WO2011086948A1 - 加熱装置 - Google Patents
加熱装置 Download PDFInfo
- Publication number
- WO2011086948A1 WO2011086948A1 PCT/JP2011/000190 JP2011000190W WO2011086948A1 WO 2011086948 A1 WO2011086948 A1 WO 2011086948A1 JP 2011000190 W JP2011000190 W JP 2011000190W WO 2011086948 A1 WO2011086948 A1 WO 2011086948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- heating
- path forming
- chamber
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C15/00—Details
- F24C15/32—Arrangements of ducts for hot gases, e.g. in or around baking ovens
- F24C15/322—Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation
- F24C15/325—Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation electrically-heated
Definitions
- the present invention relates to a heating apparatus that heats an object to be heated in a heating chamber using a convection heating method in which hot air is formed by a blower fan and a heater, and the formed hot air is convected in the heating chamber.
- a hot air circulation mechanism including a blower fan and a heater is generally provided behind a rear wall serving as a back surface of a heating chamber in which an object to be heated is arranged. Yes.
- the hot air circulation mechanism sucks air in the heating chamber from a suction port provided on the rear wall of the heating chamber by a blower fan, blows it to the heater, and hot air heated by the heater from a blower outlet provided on the rear wall of the heating chamber. It is configured to blow out into the heating chamber.
- a heating cooker equipped with a hot air circulation mechanism cooking is performed on an object to be heated in the heating chamber by a convection heating method that utilizes hot air circulating in the heating chamber.
- FIG. 19 is a side sectional view showing an internal configuration of a conventional cooking device disclosed in Patent Document 1.
- an inner casing 103 is provided on the outer surface of the rear wall 102 that is the back surface of the heating chamber 101, and the rear wall 102 and the inner casing 103 constitute a casing of the hot air circulation mechanism.
- a blower fan 104 constituted by a centrifugal fan and a substantially annular heater 105 are provided inside the hot air circulation mechanism.
- a suction port 106 made up of a number of punching holes is formed in the center of the rear wall 102 of the heating chamber 101.
- a plurality of air outlets 107 made up of a number of punching holes are formed at positions above and below the suction port 106.
- a blower fan 104 that is a centrifugal fan is provided inside the inner casing 103 so as to face the suction port 106 formed in the center of the rear wall 102 of the heating chamber 101.
- the blower fan 104 is rotationally driven by a motor 108 provided outside the inner casing 103.
- the heater 105 is a substantially annular sheathed heater provided so as to surround the blower fan 104.
- a part of hot air sent out in the centrifugal direction from the blower fan 104 and heated by the heater 105 is configured to be dammed by the wind direction plate 109.
- the wind direction plate 109 is provided behind the air outlet 107 and in the vicinity of the air outlet 107 in the direction of the flow of the hot air sent out from the blower fan 104.
- the wind direction plate 109 aims to increase the amount of hot air supplied from the blower outlet 107 to the heating chamber 101 by blocking and collecting part of the hot air from the blower fan 104.
- the plate surface of the wind direction plate 109 with which the hot air from the blower fan 104 abuts is perpendicular to the rear wall 102, and from the rotation center of the blower fan 104.
- a part of the hot air that is sent from the blower fan in the centrifugal direction and heated by the heater is It is comprised so that it may be blocked by the wind direction change member, and the wind direction of the hot air supplied to a heating chamber from the blower outlet is changed.
- This air direction changing member is disposed in the vicinity of the air outlet and behind the air outlet in the direction in which the hot air flows by the blower fan.
- the conventional cooking device disclosed in Patent Document 2 aims to reduce the bias of the hot air inside the heating chamber by blocking a part of the hot air from the blower fan by the air direction changing member to change the air direction. Yes.
- the blower fan is rotationally driven by the motor, and the air in the heating chamber is sucked in. It is sucked into the hot air circulation mechanism from the mouth. Further, the air inside the hot air circulation mechanism is sent out in the centrifugal direction by the rotation of the blower fan.
- the air sent from the blower fan in the centrifugal direction is heated by the heater and supplied to the heating chamber from a plurality of outlets (for example, the upper position, the lower position, and the side position of the rear wall). In this manner, hot air circulates inside the heating chamber and the hot air circulation mechanism, and convection heating is performed on the object to be heated in the heating chamber.
- the conventional cooking device when the convection heating is started, a part of the hot air comes into contact with the wind direction plate (wind direction changing member) inside the hot air circulation mechanism, and the hot air flows in the direction opposite to the rotation direction of the blower fan.
- the hot air is supplied to the inside of the heating chamber from the air outlet near the wind direction plate.
- Patent Document 3 Japanese Patent Laid-Open No. 6-347041
- Patent Document 4 JP-A No. 2004-353922
- the airflow direction of the airflow from the blower fan is inclined in the rotational direction from the radial direction of the blower fan according to the rotation of the blower fan, and is in a so-called outward spiral shape.
- the air flow may be blown out in a direction close to the tangential direction in the rotation of the blower fan. For this reason, most of the hot air blown from the hot air circulation device is blown outwardly from a plurality of outlets on the rear wall of the heating chamber, or blown to the side surface, ceiling surface and bottom surface of the heating chamber.
- a wind direction plate (wind direction changing member) is provided inside the hot air circulation mechanism so that the amount of hot air from the air outlet increases. Yes.
- the direction of the hot air blown out from the blower outlet is a direction close to a substantially tangential direction in the rotation of the blower fan. For this reason, the hot air from the blower outlet formed at the lower position of the rear wall of the heating chamber flows along the bottom surface of the heating chamber, and the hot air from the blower outlet formed at the upper position of the rear wall of the heating chamber is heated by the heating chamber.
- the hot air from the air outlet formed at the side position of the rear wall of the heating chamber flows along the side surface. As a result, the hot air blown from the hot air circulation mechanism mainly heats the wall surface of the heating chamber.
- the wall surface of the heating chamber becomes hotter than the object to be heated in the heating chamber, the heat dissipation loss is increased, and the object to be heated is heated with high efficiency. Had no problem.
- the hot air blown from the hot air circulation mechanism into the heating chamber is blown in a direction substantially tangential to the rotation circle of the blower fan from the blower outlet in a direction perpendicular to the rotation axis of the blower fan. And may flow along the rear wall of the heating chamber.
- the hot air thus blown out from the outlet along the rear wall of the heating chamber collides with the upper, lower, left and right wall surfaces of the heating chamber and directly heats these wall surfaces.
- the conventional cooking device has a problem that the heating efficiency for the object to be heated further deteriorates.
- the present invention solves the problem in the heating device which is the above-described conventional heating cooker, and applies the hot air from the outlet uniformly to the object to be heated in the heating chamber and directly against the wall surface of the heating chamber.
- a heating device that can efficiently heat the object to be heated by reducing the heat dissipation from the wall surface of the heating chamber by performing intensive heating operation on the object to be heated while reducing the heating The purpose is to do.
- a heating device includes a heating chamber that houses an object to be heated, and a heat source that communicates with the heating chamber by a suction port and a plurality of outlets formed in a partition wall between the heating chamber and the heating chamber.
- Room In the inside of the heat source chamber, an air flow that forms an air flow, a heating unit that heats the air flow, and an air flow heated by the heating unit are moved in a direction of a surface facing the partition, A flow path forming unit that forms a flow path that blows out from at least one of the plurality of air outlets toward the center of the heating chamber after circulating around at least a part of the space in the heat source chamber; Heating device.
- Hot air blown from the outlet into the heating chamber can flow toward the center of the heating chamber.
- the heating device is configured such that the flow path forming portion in the first aspect is disposed between the air flow paths from the heating portion to the outlet. Yes.
- the hot air generated by the blower unit and the heating unit in the heat source chamber is blown out from the outlet toward the center of the heating chamber. A flow path is reliably formed.
- the heating device is the guide surface in which the flow path forming portion in the first aspect moves the air flow heated by the heating portion in the direction of the surface facing the partition.
- the air flow moved in the direction of the surface facing the partition wall by the guide surface is circulated through at least a part of the space in the heat source chamber and then blown out from the air outlet in contact with the back surface of the guide surface. It is comprised so that.
- the heating device of the third aspect of the present invention configured as described above, the hot air from the air outlet can be uniformly applied to the object to be heated in the heating chamber, and the wall surface of the heating chamber It is possible to reduce the direct heating of the object and to perform a concentrated heating operation on the object to be heated.
- the heating device is a centrifugal fan in which the air blowing unit in the third aspect sucks air inside the heating chamber from the suction port of the partition wall and discharges air in a centrifugal direction.
- the heating unit is provided so as to surround the outer periphery of the air blowing unit.
- the heating device of the fourth aspect of the present invention configured as described above, the air sucked from the partition wall is reliably heated by the heating unit provided around the centrifugal fan in the heat source chamber, Hot air can be blown out in a desired direction into the heating chamber by the hot air flow path formed by the path forming unit.
- heat dissipation loss can be suppressed and the object to be heated can be efficiently heated, and the heating chamber can be preheated and the cooking speed can be improved.
- the heating device of the fifth aspect according to the present invention has an inclined surface in which at least a part of the guide surface in the third aspect is inclined at a predetermined angle with respect to the axial direction of the rotating shaft of the blower unit. According to the heating device of the fifth aspect of the present invention configured as described above, pressure loss in the heat source chamber can be suppressed.
- At least a part of the guide surface in the third aspect is configured by a curved surface. According to the heating device of the sixth aspect of the present invention configured as described above, pressure loss in the heat source chamber can be suppressed, and the direction of the hot air from the blowout port is more directed toward the front of the heating chamber. be able to.
- the heating device is configured such that the guide surface in the third aspect has a predetermined distance from the air outlet and covers at least the entire air outlet. .
- the flow path of hot air in the heat source chamber can be adjusted, and the blowing direction of hot air into the heating chamber can be adjusted. it can.
- the heating device of the eighth aspect according to the present invention has an inclined surface in which at least a part of the guide surface in the third aspect is inclined by a predetermined angle with respect to the axial direction of the rotation shaft of the blower section, By changing the angle of the inclined surface, the direction of the air flow blown out from the air outlet is changed.
- the heating device of the eighth aspect of the present invention configured as described above, the flow path of the hot air in the heat source chamber can be adjusted, and the blowing direction of the hot air into the heating chamber can be adjusted. it can.
- the heating device is configured to change the direction of the air flow blown out from the outlet by changing the number of revolutions of the air blowing section in the third aspect. .
- the direction of the hot air from the outlet can be easily changed by changing the rotational speed of the blower.
- the heating device is the guide surface in which the flow path forming portion in the first aspect moves the air flow heated by the heating portion in the direction of the surface facing the partition. And the air flow moved in the direction of the surface facing the partition wall by the guide surface so as to circulate through at least a part of the space in the heat source chamber and come into contact with the back surface of the guide surface and blow out from the outlet.
- the heating device of the tenth aspect of the present invention configured as described above, the air sucked from the partition wall is heated in the heat source chamber, and the flow channel formed by the flow channel forming unit causes the heat chamber to enter the heating chamber.
- hot air can be blown out in a desired direction.
- the eleventh aspect of the heating device is the guide surface in which the flow path forming portion in the first aspect moves the air flow heated by the heating portion in the direction of the surface facing the partition. And the air flow moved in the direction of the surface facing the partition wall by the guide surface so as to circulate through at least a part of the space in the heat source chamber and come into contact with the back surface of the guide surface and blow out from the outlet.
- a transverse flow path forming portion having a surface;
- a ceiling flow path forming section that has a ceiling surface that covers the air discharge opening at a predetermined interval from the blow outlet, and that connects the vertical flow path forming section and the horizontal flow path forming section;
- the guide surface of the vertical flow path forming portion and the blocking surface of the horizontal flow path forming portion in the tenth or eleventh aspect are arranged around the outlet.
- the guide surface and the damming surface are orthogonal to each other.
- the hot air generated by the blower unit and the heating unit in the heat source chamber is blown out from the outlet toward the center of the heating chamber, and is heated. Uniform heating is possible in the room.
- the air blowing part in the tenth or eleventh aspect sucks air inside the heating chamber from the suction port of the partition wall and releases the air in the centrifugal direction. It is a centrifugal fan, and the heating unit is provided so as to surround the outer periphery of the blower unit.
- the heating apparatus of the thirteenth aspect of the present invention configured as described above, the air sucked from the partition wall is reliably heated by the heating unit provided around the centrifugal fan in the heat source chamber, Hot air can be blown out in a desired direction into the heating chamber by the hot air flow path formed by the path forming unit.
- a heating device comprising: Have. According to the heating device of the fourteenth aspect of the present invention configured as described above, pressure loss in the heat source chamber can be suppressed.
- the heating device of the fifteenth aspect In the heating device of the fifteenth aspect according to the present invention, at least a part of the guide surface in the tenth or eleventh aspect is configured by a curved surface. According to the heating device of the fifteenth aspect of the present invention configured as described above, pressure loss in the heat source chamber can be suppressed.
- the heating device of the present invention can uniformly apply hot air from the outlet to the object to be heated in the heating chamber, reduce direct heating to the wall surface of the heating chamber, and concentrate on the object to be heated. By performing an appropriate heating operation, it is possible to reduce the heat dissipation loss from the wall surface of the heating chamber and to efficiently heat the object to be heated.
- FIG. 1 Side surface sectional drawing which shows the internal schematic structure of the heating cooker of Embodiment 1 which concerns on this invention.
- Plan sectional drawing by the II-II line of a part in the heating cooker shown in FIG. The perspective view which shows the partition used as the back wall of the heating chamber in the heating cooker of Embodiment 1.
- FIG. Plan sectional drawing which shows the heat source room and drive room in the heating cooker of Embodiment 2 which concerns on this invention.
- Plan sectional drawing which shows the heat source chamber and drive chamber in the heating cooker of Embodiment 3 which concerns on this invention.
- Plan sectional drawing which shows the heat source chamber and drive chamber in the heating cooker of Embodiment 7 which concerns on this invention
- Plan sectional drawing which shows the heat source chamber and drive chamber in the heating cooker of Embodiment 8 which concerns on this invention.
- Plan sectional drawing which shows the heat source chamber and drive chamber in the heating cooker of Embodiment 9 which concerns on this invention
- Plan sectional drawing which shows the heat source room and drive room in the heating cooker of Embodiment 10 which concerns on this invention.
- the heating device of the present invention is not limited to the configuration of the heating cooker described in the following embodiment, but the technical idea equivalent to the technical idea described in the following embodiment and the present technology. It includes a heating device configured based on common technical knowledge in the field.
- FIG. 1 is a side sectional view showing a schematic internal configuration of the heating cooker according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional plan view taken along line II-II in the cooking device shown in FIG.
- FIG. 3 is a perspective view showing a back wall which is a rear wall of the heating chamber in the heating cooker according to the first embodiment.
- positioned is made into the front of a heating cooker, and the left-right direction is demonstrated as the direction seen from the front.
- the above definitions are used for the front and left-right directions.
- a heating chamber 2 having a substantially rectangular parallelepiped structure for housing a food material to be heated 10 is formed inside a main body 1. .
- the heating chamber 2 mounts a wall plate that forms a ceiling surface, a bottom surface, a left side surface, a right side surface, and a back surface with a metal material, a door 3 that opens and closes in order to put the heated object 10 in and out, and the heated object 10.
- a plurality of support portions 4 that support the cooking pan 5 for the purpose.
- the support part 4 is formed so that the three-step cooking pan 5 may be arrange
- a magnetron 6 and an antenna 7 are installed below the heating chamber 2, and electromagnetic waves generated in the magnetron 6 can be radiated into the heating chamber 2 via the antenna 7.
- the heating chamber 2 configured as described above is configured such that the electromagnetic wave supplied into the heating chamber 2 is confined in the heating chamber 2 by closing the door 3.
- the electromagnetic wave from the magnetron 6 is fed to the heating chamber via the antenna.
- the present invention forms an electromagnetic wave by a circuit configuration using a semiconductor element and feeds the heating chamber.
- the present invention can also be applied to a configuration in which a convection heating type oven cooker is used.
- a heat source chamber 8 is provided adjacent to the heating chamber 2 on the back side, which is the rear side of the heating chamber 2.
- a blower fan 9 that is a centrifugal fan and a heater 11 composed of a sheathed heater that heats the air sent out by the rotation of the blower fan 9 are installed.
- the heater 11 in the heating cooker according to the first embodiment is disposed outside the blade portion of the blower fan 9 and is provided at a position offset to the rear side, and has a substantially square frame shape.
- the heater 11 has a substantially square frame shape
- the present invention is not limited to such a configuration, and other shapes such as an annular frame. Shape may be sufficient.
- a motor 13 as a drive source is installed in a drive chamber 12 which is a space further behind the heat source chamber 8.
- the shaft of the motor 13 passes through the heat source chamber back wall 14 which is the back surface of the heat source chamber 8, and a blower fan 9, which is a blower, is attached to the tip of the shaft.
- the heat source chamber 8 in which the heater 11 as a heating unit as a heat source is installed and the drive chamber 12 in which the motor 13 as a drive source is installed are partitioned by the inner case 22 having the heat source chamber rear wall 14. It is insulated.
- a partition wall 15 serving as a back wall of the heating chamber is provided between the heating chamber 2 in which the article to be heated 10 is accommodated and the heat source chamber 8 in which the blower fan 9 and the heater 11 are installed.
- the partition wall 15 partitions the heating chamber 2 and the heat source chamber 8 spatially.
- a suction port 16 is formed at a position (central region) facing the vicinity of the center of the blower fan 9. Moreover, in the partition 15, it is an area
- the heat source chamber rear wall 14 is not flat, and the central portion protrudes toward the heat source chamber in order to provide the motor 13 in the rear drive chamber 12. It is formed into a shape.
- the heat source chamber back wall 14 is formed in a concave shape so that the outer peripheral portion thereof protrudes toward the drive chamber.
- the motor 13 is arranged in a recessed space on the drive chamber side formed in the central portion of the heat source chamber rear wall 14.
- the heating chamber 2 includes the left side surface 18, the right side surface 19, the bottom surface 20, the ceiling surface 21, and the back surface in addition to the door 3 that is the front surface. It is comprised by the partition 15 which is a back wall.
- the left side surface 18 and the right side surface 19 are provided with three upper and lower support portions 4 protruding into the heating chamber 2 substantially parallel to the bottom surface 20.
- the cooking tray 5 can be held in the heating chamber 2 by these support portions 4.
- the heat source chamber 8 formed by being surrounded by the inner case 22 including the partition wall 15 and the heat source chamber rear wall 14 is disposed behind the partition wall 15 which is the back surface of the heating chamber 2. That is, the partition wall 15 serving as the back surface of the heating chamber 2 serves to separate the heating chamber 2 from the heat source chamber 8.
- a blower fan 9 that is a centrifugal fan and a heater 11 are provided inside the heat source chamber 8. The blower fan 9 and the heater 11 are controlled by a control unit 24 provided inside the main body 1.
- a suction port 16 composed of a number of punching holes is formed in the central portion of the partition wall 15 which is the back surface of the heating chamber 2.
- the partition 15 has a suction port 16 at the center, and a plurality of air outlets 17A, 17B, 23A, and 23B are formed in a region around the suction port 16.
- an upper air outlet 17 ⁇ / b> A composed of a number of punching holes is formed in a band shape in the region from the vicinity of the end portion near the left side surface 18 of the heating chamber 2 to the substantially central portion. It is elongated in the direction.
- the lower blowout port 17 ⁇ / b> B formed of a number of punching holes is formed in a band shape in the region from the vicinity of the end portion near the right side surface 19 of the heating chamber 2 to the substantially central portion. It is formed to be elongated in the horizontal direction. That is, the two upper outlets 17 ⁇ / b> A and the lower outlet 17 ⁇ / b> B formed in the partition wall 15 are formed point-symmetrically with respect to the center of the inlet 16. In FIG. 3, the arrow indicates the rotation direction of the blower fan 9.
- the air outlets 23 ⁇ / b> A and 23 ⁇ / b> B configured by a large number of punching holes are formed in the horizontal direction in the left and right regions of the suction port 16 (see FIG. 3).
- the partition wall 15 is provided with the left outlet 23A and the right outlet 23B, which are similarly formed of a number of punching holes, at the left and right positions sandwiching the suction port 16.
- the shapes of the upper air outlet 17A and the lower air outlet 17B are longer in the horizontal direction and shorter in the vertical direction than the shapes of the left air outlet 23A and the right air outlet 23B (see FIG. 3).
- the heating chamber 2 and the heat source chamber 8 communicate with each other through the punching holes of the suction port 16, the upper and lower outlets 17A and 17B, and the left and right outlets 23A and 23B in the partition wall 15.
- the punching holes constituting the suction port 16, the upper and lower outlets 17A and 17B, and the left and right outlets 23A and 23B have a plurality of diameters of about 2 to 5 mm so that electromagnetic waves do not leak out of the heating chamber 2 during electromagnetic wave heating. It is formed as a collection of holes.
- the intake portion of the blower fan 9 in the heat source chamber 8 is disposed so as to face the suction port 16 of the partition wall 15.
- a substantially ring-shaped heater 11 having a substantially square frame shape is provided on the outer peripheral portion serving as an exhaust portion of the blower fan 9.
- the blower fan 9 is rotationally driven by a motor 13 provided outside the heat source chamber 8 to generate an air flow that sends out air in the centrifugal direction.
- the generated air flow is heated by the heater 11 at the outer peripheral position of the blower fan 9 to become hot air and is supplied into the heating chamber 2 from the upper and lower outlets 17A and 17B and the left and right outlets 23A and 23B in the partition wall 15 to be heated.
- the object 10 is heated by convection.
- a first flow path forming portion 30A is provided between the central suction port 16 and the left outlet 23A on the back surface on the heat source chamber 8 side. Further, on the back surface of the partition wall 15, a second flow path forming portion 30B is provided between the central suction port 16 and the right outlet 23B.
- the first flow path forming portion 30 ⁇ / b> A and the second flow path forming portion 30 ⁇ / b> B are formed such that one end is fixed to the back surface of the partition wall 15 and the other end protrudes obliquely into the internal space of the heat source chamber 8.
- the protruding end portions of the first flow path forming portion 30A and the second flow path forming portion 30B are arranged with a predetermined gap from the heat source chamber back wall 14.
- the first flow path forming portion 30A and the second flow path forming portion 30B are provided between the heater 11 disposed so as to surround the blower fan 9 and the respective outlets 23A, 23B.
- the blower fan 9, the heater 11, the first flow path forming portion 30 ⁇ / b> A, and the second flow path forming portion 30 ⁇ / b> B are configured by the partition wall 15 and the inner case 22 having the heat source chamber back wall 14. It is provided inside the heat source chamber 8 to form a special air flow in the heat source chamber 8.
- the first flow path forming portion 30 ⁇ / b> A and the second flow path forming portion 30 ⁇ / b> B at the left and right positions of the central suction port 16 are formed on the back surface of the partition wall 15.
- the fixing portions 30Ab and 30Bb are disposed in the vicinity of the center side on the back surfaces of the left and right outlets 23A and 23B, and the inclined portions 30Aa and 30Ba are obliquely extended so as to cover the center side of the left and right outlets 23A and 23B. Yes.
- the fixing portions 30Ab and 30Bb are attachment portions for fixing to the partition wall 15.
- the fixing portions 30Ab and 30Bb are fixed to the partition wall 15 by caulking or welding.
- each of the first flow path forming portion 30A and the second flow path forming portion 30B is formed by bending a metal plate along a straight line.
- the material of the first flow path forming portion 30A and the second flow path forming portion 30B is not limited to metal, and any material having heat resistance that can maintain the shape can be used.
- the first flow path forming portion 30A and the second flow path forming portion 30B have inclined portions 30Aa and 30Ba having an angle of approximately 45 degrees with respect to the plane (vertical surface) of the partition wall 15. Then, although it demonstrates by the structure opened outward, this angle is determined in the specification in a heating cooker. In accordance with the operating characteristics of the cooking device, for example, it is set to open outward in an angle range between 30 degrees and 70 degrees with respect to the plane (vertical surface) of the partition wall 15.
- the first flow path forming portion 30A and the second flow path forming portion 30B in the first embodiment are formed by bending a rectangular plate material, and are bent lines that are straight lines. Are arranged in the vertical direction.
- the first flow path forming portion 30A and the second flow path forming portion 30B are formed to be shorter than the vertical length of the partition wall 15 and longer than the vertical length of the left and right outlets 23A and 23B. It is provided on the center side (suction port side) of the air outlets 23A and 23B.
- the main body 1 including the heat source chamber 8 having the blower fan 9 and the heater 11 and the drive chamber 12 having the motor 13 is secured while ensuring the internal volume of the heating chamber 2.
- the depth dimension of the heat source chamber 8 and the drive chamber 12 is formed small.
- the blower fan 9 which is a centrifugal fan that does not deteriorate the blowing performance even if the depth dimension is small is used, and the depth dimension of the central portion that is the suction portion can be reduced.
- a blower fan 9 is used.
- the heat source chamber rear wall 14 through which the shaft of the motor 13 passes has a shape in which a portion close to the motor 13 is recessed on the heating chamber side (front surface side), and the motor 13 is disposed inside the recess. It is configured as follows. As a result, the dimension in the depth direction of the heat source chamber 8 and the drive chamber 12 is reduced.
- the heat source chamber back wall 14 is formed as described above, and the motor 13 is arranged inside the recess of the heat source chamber back wall 14.
- the depth dimension of the part (center part) close to the motor 13 of the heat source chamber 8 is made small.
- the depth dimension of the portion other than the portion close to the motor 13 (outer peripheral portion) is larger than that of the central portion, and an arrangement space for the heater 11 as a heating portion as a heat source is secured.
- positioning the 1st flow path formation part 30A and the 2nd flow path formation part 30B in the predetermined position on the outer side of the heater 11 is ensured. .
- an air flow path in the heat source chamber 8 formed by the first flow path forming part 30A and the second flow path forming part 30B is secured.
- the heater 11 is arrange
- the heating operation in the heating cooker according to the first embodiment of the present invention will be described.
- the cooking pan 5 on which the article to be heated 10 such as a cookie is placed is related to the support portion 4 provided on the left and right wall surfaces of the heating chamber 2. Stop and insert into the heating chamber 2.
- the cooking pan 5 is pushed in until it comes into contact with the partition wall 15 which is the back wall of the heating chamber 2, the door 14 is closed, and the heating chamber 2 becomes a heatable space.
- Oven cooking in the cooking device is started by operating a predetermined button on an operation unit (not shown) provided on the front surface of the main body 1.
- cooking conditions such as the heating time and heating temperature of the article to be heated 10 are set.
- a signal indicating the cooking conditions set in the operation unit is input to the control unit 24 constituted by a microcomputer.
- the control unit 24 drives and controls the heater 11 and the motor 13 based on a signal indicating cooking conditions.
- Rotation of the motor 13 causes the blower fan 9, which is a centrifugal fan, to start rotating.
- the air flow blown out from the blower fan 9 is heated by the heater 11 disposed so as to surround the outer peripheral portion of the blower fan 9 to become a high-temperature air flow (hot air).
- a part of the air flow from the blower fan 9 contacts the inclined portions 30Aa and 30Ba of the first flow path forming portion 30A and the second flow path forming portion 30B provided at the left and right positions of the blower fan 9.
- the heat source chamber is guided toward the heat source chamber rear wall 14 which is behind the heat source chamber 8.
- the air flow guided to the rear side of the heat source chamber 8 flows more toward the heater 11 disposed slightly rearward than the blower fan 9 and is heated to become a high-temperature air flow (hot air).
- the hot air sent to the outer peripheral side by the blower fan 9 and heated by the heater 11 as described above the hot air sent to the upper side of the blower fan 9 is blown out from the upper outlet 17A in the partition wall 15 to the heating chamber 2,
- the hot air sent out below the blower fan 9 is blown out into the heating chamber 2 from the lower blowout port 17B. Since these hot airs are spiral in the direction of rotation of the blower fan 9 and have an outward wind direction, the hot air from the upper outlet 17A is directed toward the ceiling surface 21 and the right side surface 19 of the heating chamber 2.
- the hot air from the lower outlet 17B flows in the direction of the bottom surface 20 and the left side surface 18 of the heating chamber 2.
- the shapes of the upper air outlet 17A and the lower air outlet 17B that are configured by a plurality of punching holes are strips that are elongated in the horizontal direction, and the left air outlet 23A and the right that are configured by a plurality of punching holes. Compared with the shape of the blower outlet 23B, it is elongate (refer FIG. 3).
- the hot air sent to the outer peripheral side by the blower fan 9 and heated by the heater 11 is sent to the left and right directions of the blower fan 9, and the first flow path forming unit 30A and the second Is brought into contact with the flow path forming portion 30 ⁇ / b> B and guided toward the heat source chamber back wall 14 which is the back surface of the heat source chamber 8.
- the hot air guided to the heat source chamber back wall 14 flows along the heat source chamber back wall 14, changes the wind direction at the left and right ends of the heat source chamber 8, and again the first flow path forming unit 30 ⁇ / b> A and the second flow path. It goes in the direction of the forming part 30B. Therefore, the hot air is guided by the back surfaces of the first flow path forming portion 30A and the second flow path forming portion 30B and blown out from the respective outlets 23A and 23B to the heating chamber 2.
- the hot air blown out from the left and right outlets 23A and 23B into the heating chamber 2 flows in the direction from the left and right end portions toward the center in the heat source chamber 8, so It blows out to head. That is, the hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so that the heated object 10 can be heated intensively. Therefore, the hot air blown from the left and right outlets 23A and 23B to the heating chamber 2 does not directly heat the wall surface of the heating chamber 2.
- the heating cooker of the first embodiment As described above, according to the heating cooker of the first embodiment, the hot air blown from the heat source chamber 8 to the inside of the heating chamber 2 through the left and right outlets 23A and 23B is transferred to the object to be heated 10. It becomes possible to concentrate. As a result, in the heating cooker according to the first embodiment, the heating loss due to the hot air heating only the wall surface of the heating chamber 2 can be greatly suppressed, the heating chamber is heated efficiently, and the heated object is heated. Efficient cooking for food becomes possible. Therefore, according to the heating cooker of Embodiment 1, the preheating time and cooking time of a heating chamber can be shortened, and the cooking speed can be improved.
- the heat source room 8 arrange
- the configuration of the heating cooker according to the first embodiment can reduce the depth of the entire apparatus while ensuring the capacity of the heating chamber, and can provide a heating cooker having high energy saving performance.
- the first flow path forming portion 30A and the second flow path forming portion 30B are fixed to the partition wall 15 which is the back wall of the heating chamber 2 (fixed by caulking or welding). ),
- the first flow path forming portion 30A and the second flow path forming portion 30B are configured to be fixed to other members forming the heat source chamber 8, and the left and right outlets 23A, You may arrange
- the heating cooker according to the second embodiment of the present invention will be described with reference to FIG.
- the difference from the heating cooker according to the first embodiment is the configuration of the flow path forming unit provided in the heat source chamber. Therefore, in the heating cooker of the second embodiment, the flow path forming unit will be described in particular, and the elements having the same functions and configurations as those of the heating cooker of the first embodiment are denoted by the same reference numerals, The description of the first embodiment is used.
- FIG. 4 is a plan cross-sectional view showing a heat source chamber and a driving chamber behind the heating chamber in the cooking device of the second embodiment.
- the difference between the heating cooker according to the second embodiment and the heating cooker according to the first embodiment is that the first flow path is provided in the partition wall 15 that is the back wall of the heating chamber 2. This is the shape of the portion 40A and the second flow path forming portion 40B.
- the inclined portions 40Aa and 40Ba in the first flow path forming portion 40A and the second flow path forming portion 40B are formed of curved surfaces.
- the second flow path forming portion 40B includes an inclined portion 40Ba having a concave surface facing the right outlet 23B and a fixing portion for fixing to the partition wall 15 in the same manner as the first flow path forming portion 40A. 40Bb.
- the first flow path forming portion 40A and the second flow path forming portion 40B are described as being fixed to the partition wall 15 (fixed by caulking or welding).
- 40 A of 1st flow path formation parts and the 2nd flow path formation part 40B are fixed to the other member which forms the heat-source chamber 8, and it is arrange
- the hot air sent in the left-right direction of the blower fan 9 is a smooth curved surface in the inclined portion 40Aa of the first flow path forming portion 40A.
- the heat source chamber rear wall 14 which is the back wall of the heat source chamber is in contact with the guide surface which is a (convex surface) and the guide surface which is a smooth curved surface (convex surface) in the inclined portion 40Ba of the second flow path forming unit 40B. Led to.
- the hot air guided to the heat source chamber back wall 14 flows along the heat source chamber back wall 14, changes the wind direction at the left and right ends of the heat source chamber 8, and again in the direction of the inclined portion 40 ⁇ / b> Aa of the first flow path forming portion 40 ⁇ / b> A. Head. Then, the hot air is guided by the smooth curved surface (concave surface) on the back surface of the guiding surface of the inclined portion 40Aa and the smooth curved surface (concave surface) on the back surface of the inclined portion 40Ba, and is heated from the respective outlets 23A and 23B. Blown out.
- the hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 flows in the heat source chamber 8 in the direction from the left and right end portions toward the center, and therefore from the left and right outlets 23A and 23B.
- the air is blown out toward the approximate center of the heating chamber 2. That is, the hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so that the heated object 10 can be heated intensively.
- the angle formed between the curved end portion and the partition wall 15 is adjusted on the curved fixed portion side of each inclined portion (guide surface) in the first flow path forming portion 40A and the second flow path forming portion 40B.
- the direction of hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 can be adjusted.
- the inclined portions 40Ab and 40Ba in the first flow path forming portion 40A and the second flow path forming portion 40B are formed with smooth curved surfaces (guide surfaces).
- the direction of the hot air blown out from the left and right outlets 23A, 23B to the heating chamber 2 can be smoothly directed in the forward direction of the heating chamber 2 as compared with the heating cooker of the first embodiment. .
- the hot air blown from the heat source chamber 8 through the left and right outlets 23A and 23B to the heating chamber 2 is smoothly redirected and applied from the front to the center. Can flow in the direction.
- the heating loss due to the hot air heating only the wall surface of the heating chamber 2 can be significantly suppressed, the inside of the heating chamber 2 is heated efficiently, and the object to be heated 10 is efficiently heated. Cooking is possible. Therefore, according to the heating cooker of Embodiment 2, the preheating time and cooking time of the heating chamber 2 can be shortened, and the cooking speed can be improved.
- the heating cooker according to the third embodiment of the present invention will be described with reference to FIGS. 5 and 6.
- the difference from the heating cooker according to the first embodiment described above is the configuration of the flow path forming unit provided in the heat source chamber. Therefore, in the heating cooker according to the third embodiment, the flow path forming unit will be described in particular, and elements having the same functions and configurations as those of the heating cooker according to the first embodiment are denoted by the same reference numerals, The description of the first embodiment is used.
- FIG. 5 is a plan cross-sectional view showing a heat source chamber and a driving chamber behind the heating chamber in the heating cooker according to the third embodiment.
- 6 is a perspective view showing the inside of the heat source chamber shown in FIG. 5, in which the partition wall 15 which is the back wall of the heating chamber is removed.
- each of the first flow path forming unit 50 ⁇ / b> A and the second flow path forming unit 50 ⁇ / b> B provided in the heat source chamber 8 is provided. It has inclination part 50Aa, 50Ba and wing
- the first flow path forming portion 50A is formed so as to cover with a predetermined interval from the back surface of the left outlet 23A.
- the first flow path forming portion 50A is continuous with the inclined portion 50Aa inclined (about 45 degrees) with respect to the back surface of the partition wall 15 and the lead-out end portion of the inclined portion 50Aa and is parallel to the back surface of the partition wall 15.
- a wing portion 50Ac is a guide surface. A part of the hot air sent out in the centrifugal direction by the blower fan 9 is guided toward the heat source chamber rear wall 14 by the guide surface.
- the second flow path forming portion 50B is formed so as to cover with a predetermined interval from the back surface of the right outlet 23B.
- the second flow path forming portion 50B is continuous with the inclined portion 50Ba inclined with respect to the back surface of the partition wall 15 (about 45 degrees) and the lead-out end portion of the inclined portion 50Ba, and is parallel to the back surface of the partition wall 15.
- a wing part 50Bc having the structure.
- a surface facing the heat source chamber back wall 14 in the inclined portion 50Ba and the blade portion 50Bc is a guide surface.
- the wing parts 50Ac and 50Bc in the first flow path forming part 50A and the second flow path forming part 50B are arranged with a predetermined distance from the rear wall 14 of the heat source chamber, and the wing parts 50Ac and 50Bc and the heat source.
- An air flow path through which hot air passes is formed between the rear wall 14 and the room.
- the first flow path forming portion 50 ⁇ / b> A and the second flow path forming portion 50 ⁇ / b> B are extended to the upper and lower ends of the heat source chamber 8,
- the length is the same as the length of the direction (vertical direction). Accordingly, the first flow path forming portion 50A and the second flow path forming portion 50B are fixed at the upper and lower end portions of the inner case 22 forming the heat source chamber 8, and are disposed at predetermined positions.
- the hot air sent in the left-right direction of the blower fan 9 in the heat source chamber 8 is the same as the heating cooker of the first and second embodiments described above.
- the first flow path forming portion 50A comes into contact with the slope of the inclined portion 50Aa and the slope of the inclined portion 50Ba of the second flow path forming portion 50B, and is guided toward the heat source chamber rear wall 14.
- the hot air guided to the heat source chamber back wall 14 flows along the heat source chamber back wall 14, changes the air direction at the left and right ends of the heat source chamber 8, and again the first flow path forming unit 50 ⁇ / b> A and the second flow path. It flows toward the forming part 50B.
- the hot air is guided to the inclined surface (back surface) of the inclined portion 50Aa of the first flow path forming portion 50A and the inclined surface (back surface) of the inclined portion 50Ba of the second flow path forming portion 50B, and each outlet 23A. , 23B to the heating chamber 2.
- the hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 flows in the heat source chamber 8 in the direction from the left and right end portions toward the center, and therefore from the left and right outlets 23A and 23B.
- the air is blown out toward the approximate center of the heating chamber 2. That is, the hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so that the heated object 10 can be heated intensively.
- the heating cooker of the third embodiment hot air blown from the heat source chamber 8 through the left and right outlets 23A and 23B to the heating chamber 2 is intensively flowed to the object to be heated 10. Can do.
- the heating loss caused by hot air heating only the wall surface of the heating chamber 2 can be greatly suppressed, the heating chamber can be heated efficiently, and efficient cooking can be performed on the object to be heated. It becomes. Therefore, according to the heating cooker of Embodiment 3, the preheating time and cooking time of a heating chamber can be shortened, and the cooking speed can be improved.
- the heating cooker according to the fourth embodiment of the present invention will be described with reference to FIGS. 7A and 7B and FIG.
- the difference from the heating cooker according to the first embodiment described above is the configuration of the flow path forming unit provided in the heat source chamber. Therefore, in the heating cooker according to the fourth embodiment, the flow path forming unit will be particularly described, and the elements having the same functions and configurations as those of the heating cooker according to the first embodiment are denoted by the same reference numerals, The description of the first embodiment is used.
- FIG. 7A and 7B are plan sectional views showing a heat source chamber and a driving chamber behind the heating chamber in the heating cooker according to the fourth embodiment.
- FIG. 7A shows a state where the temperature of the flow path forming portion is equal to or lower than a predetermined temperature
- FIG. 7B shows a state where the temperature of the flow path forming portion exceeds the predetermined temperature.
- FIG. 8 is a perspective view of the partition 15 and the like in the heating cooker according to the fourth embodiment as viewed from the back side.
- the suction port 16 formed in the central portion of the partition wall 15 and the left outlet 23A formed on the left side of the suction port 16 A first flow path forming part 51A is formed between the two.
- a second flow path forming part 51 ⁇ / b> B is formed between the suction port 16 and the right outlet 23 ⁇ / b> B formed on the right side of the suction port 16.
- the first flow path forming portion 51 ⁇ / b> A and the second flow path forming portion 51 ⁇ / b> B are formed so that one end is fixed to the back surface of the partition wall 15 and the other end protrudes obliquely into the internal space of the heat source chamber 8.
- the protruding end portions of the first flow path forming portion 51A and the second flow path forming portion 51B are arranged at a predetermined distance from the heat source chamber back wall 14. Further, the first flow path forming portion 51A and the second flow path forming portion 51B are provided between the heater 11 disposed so as to surround the blower fan 9 and the respective outlets 23A, 23B. .
- the first flow path forming portion 51A and the second flow path forming portion 51B at the left and right positions of the suction port 16 on the back surface of the partition wall 15 are planes formed by the partition wall 15.
- Inclining portions 51Aa and 51Ba that incline outward and fixing portions 51Ab and 51Bb fixed to the partition wall 15 are provided.
- the fixing portions 51Ab and 51Bb are disposed in the vicinity of the center of the back surfaces of the left and right outlets 23A and 23B, and the inclined portions 51Aa and 51Ba are obliquely extended so as to cover the back surfaces of the left and right outlets 23A and 23B. Yes.
- the fixing portions 51Ab and 51Bb are attachment portions for fixing to the partition wall 15.
- the fixing portions 51Ab and 51Bb are fixed to the partition wall 15 by caulking or welding.
- each of the first flow path forming portion 51A and the second flow path forming portion 51B is a bimetal formed by bonding two metal plates having different coefficients of thermal expansion, or a shape memory. Made of alloy.
- the first flow path forming part 51A and the second flow path forming part 51B configured as described above have a function of changing the wind direction according to the temperature of hot air.
- the first flow path forming part 51A and the second flow path forming part 51B when the temperature of the first flow path forming part 51A and the second flow path forming part 51B is equal to or lower than a predetermined temperature, the first flow path forming part 51A and the second flow path forming part 51B.
- the inclined portions 51Aa and 51Ba are attached to the partition wall 15 so as to open outward at an angle of 45 degrees. Since the first flow path forming part 51A and the second flow path forming part 51B are formed of a bimetal obtained by bonding two metal plates having different thermal expansion coefficients or a shape memory alloy, It has an internal wind direction change function.
- the first flow path forming part 51A and the second flow path forming part 51B exceeds a predetermined temperature
- the first flow path forming part 51A and the second flow path are inclined outward with respect to the partition wall 15 at an angle of about 60 degrees.
- This inclination angle is preferably set so as to change within a range of 30 to 70 degrees.
- the first flow path forming part 51A and the second flow path forming part 51B provided at the left and right positions of the suction port 16 are It is shorter than the length of the partition wall 15 and longer than the lengths of the left outlet 23A and the right outlet 23B, and is provided so as to cover at least the central region of the left outlet 23A and the right outlet 23B.
- the main body 1 including the heat source chamber 8 having the blower fan 9 and the heater 11 and the drive chamber 12 having the motor 13 is secured while securing the internal volume of the heating chamber 2.
- the depth dimension of the combined portion of the heat source chamber 23 and the drive chamber 12 is reduced.
- the blower fan 9 which is a centrifugal fan that does not deteriorate the blowing performance even if the depth dimension is small is used, and the depth dimension of the central portion that is the suction portion can be reduced.
- a blower fan 9 is used. Therefore, the heat source chamber rear wall 14 through which the shaft of the motor 13 passes has a shape in which a portion close to the motor 13 is recessed on the heating chamber side (front surface side), and the motor 13 is disposed inside the recess. It is configured. As a result, the dimension in the depth direction of the heat source chamber 8 and the drive chamber 12 is reduced.
- the heat source chamber rear wall 14 is configured as described above, and the motor 13 is disposed in the recess.
- the depth dimension of the portion (center portion) close to the motor 13 is reduced.
- the depth dimension of the portion other than the portion close to the motor 13 (outer peripheral portion) is larger than that of the central portion, and the arrangement space for the heater 11 is secured.
- a space is provided for disposing the first flow path forming portion 51A and the second flow path forming portion 51B at a predetermined position outside the heater 11. .
- an air flow path in the heat source chamber 8 formed by the first flow path forming part 51A and the second flow path forming part 51B is secured.
- the heater 11 is disposed slightly behind the center position of the length of the blades of the blower fan 9 in the depth direction.
- the heating operation in the heating cooker according to the fourth embodiment of the present invention will be described.
- the cooking dish 5 on which the heated object 10 such as roast chicken is placed in the center is attached to the support portion 4 provided on the left and right wall surfaces of the heating chamber 2. It is locked and inserted into the heating chamber 2.
- the cooking pan 5 is pushed in until it comes into contact with the partition wall 15, the door 14 is closed, and the heating chamber 2 becomes a heatable space.
- Oven cooking in the cooking device is started by operating a predetermined button on an operation unit (not shown) electrically connected to the control unit 24.
- cooking conditions such as the heating time and heating temperature of the article to be heated 10 are set.
- a signal indicating the cooking conditions set in the operation unit is input to the control unit 24 constituted by a microcomputer.
- the control unit 24 controls the heater 11 and the motor 13 based on a signal indicating cooking conditions.
- the blower fan 9 starts rotating by the rotation of the motor 13. By the rotation operation of the blower fan 9, an air flow that is blown outward from the outer peripheral portion of the blower fan 9 that is a centrifugal fan is generated.
- the air flow from the blower fan 9 is heated by the heater 11 disposed so as to surround the outer peripheral portion of the blower fan 9 to become a high-temperature air flow (hot air).
- Part of the air flow from the blower fan 9 contacts the inclined portions 51Aa and 51Ba of the first flow path forming portion 51A and the second flow path forming portion 51B provided at the left and right positions of the blower fan 9. Then, it is guided toward the heat source chamber rear wall 14 that is behind the heat source chamber 8.
- the air flow guided to the rear side of the heat source chamber 8 flows more toward the heater 11 disposed slightly rearward than the blower fan 9 and is heated to become a high-temperature air flow (hot air).
- the hot air sent to the outer peripheral side by the blower fan 9 and heated by the heater 11 as described above the hot air sent to the upper side of the blower fan 9 is blown out from the upper outlet 17A in the partition wall 15 to the heating chamber 2,
- the hot air sent out below the blower fan 9 is blown out from the lower outlet 17B to the heating chamber 2 (see FIG. 8). Since these hot airs are spiral in the direction of rotation of the blower fan 9 and have an outward wind direction, the hot air from the upper outlet 17A is directed toward the ceiling surface 21 and the right side surface 19 of the heating chamber 2.
- the hot air from the lower outlet 17B flows in the direction of the bottom surface 20 and the left side surface 18 of the heating chamber 2.
- the hot air sent to the outer peripheral side by the blower fan 9 and heated by the heater 11 is sent to the left and right directions of the blower fan 9.
- the air flow direction is changed in the heat source chamber 8 and the air is blown out from the respective outlets 23A and 23B to the heating chamber 2.
- the temperature of the first flow path forming portion 51A and the second flow path forming portion 51B is equal to or lower than a predetermined temperature (for example, 150 ° C. or lower)
- a predetermined temperature for example, 150 ° C. or lower
- the hot air from the fan 9 comes into contact with the inclined portions 51Aa and 51B, which are the guide surfaces of the first flow path forming portion 51A and the second flow path forming portion 51B, and is directed toward the heat source chamber rear wall 14. It flows along the heat source chamber back wall 14. Then, the air flow direction is changed at the left and right end portions in the heat source chamber 8, and the air flow is again directed toward the first flow path forming portion 51A and the second flow path forming portion 51B.
- the hot air is guided by the back surfaces of the first flow path forming part 51A and the second flow path forming part 51B, and blown out from the respective outlets 23A, 23B to the heating chamber 2. For this reason, hot air from the outlets 23 ⁇ / b> A and 23 ⁇ / b> B is blown out toward the approximate center of the heating chamber 2.
- the blower fan The hot air from 9 comes into contact with the inclined portions 51Aa and 51B of the first flow path forming portion 51A and the second flow path forming portion 51B, and is directed toward the heat source chamber rear wall 14 to be heated. 14, the air direction is changed, and the air is guided again to the first flow path forming portion 51A and the second flow path forming portion 51B, and blown out from the respective outlets 23A and 23B to the heating chamber 2. For this reason, hot air from the outlets 23 ⁇ / b> A and 23 ⁇ / b> B is blown out substantially in parallel to the heating chamber 2 in the forward direction.
- a predetermined temperature for example, exceeds 150 ° C.
- the direction of hot air blown from the left and right outlets 23A and 23B to the heating chamber 2 is the initial stage of heating, and the subsequent heating operation. It is configured to be different in stages.
- the heating chamber can be efficiently heated in the heating operation, and cooking can be performed according to the condition of the object to be heated in the heating chamber.
- the heating cooker according to the fourth embodiment is configured such that hot air blown from the left and right outlets 23A and 23B toward the heating chamber 2 is directed toward the object to be heated 10 in the heating chamber 2 until a predetermined condition is satisfied. Therefore, the heated object 10 can be heated intensively.
- the heating cooker of the fourth embodiment As described above, according to the heating cooker of the fourth embodiment, the hot air blown from the heat source chamber 8 through the left and right outlets 23A and 23B into the heating chamber 2 is concentrated on the object to be heated 10. Can do. As a result, in the heating cooker according to the fourth embodiment, the heating loss due to the hot air heating only the wall surface of the heating chamber 2 can be significantly suppressed, and efficient heating cooking for the object to be heated can be achieved. It becomes possible. Therefore, according to the heating cooker of Embodiment 4, the preheating time and cooking time of a heating chamber can be shortened, and the cooking speed can be improved.
- the temperature of the heater 11 rises as the heating time elapses, and the hot air temperature rises, whereby the first flow path forming unit 51A made of bimetal and the second The flow path forming part 51B is deformed due to the difference in the coefficient of thermal expansion between the bonded metal plates. That is, as shown in FIG. 7B, the inclined portions 51Aa and 51Ba (guide surfaces) of the first flow path forming portion 51A and the second flow path forming portion 51B have a larger inclination angle with respect to the partition wall 15, It rises in a direction perpendicular to the partition wall 15.
- the left and right outlets 23A and 23B are changed by the change in the inclination angle of the first flow path forming portion 51A and the second flow path forming portion 51B.
- the direction of the hot air blown into the heating chamber 2 is changed from the direction toward the center of the heating chamber 2 to the direction of wrapping the food that is the object to be heated 10 so that the hot air does not directly hit the object 10 to be heated.
- the wind direction is changed. Therefore, in the case where the object to be heated 10 is a food that easily causes unevenness in the baked color, the direction of the wind can be changed so that the hot air does not directly hit the food when the hot air reaches a high temperature. For this reason, the heating cooker of Embodiment 4 can prevent unevenness of the baking color in the article 10 to be heated.
- the cooking device of the fourth embodiment is a cooking utensil that saves energy and can efficiently heat the object to be heated.
- the heating cooker according to the fourth embodiment wraps the object to be heated in a wind direction along the side wall surface without directly applying hot air in the case of the object to be heated whose baking color tends to be uneven. It is also possible to heat.
- hot air is blown out toward the center of the heating chamber during preheating of the heating chamber 2, and the object to be heated is wrapped during the cooking operation in which the hot air exceeds a predetermined temperature.
- hot air may be blown out.
- the cooking device configured in this way can also change the direction of hot air blown into the heating chamber to heat the object to be heated in the heating chamber, thereby improving the cooking performance.
- the hot air emitted from the outlets 23A and 23B immediately depends on the conditions such as the temperature of the hot air and the wind speed. May flow in a short circuit and return, and the hot air may not be sufficiently distributed in the heating chamber 2.
- the object to be heated may not be efficiently heated depending on conditions.
- the direction of the hot air can be changed during the heating operation, so that the heating chamber 2 can be efficiently heated and It becomes possible to cook the heated object 10 efficiently.
- FIGS. 5 a heating cooker according to a fifth embodiment of the present invention will be described with reference to FIGS.
- the difference from the heating cooker according to the first embodiment is the shape of the flow path forming unit provided in the heat source chamber, the configuration of the control unit, and the control method. is there. Therefore, in the heating cooker of the fifth embodiment, the flow path forming unit and the control unit will be described in particular, and elements having the same functions and configurations as those of the heating cooker of the first embodiment are denoted by the same reference numerals, For the description, the description of the first embodiment is used.
- FIG. 9 is a plan cross-sectional view showing a heat source chamber and a drive chamber behind the heating chamber in the heating cooker according to the fifth embodiment.
- FIG. 10 is a block diagram illustrating a configuration of the control unit 24 in the heating cooker according to the fifth embodiment.
- FIG. 11 is a pattern diagram showing an operation process of cooking by the heating cooker according to the fifth embodiment.
- each of the first flow path forming part 52 ⁇ / b> A and the second flow path forming part 52 ⁇ / b> B provided at the left and right positions of the partition wall 15 Are formed so as to cover the outlets 23A and 23B.
- the first flow path forming part 52A and the second flow path forming part 52B are fixed to the partition wall 15 and curved surface parts 52Aa, 52Ba each having a concave surface that faces the air outlets 23A, 23B. Fixed portions 52Ab and 52Bb.
- the curved surface portions 52Aa and 52Ba are formed so as to cover the back surfaces of the left and right outlets 23A and 23B, and a predetermined distance is provided between the protruding end portions of the curved surface portions 52Aa and 52Ba and the heat source chamber rear wall 14. .
- the fixing portions 52Ab and 52Bb are attachment portions for fixing to the partition wall 15.
- the fixing portions 52Ab and 52Bb are fixed to the partition wall 15 by caulking or welding.
- the first flow path forming section 52A and the second flow path forming section 52B configured as described above send part of the hot air heated by the heater 11 toward the heat source chamber back wall 14 to thereby generate the heat source chamber 8. It is flowing so as to largely detour inside.
- the first flow path forming part 52A and the second flow path forming part 52B guide again the hot air that has largely bypassed the inside of the heat source chamber 8 to the heating chamber 2 from the left and right outlets 23A, 23B. And it is comprised so that it may blow out in the direction of the door 3 toward the front.
- the direction of hot air blown from the left and right outlets 23A, 23B to the heating chamber 2 is different from the configuration of the heating cooker of the first embodiment described above. It becomes the structure which can be smoothly changed to the direction applied from the front of the heating chamber 2 to the center.
- the control unit 24 is provided with a timer unit 25, an air direction determination unit 26, an operation condition storage unit 27, and a rotation speed control unit 28.
- the timer unit 25 measures an operation time such as cooking.
- the wind direction determination unit 26 is a part that determines and determines the direction of hot air supplied into the heating chamber 2.
- the operation condition storage unit 27 stores predetermined operation conditions during the cooking operation of each driving component such as the motor 13 electrically connected to the control unit 24.
- the rotational speed control unit 28 is a part capable of controlling the air direction and the air speed of the hot air generated by changing the rotational speed of the motor 13 of the blower fan 9 to control the air direction in the heating chamber 2. This part constitutes the wind direction changing means.
- the user does not first put in the cooking pan 5, but preheats to a predetermined temperature (for example, 250 ° C.) by operating a button in an operation unit (not shown). Select the mode to start the preheat operation.
- a predetermined temperature for example, 250 ° C.
- the timer unit 25 starts measuring the elapsed time in the preheating mode.
- the horizontal axis indicates time, and the start time of the preheating mode is Ts.
- the control unit 24 starts energizing the heater 11 and the motor 13.
- the wind direction determination unit 26 determines based on the operation condition of the motor 13 in the preheating mode stored in the operation condition storage unit 27 of the control unit 24, and the rotation number control unit 28 sets the rotation number of the motor 13 to “medium”. Set to "Speed”.
- the blower fan 9 rotates and is energized by the blower fan 9 to send hot air in the centrifugal direction.
- a part of the hot air from the blower fan 9 is guided to the first flow path forming part 52A and the second flow path forming part 52B and blown out from the left and right air outlets 23A, 23B in the direction in front of the heating chamber 2.
- the Since the hot air blown out at this time is not fast, the hot air blown from the air outlets 23 ⁇ / b> A and 23 ⁇ / b> B is directed toward the center of the heating chamber 2.
- the wall surface of the heating chamber 2 is not directly blown by the hot air from the left and right outlets 23A and 23B, and the temperature of the wall surface of the heating chamber 2 does not become higher than the air temperature in the heating chamber 2. .
- the wall surface temperature of the heating chamber 2 does not become higher than the air temperature in the heating chamber 2, and the heat radiation from the wall surface of the heating chamber 2 to the outside decreases.
- the heating efficiency becomes high, and the preheating operation can be completed in a relatively short time with high efficiency.
- the user when the temperature in the heating chamber 2 reaches a predetermined temperature (for example, 250 ° C.), the user is notified of the completion of the preheating operation by a notification sound (indicator light) or the like. It is configured to inform you.
- a notification sound indicator light
- the cooking pan 5 on which the object to be heated 10 such as roast chicken is placed is put into the heating chamber 2 and the door 3 of the heating chamber 2 is closed. Thereafter, the user operates a predetermined button on the operation unit (not shown) to start the cooking operation (oven mode) of the oven cooking in the heating cooker (oven mode start time T1).
- the timer unit 25 starts measuring the elapsed time in the oven mode.
- the wind direction determination unit 26 determines the operation condition of the motor 13 based on the operation condition of the motor 13 in the oven mode stored in the operation condition storage unit 27.
- the rotation speed control unit 28 to which the signal from the wind direction determination unit 26 is input sets the rotation speed of the motor 13 to “medium speed” in the first stage of the oven mode.
- the rotation speed control unit 28 receives the signal from the wind direction determination unit 26. Based on the signal, the rotational speed of the motor 13 is changed to “high speed” (high speed operation start time T2 in the oven mode).
- the hot air from the blower fan 9 is increased, and is guided to the first flow path forming part 52A and the second flow path forming part 52B to blow the left and right blowers. It blows off in the direction ahead of the heating chamber 2 from outlet 23A, 23B.
- the hot air blown out from the air outlets 23A and 23B has a sufficient wind speed, so that it is not pulled by the suction flow of the suction port 16 and flows in a substantially parallel wind direction to the left and right side walls. That is, hot air from the air outlets 23 ⁇ / b> A and 23 ⁇ / b> B is heated so as to wrap the object to be heated 10 without being directly blown against the object 10 to be heated.
- the hot air generated by the blower fan 9 and the heater 11 in the heat source chamber 8 is directly from the two left and right outlets 23A and 23B. Without being blown into the heating chamber 2, the air flow direction is largely changed in the left and right heat source chambers 8 by being guided by the first flow path forming portion 52 ⁇ / b> A and the second flow path forming portion 52 ⁇ / b> B. , 23B to the center of the heating chamber 2 or in a direction parallel to the left and right side walls. For this reason, in the configuration of the heating cooker according to the fifth embodiment, the hot air blown from the left and right outlets 23 ⁇ / b> A and 23 ⁇ / b> B is prevented from going directly to the wall surface of the heating chamber 2.
- the hot air blown from the left and right outlets 23A and 23B directly heats the wall surface of the heating chamber 2 so that the wall surface of the heating chamber 2 is closer to the object 10 to be heated. Is prevented from becoming hot.
- heat loss from the wall surface of the heating chamber is suppressed, and the object to be heated can be efficiently heated.
- the cooking device of Embodiment 5 can improve the speed of the preheating time and the cooking time in the heating chamber 2.
- the direction of hot air blown from the left and right outlets 23A, 23B can be changed by the arrangement of the flow path forming portion and the adjustment of the rotational speed of the motor 13, so It is possible to heat the object 10 so as to wrap the object 10 in a wind direction parallel to the side wall of the heating chamber without directly applying hot air to the object 10.
- the heating cooker according to the fifth embodiment hot air is blown out toward the center of the heating chamber 2 during the preheating operation of the heating chamber 2, and heating is performed while changing the air direction so as to wrap the article to be heated 10 during cooking. It is possible. For this reason, the cooking device of Embodiment 5 can further improve cooking performance.
- the hot air blown out from the air outlet may return to the suction port in a short circuit.
- the hot air may not reach the inside of the heating chamber sufficiently.
- a phenomenon may occur in which the heating efficiency for the object to be heated in the heating chamber is significantly reduced.
- the heating cooker according to the fifth embodiment of the present invention since the air direction is changed so as to wrap the object to be heated 10 during cooking, the heating efficiency for the object to be heated is high, and high cooking performance is achieved. Have.
- the wind direction changing means which can change an air direction is provided by changing the rotation speed of the ventilation fan 9, it heats from right and left blower outlets 23A and 23B.
- the direction of hot air blown into the chamber 2 can be easily changed during cooking.
- the cooking device of the fifth embodiment has a control unit 24 that controls the wind direction by driving the wind direction changing means.
- the control unit 24 includes a timer unit 25 that measures the elapsed time of cooking, a wind direction determination unit 26 that determines and determines the direction of hot air based on an input from the timer unit 25, a motor 13 in each setting condition, and the like.
- An operating condition storage unit 27 that stores operating conditions is provided.
- the controller 24 controls the direction of hot air blown into the heating chamber 2 from the left and right outlets 23A and 23B in the partition wall 15 in accordance with the heating process during the heating operation of the cooking device.
- the heating cooker of Embodiment 5 can control the direction of the hot air blown from the left and right outlets 23A and 23B, it is supplied into the heating chamber 2 according to the heating process.
- the hot air can be changed to a suitable wind direction.
- this invention is limited to such a structure.
- a sensor that detects the temperature and the color of the object to be heated 10 is provided, and the wind direction of the hot air from the outlets 23A and 23B is changed in the wind direction determination unit 26 based on the outputs of these sensors. You may do it.
- the heating cooker according to the sixth embodiment of the present invention is different from the heating cooker according to the fifth embodiment described above in the control method of the control unit. Therefore, in the heating cooker of Embodiment 6, the control method of a control part is demonstrated especially.
- elements having the same functions and configurations as those of the heating cookers of the first to fifth embodiments described above are denoted by the same reference numerals, and the description thereof is the same as that of the previous embodiments. Use the explanation.
- FIG. 12 is a pattern diagram showing an operation process of heating cooking in the heating cooker according to the sixth embodiment.
- the user first selects the preheating mode by operating the buttons on the operation unit without starting the cooking pan 5, and starts the preheating operation.
- the timer unit 25 starts measuring the elapsed time in the preheating mode.
- the horizontal axis indicates time, and the start time of the preheating mode is Ts.
- the control unit 24 starts energizing the heater 11 and the motor 13.
- the wind direction determination unit 26 determines based on the operation condition of the motor 13 in the preheating mode stored in the operation condition storage unit 27 of the control unit 24, and the rotation number control unit 28 sets the rotation number of the motor 13 to “medium”. Set to "Speed”.
- the blower fan 9 rotates and is energized by the blower fan 9 and sent out in the centrifugal direction.
- a part of the hot air from the blower fan 9 is guided to the first flow path forming part 52A and the second flow path forming part 52B and blown out from the left and right air outlets 23A, 23B in the direction in front of the heating chamber 2.
- the Since the hot air blown out at this time is not fast, the hot air is pulled by the suction flow of the suction port 16 at the center, and the wind direction is directed toward the center in the heating chamber 2 from the blowout ports 23A and 23B.
- the hot air from outlet 23A, 23B goes to the center direction in the heating chamber 2, it is highly efficient and preheating operation is completed in a comparatively short time.
- the user when the temperature in the heating chamber 2 reaches a predetermined temperature (for example, 180 ° C.), the user is notified of the completion of the preheating operation by a notification sound (indicator light) or the like.
- a notification sound indicator light
- the cooking pan 5 on which the object to be heated 10 such as a cookie is placed is put into the heating chamber 2 and the door 3 of the heating chamber 2 is closed. Thereafter, the user operates a predetermined button on the operation unit (not shown) to start the cooking operation (oven mode) of the oven cooking in the heating cooker (oven mode start time T1).
- the timer unit 25 starts measuring the elapsed time in the oven mode.
- the wind direction determination unit 26 determines the operation condition of the motor 13 based on the operation condition of the motor 13 in the oven mode stored in the operation condition storage unit 27.
- the rotation speed control unit 28 to which the signal from the wind direction determination unit 26 is input sets the rotation speed of the motor 13 to “high speed” in the first stage of the oven mode. (Oven mode start time T1).
- the oven mode when the motor 13 is set to high speed rotation, the amount of hot air from the blower fan 9 is increased and guided to the first flow path forming part 52A and the second flow path forming part 52B, and left and right Hot air increased in the forward direction of the heating chamber 2 is blown out from the outlets 23A and 23B.
- the hot air blown out from the air outlets 23A and 23B has a sufficient wind speed, and therefore is not pulled by the suction flow of the suction port 16 and flows in a substantially parallel wind direction to the left and right side walls. That is, hot air from the air outlets 23 ⁇ / b> A and 23 ⁇ / b> B is heated so as to wrap the object to be heated 10 without being directly blown against the object 10 to be heated.
- the direction of hot air blown from the outlets 23A and 23B can be changed, so that the baked color tends to be uneven.
- the object to be heated 10 it is possible to heat the object to be heated 10 so as to wrap the object to be heated by blowing it so as to flow parallel to the side wall of the heating chamber without directly applying hot air.
- the heating cooker of Embodiment 6 it is comprised so that a hot air may be blown in the center direction in the heating chamber 2 during the preheating operation
- the heating cooker according to the sixth embodiment can simultaneously increase the speed of the preheating time and improve the cooking performance.
- the direction of hot air blown out from the left and right outlets 23A, 23B in the partition wall 15 into the heating chamber 2 can be changed according to each heating step during the heating operation. Therefore, the hot air blown into the heating chamber according to the heating process can be changed to a suitable wind direction and supplied.
- FIGS. 13 and 14 a heating cooker according to a seventh embodiment of the present invention will be described with reference to FIGS. 13 and 14 attached.
- the difference from the heating cooker according to the first embodiment is the configuration of the flow path forming unit provided in the heat source chamber. Therefore, in the heating cooker according to the seventh embodiment, the flow path forming unit will be described in particular, and the elements having the same functions and configurations as those of the heating cooker according to the first embodiment will be denoted by the same reference numerals, The description of the first embodiment is used.
- FIG. 13 is a plan cross-sectional view showing a heat source chamber and a drive chamber behind the heating chamber in the cooking device of the seventh embodiment.
- the difference between the heating cooker of the seventh embodiment and the heating cooker of the first embodiment is that the first flow path forming unit 61 and the second flow path provided in the partition wall 15. This is the configuration of the forming unit 62.
- FIG. 14 is a perspective view of the partition wall 15 serving as the back wall of the heating chamber 2 in the heating cooker according to the seventh embodiment when viewed from the rear.
- a first flow path forming portion 61 is provided between the central suction port 16 and the left outlet 23A on the back surface on the heat source chamber 8 side. Further, on the back surface of the partition wall 15, a second flow path forming portion 62 is provided between the central suction port 16 and the right outlet 23B.
- the first flow path forming portion 61 and the second flow path forming portion 62 are formed such that one end is fixed to the back surface of the partition wall 15 and the other end protrudes into the internal space of the heat source chamber 8.
- the protruding end portions of the first flow path forming portion 61 and the second flow path forming portion 62 are arranged with a predetermined gap from the heat source chamber back wall 14.
- each of the first flow path forming portion 61 and the second flow path forming portion 62 is disposed between the heater 11 provided so as to surround the blower fan 9 and the respective outlets 23A and 23B. ing.
- the blower fan 9, the heater 11, the first flow path forming part 61, and the second flow path forming part 62 are inside the heat source chamber 8 constituted by the partition wall 15 and the inner case 22 having the heat source chamber back wall 14. It is provided in the space.
- the first flow path forming part 61 is configured by a vertical flow path forming part 61A and a horizontal flow path forming part 61B
- the second flow path forming part 62 is It is composed of a flow path forming part 62A and a horizontal flow path forming part 62B.
- Each of the longitudinal flow path forming portions 61A and 62A in the first flow path forming portion 61 and the second flow path forming portion 62 has an angle of about 45 degrees with respect to the plane formed by the partition wall 15 and faces outward.
- Each fixing part 61Ab, 62Ab is arranged on the center side from each of the left and right outlets 23A, 23B.
- Inclined portions 61Aa and 62Aa of the respective longitudinal flow path forming portions 61A and 62A are extended so as to cover the center sides of the left and right outlets 23A and 23B.
- the fixing portions 61Ab and 62Ab of the longitudinal flow path forming portions 61A and 62A are attachment portions for fixing to the partition wall 15.
- the fixing portions 61Ab and 62Ab are securely fixed to the partition wall 15 by caulking or welding.
- each of the lateral flow path forming portions 61B and 62B in the first flow path forming portion 61 and the second flow path forming portion 62 includes blocking portions 61Ba and 62Ba that are perpendicular to the plane formed by the partition wall 15, and the partition walls. 15 has fixing portions 61Bb and 62Bb fixed to the motor 15, respectively.
- each of the first flow path forming portion 61 and the second flow path forming portion 62 is integrally formed by bending a metal plate.
- the material of the first flow path forming portion 61 and the second flow path forming portion 62 is not limited to metal, and any material having heat resistance that can maintain the shape can be used.
- the vertical flow path forming part 61A and the horizontal flow path forming part 61B are arranged in an L shape and are integrally formed.
- the first flow path forming part 61 formed in this way is arranged on the center side (suction port side) and part of the upper side around the left outlet 23A.
- the longitudinal flow path forming part 61A has a surface parallel to the vertical direction (vertical direction), and the lateral flow path forming part 61B has a surface parallel to the horizontal direction.
- the longitudinal flow path forming part 61A and the lateral flow path forming part 61B in Embodiment 7 are configured to have a surface parallel to the vertical direction or the horizontal direction, the present invention is not limited to such a configuration. Instead, the vertical flow path forming section and the horizontal flow path forming section may be arranged at positions having appropriate angles according to the specifications of the heating device.
- the longitudinal flow path forming portion 61A is disposed between the blower fan 9 and the left outlet 23A, and is disposed at a position where the hot air heated by the heater 11 is sent leftward from the blower fan 9 and heated. Yes.
- the horizontal flow path forming part 61B is arranged downstream of the vertical flow path forming part 61A in the rotation direction of the blower fan 9 and close to the downstream side of the left outlet. A part of the hot air from the blower fan 9 is blocked by the lateral flow path forming portion 61B and is blown out from the left outlet 23A.
- the second flow path forming part 62 is configured in the same manner as the first flow path forming part 61, and the vertical flow path forming part 62A and the horizontal flow path forming part 62B are arranged in an L shape so as to be integrated. Is formed.
- the right outlet 23B is arranged in an L shape in part on the center side and the lower side.
- the longitudinal flow path forming part 62A has a surface parallel to the vertical direction (vertical direction), and the lateral flow path forming part 62B has a surface parallel to the horizontal direction.
- the longitudinal flow path forming portion 62A is disposed between the blower fan 9 and the right blower outlet 23B, and is disposed at a position where hot air heated by the heater 11 is sent rightward from the blower fan 9 and heated. Yes.
- the transverse flow path forming part 62B is arranged downstream of the vertical flow path forming part 62A in the rotation direction of the blower fan 9, and blocks a part of the hot air from the blower fan 9 so as to prevent the right outlet 23B. It is provided to blow out from.
- the inclined portions 61 ⁇ / b> Aa and 62 ⁇ / b> Aa (guide surfaces) in the first flow path forming portion 61 and the second flow path forming portion 62 are shorter than the vertical length of the partition wall 15,
- the outlets 23A and 23B are formed longer than the length in the vertical direction, and are provided so as to cover a part of the left and right outlets 23A and 23B.
- the main body 1 including the heat source chamber 8 having the blower fan 9 and the heater 11 and the drive chamber 12 having the motor 13 is secured while securing the internal volume of the heating chamber 2.
- the depth dimension of the combined portion of the heat source chamber 8 and the drive chamber 12 is reduced.
- the blower fan 9 which is a centrifugal fan that does not deteriorate the blowing performance even if the depth dimension is small is used, and the depth dimension of the central portion that is the suction portion can be reduced.
- a blower fan 9 is used.
- the heat source chamber rear wall 14 through which the shaft of the motor 13 penetrates has a shape in which a portion close to the motor 13 is recessed on the heating chamber side (front surface side), and the motor 13 is disposed inside the recess. Has been. As a result, the size in the depth direction of the combined portion of the heat source chamber 8 and the drive chamber 12 is reduced.
- the heat source chamber back wall 14 is configured as described above, and the motor 13 is disposed in the recess.
- the depth dimension of the adjacent part (center part) is reduced.
- the depth dimension other than the portion close to the motor 13 (outer peripheral portion) is larger than that of the central portion, and the heater 11, the first flow path forming portion 61, and the second flow path forming portion.
- An arrangement space is secured so that 62 is disposed at a predetermined position, and a passage for airflow in the heat source chamber 8 is secured.
- the air flow path formed by the first flow path forming part 61 and the second flow path forming part 62 is reliably ensured.
- the heater 11 is disposed slightly behind the center position of the length of the blade of the blower fan 9 in the depth direction.
- the heating operation in the heating cooker according to the seventh embodiment of the present invention will be described.
- the cooking dish 5 on which the object to be heated 10 such as a cookie is placed is related to the support 4 provided on the left and right wall surfaces of the heating chamber 2. Stop and insert into the heating chamber 2.
- the cooking pan 5 is pushed in until it comes into contact with the partition wall 15 which is the back wall of the heating chamber 2, the door 14 is closed, and the heating chamber 2 becomes a heatable space.
- Oven cooking in the cooking device is started by operating a predetermined button on an operation unit (not shown) provided on the front surface of the main body 1.
- cooking conditions such as the heating time and heating temperature of the article to be heated 10 are set.
- a signal indicating the cooking conditions set in the operation unit is input to the control unit 24 constituted by a microcomputer.
- the control unit 24 drives and controls the heater 11 and the motor 13 based on a signal indicating cooking conditions.
- the blower fan 9 starts rotating as the motor 13 rotates.
- a spiral outward air flow is blown out from the outer peripheral portion of the blower fan 9, which is a centrifugal fan.
- the air flow blown out from the blower fan 9 is heated by the heater 11 disposed so as to surround the outer peripheral portion of the blower fan 9 to become a high-temperature air flow.
- part of the air flow from the blower fan 9 contacts the inclined portions 61Aa and 62Aa of the first flow path forming portion 61 and the second flow path forming portion 62 provided at the left and right positions of the blower fan 9. Then, it is guided toward the heat source chamber rear wall 14 that is behind the heat source chamber 8.
- the air flow guided to the rear side of the heat source chamber 8 flows more toward the heater 11 disposed slightly rearward than the blower fan 9 and is heated to become a high-temperature air flow (hot air).
- the blocking portions 61Ba and 62Ba of the first flow path forming portion 61 and the second flow path forming portion 62 are spirally outward from the outer peripheral portion of the blower fan 9. A part of the air flow is blocked and collected and guided to flow to the left and right outlets 23A and 23B. For this reason, in the heating cooker of Embodiment 7, it is comprised so that many airflows may be blown off from right and left blower outlets 23A and 23B.
- the hot air sent to the outer peripheral side by the blower fan 9 and heated by the heater 11 as described above the hot air sent to the upper side of the blower fan 9 is blown out from the upper outlet 17A in the partition wall 15 to the heating chamber 2,
- the hot air sent out below the blower fan 9 is blown out into the heating chamber 2 from the lower blowout port 17B. Since these hot airs are spiral in the rotational direction of the blower fan 9 and have an outward wind direction, the hot air from the upper outlet 17A flows in the direction of the ceiling surface 21 and the right side surface 19 of the heating chamber.
- the hot air from the lower outlet 17B flows in the direction of the bottom surface 20 and the left side surface 18 of the heating chamber 2.
- the hot air sent out in the left-right direction of the blower fan 9 is the first flow path forming portion 61 and the second flow passage.
- the heat source chamber back wall 14 In contact with the inclined portions 61Aa and 62Aa (guide surfaces) of the flow path forming portion 62, the heat source chamber back wall 14 is guided.
- the hot air guided to the heat source chamber back wall 14 flows along the heat source chamber back wall 14, changes the wind direction at the left and right ends of the heat source chamber 8, and again forms the first flow path forming portion 61 and the second flow path. It goes in the direction of the part 62.
- the hot air is guided by the back surfaces (back surfaces of the guide surfaces) of the inclined portions 61Aa and 62Aa of the first flow path forming portion 61 and the second flow path forming portion 62 and heated from the respective outlets 23A and 23B. Blow out into chamber 2.
- hot air blown from the left and right outlets 23A and 23B to the heating chamber 2 flows in the direction from the left and right end portions toward the center inside the heat source chamber 8. For this reason, it blows off toward the approximate center of the heating chamber 2. That is, the hot air blown out from the left and right outlets 23A and 23B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so that the heated object 10 can be heated intensively.
- the to-be-heated material 10 concentrates the hot air blown in the heating chamber 2 from the heat source chamber 8 through the left and right outlets 23A and 23B. It can flow to be heated.
- the heating loss due to the hot air heating only the wall surface of the heating chamber 2 can be significantly suppressed, the heating chamber 2 can be efficiently heated, Efficient cooking with respect to the heated object 10 becomes possible. Therefore, according to the heating cooker of Embodiment 7, the preheating time and cooking time of a heating chamber can be shortened, and the cooking speed can be improved.
- FIG. 15 is a plan cross-sectional view showing a heat source chamber and a driving chamber behind the heating chamber in the heating cooker according to the eighth embodiment.
- the difference between the heating cooker according to the eighth embodiment and the heating cooker according to the seventh embodiment is that the first flow path is provided in the partition wall 15 that is the back wall of the heating chamber 2. This is the shape of the part 63 and the second flow path forming part 64.
- each inclined portion (guide surface) in the first flow path forming portion 63 and the second flow path forming portion 64 is formed of a curved surface.
- the first flow path forming portion 63 includes a vertical flow path forming portion 63A and a horizontal flow path forming portion 63B, similarly to the first flow path forming portion 61 of the seventh embodiment shown in FIG. It is constructed integrally.
- the longitudinal flow path forming portion 63A has an inclined portion having a concave surface facing the left outlet 23A and a fixing portion for fixing to the partition wall 15 which is the back wall of the heating chamber 2.
- the transverse flow path forming portion 63B has a blocking portion having a horizontal surface and a fixing portion for fixing to the partition wall 15 which is the back wall of the heating chamber 2.
- the second flow path forming portion 64 is configured integrally with a vertical flow path forming portion 64A and a horizontal flow path forming portion 64B, as with the first flow path forming portion 63.
- the longitudinal flow path forming portion 64 ⁇ / b> A has an inclined portion having a concave surface facing the right outlet 23 ⁇ / b> B, and a fixing portion for fixing to the partition wall 15.
- the transverse flow path forming portion 64B has a blocking portion having a horizontal surface and a fixing portion for fixing to the partition wall 15.
- the first flow path forming portion 63 and the second flow path forming portion 64 are described as being fixed to the partition wall 15 (fixed by caulking or welding). 1st flow path formation part 63 and 2nd flow path formation part 64 are fixed to the other member which forms the heat source chamber 8, and it is arrange
- the hot air sent in the left-right direction of the blower fan 9 is a smooth curved surface (in the inclined portion of the first flow path forming portion 63 ( (Convex surface) and the guide surface which is a smooth curved surface (convex surface) in the inclined portion of the second flow path forming portion 64, and is guided toward the heat source chamber rear wall 14.
- the hot air guided to the heat source chamber back wall 14 flows along the heat source chamber back wall 14, greatly detours by changing the wind direction at the left and right ends of the heat source chamber 8, and again the first flow path forming unit 63 and the second flow channel. It flows in the direction of the flow path forming part 64.
- the hot air is guided by the back surface of the guide surface which is the smooth curved surface (concave surface) of the inclined portion of the first flow path forming portion 63 and the smooth curved surface (concave surface) of the inclined portion of the second flow path forming portion 64. Then, it is blown out to the heating chamber 2 from the respective outlets 23A, 23B.
- hot air blown from the left and right outlets 23A and 23B to the heating chamber 2 flows in the direction from the left and right end portions toward the center inside the heat source chamber 8. For this reason, the hot air is blown out from the left and right air outlets 23 ⁇ / b> A and 23 ⁇ / b> B so as to go to the approximate center of the heating chamber 2. That is, hot air blown out from the left and right outlets 23 ⁇ / b> A and 23 ⁇ / b> B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so as to intensively heat the heated object 10.
- the inclined portions (guide surfaces) in the first flow path forming portion 63 and the second flow path forming portion 64 are formed with smooth curved surfaces.
- the direction of the hot air blown from the air outlets 23A, 23B to the heating chamber 2 can be smoothly directed in the forward direction of the heating chamber 2 as compared with the heating cooker of the seventh embodiment.
- the hot air blown from the heat source chamber 8 to the heating chamber 2 through the left and right outlets 23A and 23B is applied to the object to be heated 10 from the front to the center.
- the direction can be smoothly changed to flow.
- the heating loss caused by the hot air heating only the wall surface of the heating chamber 2 can be greatly suppressed, the heating chamber 2 can be heated efficiently, and the cooking object 10 can be efficiently cooked. Is possible. Therefore, according to the cooking device of Embodiment 8, the preheating time and cooking time of the heating chamber 2 can be shortened, and the cooking speed can be improved.
- Embodiment 9 the heating cooker of Embodiment 9 which concerns on this invention is demonstrated with reference to attached FIG. 16 and FIG.
- the difference from the heating cooker according to the first embodiment is the configuration of the flow path forming unit provided in the heat source chamber. Therefore, in the heating cooker according to the ninth embodiment, the flow path forming unit will be particularly described, and the elements having the same functions and configurations as those of the heating cooker according to the first embodiment are denoted by the same reference numerals, The description of the first embodiment is used.
- FIG. 16 is a plan cross-sectional view showing a heat source chamber and a driving chamber behind the heating chamber in the cooking device of the ninth embodiment.
- the difference between the heating cooker according to the ninth embodiment and the heating cooker according to the first embodiment is that the first flow path is provided in the partition wall 15 that is the back wall of the heating chamber 2.
- This is the configuration of the part 65 and the second flow path forming part 66.
- FIG. 17 is the perspective view which looked at the partition 15 which is the back wall of the heating chamber 2 in the heating cooker of Embodiment 9 from back.
- a first flow path forming portion 65 is provided on the back surface on the heat source chamber 8 side between the central suction port 16 and the left outlet 23 ⁇ / b> A. Further, on the back surface of the partition wall 15, a second flow path forming portion 66 is provided between the central suction port 16 and the right outlet 23 ⁇ / b> B.
- the first flow path forming portion 65 and the second flow path forming portion 66 are formed such that one end is fixed to the back surface of the partition wall 15 and the other end protrudes into the internal space of the heat source chamber 8.
- the protruding end portions of the first flow path forming portion 65 and the second flow path forming portion 66 are arranged with a predetermined gap from the heat source chamber back wall 14. Moreover, the 1st flow path formation part 65 and the 2nd flow path formation part 66 are provided between the heater 11 arrange
- the blower fan 9, the heater 11, the first flow path forming portion 65, and the second flow path forming portion 66 are inside the heat source chamber 8 constituted by the partition wall 15 and the inner case 22 having the heat source chamber back wall 14. Is provided.
- the first flow path forming part 65 is constituted by a vertical flow path forming part 65A, a horizontal flow path forming part 65B, and a ceiling flow path forming part 65C.
- the second flow path forming part 66 is constituted by a vertical flow path forming part 66A, a horizontal flow path forming part 66B, and a ceiling flow path forming part 66C.
- Each of the longitudinal flow path forming portions 65A and 66A in the first flow path forming portion 65 and the second flow path forming portion 66 has an angle of about 45 degrees with respect to the plane formed by the partition wall 15 and faces outward.
- Inclined portions 65Aa and 66Aa that are opened and inclined, and fixing portions 65Ab and 66Ab that are fixed to the partition wall 15, respectively.
- the inclined portions 65Aa and 66Aa of the longitudinal flow path forming portions 65A and 66A are extended so as to cover a part of the rear surfaces of the left and right outlets 23A and 23B, and the protruding end portions of the inclined portions 65Aa and 66Aa and the heat source There is a predetermined gap between the rear wall 14 and the room.
- the fixing portions 65Ab and 66Ab of the vertical flow path forming portions 65A and 66A are attachment portions for fixing to the partition wall 15, and the fixing portions 65Ab and 66Ab are securely fixed to the partition wall 15 by caulking or welding.
- each of the lateral flow path forming portions 65B and 66B in the first flow path forming portion 65 and the second flow path forming portion 66 includes blocking portions 65Ba and 66Ba that are perpendicular to the plane formed by the partition wall 15, and the partition walls. 15 has fixing portions 65Bb and 66Bb fixed to the motor 15, respectively.
- each of the first flow path forming portion 65 and the second flow path forming portion 66 is integrally formed by bending a metal plate.
- the material of the first flow path forming portion 65 and the second flow path forming portion 66 is not limited to metal, and any material having heat resistance that can maintain the shape can be used.
- the vertical flow path forming section 65A and the horizontal flow path forming section 65B are arranged in an L shape, and are located on the center side (suction port side) and the upper side around the left outlet 23A. It is arranged in the part. Moreover, the end part which protrudes in the heat source room back wall 14 in 65 A of vertical flow path formation parts and the horizontal flow path formation part 65B is covered with the ceiling flow path formation part 65C used as a ceiling surface, and is formed integrally.
- the first flow path forming portion 61 configured in this way surrounds the left outlet 23A in an L shape.
- the vertical flow path forming part 65A has a surface parallel to the vertical direction (vertical direction), and the horizontal flow path forming part 65B has a surface parallel to the horizontal direction.
- the ceiling flow path forming portion 65 ⁇ / b> C is configured by a surface substantially parallel to the partition wall 15.
- the vertical flow path forming portion 65A and the horizontal flow path forming portion 65B in the ninth embodiment are configured to have surfaces that are parallel to the vertical direction or the horizontal direction, but the present invention is not limited to such a configuration. Instead, the vertical flow path forming section and the horizontal flow path forming section may be arranged at positions having appropriate angles according to the specifications of the heating device.
- the longitudinal flow path forming portion 65A is disposed between the blower fan 9 and the left outlet 23A, and is disposed at a position where the hot air heated by the heater 11 is sent out from the blower fan 9 in the left direction. Yes.
- the horizontal flow path forming portion 65B is arranged close to the downstream side of the vertical flow path forming portion 65A in the rotation direction of the blower fan 9, and dams and collects part of the hot air from the blower fan 9, It is provided to blow out from the left outlet 23A.
- the second flow path forming section 66 is configured in the same manner as the first flow path forming section 65, and the vertical flow path forming section 66A and the horizontal flow path forming section 66B are arranged in an L shape. Moreover, the end part which protrudes in the heat-source-chamber back wall 14 in 66 A of vertical flow path formation parts and the horizontal flow path formation part 66B is covered with the ceiling flow path formation part 66C used as a ceiling surface, and is formed integrally.
- the second flow path forming portion 66 configured in this way is arranged outside the right outlet 23 ⁇ / b> B in an L shape in a part on the center side and the lower side.
- the vertical flow path forming part 66A has a surface parallel to the vertical direction (vertical direction), and the horizontal flow path forming part 66B has a surface parallel to the horizontal direction.
- the ceiling flow path forming portion 66 ⁇ / b> C is configured by a surface substantially parallel to the partition wall 15.
- the longitudinal flow path forming portion 66A is disposed between the blower fan 9 and the right outlet 23B, and is disposed at a position where the hot air heated by the heater 11 is sent out from the blower fan 9 in the right direction. Yes.
- the transverse flow path forming part 66B is arranged close to the downstream side of the vertical flow path forming part 66A in the rotation direction of the blower fan 9, and dams and collects part of the hot air from the blower fan 9, It is provided to blow out from the right outlet 23B.
- the inclined portions 65Aa and 66Aa (guide surfaces) in the first flow path forming portion 65 and the second flow path forming portion 66 are shorter than the vertical length of the partition wall 15, and
- the outlets 23A and 23B are formed longer than the length in the vertical direction, and are provided so as to cover a part of the left and right outlets 23A and 23B.
- the main body 1 including the heat source chamber 8 having the blower fan 9 and the heater 11 and the drive chamber 12 having the motor 13 is secured while securing the internal volume of the heating chamber 2.
- the depth dimension of the combined portion of the heat source chamber 8 and the drive chamber 12 is reduced.
- the blower fan 9 which is a centrifugal fan that does not deteriorate the blowing performance even if the depth dimension is small is used, and the depth dimension of the central portion that is the suction portion can be reduced.
- a blower fan 9 is used.
- the heat source chamber rear wall 14 through which the shaft of the motor 13 penetrates has a shape in which a portion close to the motor 13 is recessed on the heating chamber side (front surface side), and the motor 13 is disposed inside the recess. Has been. As a result, the dimension in the depth direction of the heat source chamber 8 and the drive chamber 12 is reduced.
- the heat source chamber back wall 14 is configured as described above, and the motor 13 is disposed in the recess.
- the depth dimension of the adjacent part (center part) is reduced.
- the depth dimension of the portion (outer peripheral portion) other than the portion close to the motor 13 is larger than that of the central portion, and the heater 11, the first flow path forming portion 65, and the second flow path.
- An arrangement space is secured so that the formation portion 66 is disposed at a predetermined position, and a passage for airflow in the heat source chamber 8 is secured.
- the air flow path formed by the first flow path forming part 65 and the second flow path forming part 66 is ensured.
- the heater 11 is disposed slightly behind the center position of the length of the blade of the blower fan 9 in the depth direction.
- the heating operation in the heating cooker according to the ninth embodiment of the present invention will be described.
- the cooking pan 5 on which the article to be heated 10 such as a cookie is placed is related to the support portion 4 provided on the left and right wall surfaces of the heating chamber 2. Stop and insert into the heating chamber 2.
- the cooking pan 5 is pushed in until it comes into contact with the partition wall 15, the door 14 is closed, and the heating chamber 2 becomes a heatable space.
- Oven cooking in the cooking device is started by operating a predetermined button on an operation unit (not shown) provided on the front surface of the main body 1.
- cooking conditions such as the heating time and heating temperature of the article to be heated 10 are set.
- a signal indicating the cooking conditions set in the operation unit is input to the control unit 24 constituted by a microcomputer.
- the control unit 24 controls the heater 11 and the motor 13 based on a signal indicating cooking conditions.
- the blower fan 9 starts rotating as the motor 13 rotates.
- a spiral outward air flow is blown out from the outer peripheral portion of the blower fan 9 which is a centrifugal fan.
- the air flow blown out from the blower fan 9 is heated by the heater 11 disposed so as to surround the outer peripheral portion of the blower fan 9 to become a high-temperature air flow.
- a part of the air flow from the blower fan 9 contacts the inclined portions 65Aa and 66Aa of the first flow path forming portion 65 and the second flow path forming portion 66 provided at the left and right positions of the blower fan 9. Then, it is guided toward the heat source chamber rear wall 14 that is behind the heat source chamber 8.
- the air flow guided to the rear of the heat source chamber 8 flows more toward the heater 11 disposed slightly rearward than the blower fan 9 and is heated to become a high-temperature air flow.
- the blocking portions 65Ba and 66Ba of the first flow path forming portion 65 and the second flow path forming portion 66 are spirally outward from the outer peripheral portion of the blower fan 9. A part of the air flow is collected by damming and guided to flow to the left and right outlets 23A and 23B. For this reason, the cooking device of the ninth embodiment is configured such that a large airflow is blown out from the left and right outlets 23A and 23B.
- the blower fan 9 A part of the airflow that is spiral and outward is guided from the outer peripheral portion of the left and right outlets 23A and 23B without fail.
- the hot air sent to the outer peripheral side by the blower fan 9 and heated by the heater 11 as described above the hot air sent to the upper side of the blower fan 9 is blown out from the upper outlet 17A in the partition wall 15 to the heating chamber 2. . Moreover, the hot air sent out below the blower fan 9 is blown out into the heating chamber 2 from the lower blowout port 17B. Since these hot airs are spiral in the rotational direction of the blower fan 9 and have an outward wind direction, the hot air from the upper outlet 17A flows in the direction of the ceiling surface 21 and the right side surface 19 of the heating chamber. The hot air from the lower outlet 17B flows in the direction of the bottom surface 20 and the left side surface 18 of the heating chamber 2.
- the hot air sent out in the left-right direction of the blower fan 9 is the first flow path forming unit 65 and the second flow passage.
- the heat source chamber back wall 14 is guided.
- the hot air guided to the heat source chamber rear wall 14 flows along the heat source chamber rear wall 14, changes the air direction at the left and right ends of the heat source chamber 8, greatly detours, and again the first flow path forming unit 65 and the first flow channel. Flows in the direction of the second flow path forming portion 66.
- the hot air is guided to the back surfaces (back surfaces of the guide surfaces) of the inclined portions 65Aa and 66Aa of the first flow path forming portion 65 and the second flow path forming portion 66 and heated from the respective outlets 23A and 23B. Blow out into chamber 2.
- hot air blown from the left and right outlets 23A and 23B to the heating chamber 2 flows in the direction from the left and right end portions toward the center inside the heat source chamber 8. For this reason, it blows off toward the approximate center of the heating chamber 2. That is, hot air blown out from the left and right outlets 23 ⁇ / b> A and 23 ⁇ / b> B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so as to intensively heat the heated object 10.
- the heated object 10 concentrates hot air blown from the heat source chamber 8 through the left and right outlets 23A and 23B into the heating chamber 2. It can flow to be heated.
- the heating loss due to the hot air heating only the wall surface of the heating chamber 2 can be greatly suppressed, the heating chamber 2 is heated efficiently, Efficient cooking with respect to the heated object 10 becomes possible. Therefore, according to the heating cooker of Embodiment 9, the preheating time and cooking time of a heating chamber can be shortened, and the cooking speed can be improved.
- the heating cooker according to the tenth embodiment of the present invention is different from the above-described cooking cookers according to the first and ninth embodiments in the configuration of the flow path forming unit provided in the heat source chamber. Therefore, in the heating cooker of the tenth embodiment, the flow path forming unit will be particularly described, and elements having the same functions and configurations as the heating cookers of the first and ninth embodiments are denoted by the same reference numerals. The description is based on the description of Embodiment 1 and Embodiment 9 described above.
- FIG. 18 is a plan cross-sectional view showing a heat source chamber and a driving chamber behind the heating chamber in the heating cooker according to the tenth embodiment.
- the difference between the heating cooker according to the tenth embodiment and the heating cooker according to the ninth embodiment is that the first flow path is provided in the partition wall 15 that is the back wall of the heating chamber 2. This is the shape of the portion 67 and the second flow path forming portion 68.
- each inclined portion (guide surface) in the first flow path forming portion 67 and the second flow path forming portion 68 is formed of a curved surface.
- the first flow path forming portion 67 is similar to the first flow path forming portion 65 of the ninth embodiment shown in FIG. 16 described above, and the vertical flow path forming portion 67A, the horizontal flow path forming portion 67B, and the ceiling flow It is comprised by the path
- the longitudinal flow path forming portion 67A has an inclined portion having a concave surface facing the left outlet 23A, and a fixing portion for fixing to the partition wall 15 which is the back wall of the heating chamber 2.
- the transverse flow path forming portion 67B has a blocking portion having a horizontal surface and a fixing portion for fixing to the partition wall 15.
- the second flow path forming portion 68 is configured by a vertical flow path forming portion 68A, a horizontal flow path forming portion 68B, and a ceiling flow path forming portion 68C, similarly to the first flow path forming portion 67.
- the vertical flow path forming portion 68 ⁇ / b> A includes an inclined portion having a concave surface facing the right outlet 23 ⁇ / b> B and a fixing portion for fixing to the partition wall 15.
- the transverse flow path forming portion 68B has a blocking portion having a horizontal surface and a fixing portion for fixing to the partition wall 15.
- the first flow path forming portion 67 and the second flow path forming portion 68 are described as being fixed to the partition wall 15 (fixed by caulking or welding).
- the first flow path forming portion 67 and the second flow path forming portion 68 may be fixed to other members forming the heat source chamber 8 and provided at predetermined positions with respect to the left and right outlets 23A and 23B.
- the hot air sent in the left-right direction of the blower fan 9 is a smooth curved surface (in the inclined portion of the first flow path forming portion 67 ( (Convex surface) and a guide surface which is a smooth curved surface (convex surface) in the inclined portion of the second flow path forming portion 68, and is guided toward the heat source chamber rear wall 14.
- the hot air guided to the heat source chamber rear wall 14 flows along the heat source chamber rear wall 14, and greatly detours by changing the wind direction at the left and right ends of the heat source chamber 8. It flows in the direction of the flow path forming part 68.
- the hot air is guided by the back surface of the guide surface which is the smooth curved surface (concave surface) of the inclined portion of the first flow path forming portion 67 and the smooth curved surface (concave surface) of the inclined portion of the second flow path forming portion 68. Then, it is blown out to the heating chamber 2 from the respective outlets 23A, 23B.
- hot air blown from the left and right outlets 23A and 23B to the heating chamber 2 flows in the direction from the left and right end portions toward the center inside the heat source chamber 8. For this reason, the hot air is blown out from the left and right air outlets 23 ⁇ / b> A and 23 ⁇ / b> B so as to go to the approximate center of the heating chamber 2. That is, hot air blown out from the left and right outlets 23 ⁇ / b> A and 23 ⁇ / b> B to the heating chamber 2 flows toward the heated object 10 in the heating chamber 2 and flows so as to intensively heat the heated object 10.
- the inclined portions (guide surfaces) in the first flow path forming portion 67 and the second flow path forming portion 68 are formed with smooth curved surfaces.
- the direction of hot air blown out from the air outlets 23A and 23B to the heating chamber 2 can be smoothly directed in the forward direction of the heating chamber 2 as compared with the heating cooker of the ninth embodiment.
- the hot air blown from the heat source chamber 8 to the heating chamber 2 through the left and right outlets 23A and 23B is smoothly redirected and applied from the front to the center. Can flow in the direction.
- the heating loss due to the hot air heating only the wall surface of the heating chamber 2 can be significantly suppressed, the inside of the heating chamber 2 is heated efficiently, and the object to be heated 10 is efficiently heated. Cooking is possible. Therefore, according to the cooking device of Embodiment 10, the preheating time and cooking time of the heating chamber 2 can be shortened, and the cooking speed can be improved.
- the heat source arrange
- the heating apparatus of the present invention described as an example of the heating cooker in each of the above-described embodiments, since it is configured to blow out a large amount of hot air from the air outlet toward the center of the heating chamber, The object to be heated can be efficiently heated, and the time for the preheating operation or the heating operation of the heating chamber can be shortened.
- the heating device of the present invention since the direction of hot air from the outlet can be changed, for example, in the case of an object to be heated that tends to be uneven in a heating cooker, the object is directly applied to the object to be heated. It is possible to heat the object to be heated without applying the hot air, and it is possible to change the direction of the hot air during the heating operation.
- the present invention relates to a heating device in industrial fields such as a microwave oven or an electric oven having an oven function by convection heating for home use, various commercial oven heating devices, a drying device, a ceramic heating device, a sintering device, or a living body.
- the present invention can be applied to various heating devices such as a heating device used for chemical reactions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Baking, Grill, Roasting (AREA)
- Electric Ovens (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
本発明の加熱装置は、対流加熱方式を有し、被加熱物を収納する加熱室(2)との間に隔壁(15)に形成された吸込口(16)と複数の吹出口(23A,23B)とにより連通する熱源室(8)を有し、熱源室内部には空気流を形成する送風部(9)と、空気流を加熱する加熱部(11)と、加熱部(11)により加熱された空気流を隔壁(15)に対向する面の方向に移動させて、熱源室内の少なくとも一部空間を巡回させた後、複数の吹出口(23A,23B)における少なくとも1つの吹出口から加熱室(2)の中央に向かって吹き出す流路を形成する流路形成部(30A,30B)と、が設けられている。
Description
本発明は、送風ファンとヒータによって熱風を形成し、形成した熱風を加熱室内に対流させる対流加熱方式を用いて、加熱室内の被加熱物を加熱する加熱装置に関するものである。
従来、この種の加熱装置としての加熱調理器では、一般的に、被加熱物が配置される加熱室の背面となる後壁の後方に送風ファンとヒータを備えた熱風循環機構が設けられている。熱風循環機構は、送風ファンにより加熱室内の空気を加熱室の後壁に設けられた吸込口から吸い込み、ヒータに吹き付け、ヒータで加熱された熱風を加熱室の後壁に設けられた吹出口から加熱室へ吹き出すよう構成されている。熱風循環機構を備えた加熱調理器においては、熱風が加熱室内を循環することを利用した対流加熱方式により、加熱室内の被加熱物に対する調理を行うものである。
このような従来の加熱調理器においては、熱風循環機構に設けられた風向板を用いて熱風を吹出口から加熱室に供給し、加熱室内における温度分布の均一化を図ったものがある(例えば、日本の特公平7-111256号公報(特許文献1)参照)。さらに、被加熱物に対して加熱ムラのない加熱調理を目的として、熱風循環機構の吹出口近傍に風向変更部材を設け、送風ファンからの熱風の一部を集めて、吹出口からの熱風を加熱室内に広がるように構成したものがある(例えば、日本の特開2006-71124号公報(特許文献2)参照)。
図19は、特許文献1に開示された従来の加熱調理器の内部構成を示す側面断面図である。図19に示す加熱調理器においては、加熱室101の背面となる後壁102の外側面に内部ケーシング103が設けられており、後壁102と内部ケーシング103により熱風循環機構の筐体が構成されている。熱風循環機構の内部には、遠心ファンで構成された送風ファン104と、略環状のヒータ105とが設けられている。加熱室101の後壁102の中央には多数のパンチング孔よりなる吸込口106が形成されている。後壁102において、吸込口106を挟む上下の位置には多数のパンチング孔よりなる複数の吹出口107が形成されている。
遠心ファンである送風ファン104は、加熱室101の後壁102の中央に形成された吸込口106に対向して内部ケーシング103の内側に設けられている。送風ファン104は、内部ケーシング103の外側に設けたモータ108により回転駆動される。ヒータ105は、送風ファン104を囲むように設けられた略環状のシーズヒータである。
図19に示す従来の加熱調理器において、送風ファン104から遠心方向に送り出され、ヒータ105により加熱された熱風の一部は、風向板109により堰き止められるよう構成されている。この風向板109は、送風ファン104から送り出される熱風の流れの方向において、吹出口107の後方であって、吹出口107の近傍に設けられている。風向板109は、送風ファン104からの熱風の一部を堰き止めて集め、吹出口107から加熱室101へ供給する熱風量を増やすことを目的としている。この目的を達成するため、図19に示す従来の加熱調理器において、送風ファン104からの熱風が当接する風向板109の板面は、後壁102に垂直であり、送風ファン104の回転中心からの遠心方向または送風ファン104の上下方向と平行となるように配置されている。
また、特許文献2に開示された従来の加熱調理器においても、特許文献1に開示された加熱調理器と同様に、送風ファンから遠心方向に送り出されてヒータにより加熱され熱風の一部が、風向変更部材により堰き止められるよう構成されており、吹出口から加熱室に供給される熱風の風向きを変更している。この風向変更部材は、送風ファンによる熱風の流れる方向において、吹出口の近傍であり、吹き出し口より後方に配置されている。特許文献2に開示された従来の加熱調理器は、送風ファンからの熱風の一部を風向変更部材により堰き止めて風向きを変更し、加熱室の内部において熱風の偏りを低減することを目的としている。
上記のように構成された従来の加熱調理器において、加熱室の内部に被加熱物が収納されて、加熱調理が開始されると、モータにより送風ファンが回転駆動され、加熱室内の空気が吸込口から熱風循環機構の内部に吸い込まれる。また、送風ファンの回転により、熱風循環機構の内部における空気は遠心方向に送り出される。送風ファンから遠心方向に送り出された空気は、ヒータにより加熱されて、複数の吹出口(例えば、後壁の上方位置、下方位置、側方位置)から加熱室に供給される。このように、加熱室の内部と熱風循環機構の内部において、熱風が循環して、加熱室内部において被加熱物に対する対流加熱が行われる。
従来の加熱調理器においては、対流加熱が開始すると、熱風循環機構の内部において、熱風の一部が風向板(風向変更部材)に当接して、送風ファンの回転方向とは逆方向側に熱風を導き、風向板の近傍にある吹出口から加熱室の内部に熱風が供給される構成である。このように、複数の風向板(風向変更部材)を熱風循環装置の内部に設けることにより、複数の吹出口からの熱風が加熱室内に供給され、加熱ムラ、いわゆる焼きムラが抑制されている。
また、加熱室内における被加熱物の収容位置、形状、および大きさなどに応じて、加熱室内を循環する熱風の風向き調整する加熱調理器が提案されている(例えば、日本の特開平6-347041号公報(特許文献3)、および特開2004-353922号公報(特許文献4)参照)。特許文献3および特許文献4に開示された従来の加熱調理器においては、加熱室内に風向きを変更する手段を設けた構成であり、加熱室内の熱風の循環方向を強制的に変更するものである。
特許文献1および特許文献2に開示された従来の加熱調理器の構成において、遠心ファンである送風ファンからの空気流は、送風ファンの遠心方向に送り出され、熱風循環機構内において加熱室の後壁に沿って流れている。
それに加えて、送風ファンからの空気流の風向きは、送風ファンの回転に応じて送風ファンの半径方向から回転方向に傾いており、所謂、外向きの渦巻き状となっている。また、送風ファンにより送り出される風量と送風ファンの回転数との関係によっては、空気流が送風ファンの回転における接線方向に近い方向に吹き出される場合もある。このため、熱風循環装置からの吹き出される熱風のおおくは、加熱室の後壁の複数の吹出口から外向き渦巻き状、若しくは加熱室の側面、天井面および底面に吹き付けられる。
特許文献1および特許文献2に開示された従来の加熱調理器においては、熱風循環機構の内部に風向板(風向変更部材)を設けて、吹出口からの熱風量が増加するように構成されている。吹出口から吹き出される熱風の風向は、送風ファンの回転における略接線方向に近い方向となる。このため、加熱室の後壁の下方位置に形成された吹出口からの熱風は加熱室の底面に沿って流れ、加熱室の後壁の上方位置に形成された吹出口からの熱風は加熱室の天井面に沿って流れ、そして加熱室の後壁の側方位置に形成された吹出口からの熱風は側面に沿って流れる。この結果、熱風循環機構から吹き出された熱風は、加熱室の壁面を主として加熱することになる。
従って、従来の加熱調理器においては、加熱室内の被加熱物よりも加熱室の壁面の方が高温になり、放熱損失が増大しており、被加熱物に対して効率の高い加熱を行っていないという問題を有していた。
また、従来の加熱調理器においては、熱風循環機構から加熱室内に吹き出される熱風が、吹出口から送風ファンの回転円における略接線方向であり、送風ファンの回転軸に垂直方向な方向に吹き出されて、加熱室の後壁に沿って流れる場合がある。
このように吹出口から加熱室の後壁に沿うように吹き出された熱風は、加熱室の上下左右の壁面に衝突して、これらの壁面を直接加熱する。この結果、従来の加熱調理器においては、被加熱物に対する加熱効率がさらに悪化するという問題を有していた。
また、前述の特許文献3および特許文献4に開示された従来の加熱調理器の構成においては、加熱室内における被加熱物の収容位置、形状、または大きさなどに応じて、加熱室内の所定位置に制御機構を固定し、加熱室内の熱風の風向きを調整して加熱動作を行っていた。
したがって、特許文献3および特許文献4に開示された従来の加熱調理器においては、加熱動作中に熱風の風向きを変更できない構成であるため、被加熱物に直接熱風を当てて効率高く被加熱物を加熱することと、焼きムラが生じやすい被加熱物に対して均一に加熱することを、両立させることができないという課題を有していた。
本発明は、前述の従来の加熱調理器である加熱装置における課題を解決するものであり、吹出口からの熱風を加熱室内の被加熱物に対して均一に当てると共に、加熱室の壁面に対する直接的な加熱を低減して、被加熱物に対する集中的な加熱動作を行うことにより、加熱室の壁面からの放熱損失を低減して、被加熱物を効率高く加熱することができる加熱装置を提供することを目的とする。
本発明に係る第1の態様の加熱装置は
被加熱物を収納する加熱室、および
前記加熱室との間の隔壁に形成された吸込口と複数の吹出口とにより前記加熱室と連通する熱源室、を備え、
前記熱源室の内部には、空気流を形成する送風部と、前記空気流を加熱する加熱部と、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させて、前記熱源室内の少なくとも一部空間を巡回させた後、前記複数の吹出口における少なくとも1つの吹出口から前記加熱室の中央に向かって吹き出す流路を形成する流路形成部と、が設けられた加熱装置。このように構成された本発明に係る第1の態様の加熱装置においては、熱源室内において送風部と加熱部とによって生成された熱風を流路形成部により形成された流路に流すことにより、吹出口から加熱室内に吹き込まれる熱風を加熱室内の中央に向かって流すことができる。
被加熱物を収納する加熱室、および
前記加熱室との間の隔壁に形成された吸込口と複数の吹出口とにより前記加熱室と連通する熱源室、を備え、
前記熱源室の内部には、空気流を形成する送風部と、前記空気流を加熱する加熱部と、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させて、前記熱源室内の少なくとも一部空間を巡回させた後、前記複数の吹出口における少なくとも1つの吹出口から前記加熱室の中央に向かって吹き出す流路を形成する流路形成部と、が設けられた加熱装置。このように構成された本発明に係る第1の態様の加熱装置においては、熱源室内において送風部と加熱部とによって生成された熱風を流路形成部により形成された流路に流すことにより、吹出口から加熱室内に吹き込まれる熱風を加熱室内の中央に向かって流すことができる。
本発明に係る第2の態様の加熱装置は、前記の第1の態様における前記流路形成部が、前記加熱部から前記吹出口までの空気流路の間に配置されるように構成されている。このように構成された本発明に係る第2の態様の加熱装置においては、熱源室内において送風部と加熱部とによって生成された熱風が、吹出口から加熱室内の中央に向かって吹き出される空気流路が確実に形成される。
本発明に係る第3の態様の加熱装置は、前記の第1の態様における前記流路形成部が、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させる案内面を有し、前記案内面により前記隔壁に対向する面の方向に移動した空気流が、前記熱源室内の少なくとも一部空間を巡回した後に前記案内面の裏面に接触して前記吹出口より吹き出されるよう構成されている。このように構成された本発明に係る第3の態様の加熱装置によれば、吹出口からの熱風を加熱室内の被加熱物に対して均一に当てることが可能となると共に、加熱室の壁面に対する直接的な加熱を低減して、被加熱物に対する集中的な加熱動作を行うことが可能となる。
本発明に係る第4の態様の加熱装置は、前記の第3の態様における前記送風部が、前記隔壁の吸込口から前記加熱室の内部の空気を吸い込み遠心方向に空気を放出する遠心ファンであり、前記送風部の外周を取り囲むように前記加熱部が設けられている。このように構成された本発明に係る第4の態様の加熱装置によれば、熱源室内において、隔壁から吸い込まれた空気を遠心ファンの周囲に設けられた加熱部により確実に加熱して、流路形成部により形成された熱風の流路により加熱室内に対して所望の方向に熱風を吹き出すことができる。その結果、放熱損失を抑制して、効率的に被加熱物を加熱することが可能となり、加熱室の予熱や加熱調理のスピードを向上させることができる。
本発明に係る第5の態様の加熱装置は、前記の第3の態様における前記案内面の少なくとも一部が前記送風部の回転軸の軸方向に対して所定角度傾斜した傾斜面を有する。このように構成された本発明に係る第5の態様の加熱装置によれば、熱源室における圧力損失を抑制することができる。
本発明に係る第6の態様の加熱装置は、前記の第3の態様における前記案内面の少なくとも一部が曲面で構成されている。このように構成された本発明に係る第6の態様の加熱装置によれば、熱源室における圧力損失を抑制することができるとともに、吹出口からの熱風の風向きをより加熱室の前方方向に向けることができる。
本発明に係る第7の態様の加熱装置は、前記の第3の態様における前記案内面が、前記吹出口から所定距離を有して、少なくとも前記吹出口の全体を覆うように構成されている。このように構成された本発明に係る第7の態様の加熱装置によれば、熱源室内での熱風の流路を調整することが可能となり、加熱室内への熱風の吹き出し方向を調整することができる。
本発明に係る第8の態様の加熱装置は、前記の第3の態様における前記案内面の少なくとも一部が前記送風部の回転軸の軸方向に対して所定角度傾斜した傾斜面を有し、前記傾斜面の角度を変えることにより、前記吹出口から吹き出される空気流の方向を変更するよう構成されている。このように構成された本発明に係る第8の態様の加熱装置によれば、熱源室内での熱風の流路を調整することが可能となり、加熱室内への熱風の吹き出し方向を調整することができる。
本発明に係る第9の態様の加熱装置は、前記の第3の態様における前記送風部の回転数を変更することにより前記吹出口から吹き出される空気流の方向を変更するよう構成されている。このように構成された本発明に係る第9の態様の加熱装置によれば、送風部の回転数を変更することにより、吹出口からの熱風の風向きを簡単に変えることができる。
本発明に係る第10の態様の加熱装置は、前記の第1の態様における前記流路形成部が、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させる案内面を有し、前記案内面により前記隔壁に対向する面の方向に移動した空気流が、前記熱源室内の少なくとも一部空間を巡回した後に前記案内面の裏面に接触して前記吹出口より吹き出すよう構成された縦流路形成部と、
前記送風部により形成される空気流の流動方向において、前記吹出口より下流側に設けられ、前記送風部からの空気流の一部を堰き止めて前記吹出口より吹き出すよう配置された堰止面を有する横流路形成部と、を備えている。このように構成された本発明に係る第10の態様の加熱装置によれば、熱源室内において、隔壁から吸い込まれた空気を加熱して、流路形成部により形成された流路により加熱室内に対して所望の方向に熱風を吹き出すことができる。その結果、放熱損失を抑制して、効率的に被加熱物を加熱することが可能となり、加熱室の予熱や加熱調理のスピードを向上させることができる。
前記送風部により形成される空気流の流動方向において、前記吹出口より下流側に設けられ、前記送風部からの空気流の一部を堰き止めて前記吹出口より吹き出すよう配置された堰止面を有する横流路形成部と、を備えている。このように構成された本発明に係る第10の態様の加熱装置によれば、熱源室内において、隔壁から吸い込まれた空気を加熱して、流路形成部により形成された流路により加熱室内に対して所望の方向に熱風を吹き出すことができる。その結果、放熱損失を抑制して、効率的に被加熱物を加熱することが可能となり、加熱室の予熱や加熱調理のスピードを向上させることができる。
本発明に係る第11の態様の加熱装置は、前記の第1の態様における前記流路形成部が、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させる案内面を有し、前記案内面により前記隔壁に対向する面の方向に移動した空気流が、前記熱源室内の少なくとも一部空間を巡回した後に前記案内面の裏面に接触して前記吹出口より吹き出すよう構成された縦流路形成部と、
前記送風部により形成される空気流の流動方向において、前記吹出口より下流側に設けられ、前記送風部からの空気流の一部を堰き止めて前記吹出口より吹き出すように配置された堰止面を有する横流路形成部と、
前記吹出口から所定間隔を有して前記吹出口を覆う天井面を有し、前記縦流路形成部と前記横流路形成部とを連続させる天井流路形成部と、を備えている。このように構成された本発明に係る第11の態様の加熱装置においては、熱源室内において送風部と加熱部とによって生成された熱風が、吹出口から加熱室内の中央に向かって吹き出される空気流路が確実に形成される。
前記送風部により形成される空気流の流動方向において、前記吹出口より下流側に設けられ、前記送風部からの空気流の一部を堰き止めて前記吹出口より吹き出すように配置された堰止面を有する横流路形成部と、
前記吹出口から所定間隔を有して前記吹出口を覆う天井面を有し、前記縦流路形成部と前記横流路形成部とを連続させる天井流路形成部と、を備えている。このように構成された本発明に係る第11の態様の加熱装置においては、熱源室内において送風部と加熱部とによって生成された熱風が、吹出口から加熱室内の中央に向かって吹き出される空気流路が確実に形成される。
本発明に係る第12の態様の加熱装置は、前記の第10又は第11の態様における前記縦流路形成部の案内面と前記横流路形成部の堰止面が前記吹出口の周りに配置され、前記案内面と前記堰止面が直交するよう構成されている。このように構成された本発明に係る第12の態様の加熱装置においては、熱源室内において送風部と加熱部とによって生成された熱風が、吹出口から加熱室内の中央に向かって吹き出され、加熱室内において均一な加熱が可能となる。
本発明に係る第13の態様の加熱装置は、前記の第10又は第11の態様における前記送風部が、前記隔壁の吸込口から前記加熱室の内部の空気を吸い込み遠心方向に空気を放出する遠心ファンであり、前記送風部の外周を取り囲むように前記加熱部が設けられている。このように構成された本発明に係る第13の態様の加熱装置によれば、熱源室内において、隔壁から吸い込まれた空気を遠心ファンの周囲に設けられた加熱部により確実に加熱して、流路形成部により形成された熱風の流路により加熱室内に対して所望の方向に熱風を吹き出すことができる。
本発明に係る第14の態様の加熱装置は、前記の第10又は第11の態様における前記案内面の少なくとも一部が前記送風部の回転軸の軸方向に対して所定角度傾斜した傾斜面を有している。このように構成された本発明に係る第14の態様の加熱装置によれば、熱源室における圧力損失を抑制することができる。
本発明に係る第15の態様の加熱装置は、前記の第10又は第11の態様における前記案内面の少なくとも一部が曲面で構成されている。このように構成された本発明に係る第15の態様の加熱装置によれば、熱源室における圧力損失を抑制することができる。
本発明の加熱装置は、吹出口からの熱風を加熱室内の被加熱物に対して均一に当てることができると共に、加熱室の壁面に対する直接的な加熱を低減して、被加熱物に対する集中的な加熱動作を行うことにより、加熱室の壁面からの放熱損失を低減して、被加熱物を効率高く加熱することができる。
以下、本発明の加熱装置に係る実施の形態として加熱調理器について、添付の図面を参照しながら説明する。なお、本発明の加熱装置は、以下の実施の形態に記載した加熱調理器の構成に限定されるものではなく、以下の実施の形態において説明する技術的思想と同等の技術的思想および当技術分野における技術常識に基づいて構成される加熱装置を含むものである。
(実施の形態1)
本発明に係る実施の形態1を添付の図1~図3を参照して説明する。図1は、本発明に係る実施の形態1の加熱調理器の内部概略構成を示す側面断面図である。図2は、図1に示した加熱調理器における一部のII-II線による平面断面図である。図3は、実施の形態1の加熱調理器における加熱室の後壁である背面壁を示す斜視図である。
本発明に係る実施の形態1を添付の図1~図3を参照して説明する。図1は、本発明に係る実施の形態1の加熱調理器の内部概略構成を示す側面断面図である。図2は、図1に示した加熱調理器における一部のII-II線による平面断面図である。図3は、実施の形態1の加熱調理器における加熱室の後壁である背面壁を示す斜視図である。
なお、実施の形態1の加熱調理器の説明において、被加熱物を出し入れするドアが配置された面を加熱調理器の正面とし、左右方向は正面から見た方向として説明する。後述する各実施の形態においても同様に、正面、左右方向は上記の定義を用いる。
図1に示されているように、実施の形態1の加熱調理器は、本体1の内部に被加熱物10である食材を収納するための略直方体構造を持つ加熱室2が形成されている。加熱室2は、金属材料により天井面、底面、左側面、右側面及び背面を構成する壁板と、被加熱物10を出し入れするために開閉するドア3と、被加熱物10を載置するための調理皿5を支持する複数の支持部4とを有している。実施の形態1の加熱調理器においては、3段の調理皿5が配置され得るよう支持部4が形成されている。
加熱室2の下方には、マグネトロン6とアンテナ7が設置されており、マグネトロン6において発生した電磁波が、アンテナ7を経由して加熱室2内に放射され得るよう構成されている。このように構成された加熱室2は、ドア3を閉じることにより、加熱室2内に供給された電磁波が加熱室2内部に閉じ込められる構成である。
なお、実施の形態1においては、マグネトロン6からの電磁波がアンテナを介して加熱室に給電される構成であるが、本発明は半導体素子を用いた回路構成により電磁波を形成して加熱室に給電する構成や、単に対流加熱方式のオーブン調理器の構成においても適用できるものである。
さらに、実施の形態1の加熱調理器においては、加熱室2の後方である背面側には、加熱室2に隣接して熱源室8が設けられている。熱源室8の内部には、遠心ファンである送風ファン9と、この送風ファン9の回転動作により送り出された空気を加熱するシーズヒータで構成されたヒータ11が設置されている。実施の形態1の加熱調理器におけるヒータ11は、送風ファン9の羽根部の外側に配置され、且つ後方側にオフセットした位置に設けられており、略正方形の枠形状を有している。
なお、実施の形態1においては、ヒータ11が略正方形の枠形状を有した例で説明するが、本発明はこのような構成に限定されるものではなく、他の形状、例えば円環の枠形状でもよい。
熱源室8のさらに後方の空間である駆動室12には、駆動源であるモータ13が設置されている。このモータ13のシャフトは、熱源室8の背面となる熱源室背面壁14を貫通しており、そのシャフトの先端には送風部である送風ファン9が取り付けられている。このように、熱源としての加熱部であるヒータ11が設置された熱源室8と、駆動源であるモータ13が設置された駆動室12は、熱源室背面壁14を有する内部ケース22により仕切られ、断熱されている。
また、被加熱物10が収容される加熱室2と、送風ファン9とヒータ11が設置された熱源室8との間には加熱室背面壁である隔壁15が設けられている。この隔壁15により加熱室2と熱源室8との間が空間的に仕切られている。
加熱室背面壁である隔壁15において、送風ファン9の中心近傍に対向する位置(中央領域)には吸込口16が形成されている。また、隔壁15において、加熱室2の壁面に近い領域であり、送風ファン9より外側の領域には多数のパンチング孔で構成された複数の吹出口17A,17B,23A,23B(図3参照)が形成されている。
実施の形態1の加熱調理器において、図1に示すように、熱源室背面壁14は、平板形状ではなく、後方の駆動室12にモータ13を設けるために中央部分が熱源室側に飛び出る凸形状に形成されている。言い換えると、熱源室背面壁14は、その外周部分が駆動室側へ飛び出るように凹形状に形成されている。その熱源室背面壁14における中央部分に形成された駆動室側の凹部空間内にモータ13が配置されるよう構成されている。
実施の形態1の加熱調理器においては、前述のように、加熱室2が、前面となるドア3の他に、左側面18、右側面19、底面20、天井面21および背面となる加熱室背面壁である隔壁15により構成されている。左側面18および右側面19には、底面20に対し略並行に加熱室2内に突出した支持部4が上下に三段設けられている。これらの支持部4により加熱室2内において、調理皿5が保持され得る構成である。
前述のように、加熱室2の背面となる隔壁15の後方には、この隔壁15、および熱源室背面壁14を含む内部ケース22により囲まれて形成された熱源室8が配置されている。すなわち、加熱室2の背面となる隔壁15は、加熱室2と熱源室8とを隔てる役割を果たしている。熱源室8の内部には、遠心ファンである送風ファン9と、ヒータ11が設けられている。これらの送風ファン9およびヒータ11は、本体1内部に設けられた制御部24により制御される構成である。
図2及び図3に示すように、加熱室2の背面となる隔壁15の中央部分には、多数のパンチング孔で構成された吸込口16が形成されている。また、隔壁15には吸込口16を中央として、その吸込口16の周りの領域には、複数の吹出口17A,17B,23A,23Bが形成されている。隔壁15における上端部に近い領域において、加熱室2の左側面18に近い端部近傍から略中央部分までの領域には、多数のパンチング孔で構成された上吹出口17Aが帯状となって水平方向に細長く形成されている。同様に、隔壁15における下端部に近い領域において、加熱室2の右側面19に近い端部近傍から略中央部分までの領域には、多数のパンチング孔で構成された下吹出口17Bが帯状となって水平方向に細長く形成されている。すなわち、隔壁15に形成された2つの上吹出口17Aおよび下吹出口17Bは吸込口16の中心に関して点対称に形成されている。図3において、矢印が送風ファン9の回転方向である。
また、隔壁15においては、吸込口16の左右の領域に多数のパンチング孔で構成された吹出口23A,23Bが幅広の帯状となって水平方向に形成されている(図3参照)。
上記のように、隔壁15には吸込口16を挟む左右の位置には、同様に多数のパンチング孔で構成された左吹出口23Aおよび右吹出口23Bがそれぞれ設けられている。上吹出口17Aおよび下吹出口17Bの形状は、左吹出口23Aおよび右吹出口23Bの形状に比較して水平方向に長く、且つ鉛直方向の幅が短く形成されている(図3参照)。隔壁15における吸込口16、上下吹出口17A,17Bおよび左右吹出口23A,23Bのそれぞれのパンチング孔を介して、加熱室2および熱源室8は連通している。
吸込口16、上下吹出口17A,17Bおよび左右吹出口23A,23Bを構成するパンチング孔は、電磁波加熱の際、加熱室2の外へ電磁波が漏洩しないように、直径2~5mm程度の複数の孔の集まりとして形成されている。
熱源室8内の送風ファン9における吸気部分は、隔壁15の吸込口16に対向するよう配設されている。送風ファン9の排気部分となる外周部分には、略正方形の枠形状であり略環形状のヒータ11が設けられている。送風ファン9は、熱源室8の外部に設けたモータ13により回転駆動されて、遠心方向に空気を送り出す空気流を発生させている。発生した空気流は、送風ファン9の外周位置にあるヒータ11により加熱されて熱風となり、隔壁15における上下吹出口17A,17Bおよび左右吹出口23A,23Bから加熱室2内に供給されて被加熱物10を対流加熱する。
加熱室2の背面壁となる隔壁15において、熱源室8側である裏面には、中央の吸込口16と左吹出口23Aとの間に第1の流路形成部30Aが設けられている。また、隔壁15の裏面において、中央の吸込口16と右吹出口23Bとの間には第2の流路形成部30Bが設けられている。第1の流路形成部30Aおよび第2の流路形成部30Bは、隔壁15の裏面に一端が固着され、他端が熱源室8の内部空間に斜めに突出するよう形成されている。第1の流路形成部30Aおよび第2の流路形成部30Bの各突出端部は、熱源室背面壁14から所定の空隙を有して配置されている。また、第1の流路形成部30Aおよび第2の流路形成部30Bは、送風ファン9を取り囲むように配置されたヒータ11と、それぞれの吹出口23A,23Bとの間に設けられている。上記のように、送風ファン9、ヒータ11、第1の流路形成部30Aおよび第2の流路形成部30Bは、隔壁15と、熱源室背面壁14を有する内部ケース22とにより構成された熱源室8の内部に設けられて、熱源室8内における特別な空気流を形成している。
図2および図3に示すように、隔壁15の裏面において、中央の吸込口16の左右の位置にある第1の流路形成部30Aおよび第2の流路形成部30Bは、隔壁15が形成する平面(鉛直面)に対して略45度の角度を有して外向きに開くように傾斜する案内面を有する傾斜部30Aa,30Baと、隔壁15に固定される固定部30Ab,30Bbと、を有して構成されている。固定部30Ab,30Bbは、左右吹出口23A,23Bの裏面における中央側近傍に配置されており、傾斜部30Aa,30Baが左右吹出口23A,23Bの中央側を覆うように斜めに延設されている。固定部30Ab,30Bbは、隔壁15に固定するための取付け部分であり、これらの固定部30Ab,30Bbにおいてカシメや溶接により隔壁15に固定される。実施の形態1においては、第1の流路形成部30Aおよび第2の流路形成部30Bのそれぞれが金属板を直線に沿って折り曲げられて形成されている。なお、第1の流路形成部30Aおよび第2の流路形成部30Bの材料としては、金属に限定されるものではなく、形状を保持できる耐熱性を有する材料であれば用いることができる。
実施の形態1においては、第1の流路形成部30Aおよび第2の流路形成部30Bは、傾斜部30Aa,30Baが隔壁15の平面(鉛直面)に対して略45度の角度を有して外向きに開く構成で説明するが、この角度は加熱調理器における仕様において決定されるものである。加熱調理器の動作特性に応じて、例えば、隔壁15の平面(鉛直面)に対して30度から70度の間の角度範囲で外向きに開くように設定される。
なお、実施の形態1における第1の流路形成部30Aおよび第2の流路形成部30Bは、図3に示すように、長方形の板材が屈曲されて形成されており、直線である屈曲線が鉛直方向となるよう配置されている。また、第1の流路形成部30Aおよび第2の流路形成部30Bは、隔壁15の上下方向の長さより短く、左右吹出口23A,23Bの上下方向の長さより長く形成されており、左右吹出口23A,23Bの中央側(吸込口側)に設けられている。
なお、第1の流路形成部30Aおよび第2の流路形成部30Bは、左右吹出口23A,23Bの上下方向の長さより長く形成した例で説明したが、本発明はこのような構成に限定されず、当該加熱装置の仕様などに応じて、左右吹出口の上下方向の長さより短く形成してもよい。
実施の形態1の加熱調理器においては、加熱室2の内容量を確保しつつ、送風ファン9とヒータ11とを有する熱源室8と、モータ13を有する駆動室12とを含めた本体1の奥行き寸法を小さくするために、熱源室8と駆動室12の奥行き寸法が小さく形成されている。
実施の形態1の加熱調理器においては、奥行き寸法が小さくても送風性能が劣化しない遠心ファンである送風ファン9を用いており、吸入部分である中心部分の奥行き寸法を薄くすることが可能な送風ファン9を用いている。このため、モータ13のシャフトが貫通する熱源室背面壁14は、モータ13に近接した部分が加熱室側(前面側)に凹んだ形状を有し、この凹みの内側にモータ13が配置されるよう構成されている。この結果、熱源室8と駆動室12とを合わせた奥行き方向の寸法が小さくなっている。
図1に示すように、実施の形態1の加熱調理器においては、上記のように熱源室背面壁14を形成して、モータ13を熱源室背面壁14の凹みの内側に配置しており、熱源室8のモータ13に近接した部分(中央部分)の奥行き寸法を小さくしている。熱源室8において、モータ13に近接した部分以外(外周部分)の奥行き寸法は、中央部分に比べて大きくなっており、熱源としての加熱部であるヒータ11の配置空間が確保されている。また、実施の形態1の加熱調理器においては、第1の流路形成部30Aおよび第2の流路形成部30Bをヒータ11の外側の所定位置に配設するための空間が確保されている。特に、第1の流路形成部30Aおよび第2の流路形成部30Bにより形成される熱源室8内の空気流路が確保されている。なお、熱源室8の内部において、ヒータ11の厚み(奥行き方向の長さ)の中心位置が送風ファン9の羽根の奥行き方向の長さの中心位置より後方となるように、ヒータ11が配置されている。
以下、本発明に係る実施の形態1の加熱調理器における加熱動作について説明する。
実施の形態1の加熱調理器において、例えば、オーブン調理を行う場合、クッキー等の被加熱物10が載置された調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が加熱室2の背面壁である隔壁15に接触するまで押し込まれて、ドア14が閉められ、加熱室2が加熱可能空間となる。本体1の前面に設けられた操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
実施の形態1の加熱調理器において、例えば、オーブン調理を行う場合、クッキー等の被加熱物10が載置された調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が加熱室2の背面壁である隔壁15に接触するまで押し込まれて、ドア14が閉められ、加熱室2が加熱可能空間となる。本体1の前面に設けられた操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
操作部においては被加熱物10の加熱時間、加熱温度などの調理条件が設定される。操作部において設定された調理条件を示す信号がマイクロコンピュータで構成された制御部24に入力される。制御部24は、調理条件を示す信号に基づいて、ヒータ11およびモータ13などを駆動制御する。
モータ13の回転により、遠心ファンである送風ファン9は回転動作を開始する。送風ファン9の回転動作により、送風ファン9の外周部分から渦巻き状で外向きの空気流が吹き出される。送風ファン9から吹き出された空気流は、送風ファン9の外周部分を取り囲むように配置されたヒータ11により加熱されて高温の空気流(熱風)となる。また、送風ファン9からの空気流の一部は、送風ファン9の左右の位置に設けられた第1の流路形成部30Aおよび第2の流路形成部30Bの傾斜部30Aa,30Baに接触して、熱源室8の後方である熱源室背面壁14の方へ案内される。このように熱源室8の後方に案内された空気流は、送風ファン9よりやや後方に配置されたヒータ11に向かってよりおおく流れて加熱され、高温の空気流(熱風)となる。
上記のように送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の上方へ送り出された熱風は、隔壁15における上吹出口17Aから加熱室2へ吹き出され、送風ファン9の下方へ送り出された熱風は、下吹出口17Bから加熱室2へ吹き出される。これらの熱風は、送風ファン9の回転方向に沿った渦巻き状で外向きの風向きを有しているため、上吹出口17Aからの熱風は加熱室2の天井面21および右側面19の方向に流れ、下吹出口17Bからの熱風は加熱室2の底面20および左側面18の方向に流れる。なお、前述のように、複数のパンチング孔で構成された上吹出口17Aおよび下吹出口17Bの形状は、水平方向に細長い帯状であり、複数のパンチング孔で構成された左吹出口23Aおよび右吹出口23Bの形状に比較して細長く形成されている(図3参照)。
また、熱源室8において、送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部30Aおよび第2の流路形成部30Bに接触して、熱源室8の背面である熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変えて、再度第1の流路形成部30Aおよび第2の流路形成部30Bの方向に向かう。そこで、熱風は第1の流路形成部30Aおよび第2の流路形成部30Bの裏面により案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8の内部において、その左右端部から中央へ向かう方向に流れているため、加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱できるように流れる。したがって、左右の吹出口23A,23Bから加熱室2へ吹き出された熱風は、加熱室2の壁面を直接的に加熱することがない。
以上のように、実施の形態1の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2の内部に吹き出される熱風のおおくを、被加熱物10に集中させることが可能となる。その結果、実施の形態1の加熱調理器においては、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室内を効率高く加熱し、被加熱物に対する効率的な加熱調理が可能となる。したがって、実施の形態1の加熱調理器によれば、加熱室の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
また、実施の形態1の加熱調理器においては、熱源室背面壁に凹みを形成して、その凹みにモータ13を配置するよう構成することにより、加熱室2の後方に配置される熱源室8と駆動室12との合体部分の薄型化を達成することが可能となる。実施の形態1の加熱調理器の構成は、加熱室の容量を確保しつつ、装置全体の奥行き寸法を小さくすることができると共に、高い省エネルギー性能を有する加熱調理器を提供することができる。
なお、実施の形態1の加熱調理器においては、ヒータ11として、略環形状のシーズヒータを使用した例で説明したが、シーズヒータの表面に複数の放熱フィンを設けたヒータを用いることにより、送風ファン9からの空気に対する加熱を効率高く行うことが可能となる。
また、実施の形態1の加熱調理器においては、第1の流路形成部30Aおよび第2の流路形成部30Bを加熱室2の背面壁である隔壁15に固定(カシメ加工または溶接により固着)する構成で説明したが、第1の流路形成部30Aおよび第2の流路形成部30Bは、熱源室8を形成する他の部材に固定されるよう構成して、左右吹出口23A,23Bに対して所定位置となるように配設してもよい。
(実施の形態2)
以下、本発明に係る実施の形態2の加熱調理器について添付の図4を参照して説明する。本発明に係る実施の形態2の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態2の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
以下、本発明に係る実施の形態2の加熱調理器について添付の図4を参照して説明する。本発明に係る実施の形態2の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態2の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
図4は、実施の形態2の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図4に示すように、実施の形態2の加熱調理器と実施の形態1の加熱調理器との相違点は、加熱室2の背面壁となる隔壁15に設けられた第1の流路形成部40Aおよび第2の流路形成部40Bの形状である。実施の形態2の加熱調理器においては、第1の流路形成部40Aおよび第2の流路形成部40Bにおけるそれぞれの傾斜部40Aa,40Baが曲面で構成されている。第1の流路形成部40Aは、左吹出口23Aに対向する面が凹面となる傾斜部40Aaと、加熱室2の背面壁である隔壁15に固定するための固定部40Abとにより構成されている。また、第2の流路形成部40Bは、第1の流路形成部40Aと同様に、右吹出口23Bに対向する面が凹面となる傾斜部40Baと、隔壁15に固定するための固定部40Bbとにより構成されている。
なお、実施の形態2の加熱調理器においては、第1の流路形成部40Aおよび第2の流路形成部40Bを隔壁15に固定(カシメ加工または溶接により固着)する構成で説明するが、第1の流路形成部40Aおよび第2の流路形成部40Bが熱源室8を形成する他の部材に固定されて、左右吹出口23A,23Bに対して所定の位置に配設されるように構成してもよい。
上記のように構成された実施の形態2の加熱調理器における熱源室8において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部40Aの傾斜部40Aaにおける滑らかな曲面(凸面)である案内面および第2の流路形成部40Bの傾斜部40Baにおける滑らかな曲面(凸面)である案内面に接触して、熱源室の背面壁である熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変え、再度第1の流路形成部40Aの傾斜部40Aaの方向に向かう。そして、熱風は、傾斜部40Aaの案内面の裏面にある滑らかな曲面(凹面)および傾斜部40Baの裏面の滑らかな曲面(凹面)に案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8内において、その左右端部から中央へ向かう方向に流れているため、左右の吹出口23A,23Bから加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱できるように流れる。
そして、第1の流路形成部40Aおよび第2の流路形成部40Bにおけるそれぞれの傾斜部(案内面)の曲面の固定部側において、曲面端部と隔壁15とがなす角度を調整することにより、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風の風向を調節することができる。
実施の形態2の加熱調理器においては、第1の流路形成部40Aおよび第2の流路形成部40Bにおけるそれぞれの傾斜部40Ab,40Baが滑らかな曲面(案内面)で形成されているため、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風の風向は、前述の実施の形態1の加熱調理器に比べて、加熱室2の前方方向に滑らかに向けることが可能となる。
以上のように、実施の形態2の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2に吹き出す熱風を滑らかに方向転換して、前方から中央にかけた方向に流すことができる。その結果、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室2内を効率高く加熱し、被加熱物10に対して効率的な加熱調理が可能となる。したがって、実施の形態2の加熱調理器によれば、加熱室2の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
(実施の形態3)
以下、本発明に係る実施の形態3の加熱調理器について添付の図5および図6を参照して説明する。本発明に係る実施の形態3の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態3の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
以下、本発明に係る実施の形態3の加熱調理器について添付の図5および図6を参照して説明する。本発明に係る実施の形態3の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態3の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
図5は実施の形態3の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図6は図5に示した熱源室の内部を示す斜視図であり、加熱室の背面壁である隔壁15が取り除かれた図である。
図5および図6に示すように、実施の形態3の加熱調理器においては、熱源室8の内部に設けられた第1の流路形成部50Aおよび第2の流路形成部50Bのそれぞれが傾斜部50Aa,50Baと、翼部50Ac,50Bcを有している。
第1の流路形成部50Aは、左吹出口23Aの裏面から所定間隔を有して覆うように形成されている。この第1の流路形成部50Aは、隔壁15の裏面に対して傾斜(約45度)した傾斜部50Aaと、この傾斜部50Aaの導出端部に連続し、隔壁15の裏面と平行な面を有する翼部50Acと、を有して構成されている。ここで、傾斜部50Aaと翼部50Acにおける熱源室背面壁14に対向する面が案内面である。この案内面により送風ファン9により遠心方向に送り出された熱風の一部が熱源室背面壁14の方へ案内される。
同様に、第2の流路形成部50Bは、右吹出口23Bの裏面から所定間隔を有して覆うように形成されている。この第2の流路形成部50Bは、隔壁15の裏面に対して傾斜(約45度)した傾斜部50Baと、この傾斜部50Baの導出端部に連続し、隔壁15の裏面と平行な面を有する翼部50Bcと、を有して構成されている。ここで、傾斜部50Baと翼部50Bcにおける熱源室背面壁14に対向する面が案内面である。
第1の流路形成部50Aおよび第2の流路形成部50Bにおける翼部50Ac,50Bcは、熱源室背面壁14からは所定距離を有して配置されており、翼部50Ac,50Bcと熱源室背面壁14との間に熱風が通る空気流路が形成されている。
図6の斜視図に示すように、第1の流路形成部50Aおよび第2の流路形成部50Bは、熱源室8における上下端部まで延設されており、熱源室背面壁14の上下方向(鉛直方向)の長さと同じ長さとなっている。したがって、第1の流路形成部50Aおよび第2の流路形成部50Bは、熱源室8を形成する内部ケース22の上下端部において固着され、所定位置に配置されている。
上記のように構成された実施の形態3の加熱調理器において、前述の実施の形態1,2の加熱調理器と同様に、熱源室8において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部50Aの傾斜部50Aaの斜面および第2の流路形成部50Bの傾斜部50Baの斜面に接触して、熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変えて、再度第1の流路形成部50Aおよび第2の流路形成部50Bに向かって流れる。そして、熱風は、第1の流路形成部50Aの傾斜部50Aaの斜面(裏面)および第2の流路形成部50Bの傾斜部50Baの斜面(裏面)に案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8内において、その左右端部から中央へ向かう方向に流れているため、左右の吹出口23A,23Bから加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱できるように流れる。
以上のように、実施の形態3の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2に吹き出す熱風を被加熱物10に対して集中的に流すことができる。その結果、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室内を効率高く加熱し、被加熱物に対して効率的な加熱調理が可能となる。したがって、実施の形態3の加熱調理器によれば、加熱室の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
(実施の形態4)
以下、本発明に係る実施の形態4の加熱調理器について添付の図7A,7Bおよび図8を参照して説明する。本発明に係る実施の形態4の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態4の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
以下、本発明に係る実施の形態4の加熱調理器について添付の図7A,7Bおよび図8を参照して説明する。本発明に係る実施の形態4の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態4の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
図7Aおよび図7Bは、実施の形態4の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図7Aは流路形成部の温度が所定温度以下の状態を示し、図7Bは流路形成部の温度が所定温度を超えた状態を示している。図8は、実施の形態4の加熱調理器における隔壁15などを裏面側から見た斜視図である。
実施の形態4の加熱調理器における加熱室2の後方にある熱源室8において、隔壁15の中央部分に形成された吸込口16と、その吸込口16の左側に形成された左吹出口23Aとの間には第1の流路形成部51Aが形成されている。同様に、吸込口16と、その吸込口16の右側に形成された右吹出口23Bとの間には第2の流路形成部51Bが形成されている。第1の流路形成部51Aおよび第2の流路形成部51Bは、隔壁15の裏面に一端が固着され、他端が熱源室8の内部空間内に斜行して突出するよう形成されている。第1の流路形成部51Aおよび第2の流路形成部51Bの突出端部は、熱源室背面壁14から所定距離を有して配置されている。また、第1の流路形成部51Aおよび第2の流路形成部51Bは、送風ファン9を取り囲むように配置されたヒータ11と、それぞれの吹出口23A,23Bとの間に設けられている。
図7Aおよび図7Bに示すように、隔壁15の裏面において、吸込口16の左右の位置にある第1の流路形成部51Aおよび第2の流路形成部51Bは、隔壁15が形成する平面に対して外向きに傾斜する傾斜部51Aa,51Baと、隔壁15に固定される固定部51Ab,51Bbと、を有して構成されている。固定部51Ab,51Bbは、左右吹出口23A,23Bの裏面における中央側近傍に配置されており、傾斜部51Aa,51Baが左右吹出口23A,23Bの裏面側を覆うように斜めに延設されている。傾斜部51Aa,51Baの突出端部と熱源室背面壁14との間は所定距離を有しており、空気流路が確保されている。固定部51Ab,51Bbは、隔壁15に固定するための取付け部分であり、これらの固定部51Ab,51Bbにおいてカシメや溶接により隔壁15に固定される。
実施の形態4においては、第1の流路形成部51Aおよび第2の流路形成部51Bのそれぞれが、熱膨張率の異なる2枚の金属板を貼り合わせて形成されたバイメタル、または形状記憶合金で構成されている。このように構成された第1の流路形成部51Aおよび第2の流路形成部51Bは、熱風の温度に応じて風向きを変更する機能を有する。
図7Aに示すように、第1の流路形成部51Aおよび第2の流路形成部51Bの温度が所定温度以下のとき、第1の流路形成部51Aおよび第2の流路形成部51Bにおける傾斜部51Aa,51Baは、隔壁15に対して45度の角度で外向きに開くように取り付けられている。第1の流路形成部51Aおよび第2の流路形成部51Bは、熱膨張率が異なる2枚の金属板を貼り合わせたバイメタル、または形状記憶合金で形成されているため、熱源室8の内部における風向変更機能を有している。
図7Bに示すように、第1の流路形成部51Aおよび第2の流路形成部51Bの温度が所定温度を越えた状態においては、第1の流路形成部51Aおよび第2の流路形成部51Bにおける傾斜部51Aa,51Baは、隔壁15に対して約60度の角度で外向きに傾斜した位置となる。この傾斜角度は、30度から70度の範囲内において変更するよう設定されることが好ましい。
実施の形態4の加熱調理器においては、図8に示すように、吸込口16の左右位置に設けられる第1の流路形成部51Aおよび第2の流路形成部51Bは、垂直方向に関して、隔壁15の長さより短く、左吹出口23Aおよび右吹出口23Bの長さより長く形成されており、少なくとも左吹出口23Aおよび右吹出口23Bの中央側領域を覆うように設けられている。
なお、第1の流路形成部51Aおよび第2の流路形成部51Bは、左右吹出口23A,23Bの上下方向の長さより長く形成した例で説明したが、本発明はこのような構成に限定されず、当該加熱装置の仕様などに応じて、左右吹出口の上下方向の長さより短く形成してもよい。
実施の形態4の加熱調理器においては、加熱室2の内容量を確保しつつ、送風ファン9とヒータ11とを有する熱源室8と、モータ13を有する駆動室12とを含めた本体1の奥行き寸法を小さくするために、熱源室23と駆動室12の合体部分の奥行き寸法を小さくしている。
実施の形態4の加熱調理器においては、奥行き寸法が小さくても送風性能が劣化しない遠心ファンである送風ファン9を用いており、吸入部分である中心部分の奥行き寸法を薄くすることが可能な送風ファン9を用いている。このため、モータ13のシャフトが貫通する熱源室背面壁14は、モータ13に近接した部分が加熱室側(前面側)に凹んだ形状であり、この凹みの内側にモータ13が配置されるよう構成されている。この結果、熱源室8と駆動室12とを合わせた奥行き方向の寸法が小さくなっている。
図7Aおよび図7Bに示すように、実施の形態4の加熱調理器においては、上記のように熱源室背面壁14を構成して、モータ13を凹み内に配置しており、熱源室8のモータ13に近接した部分(中央部分)の奥行き寸法を小さくしている。熱源室8において、モータ13に近接した部分以外(外周部分)の奥行き寸法は、中央部分に比べて大きくなっており、ヒータ11の配置空間が確保されている。また、実施の形態4の加熱調理器においては、第1の流路形成部51Aおよび第2の流路形成部51Bをヒータ11の外側の所定位置に配設するための空間が確保されている。特に、第1の流路形成部51Aおよび第2の流路形成部51Bにより形成される熱源室8内の空気流路が確保されている。なお、熱源室8の内部において、ヒータ11は送風ファン9の羽根の奥行き方向の長さの中心位置よりやや後方に配置されている。
以下、本発明に係る実施の形態4の加熱調理器における加熱動作について説明する。
実施の形態4の加熱調理器において、例えば、オーブン調理の場合、ローストチキン等の被加熱物10が中央に載せられた調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が隔壁15に接触するまで押し込まれて、ドア14が閉められ、加熱室2が加熱可能空間となる。制御部24に電気的に接続された操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
実施の形態4の加熱調理器において、例えば、オーブン調理の場合、ローストチキン等の被加熱物10が中央に載せられた調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が隔壁15に接触するまで押し込まれて、ドア14が閉められ、加熱室2が加熱可能空間となる。制御部24に電気的に接続された操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
操作部においては被加熱物10の加熱時間、加熱温度などの調理条件が設定される。操作部において設定された調理条件を示す信号がマイクロコンピュータで構成された制御部24に入力される。制御部24は、調理条件を示す信号に基づいて、ヒータ11およびモータ13などを制御する。
モータ13の回転により、送風ファン9は回転動作を開始する。送風ファン9の回転動作により、遠心ファンである送風ファン9の外周部分から渦巻き状で外向きに吹き出された空気流が発生する。送風ファン9からの空気流は、送風ファン9の外周部分を取り囲むように配置されたヒータ11により加熱されて高温の空気流(熱風)となる。また、送風ファン9からの空気流の一部は、送風ファン9の左右の位置に設けられた第1の流路形成部51Aおよび第2の流路形成部51Bの傾斜部51Aa,51Baに接触し、熱源室8の後方である熱源室背面壁14の方へ案内される。このように熱源室8の後方に案内された空気流は、送風ファン9よりやや後方に配置されたヒータ11に向かってよりおおく流れて加熱され、高温の空気流(熱風)となる。
上記のように送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の上方へ送り出された熱風は、隔壁15における上吹出口17Aから加熱室2へ吹き出され、送風ファン9の下方へ送り出された熱風は、下吹出口17Bから加熱室2へ吹き出される(図8参照)。これらの熱風は、送風ファン9の回転方向に沿った渦巻き状で外向きの風向きを有しているため、上吹出口17Aからの熱風は加熱室2の天井面21および右側面19の方向に流れ、下吹出口17Bからの熱風は加熱室2の底面20および左側面18の方向に流れる。
また、熱源室8において、送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部51Aおよび第2の流路形成部51Bに接触して、熱源室8において風向を変えて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
なお、図7Aに示す加熱動作の初期段階において、例えば第1の流路形成部51Aおよび第2の流路形成部51Bの温度が所定温度以下の場合(例えば、150℃以下の場合)、送風ファン9からの熱風は、第1の流路形成部51Aおよび第2の流路形成部51Bの各案内面である各傾斜部51Aa,51Bに接触して、熱源室背面壁14の方へ導かれ、熱源室背面壁14に沿って流れる。そして、熱源室8における左右端部において風向を変えて、再度第1の流路形成部51Aおよび第2の流路形成部51Bの方向に向かう。そこで、熱風は第1の流路形成部51Aおよび第2の流路形成部51Bの裏面により案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。このため、吹出口23A,23Bからの熱風は加熱室2の略中央に向かうように吹き出される。
また、図7Bに示す加熱動作において、例えば第1の流路形成部51Aおよび第2の流路形成部51Bの温度が所定温度を越えた場合(例えば、150℃を越えた場合)、送風ファン9からの熱風は、第1の流路形成部51Aおよび第2の流路形成部51Bの各傾斜部51Aa,51Bに接触して、熱源室背面壁14の方へ導かれ、熱源室背面壁14において風向を変え、再度第1の流路形成部51Aおよび第2の流路形成部51Bに案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。このため、吹出口23A,23Bからの熱風は加熱室2に対して前方方向に略並行に吹き出される。
上記のように、実施の形態4の加熱調理器における加熱動作においては、左右の吹出口23A,23Bから加熱室2に対して吹き出される熱風の方向が、加熱初期段階と、その後の加熱動作段階において異なるように構成されている。この結果、加熱動作において加熱室内を効率的に加熱することができると共に、加熱室内の被加熱物の状況に応じた加熱調理が可能となる。実施の形態4の加熱調理器においては、所定の条件になるまで左右の吹出口23A,23Bから加熱室2へ吹き出される熱風が加熱室2内の被加熱物10の方向に向かうよう構成されており、被加熱物10を集中的に加熱できる構成となる。
以上のように、実施の形態4の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2内に吹き出される熱風を、被加熱物10に集中させることができる。その結果、実施の形態4の加熱調理器においては、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、被加熱物に対する効率的な加熱調理が可能となる。したがって、実施の形態4の加熱調理器によれば、加熱室の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
実施の形態4の加熱調理器においては、加熱時間の経過とともにヒータ11の温度が上昇して、熱風温度が上昇することにより、バイメタルで構成された第1の流路形成部51Aおよび第2の流路形成部51Bは、貼り合わせた金属板の熱膨張率の違いにより変形する。すなわち、図7Bに示したように、第1の流路形成部51Aおよび第2の流路形成部51Bの斜行部51Aa,51Ba(案内面)は、隔壁15に対する傾斜角度がより大きくなり、隔壁15に対して垂直となる方向に立ち上がる。
上記のように、実施の形態4の加熱調理器における加熱動作においては、第1の流路形成部51Aおよび第2の流路形成部51Bの傾斜角の変化により、左右の吹出口23A,23Bからの加熱室2内に吹き出される熱風の風向が、加熱室2の中央に向かう方向から、被加熱物10である食材を包む方向に変更され、被加熱物10に直接熱風が当たらないよう風向変更される。したがって、被加熱物10が、焼き色にムラが生じやすい食材の場合、熱風が高温になると食材に直接当たらないように風向変更することができる。このため、実施の形態4の加熱調理器は、被加熱物10における焼き色のムラを防止することができる。
以上、実施の形態4の加熱調理器においては、第1の流路形成部51Aおよび第2の流路形成部51Bが設けられているため、熱源室8内の送風ファン9とヒータ11とにより生成された熱風が左右の吹出口23A,23Bから加熱室2内の中央方向に吹き出し、加熱室2を構成する壁面を直接的に加熱しないように構成されている。この結果、実施の形態4の加熱調理器は、効率的に被加熱物を加熱することができる省エネルギーを図った調理器具となる。
また、第1の流路形成部51Aおよび第2の流路形成部51Bの各傾斜部51Aa,51Ba(案内面)の傾斜部分の角度を変更することにより、左右の吹出口23A,23Bからの熱風の風向を加熱動作中に変更することができる。この結果、実施の形態4の加熱調理器は、焼き色がムラになりやすい被加熱物の場合には直接に熱風を当てずに、側壁面に沿うような風向で被加熱物を包み込むように加熱することも可能となる。
さらに、実施の形態4の加熱調理器の構成においては、加熱室2の予熱中は加熱室の中央に向かって熱風を吹き出し、熱風が所定温度を越えた調理動作中では被加熱物を包み込むように熱風を吹き出すように構成してもよい。このように構成された加熱調理器は、加熱室内に吹き込まれる熱風の風向きを変更して、加熱室内の被加熱物を加熱することもでき、調理性能を向上させることができる。
また、吹出口23A,23Bからの熱風が加熱室2内の被加熱物10に直接当たると、熱風の温度や風速などの条件によって、吹出口23A,23Bから出た熱風がすぐに吸込口16に短絡的に流れて戻ってしまい、熱風が加熱室2内に十分に行き渡らなくなる場合がある。また、吹出口23A,23Bからの熱風が加熱室2内の被加熱物10に直接当たると、条件によっては被加熱物が効率的に加熱されない場合がある。このような場合において、実施の形態4の加熱調理器においては、加熱動作中においては熱風の風向きを変更することが可能であるため、加熱室2を効率的に加熱することができると共に、被加熱物10を効率的に調理することが可能となる。
(実施の形態5)
以下、本発明に係る実施の形態5の加熱調理器について添付の図9~図11を参照して説明する。本発明に係る実施の形態5の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の形状並びに制御部の構成および制御方法である。したがって、実施の形態5の加熱調理器においては、特に流路形成部および制御部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
以下、本発明に係る実施の形態5の加熱調理器について添付の図9~図11を参照して説明する。本発明に係る実施の形態5の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の形状並びに制御部の構成および制御方法である。したがって、実施の形態5の加熱調理器においては、特に流路形成部および制御部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
図9は実施の形態5の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図10は実施の形態5の加熱調理器における制御部24の構成を示すブロック図である。図11は実施の形態5の加熱調理器における加熱調理の動作工程を示すパターン図である。
実施の形態5の加熱調理器においては、図9に示すように、隔壁15の左右の位置に設けられた第1の流路形成部52Aおよび第2の流路形成部52Bのそれぞれが、左右の吹出口23A,23Bを覆うように形成されている。第1の流路形成部52Aおよび第2の流路形成部52Bは、それぞれの吹出口23A,23Bに対向する面が凹面となる曲面で構成された曲面部52Aa,52Baと、隔壁15に固定される固定部52Ab,52Bbと、を有して構成されている。曲面部52Aa,52Baは左右吹出口23A,23Bの裏面側を覆うように形成されており、曲面部52Aa,52Baの突出端部と熱源室背面壁14との間は所定距離を有している。固定部52Ab,52Bbは、隔壁15に固定するための取付け部分であり、これらの固定部52Ab,52Bbにおいてカシメや溶接により隔壁15に固定される。
上記のように構成された第1の流路形成部52Aおよび第2の流路形成部52Bが、ヒータ11により加熱された熱風の一部を熱源室背面壁14の方向に送り、熱源室8の内部を大きく迂回するように流している。また、第1の流路形成部52Aおよび第2の流路形成部52Bは、熱源室8の内部を大きく迂回した熱風を再度案内して、左右の吹出口23A,23Bから加熱室2に対して、前方に向かってドア3の方向に吹き出すよう構成されている。したがって、実施の形態5の加熱調理器においては、左右の吹出口23A,23Bから加熱室2に対して吹き出される熱風の風向を、前述の実施の形態1の加熱調理器の構成と異なり、加熱室2の前方から中央にかけた方向に滑らかに方向転換することが可能な構成となる。
図10に示すように、実施の形態5の加熱調理器において、制御部24には、タイマー部25、風向決定部26、動作条件記憶部27、回転数制御部28が設けられている。タイマー部25は加熱調理などの運転時間を計時するものである。風向決定部26は加熱室2内に供給する熱風の風向を判断し、決定する部分である。
動作条件記憶部27には、制御部24に電気的に接続されたモータ13などの各駆動部品の加熱調理動作中の所定の動作条件が記憶されている。回転数制御部28は、送風ファン9のモータ13の回転数を変化させることにより生成される熱風の風量と風速を制御して、加熱室2内の風向を制御することが可能な部分であり、この部分が風向変更手段を構成している。
上記のように構成された実施の形態5の加熱調理器において、使用者がまず調理皿5を投入せずに、操作部(図示せず)におけるボタン操作により所定温度(例えば250℃)の予熱モードを選択して、予熱動作を開始させる。予熱動作が開始すると、図11に示すように、タイマー部25において予熱モードの経過時間の計時を始める。なお、図11において横軸は時間を示し、予熱モードの開始時間をTsとする。
また、予熱動作の開始と同時に、制御部24は、ヒータ11およびモータ13への通電を開始する。このとき、制御部24の動作条件記憶部27に記憶された予熱モードでのモータ13の動作条件に基づいて風向決定部26が判定し、回転数制御部28はモータ13の回転数を「中速」に設定する。
予熱モードにおいて、「中速」に設定されたモータ13が駆動されることにより、送風ファン9が回転して、送風ファン9により付勢されて熱風が遠心方向に送り出される。送風ファン9からの熱風の一部は、第1の流路形成部52Aおよび第2の流路形成部52Bに案内されて左右の吹出口23A,23Bから加熱室2の前方の方向へ吹き出される。このとき吹き出される熱風は、風速が速くないため、中央にある吸込口16の吸引の流れに引っ張られて、吹出口23A,23Bから吹き出される熱風は加熱室2の中央に向かう。
したがって、加熱室2の壁面が左右の吹出口23A,23Bからの熱風により直接的に吹き付けられることが無く、加熱室2の壁面の温度が、加熱室2内の空気温度より高くなることがない。このため、実施の形態5の加熱調理器においては、加熱室2の壁面温度が加熱室2内の空気温度より高くなることがなく、加熱室2の壁面から外部への放熱量が少なくなり、加熱効率が高くなり、効率高く比較的短時間で予熱動作を完了させることが可能となる。
実施の形態5の加熱調理器においては、加熱室2内の温度が所定温度(例えば、、250℃)に達したとき、使用者に対して予熱動作の完了を報知音(表示灯)などにより知らせるよう構成されている。使用者が予熱動作の完了を報知音などにより認識すると、ローストチキン等の被加熱物10が載置された調理皿5が加熱室2に投入され、加熱室2のドア3が閉められる。その後、使用者は操作部(図示無し)において所定ボタンを操作して、加熱調理器においてオーブン調理の調理動作(オーブンモード)を開始させる(オーブンモードの開始時間T1)。
このとき、タイマー部25はオーブンモードの経過時間の計時を始める。このとき同時に、動作条件記憶部27に記憶されたオーブンモードにおけるモータ13の動作条件に基づいて風向決定部26がモータ13の動作条件を決定する。風向決定部26からの信号が入力された回転数制御部28は、オーブンモードの最初の段階においてはモータ13の回転数を「中速」に設定する。
タイマー部25から入力された信号に基づいて、風向決定部26はオーブンモードが開始から所定時間(例えば、2分)を経過したことを検知すると、回転数制御部28は風向決定部26からの信号に基づいてモータ13の回転数を「高速」に変更設定する(オーブンモードの高速動作開始時間T2)。
オーブンモードにおいて、モータ13が高速回転に変更されることにより、送風ファン9からの熱風はおおくなり、第1の流路形成部52Aおよび第2の流路形成部52Bに案内されて左右の吹出口23A,23Bから加熱室2の前方の方向へ吹き出される。このとき、吹出口23A,23Bから吹き出される熱風は、十分な風速があるため、吸込口16の吸引流に引っ張られることがなく、左右の側面壁に略並行な風向で流れる。すなわち、吹出口23A,23Bからの熱風が、被加熱物10に対して直接的に吹き付けられず、被加熱物10を包み込むように加熱する。
以上のように構成された実施の形態5の加熱調理器によれば、熱源室8内の送風ファン9とヒータ11とにより生成された熱風は、2つの左右の吹出口23A,23Bから直接に加熱室2に吹き出されることなく、第1の流路形成部52Aおよび第2の流路形成部52Bに案内されて左右の熱源室8内において大きく迂回して風向を変え、各吹出口23A,23Bから加熱室2の中央に向かって、若しくは左右の側面壁に平行な方向に向かって吹き出す。このため、実施の形態5の加熱調理器の構成においては、左右の吹出口23A,23Bから吹き出された熱風が加熱室2の壁面に直接的に向かうことが防止されている。
したがって、実施の形態5の加熱調理器の構成においては、左右の吹出口23A,23Bから吹き出された熱風が加熱室2の壁面を直接加熱して被加熱物10よりも加熱室2の壁面の方が高温になることが防止されている。実施の形態5の加熱調理器は、加熱室の壁面からの放熱ロスが抑制されており、効率的に被加熱物を加熱することができる。その結果、実施の形態5の加熱調理器は、加熱室2における予熱時間や加熱調理時間のスピードを向上させることができる。
実施の形態5の加熱調理器においては、左右の吹出口23A,23Bから吹き出される熱風の風向きを流路形成部の配置およびモータ13の回転数の調整により変更することができるため、被加熱物10に対して熱風を直接的に当てることなく、加熱室の側面壁と平行な風向きで被加熱物10を包み込むように加熱することが可能となる。
また、実施の形態5の加熱調理器において、加熱室2の予熱動作中は加熱室2の中央に向かって熱風を吹き出し、調理中は被加熱物10を包み込むように風向を変更して加熱することが可能である。このため、実施の形態5の加熱調理器は、調理性能をさらに向上させることができる。
一般的な加熱調理器においては、被加熱物に対して熱風を直接に当てた場合、熱風の温度や風速などの条件によっては、吹出口から吹き出された熱風が短絡的に吸込口に戻ってしまい、加熱室の内部に熱風が十分に行き渡らなくなることがある。また、このようなときには、加熱室内の被加熱物に対する加熱効率が大幅に低下してしまうという現象が生じる場合がある。本願発明に係る実施の形態5の加熱調理器においては、調理中は被加熱物10を包み込むように風向を変更して加熱しているため、被加熱物に対する加熱効率が高く、高い調理性能を有している。
また、実施の形態5の加熱調理器においては、送風ファン9の回転数を変更することにより、風向を変更することができる風向変更手段を備えているため、左右の吹出口23A,23Bから加熱室2内に吹き込む熱風の風向きを加熱調理中に簡単に変更することができる。
実施の形態5の加熱調理器には、風向変更手段を駆動して風向きを制御する制御部24を有している。制御部24は、加熱調理の経過時間を計時するタイマー部25と、タイマー部25からの入力に基づいて熱風の風向きを判断して決定する風向決定部26と、各設定条件などにおけるモータ13など動作条件を記憶する動作条件記憶部27とを備えている。制御部24は、加熱調理器の加熱動作中において、加熱工程に応じて隔壁15における左右の吹出口23A,23Bから加熱室2内へ吹き出される熱風の風向きを制御している。このように、実施の形態5の加熱調理器は、左右の吹出口23A,23Bから吹き出される熱風の風向きを制御することができるため、加熱工程に応じて、加熱室2内に供給される熱風を好適な風向きに変更することができる。
なお、実施の形態5の加熱調理器においては、タイマー部25からの入力だけに基づいて風向決定部26において風向きを変更する構成を説明したが、本発明はこのような構成に限定されるものではなく、例えば被加熱物10の温度や焼き色を検出するセンサーを設けて、これらのセンサーの出力に基づいて風向決定部26において吹出口23A,23Bからの熱風の風向を変更するように構成しても良い。
(実施の形態6)
以下、本発明に係る実施の形態6の加熱調理器について添付の図12を参照して説明する。本発明に係る実施の形態6の加熱調理器において、前述の実施の形態5の加熱調理器と異なる点は、制御部の制御方法である。したがって、実施の形態6の加熱調理器においては、特に制御部の制御方法について説明する。実施の形態6の説明において、前述の実施の形態1から実施の形態5の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の各実施の形態の説明を援用する。
以下、本発明に係る実施の形態6の加熱調理器について添付の図12を参照して説明する。本発明に係る実施の形態6の加熱調理器において、前述の実施の形態5の加熱調理器と異なる点は、制御部の制御方法である。したがって、実施の形態6の加熱調理器においては、特に制御部の制御方法について説明する。実施の形態6の説明において、前述の実施の形態1から実施の形態5の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の各実施の形態の説明を援用する。
図12は実施の形態6の加熱調理器における加熱調理の動作工程を示すパターン図である。
図12に示されるように、使用者がまず調理皿5を投入せずに、操作部におけるボタン操作により予熱モードを選択して、予熱動作を開始させる。予熱動作が開始すると、図12に示すように、タイマー部25において予熱モードの経過時間の計時を始める。なお、図12において横軸は時間を示し、予熱モードの開始時間をTsとする。
図12に示されるように、使用者がまず調理皿5を投入せずに、操作部におけるボタン操作により予熱モードを選択して、予熱動作を開始させる。予熱動作が開始すると、図12に示すように、タイマー部25において予熱モードの経過時間の計時を始める。なお、図12において横軸は時間を示し、予熱モードの開始時間をTsとする。
また、予熱動作の開始と同時に、制御部24は、ヒータ11およびモータ13への通電を開始する。このとき、制御部24の動作条件記憶部27に記憶された予熱モードでのモータ13の動作条件に基づいて風向決定部26が判定し、回転数制御部28はモータ13の回転数を「中速」に設定する。
予熱モードにおいて、「中速」に設定されたモータ13が駆動されることにより、送風ファン9が回転して、送風ファン9により付勢されて遠心方向に送り出される。送風ファン9からの熱風の一部は、第1の流路形成部52Aおよび第2の流路形成部52Bに案内されて左右の吹出口23A,23Bから加熱室2の前方の方向へ吹き出される。このとき吹き出される熱風は、風速が速くないため、中央にある吸込口16の吸引の流れに引っ張られて、吹出口23A,23Bから風向きは加熱室2内の中央方向に向かう。このように、吹出口23A,23Bからの熱風は加熱室2内の中央方向に向かうため、効率高く、比較的短時間に予熱動作が完了する。
実施の形態6の加熱調理器においては、加熱室2内の温度が所定温度(例えば、180℃)に達したとき、使用者に対して予熱動作の完了を報知音(表示灯)などにより知らせるよう構成されている。使用者が予熱動作の完了を報知音などにより認識すると、クッキー等の被加熱物10が載置された調理皿5が加熱室2に投入され、加熱室2のドア3が閉められる。その後、使用者は操作部(図示無し)において所定ボタンを操作して、加熱調理器においてオーブン調理の調理動作(オーブンモード)を開始させる(オーブンモードの開始時間T1)。
このとき、タイマー部25はオーブンモードの経過時間の計時を始める。このとき同時に、動作条件記憶部27に記憶されたオーブンモードにおけるモータ13の動作条件に基づいて風向決定部26がモータ13の動作条件を決定する。風向決定部26からの信号が入力された回転数制御部28は、オーブンモードの最初の段階においてはモータ13の回転数を「高速」に設定する。(オーブンモードの開始時間T1)。
オーブンモードにおいて、モータ13が高速回転に設定されることにより、送風ファン9からの熱風量が増加し、第1の流路形成部52Aおよび第2の流路形成部52Bに案内されて左右の吹出口23A,23Bから加熱室2の前方の方向へ増加した熱風が吹き出される。
このとき、吹出口23A,23Bから吹き出される熱風は、十分な風速があるため、吸込口16の吸引流に引っ張られることがなく、左右の側面壁に略並行な風向きで流れる。すなわち、吹出口23A,23Bからの熱風が、被加熱物10に対して直接的に吹き付けられず、被加熱物10を包み込むように加熱する。
以上のように構成された実施の形態6の加熱調理器によれば、各吹出口23A,23Bから吹き出される熱風の風向を変更することができるため、焼き色がムラになりやすいクッキーのような被加熱物10の場合には直接に熱風を当てずに、加熱室の側面壁と平行に流れるように吹き出して、被加熱物10を包み込むように加熱することができる。
また、実施の形態6の加熱調理器において、加熱室2の予熱動作中では加熱室2内の中央方向に熱風を吹き出すように構成されており、調理動作中では被加熱物10を包み込むように熱風を吹き出すように、熱風の風向を変更して加熱するよう構成されている。この結果、実施の形態6の加熱調理器は、予熱時間のスピードアップおよび調理性能の向上を両立させることができる。
さらに、実施の形態6の加熱調理器においては、加熱動作中の各加熱工程に応じて、隔壁15における左右の吹出口23A,23Bから加熱室2の内部へ吹き出される熱風の風向を変更できるように構成されているため、加熱工程に応じて加熱室内に吹き出される熱風を好適な風向きに変更して供給することができる。
(実施の形態7)
以下、本発明に係る実施の形態7の加熱調理器について添付の図13および図14を参照して説明する。本発明に係る実施の形態7の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態7の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
以下、本発明に係る実施の形態7の加熱調理器について添付の図13および図14を参照して説明する。本発明に係る実施の形態7の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態7の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
図13は、実施の形態7の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図13に示すように、実施の形態7の加熱調理器と実施の形態1の加熱調理器との相違点は、隔壁15に設けられた第1の流路形成部61および第2の流路形成部62の構成である。図14は、実施の形態7の加熱調理器における加熱室2の背面壁となる隔壁15を後方から見た斜視図である。
加熱室2の背面壁となる隔壁15において、熱源室8側である裏面には、中央の吸込口16と左吹出口23Aとの間に第1の流路形成部61が設けられている。また、隔壁15の裏面において、中央の吸込口16と右吹出口23Bとの間には第2の流路形成部62が設けられている。第1の流路形成部61および第2の流路形成部62は、隔壁15の裏面に一端が固着され、他端が熱源室8の内部空間に突出するよう形成されている。第1の流路形成部61および第2の流路形成部62の各突出端部は、熱源室背面壁14から所定の空隙を有して配置されている。また、第1の流路形成部61および第2の流路形成部62のそれぞれは、送風ファン9を取り囲むように設けられたヒータ11と、それぞれの吹出口23A,23Bとの間に配置されている。送風ファン9、ヒータ11、第1の流路形成部61および第2の流路形成部62は、隔壁15と、熱源室背面壁14を有する内部ケース22とにより構成された熱源室8の内部空間内に設けられている。
図13および図14に示されるように、第1の流路形成部61は、縦流路形成部61Aと横流路形成部61Bにより構成されており、第2の流路形成部62は、縦流路形成部62Aと横流路形成部62Bにより構成されている。第1の流路形成部61および第2の流路形成部62における各縦流路形成部61A,62Aは、隔壁15が形成する平面に対して略45度の角度を有して外向きに開いて傾斜する傾斜部61Aa,62Aaと、隔壁15に固定される固定部61Ab,62Abとをそれぞれを有している。それぞれの固定部61Ab,62Abは、左右吹出口23A,23Bのそれぞれより中央側に配置されている。各縦流路形成部61A,62Aの傾斜部61Aa,62Aaが、左右吹出口23A,23Bの中央側を覆うように延設されている。各縦流路形成部61A,62Aの固定部61Ab,62Abは、隔壁15に固定するための取付け部分であり、これらの固定部61Ab,62Abにおいてカシメや溶接により隔壁15に確実に固定される。
また、第1の流路形成部61および第2の流路形成部62における各横流路形成部61B,62Bは、隔壁15が形成する平面に対して直角である阻止部61Ba,62Baと、隔壁15に固定される固定部61Bb,62Bbとをそれぞれを有している。
実施の形態7においては、第1の流路形成部61および第2の流路形成部62のそれぞれが金属板を折り曲げて一体的に形成されている。なお、第1の流路形成部61および第2の流路形成部62の材料としては、金属に限定されるものではなく、形状を保持できる耐熱性を有する材料であれば用いることができる。
第1の流路形成部61において、縦流路形成部61Aと横流路形成部61BはL字状に配置されて、一体的に形成されている。このように形成された第1の流路形成部61は、左吹出口23Aの周りにおける中央側(吸込口側)と上側の一部に配置されている。縦流路形成部61Aは垂直方向(鉛直方向)と平行な面を有しており、横流路形成部61Bは水平方向と平行な面を有している。
なお、実施の形態7における縦流路形成部61Aおよび横流路形成部61Bは、垂直方向や水平方向と平行な面を有する構成であるが、本発明はこのような構成に限定されるものではなく、当該加熱装置の仕様などに応じて縦流路形成部および横流路形成部を適切な角度を有する位置に配置してもよい。
縦流路形成部61Aは、送風ファン9と左吹出口23Aとの間に配置されており、送風ファン9から左方向に送り出され、ヒータ11により加熱された熱風が接触する位置に配置されている。一方、横流路形成部61Bは、送風ファン9の回転方向において、縦流路形成部61Aより下流側であり、かつ左吹出口の下流側に近接して配置されている。この横流路形成部61Bにより、送風ファン9からの熱風の一部が堰き止められて、左吹出口23Aから吹き出されるよう設けられている。
第2の流路形成部62は、第1の流路形成部61と同様に構成されており、縦流路形成部62Aと横流路形成部62BはL字状に配置されて、一体的に形成されている。第2の流路形成部62は、右吹出口23BをL字状に中央側と下側の一部に配置されている。縦流路形成部62Aは垂直方向(鉛直方向)と平行な面を有しており、横流路形成部62Bは水平方向と平行な面を有している。縦流路形成部62Aは、送風ファン9と右吹出口23Bとの間に配置されており、送風ファン9から右方向に送り出され、ヒータ11により加熱された熱風が接触する位置に配置されている。一方、横流路形成部62Bは、送風ファン9の回転方向において、縦流路形成部62Aの下流側に配置されており、送風ファン9からの熱風の一部を堰き止めて、右吹出口23Bから吹き出すよう設けられている。
図14に示すように、第1の流路形成部61および第2の流路形成部62におけるそれぞれの傾斜部61Aa,62Aa(案内面)は、隔壁15の上下方向の長さより短く、左右吹出口23A,23Bの上下方向の長さより長く形成されており、左右吹出口23A,23Bの一部を覆うように設けられている。
実施の形態7の加熱調理器においては、加熱室2の内容量を確保しつつ、送風ファン9とヒータ11とを有する熱源室8と、モータ13を有する駆動室12とを含めた本体1の奥行き寸法を小さくするために、熱源室8と駆動室12の合体部分の奥行き寸法を小さくしている。
実施の形態7の加熱調理器においては、奥行き寸法が小さくても送風性能が劣化しない遠心ファンである送風ファン9を用いており、吸入部分である中心部分の奥行き寸法を薄くすることが可能な送風ファン9を用いている。このため、モータ13のシャフトが貫通する熱源室背面壁14は、モータ13に近接した部分が加熱室側(前面側)に凹んだ形状とし、この凹みの内側にモータ13が配置されるよう構成されている。この結果、熱源室8と駆動室12とを合わせた合体部分の奥行き方向の寸法を小さくしている。
図13に示すように、実施の形態7の加熱調理器においては、上記のように熱源室背面壁14を構成して、モータ13を凹み内に配置しており、熱源室8のモータ13に近接した部分(中央部分)の奥行き寸法を小さくしている。熱源室8において、モータ13に近接した部分以外(外周部分)の奥行き寸法は、中央部分に比べて大きくなっており、ヒータ11、第1の流路形成部61および第2の流路形成部62が所定位置に配設されるように配置空間が確保されており、熱源室8の内部における空気流の通路が確保されている。特に、第1の流路形成部61および第2の流路形成部62により形成される空気流路が確実に確保されている。なお、熱源室8内において、ヒータ11は送風ファン9の羽根の奥行き方向の長さの中心位置よりやや後方に配置されている。
以下、本発明に係る実施の形態7の加熱調理器における加熱動作について説明する。
実施の形態7の加熱調理器において、例えば、オーブン調理を行う場合、クッキー等の被加熱物10が載置された調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が加熱室2の背面壁である隔壁15に接触するまで押し込まれて、ドア14が閉められ、加熱室2が加熱可能空間となる。本体1の前面に設けられた操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
実施の形態7の加熱調理器において、例えば、オーブン調理を行う場合、クッキー等の被加熱物10が載置された調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が加熱室2の背面壁である隔壁15に接触するまで押し込まれて、ドア14が閉められ、加熱室2が加熱可能空間となる。本体1の前面に設けられた操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
操作部においては被加熱物10の加熱時間、加熱温度などの調理条件が設定される。操作部において設定された調理条件を示す信号がマイクロコンピュータで構成された制御部24に入力される。制御部24は、調理条件を示す信号に基づいて、ヒータ11およびモータ13などを駆動制御する。
モータ13の回転により送風ファン9が回転動作を開始する。送風ファン9の回転動作により、遠心ファンである送風ファン9の外周部分から渦巻き状で外向きの空気流が吹き出される。送風ファン9から吹き出された空気流は、送風ファン9の外周部分を取り囲むように配置されたヒータ11により加熱されて高温の空気流となる。また、送風ファン9からの空気流の一部は、送風ファン9の左右の位置に設けられた第1の流路形成部61および第2の流路形成部62の傾斜部61Aa,62Aaに接触し、熱源室8の後方である熱源室背面壁14の方へ案内される。このように熱源室8の後方に案内された空気流は、送風ファン9よりやや後方に配置されたヒータ11に向かってよりおおく流れて加熱され、高温の空気流(熱風)となる。
また、実施の形態7の加熱調理器においては、第1の流路形成部61および第2の流路形成部62の堰止部61Ba,62Baが送風ファン9の外周部分から渦巻き状で外向きの空気流の一部を堰き止めて集め、左右の吹出口23A,23Bに流すように案内している。このため、実施の形態7の加熱調理器においては、左右の吹出口23A,23Bからおおくの空気流が吹き出されるよう構成されている。
上記のように送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の上方へ送り出された熱風は、隔壁15における上吹出口17Aから加熱室2へ吹き出され、送風ファン9の下方へ送り出された熱風は、下吹出口17Bから加熱室2に吹き出される。これらの熱風は、送風ファン9の回転方向に沿った渦巻き状で外向きの風向を有しているため、上吹出口17Aからの熱風は加熱室の天井面21および右側面19の方向に流れ、下吹出口17Bからの熱風は加熱室2の底面20および左側面18の方向に流れる。
また、熱源室8において、送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部61および第2の流路形成部62における傾斜部61Aa,62Aa(案内面)に接触して、熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変え、再度第1の流路形成部61および第2の流路形成部62の方向に向かう。次に、熱風は第1の流路形成部61および第2の流路形成部62の傾斜部61Aa,62Aaの裏面(案内面の裏面)により案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8の内部において、その左右端部から中央へ向かう方向に流れている。このため、加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱できるように流れる。
以上のように、実施の形態7の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2内に吹き出される熱風を、被加熱物10が集中的に加熱されるように流すことができる。その結果、実施の形態7の加熱調理器においては、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室2を効率高く加熱し、被加熱物10に対する効率的な加熱調理が可能となる。したがって、実施の形態7の加熱調理器によれば、加熱室の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
(実施の形態8)
以下、本発明に係る実施の形態8の加熱調理器について添付の図15を参照して説明する。本発明に係る実施の形態8の加熱調理器において、前述の実施の形態1および実施の形態7の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態8の加熱調理器においては、特に流路形成部について説明し、実施の形態1および実施の形態7の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1および実施の形態7の説明を援用する。
以下、本発明に係る実施の形態8の加熱調理器について添付の図15を参照して説明する。本発明に係る実施の形態8の加熱調理器において、前述の実施の形態1および実施の形態7の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態8の加熱調理器においては、特に流路形成部について説明し、実施の形態1および実施の形態7の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1および実施の形態7の説明を援用する。
図15は、実施の形態8の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図15に示すように、実施の形態8の加熱調理器と実施の形態7の加熱調理器との相違点は、加熱室2の背面壁となる隔壁15に設けられた第1の流路形成部63および第2の流路形成部64の形状である。実施の形態8の加熱調理器においては、第1の流路形成部63および第2の流路形成部64におけるそれぞれの傾斜部(案内面)が曲面で構成されている。
第1の流路形成部63は、前述の図14に示した実施の形態7の第1の流路形成部61と同様に、縦流路形成部63Aと横流路形成部63Bを有して一体的に構成されている。縦流路形成部63Aは、左吹出口23Aに対向する面が凹面となる傾斜部と、加熱室2の背面壁である隔壁15に固定するための固定部とを有している。また、横流路形成部63Bは、水平方向の面を有する阻止部と、加熱室2の背面壁である隔壁15に固定するための固定部とを有している。
また、第2の流路形成部64は、第1の流路形成部63と同様に、縦流路形成部64Aと横流路形成部64Bを有して一体的に構成されている。縦流路形成部64Aは、右吹出口23Bに対向する面が凹面となる傾斜部と、隔壁15に固定するための固定部とを有している。また、横流路形成部64Bは、水平方向の面を有する阻止部と、隔壁15に固定するための固定部とを有している。
なお、実施の形態8の加熱調理器においては、第1の流路形成部63および第2の流路形成部64を隔壁15に固定(カシメ加工または溶接により固着)する構成で説明するが、第1の流路形成部63および第2の流路形成部64が熱源室8を形成する他の部材に固定して、左右吹出口23A,23Bに対して所定の位置に配設するよう構成してもよい。
上記のように構成された実施の形態8の加熱調理器における熱源室8において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部63の傾斜部における滑らかな曲面(凸面)および第2の流路形成部64の傾斜部における滑らかな曲面(凸面)である案内面に接触して、熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変えて大きく迂回し、再度第1の流路形成部63および第2の流路形成部64の方向に流れる。そこで、熱風は、第1の流路形成部63の傾斜部の滑らかな曲面(凹面)および第2の流路形成部64の傾斜部の滑らかな曲面(凹面)である案内面の裏面により案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8の内部において、その左右端部から中央へ向かう方向に流れている。このため、熱風は、左右の吹出口23A,23Bから加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱するように流れる。
そして、第1の流路形成部63および第2の流路形成部64におけるそれぞれの傾斜部(案内面)曲面の固定部側において、曲面端部と隔壁15とがなす角度を調整することにより、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風の風向を調節することができる。
実施の形態8の加熱調理器においては、第1の流路形成部63および第2の流路形成部64におけるそれぞれの傾斜部(案内面)が滑らかな曲面で形成されているため、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風の風向は、前述の実施の形態7の加熱調理器に比べて、加熱室2の前方方向に滑らかに向けることが可能となる。
以上のように、実施の形態8の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2に吹き出す熱風を被加熱物10に対して前方から中央にかけた方向に滑らかに方向転換して流すことができる。その結果、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室2を効率高く加熱し、被加熱物10に対して効率的な加熱調理が可能となる。したがって、実施の形態8の加熱調理器によれば、加熱室2の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
(実施の形態9)
以下、本発明に係る実施の形態9の加熱調理器について添付の図16および図17を参照して説明する。本発明に係る実施の形態9の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態9の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
以下、本発明に係る実施の形態9の加熱調理器について添付の図16および図17を参照して説明する。本発明に係る実施の形態9の加熱調理器において、前述の実施の形態1の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態9の加熱調理器においては、特に流路形成部について説明し、実施の形態1の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1の説明を援用する。
図16は、実施の形態9の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図16に示すように、実施の形態9の加熱調理器と実施の形態1の加熱調理器との相違点は、加熱室2の背面壁である隔壁15に設けられた第1の流路形成部65および第2の流路形成部66の構成である。図17は、実施の形態9の加熱調理器における加熱室2の背面壁である隔壁15を後方から見た斜視図である。
加熱室2の背面壁である隔壁15において、熱源室8側である裏面には、中央の吸込口16と左吹出口23Aとの間に第1の流路形成部65が設けられている。また、隔壁15の裏面において、中央の吸込口16と右吹出口23Bとの間には第2の流路形成部66が設けられている。第1の流路形成部65および第2の流路形成部66は、隔壁15の裏面に一端が固着され、他端が熱源室8の内部空間に突出するよう形成されている。第1の流路形成部65および第2の流路形成部66の各突出端部は、熱源室背面壁14から所定の空隙を有して配置されている。また、第1の流路形成部65および第2の流路形成部66は、送風ファン9を取り囲むように配置されたヒータ11と、それぞれの吹出口23A,23Bとの間に設けられている。送風ファン9、ヒータ11、第1の流路形成部65および第2の流路形成部66は、隔壁15と、熱源室背面壁14を有する内部ケース22とにより構成された熱源室8の内部に設けられている。
図16および図17に示されるように、第1の流路形成部65は、縦流路形成部65A、横流路形成部65B、および天井流路形成部65Cにより構成されている。また、第2の流路形成部66は、縦流路形成部66A、横流路形成部66B、および天井流路形成部66Cにより構成されている。第1の流路形成部65および第2の流路形成部66における各縦流路形成部65A,66Aは、隔壁15が構成する平面に対して略45度の角度を有して外向きに開いて傾斜する傾斜部65Aa,66Aaと、隔壁15に固定される固定部65Ab,66Abとをそれぞれを有している。
各縦流路形成部65A,66Aの傾斜部65Aa,66Aaは、左右吹出口23A,23Bの裏面側の一部を覆うように延設されており、傾斜部65Aa,66Aaの突出端部と熱源室背面壁14との間は所定の間隙を有している。各縦流路形成部65A,66Aの固定部65Ab,66Abは、隔壁15に固定するための取付け部分であり、これらの固定部65Ab,66Abにおいてカシメや溶接により隔壁15に確実に固定される。
また、第1の流路形成部65および第2の流路形成部66における各横流路形成部65B,66Bは、隔壁15が形成する平面に対して直角である阻止部65Ba,66Baと、隔壁15に固定される固定部65Bb,66Bbとをそれぞれを有している。
実施の形態9においては、第1の流路形成部65および第2の流路形成部66のそれぞれが金属板を折り曲げて一体的に形成されている。なお、第1の流路形成部65および第2の流路形成部66の材料としては、金属に限定されるものではなく、形状を保持できる耐熱性を有する材料であれば用いることができる。
第1の流路形成部65において、縦流路形成部65Aと横流路形成部65BはL字状に配置されており、左吹出口23Aの周りにおける中央側(吸込口側)と上側の一部に配置されている。また、縦流路形成部65Aと横流路形成部65Bにおける熱源室背面壁14に突出する端部が天井面となる天井流路形成部65Cにより覆われて、一体的に形成されている。このように構成された第1の流路形成部61は、左吹出口23Aの周りをL字状に囲んでいる。縦流路形成部65Aは垂直方向(鉛直方向)と平行な面を有しており、横流路形成部65Bは水平方向と平行な面を有している。天井流路形成部65Cは隔壁15と実質的に平行な面により構成されている。
なお、実施の形態9における縦流路形成部65Aおよび横流路形成部65Bは、垂直方向や水平方向と平行な面を有する構成であるが、本発明はこのような構成に限定されるものではなく、当該加熱装置の仕様などに応じて縦流路形成部および横流路形成部を適切な角度を有する位置に配置してもよい。
縦流路形成部65Aは、送風ファン9と左吹出口23Aとの間に配置されており、送風ファン9から左方向に送り出され、ヒータ11により加熱された熱風が接触する位置に配置されている。一方、横流路形成部65Bは、送風ファン9の回転方向において、縦流路形成部65Aより下流側に近接して配置されており、送風ファン9からの熱風の一部を堰き止めて集め、左吹出口23Aから吹き出すよう設けられている。
第2の流路形成部66は、第1の流路形成部65と同様に構成されており、縦流路形成部66Aと横流路形成部66BはL字状に配置されている。また、縦流路形成部66Aと横流路形成部66Bにおける熱源室背面壁14に突出する端部が天井面となる天井流路形成部66Cにより覆われて、一体的に形成されている。このように構成された第2の流路形成部66は、右吹出口23Bの外側をL字状に中央側と下側の一部に配置されている。縦流路形成部66Aは垂直方向(鉛直方向)と平行な面を有しており、横流路形成部66Bは水平方向と平行な面を有している。天井流路形成部66Cは隔壁15と実質的に平行な面により構成されている。
縦流路形成部66Aは、送風ファン9と右吹出口23Bとの間に配置されており、送風ファン9から右方向に送り出され、ヒータ11により加熱された熱風が接触する位置に配置されている。一方、横流路形成部66Bは、送風ファン9の回転方向において、縦流路形成部66Aより下流側に近接して配置されており、送風ファン9からの熱風の一部を堰き止めて集め、右吹出口23Bから吹き出すよう設けられている。
図17に示すように、第1の流路形成部65および第2の流路形成部66におけるそれぞれの傾斜部65Aa,66Aa(案内面)は、隔壁15の上下方向の長さより短く、左右吹出口23A,23Bの上下方向の長さより長く形成されており、左右吹出口23A,23Bの一部を覆うように設けられている。
実施の形態9の加熱調理器においては、加熱室2の内容量を確保しつつ、送風ファン9とヒータ11とを有する熱源室8と、モータ13を有する駆動室12とを含めた本体1の奥行き寸法を小さくするために、熱源室8と駆動室12の合体部分の奥行き寸法を小さくしている。
実施の形態9の加熱調理器においては、奥行き寸法が小さくても送風性能が劣化しない遠心ファンである送風ファン9を用いており、吸入部分である中心部分の奥行き寸法を薄くすることが可能な送風ファン9を用いている。このため、モータ13のシャフトが貫通する熱源室背面壁14は、モータ13に近接した部分が加熱室側(前面側)に凹んだ形状とし、この凹みの内側にモータ13が配置されるよう構成されている。この結果、熱源室8と駆動室12とを合わせた奥行き方向の寸法を小さくしている。
図16に示すように、実施の形態9の加熱調理器においては、上記のように熱源室背面壁14を構成して、モータ13を凹み内に配置しており、熱源室8のモータ13に近接した部分(中央部分)の奥行き寸法を小さくしている。熱源室8において、モータ13に近接した部分以外の部分(外周部分)の奥行き寸法は、中央部分に比べて大きくなっており、ヒータ11、第1の流路形成部65および第2の流路形成部66が所定位置に配設されるように配置空間が確保されており、熱源室8の内部における空気流の通路が確保されている。特に、第1の流路形成部65および第2の流路形成部66により形成される空気流路が確実に確保されている。なお、熱源室8内において、ヒータ11は送風ファン9の羽根の奥行き方向の長さの中心位置よりやや後方に配置されている。
以下、本発明に係る実施の形態9の加熱調理器における加熱動作について説明する。
実施の形態9の加熱調理器において、例えば、オーブン調理を行う場合、クッキー等の被加熱物10が載置された調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が隔壁15に接触するまで押し込まれて、ドア14を閉められ、加熱室2が加熱可能空間となる。本体1の前面に設けられた操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
実施の形態9の加熱調理器において、例えば、オーブン調理を行う場合、クッキー等の被加熱物10が載置された調理皿5を、加熱室2の左右壁面に設けられた支持部4に係止させて、加熱室2内に挿入する。調理皿5が隔壁15に接触するまで押し込まれて、ドア14を閉められ、加熱室2が加熱可能空間となる。本体1の前面に設けられた操作部(図示せず)にある所定ボタンが操作されることにより、当該加熱調理器におけるオーブン調理が開始される。
操作部においては被加熱物10の加熱時間、加熱温度などの調理条件が設定される。操作部において設定された調理条件を示す信号がマイクロコンピュータで構成された制御部24に入力される。制御部24は、調理条件を示す信号に基づいて、ヒータ11およびモータ13などを制御する。
モータ13の回転により送風ファン9が回転動作を開始する。送風ファン9の回転動作により、遠心ファンである送風ファン9の外周部分から渦巻き状外向きの空気流が吹き出される。送風ファン9から吹き出された空気流は、送風ファン9の外周部分を取り囲むように配置されたヒータ11により加熱されて高温の空気流となる。また、送風ファン9からの空気流の一部は、送風ファン9の左右の位置に設けられた第1の流路形成部65および第2の流路形成部66の傾斜部65Aa,66Aaに接触し、熱源室8の後方である熱源室背面壁14の方へ案内される。このように熱源室8の後方に案内された空気流は、送風ファン9よりやや後方に配置されたヒータ11に向かってよりおおく流れて加熱され、高温の空気流となる。
また、実施の形態9の加熱調理器においては、第1の流路形成部65および第2の流路形成部66の阻止部65Ba,66Baが送風ファン9の外周部分から渦巻き状で外向きの空気流の一部を堰き止めて集め、左右の吹出口23A,23Bに流すように案内している。このため、実施の形態9の加熱調理器においては、左右の吹出口23A,23Bからおおくの空気流が吹き出されるよう構成されている。さらに、実施の形態9の加熱調理器においては、第1の流路形成部65および第2の流路形成部66には天井流路形成部65C,66Cが形成されているため、送風ファン9の外周部分から渦巻き状で外向きの空気流の一部を確実に左右の吹出口23A,23Bに流すように案内している。
上記のように送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の上方へ送り出された熱風は、隔壁15における上吹出口17Aから加熱室2へ吹き出される。また、送風ファン9の下方へ送り出された熱風は、下吹出口17Bから加熱室2に吹き出される。これらの熱風は、送風ファン9の回転方向に沿った渦巻き状で外向きの風向を有しているため、上吹出口17Aからの熱風は加熱室の天井面21および右側面19の方向に流れ、下吹出口17Bからの熱風は加熱室2の底面20および左側面18の方向に流れる。
また、熱源室8において、送風ファン9により外周側へ送り出され、ヒータ11により加熱された熱風において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部65および第2の流路形成部66における傾斜部65Aa,66Aa(案内面)に接触して、熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変えて大きく迂回して、再度第1の流路形成部65および第2の流路形成部66の方向へ流れる。次に、熱風は第1の流路形成部65および第2の流路形成部66の傾斜部65Aa,66Aaの裏面(案内面の裏面)に案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8の内部において、その左右端部から中央へ向かう方向に流れている。このため、加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱するように流れる。
以上のように、実施の形態9の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2内に吹き出される熱風を、被加熱物10が集中的に加熱されるように流すことができる。その結果、実施の形態9の加熱調理器においては、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室2を効率高く加熱し、被加熱物10に対する効率的な加熱調理が可能となる。したがって、実施の形態9の加熱調理器によれば、加熱室の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
(実施の形態10)
以下、本発明に係る実施の形態10の加熱調理器について添付の図18を参照して説明する。本発明に係る実施の形態10の加熱調理器において、前述の実施の形態1および実施の形態9の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態10の加熱調理器においては、特に流路形成部について説明し、実施の形態1および実施の形態9の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1および実施の形態9の説明を援用する。
以下、本発明に係る実施の形態10の加熱調理器について添付の図18を参照して説明する。本発明に係る実施の形態10の加熱調理器において、前述の実施の形態1および実施の形態9の加熱調理器と異なる点は、熱源室内に設けられた流路形成部の構成である。したがって、実施の形態10の加熱調理器においては、特に流路形成部について説明し、実施の形態1および実施の形態9の加熱調理器と同じ機能、構成を有する要素には同じ符号を付して、その説明は前述の実施の形態1および実施の形態9の説明を援用する。
図18は、実施の形態10の加熱調理器における加熱室の後方にある熱源室と駆動室を示す平面断面図である。図18に示すように、実施の形態10の加熱調理器と実施の形態9の加熱調理器との相違点は、加熱室2の背面壁となる隔壁15に設けられた第1の流路形成部67および第2の流路形成部68の形状である。実施の形態10の加熱調理器においては、第1の流路形成部67および第2の流路形成部68におけるそれぞれの傾斜部(案内面)が曲面で構成されている。
第1の流路形成部67は、前述の図16に示した実施の形態9の第1の流路形成部65と同様に、縦流路形成部67A、横流路形成部67B、および天井流路形成部67Cにより構成されている。縦流路形成部67Aは、左吹出口23Aに対向する面が凹面となる傾斜部と、加熱室2の背面壁である隔壁15に固定するための固定部とを有している。横流路形成部67Bは、水平方向の面を有する阻止部と、隔壁15に固定するための固定部とを有している。
また、第2の流路形成部68は、第1の流路形成部67と同様に、縦流路形成部68A、横流路形成部68B、および天井流路形成部68Cにより構成されている。縦流路形成部68Aは、右吹出口23Bに対向する面が凹面となる傾斜部と、隔壁15に固定するための固定部とを有している。また、横流路形成部68Bは、水平方向の面を有する阻止部と、隔壁15に固定するための固定部とを有している。
なお、実施の形態10の加熱調理器においては、第1の流路形成部67および第2の流路形成部68を隔壁15に固定(カシメ加工または溶接により固着)する構成で説明するが、第1の流路形成部67および第2の流路形成部68が熱源室8を形成する他の部材に固定して、左右吹出口23A,23Bに対して所定の位置に設ける構成でもよい。
上記のように構成された実施の形態10の加熱調理器における熱源室8において、送風ファン9の左右方向に送り出された熱風は、第1の流路形成部67の傾斜部における滑らかな曲面(凸面)および第2の流路形成部68の傾斜部における滑らかな曲面(凸面)である案内面に接触して、熱源室背面壁14の方へ導かれる。熱源室背面壁14に導かれた熱風は、熱源室背面壁14に沿って流れ、熱源室8における左右端部において風向を変えて大きく迂回し、再度第1の流路形成部67および第2の流路形成部68の方向に流れる。そこで、熱風は、第1の流路形成部67の傾斜部の滑らかな曲面(凹面)および第2の流路形成部68の傾斜部の滑らかな曲面(凹面)である案内面の裏面により案内されて、それぞれの吹出口23A,23Bから加熱室2へ吹き出される。
この時、左右の吹出口23A,23Bから加熱室2に吹き出される熱風は、熱源室8の内部において、その左右端部から中央へ向かう方向に流れている。このため、熱風は、左右の吹出口23A,23Bから加熱室2の略中央に向かうように吹き出される。すなわち、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風はいずれも加熱室2内の被加熱物10の方向に向かい、被加熱物10を集中的に加熱するように流れる。
そして、第1の流路形成部67および第2の流路形成部68におけるそれぞれの傾斜部(案内面)曲面の固定部側において、曲面端部と隔壁15とがなす角度を調整することにより、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風の風向を調節することができる。
実施の形態10の加熱調理器においては、第1の流路形成部67および第2の流路形成部68におけるそれぞれの傾斜部(案内面)が滑らかな曲面で形成されているため、左右の吹出口23A,23Bから加熱室2へ吹き出される熱風の風向は、前述の実施の形態9の加熱調理器に比べて、加熱室2の前方方向に滑らかに向けることが可能となる。
以上のように、実施の形態10の加熱調理器によれば、熱源室8から左右の吹出口23A,23Bを通って加熱室2に吹き出す熱風を滑らかに方向転換して、前方から中央にかけた方向に流すことができる。その結果、熱風が加熱室2の壁面ばかりを加熱することに起因する加熱損失を大幅に抑制することができ、加熱室2内を効率高く加熱し、被加熱物10に対して効率的な加熱調理が可能となる。したがって、実施の形態10の加熱調理器によれば、加熱室2の予熱時間および調理時間を短くすることができ、調理のスピードを向上させることができる。
なお、前述の各実施の形態の加熱調理器においては、熱源室背面壁に凹みを形成して、その凹みにモータ13を配置するよう構成することにより、加熱室2の後方に配置される熱源室8と駆動室12の薄型化を達成することが可能となり、加熱室の容量を確保しつつ、装置全体の奥行き寸法を小さくすることができると共に、高い省エネルギー性能を有する加熱調理器を提供することができる。
また、前述の各実施の形態の加熱調理器においては、ヒータ11として、環状のシーズヒータを使用した例で説明したが、シーズヒータの表面に複数の放熱フィンを設けたヒータを用いることにより、送風ファン9からの空気に対する加熱を効率高く行うことが可能となる。
なお、前述の各実施の形態において加熱調理器を例として説明した本発明の加熱装置においては、おおくの熱風を吹出口から加熱室内の中央方向に吹き出すように構成されているため、加熱室内の被加熱物に対して効率高い加熱が可能となり、加熱室の予熱動作や加熱動作における時間の短縮を図ることができる。
本発明の加熱装置においては、吹出口からの熱風の風向を変更することが可能であるため、例えば加熱調理器において焼きムラになりやすい被加熱物の場合には、当該被加熱物に直接に熱風を当てずに、被加熱物を包み込むように加熱することが可能となり、加熱動作中において熱風の風向を変更することが可能となる。
本発明は、家庭用の対流加熱によるオーブン機能を有する電子レンジ若しくは電気オーブン、業務用の各種オーブン加熱装置、乾燥装置などの工業分野での加熱装置、陶芸用加熱装置、焼結装置、または生体化学反応等の用途に用いる加熱装置などの各種加熱装置に適用できる。
1 本体
2 加熱室
3 ドア
4 支持部
5 調理皿
8 熱源室
9 送風ファン
10 被加熱物
11 ヒータ
12 駆動室
13 モータ
14 熱源室背面壁
15 隔壁
16 吸込口
17A 上吹出口
17B 下吹出口
23A 左吹出口
23B 右吹出口
30A 第1の流路形成部
30B 第2の流路形成部
2 加熱室
3 ドア
4 支持部
5 調理皿
8 熱源室
9 送風ファン
10 被加熱物
11 ヒータ
12 駆動室
13 モータ
14 熱源室背面壁
15 隔壁
16 吸込口
17A 上吹出口
17B 下吹出口
23A 左吹出口
23B 右吹出口
30A 第1の流路形成部
30B 第2の流路形成部
Claims (15)
- 被加熱物を収納する加熱室、および
前記加熱室との間の隔壁に形成された吸込口と複数の吹出口とにより前記加熱室と連通する熱源室、を備え、
前記熱源室の内部には、空気流を形成する送風部と、前記空気流を加熱する加熱部と、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させて、前記熱源室内の少なくとも一部空間を巡回させた後、前記複数の吹出口における少なくとも1つの吹出口から前記加熱室の中央に向かって吹き出す流路を形成する流路形成部と、が設けられた加熱装置。 - 前記流路形成部は、前記加熱部から前記吹出口までの空気流路の間に配置された請求項1に記載の加熱装置。
- 前記流路形成部は、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させる案内面を有し、前記案内面により前記隔壁に対向する面の方向に移動した空気流が、前記熱源室内の少なくとも一部空間を巡回した後に前記案内面の裏面に接触して前記吹出口より吹き出されるよう構成された請求項1に記載の加熱装置。
- 前記送風部が、前記隔壁の吸込口から前記加熱室の内部の空気を吸い込み遠心方向に空気を放出する遠心ファンであり、前記送風部の外周を取り囲むように前記加熱部が設けられている請求項3に記載の加熱装置。
- 前記案内面の少なくとも一部が前記送風部の回転軸の軸方向に対して所定角度傾斜した傾斜面を有する請求項3に記載の加熱装置。
- 前記案内面の少なくとも一部が曲面で構成された請求項3に記載の加熱装置。
- 前記案内面は、前記吹出口から所定距離を有して、少なくとも前記吹出口の全体を覆うように構成された請求項3に記載の加熱装置。
- 前記案内面の少なくとも一部が前記送風部の回転軸の軸方向に対して所定角度傾斜した傾斜面を有し、前記傾斜面の角度を変えることにより、前記吹出口から吹き出される空気流の方向を変更するよう構成された請求項3に記載の加熱装置。
- 前記送風部の回転数を変更することにより前記吹出口から吹き出される空気流の方向を変更するよう構成された請求項3に記載の加熱装置。
- 前記流路形成部は、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させる案内面を有し、前記案内面により前記隔壁に対向する面の方向に移動した空気流が、前記熱源室内の少なくとも一部空間を巡回した後に前記案内面の裏面に接触して前記吹出口より吹き出すよう構成された縦流路形成部と、
前記送風部により形成される空気流の流動方向において、前記吹出口より下流側に設けられ、前記送風部からの空気流の一部を堰き止めて前記吹出口より吹き出すよう配置された堰止面を有する横流路形成部と、を備えた請求項1に記載の加熱装置。 - 前記流路形成部は、前記加熱部により加熱された空気流を前記隔壁に対向する面の方向に移動させる案内面を有し、前記案内面により前記隔壁に対向する面の方向に移動した空気流が、前記熱源室内の少なくとも一部空間を巡回した後に前記案内面の裏面に接触して前記吹出口より吹き出すよう構成された縦流路形成部と、
前記送風部により形成される空気流の流動方向において、前記吹出口より下流側に設けられ、前記送風部からの空気流の一部を堰き止めて前記吹出口より吹き出すように配置された堰止面を有する横流路形成部と、
前記吹出口から所定間隔を有して前記吹出口を覆う天井面を有し、前記縦流路形成部と前記横流路形成部とを連続させる天井流路形成部と、を備えた請求項1に記載の加熱装置。 - 前記縦流路形成部の案内面と前記横流路形成部の堰止面が前記吹出口の周りに配置され、前記案内面と前記堰止面が直交するよう構成された請求項10又は11に記載の加熱装置。
- 前記送風部が、前記隔壁の吸込口から前記加熱室の内部の空気を吸い込み遠心方向に空気を放出する遠心ファンであり、前記送風部の外周を取り囲むように前記加熱部が設けられている請求項10又は11に記載の加熱装置。
- 前記案内面の少なくとも一部が前記送風部の回転軸の軸方向に対して所定角度傾斜した傾斜面を有する請求項10又は11に記載の加熱装置。
- 前記案内面の少なくとも一部が曲面で構成された請求項10又は11に記載の加熱装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11732818.7A EP2527745A4 (en) | 2010-01-18 | 2011-01-17 | Heating device |
CN201180006296.2A CN102713443B (zh) | 2010-01-18 | 2011-01-17 | 加热装置 |
JP2011549951A JP5830685B2 (ja) | 2010-01-18 | 2011-01-17 | 加熱装置 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010007729 | 2010-01-18 | ||
JP2010-007729 | 2010-01-18 | ||
JP2010028487 | 2010-02-12 | ||
JP2010-028487 | 2010-02-12 | ||
JP2010-048713 | 2010-03-05 | ||
JP2010-048714 | 2010-03-05 | ||
JP2010048714 | 2010-03-05 | ||
JP2010048713 | 2010-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086948A1 true WO2011086948A1 (ja) | 2011-07-21 |
Family
ID=44304221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000190 WO2011086948A1 (ja) | 2010-01-18 | 2011-01-17 | 加熱装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2527745A4 (ja) |
JP (1) | JP5830685B2 (ja) |
CN (1) | CN102713443B (ja) |
TW (1) | TW201144722A (ja) |
WO (1) | WO2011086948A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014234939A (ja) * | 2013-05-31 | 2014-12-15 | パナソニック株式会社 | 加熱調理器 |
JP2015081736A (ja) * | 2013-10-23 | 2015-04-27 | 東芝ホームテクノ株式会社 | 加熱調理器 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101520612B1 (ko) * | 2013-04-30 | 2015-05-15 | 동부대우전자 주식회사 | 조리장치 |
DE102016212162A1 (de) * | 2016-07-04 | 2018-01-04 | Convotherm-Elektrogeräte Gmbh | Gewerbliches Gargerät |
US11388787B2 (en) * | 2016-11-30 | 2022-07-12 | Illinois Tool Works Inc. | Convection system for employment with an RF oven |
TR201710035A2 (tr) * | 2017-07-07 | 2019-01-21 | Vestel Beyaz Esya Sanayi Ve Ticaret Anonim Sirketi | Bir Pişirici Cihaz Ve Çalışma Yöntemi |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06347041A (ja) | 1993-06-07 | 1994-12-20 | Toshiba Corp | 加熱調理器 |
JPH07111256B2 (ja) | 1986-05-15 | 1995-11-29 | 株式会社東芝 | 熱風循環式調理器 |
JPH08200684A (ja) * | 1995-01-31 | 1996-08-06 | Toshiba Corp | 加熱調理器 |
JP2004353922A (ja) | 2003-05-28 | 2004-12-16 | Sharp Corp | 加熱調理器 |
JP2006071124A (ja) | 2004-08-31 | 2006-03-16 | Sharp Corp | 加熱調理器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3529582A (en) * | 1968-12-09 | 1970-09-22 | Gen Electric | Self-cleaning forced convection oven |
JPS5623320U (ja) * | 1979-07-31 | 1981-03-02 | ||
GB2173680B (en) * | 1985-04-12 | 1988-09-07 | Microwave Ovens Ltd | Microwave ovens |
JP2539701B2 (ja) * | 1990-09-06 | 1996-10-02 | リンナイ株式会社 | 加熱調理器 |
US5601070A (en) * | 1996-06-17 | 1997-02-11 | Middleby Marshall, Inc. | Convection oven |
JP3708337B2 (ja) * | 1998-09-02 | 2005-10-19 | 松下電器産業株式会社 | 蒸気処理器 |
JP2003302058A (ja) * | 2002-04-09 | 2003-10-24 | Sharp Corp | 加熱調理器 |
JP2004028513A (ja) * | 2002-06-28 | 2004-01-29 | Hitachi Hometec Ltd | 加熱調理器 |
JP4369282B2 (ja) * | 2004-04-15 | 2009-11-18 | シャープ株式会社 | 加熱調理器 |
EP1793171A1 (en) * | 2004-08-31 | 2007-06-06 | Sharp Kabushiki Kaisha | Heating cooking apparatus |
EP2013542B1 (en) * | 2006-05-01 | 2016-01-27 | Arçelik Anonim Sirketi | An oven |
ATE550608T1 (de) * | 2008-06-26 | 2012-04-15 | V Zug Ag | Heissluft-backofen mit umlenkblechen |
CN201306759Y (zh) * | 2008-11-05 | 2009-09-09 | 美的集团有限公司 | 一种微波炉 |
-
2011
- 2011-01-17 CN CN201180006296.2A patent/CN102713443B/zh active Active
- 2011-01-17 JP JP2011549951A patent/JP5830685B2/ja active Active
- 2011-01-17 TW TW100101632A patent/TW201144722A/zh unknown
- 2011-01-17 WO PCT/JP2011/000190 patent/WO2011086948A1/ja active Application Filing
- 2011-01-17 EP EP11732818.7A patent/EP2527745A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111256B2 (ja) | 1986-05-15 | 1995-11-29 | 株式会社東芝 | 熱風循環式調理器 |
JPH06347041A (ja) | 1993-06-07 | 1994-12-20 | Toshiba Corp | 加熱調理器 |
JPH08200684A (ja) * | 1995-01-31 | 1996-08-06 | Toshiba Corp | 加熱調理器 |
JP2004353922A (ja) | 2003-05-28 | 2004-12-16 | Sharp Corp | 加熱調理器 |
JP2006071124A (ja) | 2004-08-31 | 2006-03-16 | Sharp Corp | 加熱調理器 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2527745A4 * |
TOKKYO ICHIRO: "Variations of Hand Scanner", PATENT COMPANY PUBLICATION |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014234939A (ja) * | 2013-05-31 | 2014-12-15 | パナソニック株式会社 | 加熱調理器 |
JP2015081736A (ja) * | 2013-10-23 | 2015-04-27 | 東芝ホームテクノ株式会社 | 加熱調理器 |
Also Published As
Publication number | Publication date |
---|---|
EP2527745A4 (en) | 2017-12-13 |
JPWO2011086948A1 (ja) | 2013-05-20 |
CN102713443B (zh) | 2014-10-15 |
TW201144722A (en) | 2011-12-16 |
JP5830685B2 (ja) | 2015-12-09 |
EP2527745A1 (en) | 2012-11-28 |
CN102713443A (zh) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5830685B2 (ja) | 加熱装置 | |
JP6263745B2 (ja) | 加熱調理器 | |
JP5242250B2 (ja) | 加熱調理器 | |
WO2010024381A1 (ja) | 加熱調理器 | |
JP6898140B2 (ja) | 加熱調理器 | |
JP6402367B2 (ja) | マイクロ波加熱装置 | |
JP2002206748A (ja) | 電子レンジの加熱装置 | |
CN102216690A (zh) | 双风扇对流性能分配器 | |
JP5280527B2 (ja) | 加熱装置 | |
JP6382153B2 (ja) | 加熱調理器 | |
JP6114920B2 (ja) | 加熱調理器 | |
JP2004028513A (ja) | 加熱調理器 | |
JP2011080710A (ja) | 加熱装置 | |
JP2003074865A (ja) | 複合加熱調理装置 | |
JP3823033B2 (ja) | 加熱調理装置 | |
JP3787503B2 (ja) | 加熱調理器 | |
JP2010243116A (ja) | 加熱調理器 | |
JP2011163695A (ja) | 加熱装置 | |
JP2003185141A (ja) | 加熱調理装置 | |
JPH06103099B2 (ja) | 熱風循環式調理器 | |
JP2006170579A (ja) | 加熱調理器 | |
JP5369913B2 (ja) | 加熱装置 | |
JP2006017389A (ja) | 加熱調理器 | |
JP2004028512A (ja) | 加熱調理装置 | |
JP2012007797A (ja) | 加熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180006296.2 Country of ref document: CN |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011549951 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011732818 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |