WO2011087072A1 - シクロペンテン開環重合体およびその製造方法 - Google Patents
シクロペンテン開環重合体およびその製造方法 Download PDFInfo
- Publication number
- WO2011087072A1 WO2011087072A1 PCT/JP2011/050500 JP2011050500W WO2011087072A1 WO 2011087072 A1 WO2011087072 A1 WO 2011087072A1 JP 2011050500 W JP2011050500 W JP 2011050500W WO 2011087072 A1 WO2011087072 A1 WO 2011087072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- cyclopentene
- ring
- polymer
- opening polymer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3321—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclopentene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a cyclopentene ring-opening polymer and a method for producing the same, and more particularly to a cyclopentene ring-opening polymer excellent in rubber properties at low temperatures, low heat build-up and processability, and a method for producing the same.
- the present invention also relates to a rubber composition obtained using the cyclopentene ring-opening polymer.
- cyclopentene is a so-called Ziegler-Natta catalyst comprising a Group 6 transition metal compound of the periodic table such as WCl 6 and MoCl 5 and an organometallic activator such as triisobutylaluminum, diethylaluminum chloride, tetrabutyltin.
- a Group 6 transition metal compound of the periodic table such as WCl 6 and MoCl 5
- an organometallic activator such as triisobutylaluminum, diethylaluminum chloride, tetrabutyltin.
- a cyclopentene ring-opening polymer having a high trans ratio has been used in terms of crystallinity and excellent green strength.
- a high trans ratio cyclopentene ring-opening polymer is excellent in green strength and abrasion resistance, but has high crystallinity. Therefore, it is inferior in rubber properties at low temperatures, and various rubbers used at low temperatures, for example, There is a problem that it cannot be used as a rubber material for tires.
- Non-Patent Document 1 by using MoCl 5 / triethylaluminum or WCl 6 / trialkylaluminum as a polymerization catalyst, the cis ratio is high, the material is amorphous, and the glass transition temperature is ⁇ 100 ° C. or lower. A certain cyclopentene ring-opening polymer is obtained.
- Non-Patent Document 1 has low dispersibility with respect to fillers such as silica and carbon black. Therefore, although properties at low temperatures are improved, it is inferior in low exothermic property. There was a problem.
- Non-Patent Document 1 since the cyclopentene ring-opening polymer disclosed in Non-Patent Document 1 has a low Mooney viscosity, kneading at a high temperature is difficult, and there is a problem that the processability is inferior.
- a cyclopentene ring-opened polymer has a cis ratio of a structural unit derived from cyclopentene of 30% or more and a weight average molecular weight (Mw) of 100,000. It has been found that the above object can be achieved by introducing an oxysilyl group at the end of the polymer chain, and the present invention has been completed.
- the structural unit derived from cyclopentene has a cis ratio of 30% or more, a weight average molecular weight (Mw) of 100,000 to 1,000,000, and an oxysilyl group at the end of the polymer chain.
- Mw weight average molecular weight
- a cyclopentene ring-opening polymer is provided.
- the oxysilyl group is an alkoxysilyl group, an alkylsiloxysilyl group, or a hydroxysilyl group.
- a method for producing the above cyclopentene ring-opening polymer which is a periodic table group 6 transition metal compound (A), an organoaluminum compound (B) represented by the following general formula (1)
- a method for producing a cyclopentene ring-opening polymer comprising subjecting cyclopentene to ring-opening polymerization in the presence of an oxysilyl group-containing olefinically unsaturated hydrocarbon (C).
- C oxysilyl group-containing olefinically unsaturated hydrocarbon
- R 1 and R 2 represent a hydrocarbon group having 1 to 20 carbon atoms, and x is 0 ⁇ x ⁇ 3.
- a rubber composition characterized by comprising a filler in the cyclopentene ring-opening polymer.
- the filler is silica and / or carbon black.
- a cyclopentene ring-opening polymer excellent in rubber properties at low temperature, low heat build-up property and processability and a rubber composition obtained using the cyclopentene ring-opening polymer.
- the cyclopentene ring-opening polymer has a cis ratio and a weight average molecular weight (Mw) of a structural unit derived from cyclopentene within the above range, and has an oxysilyl group at the end of the polymer chain.
- the cyclopentene ring-opening polymer of the present invention has a cis ratio of a structural unit derived from cyclopentene of 30% or more, a weight average molecular weight (Mw) of 100,000 to 1,000,000, and an oxysilyl group at the polymer chain end. It is a ring-opening polymer of cyclopentene having a group.
- the cis ratio of the structural unit derived from cyclopentene is 30% or more, preferably 35% or more, more preferably 40% or more.
- the cyclopentene ring-opening polymer becomes amorphous and has excellent rubber properties at low temperatures. If the cis ratio is too low, it has crystallinity at a low temperature (for example, ⁇ 30 ° C. or lower), resulting in poor rubber properties at a low temperature.
- the “cis ratio of the structural unit derived from cyclopentene” refers to a structural unit derived from cyclopentene having a cis-type carbon-carbon double bond among all the structural units derived from cyclopentene constituting the cyclopentene ring-opening polymer. The ratio is shown as a percentage and can be measured by 13 C-NMR spectrum measurement of a cyclopentene ring-opening polymer.
- the upper limit of the cis ratio of the structural unit derived from cyclopentene of the cyclopentene ring-opening polymer of the present invention is not particularly limited, but is usually 95% or less, preferably 90% or less, more preferably 85% or less. It is. A cyclopentene ring-opening polymer having a cis ratio that is too high is difficult to produce and may have poor rubber properties at low temperatures.
- the cyclopentene ring-opening polymer of the present invention has a weight average molecular weight (Mw) of 100,000 to 1,000,000, preferably 120,000 to 900,000, more preferably 150,000 to 800,000. is there. If the molecular weight is too low, the rubber properties are inferior. On the other hand, if the molecular weight is too high, production and handling become difficult. Further, the molecular weight distribution (Mw / Mn) obtained as a ratio of the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the cyclopentene ring-opening polymer is not particularly limited, but is usually 1.1 to 5.0. Yes, preferably 1.2 to 4.5, more preferably 1.3 to 4.0.
- weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of a cyclopentene ring-opening polymer shall be measured as a value in terms of polystyrene by gel permeation chromatography.
- the cyclopentene ring-opening polymer of the present invention has an oxysilyl group at the end of the polymer chain.
- the oxysilyl group is a group having a silicon-oxygen bond and has a chemical structure represented by -Si-O-.
- the cyclopentene ring-opening polymer is converted into a rubber at low temperature by introducing an oxysilyl group at the end of the polymer chain while keeping the cis ratio and the weight average molecular weight (Mw) of the structural unit derived from cyclopentene in the above range.
- Mw weight average molecular weight
- oxysilyl groups for example, it has a high affinity with silica and carbon black as fillers used for rubber materials for tires, and the effect of improving the low heat buildup of the resulting cyclopentene ring-opening polymer is high.
- an alkoxysilyl group, an aryloxysilyl group, an acyloxysilyl group, an alkylsiloxysilyl group, and an arylsiloxysilyl group are preferable, and an alkoxysilyl group and an alkylsiloxysilyl group are more preferable.
- a hydroxysilyl group obtained by hydrolyzing an alkoxysilyl group, an aryloxysilyl group, or an acyloxysilyl group is also preferred.
- the alkoxysilyl group is a group in which one or more alkoxy groups are bonded to a silicon atom. Specific examples thereof include a trimethoxysilyl group, a (dimethoxy) (methyl) silyl group, and a (methoxy) (dimethyl) silyl group. Group, (methoxy) (dichloro) silyl group, triethoxysilyl group, (diethoxy) (methyl) silyl group, (ethoxy) (dimethyl) silyl group, (dimethoxy) (ethoxy) silyl group, (methoxy) (diethoxy) silyl Group, tripropoxysilyl group and the like.
- An aryloxysilyl group is a group in which one or more aryloxy groups are bonded to a silicon atom, and specific examples thereof include a triphenoxysilyl group, (diphenoxy) (methyl) silyl group, and (phenoxy) (dimethyl). Examples thereof include a silyl group, a (phenoxy) (dichloro) silyl group, a (diphenoxy) (ethoxy) silyl group, and a (phenoxy) (diethoxy) silyl group.
- the (diphenoxy) (ethoxy) silyl group and the (phenoxy) (diethoxy) silyl group also have an alkoxy group in addition to the aryloxy group, and therefore are classified as an alkoxysilyl group.
- An acyloxysilyl group is a group in which one or more acyloxy groups are bonded to a silicon atom. Specific examples thereof include triacyloxysilyl groups, (diasiloxy) (methyl) silyl groups, and (acyloxy) (dimethyl). A silyl group, (acyloxy) (dichloro) silyl group, etc. are mentioned.
- the alkylsiloxysilyl group is a group in which one or more alkylsiloxy groups are bonded to a silicon atom. Specific examples thereof include tris (trimethylsiloxy) silyl group, trimethylsiloxy (dimethyl) silyl group, triethylsiloxy ( And diethyl) silyl group and tris (dimethylsiloxy) silyl group.
- the arylsiloxysilyl group is a group in which one or more arylsiloxy groups are bonded to a silicon atom. Specific examples thereof include tris (triphenylsiloxy) silyl group, triphenylsiloxy (dimethyl) silyl group, tris And (diphenylsiloxy) silyl group.
- the hydroxysilyl group is a group in which one or more hydroxy groups are bonded to a silicon atom. Specific examples thereof include a trihydroxysilyl group, a (dihydroxy) (methyl) silyl group, and a (hydroxy) (dimethyl) silyl group. , (Hydroxy) (dichloro) silyl group, (dihydroxy) (ethoxy) silyl group, (hydroxy) (diethoxy) silyl group, and the like. Of these, the (dihydroxy) (ethoxy) silyl group and the (hydroxy) (diethoxy) silyl group also have an alkoxy group in addition to the hydroxy group, and therefore are classified as an alkoxysilyl group.
- a linear polysiloxane group represented by the following general formula (2) and a cyclic polysiloxane group represented by the following general formula (3) are also suitable.
- R 3 to R 7 are selected from a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group, an alkoxy group, an aryloxy group, an acyloxy group, an alkylsiloxy group, and an arylsiloxy group.
- R 8 to R 12 are selected from a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group, an alkoxy group, an aryloxy group, an acyloxy group, an alkylsiloxy group, and an arylsiloxy group.
- n is an integer of 1 to 10.
- R 3 to R 7 and R 8 to R 12 are each a hydrogen atom, in view of higher polymerization activity when obtaining a cyclopentene ring-opening polymer.
- an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a cyclohexyl group is preferable.
- the introduction ratio of the oxysilyl group at the polymer chain end of the cyclopentene ring-opening polymer of the present invention is not particularly limited, but the number of active hydrogen-containing functional groups introduced relative to the number of polymer chains of the cyclopentene ring-opening polymer.
- the ratio is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, and particularly preferably 40% or more.
- the higher the introduction ratio of the oxysilyl group the higher the affinity with silica or carbon black as a filler used when making a rubber material for tires, and this is preferable because the effect of improving low heat build-up becomes higher.
- the method for measuring the introduction ratio of the oxysilyl group to the polymer chain end is not particularly limited. For example, the peak area ratio corresponding to the oxysilyl group determined by 1 H-NMR spectrum measurement and the gel permeation chromatography It can be determined from the number average molecular weight in terms of polystyrene determined from
- the cyclopentene ring-opening polymer of the present invention may contain a structural unit derived from a cyclic olefin having metathesis reactivity other than cyclopentene in addition to the structural unit derived from cyclopentene.
- a structural unit derived from a cyclic olefin having metathesis reactivity other than cyclopentene in addition to the structural unit derived from cyclopentene.
- the content ratio of the structural unit derived from cyclopentene is too low, the glass transition temperature of the cyclopentene ring-opening polymer is increased, and the rubber properties at low temperature are deteriorated.
- characteristics of the cyclopentene ring-opening polymer for example, short chain This is not preferable because the characteristic as a linear polymer having no branching is lost.
- the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the cyclopentene ring-opening polymer of the present invention is preferably 20 to 150, more preferably 22 to 120, still more preferably 25 to 100.
- the cyclopentene ring-opening polymer of the present invention has a cis ratio and a weight average molecular weight (Mw) of a structural unit derived from cyclopentene within the above range, and has an oxysilyl group at the end of the polymer chain. It is controlled within the above range, and thereby has excellent workability. If the Mooney viscosity is too low, kneading at a high temperature becomes difficult, resulting in poor workability. On the other hand, if the Mooney viscosity is too high, kneading becomes difficult and similarly, the processability is poor.
- the glass transition temperature of the cyclopentene ring-opening polymer of the present invention is not particularly limited, but is preferably ⁇ 98 ° C. or less, more preferably ⁇ 99 ° C. or less, from the viewpoint of improving rubber properties at low temperatures. More preferably, it is ⁇ 100 ° C. or lower. Since the cyclopentene ring-opening polymer of the present invention has a cis ratio and a weight average molecular weight (Mw) of a structural unit derived from cyclopentene within a specific range, the glass transition temperature can be controlled as described above.
- the cyclopentene ring-opening polymer of the present invention comprises a periodic table group 6 transition metal compound (A), an organoaluminum compound (B) represented by the following general formula (1), and an oxysilyl group-containing olefinically unsaturated hydrocarbon (C ) In the presence of cyclopentene.
- R 1 3-x Al
- OR 2 x (1)
- R 1 and R 2 represent a hydrocarbon group having 1 to 20 carbon atoms, and x is 0 ⁇ x ⁇ 3.
- the periodic table group 6 transition metal compound (A) used in the present invention is a compound having a periodic table (long-period type periodic table, hereinafter the same) group 6 transition metal atom, specifically, a chromium atom, a molybdenum atom, Alternatively, a compound having a tungsten atom, a compound having a molybdenum atom, or a compound having a tungsten atom is preferable, and a compound having a tungsten atom is more preferable from the viewpoint of high solubility in cyclopentene.
- a periodic table long-period type periodic table, hereinafter the same
- group 6 transition metal atom specifically, a chromium atom, a molybdenum atom
- a compound having a tungsten atom, a compound having a molybdenum atom, or a compound having a tungsten atom is preferable, and a compound having a tungsten atom is more preferable from
- the periodic table group 6 transition metal compound (A) acts as a polymerization catalyst together with the organoaluminum compound (B) described later.
- the periodic table Group 6 transition metal compound (A) is not particularly limited as long as it is a compound having a Group 6 transition metal atom in the periodic table, but is a halide, alcoholate, arylate of the Group 6 transition metal atom in the periodic table. Among these, halides are preferred from the viewpoint of high polymerization activity.
- Group 6 transition metal compound (A) include molybdenum compounds such as molybdenum pentachloride, molybdenum oxotetrachloride, and molybdenum (phenylimide) tetrachloride; tungsten hexachloride, tungsten oxotetrachloride, Tungsten compounds such as tungsten (phenylimido) tetrachloride, monocatecholate tungsten tetrachloride, bis (3,5-ditertiarybutyl) catecholate tungsten dichloride, bis (2-chloroetherate) tetrachloride, tungsten oxotetraphenolate And so on.
- molybdenum compounds such as molybdenum pentachloride, molybdenum oxotetrachloride, and molybdenum (phenylimide) tetrachloride
- tungsten hexachloride tungs
- the amount of the group 6 transition metal compound (A) used in the periodic table is usually 1: 100 to 1: 200,000, preferably 1: in the molar ratio of “Group 6 transition metal atom in the polymerization catalyst: cyclopentene”.
- the range is 200 to 1: 150,000, more preferably 1: 500 to 1: 100,000.
- a polymerization reaction may not fully advance.
- the amount is too large, removal of the catalyst residue from the resulting cyclopentene ring-opening polymer becomes difficult, and the heat resistance and cold resistance of the resulting cyclopentene ring-opening polymer may be lowered.
- the organoaluminum compound (B) used in the present invention is a compound represented by the following general formula (1).
- the organoaluminum compound (B) acts as a polymerization catalyst together with the above-mentioned periodic table Group 6 transition metal compound (A).
- R 1 and R 2 are each a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 1 to 10 carbon atoms.
- R 1 and R 2 include methyl group, ethyl group, isopropyl group, n-propyl group, isobutyl group, n-butyl group, t-butyl group, n-hexyl group, cyclohexyl group, and n-octyl group.
- Alkyl groups such as n-decyl group; aryl groups such as phenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 2,6-diisopropylphenyl group and naphthyl group;
- R 1 and R 2 may be the same or different.
- the cis ratio of the resulting cyclopentene ring-opening polymer can be increased, and the oxysilyl group-containing olefinic property can be increased.
- x is 0 ⁇ x ⁇ 3. That is, in the general formula (1), the composition ratio between R 1 and OR 2 can take any value in the ranges of 0 ⁇ 3-x ⁇ 3 and 0 ⁇ x ⁇ 3, respectively. However, x is preferably 0.5 ⁇ x ⁇ 1.5 because the polymerization activity can be increased and the cis ratio of the resulting cyclopentene ring-opening polymer can be increased.
- Such an organoaluminum compound (B) represented by the above general formula (1) can be synthesized, for example, by a reaction of a trialkylaluminum and an alcohol as shown in the following general formula (4).
- x can be arbitrarily controlled by defining the reaction ratio between the corresponding trialkylaluminum and alcohol as shown in the general formula (4). .
- an organoaluminum compound (B) changes also with kinds of the organoaluminum compound (B) to be used, with respect to the periodic table group 6 transition metal atom which comprises a periodic table group 6 transition metal compound (A).
- the ratio is preferably 0.1 to 100 times mol, more preferably 0.2 to 50 times mol, and still more preferably 0.5 to 20 times mol. If the amount of the organoaluminum compound (B) used is too small, the polymerization activity may be insufficient, and if it is too large, side reactions tend to occur during ring-opening polymerization.
- the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) used in the present invention is a compound having an oxysilyl group and one olefinic carbon-carbon double bond having metathesis reactivity.
- an oxysilyl group can be introduced into the polymer chain end of the cyclopentene ring-opening polymer.
- Examples of such oxysilyl group-containing olefinically unsaturated hydrocarbon (C) include compounds represented by the following general formulas (5) to (8).
- R 13 to R 15 are a hydrogen atom and a hydrocarbon group having 1 to 10 carbon atoms
- R 16 to R 19 are a hydrogen atom and an alkyl group having 1 to 10 carbon atoms
- L 1 is a single bond or a divalent group
- R 20 to R 22 are a hydrogen atom and a hydrocarbon group having 1 to 10 carbon atoms
- R 23 to R 27 are a hydrogen atom and an alkyl group having 1 to 10 carbon atoms
- a group selected from an aryl group, an alkoxy group, an aryloxy group, an acyloxy group, an alkylsiloxy group and an arylsiloxy group, L 2 is a single bond or a divalent group, and q is 1 to 10 Is an integer.
- R 33 and R 34 are a hydrogen atom and a hydrocarbon group having 1 to 10 carbon atoms
- R 28 to R 32 and R 35 to R 39 are a hydrogen atom, carbon number 1
- R 45 and R 46 are a hydrogen atom and a hydrocarbon group having 1 to 10 carbon atoms
- R 40 to R 44 and R 47 to R 51 are a hydrogen atom and 1 carbon atom, respectively.
- R 13 to R 15 , R 20 to R 22 , R 33 , R 34 , R 45 and R 46 are preferably hydrogen atoms, and these should be hydrogen atoms.
- the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) can be made more excellent in metathesis reactivity.
- the divalent group that can be L 1 to L 6 is not particularly limited.
- the hydrocarbon group or carbonyl group optionally having a substituent may be used.
- a divalent group such as an ester group, an ether group, a silyl group, a thioether group, an amino group, an amide group, or a group formed by combining these.
- the oxysilyl group and the olefinic carbon-carbon double bond may be directly bonded by a single bond without using a divalent group.
- L 1 to L 6 are preferably divalent groups from the viewpoint that the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) can be made more excellent in metathesis reactivity.
- a group hydrocarbon group is more preferred.
- Preferred specific examples of the compounds represented by the general formulas (5) and (6) include vinyl (trimethoxy) silane, vinyl (triethoxy) silane, allyl (trimethoxy) silane, allyl (methoxy) (dimethyl) silane, allyl (triethoxy).
- Silane allyl (ethoxy) (dimethyl) silane, styryl (trimethoxy) silane, styryl (triethoxy) silane, 2-styrylethyl (triethoxy) silane, allyl (triethoxysilylmethyl) ether, allyl (triethoxysilylmethyl) ( Alkoxysilane compounds such as ethyl) amine; aryloxysilane compounds such as vinyl (triphenoxy) silane, allyl (triphenoxy) silane, allyl (phenoxy) (dimethyl) silane; vinyl (triacetoxy) silane, allyl Acyloxysilane compounds such as acetoxy) silane, allyl (diacetoxy) methylsilane, allyl (acetoxy) (dimethyl) silane; alkylsiloxysilane compounds such as allyltris (trimethylsiloxy) silane; arylsil
- Preferred specific examples of the compounds represented by the general formulas (7) and (8) include 2-butene-1,4-di (trimethoxysilane), 2-butene-1,4-di (triethoxysilane), Alkoxysilane compounds such as 1,4-di (trimethoxysilylmethoxy) -2-butene; aryloxysilane compounds such as 2-butene-1,4-di (triphenoxysilane); 2-butene-1,4- Acyloxysilane compounds such as di (triacetoxysilane); alkylsiloxysilane compounds such as 2-butene-1,4-di [tris (trimethylsiloxy) silane]; 2-butene-1,4-di [tris (tri Arylsiloxysilane compounds such as phenylsiloxy) silane]; 2-butene-1,4-di (heptamethyltrisiloxane), 2-butene-1,4-di (c
- the amount of the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) used may be appropriately selected according to the molecular weight of the cyclopentene ring-opening polymer to be produced, but is usually 1/100 to 1 in molar ratio to cyclopentene. The range is 1 / 100,000, preferably 1/200 to 1 / 50,000, more preferably 1/500 to 1 / 10,000.
- the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) acts as a molecular weight modifier in addition to the action of introducing the oxysilyl group into the polymer chain end of the cyclopentene ring-opening polymer.
- the amount of the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) is too small, the introduction rate of the oxysilyl group in the cyclopentene ring-opening polymer is low, and if it is too large, the molecular weight of the resulting cyclopentene ring-opening polymer is low. End up.
- an oxygen atom-containing hydrocarbon compound may be further used as a polymerization catalyst.
- the polymerization activity can be improved, and the molecular weight of the resulting cyclopentene ring-opening polymer can be improved.
- the oxygen atom-containing hydrocarbon compound is not particularly limited as long as it is a hydrocarbon compound having an oxygen atom, but is an ester, ketone or ether compound having 2 to 30 carbon atoms which may have a halogen atom as a substituent.
- an ester, ketone or ether compound having 4 to 10 carbon atoms is preferable from the viewpoints of an effect of improving polymerization activity at room temperature or higher and a high effect of increasing the molecular weight.
- Such an ester, ketone or ether compound may be a cyclic ester, ketone or ether, or a compound containing a plurality of ester bonds, ketone bonds or ether bonds in one molecule. It may be.
- ester compound examples include ethyl acetate, butyl acetate, amyl acetate, octyl acetate, 2-chloroethyl acetate, methyl acetyl acrylate, ⁇ -caprolactone, dimethyl glutarate, ⁇ -hexanolactone, diacetoxyethane, and the like. It is done.
- ketone compound examples include acetone, ethyl methyl ketone, acetyl acetone, acetophenone, cyclohexyl phenyl ketone, 1′-acetonaphthone, methyl 2-acetylbenzoate, 4′-chloroacetophenone, and the like.
- ether compound examples include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, ethylene glycol diethyl ether, 1,4-dioxane and the like.
- the amount used in the case of using an oxygen atom-containing hydrocarbon compound varies depending on the type of the oxygen atom-containing hydrocarbon compound used, but the periodic table Group 6 constituting the Group 6 transition metal compound (A) of the periodic table.
- the ratio is preferably 0.1 to 10 times mol, more preferably 0.2 to 8 times mol, and still more preferably 0.5 to 5 times mol with respect to the transition metal atom. If the amount of the oxygen atom-containing hydrocarbon compound used is too small, the effect of adding the oxygen atom-containing hydrocarbon compound tends to be difficult to obtain, and if too large, the polymerization activity may be insufficient.
- a cycloolefin having a vinyl group and / or a compound having three or more vinyl groups is further used in the ring-opening polymerization of cyclopentene. May be.
- the cyclic olefin containing a vinyl group is not particularly limited as long as it is a cyclic olefin having at least one vinyl group.
- monocyclic olefins having a vinyl group such as 4-vinylcyclopentene and 5-vinylcyclooctene
- norbornenes having a vinyl group such as 5-vinylnorbornene, 5-propenylnorbornene, and 5-styrylnorbornene.
- examples of the compound containing three or more vinyl groups include compounds having three vinyl groups such as 1,2,4-trivinylcyclohexane and 1,3,5-trivinylcyclohexane; divinylbenzene oligomers, 1, And compounds having four or more vinyl groups such as 2-polybutadiene oligomer.
- the amount used is 0.001 to 1 mol%, preferably 0.002 to 0, based on cyclopentene. .9 mol%, more preferably 0.005 to 0.8 mol%.
- cyclopentene is brought into contact with the above-mentioned periodic table Group 6 transition metal compound (A), organoaluminum compound (B), and oxysilyl group-containing olefinically unsaturated hydrocarbon (C). And ring-opening polymerization of cyclopentene.
- the method for bringing them into contact and initiating ring-opening polymerization is not particularly limited. For example, by adding the Group 6 transition metal compound (A) in the periodic table in the presence of cyclopentene and the organoaluminum compound (B). And a method of initiating ring-opening polymerization of cyclopentene.
- the ring-opening polymerization of cyclopentene may be carried out by mixing the Group 6 transition metal compound (A) and the organoaluminum compound (B) in advance and adding cyclopentene thereto.
- the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) may be mixed with cyclopentene in advance, or may be mixed with cyclopentene during ring-opening polymerization. After the ring-opening polymerization of cyclopentene, an oxysilyl group-containing olefinically unsaturated hydrocarbon (C) may be added to the obtained ring-opening polymer to cause a metathesis reaction with the obtained ring-opening polymer. .
- the ring-opening polymerization reaction may be performed without a solvent or in a solvent.
- a solvent used when the ring-opening polymerization reaction is carried out in a solvent
- cyclopentene used for the ring-opening polymerization other cyclic olefins that can be copolymerized, and Group 6 transition metal compounds (A )
- the organoaluminum compound (B), and the oxysilyl group-containing olefinically unsaturated hydrocarbon (C) are not particularly limited and a hydrocarbon solvent is preferably used.
- hydrocarbon solvent examples include, for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; cyclohexane, cyclopentane, and methyl And alicyclic hydrocarbons such as cyclohexane.
- the polymerization temperature is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 50 ° C. or higher, still more preferably 0 ° C. or higher, and particularly preferably 20 ° C. or higher.
- the upper limit of the polymerization temperature is not particularly limited, but is preferably less than 100 ° C, more preferably less than 90 ° C, still more preferably less than 80 ° C, and particularly preferably less than 70 ° C.
- the Group 6 transition metal compound (A) of the periodic table and the organoaluminum compound (B) are used. Even under the above conditions, the resulting cyclopentene can have a high cis ratio and a high molecular weight, and furthermore, a cyclopentene ring-opened polymer can be obtained in high yield. If the polymerization temperature is too high, the molecular weight of the resulting cyclopentene ring-opening polymer may be too low. If the polymerization temperature is too low, the polymerization rate may be slow, resulting in poor productivity.
- the polymerization reaction time is preferably 1 minute to 72 hours, more preferably 10 minutes to 20 hours.
- a periodic table Group 6 transition metal compound (A), an organoaluminum compound (B), an oxysilyl group-containing olefinically unsaturated hydrocarbon (C), cyclopentene is added to the polymerization system and stopped to produce a cyclopentene ring-opening polymer.
- the cyclopentene ring-opening polymer has a hydroxysilyl group at the end of the polymer chain, as the oxysilyl group-containing olefinically unsaturated hydrocarbon (C), an alkoxysilyl group, an aryloxysilyl group, or What is necessary is just to use what has an acyloxy silyl group, and to hydrolyze the obtained ring-opening polymer after a polymerization reaction stop.
- Hydrolysis can usually be performed by adding a predetermined amount of water to the organic solvent solution of the ring-opening polymer and stirring the contents.
- the amount of water added is not particularly limited, but is preferably equimolar or more with respect to the oxygen atom of the oxysilyl group.
- the method for adding water during the hydrolysis may be either a method of adding an appropriate amount to an organic solvent or a method of gradually absorbing moisture with moisture in an air atmosphere.
- an acid or base catalyst when performing the hydrolysis, it is preferable to control the hydrolysis reaction rate using an acid or base catalyst.
- the acid used include inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid; organic acids such as acetic acid and succinic acid; and the like.
- the base include hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide and calcium hydroxide; carbonates such as sodium carbonate and potassium carbonate; organic bases such as pyridine and triethylamine;
- the reaction temperature for hydrolysis is 0 ° C to 250 ° C, preferably 50 ° C to 200 ° C.
- the reaction time for hydrolysis is usually 1 minute to 100 hours.
- the organic solvent used for the hydrolysis is not particularly limited as long as the cyclopentene ring-opening polymer is soluble.
- ether solvents such as tetrahydrofuran and dibutyl ether; halogen solvents such as chloroform and chlorobenzene; benzene, And hydrocarbon solvents such as toluene, xylene, ethylbenzene, n-hexane, and cyclohexane.
- unreacted cyclopentene after polymerization may be used as a solvent. These may be used alone or in combination of two or more.
- an anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the obtained ring-opening polymer as desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Further, in the present invention, an extension oil may be blended as desired.
- a method for obtaining the polymer from the polymer solution may be a known method, and is not particularly limited. For example, after separating the solvent by steam stripping or the like, it is possible to employ a method in which a solid is filtered and further dried to obtain a solid rubber.
- the rubber composition of the present invention is obtained by blending a filler with the above-described cyclopentene ring-opening polymer of the present invention.
- the filler is not particularly limited, and includes silica and / or carbon black.
- silica as a filler examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
- a carbon-silica dual phase filler in which silica is supported on the surface of carbon black may be used.
- wet method white carbon mainly containing hydrous silicic acid is preferable. These may be used alone or in combination of two or more.
- Silica as a filler has a nitrogen adsorption specific surface area of preferably 50 to 300 m 2 / g, more preferably 80 to 220 m 2 / g, particularly preferably 100 to 170 m 2 / g. When the specific surface area is in this range, the rubber composition can be made more excellent in low heat buildup.
- the pH of the silica is preferably less than 7, more preferably 5 to 6.9.
- the nitrogen adsorption specific surface area can be measured by the BET method in accordance with ASTM D3037-81.
- the amount is preferably 1 to 150 parts by weight, more preferably 10 to 120 parts by weight, still more preferably 15 to 100 parts per 100 parts by weight of the rubber component in the rubber composition. Part by weight, particularly preferably 20 to 80 parts by weight.
- the blending amount of silica in the above range, the low exothermic property of the rubber composition can be made particularly good. If the amount of silica is too small or too large, the low heat buildup of the rubber composition may be reduced.
- silica when blended as a filler, it is preferable to further blend a silane coupling agent from the viewpoint of further improving the low heat build-up of the rubber composition.
- the silane coupling agent include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, ⁇ - And trimethoxysilylpropylbenzothiazyl tetrasulfide.
- silane coupling agents can be used alone or in combination of two or more.
- the amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
- examples of the carbon black as the filler include furnace black, acetylene black, thermal black, channel black, and graphite.
- furnace black is preferably used, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, T-HS, T -NS, MAF, FEF and the like. These may be used alone or in combination of two or more.
- Carbon black as a filler has a nitrogen adsorption specific surface area of preferably 5 to 200 m 2 / g, more preferably 20 to 130 m 2 / g, and further preferably 40 to 80 m 2 / g.
- the amount of dibutyl phthalate (DBP) adsorbed by carbon black as a filler is preferably 5 to 200 ml / 100 g, more preferably 50 to 160 ml / 100 g, and still more preferably 70 to 130 ml / 100 g.
- the amount is preferably 1 to 150 parts by weight, more preferably 2 to 120 parts by weight, still more preferably 15 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. 100 parts by weight, particularly preferably 30 to 80 parts by weight.
- the total amount of silica and carbon black is preferably 100 parts by weight of the rubber component in the rubber composition.
- the amount is 25 to 120 parts by weight, more preferably 30 to 100 parts by weight.
- the rubber composition of the present invention preferably contains other rubber as the rubber component other than the above-described cyclopentene ring-opening polymer of the present invention.
- other rubbers include natural rubber, polyisoprene rubber, emulsion-polymerized styrene-butadiene copolymer rubber, solution-polymerized styrene-butadiene copolymer rubber, polybutadiene rubber (polybutadiene containing crystal fibers made of 1,2-polybutadiene polymer).
- Styrene-isoprene copolymer rubber butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, and the like.
- natural rubber, polyisoprene rubber, polybutadiene rubber, and styrene-butadiene copolymer rubber are preferably used. These can be used alone or in combination of two or more.
- the content of the cyclopentene ring-opening polymer is preferably 5 to 90% by weight in the rubber component.
- the amount is preferably 10 to 80% by weight, more preferably 20 to 70% by weight.
- the rubber composition of the present invention comprises a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an anti-aging agent, an activator, a process oil, a plasticizer, a lubricant, a filler, an adhesive in accordance with a conventional method.
- a crosslinking agent such as an imparting agent and aluminum hydroxide can be blended.
- crosslinking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyamine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is preferably used.
- the amount of the crosslinking agent is preferably 1.0 to 5.0 parts by weight, more preferably 1.2 to 4.0 parts by weight, particularly preferably 1 to 100 parts by weight of the rubber component in the rubber composition. .4 to 3.0 parts by weight, most preferably 1.9 to 3.0 parts by weight.
- crosslinking accelerator examples include N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N- Sulfenamide-based cross-linking accelerators such as oxyethylene-2-benzothiazole sulfenamide and N, N′-diisopropyl-2-benzothiazole sulfenamide; guanidines such as diphenylguanidine, diortolylguanidine, orthotolylbiguanidine Thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; xanthogenic acid-based crosslinking accelerators; Among these, those containing a sulfenamide-based crosslinking accelerator are particularly preferable.
- crosslinking accelerators are used alone or in combination of two or more.
- the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, particularly preferably 1.0 to 100 parts by weight based on 100 parts by weight of the rubber component in the rubber composition. 4.0 parts by weight.
- the crosslinking activator examples include higher fatty acids such as stearic acid and zinc oxide.
- the blending amount of the crosslinking activator is not particularly limited, but the blending amount when a higher fatty acid is used as the crosslinking activator is preferably 0.05 to 15 with respect to 100 parts by weight of the rubber component in the rubber composition. Parts by weight, more preferably 0.5 to 5 parts by weight.
- zinc oxide is used as a crosslinking activator, the amount is preferably 0.05 parts per 100 parts by weight of the rubber component in the rubber composition. -10 parts by weight, more preferably 0.5-3 parts by weight.
- Examples of the process oil include paraffinic, aromatic, and naphthenic petroleum softeners; plant softeners; fatty acids.
- Examples of other compounding agents include activators such as diethylene glycol, polyethylene glycol, and silicone oil; fillers such as calcium carbonate, talc, and clay; tackifiers such as petroleum resins and coumarone resins; and waxes.
- each component may be kneaded according to a conventional method.
- the compounding agent excluding the crosslinking agent and the crosslinking accelerator, the filler, and the rubber component are kneaded and then kneaded.
- a desired composition can be obtained by mixing a product with a crosslinking agent and a crosslinking accelerator.
- the kneading temperature of the compounding agent excluding the crosslinking agent and crosslinking accelerator and the rubber component is preferably 80 to 200 ° C, more preferably 120 to 180 ° C.
- the kneading time is preferably 30 seconds to 30 minutes.
- Mixing of the kneaded material, the crosslinking agent and the crosslinking accelerator is usually performed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
- a method of adding a compounding agent and a filler to a solid rubber and kneading dry kneading method
- a solution of rubber with a compounding agent and filling Any of the methods (wet kneading method) of adding an agent and solidifying and drying may be used.
- the cyclopentene ring-opening polymer and rubber composition of the present invention are excellent in rubber properties at low temperatures, low heat build-up, and processability (particularly Mooney viscosity). Therefore, the cyclopentene ring-opening polymer and the rubber composition of the present invention make use of the above-mentioned properties, and are used for various applications such as tire parts such as treads, carcass, sidewalls, bead parts, hoses, window frames, It can be used for rubber products such as belts, shoe soles, anti-vibration rubbers and automobile parts, and further as resin-reinforced rubbers such as impact-resistant polystyrene and ABS resin.
- the cyclopentene ring-opening polymer and rubber composition of the present invention are excellent in affinity and dispersibility with fillers such as silica and carbon black, they are used in combination with these fillers. It is excellent for tire treads such as season tires, high-performance tires, studless tires, etc., and is also suitable as a material for sidewalls, undertreads, carcass, beat parts and the like.
- ⁇ Cis / trans ratio> The cis / trans ratio of the cyclopentene ring-opening polymer was determined from 13 C-NMR spectrum measurement.
- Mooney viscosity (ML 1 + 4 , 100 ° C.) The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the cyclopentene ring-opening polymer was measured according to JIS K6300.
- Tm melting point
- Tg glass transition temperature
- Reference Example 2 Preparation of diisobutylaluminum mono (n-butoxide) / toluene solution (2.5% by weight) Instead of 1.02 parts of n-hexanol (equal molar amount with respect to triisobutylaluminum) 0.74 parts of n-butanol ( A diisobutylaluminum mono (n-butoxide) / toluene solution (2.5 wt% concentration) was prepared in the same manner as in Reference Example 1 except that an equimolar amount with respect to triisobutylaluminum) was used.
- Example 1 In a nitrogen atmosphere, in a glass container containing a stir bar, 8.7 parts of a 1.0 wt% WCl 6 / toluene solution and 2.5 wt% diisobutylaluminum mono (n-hexoxide) prepared in Reference Example 1 were used. A catalyst solution was obtained by adding 4.3 parts of a toluene solution and stirring for 15 minutes. In a nitrogen atmosphere, 150 parts of cyclopentene and 0.22 parts of allyltriethoxysilane are added to a pressure-resistant glass reaction vessel equipped with a stirrer, and 13 parts of the catalyst solution prepared above is added thereto, and the mixture is heated at 25 ° C. for 6 hours. A polymerization reaction was performed.
- the rubber kneaded material was discharged from the Banbury mixer.
- the obtained rubber kneaded product was cooled to room temperature and then kneaded again for 3 minutes in a Banbury mixer. After the kneading was completed, the rubber kneaded product was discharged from the Banbury mixer.
- the rubber mixture obtained was mixed with 2 parts of sulfur, and a crosslinking accelerator (Nt-butyl-2-benzothiazolylsulfenamide (trade name “Noxeller NS”, Enouchi Shinsei) A rubber composition in the form of a sheet by kneading 1.5 parts of a chemical industry) and 2 parts of diphenylguanidine (trade name “Noxeller D”, 0.5 part of Ouchi Shinsei Chemical Co., Ltd.) Got.
- a crosslinking accelerator Nt-butyl-2-benzothiazolylsulfenamide (trade name “Noxeller NS”, Enouchi Shinsei)
- Noxeller D 0.5 part of Ouchi Shinsei Chemical Co., Ltd.
- Example 2 30 parts of the cyclopentene ring-opened polymer obtained in the same manner as in Example 1 was dissolved in 150 parts of tetrahydrofuran, 2.5 parts of 1N aqueous hydrochloric acid solution was added, and the mixture was stirred at 80 ° C. for 4 hours, followed by hydrolysis. A reaction (hydrolysis reaction in which a triethoxysilyl group was reacted to obtain a trihydroxysilyl group) was performed. After completion of the hydrolysis reaction, the mixture was poured into a large excess of isopropanol containing 2,6-di-t-butyl-p-cresol (BHT).
- BHT 2,6-di-t-butyl-p-cresol
- the precipitated polymer was collected, washed with isopropanol, and vacuum-dried at 40 ° C. for 3 days to obtain 30 parts of a cyclopentene ring-opening polymer.
- the peak derived from the ethyl group of the triethoxysilyl group almost disappeared, and the triethoxysilyl group was hydrolyzed by 99% or more, It was confirmed that it was a trihydroxysilyl group.
- a rubber composition was obtained in the same manner as in Example 1 using the obtained cyclopentene ring-opening polymer.
- the obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- the obtained polymer was kept in a rubbery state even after being left in a freezer at ⁇ 30 ° C. for 3 days.
- Example 3 Under a nitrogen atmosphere, in a glass container containing a stirring bar, 8.7 parts of a 1.0 wt% WCl 6 / toluene solution and 2.5 wt% diisobutylaluminum mono (n-butoxide) prepared in Reference Example 2 were used. Then, 4.3 parts of toluene solution was added and stirred for 10 minutes, and then 0.039 parts of ethyl acetate was added and stirred for 10 minutes to obtain a catalyst solution.
- Example 1 a rubber composition was obtained in the same manner as in Example 1.
- the obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- the obtained polymer was kept in a rubbery state after being left in a freezer at ⁇ 30 ° C. for 3 days.
- Example 4 Under a nitrogen atmosphere, in a glass container containing a stirrer, 8.7 parts of a 1.0 wt% WCl 6 / toluene solution and a 2.5 wt% diisobutylaluminum mono (n-hexoxide) / toluene solution 4.3 Then, 0.039 part of 1,4-dioxane was added and stirred for 10 minutes to obtain a catalyst solution. In a nitrogen atmosphere, 150 parts of cyclopentene and 210 parts of toluene were added to a pressure-resistant glass reaction vessel equipped with a stirrer, and 13 parts of the catalyst solution prepared above was added thereto, and a polymerization reaction was performed at 25 ° C. for 6 hours. It was.
- Example 1 a rubber composition was obtained in the same manner as in Example 1.
- the obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1.
- the obtained polymer was kept in a rubbery state after being left in a freezer at ⁇ 30 ° C. for 3 days.
- Example 5 Under a nitrogen atmosphere, 150 parts of cyclopentene, 0.22 parts of allyltriethoxysilane, and 0.13 parts of vinylnorbornene are added to a pressure-resistant glass reaction vessel equipped with a stirrer, followed by 2.5 wt% diisobutylaluminum mono (n-hexoxide). /4.3 parts of toluene solution was added and stirred. Finally, 8.7 parts of a 1.0 wt% WCl 6 / toluene solution was added to initiate polymerization, and a polymerization reaction was carried out at 25 ° C. for 16 hours.
- Example 1 After the polymerization reaction for 16 hours, the polymerization reaction was stopped, the polymer was recovered, washed and vacuum dried in the same manner as in Example 1 to obtain 78 parts of a cyclopentene ring-opened polymer. Further, a rubber composition was obtained in the same manner as in Example 1. The obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1. The obtained polymer was kept in a rubbery state after being left in a freezer at ⁇ 30 ° C. for 3 days.
- Example 6 In preparing the rubber composition, 35 parts of silica II (trade name “Zeosil 1115MP”, manufactured by Rhodia, nitrogen adsorption specific surface area (BET method): 112 m 2 / g) is used instead of 35 parts of silica I.
- a rubber composition was obtained in the same manner as in Example 1 except that the amount of the silane coupling agent was changed from 2.8 parts to 1.8 parts. The obtained rubber composition was measured for low heat generation. The results are shown in Table 1.
- Comparative Example 1 Instead of 4.3 parts of a 2.5% by weight diisobutylaluminum mono (n-hexoxide) / toluene solution, 10.1 parts of a 1.0% by weight diisobutylaluminoxane / toluene solution (manufactured by Tosoh Finechem) were used. Except for this, the polymerization reaction was carried out in the same manner as in Example 1. However, in Comparative Example 1, a polymer could not be obtained.
- Example 1 was repeated except that 1.1 parts of tetra (n-butyl) tin was used instead of 4.3 parts of a 2.5% by weight diisobutylaluminum mono (n-hexoxide) / toluene solution. 12 parts of a cyclopentene ring-opening polymer were obtained. The obtained cyclopentene polymer was evaluated in the same manner as in Example 1. The results are shown in Table 1. In addition, since the cyclopentene polymer of Comparative Example 2 had a low molecular weight and was liquid at room temperature, the Mooney viscosity could not be evaluated, and further, a rubber composition could not be obtained. Further, when the obtained polymer was left in a freezer at ⁇ 30 ° C. for 3 days, it changed to a resin state and was insufficient for various rubber applications such as tire applications.
- the obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1. Further, when the obtained polymer was left in a freezer at ⁇ 30 ° C. for 3 days, it changed to a resin state and was insufficient for various rubber applications such as tire applications.
- Example 4 100 parts of a cyclopentene ring-opened polymer was obtained in the same manner as in Example 1, except that 0.091 part of 1-hexene was used instead of 0.22 part of allyltriethoxysilane. Further, a rubber composition was obtained in the same manner as in Example 1. The obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1. The obtained polymer was kept in a rubbery state even after being left in a freezer at ⁇ 30 ° C. for 3 days.
- Example 5 80 parts of a cyclopentene ring-opening polymer was obtained in the same manner as in Example 1 except that 0.095 part of allyl ethyl ether was used instead of 0.22 part of allyltriethoxysilane. Further, a rubber composition was obtained in the same manner as in Example 1. The obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1. The obtained polymer was kept in a rubbery state after being left in a freezer at ⁇ 30 ° C. for 3 days.
- Comparative Example 6 112 parts of a cyclopentene ring-opened polymer was obtained in the same manner as in Comparative Example 3 except that 0.095 allyl ethyl ether was used instead of 0.22 parts allyl triethoxysilane. Further, a rubber composition was obtained in the same manner as in Example 1. The obtained cyclopentene polymer and rubber composition were evaluated in the same manner as in Example 1. The results are shown in Table 1. Further, when the obtained polymer was left in a freezer at ⁇ 30 ° C. for 3 days, it changed to a resin state and was insufficient for various rubber applications such as tire applications.
- a cyclopentene derivative having a cis ratio of a structural unit derived from cyclopentene of 30% or more, a weight average molecular weight (Mw) of 100,000 to 1,000,000, and having an oxysilyl group at the end of the polymer chain.
- Mw weight average molecular weight
- Each of the ring polymers has excellent rubber properties at low temperatures (can maintain a rubber state even at ⁇ 30 ° C. for 3 days), has excellent low heat build-up, and has a Mooney viscosity of 20 to 150. Thus, the processability was excellent (Examples 1 to 6).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
好ましくは、前記オキシシリル基が、アルコキシシリル基、アルキルシロキシシリル基、またはヒドロキシシリル基である。
(R1)3-xAl(OR2)x (1)
(上記一般式(1)中、R1およびR2は、炭素数1~20の炭化水素基を表し、xは、0<x<3である。)
本発明のシクロペンテン開環重合体は、シクロペンテン由来の構造単位のシス比率が30%以上、重量平均分子量(Mw)が100,000~1,000,000であり、かつ、重合体鎖末端にオキシシリル基を有するシクロペンテンの開環重合体である。
本発明のシクロペンテン開環重合体は、周期表第6族遷移金属化合物(A)、下記一般式(1)で示される有機アルミニウム化合物(B)、およびオキシシリル基含有オレフィン性不飽和炭化水素(C)の存在下で、シクロペンテンを開環重合することにより、製造される。
(R1)3-xAl(OR2)x (1)
(上記一般式(1)中、R1およびR2は、炭素数1~20の炭化水素基を表し、xは、0<x<3である。)
本発明で用いる周期表第6族遷移金属化合物(A)は、周期表(長周期型周期表、以下同じ)第6族遷移金属原子を有する化合物、具体的には、クロム原子、モリブデン原子、またはタングステン原子を有する化合物であり、モリブデン原子を有する化合物、またはタングステン原子を有する化合物が好ましく、特に、シクロペンテンに対する溶解性が高いという観点より、タングステン原子を有する化合物がより好ましい。周期表第6族遷移金属化合物(A)は、後述する有機アルミニウム化合物(B)とともに重合触媒として作用する。周期表第6族遷移金属化合物(A)としては、周期表第6族遷移金属原子を有する化合物であればよく、特に限定されないが、周期表第6族遷移金属原子のハロゲン化物、アルコラート、アリレート、オキシ化物、イミド化合物などが挙げられ、これらのなかでも、重合活性が高いという観点より、ハロゲン化物が好ましい。
本発明で用いる有機アルミニウム化合物(B)は、下記一般式(1)で表される化合物である。有機アルミニウム化合物(B)は、上述した周期表第6族遷移金属化合物(A)とともに重合触媒として作用する。
(R1)3-xAl(OR2)x (1)
上記一般式(1)において、R1およびR2は、炭素数1~20の炭化水素基であり、好ましくは、炭素数1~10の炭化水素基である。
(R1)3Al + xR2OH → (R1)3-xAl(OR2)x + (R1)xH (4)
なお、上記一般式(1)中、xは、上記一般式(4)に示すように、対応するトリアルキルアルミニウムとアルコールとの反応比を規定することによって、任意に制御することが可能である。
本発明で用いられるオキシシリル基含有オレフィン性不飽和炭化水素(C)は、オキシシリル基を有し、かつ、メタセシス反応性を有するオレフィン性炭素-炭素二重結合を1つ有する化合物である。オキシシリル基含有オレフィン性不飽和炭化水素(C)を用いることにより、シクロペンテン開環重合体の重合体鎖末端にオキシシリル基を導入することができる。
このようなオキシシリル基含有オレフィン性不飽和炭化水素(C)としては、たとえば、下記一般式(5)~(8)で示される化合物が挙げられる。
ケトン化合物の具体例としては、アセトン、エチルメチルケトン、アセチルアセトン、アセトフェノン、シクロヘキシルフェニルケトン、1’-アセトナフトン、2-アセチル安息香酸メチル、4’-クロロアセトフェノンなどが挙げられる。
エーテル化合物の具体例としては、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、エチレングリコールジエチルエーテル、1,4-ジオキサンなどが挙げられる。
本発明の製造方法においては、シクロペンテンを、上述した周期表第6族遷移金属化合物(A)、有機アルミニウム化合物(B)、およびオキシシリル基含有オレフィン性不飽和炭化水素(C)に接触させることにより、シクロペンテンの開環重合を行なう。
本発明のゴム組成物は、上述した本発明のシクロペンテン開環重合体に、充填剤を配合してなるものである。
その他の配合剤としては、例えば、ジエチレングリコール、ポリエチレングリコール、シリコーンオイルなどの活性剤;炭酸カルシウム、タルク、クレーなどの充填剤;石油樹脂、クマロン樹脂などの粘着付与剤;ワックス;などが挙げられる。
ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的には、以下の条件で測定した。
測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結した
検出器:示差屈折計(東ソー社製、商品名「RI-8220」)
溶離液:テトラヒドロフラン
カラム温度:40℃
シクロペンテン開環重合体のシス/トランス比を、13C-NMRスペクトル測定から求めた。
シクロペンテン開環重合体について、1H-NMRスペクトル測定により、オキシシリル基特有のピーク積分値およびオレフィン由来のピーク積分値の比率の測定を行なった。そして、測定したピーク積分値の比率、および上記したGPCによる数平均分子量(Mn)の測定結果に基づいて、オキシシリル基導入率を算出した。オキシシリル基導入率は、シクロペンテン開環重合体鎖数に対するオキシシリル基の個数の割合とした。すなわち、オキシシリル基導入率=100%は、1つの重合体鎖に対し、1個の割合でオキシシリル基が導入されている状態を示す。
シクロペンテン開環重合体のムーニー粘度(ML1+4,100℃)を、JIS K6300に準じて測定した。
シクロペンテン開環重合体の融点(Tm)およびガラス転移温度(Tg)を、示差走査熱量計(DSC)を用いて、10℃/分の昇温で測定した。
ゴム組成物を、150℃で20分間プレス架橋することにより、試験片を作製し、得られた試験片について、GABO社製粘弾性測定装置EPLEXORを用い、初期歪み0.5%、動的歪み1%、10Hzの条件で60℃におけるtanδを測定した。そして、得られた測定結果を、後述する比較例4のサンプルの測定値を100とする指数で算出した。この指数が小さいほど、低発熱性に優れる。
ジイソブチルアルミニウムモノ(n-へキソキシド)/トルエン溶液(2.5重量%)の調製
窒素雰囲気下、攪拌子の入ったガラス容器に、トルエン88部、および25.4重量%のトリイソブチルアルミニウム/n-ヘキサン溶液(東ソー・ファインケム社製)7.8部を加えた。-45℃に冷却し、激しく攪拌しながら、n-ヘキサノール1.02部(トリイソブチルアルミニウムに対して等モル量)をゆっくりと滴下した。その後、攪拌しながら室温になるまで放置し、ジイソブチルアルミニウムモノ(n-へキソキシド)/トルエン溶液(2.5重量%)を調製した。
ジイソブチルアルミニウムモノ(n-ブトキシド)/トルエン溶液(2.5重量%)の調製
n-ヘキサノール1.02部(トリイソブチルアルミニウムに対して等モル量)の代わりに、n-ブタノール0.74部(トリイソブチルアルミニウムに対して等モル量)を使用した以外は、参考例1と同様にして、ジイソブチルアルミニウムモノ(n-ブトキシド)/トルエン溶液(2.5重量%濃度)を調製した。
窒素雰囲気下、攪拌子の入ったガラス容器に、1.0重量%のWCl6/トルエン溶液8.7部、および参考例1で調製した2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液4.3部を加え、15分間攪拌することにより、触媒溶液を得た。そして、窒素雰囲気下、攪拌機付き耐圧ガラス反応容器に、シクロペンテン150部およびアリルトリエトキシシラン0.22部を加え、ここに、上記にて調製した触媒溶液13部を加えて、25℃で6時間重合反応を行った。6時間の重合反応後、耐圧ガラス反応容器に、過剰のイソプロパノールを加えて重合を停止した後、耐圧ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のイソプロパノールに注いだ。次いで、沈殿したポリマーを回収し、イソプロパノールで洗浄後、40℃で3日間、真空乾燥することにより、76部のシクロペンテン開環重合体を得た。
実施例1と同様にして得られたシクロペンテン開環重合体30部を、テトラヒドロフラン150部に溶解させ、1規定の塩酸水溶液2.5部を添加して80℃にて4時間攪拌し、加水分解反応(トリエトキシシリル基を反応させ、トリヒドロキシシリル基とする加水分解反応)を行なった。加水分解反応終了後、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のイソプロパノールに注いだ。次いで、沈殿したポリマーを回収し、イソプロパノールで洗浄後、40℃で3日間、真空乾燥することにより、30部のシクロペンテン開環重合体を得た。ここで、得られたシクロペンテン開環重合体について、1H-NMR測定を行ったところ、トリエトキシシリル基のエチル基由来のピークがほぼ消失し、トリエトキシシリル基は99%以上加水分解され、トリヒドロキシシリル基になっていることを確認した。また、得られたシクロペンテン開環重合体を用いて、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置した後もゴム状態を維持していた。
窒素雰囲気下、攪拌子の入ったガラス容器に、1.0重量%のWCl6/トルエン溶液8.7部、および参考例2で調製した2.5重量%のジイソブチルアルミニウムモノ(n-ブトキシド)/トルエン溶液4.3部を加え、10分間攪拌し、次いで酢酸エチル0.039部を加えて10分間攪拌することにより、触媒溶液を得た。そして、窒素雰囲気下、攪拌機付き耐圧ガラス反応容器に、シクロペンテン150部および2-スチリルエチルトリメトキシシラン0.29部を加え、ここに、上記にて調製した触媒溶液13部を加えて、25℃で6時間重合反応を行った。6時間の重合反応後、耐圧ガラス反応容器に、過剰のイソプロパノールを加えて重合を停止した後、耐圧ガラス反応容器内の溶液を、2,6-ジ-t-ブチル-p-クレゾール(BHT)を含む大過剰のイソプロパノールに注いだ。次いで、沈殿したポリマーを回収し、イソプロパノールで洗浄後、40℃で3日間、真空乾燥することにより、99部のシクロペンテン開環重合体を得た。続いて、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置した後もゴム状態を維持していた。
窒素雰囲気下、攪拌子の入ったガラス容器に、1.0重量%のWCl6/トルエン溶液8.7部、および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液4.3部を加え、10分間攪拌し、次いで1,4-ジオキサン0.039部を加えて10分間攪拌することにより、触媒溶液を得た。そして、窒素雰囲気下、攪拌機付き耐圧ガラス反応容器に、シクロペンテン150部、およびトルエン210部を加え、ここに、上記にて調製した触媒溶液13部を加えて、25℃で6時間重合反応を行った。得られた重合溶液を少量サンプリングして、分析したところ、重合転化率は45%、Mw=451,400、Mw/Mn=2.37であった。続いて、耐圧ガラス反応容器に、アリルトリス(トリメチルシロキシ)シラン0.37部をトルエン10部に溶解した溶液を加え、25℃で10時間重合反応を行った。10時間の重合反応後、実施例1と同様にして、重合反応の停止、ポリマーの回収、洗浄および真空乾燥を行なうことにより、92部のシクロペンテン開環重合体を得た(重合転化率は61%)。また、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置した後もゴム状態を維持していた。
窒素雰囲気下、攪拌機付き耐圧ガラス反応容器に、シクロペンテン150部、アリルトリエトキシシラン0.22部、およびビニルノルボルネン0.13部を加え、続いて2.5重量%ジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液4.3部を加えて攪拌した。そして、最後に、1.0重量%のWCl6/トルエン溶液8.7部を加えて重合を開始し、25℃で16時間重合反応を行った。16時間の重合反応後、実施例1と同様にして、重合反応の停止、ポリマーの回収、洗浄および真空乾燥を行なうことにより、78部のシクロペンテン開環重合体を得た。また、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置した後もゴム状態を維持していた。
ゴム組成物を調製する際に、シリカI35部に代えて、シリカII(商品名「Zeosil 1115MP」、ローディア社製、窒素吸着比表面積(BET法):112m2/g)35部を用いるとともに、シランカップリング剤の配合量を2.8部から1.8部に変更した以外は、実施例1と同様にしてゴム組成物を得た。得られたゴム組成物について、低発熱性の測定を行なった。結果を表1に示す。
2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液4.3部の代わりに、1.0重量%のジイソブチルアルミノキサン/トルエン溶液(東ソー・ファインケム社製)10.1部を用いた以外は、実施例1と同様にして、重合反応を行ったが、比較例1においては、重合体を得ることができなかった。
2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液4.3部の代わりに、テトラ(n-ブチル)スズ1.1部を用いた以外は、実施例1と同様にして、12部のシクロペンテン開環重合体を得た。そして、得られたシクロペンテン重合体について、実施例1と同様に、評価を行った。結果を表1に示す。なお、比較例2のシクロペンテン重合体は、分子量が低く、室温では液状であるため、ムーニー粘度の評価を行うことができず、さらには、ゴム組成物を得ることができなかった。また、得られた重合体を-30℃の冷凍庫に3日間放置したところ、樹脂状態に変化しており、タイヤ用途などの各種ゴム用途として不十分なものであった。
1.0重量%のWCl6/トルエン溶液8.7部および2.5重量%のジイソブチルアルミニウムモノ(n-ヘキソキシド)/トルエン溶液4.3部に代えて、(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド0.19部をトルエン10部に溶解した重合触媒溶液を用いた以外は、実施例1と同様にして、116部のシクロペンテン開環重合体を得た。また、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置したところ、樹脂状態に変化しており、タイヤ用途などの各種ゴム用途として不十分なものであった。
アリルトリエトキシシラン0.22部の代わりに、1-ヘキセン0.091部を用いた以外は、実施例1と同様にして、100部のシクロペンテン開環重合体を得た。また、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置した後もゴム状態を維持していた。
アリルトリエトキシシラン0.22部の代わりに、アリルエチルエーテル0.095部を用いた以外は、実施例1と同様にして、80部のシクロペンテン開環重合体を得た。また、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置した後もゴム状態を維持していた。
アリルトリエトキシシラン0.22部の代わりに、アリルエチルエーテル0.095を用いた以外は、比較例3と同様にして、112部のシクロペンテン開環重合体を得た。また、実施例1と同様にしてゴム組成物を得た。そして、得られたシクロペンテン重合体およびゴム組成物について、実施例1と同様に、評価を行った。結果を表1に示す。また、得られた重合体を-30℃の冷凍庫に3日間放置したところ、樹脂状態に変化しており、タイヤ用途などの各種ゴム用途として不十分なものであった。
また、シクロペンテン由来の構造単位のシス比率が30%以上であっても、重合体鎖末端にオキシシリル基を有していない場合には、低発熱性に劣るとともに、ムーニー粘度が低く、加工性に劣る結果となった(比較例4)。
あるいは、オキシシリル基の代わりに、エトキシ基を重合体鎖末端に導入した場合にも、低発熱性に劣るとともに、ムーニー粘度が低く、加工性に劣る結果となった(比較例5,6)。
さらに、ジイソブチルアルミニウムモノ(n-ヘキソキシド)の代わりに、ジイソブチルアルミノキサンを用いた場合には、重合体を得ることができなかった(比較例1)。
Claims (5)
- シクロペンテン由来の構造単位のシス比率が30%以上、重量平均分子量(Mw)が100,000~1,000,000であり、かつ、重合体鎖末端にオキシシリル基を有することを特徴とするシクロペンテン開環重合体。
- 前記オキシシリル基が、アルコキシシリル基、アルキルシロキシシリル基、またはヒドロキシシリル基であることを特徴とする請求項1に記載のシクロペンテン開環重合体。
- 請求項1または2に記載のシクロペンテン開環重合体を製造する方法であって、
周期表第6族遷移金属化合物(A)、下記一般式(1)で示される有機アルミニウム化合物(B)、およびオキシシリル基含有オレフィン性不飽和炭化水素(C)の存在下で、シクロペンテンを開環重合することを特徴とするシクロペンテン開環重合体の製造方法。
(R1)3-xAl(OR2)x (1)
(上記一般式(1)中、R1およびR2は、炭素数1~20の炭化水素基を表し、xは、0<x<3である。) - 請求項1または2に記載のシクロペンテン開環重合体に充填剤を配合してなることを特徴とするゴム組成物。
- 前記充填剤が、シリカおよび/またはカーボンブラックであることを特徴とする請求項4に記載のゴム粗成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180011594.0A CN102782005B (zh) | 2010-01-14 | 2011-01-14 | 环戊烯开环聚合物及其制造方法 |
JP2011550009A JP5640995B2 (ja) | 2010-01-14 | 2011-01-14 | シクロペンテン開環重合体およびその製造方法 |
EP11732942.5A EP2524936B1 (en) | 2010-01-14 | 2011-01-14 | Ring-opening polymer of cyclopentene and method for producing same |
US13/521,822 US8889806B2 (en) | 2010-01-14 | 2011-01-14 | Ring-opening polymer of cyclopentene and method of production of same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-005995 | 2010-01-14 | ||
JP2010005995 | 2010-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011087072A1 true WO2011087072A1 (ja) | 2011-07-21 |
Family
ID=44304341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050500 WO2011087072A1 (ja) | 2010-01-14 | 2011-01-14 | シクロペンテン開環重合体およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8889806B2 (ja) |
EP (1) | EP2524936B1 (ja) |
JP (1) | JP5640995B2 (ja) |
CN (1) | CN102782005B (ja) |
WO (1) | WO2011087072A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014114370A (ja) * | 2012-12-10 | 2014-06-26 | Nippon Zeon Co Ltd | シクロペンテン開環重合体の製造方法およびゴム組成物 |
WO2014133028A1 (ja) * | 2013-02-26 | 2014-09-04 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
WO2015194637A1 (ja) * | 2014-06-19 | 2015-12-23 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法、重合体組成物、ならびに重合体架橋物 |
WO2015194638A3 (ja) * | 2014-06-19 | 2016-02-11 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
WO2016031847A1 (ja) * | 2014-08-27 | 2016-03-03 | 日本ゼオン株式会社 | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ |
JP2016037585A (ja) * | 2014-08-11 | 2016-03-22 | 日本ゼオン株式会社 | ゴム架橋物 |
WO2016060262A1 (ja) * | 2014-10-17 | 2016-04-21 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
WO2016060267A1 (ja) * | 2014-10-17 | 2016-04-21 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
JP2016079329A (ja) * | 2014-10-20 | 2016-05-16 | 日本ゼオン株式会社 | タイヤ用ゴム組成物、ゴム架橋物およびタイヤ |
JP2016079330A (ja) * | 2014-10-20 | 2016-05-16 | 日本ゼオン株式会社 | サイドウォール用ゴム組成物 |
WO2016158676A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JP2016190986A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 防振ゴム用組成物 |
JP2016190984A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | ランフラットタイヤ用ゴム組成物 |
JP2016189969A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 靴底用ゴム組成物 |
WO2018034311A1 (ja) * | 2016-08-17 | 2018-02-22 | 日本ゼオン株式会社 | ゴム架橋物の使用 |
WO2018034310A1 (ja) * | 2016-08-17 | 2018-02-22 | 日本ゼオン株式会社 | ゴム架橋物 |
WO2018079603A1 (ja) * | 2016-10-31 | 2018-05-03 | 日本ゼオン株式会社 | 架橋性組成物および架橋体 |
JP2018076414A (ja) * | 2016-11-08 | 2018-05-17 | 日本ゼオン株式会社 | 防振ゴム用重合体組成物、ゴム架橋物、および防振ゴム |
WO2018173968A1 (ja) * | 2017-03-24 | 2018-09-27 | 日本ゼオン株式会社 | シクロペンテン開環共重合体及びその製造方法 |
JP2019081840A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | 高反発材料 |
JP2019081839A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | ゴム架橋物 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3008980B1 (fr) * | 2013-07-23 | 2016-09-30 | Bostik Sa | Polymeres hydrocarbones a deux groupements terminaux alcoxysilanes |
EP3041812B1 (en) * | 2013-09-04 | 2022-08-10 | California Institute of Technology | Functionalized linear and cyclic polyolefins |
JP7070579B2 (ja) * | 2017-09-29 | 2022-05-18 | 日本ゼオン株式会社 | 液状シクロペンテン開環重合体、ゴム組成物およびゴム架橋物 |
US10427005B2 (en) | 2017-12-21 | 2019-10-01 | Acushnet Company | Golf balls incorporating polycyclopentene rubber |
CN112867741B (zh) | 2018-09-20 | 2023-08-01 | 埃克森美孚化学专利公司 | 用于聚合环烯烃的易位催化剂体系 |
WO2021126691A1 (en) | 2019-12-16 | 2021-06-24 | Exxonmobil Chemical Patents. Inc. | Tire tread compounds |
JP2023516712A (ja) | 2020-03-03 | 2023-04-20 | エクソンモービル ケミカル パテンツ インコーポレイテッド | 大型トラックおよびバスタイヤトレッドのためのゴム配合物ならびにそれに関する方法 |
US11912861B2 (en) | 2020-10-29 | 2024-02-27 | ExxonMobil Engineering & Technology Co. | Rubber composition for lighter weight tires and improved wet traction |
WO2023244364A1 (en) * | 2022-06-14 | 2023-12-21 | Board Of Regents, The University Of Texas System | Cyclic olefin polymer having high cis double bond content |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4862898A (ja) * | 1971-11-19 | 1973-09-01 | ||
JPS502800A (ja) * | 1973-03-23 | 1975-01-13 | ||
JPS5252999A (en) * | 1975-10-08 | 1977-04-28 | Japan Synthetic Rubber Co Ltd | Preparation of ring opening copolymer of norbornene derivative having reactive silyl group |
JPH0249006A (ja) * | 1980-06-19 | 1990-02-19 | Huels Ag | 反応性シリル基含有の1,3‐ジエン類‐単一および‐共重合体の用途 |
JP2010202742A (ja) * | 2009-03-02 | 2010-09-16 | Tokyo Institute Of Technology | 新規の重合体及びその重合体を製造する方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458489A (en) * | 1963-04-10 | 1969-07-29 | Montedison Spa | Homopolymers of cyclopentene and processes for preparing the same |
DE1812338A1 (de) * | 1968-12-03 | 1970-06-18 | Bayer Ag | cis-Polypentenamer |
JPS4812400Y1 (ja) | 1969-10-15 | 1973-04-03 | ||
US3929850A (en) | 1971-11-19 | 1975-12-30 | Huels Chemische Werke Ag | Process for the production of polymeric hydrocarbons having reactive silyl end groups |
US3920715A (en) | 1971-11-19 | 1975-11-18 | Huels Chemische Werke Ag | Process for the production of polymeric hydrocarbons having reactive silyl end groups |
US3920714A (en) | 1972-11-16 | 1975-11-18 | Weber Heinrich | Process for the production of polymeric hydrocarbons with reactive silyl side groups |
US4020254A (en) * | 1974-09-30 | 1977-04-26 | The Goodyear Tire & Rubber Company | Metathesis polymerization of cycloolefins |
DE3726325A1 (de) * | 1987-08-07 | 1989-02-16 | Hoechst Ag | Verfahren zur herstellung eines olefinpolymers |
EP0585887A3 (en) * | 1992-08-31 | 1994-08-17 | Nippon Zeon Co | Activated metathesis catalyst system |
JP3605853B2 (ja) | 1994-06-28 | 2004-12-22 | 日産化学工業株式会社 | 非分離性セメント組成物 |
JP3436981B2 (ja) | 1994-08-23 | 2003-08-18 | 積水化学工業株式会社 | トナーの製造方法 |
DE10117804A1 (de) * | 2001-04-10 | 2002-10-17 | Pku Pulverkautschuk Union Gmbh | Pulverförmige, silikatische Füllstoffe enthaltende Kautschukpulver auf Basis von in organischen Lösungsmitteln vorliegenden Kautschukarten, Verfahren zu ihrer Herstellung und Verwendung |
US8101697B2 (en) * | 2005-02-01 | 2012-01-24 | Bridgestone Corporation | Multi-functionalized high-trans elastomeric polymers |
-
2011
- 2011-01-14 CN CN201180011594.0A patent/CN102782005B/zh active Active
- 2011-01-14 EP EP11732942.5A patent/EP2524936B1/en active Active
- 2011-01-14 JP JP2011550009A patent/JP5640995B2/ja active Active
- 2011-01-14 WO PCT/JP2011/050500 patent/WO2011087072A1/ja active Application Filing
- 2011-01-14 US US13/521,822 patent/US8889806B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4862898A (ja) * | 1971-11-19 | 1973-09-01 | ||
JPS502800A (ja) * | 1973-03-23 | 1975-01-13 | ||
JPS5252999A (en) * | 1975-10-08 | 1977-04-28 | Japan Synthetic Rubber Co Ltd | Preparation of ring opening copolymer of norbornene derivative having reactive silyl group |
JPH0249006A (ja) * | 1980-06-19 | 1990-02-19 | Huels Ag | 反応性シリル基含有の1,3‐ジエン類‐単一および‐共重合体の用途 |
JP2010202742A (ja) * | 2009-03-02 | 2010-09-16 | Tokyo Institute Of Technology | 新規の重合体及びその重合体を製造する方法 |
Non-Patent Citations (2)
Title |
---|
RUBBER CHEMISTRY AND TECHNOLOGY, vol. 47, 1975, pages 511 - 596 |
RUBBER CHEMISTRY AND TECHNOLOGY, vol. 47, 1975, pages 511 - 596, XP008161198 * |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014114370A (ja) * | 2012-12-10 | 2014-06-26 | Nippon Zeon Co Ltd | シクロペンテン開環重合体の製造方法およびゴム組成物 |
US10435497B2 (en) | 2013-02-26 | 2019-10-08 | Zeon Corporation | Cyclopentene ring-opening copolymer, method for producing same, and rubber composition |
WO2014133028A1 (ja) * | 2013-02-26 | 2014-09-04 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
JP2018168389A (ja) * | 2013-02-26 | 2018-11-01 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
JPWO2014133028A1 (ja) * | 2013-02-26 | 2017-02-02 | 日本ゼオン株式会社 | シクロペンテン開環共重合体、その製造方法およびゴム組成物 |
WO2015194637A1 (ja) * | 2014-06-19 | 2015-12-23 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法、重合体組成物、ならびに重合体架橋物 |
WO2015194638A3 (ja) * | 2014-06-19 | 2016-02-11 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JPWO2015194637A1 (ja) * | 2014-06-19 | 2017-04-20 | 日本ゼオン株式会社 | シクロペンテン開環重合体およびその製造方法、重合体組成物、ならびに重合体架橋物 |
JPWO2015194638A1 (ja) * | 2014-06-19 | 2017-04-20 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JP2016037585A (ja) * | 2014-08-11 | 2016-03-22 | 日本ゼオン株式会社 | ゴム架橋物 |
JPWO2016031847A1 (ja) * | 2014-08-27 | 2017-06-22 | 日本ゼオン株式会社 | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ |
WO2016031847A1 (ja) * | 2014-08-27 | 2016-03-03 | 日本ゼオン株式会社 | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ |
WO2016060262A1 (ja) * | 2014-10-17 | 2016-04-21 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
US10125245B2 (en) | 2014-10-17 | 2018-11-13 | Zeon Corporation | Rubber composition for tire |
WO2016060267A1 (ja) * | 2014-10-17 | 2016-04-21 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
KR102405284B1 (ko) | 2014-10-17 | 2022-06-02 | 니폰 제온 가부시키가이샤 | 타이어용 고무 조성물 |
KR20170071537A (ko) * | 2014-10-17 | 2017-06-23 | 니폰 제온 가부시키가이샤 | 타이어용 고무 조성물 |
KR20170073620A (ko) * | 2014-10-17 | 2017-06-28 | 니폰 제온 가부시키가이샤 | 타이어용 고무 조성물 |
JPWO2016060267A1 (ja) * | 2014-10-17 | 2017-07-27 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
JPWO2016060262A1 (ja) * | 2014-10-17 | 2017-07-27 | 日本ゼオン株式会社 | タイヤ用ゴム組成物 |
KR102393260B1 (ko) * | 2014-10-17 | 2022-04-29 | 니폰 제온 가부시키가이샤 | 타이어용 고무 조성물 |
JP2016079329A (ja) * | 2014-10-20 | 2016-05-16 | 日本ゼオン株式会社 | タイヤ用ゴム組成物、ゴム架橋物およびタイヤ |
JP2016079330A (ja) * | 2014-10-20 | 2016-05-16 | 日本ゼオン株式会社 | サイドウォール用ゴム組成物 |
JPWO2016158676A1 (ja) * | 2015-03-31 | 2018-02-01 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JP2016190984A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | ランフラットタイヤ用ゴム組成物 |
WO2016158676A1 (ja) * | 2015-03-31 | 2016-10-06 | 日本ゼオン株式会社 | ゴム組成物、ゴム架橋物およびタイヤ |
JP2016190986A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 防振ゴム用組成物 |
JP2016189969A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 靴底用ゴム組成物 |
US10774174B2 (en) | 2016-08-17 | 2020-09-15 | Zeon Corporation | Use of crosslinked rubber |
US11192975B2 (en) | 2016-08-17 | 2021-12-07 | Zeon Corporation | Crosslinked rubber |
WO2018034311A1 (ja) * | 2016-08-17 | 2018-02-22 | 日本ゼオン株式会社 | ゴム架橋物の使用 |
JPWO2018034310A1 (ja) * | 2016-08-17 | 2019-06-20 | 日本ゼオン株式会社 | ゴム架橋物 |
WO2018034310A1 (ja) * | 2016-08-17 | 2018-02-22 | 日本ゼオン株式会社 | ゴム架橋物 |
JPWO2018079603A1 (ja) * | 2016-10-31 | 2019-09-19 | 日本ゼオン株式会社 | 架橋性組成物および架橋体 |
JP7124702B2 (ja) | 2016-10-31 | 2022-08-24 | 日本ゼオン株式会社 | 架橋性組成物および架橋体 |
US11535696B2 (en) | 2016-10-31 | 2022-12-27 | Zeon Corporation | Crosslinkable composition and crosslinked product |
WO2018079603A1 (ja) * | 2016-10-31 | 2018-05-03 | 日本ゼオン株式会社 | 架橋性組成物および架橋体 |
JP2018076414A (ja) * | 2016-11-08 | 2018-05-17 | 日本ゼオン株式会社 | 防振ゴム用重合体組成物、ゴム架橋物、および防振ゴム |
US11286339B2 (en) | 2017-03-24 | 2022-03-29 | Zeon Corporation | Cyclopentene ring-opening copolymer and method of producing the same |
JP7010284B2 (ja) | 2017-03-24 | 2022-01-26 | 日本ゼオン株式会社 | シクロペンテン開環共重合体及びその製造方法 |
WO2018173968A1 (ja) * | 2017-03-24 | 2018-09-27 | 日本ゼオン株式会社 | シクロペンテン開環共重合体及びその製造方法 |
JPWO2018173968A1 (ja) * | 2017-03-24 | 2020-01-30 | 日本ゼオン株式会社 | シクロペンテン開環共重合体及びその製造方法 |
JP7009920B2 (ja) | 2017-10-30 | 2022-01-26 | 日本ゼオン株式会社 | 高反発材料 |
JP2019081839A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | ゴム架橋物 |
JP2019081840A (ja) * | 2017-10-30 | 2019-05-30 | 日本ゼオン株式会社 | 高反発材料 |
JP7006136B2 (ja) | 2017-10-30 | 2022-01-24 | 日本ゼオン株式会社 | ゴム架橋物 |
Also Published As
Publication number | Publication date |
---|---|
EP2524936A4 (en) | 2016-08-24 |
JP5640995B2 (ja) | 2014-12-17 |
EP2524936B1 (en) | 2017-09-13 |
EP2524936A1 (en) | 2012-11-21 |
US20120296035A1 (en) | 2012-11-22 |
US8889806B2 (en) | 2014-11-18 |
CN102782005A (zh) | 2012-11-14 |
CN102782005B (zh) | 2015-03-11 |
JPWO2011087072A1 (ja) | 2013-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5640995B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
JP6566090B2 (ja) | シクロペンテン開環共重合体、その製造方法およびゴム組成物 | |
JP5640994B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
JP7010284B2 (ja) | シクロペンテン開環共重合体及びその製造方法 | |
JP5733315B2 (ja) | シクロペンテン開環重合体およびその製造方法 | |
JP6624059B2 (ja) | 環状オレフィン系ゴムおよびその製造方法、ならびに、ゴム組成物、ゴム架橋物およびタイヤ | |
KR20170071537A (ko) | 타이어용 고무 조성물 | |
JP6702312B2 (ja) | ゴム組成物、ゴム架橋物およびタイヤ | |
JP2016079330A (ja) | サイドウォール用ゴム組成物 | |
JP6079188B2 (ja) | シクロペンテン開環重合体の製造方法およびゴム組成物 | |
JP6701892B2 (ja) | 重荷重タイヤ用ゴム組成物 | |
JP2017119752A (ja) | ゴム組成物、ゴム架橋物およびタイヤ | |
JP2017119751A (ja) | ゴム組成物、ゴム架橋物およびタイヤ | |
JP2016190984A (ja) | ランフラットタイヤ用ゴム組成物 | |
JP2016190986A (ja) | 防振ゴム用組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180011594.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550009 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13521822 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011732942 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011732942 Country of ref document: EP |