用いた発光素子封止材を提供する。

Description

光硬化性樹脂組成物及び発光素子封止材
 本発明は、光硬化性樹脂組成物及び該光硬化性樹脂組成物を用いた発光素子封止材に関する。
 有機エレクトロルミネッセンス素子及び無機エレクトロルミネッセンス素子等の電子ディスプレイの封止材や、LEDが用いられる携帯電話、デジタルビデオカメラ、PDA等の電子機器のバックライト、大型ディスプレイ、道路表示器等の表示部、及び一般照明の封止材等としては、外部からの衝撃、埃及び水分等から保護すると同時に、光取り出し効率を向上させる等の効果を有することが求められ、その材料の開発が進められている。
 従来は、シール材として、熱硬化性エポキシ樹脂(特許文献1参照)、熱硬化性シリコーン樹脂(特許文献2参照)及び紫外線硬化性ウレタン樹脂(特許文献3参照)が用いられており、これらを発光素子の封止材として利用することが検討されてきた。
特開2000-169666号公報 特開2002-225303号公報 特開2003-105311号公報
 発光素子の封止材として特許文献1に記載の熱硬化性エポキシ樹脂を用いると、耐熱性が不十分であるため、長期間の使用に耐えないという問題がある。特許文献2に記載の熱硬化性シリコーン樹脂を用いると、接着性や柔軟性が不十分であるため、利便性に欠けるという問題がある。また、熱硬化性樹脂自体、硬化に要する時間が長く、生産性が悪いという問題がある。
 一方、特許文献3に記載の紫外線硬化性ウレタン樹脂を発光素子の封止材として使用すると、硬化に要する時間が短く、生産性が高まるが、耐熱性が十分とは言えず、熱による変色が起こり、輝度に影響する等の問題が生じることがある。
 発光素子の封止材としては、耐熱性に加え、光透過性も求められ、これらを両立する新たな材料の開発が求められている。
 よって、本発明の課題は、硬化に要する時間が短くて生産性を高めることができ、耐熱性及び光透過性に優れる発光素子封止材を提供し得る光硬化性樹脂組成物、及び該光硬化性樹脂組成物を用いた発光素子封止材を提供することである。
 本発明者等は上記課題を解決すべく、鋭意検討した結果、末端変性水添スチレンブタジエンゴム及び特定の光重合開始剤を特定比率で含有する光硬化性樹脂組成物であれば、硬化に要する時間が短くて生産性を高めることができ、耐熱性及び光透過性が共に優れる発光素子封止材を提供できることを見出した。
 すなわち、本発明は、下記[1]~[5]に関する。
[1](A)末端変性水添スチレンブタジエンゴム100質量部及び(B)α-ヒドロキシアルキルフェノン系光重合開始剤及び/又はアシルホスフィンオキシド系光重合開始剤0.1~13質量部を含有する、光硬化性樹脂組成物。
[2](A)成分の末端変性水添スチレンブタジエンゴムが、分子の両末端に(メタ)アクリロイルオキシ基を有する水添スチレンブタジエンゴムである、上記[1]に記載の光硬化性樹脂組成物。
[3]さらに、(C)反応性希釈剤として、(メタ)アクリルモノマー及び/又はポリチオール化合物を含有する、上記[1]又は[2]に記載の光硬化性樹脂組成物。
[4]発光素子封止材用である、上記[1]~[3]のいずれかに記載の光硬化性樹脂組成物。
[5]上記[1]~[3]のいずれかに記載の光硬化性樹脂組成物を用いた発光素子封止材。
 本発明の光硬化性樹脂組成物は、硬化に要する時間が短いため、生産性が高まる上、耐熱性及び光透過性に優れた発光素子封止材を提供できる。
[光硬化性樹脂組成物]
 本発明の光硬化性樹脂組成物は、(A)末端変性水添スチレンブタジエンゴム100質量部及び(B)α-ヒドロキシアルキルフェノン系光重合開始剤及び/又はアシルホスフィンオキシド系光重合開始剤0.1~13質量部を含有する。
((A)末端変性水添スチレンブタジエンゴム)
 (A)成分である末端変性水添スチレンブタジエンゴムは、水添スチレンブタジエンゴムの両末端が、(メタ)アクリロイル基等の光硬化性官能基で置換されたものが好ましい。
 該末端変性水添スチレンブタジエンゴムの製造方法としては特に制限はないが、例えば、未変性の水添スチレンブタジエンゴムとエチレンオキシド又はプロピレンオキシドとを反応させることにより、分子末端に水酸基を導入し、さらに(メタ)アクリロイル基等の光硬化性官能基を有する化合物と反応させる方法が好ましい。
 上記光硬化性官能基を有する化合物との反応としては、例えば、分子末端に水酸基が導入された水添スチレンブタジエンゴムと2-(メタ)アクリロイルオキシエチルイソシアネート等によるウレタン化反応;分子末端に水酸基が導入された水添スチレンブタジエンゴムとメチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート等の低級アルキル(メタ)アクリレートによるエステル交換反応;分子末端に水酸基が導入された水添スチレンブタジエンゴムをイソシアネート化合物と反応させて得られるプレポリマーと2-ヒドロキシエチルアクリレート等との反応等により、末端変性水添スチレンブタジエンゴムを得ることができる。
 なお、末端変性水添スチレンブタジエンゴムとしては、分子の両末端に(メタ)アクリロイルオキシ基を有する水添スチレンブタジエンゴムを使用することが好ましい。
 なお、上記の未変性の水添スチレンブタジエンゴムは、スチレンブタジエンゴム又は分子末端に水酸基が導入されたスチレンブタジエンゴムを水素添加することにより得ることができる。ここで、原料のスチレンブタジエンゴムは、スチレンとブタジエンの共重合により得ることができ、例えば、ナフタレンジリチウム、ジリチオヘキシルベンゼン等の公知のジリチウム化合物及び反応に不活性な溶媒の存在下、10~80℃にてスチレンと1,3-ブタジエンを共重合させる方法が挙げられる。
 スチレンブタジエンゴム又は分子末端に水酸基が導入されたスチレンブタジエンゴムを水素添加する方法に特に制限は無く、公知の方法を利用することができる。例えば、シクロヘキサン等の飽和炭化水素溶液中で、スチレンブタジエンゴムを、ラネーニッケル又はPt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、硅藻土等の担体に担持させた不均一触媒:ニッケル、コバルト等の第8~10族金属からなる有機金属化合物とトリエチルアルミニウム、トリイソブチルアルミニウム等の有機アルミニウム化合物又は有機リチウム化合物等の組み合わせからなるチーグラー系の触媒:チタン、ジルコニウム、ハフニウム等の遷移金属のビス(シクロペンタジエニル)化合物とリチウム、ナトリウム、カリウム、アルミニウム、亜鉛又はマグネシウム等の有機金属化合物の組み合わせからなるメタロセン系触媒等の公知の水素添加触媒の存在下及び水素加圧下に50~180℃で反応させることにより、共役ジエン部位の一部又は全部を水素添加することができる。
 スチレンブタジエンゴム又は分子末端に水酸基が導入されたスチレンブタジエンゴムの水素添加率に特に制限は無いが、耐熱性の観点から、好ましくは80~100%、より好ましくは90~100%である。
 末端変性水添スチレンブタジエンゴムの重量平均分子量は、好ましくは5,000~40,000、より好ましくは10,000~30,000、さらに好ましくは15,000~20,000である。なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、単分散ポリスチレンを基準としてポリスチレン換算で求めた値である。
 また、分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、さらに好ましくは1.2以下である。末端変性水添スチレンブタジエンゴムの重量平均分子量がこの範囲内であると、末端変性水添スチレンブタジエンゴムの粘度が高くなり過ぎず、取り扱い性が良い。また、分子量分布が3以下であれば、量産する場合に再現性を得やすく、同程度の分子量の共重合体を得ることが容易になる。
 末端変性水添スチレンブタジエンゴムのスチレン由来の構成単位の含有量(以下、スチレン含有量と称する。)に特に制限はないが、全構成単位に対して、好ましくは10~40質量%、より好ましくは10~30質量%である。
((B)α-ヒドロキシアルキルフェノン系光重合開始剤及び/又はアシルホスフィンオキシド系光重合開始剤)
 本発明の光硬化性樹脂組成物は、(B)成分として、α-ヒドロキシアルキルフェノン系光重合開始剤及びアシルホスフィンオキシド系光重合開始剤のうち、少なくとも一方を含有する。
 α-ヒドロキシアルキルフェノン系光重合開始剤としては、下記一般式(I)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式中、R1、R1'、R2及びR2'は、それぞれ独立して、炭素数1~5のアルキル基を表すか、R1とR2、R1'とR2'とが一緒になって炭素数1~5のアルキレン基を表す。R1とR1'、R2とR2'は、それぞれ同一であってもよいし、異なっていてもよい。また、W、Z及びZ’は、それぞれ独立して、炭素数1~5のアルキレン基を表す。ZとZ’は、同一であってもよいし、異なっていてもよい。mは、0又は1である。n1及びn2は、それぞれ独立して、0又は1を表す。
 R1、R1'、R2及びR2'がそれぞれ独立して表す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、t-ブチル基等が挙げられる。これらの中でも、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 R1とR2、R1'とR2'とが一緒になって表す炭素数1~5のアルキレン基としては、メチレン基、エチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。これらの中でも、ペンタメチレン基が好ましい。
 W、Z及びZ’がそれぞれ独立して表す炭素数1~5のアルキレン基としては、メチレン基、エチレン基、トリメチレン基等が挙げられる。Wとしては、メチレン基が好ましい。Z及びZ’としては、いずれもメチレン基又はエチレン基であることが好ましく、いずれもエチレン基であることがより好ましい。
 一般式(I)で表されるα-ヒドロキシアルキルフェノン系光重合開始剤の好ましい具体例を以下に示すが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000002
 アシルホスフィンオキシド系光重合開始剤としては、例えば下記一般式(II)又は(III)で表わされるものが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式中、R3、R3'及びR3''は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基を表す。R4は、炭素数1~15のアルキル基を表す。p1、p2及びp3は、それぞれ独立して、0~3の整数を表す。qは、0又は1を表す。
 R3、R3'及びR3''がそれぞれ独立して表す炭素数1~5のアルキル基としては、メチル基、エチル基、各種プロピル基(「各種」とは、直鎖及びあらゆる分岐鎖を含むことを示す。以下同様。)、各種ブチル基等が挙げられる。これらの中でも、メチル基が好ましい。R3、R3'及びR3''がそれぞれ独立して表す炭素数1~5のアルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。これらの中でもメトキシ基が好ましい。
 R4が表す炭素数1~15のアルキル基としては、メチル基、エチル基、各種プロピル基、各種ブチル基、各種ヘキシル基、各種オクチル基、各種デシル基、各種ドデシル基等が挙げられる。これらの中でも、炭素数1~10のアルキル基が好ましく、炭素数4~10のアルキル基がより好ましく、炭素数5~8のアルキル基がさらに好ましい。
 一般式(II)において、p1は、3が好ましい。p2は、qが0である場合は、0が好ましく、qが1である場合は、3が好ましい。p3は、0が好ましい。また、一般式(III)においては、p1及びp2は、いずれも2が好ましい。
 一般式(II)で表されるアシルホスフィンオキシド系光重合開始剤の好ましい具体例を以下に示すが、特にこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000004
 (B)成分の光重合開始剤が前記2種類であるのは、これらを含有する光硬化性樹脂組成物を用いて得られる発光素子封止材の光透過性が極めて優れているためである。なお、その他の光重合開始剤、例えばベンジルジメチルケタールや、α-アミノアルキルフェノン系光重合開始剤、オキシフェニル酢酸エステル系光重合開始剤等では、光硬化性樹脂組成物から得られる硬化物の光透過性に乏しく、発光素子封止材として有用ではないことが判明した。
 但し、本発明の光硬化性樹脂組成物は、これらのその他の光重合開始剤を、本発明の効果が失われない程度において含有してもよい。これらのその他の光重合開始剤を含有する場合、その含有量は、発光素子封止材の光透過性の観点から、(A)成分100質量部に対して好ましくは5質量部以下、より好ましくは3質量部以下、さらに好ましくは1質量部以下である。
((C)反応性希釈剤)
 本発明の光硬化性樹脂組成物は、さらに反応性希釈剤を含有していてもよい。
 反応性希釈剤としては、液体光重合性モノビニルモノマーを用いることができる。反応性希釈剤は、光硬化性樹脂組成物の粘度を低下させ、塗布を容易にするものであり、光硬化性樹脂組成物の光硬化の際に重合し得るものである。
 反応性希釈剤としては、具体的には、酢酸ビニル等のビニルエステル、(メタ)アクリルモノマー、N-ビニルモノマー、ポリチオール化合物等が挙げられる。
 (メタ)アクリルモノマーとしては、例えば、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、(メタ)アクリル酸と多価アルコールとのエステル等が挙げられる。
 N-ビニルモノマーとしては、例えばN,N-ジメチルアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム等が挙げられる。
 ポリチオール化合物としては、分子内にメルカプト基を2~6個有するものであれば特に制限はなく、例えば、炭素数2~20程度のアルカンジチオール等の脂肪族ポリチオール類;キシリレンジチオール等の芳香族ポリチオール類;アルコール類のハロヒドリン付加物のハロゲン原子をメルカプト基で置換してなるポリチオール類;ポリエポキシド化合物の硫化水素反応生成物からなるポリチオール類;分子内に水酸基2~6個を有する多価アルコール類と、チオグリコール酸、β-メルカプトプロピオン酸、又はβ-メルカプトブタン酸とのエステル化物からなるポリチオール類等が挙げられる。
 光硬化性樹脂組成物に(C)成分を含有させる場合、その含有量は、光硬化性樹脂組成物に対して、好ましくは5~70質量%、より好ましくは10~50質量%である。
((D)添加剤)
 本発明の光硬化性樹脂組成物は、さらに各種添加剤を含有していてもよい。
 添加剤としては、例えば光増感剤、無機充填材、増粘剤、紫外線吸収剤、酸化防止剤(老化防止剤)や、N,N′-ジフェニルカルボジイミド、N,N′-エチルカルボジイミド等のカルボジイミド化合物等が挙げられる。
-光増感剤-
 光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン化合物;o-トリルチオ尿素等の尿素類;ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルフォネート等のイオウ化合物;N,N-ジ置換-p-アミノベンゾニトリル化合物等のニトリル類;トリ-n-ブチルホスフィン等のリン化合物;N-ニトロソヒドロキシルアミン誘導体等のその他の窒素化合物等を挙げることができる。
-増粘剤-
 光硬化性樹脂組成物に増粘剤を含有させることにより、増粘性や揺変性(チクソトロピー)が付与され、成形性を向上させることができる。該増粘剤としては、無機充填剤及び有機増粘剤が挙げられる。
 無機充填剤としては、湿式シリカや乾式シリカの表面処理微粉シリカや、有機化ベントナイト等の天然鉱物系のものが挙げられる。より具体的には、乾式法により微粉化したシリカ微粉末[例えば、「アエロジル300」(日本アエロジル株式会社製)等]、このシリカ微粉末をトリメチルジシラザンで変性した微粉末[例えば、「アエロジルRX300」(日本アエロジル株式会社製)等]及び上記シリカ微粉末をポリジメチルシロキサンで変性した微粉末[例えば、「アエロジルRY300」(日本アエロジル株式会社製)等]等が挙げられる。無機充填剤の平均粒径は、増粘性及び透明性の観点から、5~50μmが好ましく、5~12μmがより好ましい。
 有機増粘剤としては、アマイドワックス、水添ひまし油系又はこれらの混合物等が挙げられる。より具体的には、ひまし油(主成分がリシノール酸の不乾性油)の水添品である水添ひまし油[例えば、「ADVITROL 100」(ズードケミー触媒株式会社製)、「ディスパロン(登録商標)305」(楠本化成株式会社製)等]及びアンモニアの水素をアシル基で置換した化合物である高級アマイドワックス[例えば、「ディスパロン(登録商標)6500」(楠本化成株式会社製)等]等が挙げられる。
-紫外線吸収剤-
 紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物、トリアジン系化合物、ヒドロキシルアミン系化合物等が挙げられる。
-酸化防止剤-
 酸化防止剤としては、例えばフェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-プチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニルブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-〔メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート〕メタン、ビス〔3,3'-ビス-(4'-ヒドロキシ-3'-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、1,3,5-トリス(3',5'-ジ-t-ブチル-4'-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、α-トコフェロール等が例示される。
 イオウ系酸化防止剤としては、ジラウリル3,3'-チオジプロピオネート、ジミリスチル3,3'-チオジプロピオネート、ジステアリル3,3'-チオジプロピオネート等が例示され、またリン系酸化防止剤としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が例示される。
 光硬化性樹脂組成物に(D)添加剤を含有させる場合、その合計含有量は、本発明の効果を失わない程度であれば特に制限はないが、(A)成分100質量部に対して、通常、好ましくは20質量部以下、より好ましくは10質量部以下である。
 前記(A)成分及び(B)成分、並びに必要に応じて(C)成分や(D)成分等を混合することにより、本発明の光硬化性樹脂組成物を得ることができる。本発明の光硬化性樹脂組成物は、耐熱性及び光透過性に優れるため、特に発光素子封止材として有用である。なお、発光素子としては、有機エレクトロルミネッセンス素子及び無機エレクトロルミネッセンス素子に代表される発光ダイオード(LED)、通信や光ディスクの光源として使用されるレーザーダイオード(LD)が挙げられる。
[発光素子封止材]
 本発明の光硬化性樹脂組成物を用いることにより、発光素子封止材を製造することができる。具体的には、例えばプラネタリーミキサー等の混合機にてよく混合して得られた光硬化性樹脂組成物は、発光素子の封止すべき箇所へ塗布され、活性エネルギー線照射により硬化され、発光素子封止材となる。該活性エネルギー線としては、粒子線、電磁波及びこれらの組み合わせが挙げられる。粒子線としては、電子線(EB)及びα線が挙げられ、電磁波としては、紫外線(UV)、可視光線、赤外線、γ線及びX線等が挙げられる。これらの中でも、活性エネルギー線としては、紫外線を使用することが好ましい。紫外線源としては、キセノンランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、マイクロ波方式エキシマランプ等を挙げることができる。
 活性エネルギー線は、窒素ガスや炭酸ガス等の不活性ガス雰囲気又は酸素濃度を低下させた雰囲気下にて照射することが好ましいが、通常の空気雰囲気でも十分に硬化させることができる。照射温度は、通常、好ましくは10~200℃であり、照射時間は、通常、好ましくは10秒~60分である。積算光量は、通常、好ましくは1,000~20,000mJ/cm2である。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
<製造例1>末端変性水添スチレンブタジエンゴムの製造
 アルゴン置換した内容積7Lの反応器に、脱水精製したシクロヘキサン1.90kg、22.9質量%の1,3-ブタジエンのヘキサン溶液2kg、20.0質量%のスチレンのシクロヘキサン溶液0.573kg、1.6mol/Lの2,2-ジ(テトラヒドロフリル)プロパンのヘキサン溶液130.4mlを添加した後、0.5mol/Lのジリチウム重合開始剤108.0mlを添加して重合を開始させた。混合液を50℃に昇温し、1.5時間重合を行なった後、1mol/Lのエチレンオキシドのシクロヘキサン溶液108.0mlを添加し、さらに2時間撹拌した後、50mlのイソプロピルアルコールを添加した。
 得られた共重合体のヘキサン溶液をイソプロピルアルコール中に沈殿させ、十分に乾燥させて、分子末端に水酸基を有するスチレンブタジエンゴム(スチレン含有量:20質量%、重量平均分子量18,000、分子量分布1.15)を得た。
(水素添加処理)
 上記で得られた分子末端に水酸基を有するスチレンブタジエンゴム120gを、十分に脱水精製したヘキサン1Lに溶解した後、予め別の容器で調整したナフテン酸ニッケル、トリエチルアルミニウム及びブタジエン[それぞれ1:3:3(モル比)]の触媒液を、前記スチレンブタジエンゴムのブタジエン由来の構成単位1000molに対してニッケル1molになるように仕込んだ。密閉反応容器に水素を2.758MPa(400psi)で加圧添加し、110℃にて4時間、水素添加反応を行なった。
 その後、3mol/m3の塩酸で触媒残渣を抽出分離し、さらに遠心分離をして触媒残渣を沈降分離した。そして、分子末端に水酸基を有する水添スチレンブタジエンゴムをイソプロピルアルコール中に沈殿させ、さらに十分に乾燥させて、分子末端に水酸基を有する水添スチレンブタジエンゴム(スチレン含有量20質量%、重量平均分子量16,500、水素添加率:98%、分子量分布1.1)を得た。
(分子末端の変性処理)
 こうして得られた分子末端に水酸基を有する水添スチレンブタジエンゴムをシクロヘキサンに溶解し、40℃にて攪拌しながら2-アクリロイルオキシエチルイソシアネート(「カレンズ(登録商標)AOI」、昭和電工株式会社製)をゆっくり滴下し、さらに4時間攪拌を行なった後、イソプロピルアルコール中に結晶を沈殿させ、末端変性水添スチレンブタジエンゴムを得た。
<実施例1~4、比較例1~6>
 表1、表2に示した配合量(単位:質量部)で各成分をプラネタリーミキサーにて混合し、光硬化性樹脂組成物を得た。得られた光硬化性樹脂組成物を、硬化後の厚さが1mm又は2mmとなるように成膜し、活性エネルギー線を照射することにより、試験片としての硬化物を得た。
 なお、活性エネルギー線の光源としては、メタルハライドランプ(装置名「SE-1500M」、センエンジニアリング株式会社製)を使用し、紫外線照射機(装置名「UV1501BA-LT」、センエンジニアリング株式会社製)により、空気雰囲気下で放射照度150mW/cm2(波長:320~390nm)にて60秒間照射を行った。
 得られた試験片(厚さ1mm又は2mm)について、以下の方法により光透過率を測定した。結果を表1に示す。
(光透過率の測定)
 紫外可視分光光度計[装置名「V-550」、日本分光株式会社製、積分球「ISV-470」(日本分光株式会社製)]を用いて、波長400nmの光の透過率及び波長450nmの光の透過率をそれぞれ測定した。
 なお、特に厚さ2mmの試験片において、波長400nmの光の透過率が80%以上であると、発光素子封止材として有用であり、また、光透過率が高いほど好ましい。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-C000006
 表1より、本発明の光硬化性樹脂組成物から得られた硬化物は、比較例で得られた硬化物よりも光透過率が高く、また、厚さ2mmの試験片を用いた場合でも光透過率が80%を超えており、発光素子封止材として有用であることがわかる。
 比較例6では、(B)成分の含有量を増加したところ、(B)成分が溶解しきっておらず、そのために光透過率が大幅に減少したものと考えられる。
<試験例1>耐熱性の測定
 実施例1で得た光硬化性樹脂組成物の硬化物(厚さ2mm)を、120℃に100時間又は1000時間保持した後の光透過率と、150℃に100時間又は1000時間保持した後の波長400nmの光の透過率を前記同様の方法で測定し、初期を100としたときの相対値を求め、得られた硬化物の耐熱性を評価した。結果を表2に示す。
 なお、120℃又は150℃に保持したときの光透過率の減少幅が小さいと、耐熱性に優れることを示す。
<比較試験例1>耐熱性の測定
 実施例1において、(A)成分の末端変性水添スチレンブタジエンゴムの代わりに、ウレタンアクリレート(「ライトタックPUA-KH32M」、共栄社化学株式会社製)を用いたこと以外は同様にして硬化物(厚さ2mm)を得、上記試験例1と同様にして、得られた硬化物の耐熱性を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表2より、本発明の光硬化性樹脂組成物を硬化して得られる硬化物は耐熱性に優れており、発光素子封止材として有用であることがわかる。
 本発明の光硬化性樹脂組成物は、耐熱性及び光透過性に優れるため、有機エレクトロルミネッセンス素子及び無機エレクトロルミネッセンス素子等の電子ディスプレイの封止材用途や、LEDが用いられる携帯電話、デジタルビデオカメラ、PDA等の電子機器のバックライト、大型ディスプレイ、道路表示器等の表示部、及び一般照明等の発光素子封止材用途として利用可能である。

Claims (5)

  1.  (A)末端変性水添スチレンブタジエンゴム100質量部及び(B)α-ヒドロキシアルキルフェノン系光重合開始剤及び/又はアシルホスフィンオキシド系光重合開始剤0.1~13質量部を含有する、光硬化性樹脂組成物。
  2.  (A)成分の末端変性水添スチレンブタジエンゴムが、分子の両末端に(メタ)アクリロイルオキシ基を有する水添スチレンブタジエンゴムである、請求項1に記載の光硬化性樹脂組成物。
  3.  さらに、(C)反応性希釈剤として、(メタ)アクリルモノマー及び/又はポリチオール化合物を含有する、請求項1又は2に記載の光硬化性樹脂組成物。
  4.  発光素子封止材用である、請求項1~3のいずれかに記載の光硬化性樹脂組成物。
  5.  請求項1~3のいずれかに記載の光硬化性樹脂組成物を用いた発光素子封止材。
PCT/JP2011/050578 2010-01-15 2011-01-14 光硬化性樹脂組成物及び発光素子封止材 WO2011087101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/522,116 US20120296000A1 (en) 2010-01-15 2011-01-14 Photocurable resin composition and light-emitting element sealant
CN2011800060986A CN102712729A (zh) 2010-01-15 2011-01-14 光固化性树脂组合物及发光器件封装材料
EP11732971.4A EP2524933B1 (en) 2010-01-15 2011-01-14 Photocurable resin composition and light-emitting element sealant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006747A JP5946985B2 (ja) 2010-01-15 2010-01-15 光硬化性樹脂組成物及び発光素子封止材
JP2010-006747 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011087101A1 true WO2011087101A1 (ja) 2011-07-21

Family

ID=44304370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050578 WO2011087101A1 (ja) 2010-01-15 2011-01-14 光硬化性樹脂組成物及び発光素子封止材

Country Status (5)

Country Link
US (1) US20120296000A1 (ja)
EP (1) EP2524933B1 (ja)
JP (1) JP5946985B2 (ja)
CN (1) CN102712729A (ja)
WO (1) WO2011087101A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044363A1 (fr) * 1996-05-23 1997-11-27 Omron Corporation Composition photosensible et revetement blanc
JP2002156498A (ja) * 2000-11-20 2002-05-31 Fuji Photo Film Co Ltd 放射線像変換パネル
JP2005129520A (ja) * 2003-10-03 2005-05-19 Jsr Corp 有機el素子用透明封止材
JP2008195792A (ja) * 2007-02-09 2008-08-28 Bridgestone Corp 光硬化性液状樹脂組成物
JP2008291127A (ja) * 2007-05-25 2008-12-04 Bridgestone Corp 光硬化性組成物及びそれを用いた電子部品用ガスケット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113417A (ja) * 1987-10-26 1989-05-02 Matsushita Electric Works Ltd 光硬化性樹脂組成物
WO2005034583A1 (ja) * 2003-10-03 2005-04-14 Jsr Corporation 有機el素子用透明封止材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044363A1 (fr) * 1996-05-23 1997-11-27 Omron Corporation Composition photosensible et revetement blanc
JP2002156498A (ja) * 2000-11-20 2002-05-31 Fuji Photo Film Co Ltd 放射線像変換パネル
JP2005129520A (ja) * 2003-10-03 2005-05-19 Jsr Corp 有機el素子用透明封止材
JP2008195792A (ja) * 2007-02-09 2008-08-28 Bridgestone Corp 光硬化性液状樹脂組成物
JP2008291127A (ja) * 2007-05-25 2008-12-04 Bridgestone Corp 光硬化性組成物及びそれを用いた電子部品用ガスケット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2524933A4 *

Also Published As

Publication number Publication date
JP5946985B2 (ja) 2016-07-06
EP2524933A4 (en) 2014-08-20
EP2524933A1 (en) 2012-11-21
JP2011144276A (ja) 2011-07-28
EP2524933B1 (en) 2016-09-07
US20120296000A1 (en) 2012-11-22
CN102712729A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5715330B2 (ja) 光硬化性樹脂組成物及びそれからなる粘着シート
JP5237565B2 (ja) 光硬化性液状ゴム組成物
JP6579335B2 (ja) 反応性シルセスキオキサン化合物を含む重合性組成物
WO2013080737A1 (ja) 光硬化性シーリング用材料、シーリング方法、シーリング材およびそれを用いる筐体
JP5587710B2 (ja) 粘着シート
TWI625340B (zh) Sclerosing composition
JP2011046773A (ja) エネルギー線硬化型エラストマー組成物
CN102414253A (zh) 能量射线固化型弹性体组合物、垫片用材料、垫片和硬盘装置
TWI784116B (zh) 壓印用光硬化性組成物
JP5156239B2 (ja) 接着剤
JP5731742B2 (ja) エネルギー線硬化型エラストマー組成物
WO2014069027A1 (ja) 光硬化性シーリング用材料、シーリング方法、シーリング材およびそれを用いる筐体
WO2013046686A1 (ja) 接着性組成物、及びこれを用いた画像表示装置
TW201406799A (zh) 光硬化性樹脂組成物、影像顯示用裝置、及影像顯示用裝置的製造方法
CN109071901A (zh) 用于燃料电池的可热固化密封剂
JP5603130B2 (ja) 硬化物の製造方法、並びに硬化物、電子部品用シール材及び電子部品用ガスケット材
JPWO2016163561A1 (ja) 反応性シルセスキオキサン化合物を含む重合性樹脂組成物
JP2011032409A (ja) 光硬化性樹脂組成物及びそれからなる粘着シート
KR102496908B1 (ko) 임프린트용 광경화성 조성물
JP5619566B2 (ja) 光硬化性樹脂組成物及び発光素子封止材
JP5946985B2 (ja) 光硬化性樹脂組成物及び発光素子封止材
CN102037026A (zh) 一液固化型组合物
JP2012188580A (ja) 光硬化性樹脂組成物及び発光素子封止材
JP5890634B2 (ja) ガスケット用材料、ガスケット及びハードディスク装置、並びにガスケットの製造方法
JP2019014867A (ja) 光硬化性樹脂組成物、表示素子用封止剤、有機el素子用面封止剤、および面封止層

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006098.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011732971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011732971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13522116

Country of ref document: US