WO2011086622A1 - 固体撮像装置、その駆動方法及びカメラ - Google Patents

固体撮像装置、その駆動方法及びカメラ Download PDF

Info

Publication number
WO2011086622A1
WO2011086622A1 PCT/JP2010/006177 JP2010006177W WO2011086622A1 WO 2011086622 A1 WO2011086622 A1 WO 2011086622A1 JP 2010006177 W JP2010006177 W JP 2010006177W WO 2011086622 A1 WO2011086622 A1 WO 2011086622A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
vertical transfer
transfer unit
unit
solid
Prior art date
Application number
PCT/JP2010/006177
Other languages
English (en)
French (fr)
Inventor
静 鈴木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011549755A priority Critical patent/JPWO2011086622A1/ja
Publication of WO2011086622A1 publication Critical patent/WO2011086622A1/ja
Priority to US13/546,798 priority patent/US20120281124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/14843Interline transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/713Transfer or readout registers; Split readout registers or multiple readout registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/73Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using interline transfer [IT]

Definitions

  • the present invention relates to a solid-state imaging device, a driving method thereof, and a camera, and more particularly to a solid-state imaging device including a transfer control unit that selectively transfers a signal charge transferred by any of a plurality of vertical transfer units to a horizontal transfer unit.
  • a CCD having a number of pixels of 12M or more has been mainstream in recent years in a camera using a CCD (Charge Coupled Device).
  • the horizontal transfer electrodes constituting the horizontal transfer section are miniaturized and the number of pixels in the horizontal direction reaches about 4000 pixels.
  • the capacitance between the electrodes is increased due to a dramatic increase. There is a problem that electric power increases.
  • the number of transfer packets of the horizontal transfer unit is not the same as the number of columns of the vertical transfer unit as in the conventional case, for example, 1/3, transfer from the vertical transfer unit to the horizontal transfer unit, and horizontal transfer A method has been proposed in which the transfer operation from the output unit to the output unit is divided into three times and the signal charge of one line is divided and output in an interlaced manner (for example, see Patent Document 1).
  • This method can reduce the number of electrodes constituting the horizontal transfer unit. As a result, the interelectrode capacitance is reduced, so that low power consumption can be realized.
  • the transfer of signal charges from the vertical transfer unit to the horizontal transfer unit is selectively controlled.
  • a transfer controller is required. Specifically, a function for holding the signal charge in the transfer control unit during the first transfer operation is required.
  • a moving image mode for displaying a liquid crystal monitor and recording a moving image.
  • a method is used in which signal charges obtained from a plurality of pixels are added in the imaging apparatus, or signal charges read from the pixels are selectively thinned out.
  • a 30-frame / second VGA output (640 ⁇ 480) or a 720p output (1280 ⁇ 720) corresponding to the HD format is obtained by reducing the number of output signals from the number of pixels output in a still image (for example, 10M). ) Etc. are realized.
  • the frame rate is 2 to 3 frames / second
  • an image output of 30 frames / second is required. Therefore, in the moving image mode, it is necessary to compress the image close to 1/10 compared to the number of pixels output in the still image, so that the signal charge to be added increases.
  • a Bayer array is generally used, and signal charges are added between adjacent identical colors.
  • the addition of signal charges in the solid-state imaging device is performed in the vertical transfer unit or the horizontal transfer unit in the vertical direction, and in the horizontal transfer unit in the horizontal direction.
  • the pixel addition within the vertical transfer unit in the vertical direction can be realized by providing a plurality of vertical transfer electrodes for reading from the photoelectric conversion unit to the vertical transfer unit and devising the drive timing.
  • a transfer control unit that selectively controls the transfer of signal charges between the vertical transfer unit and the horizontal transfer unit.
  • Patent Document 2 an example of the moving image mode is described in Patent Document 2.
  • the 9-pixel addition method of adding the signal charges of 3 vertical pixels and 3 horizontal pixels in Patent Document 2 is useful because it can realize a high-quality moving image with little center of gravity shift after addition and less moire.
  • a transfer control unit is indispensable in order to realize low power consumption and a high frame rate moving image using pixel addition.
  • FIG. 26 is a diagram showing a configuration of a conventional solid-state imaging device described in Patent Document 1.
  • 27A to 27C are diagrams showing signal charge transfer operations in the normal mode.
  • FIG. 28A to FIG. 28C are diagrams showing a signal charge transfer operation when horizontal three pixels are added.
  • the solid-state imaging device shown in FIG. 26 includes a first vertical transfer unit 1, a horizontal transfer unit 2, a charge holding unit 101, and a VOG unit 104.
  • the charge holding unit 101 includes a storage unit 102 and a hold unit 103.
  • FIG. 26 shows an example in which the horizontal transfer unit 2 is driven in three phases.
  • three adjacent first vertical transfer units 1 are grouped as one group Gr, unit transfer bits of the horizontal transfer unit 2 are associated, and each group Gr is a charge transfer unit corresponding to the group Gr.
  • a VOG unit 104 is included.
  • the signal charge is transferred from the first vertical transfer unit 1 to the VOG unit 104 corresponding to the group Gr to which the first vertical transfer unit 1 belongs. Further, the signal charge is transferred to the unit transfer bit corresponding to the first vertical transfer unit 1 that has transferred the signal charge from the VOG unit 104 to the VOG unit 104. Thereby, any first vertical transfer unit 1 in the group Gr can transfer the signal charge to the corresponding unit transfer bit via the VOG unit 104.
  • the signal charges in the column c shown in FIG. 26 are transferred to the horizontal transfer unit 2 via the VOG unit 104 and then transferred horizontally to the output unit. At that time, the signal charges in the columns a and b shown in FIG. 26 are held by the charge holding unit 101 including the storage unit 102 and the holding unit 103.
  • the signal charges in the a column are transferred from the charge holding unit 101 to the horizontal transfer unit 2 and then transferred to the output unit.
  • the signal charges in the b column are transferred from the charge holding unit 101 to the horizontal transfer unit 2 and then transferred to the output unit.
  • the signal charge of one horizontal line is divided into three and output.
  • the signal charges in the a column and the c column are transferred to the horizontal transfer unit 2 via the VOG unit 104.
  • the signal charges in the columns a and c are transferred leftward by one group.
  • the signal charges in the b column are transferred to the horizontal transfer unit 2 via the VOG unit 104.
  • three-pixel addition in the horizontal direction is performed.
  • data is transferred from the first vertical transfer unit 1 to the horizontal transfer unit 2 via the VOG unit 104, and the first vertical transfer unit 1 It is connected to the VOG unit 104.
  • JP 2006-310655 A Japanese Patent No. 3848650
  • This invention solves the said subject, and aims at providing the solid-state imaging device which can suppress transfer degradation in the structure which bundles a some vertical transfer part, its drive method, and a camera.
  • a solid-state imaging device is provided in a matrix, provided with a plurality of photoelectric conversion units that convert light into signal charges, and corresponding to each column.
  • a plurality of first vertical transfer units that transfer signal charges converted by a plurality of photoelectric conversion units arranged in a column in the vertical direction and the plurality of first vertical transfer units in the horizontal direction.
  • a plurality of transfer control units that are provided corresponding to each m (m is an integer of 2 or more) columns and selectively transfer the signal charges transferred by any one of the first vertical transfer units of the corresponding m columns
  • a plurality of second vertical transfer units that are provided corresponding to the respective transfer control units and transfer the signal charges transferred by the corresponding transfer control units, and transferred by the plurality of second vertical transfer units.
  • a horizontal transfer unit for transferring the signal charges in the horizontal direction.
  • Each second vertical transfer unit is arranged for each of two or more horizontal transfer electrodes forming one transfer packet of the horizontal transfer unit, and the transfer width decreases as it goes from the transfer control unit to the horizontal transfer unit.
  • Each of the second vertical transfer units has a vertical transfer electrode that is independent of the vertical transfer electrodes of the plurality of first vertical transfer units and the plurality of transfer control units.
  • the second vertical transfer unit includes the region in which the transfer width becomes smaller as it goes from the transfer control unit to the horizontal transfer unit. Can be made narrower, so that the potential can be prevented from becoming shallow on the horizontal transfer portion side. Therefore, the solid-state imaging device according to the present invention can suppress transfer deterioration.
  • Each of the transfer control units is provided corresponding to each of the m columns, and includes m third vertical transfer units for transferring each of the signal charges transferred by the vertical transfer unit of the corresponding column.
  • the horizontal center distance between the m third vertical transfer units disposed adjacent to each other is the horizontal center distance between the first vertical transfer units disposed adjacent to each other. It may be shorter.
  • the solid-state imaging device can form the second vertical transfer unit with a narrow horizontal width. Therefore, the solid-state imaging device according to an aspect of the present invention can gently set an angle for narrowing down the second vertical transfer unit. Accordingly, the solid-state imaging device according to one embodiment of the present invention can suppress transfer deterioration due to a decrease in potential along the transfer direction.
  • Each of the second vertical transfer units transfers a signal charge transferred by the corresponding transfer control unit, and has a region having a transfer width that decreases as it goes from the transfer control unit to the horizontal transfer unit.
  • Independent vertical transfer electrodes may be provided on the vertical transfer portion and the fifth vertical transfer portion, respectively.
  • the independent electrode is provided in the fourth vertical transfer unit and the fifth vertical transfer unit, so that the electrode length of the electrode of the fourth vertical transfer unit is Can be shortened. Accordingly, the solid-state imaging device according to an aspect of the present invention can secure a transfer electric field, and thus can suppress transfer defects in the fourth vertical transfer unit.
  • Each of the transfer control units is provided corresponding to each of the m columns, and includes m third vertical transfer units for transferring each of the signal charges transferred by the vertical transfer unit of the corresponding column.
  • a sixth vertical transfer unit which is one third vertical transfer unit included in the m-th column third vertical transfer unit, is the same as one of the vertical transfer electrodes of the first vertical transfer unit.
  • the m ⁇ 13 vertical transfer units other than the sixth vertical transfer unit included in the third vertical transfer unit of the m columns include first vertical transfer electrodes to which transfer pulses are applied.
  • a signal charge storage electrode and a transfer blocking electrode independent of the vertical transfer electrodes of one vertical transfer unit and the second vertical transfer unit may be provided.
  • the solid-state imaging device can reduce the number of independent electrodes in the transfer control unit.
  • the sixth vertical transfer unit may include only one first vertical transfer electrode.
  • the solid-state imaging device can reduce the number of independent electrodes in the transfer control unit.
  • the transfer width of all the regions under the first vertical transfer electrode of the sixth vertical transfer unit may become wider as going from the first vertical transfer unit to the second vertical transfer unit.
  • the solid-state imaging device can improve the transfer electric field by using the narrow channel effect.
  • the maximum transfer width of the second vertical transfer unit is larger than the width between the outer ends of the first vertical transfer units of the columns located at both ends of the first vertical transfer units of m columns. It may be wide.
  • the solid-state imaging device can deepen the potential at the horizontal end of the second vertical transfer unit as well as the horizontal central portion. Therefore, the solid-state imaging device according to an aspect of the present invention can suppress transfer defects from the transfer control unit to the second vertical transfer unit.
  • the first vertical transfer unit includes a first n-type impurity implantation region and a second n-type impurity implantation region, and the first n-type impurity implantation region includes the first vertical transfer unit.
  • the transfer control unit, the second vertical transfer unit, and the horizontal transfer unit, and the second n-type impurity implantation region is formed in the first vertical transfer unit and the transfer control unit.
  • the second vertical transfer unit and the horizontal transfer unit may not be formed.
  • the solid-state imaging device has the second vertical transfer unit as compared to the case where the second vertical transfer unit is formed with the same n-type impurity concentration as the first vertical transfer unit. Can be formed shallowly. Therefore, the solid-state imaging device according to one embodiment of the present invention can increase the potential difference from the second vertical transfer unit to the horizontal transfer unit, and thus can improve transfer efficiency.
  • a potential step may be formed in the second vertical transfer unit so that the potential on the transfer control unit side is shallower than the potential on the horizontal transfer unit side.
  • the solid-state imaging device can further improve the transfer efficiency of the second vertical transfer unit.
  • a third n-type impurity implantation region may be formed on the horizontal transfer unit side of the second vertical transfer unit in order to form the potential step.
  • the solid-state imaging device can suppress a decrease in potential difference between the transfer control unit and the second vertical transfer unit due to the formation of the potential step.
  • the transfer efficiency to the second vertical transfer unit can be improved.
  • a p-type impurity implantation region for forming the potential step may be formed on the transfer control unit side of the third vertical transfer unit.
  • a third n-type impurity implantation region may be further formed in the second vertical transfer portion.
  • the solid-state imaging device can suppress a decrease in potential difference between the transfer control unit and the second vertical transfer unit due to the formation of the potential step.
  • the transfer efficiency to the second vertical transfer unit can be improved.
  • a p-type impurity implantation region may be formed in the transfer control unit.
  • the solid-state imaging device can reduce the potential of the transfer control unit. Therefore, the solid-state imaging device according to an embodiment of the present invention can increase the transfer electric field from the transfer control unit to the second vertical transfer unit, and thus can improve transfer efficiency.
  • the vertical transfer electrodes of the first vertical transfer unit, the transfer control unit, and the second vertical transfer unit, and the horizontal transfer electrode of the horizontal transfer unit may be formed as a single layer.
  • the solid-state imaging device can easily perform wiring layout.
  • the solid-state imaging device driving method is a driving method for the solid-state imaging device, in the m-columns in the horizontal transfer period of the signal charges in one column. Signal charges in other columns are transferred from the transfer control unit to the fourth vertical transfer unit.
  • the transfer control unit to the fourth vertical transfer unit since the signal charge can be transferred from the transfer control unit to the fourth vertical transfer unit over a long time using the horizontal transfer period of the other column, the transfer control unit to the fourth vertical transfer unit The transfer efficiency of signal charges to can be improved.
  • the signal charges in the central column among the m columns are transferred from the transfer unit to the fourth vertical transfer unit, and in the horizontal transfer period of the signal charges in the central column, The signal charge at the end of the m columns may be transferred from the transfer control unit to the fourth vertical transfer unit.
  • a camera according to an aspect of the present invention includes the solid-state imaging device.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device.
  • LSI semiconductor integrated circuit
  • the present invention can provide a solid-state imaging device capable of suppressing transfer deterioration in a configuration in which a plurality of vertical transfer units are bundled, a driving method thereof, and a camera.
  • FIG. 1 is a plan view of a solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2A is a diagram showing an operation in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram showing an operation in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2C is a diagram illustrating an operation in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2D is a diagram showing an operation in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2A is a diagram showing an operation in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram showing an operation in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 2C is a
  • FIG. 3 is a diagram showing drive timing in the normal mode by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 4A is a diagram illustrating an operation at the time of horizontal three-pixel addition by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 4B is a diagram showing an operation at the time of horizontal three-pixel addition by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 4C is a diagram showing an operation at the time of horizontal three-pixel addition by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating drive timings when the horizontal three pixels are added by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 4A is a diagram illustrating an operation at the time of horizontal three-pixel addition by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 4B is a diagram showing an operation at the
  • FIG. 6A is a plan view of a modification of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 6B is a plan view of a modification of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 7 is a plan view of a modification of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 8A is a plan view of a first example of the solid-state imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 8B is a cross-sectional view of the first example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 8C is a diagram showing a potential distribution of the first example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9A is a plan view of a second example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9B is a cross-sectional view of the second example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9C is a diagram showing a potential distribution of the second example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram comparing the first example and the second example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram comparing the first example and the second example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 11A is a cross-sectional view of a third example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 11B is a diagram showing a potential distribution of the third example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 12 is a plan view of a fourth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 13 is a diagram comparing the third example and the fourth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 14A is a cross-sectional view of a fifth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 14B is a diagram showing a potential distribution of the fifth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 15A is a cross-sectional view of a sixth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 15B is a diagram showing a potential distribution of the sixth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 16A is a cross-sectional view of a seventh example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 16B is a cross-sectional view of the eighth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 16C is a diagram showing a potential distribution of the seventh example and the eighth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 17A is a cross-sectional view of the ninth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 17B is a diagram showing a potential distribution of the ninth example of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 18 is a plan view of the solid-state imaging device according to Embodiment 2 of the present invention.
  • FIG. 19 is a plan view of a solid-state imaging device according to Embodiment 3 of the present invention.
  • FIG. 20 is a diagram illustrating the drive timing when horizontal three pixels are added by the solid-state imaging device according to Embodiment 3 of the present invention.
  • FIG. 21 is a diagram showing drive timings when horizontal three pixels are added by the solid-state imaging device according to Embodiment 4 of the present invention.
  • FIG. 22 is a plan view of a solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 23A is a diagram illustrating an operation in a normal mode performed by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 23B is a diagram showing an operation in the normal mode by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 23C is a diagram illustrating an operation in the normal mode performed by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 23D is a diagram illustrating an operation in a normal mode performed by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 23E is a diagram illustrating an operation in the normal mode performed by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 24 is a diagram illustrating drive timings related to sorting transfer between horizontal transfer units by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 25A is a diagram showing an operation at the time of horizontal two-pixel addition by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 25A is a diagram showing an operation at the time of horizontal two-pixel addition by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 25B is a diagram showing an operation at the time of horizontal two-pixel addition by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 25C is a diagram showing an operation at the time of horizontal two-pixel addition by the solid-state imaging device according to Embodiment 5 of the present invention.
  • FIG. 26 is a plan view of a conventional solid-state imaging device.
  • FIG. 27A is a diagram illustrating an operation in a normal mode of a conventional solid-state imaging device.
  • FIG. 27B is a diagram illustrating the operation of the conventional solid-state imaging device in the normal mode.
  • FIG. 27C is a diagram illustrating the operation of the conventional solid-state imaging device in the normal mode.
  • FIG. 27A is a diagram illustrating an operation in a normal mode of a conventional solid-state imaging device.
  • FIG. 27B is a diagram illustrating the operation of the conventional solid-state imaging device in the normal mode.
  • FIG. 27C is a diagram illustrating the operation of
  • FIG. 28A is a diagram illustrating an operation at the time of horizontal three-pixel addition of the conventional solid-state imaging device.
  • FIG. 28B is a diagram illustrating an operation at the time of horizontal three-pixel addition of the conventional solid-state imaging device.
  • FIG. 28C is a diagram illustrating an operation at the time of horizontal three-pixel addition of the conventional solid-state imaging device.
  • FIG. 1 is a diagram showing a configuration of a solid-state imaging device 50 according to Embodiment 1 of the present invention.
  • a solid-state imaging device 50 illustrated in FIG. 1 includes a pixel repetition unit 5, a plurality of transfer control units 6, a plurality of second vertical transfer units 9, a horizontal transfer unit 2, and a plurality of horizontal transfer electrodes 14. .
  • the pixel repeating unit 5 includes a plurality of photoelectric conversion units 3, a plurality of first vertical transfer units 1, and a plurality of first vertical transfer electrodes 4.
  • the plurality of photoelectric conversion units 3 are arranged in a matrix, convert light into signal charges, and store the converted signal charges.
  • the plurality of first vertical transfer units 1 are provided corresponding to each column, and transfer the signal charges converted by the plurality of photoelectric conversion units 3 arranged in the corresponding column in the vertical direction.
  • the plurality of first vertical transfer electrodes 4 are formed on the plurality of first vertical transfer units 1.
  • the plurality of transfer control units 6 are provided corresponding to each m (m is an integer of 2 or more) columns that are continuous in the horizontal direction among the plurality of first vertical transfer units 1. Each transfer control unit 6 selectively transfers the signal charge transferred by one of the corresponding m columns of first vertical transfer units 1.
  • Each transfer control unit 6 is provided corresponding to each of the m columns, and m third vertical transfer units 6A that transfer each of the signal charges transferred by the vertical transfer unit of the corresponding column, It includes m signal charge storage electrodes 7 and m transfer blocking electrodes 8.
  • the third vertical transfer unit 6A is provided corresponding to each of the m columns to which each transfer control unit 6 corresponds.
  • the third vertical transfer unit 6A transfers each signal charge transferred by the first vertical transfer unit 1 of the corresponding column.
  • Each signal charge storage electrode 7 and each transfer blocking electrode 8 are formed on each third vertical transfer portion 6A.
  • the second vertical transfer unit 9 is provided corresponding to each transfer control unit 6 and transfers the signal charge transferred by the corresponding transfer control unit 6. Further, the second vertical transfer unit 9 is arranged for each of at least two horizontal transfer electrodes 14 forming one transfer packet of the horizontal transfer unit 2. Further, the second vertical transfer unit 9 has a region in which the transfer width decreases as it goes from the transfer control unit 6 to the horizontal transfer unit 2. The second vertical transfer unit 9 is provided with vertical transfer electrodes independent of the vertical transfer electrodes of the first vertical transfer unit 1 and the transfer control unit 6.
  • the second vertical transfer unit 9 includes a fourth vertical transfer unit 10, a fifth vertical transfer unit 11, a fourth vertical transfer electrode 12, and a vertical final electrode 13.
  • the fourth vertical transfer unit 10 transfers the signal charges transferred by the transfer control unit 6. Further, the fourth vertical transfer unit 10 has a region in which the transfer width becomes smaller from the transfer control unit 6 toward the horizontal transfer unit 2.
  • the fifth vertical transfer unit 11 transfers the signal charge transferred by the fourth vertical transfer unit 10.
  • the fifth vertical transfer unit 11 has a constant transfer width and is arranged straight.
  • the horizontal transfer unit 2 transfers the signal charges transferred by the second vertical transfer unit 9 in the horizontal direction.
  • the plurality of horizontal transfer electrodes 14 are formed on the horizontal transfer unit 2. Further, the horizontal transfer unit 2 transfers the signal charge transferred by the second vertical transfer unit 9 to an output unit (not shown) provided in the solid-state imaging device 50.
  • This output unit converts the signal charge transferred by the horizontal transfer unit 2 into a voltage signal, and outputs the converted voltage signal to the outside.
  • the second vertical transfer unit 9 bundles the first vertical transfer units 1 in three rows.
  • One unit transfer packet of the horizontal transfer unit 2 corresponds to one second vertical transfer unit 9. That is, the unit transfer packet of the horizontal transfer unit 2 is 1/3 of the number of columns of the first vertical transfer unit 1. Therefore, when the signal charges for one line are output without being added, they are divided into three times (horizontal 3: 1 interlace).
  • FIG. 1 shows an example of the four-phase driving in which the horizontal transfer unit 2 uses four horizontal transfer electrodes 14 as one unit. That is, transfer pulses of ⁇ H1, ⁇ H2, ⁇ H3, and ⁇ H4 are applied to the horizontal transfer electrode 14. As will be described later, three-phase driving with three horizontal transfer electrodes 14 as one unit or two-phase driving with two horizontal transfer electrodes 14 as one unit may be used.
  • the four-phase driving has an advantage that the low-voltage driving is possible because the electrode length in the transfer direction of the horizontal transfer electrode 14 can be shortened as compared with the three-phase driving shown in the conventional example.
  • 1.8V driving is possible by using four-phase driving. Since this voltage of 1.8 V is a voltage used in other semiconductor elements mounted on the digital still camera, there is an advantage that it is easy to handle in camera design.
  • the electrode length of the electrode for accumulating the signal charge is increased, or the horizontal width of the first vertical transfer unit 1 below the electrode is set to the first length of the pixel repeating unit 5. It is necessary to secure a necessary saturation charge amount by making it wider than the width of the vertical transfer unit 1 or both.
  • the horizontal width of the third vertical transfer unit 6 ⁇ / b> A of the transfer control unit 6 is made wider than the horizontal width of the first vertical transfer unit 1 in the pixel repeating unit 5.
  • the first feature of the solid-state imaging device 50 according to Embodiment 1 of the present invention is that the second vertical transfer unit 9 has a region in which the transfer width decreases as it goes from the transfer control unit 6 to the horizontal transfer unit 2. It is. As a result, the horizontal transfer unit 2 can be narrowed down gradually, so that the potential can be prevented from becoming shallow on the horizontal transfer unit 2 side. Therefore, the solid-state imaging device 50 can suppress transfer deterioration.
  • the second feature of the solid-state imaging device 50 is that the repeat pitch of the third vertical transfer units 6A in the three columns in the transfer control unit 6 is arranged to be shorter than the repeat pitch of the first vertical transfer unit 1 in the pixel repeat unit 5. This is the point. That is, in FIG. 1, the distance between the horizontal center of the first vertical transfer unit 1 and the horizontal center of the adjacent first vertical transfer unit 1 in the pixel repetition unit 5 is A, and each transfer control unit 6, where B is the distance between the horizontal centers of the third vertical transfer units 6 ⁇ / b> A arranged adjacent to each other, the relationship between A and B is A> B.
  • the solid-state imaging device 50 can form the horizontal width C of the fourth vertical transfer unit 10 narrow. Therefore, when transferring the signal charges to the horizontal transfer unit 2, it is necessary to narrow down the fourth vertical transfer unit 10, but there is an advantage that the angle can be set gently. Thereby, the solid-state imaging device 50 can suppress the adverse effect that the potential becomes shallow along the transfer direction.
  • a third feature of the solid-state imaging device 50 is that a fourth vertical transfer electrode 12 and a vertical final electrode 13 are provided as independent electrodes with respect to the fourth vertical transfer unit 10 and the fifth vertical transfer unit 11, respectively. There is in point.
  • the fourth vertical transfer unit 10 since the transfer width is narrowed down, the potential becomes shallower on the horizontal transfer unit 2 side, but the fourth vertical transfer unit 10 and the fifth vertical transfer unit 11
  • the electrode length can be shortened. Thereby, since a transfer electric field can be secured, it is possible to suppress a transfer defect in the fourth vertical transfer unit 10.
  • the fourth feature of the present embodiment is that the fourth vertical transfer unit 10 included in the second vertical transfer unit 9 has a potential so that the potential on the transfer control unit 6 side is shallower than the potential on the horizontal transfer unit 2 side.
  • a step is formed.
  • the n-type impurity implantation region of the fourth vertical transfer unit 10 is formed so that the potential becomes shallow on the transfer control unit 6 side of the fourth vertical transfer unit 10. As a result, the transfer efficiency of the fourth vertical transfer unit 10 can be further improved. Details will be described later.
  • the fifth feature of the solid-state imaging device 50 is that the n-type impurity concentration of the second vertical transfer unit 9 is made lower than the n-type impurity concentrations of the pixel repeating unit 5 and the transfer control unit 6.
  • the pixel repeating unit 5 secures a necessary handling charge amount with one electrode in order to suppress a decrease in handling charge amount and transfer efficiency deterioration due to the narrow channel effect. Therefore, for example, the first vertical transfer unit 1 is formed by two n-type diffusion layers. For the n-type diffusion layer of the second vertical transfer unit 9, any one of the diffusion layers used for forming the pixel repeating unit 5 is used.
  • the potential of the second vertical transfer unit 9 can be formed shallower than when the second vertical transfer unit 9 is formed with the same n-type impurity concentration as the pixel repeating unit 5. Therefore, a large potential difference from the fifth vertical transfer unit 11 to the horizontal transfer unit 2 can be obtained, so that transfer efficiency can be improved. A detailed configuration will be described later.
  • the sixth feature of this embodiment is that the n-type impurity concentration of the second vertical transfer unit 9 is made lower than the n-type impurity concentrations of the pixel repeater 5 and the transfer controller 6 described as the fifth feature.
  • an n-type impurity implantation region is provided in the second vertical transfer unit 9. Thereby, the transfer efficiency in this region can be improved by increasing the potential difference between the transfer control unit 6 and the fourth vertical transfer unit 10.
  • the p-type impurity implantation region is provided in the transfer control unit 6 while the n-type impurity concentration of the second vertical transfer unit 9 is lowered, so that the potential of the pixel repetition unit 5 is expanded in the horizontal direction. The potential of the transfer control unit 6 is decreased. As a result, the potential difference between the transfer control unit 6 and the fourth vertical transfer unit 10 can be increased, so that the transfer efficiency in this region can be improved.
  • ⁇ VST-L, ⁇ VST-C, and ⁇ VST-R are applied to the signal charge storage electrode 7 as transfer pulses. Further, ⁇ VHLD-L, ⁇ VHLD-C, and ⁇ VHLD-R are applied to the transfer blocking electrode 8.
  • a column to which ⁇ VST-C and ⁇ VHLD-C are applied is a C column, and a column to which ⁇ VST-R and ⁇ VHLD-R is applied is an R column.
  • a column to which ⁇ VST-L and ⁇ VHLD-L are applied is an L column.
  • ⁇ VL2 is applied to the fourth vertical transfer electrode 12, and ⁇ VL is applied to the vertical final electrode 13.
  • FIGS. 2A to 2D are diagrams showing signal charge transfer in the normal mode by the solid-state imaging device 50.
  • FIG. FIG. 3 is a timing chart showing drive timing in the normal mode.
  • the number of packets of the horizontal transfer unit 2 is 1/3 of the number of columns of the first vertical transfer unit 1.
  • the transfer operation from the first vertical transfer unit 1 to the horizontal transfer unit 2 through the transfer control unit 6 and the second vertical transfer unit 9 is performed in three times in the order of the column, the R column, and the L column. Then, transfer from the horizontal transfer unit 2 to the output amplifier is performed.
  • the number of drive phases of the first vertical transfer unit 1 is 12 phases.
  • signal charges are accumulated in the eight first vertical transfer electrodes 4 in the horizontal transfer period.
  • signal charges are accumulated from ⁇ V3 to ⁇ V10.
  • three horizontal transfer electrodes 14 are set to a high level (for example, 1.8 V).
  • the number of drive phases of the first vertical transfer unit 1 may be other than 12 phases.
  • the number of drive phases of the first vertical transfer unit 1 may be 6 phases, 8 phases, or the like.
  • the solid-state imaging device 50 transfers these signal charges to the signal charge storage electrodes 7 in each column. Specifically, the solid-state imaging device 50 sets ⁇ V11 applied to the first vertical transfer electrode 4 adjacent to the transfer control unit 6 to a low level and applies it to the signal charge storage electrode 7 at time t0 in FIG. The signal charges are transferred to the signal charge storage electrode 7 by setting them to the middle level (for example, 0 V) to ⁇ VST-L, ⁇ VST-C, and ⁇ VST-R (FIG. 2A).
  • the middle level for example, 0 V
  • the solid-state imaging device 50 transfers the signal charges to the next stage by forming the potential barrier by setting ⁇ VHLD-L, ⁇ VHLD-C, and ⁇ VHLD-R applied to the transfer blocking electrodes 8 of each column to a low level. Is blocking.
  • the solid-state imaging device 50 maintains the signal levels of the signal charges by maintaining ⁇ VHLD-L and ⁇ VHLD-R applied to the transfer blocking electrodes 8 in the L and R columns at a low level. It is held on the charge storage electrode 7.
  • the solid-state imaging device 50 sets the ⁇ VHLD-C applied to the transfer blocking electrode 8 in the C row, the ⁇ VL2 applied to the fourth vertical transfer electrode 12, and the ⁇ VL applied to the vertical final electrode 13 to the middle level or high level. Transition to the level. Thereby, the solid-state imaging device 50 transfers the signal charges of the C column to the horizontal transfer unit 2 (FIG. 2B).
  • the solid-state imaging device 50 outputs the signal charges of the C column by performing the transfer of the horizontal transfer unit 2 toward the output unit.
  • the signal charge storage electrode 7 is at the low level during the horizontal transfer period, but it need not be at the low level.
  • the solid-state imaging device 50 maintains the signal charge in the L column to the signal charge storage electrode 7 by maintaining ⁇ VHLD-L applied to the transfer prevention electrode 8 in the L column at a low level. Hold.
  • the solid-state imaging device 50 sets the ⁇ VHLD-R applied to the transfer blocking electrode 8 in the R row, ⁇ VL2 applied to the fourth vertical transfer electrode 12, and ⁇ VL applied to the vertical final electrode 13 to the middle level or high level. Transition to the level. Thereby, the solid-state imaging device 50 transfers the signal charges in the R column to the horizontal transfer unit 2 (FIG. 2C). Thereafter, the solid-state imaging device 50 outputs the signal charges of the R column by performing the transfer of the horizontal transfer unit 2.
  • the solid-state imaging device 50 applies ⁇ VHLD-L applied to the transfer prevention electrode 8 in the L column, ⁇ VL2 applied to the fourth vertical transfer electrode 12, and the vertical final electrode 13.
  • the signal charge in the L column is transferred to the horizontal transfer unit 2 by shifting ⁇ VL to be changed to the middle level or the high level (FIG. 2D).
  • the solid-state imaging device 50 outputs the signal charges of the R column by performing the transfer of the horizontal transfer unit 2.
  • the above operation makes it possible to output one line of signal charges, and the remaining signal charges can be sequentially output in the same manner.
  • FIGS. 4A to 4C are diagrams showing signal charge transfer in the moving image mode by the solid-state imaging device 50.
  • FIG. FIG. 5 is a timing chart showing driving timing in the moving image mode.
  • the solid-state imaging device 50 adds 3 pixels of signal charges of the same color adjacent in the horizontal direction in the moving image mode.
  • three horizontal transfer electrodes 14 ( ⁇ H1, ⁇ H2, and ⁇ H3) are set to a high level (for example, 1.8 V).
  • the solid-state imaging device 50 sets ⁇ V11 applied to the first vertical transfer electrode 4 adjacent to the transfer control unit 6 to a low level, Further, ⁇ VST-L, ⁇ VST-C, and ⁇ VST-R applied to the signal charge storage electrode 7 are set to the middle level or the high level, thereby transferring the signal charge of each column to the signal charge storage electrode 7 (FIG. 2A). ).
  • the solid-state imaging device 50 forms a potential barrier by setting ⁇ VHLD-L, ⁇ VHLD-C, and ⁇ VHLD-R applied to the transfer blocking electrode 8 of each column to a low level, so that the signal charge to the next stage is increased. Is blocking the transfer.
  • the solid-state imaging device 50 maintains the signals ⁇ VHLD-L and ⁇ VHLD-R applied to the transfer blocking electrodes 8 in the L and R columns at a low level, thereby It is held on the charge storage electrode 7.
  • the solid-state imaging device 50 sets the ⁇ VHLD-C applied to the transfer blocking electrode 8 in the C row, the ⁇ VL2 applied to the fourth vertical transfer electrode 12, and the ⁇ VL applied to the vertical final electrode 13 to the middle level or high level. Transition to the level. Thereby, the solid-state imaging device 50 transfers the signal charges of the C column to the horizontal transfer unit 2 (FIG. 4A).
  • the solid-state imaging device 50 transfers the signal charges of the horizontal transfer unit 2 to the left in three columns in the period td from time tc (FIG. 4B).
  • the solid-state imaging device 50 has ⁇ VHLD-L and ⁇ VHLD-R applied to the transfer blocking electrodes 8 in the L and R columns and ⁇ VL2 applied to the fourth vertical transfer electrode 12 in the period tf from time te.
  • the ⁇ VL applied to the vertical final electrode 13 is shifted to the middle level or the high level.
  • the solid-state imaging device 50 can add the signal charges for three pixels by transferring the signal charges of the L and R columns to the horizontal transfer unit 2 (FIG. 4C).
  • the solid-state imaging device 50 provides a plurality of readout electrodes in the first vertical transfer unit 1 and adds three pixels in the first vertical transfer unit 1 by devising driving of the plurality of readout electrodes. Do. Therefore, the solid-state imaging device 50 can realize the 9-pixel addition operation together with the above-described horizontal 3-pixel addition.
  • the horizontal signal addition operation the example in which the signal charges in the C column are transferred first and the signal charges in the L column and the R column are added in the horizontal transfer unit 2 has been described above. It is also possible to transfer the column signal charges and later add the column C signal charges.
  • FIG. 1 shows a case where the horizontal transfer unit 2 is driven in four phases.
  • at least one of the four horizontal transfer electrodes 14 may be used as a barrier. That is, as described above, FIG. 1 shows a layout for receiving signal charges from the fifth vertical transfer unit 11 after setting the three horizontal transfer electrodes 14 to the high level in the horizontal blanking period. Note that the solid-state imaging device 50 may receive signal charges by setting the two horizontal transfer electrodes 14 to a high level.
  • FIG. 6A is a diagram illustrating a configuration of a solid-state imaging device 50A corresponding to two horizontal phases.
  • FIG. 6B is a diagram illustrating a structure of a solid-state imaging device 50B corresponding to three-phase driving. 6A and 6B, the configuration of the transfer control unit 6 and the second vertical transfer unit 9 is the same as that in FIG. 1, and therefore the wiring diagram of the applied transfer pulse is omitted.
  • the operations of the first vertical transfer unit 1, transfer control unit 6, second vertical transfer unit 9, and horizontal transfer unit 2 are controlled by a drive unit (not shown).
  • a drive unit (not shown).
  • the above-described ⁇ V1 to ⁇ V12, ⁇ VST-C, ⁇ VST-L, ⁇ VST-R, ⁇ VHLD-C, ⁇ VHLDL, ⁇ VHLD-R, ⁇ VL, ⁇ VL2, and ⁇ H1 to ⁇ H4 are generated by this driving unit.
  • this drive unit may be included in the solid-state imaging device 50 or may be formed outside the solid-state imaging device 50.
  • the repetition pitch B of the third vertical transfer units 6A in the three columns in the transfer control unit 6 is shorter than the repetition pitch B of the first vertical transfer unit 1 in the pixel repetition unit 5.
  • this is not limited to the fact that the third vertical transfer unit 6A is arranged at right angles to the horizontal transfer unit 2 as shown in FIG.
  • the third vertical transfer unit 6A may be arranged along the oblique direction so as to go to the inside of the three rows as it goes to the second vertical transfer unit 9 side. In this case, the relationship between the pitches A and B is A> B.
  • the pitch B is the distance between the centers at arbitrary positions in the vertical transfer direction of the two third vertical transfer units 6A adjacent to each other among the three columns of the third vertical transfer units 6A.
  • solid-state imaging device 50 according to Embodiment 1 of the present invention may include all of the first to sixth features described above, or may include any one or more of them.
  • FIG. 8A is a plan view of the solid-state imaging device 51 having the first feature.
  • FIG. 8B is a cross-sectional view showing a cross-sectional configuration of the solid-state imaging device 51
  • FIG. 8C is a diagram schematically showing a potential distribution in this cross-section.
  • This solid-state imaging device 51 does not have the second and third features. That is, the repetition pitch B of the third column of the third vertical transfer units 6A is the same as the repetition pitch A of the first vertical transfer unit 1.
  • the solid-state imaging device 51 includes a second vertical transfer unit 9 ⁇ / b> A instead of the second vertical transfer unit 9. On the second vertical transfer unit 9, only one second vertical transfer electrode 12A to which ⁇ VOG is applied is formed.
  • the solid-state imaging device 51 can gradually narrow down the horizontal transfer unit 2, and thus can prevent the potential from becoming shallow on the horizontal transfer unit 2 side. Therefore, the solid-state imaging device 50 can prevent the transfer deterioration.
  • the repetition pitch of the first vertical transfer units 1 in three columns is arranged to be shorter than the repetition pitch of the first vertical transfer unit 1 in the pixel repetition unit 5. The effect when the configuration is introduced will be described.
  • FIG. 9A is a plan view of the solid-state imaging device 52 having the second feature.
  • FIG. 9B is a cross-sectional view illustrating a cross-sectional configuration of the solid-state imaging device 52
  • FIG. 9C is a diagram schematically illustrating a potential distribution of the cross-section. 8C and 9C, dotted lines indicate potentials when a low level voltage is applied to each electrode, and solid lines indicate potentials when a middle level (for example, 0 V) is applied.
  • a middle level for example, 0 V
  • the transfer width of the second vertical transfer unit 9A becomes narrower, the potential becomes shallower as the potential approaches the horizontal transfer unit 2.
  • a middle level for example, 0 V
  • the potential at the time becomes very deep.
  • the difference between the potential of the horizontal transfer unit 2 when a high level is applied to the horizontal transfer electrode 14 and the potential when a low level voltage is applied to the second vertical transfer unit 9A is reduced.
  • the potential of the horizontal transfer unit 2 has a restriction that the potential cannot be set deep in order to secure a transfer electric field between the outlet of the horizontal transfer unit 2 and the FD (floating diffusion) unit.
  • the horizontal width of the second vertical transfer unit 9 is shortened to C in FIG. 9A with respect to D in FIG. 8A.
  • FIG. 10 is a plan view of the vicinity of the second vertical transfer unit 9A between the solid-state imaging device 51 and the solid-state imaging device 52.
  • FIG. The solid line shown in FIG. 10 is the second vertical transfer unit 9A of the solid-state imaging device 51, and the dotted line is the second vertical transfer unit 9A of the solid-state imaging device 52.
  • 9B is the same as the cross-sectional structure of the solid-state imaging device 51 shown in FIG. 8B.
  • the horizontal width C on the transfer control unit 6 side of the second vertical transfer unit 9 of the solid-state imaging device 52 is equal to the repeat pitch B of the third vertical transfer unit 6A.
  • the width is shorter than the width D in the solid-state imaging device 51. Therefore, the solid-state imaging device 52 can reduce the amount of reducing the width of the second vertical transfer unit 9 ⁇ / b> A toward the horizontal transfer unit 2 compared with the solid-state image pickup device 51. As a result, the solid-state imaging device 52 can improve the transfer efficiency because the potential becomes shallower toward the horizontal transfer unit 2, but the level becomes small.
  • the second vertical transfer unit 9 ⁇ / b> A includes a region having a constant width and a region that decreases in width toward the horizontal transfer unit 2 side. Only the region whose width decreases toward the second side may be included.
  • the second vertical transfer unit 9A forms a region having a constant width on the transfer control unit 6 side.
  • FIG. 11A is a diagram illustrating a cross-sectional configuration of the solid-state imaging device 50 when the third feature is introduced.
  • FIG. 11B is a diagram schematically showing the potential distribution in this cross section. A plan view is shown in FIG.
  • FIG. 12 is a plan view of a solid-state imaging device 53.
  • FIG. 13 is a plan view of the vicinity of the second vertical transfer unit 9 of the solid-state imaging device 53 shown in FIG. 12 and the solid-state imaging device 50 shown in FIG.
  • the solid line shown in FIG. 13 is the second vertical transfer unit 9 of the solid-state imaging device 53, and the dotted line is the second vertical transfer unit 9 of the solid-state imaging device 50.
  • the transfer efficiency is improved.
  • the transfer length of the second vertical transfer unit 9A is long, a fringe electric field may not be sufficiently obtained.
  • a vertical transfer portion is formed shallowly in order to increase the amount of charge handled and to improve smear characteristics. Thereby, if the transfer length of the second vertical transfer unit 9A is long, the transfer efficiency deteriorates.
  • a fourth vertical transfer electrode 12 and a vertical final electrode 13 are formed on the second vertical transfer unit 9 shown in FIG.
  • the fourth vertical transfer unit 10 can be shortened by dividing the second vertical transfer unit 9 into the fourth vertical transfer unit 10 and the fifth vertical transfer unit 11.
  • the solid-state imaging device 50 can improve transfer efficiency. That is, in FIG. 9B and FIG. 11A, there is a relationship of E> F.
  • the potential difference when the middle level is applied to the vertical final electrode 13 and the low level is applied to the fourth vertical transfer electrode 12 is reduced as compared with FIG. Since the minimum electric field of the transfer unit 10 is determined by the electrode length, the transfer efficiency is improved as a whole.
  • FIG. 14A is a diagram illustrating a cross-sectional configuration of the solid-state imaging device 54 in which the fourth feature is introduced.
  • FIG. 14B is a diagram schematically showing a potential distribution in this cross section.
  • the first p-type impurity implantation region 17 is formed in order to form a potential step so that the potential becomes shallow on the transfer control unit 6 side of the fourth vertical transfer unit 10. Form. Thereby, even if the transfer width is narrow along the transfer direction, it is possible to form a potential gradient in the transfer direction. Therefore, the solid-state imaging device 54 can further improve the transfer efficiency of the fourth vertical transfer unit 10.
  • the second vertical transfer unit As compared with the first n-type impurity implantation region 15 and the second n-type impurity implantation region 16 constituting the pixel repetition unit 5 and the transfer control unit 6, which is a fifth feature, the second vertical transfer unit.
  • the effect when the impurity implantation region is set so that the n-type impurity concentration of No. 9 is lowered will be described.
  • the first vertical transfer unit 1 and the third vertical transfer unit 6A are formed by two n-type diffusion layers (the first n-type impurity implantation region 15 and the second n-type impurity implantation region 16).
  • the n-type diffusion layer of the second vertical transfer unit 9 a layer (first n-type impurity implantation region) shared with the horizontal transfer unit 2 among the diffusion layers used for forming the pixel repeating unit 5. 15) is used.
  • FIG. 15A is a diagram illustrating a cross-sectional configuration of the solid-state imaging device 55 in which the fifth feature is introduced.
  • the solid-state imaging device 55 configures the second vertical transfer unit 9 with the first n-type impurity implantation region 15. That is, the first vertical transfer unit 1 includes the first n-type impurity implantation region 15 and the second n-type impurity implantation region 16.
  • the first n-type impurity implantation region 15 is formed in the first vertical transfer unit 1, the transfer control unit 6, the second vertical transfer unit 9, and the horizontal transfer unit 2.
  • the second n-type impurity implantation region 16 is formed in the first vertical transfer unit 1 and the transfer control unit 6 and is not formed in the second vertical transfer unit 9 and the horizontal transfer unit 2.
  • FIG. 15B is a diagram schematically showing the potential distribution in this cross section.
  • the solid-state imaging device 55 includes: The potential of the second vertical transfer unit 9 can be formed shallow. Thereby, in the solid-state imaging device 55, compared to the solid-state imaging device 54, the potential difference from the fifth vertical transfer unit 11 to the horizontal transfer unit 2 can be increased by G (G2-G1). Thereby, the solid-state imaging device 55 can greatly improve the transfer efficiency from the vertical final electrode 13 to the horizontal transfer unit 2.
  • FIG. 16A and FIG. 16B are diagrams showing a cross-sectional configuration of the solid-state imaging devices 56 and 106 in which the sixth feature is introduced.
  • a first example of the sixth feature of the present embodiment is that a third n-type impurity implantation region 18 as shown in FIGS. 16A and 16B is formed in the second vertical transfer portion 9.
  • the third vertical transfer unit 9 has a third transfer unit on the horizontal transfer unit 2 side (the fifth vertical transfer unit 11 and the horizontal transfer unit 2 side of the fourth vertical transfer unit 10).
  • a potential step is formed in the fourth vertical transfer unit 10 so that the potential on the transfer control unit 6 side becomes shallow.
  • the solid-state imaging device 56 also has the fourth feature.
  • the first n-type impurity implantation region 15 and the third n-type impurity implantation region 18 are formed in the second vertical transfer unit 9, and the above-mentioned In order to form a potential step, a first p-type impurity implantation region 17 is formed on the transfer control unit 6 side of the fourth vertical transfer unit 10.
  • FIG. 16C is a diagram schematically showing a potential distribution corresponding to FIGS. 16A and 16B.
  • an n-type impurity of the second vertical transfer unit 9 is formed by forming a potential step in the fourth vertical transfer unit 10.
  • the concentration was lower than the n-type impurity concentration of the first vertical transfer unit 1 and the transfer control unit 6. That is, in the solid-state imaging device 55, the potential step is formed by the first p-type impurity implantation region 17, so that the concentration of the n-type impurity implantation region at the corresponding position is lowered.
  • the potential difference between the transfer control unit 6 and the fourth vertical transfer unit 10 becomes small, and depending on the formation conditions, the transfer blocking electrode 8 to the fourth vertical transfer unit 10 There is a concern that a transfer failure may occur between the two.
  • the third n-type impurity implantation region 18 is provided in the second vertical transfer unit 9, so that the transfer blocking electrode 8 and the fourth vertical transfer unit 10 are arranged. Therefore, a sufficient potential difference is secured.
  • the concentration of the third n-type impurity implantation region 18 is set lower than the concentration of the second n-type impurity implantation region 16. Accordingly, the solid-state imaging devices 56 and 57 are set so that a sufficient potential difference can be secured even at the boundary between the horizontal transfer unit 2 and the second vertical transfer unit 9.
  • FIG. 17A is a diagram illustrating a cross-sectional configuration of a solid-state imaging device 58, which is another example in which the sixth feature is introduced.
  • FIG. 17B is a diagram schematically showing the potential distribution in this cross section.
  • the second p-type impurity implantation region 19 is transferred to the third vertical transfer section 6A (transfer control under the signal charge storage electrode 7 and the transfer blocking electrode 8). Part 6).
  • the solid-state imaging device 58 can set the potential of the transfer control unit 6 shallower by the amount indicated by H (H2-H1) than in FIG. 16C. Therefore, since the solid-state imaging device 58 can increase the transfer electric field from the transfer control unit 6 to the fourth vertical transfer unit 10, it is possible to improve transfer efficiency.
  • the potential of the signal charge storage electrode 7 is deeper than the potential under ⁇ V11 because the width and the electrode length of the first vertical transfer unit 1 are narrow. Therefore, even if a p-type impurity implantation region is added under the signal charge storage electrode 7, there is no problem in transfer as shown in FIG. 17B.
  • the solid-state imaging device 58 adds the second p-type impurity implantation region 19 so as to make the potential of the transfer control unit 6 shallow so that the potential under the second vertical transfer unit 9 is reduced. It is possible to set shallower than 56 and 106. Accordingly, the solid-state imaging device 58 can take a large potential difference between the vertical final electrode 13 and the horizontal transfer unit 2.
  • a second p-type impurity implantation region 19 may be further formed for any of 56.
  • the n-type impurity implantation region and the p-type impurity implantation region are regions formed by a single impurity implantation step.
  • the formation of a plurality of impurity implantation regions in a certain region means that a plurality of impurity implantations are performed on a certain region.
  • the types of impurities and the implantation range (range and depth) in the plurality of impurity implantations may be different or the same.
  • the first vertical transfer electrode 4, the signal charge storage electrode 7, the transfer blocking electrode 8, the fourth vertical transfer electrode 12, the vertical final electrode 13, and the horizontal transfer electrode 14 are preferably formed as a single layer.
  • the transfer control unit 6 and the second vertical transfer unit that selectively control the transfer of signal charges from the first vertical transfer unit 1 to the horizontal transfer unit 2.
  • 9 is a solid-state imaging device that can suppress transfer deterioration, can be horizontally interlaced to realize low power consumption, and can add signal charges required in a moving image mode or the like. realizable.
  • FIG. 18 is a diagram showing a configuration of the solid-state imaging device 60 according to Embodiment 2 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and only differences from the solid-state imaging device 50 illustrated in FIG. 1 will be described below.
  • the fourth vertical transfer unit 10 includes a horizontal extension unit 20 in addition to the solid-state imaging device 50.
  • the horizontal extension unit 20 extends the horizontal width of the fourth vertical transfer unit 10 on the side adjacent to the transfer control unit 6. Due to the horizontal extension unit 20, the horizontal width I on the side adjacent to the transfer control unit 6 of the fourth vertical transfer unit 10 is set to the first vertical transfer unit 1 (third vertical transfer unit 6A in three columns). ) Of the total distance J in the horizontal direction (I> J). That is, the maximum transfer width of the second vertical transfer unit 9 is larger than the width between the outer ends of the first vertical transfer units 1 in the columns located at both ends of the first vertical transfer units 1 in the three columns. Is also wide.
  • the potential becomes shallower than the vicinity of the center column of the fourth vertical transfer unit 10 due to the influence of peripheral P-type impurities. For this reason, there is a problem that the electric field is reduced in the transfer from the transfer control unit 6 to the fourth vertical transfer unit 10 at the end compared to the center.
  • the solid-state imaging device 60 can deepen the potential at the end as well as the center. Thereby, the solid-state imaging device 60 can suppress transfer defects from the transfer control unit 6 to the fourth vertical transfer unit 10.
  • the solid-state imaging devices 55, 56, and 57 shown in FIGS. 15A, 15B, 16A, 16B, and 16C of the first embodiment since the potential of the transfer control unit 6 is deep, the above configuration Is valid.
  • the amount by which the fourth vertical transfer unit 10 is squeezed toward the horizontal transfer unit 2 is large.
  • the fourth vertical transfer unit 10 There is no problem in transfer if a potential step is provided.
  • the solid-state imaging device 50 further includes the horizontal extension unit 20
  • the solid-state imaging devices 51 to 58 described in the first embodiment further include the horizontal extension unit 20. May be.
  • FIG. 19 is a diagram showing a configuration of the solid-state imaging device 61 according to Embodiment 3 of the present invention.
  • FIG. 20 is a timing chart showing the driving timing of the solid-state imaging device 61 in the moving image mode.
  • the same reference numerals as those in FIG. 1 represent the same components.
  • the pixel repeater 5 is omitted because it is the same as that in FIG. 1.
  • the signal charge storage electrode 7 and the transfer blocking are also applied to the C column that first transfers the signal charge from the transfer control unit 6 to the horizontal transfer unit 2 in the normal mode and the moving image mode.
  • the electrode 8 is disposed, it is not always necessary to hold the signal charge in the C column that is always transferred first. Therefore, the same transfer pulse as that applied to the pixel repeater 5 can be applied to the electrodes in the C column of the transfer controller 6.
  • ⁇ VST-C and ⁇ V12 have the same drive timing, and ⁇ V12 can be applied to the electrode to which ⁇ VST-C is applied.
  • the third vertical transfer unit 6A in the C column does not need to hold a signal charge, so that the third vertical transfer unit in the C column is smaller than the third vertical transfer unit 6A in the R column and the L column.
  • the width of 6A may be narrow.
  • the solid-state imaging device 61 illustrated in FIG. 19 includes the third vertical transfer unit 6A similar to that of the first embodiment described above in the R and L columns, and the third vertical transfer unit 6B in the C column. Is provided.
  • the third vertical transfer unit 6B includes only the third vertical transfer electrode 7A to which ⁇ V12 is applied. In addition, the transfer width of all the regions under the third vertical transfer electrode 7A of the third vertical transfer unit 6B becomes wider as going from the first vertical transfer unit 1 to the second vertical transfer unit 9.
  • the solid-state imaging device 61 can improve the transfer electric field by utilizing the narrow channel effect.
  • the solid-state imaging device 61 can be configured to have a length that requires two electrodes in the L and R columns and one vertical transfer electrode in the C column.
  • the same addition operation as in the first embodiment can be realized.
  • the number of independent electrodes in the transfer control unit 6 can be reduced to four electrodes of ⁇ VST-R, ⁇ VST-L, ⁇ VHLD-R, and ⁇ VHLD-L.
  • the third embodiment of the present invention it is possible to realize the solid-state imaging device 61 in which the independent electrodes in the transfer control unit 6 are reduced.
  • the configuration of the third embodiment of the present invention may be applied to the solid-state imaging devices 51 to 58 shown in the first embodiment and the solid-state imaging device 60 shown in the second embodiment.
  • the signal charge of the other column among the three columns is transferred from the transfer control unit 6 to the fourth. Transfer to the vertical transfer unit 10.
  • the potential difference between the third vertical transfer unit 6 ⁇ / b> A and the fourth vertical transfer unit 10 in the C column becomes large.
  • a large transfer electric field can be secured between the third vertical transfer unit 6A and the fourth vertical transfer unit 10 in the C column, so that transfer is easier in the C column than in the end portions (R column and L column). is there.
  • the signal charges in the C column at the center are changed in the first horizontal blanking period.
  • the data is transferred from one vertical transfer unit 1 to the horizontal transfer unit 2 via the transfer control unit 6 and the second vertical transfer unit 9. Thereafter, the signal charge is transferred from the signal charge storage electrode 7 in the R column to the transfer blocking electrode 8. Further, using the horizontal transfer period (signal output period) of the center C column after the transfer, it takes a long time to transfer the signal charges of the R column at the end from the transfer blocking electrode 8 to the fourth vertical transfer unit 10. Forward. Thereby, the transfer efficiency can be improved. In this case, the R column signal is transferred to the horizontal transfer unit 2 at the head of the second horizontal blanking.
  • the signal charge is transferred from the signal charge storage electrode 7 in the L column to the transfer blocking electrode 8. Further, the signal charges in the L column are transferred from the transfer blocking electrode 8 in the L column to the fourth vertical transfer unit 10 using the horizontal transfer period in the R column. In addition, the signals of the L columns are transferred to the horizontal transfer unit 2 by the third horizontal blanking.
  • the signal charge of the third vertical transfer unit 6A at the end portion where a transfer failure is likely to occur is transferred to the fourth vertical transfer unit 10 for a long time in the horizontal transfer period. Therefore, it is possible to realize a solid-state imaging device in which transfer problems are suppressed.
  • the present invention can also be applied to a case where a plurality of horizontal transfer units 2 are provided.
  • the horizontal transfer unit 2 is used in order to realize a video output at 30 frames / second in a mode that requires high-speed signal output in the video mode, for example, the number of pixels (1920 ⁇ 1080) used as a full HD video. It is important to reduce the horizontal transfer frequency by providing a plurality. As a result, it is possible to drive the horizontal transfer unit 2 at a low voltage while suppressing transfer failures, so that there is an advantage that low power consumption can be realized. Further, since the increase in the output signal frequency can be suppressed, it is possible to facilitate the setting of the CDS (correlated double sampling) sample and hold timing.
  • CDS correlated double sampling
  • FIG. 22 is a diagram showing a configuration of the solid-state imaging device 62 according to Embodiment 5 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and only differences from the solid-state imaging device 50 illustrated in FIG. 1 will be described below.
  • a solid-state imaging device 62 shown in FIG. 22 includes a first horizontal transfer unit 21, a second horizontal transfer unit 22, a distribution transfer unit 23, and a first horizontal transfer electrode 24 instead of the horizontal transfer unit 2. , A second horizontal transfer electrode 25, a distribution transfer electrode 26, and a channel stop region 27.
  • Both the first horizontal transfer unit 21 and the second horizontal transfer unit 22 are four-phase drive.
  • the first horizontal transfer electrode 24 and the second horizontal transfer electrode 25 are provided above and below the distribution transfer unit 23. Different transfer pulses ⁇ H1a and ⁇ H1b are applied to the first horizontal transfer electrode 24 and the second horizontal transfer electrode 25.
  • the first horizontal transfer electrode 24 and the second horizontal transfer electrode 25 are applied with transfer pulses having the same phase and the same voltage during horizontal transfer.
  • a signal charge is transferred between the first horizontal transfer unit 21 and the second horizontal transfer unit 22 via the distribution transfer unit 23, it is necessary to provide a potential difference.
  • Different transfer pulses are applied to the electrode 24 and the second horizontal transfer electrode 25.
  • Other horizontal transfer electrodes 14 are shared by the first horizontal transfer unit 21 and the second horizontal transfer unit 22, and ⁇ H2, ⁇ H3, and ⁇ H4 are applied. Further, ⁇ HHT is applied to the distribution transfer electrode 26.
  • the transfer control unit 6 is configured with four columns (L column, CL column, CR column, and R column from the left) as a unit. ⁇ ST-L, ⁇ ST-CL, and ⁇ ST-R are sequentially applied to the three signal charge storage electrodes 7 included in one unit of the transfer control unit 6 from the left of one unit. Further, ⁇ HLD-L, ⁇ HLD-CL, and ⁇ HLD-R are applied to three transfer blocking electrodes 8 included in one unit of transfer control unit 6 from the left of one unit.
  • the same transfer pulse ⁇ Vx as that applied to the pixel repeater 5 is applied to the electrodes in the CR column of the transfer controller 6.
  • the solid-state imaging device 62 In the solid-state imaging device 62 according to Embodiment 5 of the present invention, four horizontal transfer electrodes 14 constituting one packet correspond to four columns of first vertical transfer units 1. That is, the solid-state imaging device 62 has a horizontal 4: 1 interlace structure in which a signal of one line is divided into four and transferred.
  • the horizontal pixels In order to generate data of the number of pixels (1920 ⁇ 1080) corresponding to a full HD video, in the structure and driving in which three pixels are added in the horizontal direction as described in the first embodiment, the horizontal pixels The number needs 5760 pixels. Further, in order to support the aspect ratio of 4: 3 used in the digital still camera, the number of pixels in the vertical direction is required to be 4320 pixels. Therefore, the total number of pixels of about 25M is required. However, since the number of pixels that are currently mainstream is about 12M to 16M, horizontal two-pixel mixing is generally used in the case of full HD moving images. For this reason, this embodiment also shows the case of horizontal two-pixel addition when outputting a moving image.
  • the solid-state imaging device 62 can increase the length of the horizontal transfer electrode in the transfer direction by using the horizontal interlace method. Furthermore, since the solid-state imaging device 62 uses four-phase driving, it is not necessary to form a barrier region under each horizontal transfer electrode, unlike the two-phase driving that has been conventionally used. As a result, signal charges can be accumulated in the entire region under one horizontal transfer electrode, so that the width of the horizontal transfer unit 2 necessary for securing the amount of charge to be handled can be reduced. In particular, the solid-state imaging device 62 has an advantage that transfer from the first horizontal transfer unit 21 to the distribution transfer unit 23 can be facilitated by reducing the width of the first horizontal transfer unit 21. Furthermore, the capacity of the horizontal transfer electrode can be greatly reduced. Therefore, the solid-state imaging device 62 achieves low power consumption by reducing the capacity of the horizontal transfer electrode, lowering the voltage by using four-phase driving, and suppressing the increase of the horizontal transfer frequency by using parallel output. it can.
  • FIG. 23A to 23E are diagrams showing signal charge transfer in the normal mode by the solid-state imaging device 62.
  • FIG. FIG. 24 is a diagram illustrating drive timings related to sorting transfer between horizontal transfer units.
  • FIG. 24 shows the timing of transfer pulses applied from the vertical final electrode 13 to the electrodes related to the first horizontal transfer unit 21, the distribution transfer unit 23, and the second horizontal transfer unit 22 in the horizontal blanking period. .
  • the number of packets of the first horizontal transfer unit 21 and the second horizontal transfer unit 22 is 1 ⁇ 4 of the number of columns of the first vertical transfer unit 1. ing.
  • the solid-state imaging device 62 transfers the signal charge from the first vertical transfer unit 1 to the transfer control unit 6 (FIG. 23A), and thereafter, for example, 4 in the order of CR column, R column, L column, CL column.
  • the signal charges are transferred to the first horizontal transfer unit 21 through the transfer control unit 6 and the second vertical transfer unit 9 in each step.
  • the signal charges in the CR column are transferred to the first horizontal transfer unit 21, and then transferred from the first horizontal transfer unit 21 to the second horizontal transfer unit 22 via the distribution transfer unit 23 (FIG. 23B). .
  • the signal charges in the R column, L column, and CL column are changed to the signal charge. It is held by the storage electrode 7. Therefore, the signal charges in the R, L, and CL columns are not transferred to the first horizontal transfer unit 21.
  • the solid-state imaging device 62 transfers the signal charges in the R column to the first horizontal transfer unit 21, and then performs the first horizontal transfer to the output amplifier (FIG. 23C). Further, the signal charges in the L and CL columns that are not transferred to the first horizontal transfer unit 21 are selectively blocked by the transfer control unit 6 in the same manner as in the CR column transfer.
  • the solid-state imaging device 62 transfers the signal charges of the L columns to the first horizontal transfer unit 21, and further transfers them from the first horizontal transfer unit 21 to the second horizontal transfer unit 22 via the distribution transfer unit 23.
  • the operation is performed (FIG. 23D).
  • the solid-state imaging device 62 transfers the signal charges of the CL column to the first horizontal transfer unit 21, and then performs the second horizontal transfer to the output amplifier.
  • the solid-state imaging device 62 outputs one line of signal charge (FIG. 23E). Further, the remaining signal charges can be sequentially output by the same operation.
  • the first horizontal transfer unit 21 receives signal charges transferred from the vertical final electrode 13 by the first horizontal transfer electrode 24 to which ⁇ H1a is applied. Therefore, in the horizontal blanking period, ⁇ H1a first becomes a high level, and then ⁇ VL applied to the vertical final electrode 13 becomes a middle level at time t11. That is, ⁇ HHT applied to the transfer electrode 26 is set to the high level at time t10 before the time (time t11) when the signal charge is transferred from the imaging unit side to the vertical final electrode 13, and the second horizontal transfer electrode 25 is set. It is desirable to keep ⁇ H1b applied to the high level. As a result, when the vertical final electrode 13 reaches the middle level (time t11), a signal charge transfer path is formed up to the second horizontal transfer electrode 25.
  • ⁇ VL is sequentially set to low level at time t12, ⁇ H1a at time t13, and ⁇ HHT to low level at time t14. Is transferred. Thereby, the transfer operation from the vertical final electrode 13 to the second horizontal transfer unit 22 is completed.
  • the transfer pulse ⁇ HHT applied to the distribution transfer electrode 26 maintains the low level during the subsequent horizontal transfer period. Thereby, it is possible to prevent the signal charge transferred to the second horizontal transfer unit 22 from being mixed with the signal charge transferred from the vertical final electrode 13 to the first horizontal transfer unit 21 next time.
  • ⁇ H1a applied to the first horizontal transfer electrode 24 that receives the signal charge is again set to the high level, and then at time t16, ⁇ VL applied to the vertical final electrode 13 is set to the middle level. At time t17, ⁇ VL is changed to a low level. Thereby, the signal charge transfer operation from the vertical final electrode 13 to the first horizontal transfer unit 21 is completed. Thereafter, the solid-state imaging device 62 performs horizontal transfer.
  • 25A to 25C are diagrams showing signal charge transfer in the moving image mode by the solid-state imaging device 62.
  • FIG. The transfer operation between the first horizontal transfer unit 21 and the second horizontal transfer unit 22 is the same as that in the normal mode, except that the operation is performed once.
  • the solid-state imaging device 62 adds two pixels of signal charges of the same color adjacent in the horizontal direction in the moving image mode.
  • the signal charge is transferred to the transfer control unit 6.
  • the signal charges in the CR column and the L column are transferred to the second vertical transfer unit 9 via the transfer control unit 6 and added. Further, the added signal charge is transferred to the first horizontal transfer unit 21.
  • the signal charges in the R column and the CL column are not transferred to the second vertical transfer unit 9 by setting the signal charge storage electrode 7 of each column to the middle level and the transfer blocking electrode 8 to the low level. It is held under the signal charge storage electrode 7.
  • the signal charge obtained by adding the CR column and the L column transferred to the first horizontal transfer unit 21 is transferred to the second horizontal transfer unit 22 via the distribution transfer unit 23.
  • the signal charges in the R column and the CL column are transferred from the signal charge storage electrode 7 to the second vertical transfer unit 9 and added. Further, the added signal charge is transferred to the first horizontal transfer unit 21.
  • the solid-state imaging device 62 reduces the horizontal transfer electrode capacitance using horizontal interlace, and suppresses the increase in horizontal transfer frequency by parallel transfer using two horizontal transfer units. it can. Further, the solid-state imaging device 62 can reduce the width of the horizontal transfer unit by adopting the four-phase drive, and can drive the horizontal transfer unit with a low voltage, thereby realizing low power consumption. Furthermore, the solid-state imaging device 62 can cope with a multi-pixel moving image, and can reduce transfer problems between horizontal transfer units.
  • the solid-state imaging device is realized as an LSI which is an integrated circuit.
  • the present invention may be realized as a camera such as a digital still camera or a digital video camera including any one of the solid-state imaging device according to Embodiments 1 to 5 and the modifications thereof.
  • the present invention may be realized as a driving method of the solid-state imaging device that drives the solid-state imaging device according to Embodiments 1 to 5 and the modifications thereof.
  • the present invention can be applied to a solid-state imaging device, and is particularly useful as a solid-state imaging device for a digital still camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明に係る固体撮像装置(50)は、複数の光電変換部(3)と、複数の第1の垂直転送部(1)と、水平転送部(2)と、複数の第1の垂直転送部(1)のうち、水平方向に連続するm(mは2以上の整数)列毎に対応して設けられ、対応するm列の第1の垂直転送部(1)のいずれかにより転送された信号電荷を選択的に転送する複数の転送制御部(6)と、対応する転送制御部(6)により転送された信号電荷を水平転送部(2)へ転送する複数の第2の垂直転送部(9)とを備える。各第2の垂直転送部(9)は、水平転送部(2)の1転送パケットを形成する2以上の水平転送電極(14)毎に配置され、かつ転送制御部(6)から水平転送部(2)に向かうにつれ転送幅が小さくなる領域を有する。また、各第2の垂直転送部(9)には、第1の垂直転送部(1)及び転送制御部(6)の垂直転送電極と独立した垂直転送電極が設けられている。

Description

固体撮像装置、その駆動方法及びカメラ
 本発明は固体撮像装置、その駆動方法及びカメラに関し、特に、複数の垂直転送部のいずれかにより転送された信号電荷を選択的に水平転送部に転送する転送制御部を備える固体撮像装置に関する。
 デジタルスチルカメラ用の固体撮像装置として、CCD(Charge Coupled Device)を用いたカメラでは、近年12M以上の画素数を持つCCDが主流である。この画素数の増加にともない、水平転送部を構成する水平転送電極は微細化されるとともに、水平方向の画素数は4000画素程度に達している。これにより、一般的に用いられてきた、第1の垂直転送部1列に対して水平転送部の1パケットが構成される2相駆動方式では、電極間容量が飛躍的に増大することにより消費電力の増大してしまうという課題がある。
 そのため、現在では、水平転送部の転送パケット数を従来のように垂直転送部の列数と同じにせず、例えば1/3にするとともに、垂直転送部から水平転送部への転送、及び水平転送部から出力部への転送動作を3回に分け、1ラインの信号電荷を分割してインターレース出力する方式が提案されている(例えば、特許文献1参照)。
 この方式は、水平転送部を構成する電極数を減らすことが可能である。これにより、電極間容量が減少するので、低消費電力化を実現できる。
 但し、このような構造をもつ固体撮像装置では、水平転送部のパケット数が垂直転送部の列数よりも少ないため、垂直転送部から水平転送部への信号電荷の転送を選択的に制御する転送制御部が必要である。具体的には、最初の転送動作を行っている間、転送制御部において信号電荷を保持しておく機能が必要となる。
 また、現在では受光部の信号を静止画として取り出す撮像モード(以下通常モード)に加え、液晶モニター表示及び動画記録のための動画モードが用いられる。動画モードでは、一般に、複数の画素から得られる信号電荷を撮像装置内で加算する、又は画素から読み出す信号電荷を選択的に間引く方法が用いられている。これにより、出力信号数を減らすことができるので、高フレームレートの動画を実現できる。例えば、動画モードでは、静止画で出力される画素数(例えば10M)から出力信号数を減らした、30フレーム/秒のVGA出力(640×480)又はHDフォーマットに対応した720p出力(1280×720)などが実現されている。
 このように、通常モードでは、2~3フレーム/秒のフレームレートであるのに対し、動画モードでは30フレーム/秒の画像出力が要求される。よって、動画モードでは、静止画で出力される画素数に比べ画像を1/10近くに圧縮する必要があるので、加算される信号電荷が多くなる。
 また、デジタルスチルカメラ用の固体撮像装置では、一般にベイヤー配列が用いられており、隣接する同色間で信号電荷が加算される。この固体撮像装置内での信号電荷の加算は、垂直方向は垂直転送部内又は水平転送部内で行われ、水平方向は水平転送部内で行われる。
 この垂直方向の垂直転送部内での画素加算は、光電変換部から垂直転送部への読み出しを行う垂直転送電極を複数設けるとともに、駆動タイミングを工夫することで実現できる。一方、水平方向の画素加算は、垂直転送部と水平転送部と間に、信号電荷の転送を選択的に制御する転送制御部を設ける必要がある。
 また、動画モードの1例が、特許文献2に記載されている。特に特許文献2における垂直3画素、及び水平3画素の信号電荷を加算する9画素加算の方法は、加算後の重心ズレがなく、かつモアレが少ない高画質の動画を実現できるので有用である。
 以上述べたように、現在のデジタルカメラ用の固体撮像装置では、低消費電力化と、画素加算を利用した高フレームレートの動画とを実現するために、転送制御部が必須となっている。
 以下、特許文献1記載の従来の固体撮像装置について詳細に説明する。
 図26は、特許文献1に記載されている従来の固体撮像装置の構成を示す図である。図27A~図27Cは、通常モードでの信号電荷の転送動作を示す図である。図28A~図28Cは、水平3画素加算時の信号電荷の転送動作を示す図である。
 図26に示す固体撮像装置は、第1の垂直転送部1と、水平転送部2と、電荷保持部101と、VOG部104とを備える。また、電荷保持部101はストレージ部102とホールド部103とを含む。
 以上のように構成された固体撮像装置についてその動作を説明する。先に述べた転送制御部は、この例では、電荷保持部101とVOG部104とを含む領域になる。また、図26は水平転送部2が3相駆動の例である。本例では、隣り合う3つの第1の垂直転送部1を1つのグループGrとして、水平転送部2の単位転送ビットを対応させ、グループGr毎に、グループGrに対応して電荷転送部であるVOG部104を有する。
 第1の垂直転送部1から当該第1の垂直転送部1が属するグループGrに対応するVOG部104に信号電荷が転送される。また、VOG部104から当該VOG部104に信号電荷を転送した第1の垂直転送部1に対応する単位転送ビットに信号電荷の転送が行われる。これにより、グループGr内のいずれの第1の垂直転送部1もVOG部104を介して対応する単位転送ビットに信号電荷を転送できる。
 通常モードの際には、図27Aに示すように、図26に示すc列の信号電荷は、VOG部104を介して水平転送部2に転送され、その後出力部へ水平転送される。その際、図26に示すa列とb列との信号電荷は、ストレージ部102とホールド部103とを含む電荷保持部101によって保持される。
 c列の信号電荷の転送が完了した後、図27Bに示すように、a列の信号電荷は、電荷保持部101から水平転送部2に転送され、その後、出力部へ転送される。最後に、図27Cに示すように、b列の信号電荷は、電荷保持部101から水平転送部2に転送され、その後、出力部へ転送される。
 すなわち、通常モードでは、水平1ラインの信号電荷が、3分割され出力される。
 一方、水平3画素加算モードの場合は、図28Aに示すように、a列とc列との信号電荷は、VOG部104を介して水平転送部2に転送される。その後、図28Bに示すように、a列とc列との信号電荷は、1グループ分左方向に転送される。その後、図28Cに示すように、b列の信号電荷は、VOG部104を介して水平転送部2に転送される。これにより、水平方向の3画素加算が行われる。
 この水平3画素加算モードでは、加算後の信号電荷数と水平転送部2のパケット数とが一致するため、通常モードのように1ラインを3分割して転送する必要はない。
 また、通常モード及び水平3画素加算モードのいずれの場合も、第1の垂直転送部1から水平転送部2までは、VOG部104を介して転送されており、第1の垂直転送部1はVOG部104に接続されている。
特開2006-310655号公報 特許第3848650号公報
 しかしながら上記従来の構成では、複数の第1の垂直転送部が、水平転送部の前に配置される転送制御部内のVOG部において束ねられている。このため、VOG部から水平転送部への転送に際しては、信号電荷を受ける水平転送電極内に向けて垂直転送部を絞り込むことが必要である。この絞り込みが急峻であると電位が水平転送部側で浅くなる。これにより、転送劣化が発生するという課題がある。
 本発明は上記課題を解決するものであり、複数の垂直転送部を束ねる構成において転送劣化を抑制できる固体撮像装置、その駆動方法及びカメラを提供することを目的とする。
 上記目的を達成するために、本発明の一形態に係る固体撮像装置は、行列状に配置され、光を信号電荷に変換する複数の光電変換部と、各列に対応して設けられ、対応する列に配置された複数の光電変換部により変換された信号電荷を垂直方向へ転送する複数の第1の垂直転送部と、前記複数の第1の垂直転送部のうち、水平方向に連続するm(mは2以上の整数)列毎に対応して設けられ、対応する前記m列の第1の垂直転送部のいずれかにより転送された信号電荷を選択的に転送する複数の転送制御部と、前記各転送制御部に対応して設けられ、対応する転送制御部により転送された信号電荷を転送する複数の第2の垂直転送部と、前記複数の第2の垂直転送部により転送された信号電荷を水平方向に転送する水平転送部とを備え、前記各第2の垂直転送部は、前記水平転送部の1転送パケットを形成する2以上の水平転送電極毎に配置され、かつ、前記転送制御部から前記水平転送部に向かうにつれ転送幅が小さくなる領域を有し、前記各第2の垂直転送部には、前記複数の第1の垂直転送部及び前記複数の転送制御部の垂直転送電極と独立した垂直転送電極が設けられている。
 この構成によれば、本発明の一形態に係る固体撮像装置は、第2の垂直転送部が、転送制御部から水平転送部に向かうにつれ転送幅が小さくなる領域を有することにより、水平転送部の絞り込みを緩やかにできるので、電位が水平転送部側で浅くなることを防止できる。よって、本発明に固体撮像装置は、転送劣化を抑制できる。
 また、前記各転送制御部は、前記m列の各列に対応して設けられ、対応する列の垂直転送部により転送された信号電荷の各々を転送するm個の第3の垂直転送部を含み、互いに隣接して配置された前記m個の第3の垂直転送部間の水平方向の中心間距離は、互いに隣接して配置された前記第1の垂直転送部の水平方向の中心間距離より短くてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、第2の垂直転送部の水平方向の幅を狭く形成できる。よって、本発明の一形態に係る固体撮像装置は、第2の垂直転送部を絞り込む角度を緩やかに設定できる。これにより、本発明の一形態に係る固体撮像装置は、転送方向に沿って、電位が浅くなることによる、転送劣化を抑制できる。
 また、前記各第2の垂直転送部は、対応する前記転送制御部により転送された信号電荷を転送するとともに、前記転送制御部から前記水平転送部に向かうにつれ転送幅が小さくなる領域を有する第4の垂直転送部と、前記第4の垂直転送部により転送された信号電荷を前記水平転送部に転送するとともに、転送幅が一定である第5の垂直転送部とを備え、前記第4の垂直転送部と前記第5の垂直転送部上には、それぞれ独立した垂直転送電極が設けられていてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、第4の垂直転送部及び第5の垂直転送部に独立電極を設けることで、第4の垂直転送部の電極の電極長を短くできる。これにより、本発明の一形態に係る固体撮像装置は、転送電界を確保できるので、第4の垂直転送部における転送不具合を抑制できる。
 また、前記各転送制御部は、前記m列の各列に対応して設けられ、対応する列の垂直転送部により転送された信号電荷の各々を転送するm個の第3の垂直転送部を含み、前記m列の第3の垂直転送部に含まれる1個の第3の垂直転送部である第6の垂直転送部は、前記第1の垂直転送部の垂直転送電極のうちいずれかと同じ転送パルスが印加される第1垂直転送電極を備え、前記m列の第3の垂直転送部に含まれる前記第6垂直転送部以外のm-1個の第3の垂直転送部は、前記第1の垂直転送部及び前記第2の垂直転送部の垂直転送電極と独立した信号電荷蓄積電極及び転送阻止電極を備えてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、転送制御部における独立電極の数を削減できる。
 また、前記第6の垂直転送部は、1個の前記第1垂直転送電極のみを備えてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、転送制御部における独立電極の数を削減できる。
 また、前記第6の垂直転送部の前記第1垂直転送電極下の全ての領域は、前記第1の垂直転送部から前記第2の垂直転送部に向かうにつれ転送幅が広くなってもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、ナローチャネル効果を利用することで、転送電界を向上できる。
 また、前記第2の垂直転送部の最大の転送幅は、m列の前記第1の垂直転送部のうち両端に位置する列の第1の垂直転送部の外側の端部間の幅よりも広くてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、第2の垂直転送部の水平方向の端部についても、水平方向の中央部と同様に電位を深くできる。これにより、本発明の一形態に係る固体撮像装置は、転送制御部から第2の垂直転送部への転送不良を抑制できる。
 また、前記第1の垂直転送部は、第1のn型不純物注入領域及び第2のn型不純物注入領域で構成され、前記第1のn型不純物注入領域は、前記第1の垂直転送部と前記転送制御部と前記第2の垂直転送部と前記水平転送部とに形成され、前記第2のn型不純物注入領域は、前記第1の垂直転送部と前記転送制御部とに形成されるとともに、前記第2の垂直転送部と水平転送部とには形成されなくてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、第1の垂直転送部と同じn型不純物濃度で第2の垂直転送部を形成する場合に比べ、第2の垂直転送部の電位を浅く形成できる。よって、本発明の一形態に係る固体撮像装置は、第2の垂直転送部から水平転送部への電位差を大きくできるので、転送効率を改善できる。
 また、前記第2の垂直転送部には、前記水平転送部側の電位より前記転送制御部側の電位が浅くなるようにポテンシャル段差が形成されていてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、第2の垂直転送部の転送効率を更に改善できる。
 また、前記第2の垂直転送部の前記水平転送部側には、前記ポテンシャル段差を形成するために第3のn型不純物注入領域が形成されていてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、ポテンシャル段差を形成することによる、転送制御部と第2の垂直転送部との電位差の減少を抑制できるので、転送制御部から第2の垂直転送部への転送効率を改善できる。
 また、前記第3の垂直転送部の前記転送制御部側には、前記ポテンシャル段差を形成するためのp型不純物注入領域が形成されていてもよい。
 また、前記第2の垂直転送部には、さらに、第3のn型不純物注入領域が形成されていてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、ポテンシャル段差を形成することによる、転送制御部と第2の垂直転送部との電位差の減少を抑制できるので、転送制御部から第2の垂直転送部への転送効率を改善できる。
 また、前記転送制御部には、p型不純物注入領域が形成されていてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、転送制御部の電位を浅くできる。よって、本発明の一形態に係る固体撮像装置は、転送制御部から第2の垂直転送部への転送電界を強くできるので、転送効率を改善できる。
 また、前記第1の垂直転送部、前記転送制御部及び前記第2の垂直転送部の垂直転送電極と、前記水平転送部の水平転送電極とは単層で形成されていてもよい。
 この構成によれば、本発明の一形態に係る固体撮像装置は、配線レイアウトを容易に行うことができる。
 また、本発明の一形態に係る固体撮像装置の駆動方法は、前記固体撮像装置の駆動方法であって、前記m列のうち一の列の信号電荷の水平転送期間に、前記m列のうち他の列の信号電荷を前記転送制御部から前記第4の垂直転送部へ転送する。
 これによれば、他の列の水平転送期間を利用して、長い時間をかけて転送制御部から第4の垂直転送部へ信号電荷を転送できるので、転送制御部から第4の垂直転送部への信号電荷の転送効率を向上できる。
 また、水平ブランキング期間に、前記m列のうち中央部の列の信号電荷を前記転送部から前記第4の垂直転送部へ転送し、前記中央部の列の信号電荷の水平転送期間に、前記m列のうち端部の信号電荷を前記転送制御部から前記第4の垂直転送部へ転送してもよい。
 これによれば、転送不具合が発生しやすい端部の信号電荷を、転送制御部から第4の垂直部へ長い時間をかけて転送することができる。これにより、転送制御部から第4の垂直部への信号電荷の転送の不具合を抑制できる。
 また、本発明の一形態に係るカメラは、前記固体撮像装置を備える。
 なお、本発明は、このような固体撮像装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現できる。
 以上より、本発明は、複数の垂直転送部を束ねる構成において転送劣化を抑制できる固体撮像装置、その駆動方法及びカメラを提供できる。
図1は、本発明の実施の形態1に係る固体撮像装置の平面図である。 図2Aは、本発明の実施の形態1に係る固体撮像装置による通常モード時の動作を示す図である。 図2Bは、本発明の実施の形態1に係る固体撮像装置による通常モード時の動作を示す図である。 図2Cは、本発明の実施の形態1に係る固体撮像装置による通常モード時の動作を示す図である。 図2Dは、本発明の実施の形態1に係る固体撮像装置による通常モード時の動作を示す図である。 図3は、本発明の実施の形態1に係る固体撮像装置による通常モード時の駆動タイミングを示す図である。 図4Aは、本発明の実施の形態1に係る固体撮像装置による水平3画素加算時の動作を示す図である。 図4Bは、本発明の実施の形態1に係る固体撮像装置による水平3画素加算時の動作を示す図である。 図4Cは、本発明の実施の形態1に係る固体撮像装置による水平3画素加算時の動作を示す図である。 図5は、本発明の実施の形態1に係る固体撮像装置による水平3画素加算時の駆動タイミングを示す図である。 図6Aは、本発明の実施の形態1に係る固体撮像装置の変形例の平面図である。 図6Bは、本発明の実施の形態1に係る固体撮像装置の変形例の平面図である。 図7は、本発明の実施の形態1に係る固体撮像装置の変形例の平面図である。 図8Aは、本発明の実施の形態1に係る固体撮像装置の第1の例の平面図である。 図8Bは、本発明の実施の形態1に係る固体撮像装置の第1の例の断面図である。 図8Cは、本発明の実施の形態1に係る固体撮像装置の第1の例の電位分布を示す図である。 図9Aは、本発明の実施の形態1に係る固体撮像装置の第2の例の平面図である。 図9Bは、本発明の実施の形態1に係る固体撮像装置の第2の例の断面図である。 図9Cは、本発明の実施の形態1に係る固体撮像装置の第2の例の電位分布を示す図である。 図10は、本発明の実施の形態1に係る固体撮像装置の第1の例と第2の例とを比較する図である。 図11Aは、本発明の実施の形態1に係る固体撮像装置の第3の例の断面図である。 図11Bは、本発明の実施の形態1に係る固体撮像装置の第3の例の電位分布を示す図である。 図12は、本発明の実施の形態1に係る固体撮像装置の第4の例の平面図である。 図13は、本発明の実施の形態1に係る固体撮像装置の第3の例と第4の例とを比較する図である。 図14Aは、本発明の実施の形態1に係る固体撮像装置の第5の例の断面図である。 図14Bは、本発明の実施の形態1に係る固体撮像装置の第5の例の電位分布を示す図である。 図15Aは、本発明の実施の形態1に係る固体撮像装置の第6の例の断面図である。 図15Bは、本発明の実施の形態1に係る固体撮像装置の第6の例の電位分布を示す図である。 図16Aは、本発明の実施の形態1に係る固体撮像装置の第7の例の断面図である。 図16Bは、本発明の実施の形態1に係る固体撮像装置の第8の例の断面図である。 図16Cは、本発明の実施の形態1に係る固体撮像装置の第7の例及び第8の例の電位分布を示す図である。 図17Aは、本発明の実施の形態1に係る固体撮像装置の第9の例の断面図である。 図17Bは、本発明の実施の形態1に係る固体撮像装置の第9の例の電位分布を示す図である。 図18は、本発明の実施の形態2に係る固体撮像装置の平面図である。 図19は、本発明の実施の形態3に係る固体撮像装置の平面図である。 図20は、本発明の実施の形態3に係る固体撮像装置による水平3画素加算時の駆動タイミングを示す図である。 図21は、本発明の実施の形態4に係る固体撮像装置による水平3画素加算時の駆動タイミングを示す図である。 図22は、本発明の実施の形態5に係る固体撮像装置の平面図である。 図23Aは、本発明の実施の形態5に係る固体撮像装置による通常モード時の動作を示す図である。 図23Bは、本発明の実施の形態5に係る固体撮像装置による通常モード時の動作を示す図である。 図23Cは、本発明の実施の形態5に係る固体撮像装置による通常モード時の動作を示す図である。 図23Dは、本発明の実施の形態5に係る固体撮像装置による通常モード時の動作を示す図である。 図23Eは、本発明の実施の形態5に係る固体撮像装置による通常モード時の動作を示す図である。 図24は、本発明の実施の形態5に係る固体撮像装置による水平転送部間の振り分け転送に関する駆動タイミングを示す図である。 図25Aは、本発明の実施の形態5に係る固体撮像装置による水平2画素加算時の動作を示す図である。 図25Bは、本発明の実施の形態5に係る固体撮像装置による水平2画素加算時の動作を示す図である。 図25Cは、本発明の実施の形態5に係る固体撮像装置による水平2画素加算時の動作を示す図である。 図26は、従来の固体撮像装置の平面図である。 図27Aは、従来の固体撮像装置の通常モード時の動作を示す図である。 図27Bは、従来の固体撮像装置の通常モード時の動作を示す図である。 図27Cは、従来の固体撮像装置の通常モード時の動作を示す図である。 図28Aは、従来の固体撮像装置の水平3画素加算時の動作を示す図である。 図28Bは、従来の固体撮像装置の水平3画素加算時の動作を示す図である。 図28Cは、従来の固体撮像装置の水平3画素加算時の動作を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る固体撮像装置50の構成を示す図である。
 図1に示す固体撮像装置50は、画素繰り返し部5と、複数の転送制御部6と、複数の第2の垂直転送部9と、水平転送部2と、複数の水平転送電極14とを備える。
 画素繰り返し部5は、複数の光電変換部3と、複数の第1の垂直転送部1と、複数の第1の垂直転送電極4とを含む。
 複数の光電変換部3は、行列状に配置され、光を信号電荷に変換し、変換した信号電荷を蓄積する。
 複数の第1の垂直転送部1は、各列に対応して設けられ、対応する列に配置された複数の光電変換部3により変換された信号電荷を垂直方向へ転送する。
 複数の第1の垂直転送電極4は、複数の第1の垂直転送部1上に形成される。
 複数の転送制御部6は、複数の第1の垂直転送部1のうち、水平方向に連続するm(mは2以上の整数)列毎に対応して設けられる。各転送制御部6は、対応するm列の第1の垂直転送部1のいずれかにより転送された信号電荷を選択的に転送する。
 各転送制御部6は、前記m列の各列に対応して設けられ、対応する列の垂直転送部により転送された信号電荷の各々を転送するm個の第3の垂直転送部6Aと、m個の信号電荷蓄積電極7と、m個の転送阻止電極8とを含む。
 第3の垂直転送部6Aは、各転送制御部6が対応するm列の各列に対応して設けられる。この第3の垂直転送部6Aは、対応する列の第1の垂直転送部1により転送された信号電荷の各々を転送する。
 各信号電荷蓄積電極7及び各転送阻止電極8は、各第3の垂直転送部6A上に形成される。
 第2の垂直転送部9は、各転送制御部6に対応して設けられ、対応する転送制御部6により転送された信号電荷を転送する。また、第2の垂直転送部9は、水平転送部2の1転送パケットを形成する少なくとも2以上の水平転送電極14毎に配置される。また、第2の垂直転送部9は、転送制御部6から水平転送部2に向かうにつれ転送幅が小さくなる領域を有する。また、第2の垂直転送部9には、第1の垂直転送部1及び転送制御部6の垂直転送電極と独立した垂直転送電極が設けられている。
 この第2の垂直転送部9は、第4の垂直転送部10と、第5の垂直転送部11と、第4の垂直転送電極12と、垂直最終電極13とを含む。
 第4の垂直転送部10は、転送制御部6により転送された信号電荷を転送する。また、第4の垂直転送部10は、転送制御部6から水平転送部2へ向かうにつれ転送幅が小さくなる領域を有する。
 第5の垂直転送部11は、第4の垂直転送部10により転送された信号電荷を転送する。また、第5の垂直転送部11は、転送幅が一定であり、まっすぐに配置される。
 水平転送部2は、第2の垂直転送部9により転送された信号電荷を水平方向に転送する。複数の水平転送電極14は、水平転送部2上に形成される。また、水平転送部2は、固体撮像装置50が備える出力部(図示せず)へ、第2の垂直転送部9により転送された信号電荷を転送する。
 この出力部は、水平転送部2により転送された信号電荷を電圧信号に変換し、変換した電圧信号を外部に出力する。
 本発明の実施の形態1では、第2の垂直転送部9は、第1の垂直転送部1を3列束ねる。また、1つの第2の垂直転送部9に、水平転送部2の1つの単位転送パケットが対応している。つまり水平転送部2の単位転送パケットは、第1の垂直転送部1の列数の1/3となる。よって、1ラインの信号電荷を加算することなく出力する場合は、3回に分割して出力される(水平3:1インターレース)。
 また、図1では水平転送部2が4つの水平転送電極14を1単位とする4相駆動の例を示している。つまり、水平転送電極14にはφH1、φH2、φH3、φH4の転送パルスが印加される。なお、後述するように、3つの水平転送電極14を1単位とする3相駆動、又は2つの水平転送電極14を1単位とする2相駆動であっても良い。
 なお、4相駆動は、従来例で示した3相駆動に比べ、水平転送電極14の転送方向の電極長を短くできるため、低電圧駆動が可能となる利点がある。例えば画素サイズが1.5μm程度の場合、4相駆動を用いることで1.8V駆動が可能となる。この電圧1.8Vはデジタルスチルカメラに搭載される他の半導体素子でも使用される電圧であることから、カメラ設計において扱いやすいという利点がある。
 また、背景技術の説明で述べたように、水平インターレースを用いる場合、信号電荷を水平転送期間中に保持しておく動作が必要であり、特に1つの電極(本例の場合は信号電荷蓄積電極7)で信号電荷を保持する場合には、信号電荷を蓄積する電極の電極長を大きくする、又は電極下の第1の垂直転送部1において水平方向の幅を画素繰り返し部5の第1の垂直転送部1の幅よりも広くする、又はその両方を実施することにより必要な飽和電荷量を確保する必要がある。
 なお、電極長を長くするだけでは、転送電界が低下することにより、転送効率が低下してしまう。よって、飽和電荷量を確保するには、幅を広げることが望ましい。例えば、図1においては、転送制御部6の第3の垂直転送部6Aの水平方向の幅を、画素繰り返し部5における第1の垂直転送部1の水平方向の幅よりも広くしている。
 本発明の実施の形態1に係る固体撮像装置50の第1の特徴は、第2の垂直転送部9が、転送制御部6から水平転送部2に向かうにつれ転送幅が小さくなる領域を有することである。これにより、水平転送部2の絞り込みを緩やかにできるので、電位が水平転送部2側で浅くなることを防止できる。よって、固体撮像装置50は、転送劣化を抑制できる。
 固体撮像装置50の第2の特徴は、転送制御部6における3列の第3の垂直転送部6Aの繰り返しピッチを画素繰り返し部5の第1の垂直転送部1の繰り返しピッチより短くなるよう配置している点である。つまり、図1において、画素繰り返し部5における、第1の垂直転送部1の水平方向の中心と、隣接する第1の垂直転送部1の水平方向の中心との距離をA、各転送制御部6に含まれる、互いに隣接して配置された第3の垂直転送部6Aの水平方向の中心間の距離をBとした場合に、AとBとの関係は、A>Bとなる。
 これにより、固体撮像装置50は、第4の垂直転送部10の水平方向の幅Cを狭く形成できる。よって、水平転送部2へ信号電荷を転送する際に、第4の垂直転送部10を絞り込む必要があるが、その角度を緩やかに設定できる利点がある。これにより、固体撮像装置50は、転送方向に沿って、電位が浅くなってしまう弊害を抑制できる。
 固体撮像装置50の第3の特徴は、第4の垂直転送部10及び第5の垂直転送部11に対して、各々独立電極として、第4の垂直転送電極12及び垂直最終電極13を設けている点にある。また、第4の垂直転送部10では、転送幅を絞り込んでいるために、水平転送部2側で電位が浅くなっていくが、第4の垂直転送部10及び第5の垂直転送部11に独立電極として、それぞれ第4の垂直転送電極12及び垂直最終電極13を設けることで、電極長を短くできる。これにより、転送電界を確保できるので、第4の垂直転送部10における転送不具合を抑制することが可能となる。
 本実施例の第4の特徴は、第2の垂直転送部9に含まれる第4の垂直転送部10に、水平転送部2側の電位より転送制御部6側の電位が浅くなるようにポテンシャル段差が形成されていることである。例えば、転送効率を考慮し、第4の垂直転送部10の転送制御部6側で電位が浅くなるように、第4の垂直転送部10のn型不純物注入領域を形成する。これにより、第4の垂直転送部10の転送効率を更に改善することが可能となる。詳細については後述する。
 固体撮像装置50の第5の特徴は、画素繰り返し部5及び転送制御部6のn型不純物濃度に比べ、第2の垂直転送部9のn型不純物濃度を低くすることである。具体的には、画素繰り返し部5においては、ナローチャネル効果による取り扱い電荷量の低下及び転送効率劣化を抑制するために、また転送制御部6においては、必要な取り扱い電荷量を1電極で確保するために、例えば2つのn型拡散層によって、第1の垂直転送部1を形成する。また、第2の垂直転送部9のn型拡散層については、画素繰り返し部5の形成に用いられる拡散層のうちの何れか1つを用いる。
 これにより、画素繰り返し部5と同じn型不純物濃度で第2の垂直転送部9を形成する場合に比べ、第2の垂直転送部9の電位を浅く形成できる。よって、第5の垂直転送部11から水平転送部2への電位差を大きくとることが可能となるので、転送効率を改善できる。詳細な構成については、後述する。
 本実施例の第6の特徴は、第5の特徴としてあげた、画素繰り返し部5及び転送制御部6のn型不純物濃度に比べ、第2の垂直転送部9のn型不純物濃度を低くしながらも、第2の垂直転送部9にn型不純物注入領域を設ける。これにより、転送制御部6と第4の垂直転送部10との電位差を大きくすることで、この領域における転送効率を改善できる。または、第2の垂直転送部9のn型不純物濃度を低くしながらも、転送制御部6にp型不純物注入領域を設けことにより、画素繰り返し部5を水平方向に拡張した場合の電位よりも転送制御部6の電位を浅くする。これにより、転送制御部6と第4の垂直転送部10との電位差を大きくとれるので、この領域における転送効率を改善できる。
 また、固体撮像装置50では、信号電荷蓄積電極7には転送パルスとして、φVST-L、φVST-C、及びφVST-Rが印加される。また、転送阻止電極8にはφVHLD-L、φVHLD-C、及びφVHLD-Rが印加される。図1では、3列単位で構成される転送制御部6のうち、φVST-C及びφVHLD-Cが印加される列をC列とし、φVST-R及びφVHLD-Rが印加される列をR列とし、φVST-L及びφVHLD-Lが印加される列をL列としている。また、第4の垂直転送電極12にはφVL2が印加され、垂直最終電極13にはφVLが印加される。
 以上のように構成された固体撮像装置50について、以下その動作を説明する。
 まず、固体撮像装置50の通常モードにおける動作を説明する。
 図2A~図2Dは、固体撮像装置50による通常モードの信号電荷転送を示す図である。また、図3は、通常モードの駆動タイミングを示すタイミングチャートである。
 図2A~図2Dに示すように、通常モードにおいては、水平転送部2のパケット数は第1の垂直転送部1の列数の1/3になっているため、固体撮像装置50は、C列、R列、L列の順で3回に分けて第1の垂直転送部1から転送制御部6及び第2の垂直転送部9を介して水平転送部2へ転送動作を行い、次に、水平転送部2から出力アンプへの転送を行う。
 また、本発明の実施の形態1では第1の垂直転送部1の駆動相数が12相の場合を示している。この場合、水平転送期間において、8つの第1の垂直転送電極4で信号電荷が蓄積される。また、図3においては、φV3からφV10に信号電荷が蓄積されている。図3における水平ブランキング期間においては、4つの水平転送電極14のうち、3つの水平転送電極14(φH1、φH2、φH3)をハイレベル(例えば1.8V)としている。なお、第1の垂直転送部1の駆動相数は、12相以外であってもよい。例えば、第1の垂直転送部1の駆動相数は、6相、又は8相等であってもよい。
 まず、固体撮像装置50は、これらの信号電荷を各列の信号電荷蓄積電極7に転送する。具体的には、固体撮像装置50は、図3の時刻t0において、転送制御部6に隣接する第1の垂直転送電極4に印加されるφV11をローレベルにし、かつ信号電荷蓄積電極7に印加されるφVST-L、φVST-C及びφVST-Rにミドルレベル(例えば0V)にすることにより、信号電荷を信号電荷蓄積電極7に転送する(図2A)。また、固体撮像装置50は、各列の転送阻止電極8に印加されるφVHLD-L、φVHLD-C及びφVHLD-Rをローレベルにして電位障壁を形成することにより次段への信号電荷の転送を阻止している。
 次に、時刻t1~t2期間において、固体撮像装置50は、L列及びR列の転送阻止電極8に印加されるφVHLD-L及びφVHLD-Rをローレベルに維持することにより、信号電荷を信号電荷蓄積電極7に保持する。また、固体撮像装置50は、C列の転送阻止電極8に印加するφVHLD-Cと、第4の垂直転送電極12に印加するφVL2と、垂直最終電極13に印加するφVLとをミドルレベル又はハイレベルに遷移させる。これにより、固体撮像装置50は、C列の信号電荷を水平転送部2に転送する(図2B)。
 その後、固体撮像装置50は、出力部へ向けて水平転送部2の転送を行うことでC列の信号電荷を出力する。なお、図3において、信号電荷蓄積電極7は、水平転送期間中にローレベルであるが、ローレベルでなくても良い。
 次に時刻t3~t4期間において、固体撮像装置50は、L列の転送阻止電極8に印加されるφVHLD-Lをローレベルに維持することにより、L列の信号電荷を信号電荷蓄積電極7に保持する。また、固体撮像装置50は、R列の転送阻止電極8に印加するφVHLD-Rと、第4の垂直転送電極12に印加するφVL2と、垂直最終電極13に印加するφVLとをミドルレベル又はハイレベルに遷移させる。これにより、固体撮像装置50は、R列の信号電荷を水平転送部2に転送する(図2C)。その後、固体撮像装置50は、水平転送部2の転送を行うことでR列の信号電荷を出力する。
 続いて、時刻t5~t6期間において、固体撮像装置50は、L列の転送阻止電極8に印加するφVHLD-Lと、第4の垂直転送電極12に印加するφVL2と、垂直最終電極13に印加するφVLとをミドルレベル又はハイレベルに遷移させることにより、L列の信号電荷を水平転送部2に転送する(図2D)。その後、固体撮像装置50は、水平転送部2の転送を行うことでR列の信号電荷を出力する。
 上記の動作により、1ラインの信号電荷の出力が可能であり、残りの信号電荷も同様の動作により順次出力することができる。
 次に、固体撮像装置50の動画モードにおける動作を説明する。
 図4A~図4Cは、固体撮像装置50による動画モードにおける信号電荷転送を示す図である。また、図5は、動画モードの駆動タイミングを示すタイミングチャートである。
 固体撮像装置50は、動画モードにおいて、水平方向に隣接する同色の信号電荷を3画素加算する。通常モードと同様に、図5の水平ブランキング期間においては、4つの水平転送電極14のうち、3つの水平転送電極14(φH1、φH2、φH3)をハイレベル(例えば1.8V)としている。
 まず、図5の時刻taに示すように、通常モードの動作と同様に、固体撮像装置50は、転送制御部6に隣接する第1の垂直転送電極4に印加されるφV11をローレベルにし、かつ信号電荷蓄積電極7に印加されるφVST-L、φVST-C、及びφVST-Rをミドルレベル又はハイレベルにすることにより、各列の信号電荷を信号電荷蓄積電極7に転送する(図2A)。また、固体撮像装置50は、各列の転送阻止電極8に印加されるφVHLD-L、φVHLD-C、及びφVHLD-Rをローレベルにして電位障壁を形成することにより、次段への信号電荷の転送を阻止している。
 次に、時刻tbからtc期間において、固体撮像装置50は、L列及びR列の転送阻止電極8に印加されるφVHLD-L及びφVHLD-Rをローレベルに維持することにより、信号電荷を信号電荷蓄積電極7に保持する。また、固体撮像装置50は、C列の転送阻止電極8に印加するφVHLD-Cと、第4の垂直転送電極12に印加するφVL2と、垂直最終電極13に印加するφVLとをミドルレベル又はハイレベルに遷移させる。これにより、固体撮像装置50は、C列の信号電荷を水平転送部2に転送する(図4A)。
 その後、固体撮像装置50は、時刻tcからtd期間で水平転送部2の信号電荷を左方向に3列転送する(図4B)。
 続いて、固体撮像装置50は、時刻teからtf期間で、L列及びR列の転送阻止電極8に印加するφVHLD-L及びφVHLD-Rと、第4の垂直転送電極12に印加するφVL2と、垂直最終電極13に印加するφVLとをミドルレベル又はハイレベルに遷移させる。これにより、固体撮像装置50は、L列及びR列の信号電荷を水平転送部2に転送することで、3画素分の信号電荷を加算することができる(図4C)。
 また、固体撮像装置50は、第1の垂直転送部1においては、読み出し電極を複数設けるとともに、この複数の読み出し電極の駆動を工夫することにより第1の垂直転送部1内で3画素加算を行う。よって、固体撮像装置50は、前述の水平3画素加算と合わせて9画素加算動作を実現することができる。なお、水平信号加算の動作として、C列の信号電荷の転送を先に行い、L列及びR列の信号電荷を水平転送部2内で加算する例を前述したが、先にL列及びR列の信号電荷を転送し、後にC列の信号電荷を加算することも可能である。
 また、図1では水平転送部2が4相駆動される場合を示している。この場合には、4つの水平転送電極14のうち最低1つをバリアとして用いればよい。つまり、上述したように、水平ブランキング期間において3つの水平転送電極14をハイレベルとしたうえで、第5の垂直転送部11からの信号電荷を受けるレイアウトを図1に示している。なお、固体撮像装置50は、2つの水平転送電極14をハイレベルとし信号電荷を受け取ってもよい。
 また、3相駆動の場合は、3つの水平転送電極14のうち2つの水平転送電極14あるいは1つの水平転送電極14をハイレベルとしたうえで、第2の垂直転送部9からの信号電荷を水平転送部2が受け取ればよい。また、2相駆動の場合は、2つの水平転送電極14のうち1つの水平転送電極14をハイレベルとしたうえで、信号電荷を水平転送部2が受け取ればよい。このように駆動相数によって、水平ブランキングにおいて、ハイレベルに設定できる水平転送電極14の数及び電極幅は異なるが、上述した第1の垂直転送部1を第2の垂直転送部9で束ねた構造では、第5の垂直転送部11の幅及び第4の垂直転送部10のレイアウトを調整することで、複数の異なる相数の駆動方法に対応できる利点がある。
 図6Aは、水平2相に対応した固体撮像装置50Aの構成を示す図である。また、図6Bは、3相駆動に対応した固体撮像装置50Bの構造を示す図である。なお、図6A及び図6Bにおいて転送制御部6及び第2の垂直転送部9の構成については図1と同様であるため、印加される転送パルスの配線図は省略している。
 なお、第1の垂直転送部1、転送制御部6、第2の垂直転送部9及び水平転送部2の動作は、図示しない駆動部により制御される。つまり、上述したφV1~φV12、φVST-C、φVST-L、φVST-R、φVHLD-C、φVHLDL、φVHLD-R、φVL、φVL2、及びφH1~φH4等は、この駆動部により生成される。なお、この駆動部は、固体撮像装置50に含まれてもよいし、固体撮像装置50の外部に形成されてもよい。
 また、本実施例の第2の特徴として、転送制御部6における3列の第3の垂直転送部6Aの繰り返しピッチBを画素繰り返し部5の第1の垂直転送部1の繰り返しピッチBより短くなるよう配置しているとしているが、これは図1に示すように第3の垂直転送部6Aが水平転送部2に対して直角に配置されることに限定されるものではなく、図7に示す固体撮像装置50Cように第3の垂直転送部6Aは、第2の垂直転送部9側に向かうにつれ、当該3列の内側に向かうように斜め方向に沿って配置されてもよい。この場合もピッチA及びBの関係はA>Bとなる。
 ここで、ピッチBは、3列の第3の垂直転送部6Aのうち、互いに隣接する2つの第3の垂直転送部6Aの垂直転送方向の任意の位置における中心間の距離である。
 なお、本発明の実施の形態1に係る固体撮像装置50は、上述した第1~第6の特徴の全てを備えてもよいし、いずれか1以上を備えてもよい。
 次に、固体撮像装置50により、複数の第1の垂直転送部1を束ねたVOG部(第2の垂直転送部9)から水平転送部2への転送劣化を改善できる理由について、上述した第1~第6の特徴ごとに、図面を参照しながら説明する。
 まず、第1の特徴である、第2の垂直転送部9が、転送制御部6から水平転送部2に向かうにつれ転送幅が小さくなる領域を有する構成を導入した場合の効果を説明する。
 図8Aは、この第1の特徴を有する固体撮像装置51の平面図である。図8Bは固体撮像装置51の断面の構成を示す断面図であり、図8Cは、この断面における電位分布を模式的に示す図である。
 この固体撮像装置51は、上記第2の特徴及び第3の特徴は有していない。つまり、3列の第3の垂直転送部6Aの繰り返しピッチBは、第1の垂直転送部1の繰り返しピッチAと同じである。また、固体撮像装置51は、上記第2の垂直転送部9の代わりに、第2の垂直転送部9Aを備える。また、第2の垂直転送部9上には、φVOGが印加される1つの第2の垂直転送電極12Aのみが形成されている。
 上記構成により、固体撮像装置51は、水平転送部2の絞り込みを緩やかにできるので、電位が水平転送部2側で浅くなることを防止できる。よって、固体撮像装置50は、転送劣化が発生することを防止できる。
 次に、第2の特徴として述べた転送制御部6における3列の第1の垂直転送部1の繰り返しピッチを画素繰り返し部5の第1の垂直転送部1の繰り返しピッチより短くなるよう配置している構成を導入した場合の効果を説明する。
 図9Aは第2の特徴を有する固体撮像装置52の平面図である。図9Bは、この固体撮像装置52の断面の構成を示す断面図であり、図9Cは、この断面の電位分布を模式的に示す図である。また、図8C及び図9Cにおいて、点線は各電極にローレベルの電圧が印加された際のポテンシャルを示し、実線はミドルレベル(例えば0V)が印加された際のポテンシャルを示す。
 まず、図8B及び図8Cに示す固体撮像装置51における第2の垂直転送部9Aから水平転送部2に信号電荷を転送する際の電位分布について説明する。
 第2の垂直転送部9Aは転送幅が狭くなっていくため、電位が水平転送部2に近づくにつれ浅くなる。また、画素繰り返し部5と同様に、第2の垂直転送部9Aが第1のn型不純物注入領域15及び第2のn型不純物注入領域16で構成された場合、ミドルレベル(例えば0V)印加時の電位は非常に深くなる。これにより、水平転送電極14にハイレベルが印加された際の水平転送部2の電位と第2の垂直転送部9Aにローレベルの電圧が印加された際の電位差が小さくなる。
 このため、第2の垂直転送部9Aにローレベルの電圧を印加した場合においても、図8Cの点線で示すように、ポテンシャルの障壁が存在することにより、転送不良が生じる。また、水平転送部2の電位は、水平転送部2の出口部とFD(フローティング・ディフュージョン)部との間の転送電界を確保するため、電位を深く設定することが出来ないという制限がある。
 これに対し、図9Aに示すように第2の特徴を有する固体撮像装置52では、第2の垂直転送部9における水平方向の幅が、図8AのDに対して図9AのCに短縮される。
 図10は、固体撮像装置51と固体撮像装置52との第2の垂直転送部9A付近の平面図である。図10に示す実線が固体撮像装置51の第2の垂直転送部9Aであり、点線が固体撮像装置52の第2の垂直転送部9Aである。また、図9Bに示す固体撮像装置52の断面の構成は、図8Bに示す固体撮像装置51の断面の構造と同様である。
 図10に示すように、固体撮像装置52の第2の垂直転送部9の転送制御部6側の水平方向の幅Cは、第3の垂直転送部6Aの繰り返しピッチBが、第1の垂直転送部1の繰り返しピッチAよりも短縮されていることにより、固体撮像装置51における幅Dより短い。そのため、固体撮像装置52は、固体撮像装置51に比べて、水平転送部2に向けて第2の垂直転送部9Aの幅を小さくする量が少なくてすむ。これにより、固体撮像装置52は、ポテンシャルが水平転送部2に向けて浅くなるものの、その程度が軽微になるため、転送効率を改善できる。
 なお、図10において、固体撮像装置51及び52において第2の垂直転送部9Aは、幅が一定の領域と、水平転送部2側に向かって幅が小さくなる領域とを含むが、水平転送部2側に向かって幅が小さくなる領域のみを含んでもよい。
 このように、第3の垂直転送部6Aと第2の垂直転送部9Aの左右の端部X点から第2の垂直転送部9Aの幅を絞りこむ場合(太線)においても、第2の特徴を有することにより、同様に絞り込み角度が緩やかになり、電位の傾斜も低減される。ただし、この場合には、第2の垂直転送部9AのX点付近の電位が周辺P型領域の影響を受け低下するため、転送阻止電極8から、第2の垂直転送部9Aへの転送効率が悪化する懸念がある。このように電位が低下しないように、第2の垂直転送部9Aは、転送制御部6側に幅が一定の領域を形成することが望ましい。
 次に、第3の特徴である、第4の垂直転送部10及び第5の垂直転送部11に対して、各々独立電極として、第4の垂直転送電極12及び垂直最終電極13を設けた場合の効果について説明する。
 図11Aは、この第3の特徴を導入した場合の固体撮像装置50の断面の構成を示す図である。また、図11Bは、この断面における電位分布を模式的に示す図である。また、平面図は図1に示している。
 また、図12は、上記第3の特徴を有するとともに、上記第2の特徴を有さない(3列の第3の垂直転送部6Aの繰り返しピッチBが第1の垂直転送部1の繰り返しピッチAと同じ)固体撮像装置53の平面図である。
 また、図13は、図12に示す固体撮像装置53と図1に示す固体撮像装置50との第2の垂直転送部9付近の平面図である。図13に示す実線が固体撮像装置53の第2の垂直転送部9であり、点線が固体撮像装置50の第2の垂直転送部9である。
 図13に示すように、第3の特徴を有する場合においても、第2の特徴による利点は同じである。
 ここで、図9Aに示す固体撮像装置52では、転送効率が改善されるが、第2の垂直転送部9Aの転送長が長いため、フリンジ電界が十分得られない場合がある。特に近年の画素セルが微細化された固体撮像装置では、取り扱い電荷量を大きくするため、及びスミア特性を改善するために、垂直転送部が浅く形成される。これにより、第2の垂直転送部9Aの転送長が長いと転送効率が悪化する。
 そのため、図1に示す第2の垂直転送部9上には、第4の垂直転送電極12と、垂直最終電極13とが形成される。このように第2の垂直転送部9を第4の垂直転送部10と第5の垂直転送部11とに分割することにより、第4の垂直転送部10を短くできる。これにより、固体撮像装置50は、転送効率を改善できる。すなわち、図9B及び図11Aにおいて、E>Fの関係にある。
 また、図11Bに示すように、垂直最終電極13にミドルレベルを印加し、かつ第4の垂直転送電極12にローレベルを印加した際の電位差は図9Cと比べ縮小するが、第4の垂直転送部10の最小電界は電極長で決定されるため、全体として転送効率は改善する。
 次に、第4の特徴である、第4の垂直転送部10にポテンシャル段差を形成した場合の効果を説明する。
 図14Aは、この第4の特徴を導入した固体撮像装置54の断面の構成を示す図である。図14Bは、この断面における電位分布を模式的に示す図である。
 図14Aに示すように固体撮像装置54では、第4の垂直転送部10の転送制御部6側で電位が浅くなるようにポテンシャル段差を形成するために、第1のp型不純物注入領域17を形成する。これにより、転送方向に沿って転送幅が狭くなっていても、転送方向にポテンシャルの傾斜を形成することが可能になる。よって、固体撮像装置54は、第4の垂直転送部10の転送効率を更に改善することが可能となる。
 次に、第5の特徴である、画素繰り返し部5及び転送制御部6を構成する第1のn型不純物注入領域15及び第2のn型不純物注入領域16に比べ、第2の垂直転送部9のn型不純物濃度が低くなるように不純物注入領域を設定した場合の効果について説明する。
 具体的には、画素繰り返し部5においては、ナローチャネル効果による取り扱い電荷量の低下及び転送効率劣化を抑制するため、また転送制御部6においては、必要な取り扱い電荷量を1電極で確保するために、例えば2つのn型拡散層(第1のn型不純物注入領域15及び第2のn型不純物注入領域16)によって、第1の垂直転送部1及び第3の垂直転送部6Aを形成する。また、第2の垂直転送部9のn型拡散層については、画素繰り返し部5の形成に用いられる拡散層のうちの水平転送部2と共用している層(第1のn型不純物注入領域15)を用いる。
 図15Aは、この第5の特徴を導入した固体撮像装置55の断面の構成を示す図である。図15Aに示すように、固体撮像装置55は、第1のn型不純物注入領域15で、第2の垂直転送部9を構成している。つまり、第1の垂直転送部1は、第1のn型不純物注入領域15及び第2のn型不純物注入領域16で構成される。また、第1のn型不純物注入領域15は、第1の垂直転送部1と転送制御部6と第2の垂直転送部9と水平転送部2とに形成される。また、第2のn型不純物注入領域16は、第1の垂直転送部1と転送制御部6とに形成されるとともに、第2の垂直転送部9と水平転送部2とには形成されない。
 図15Bは、この断面における電位分布を模式的に示す図である。
 図14Bに示す固体撮像装置54のように、画素繰り返し部5と同じn型不純物濃度で第2の垂直転送部9を形成する場合に比べ、図15Bに示すように、固体撮像装置55は、第2の垂直転送部9の電位を浅く形成できる。これにより、固体撮像装置55では、固体撮像装置54に比べ、第5の垂直転送部11から水平転送部2への電位差をG(G2-G1)で示す分、大きくできる。これにより、固体撮像装置55は、垂直最終電極13から水平転送部2への転送効率が大きく改善できる。
 次に、本実施例の第6の特徴を導入した場合の効果について説明する。
 図16A及び図16Bは、この第6の特徴を導入した固体撮像装置56及び106の断面の構成を示す図である。
 本実施例の第6の特徴の第1の例は、第2の垂直転送部9に図16A及び図16Bに示すような第3のn型不純物注入領域18を形成することである。
 図16Aに示す固体撮像装置56では、第2の垂直転送部9の水平転送部2側(第5の垂直転送部11及び第4の垂直転送部10の水平転送部2側)に第3のn型不純物注入領域18を形成することで、第4の垂直転送部10に、転送制御部6側の電位が浅くなるようにポテンシャル段差を形成する。これにより、固体撮像装置56は第4の特徴を兼用している。
 また、図16Bに示す固体撮像装置57では、別の例として、第2の垂直転送部9に第1のn型不純物注入領域15及び第3のn型不純物注入領域18を形成するとともに、上記ポテンシャル段差を形成するために、第4の垂直転送部10の転送制御部6側に第1のp型不純物注入領域17を形成している。
 また、図16Cは、図16A及び図16Bに対応する電位分布を模式的に示す図である。
 ここで、第5の特徴を導入した図15A及び図15Bに示す固体撮像装置55では、第4の垂直転送部10にポテンシャル段差を形成することにより、第2の垂直転送部9のn型不純物濃度が第1の垂直転送部1及び転送制御部6のn型不純物濃度に比べ低くなっていた。つまり、固体撮像装置55では、第1のp型不純物注入領域17によってポテンシャル段差を形成したことで、該当箇所のn型不純物注入領域の濃度が低くなる。これにより、固体撮像装置55では、転送制御部6と第4の垂直転送部10との間での電位差が小さくなってしまい、形成条件によっては、転送阻止電極8から第4の垂直転送部10間で転送不具合が生じる懸念がある。
 これに対して、固体撮像装置56及び57は、第2の垂直転送部9に第3のn型不純物注入領域18を設けることにより、転送阻止電極8と第4の垂直転送部10との間で、十分な電位差を確保している。但し、この第3のn型不純物注入領域18の濃度は、第2のn型不純物注入領域16の濃度より低く設定される。これにより、固体撮像装置56及び57は、水平転送部2と第2の垂直転送部9との境界においても、十分な電位差を確保できるように設定している。
 図17Aは、第6の特徴を導入した別の例である、固体撮像装置58の断面の構成を示す図である。また、図17Bは、この断面における電位分布を模式的に示す図である。
 第6の特徴の第2の例は、図17Aに示すように、第2のp型不純物注入領域19を信号電荷蓄積電極7及び転送阻止電極8下の第3の垂直転送部6A(転送制御部6)に形成することである。
 これにより、固体撮像装置58は、図17Bに示すように、図16Cに比べ、H(H2-H1)で示す分、転送制御部6の電位を浅く設定することができる。よって、固体撮像装置58は、転送制御部6から第4の垂直転送部10への転送電界を強くできるので、転送効率を改善することが可能である。
 また、信号電荷蓄積電極7の電位は、図16C等に示すように、第1の垂直転送部1の幅及び電極長が狭いため、φV11下の電位に比べ深い。よって、この信号電荷蓄積電極7下にp型不純物注入領域を追加しても図17Bに示すように転送に問題は生じない。
 また、固体撮像装置58は、第2のp型不純物注入領域19を追加することにより、転送制御部6の電位を浅くすることで、第2の垂直転送部9下の電位を、固体撮像装置56及び106に比べて浅く設定することが可能になる。これにより、固体撮像装置58は、垂直最終電極13下と水平転送部2との間の電位差を大きくとることが可能となる。
 なお、ここでは、図16Bに示す固体撮像装置57の構成に対して、さらに、第2のp型不純物注入領域19を形成する例を述べたが、上述した他の例の固体撮像装置50~56のいずれかに対して、さらに、第2のp型不純物注入領域19を形成してもよい。
 また、上記n型不純物注入領域及びp型不純物注入領域とは、一回の不純物注入工程で形成された領域である。つまり、ある領域(第1の垂直転送部1等)に複数の不純物注入領域が形成されるとは、ある領域に対して複数回の不純物注入が行われることである。また、この複数回の不純物注入における、不純物の種類及び注入範囲(範囲及び深さ)は、異なってもよいし、同一であってもよい。
 また、本発明の実施の形態1のように、異なる転送パルスが印加される電極が密になって配置されている場合、2層で電極を構成すると、電極間のオーバーラップにより配線レイアウトが困難となる。よって、第1の垂直転送電極4、信号電荷蓄積電極7、転送阻止電極8、第4の垂直転送電極12、垂直最終電極13及び水平転送電極14は単層で形成されることが望ましい。
 以上のように本発明の実施の形態1によれば、第1の垂直転送部1から水平転送部2への信号電荷の転送を選択的に制御する転送制御部6及び第2の垂直転送部9を設けた構造において、転送劣化を抑制することができ、かつ低消費電力を実現する水平インターレースが可能であり、かつ動画モード等で必要とされる信号電荷の加算も可能な固体撮像装置を実現できる。
 (実施の形態2)
 図18は本発明の実施の形態2に係る固体撮像装置60の構成を示す図である。なお、図1と同様の要素には、同一の符号を付しており、以下では、図1に示す固体撮像装置50との相違点のみを説明する。
 図18に示す固体撮像装置60は、固体撮像装置50に対して、さらに、第4の垂直転送部10が水平方向拡張部20を含む。
 この水平方向拡張部20は、第4の垂直転送部10の転送制御部6に隣接する側の水平方向の幅を拡張する。この水平方向拡張部20により、第4の垂直転送部10の転送制御部6に隣接する側の水平方向の幅Iは、3列の第1の垂直転送部1(第3の垂直転送部6A)の水平方向の合計の距離Jよりも広くなる(I>J)。つまり、第2の垂直転送部9の最大の転送幅は、3列の第1の垂直転送部1のうち両端に位置する列の第1の垂直転送部1の外側の端部間の幅よりも広い。
 ここで、第4の垂直転送部10における端部では、周辺のP型不純物の影響により、第4の垂直転送部10の中央列付近に比べて、電位が浅くなる。そのため、中央部に比べて、端部では、転送制御部6から第4の垂直転送部10への転送において、電界が低下するという課題があった。
 一方、固体撮像装置60は、上記構造を用いることで、端部についても、中央と同様に電位を深くすることが可能となる。これにより、固体撮像装置60は、転送制御部6から第4の垂直転送部10への転送不良を抑制することができる。特に、実施の形態1の図15A、図15B、図16A、図16B、及び図16Cに示した固体撮像装置55、56及び57では、転送制御部6の電位が深くなっているため、上記構成は有効である。
 なお、固体撮像装置60では、水平転送部2に向けて第4の垂直転送部10を絞りこむ量が大きくなるが、実施の形態1で示したように、第4の垂直転送部10内でポテンシャル段差を設ければ転送に問題はない。
 また、ここでは、固体撮像装置50が、さらに、水平方向拡張部20を備える例を示したが、実施の形態1で示した固体撮像装置51~58が、さらに、水平方向拡張部20を備えてもよい。
 (実施の形態3)
 図19は本発明の実施の形態3に係る固体撮像装置61の構成を示す図である。また、図20は、固体撮像装置61の動画モードにおける駆動タイミングを示すタイミングチャートである。また、図19において、図1と同一の符号は同じ構成要素を表す。また、図19において、画素繰り返し部5は、図1と同様であるため省略している。
 実施の形態1では、通常モード及び動画モードで最初に転送制御部6から、水平転送部2へ信号電荷の転送を行うC列にもR列及びL列と同じく信号電荷蓄積電極7及び転送阻止電極8を配していたが、常に第1に転送されるC列においては、信号電荷を保持しておく必要が必ずしもない。よって、転送制御部6のC列の電極には画素繰り返し部5に印加されるのと同じ転送パルスを印加することが可能である。
 具体例を示すと、通常モードにおいては、図3に示すようにφVST-CとφV12とは同じ駆動タイミングであり、φVST-Cが印加される電極にφV12を印加することができる。
 また、C列の第3の垂直転送部6Aは、信号電荷を保持する必要がないことにより、R列及びL列の第3の垂直転送部6Aに比べ、C列の第3の垂直転送部6Aの幅も狭くてよい。
 そのため、図19に示す固体撮像装置61は、R列及びL列には、上述した実施の形態1と同様の第3の垂直転送部6Aを備え、C列には第3の垂直転送部6Bを備える。
 この第3の垂直転送部6Bは、φV12が印加される第3の垂直転送電極7Aのみを備える。また、第3の垂直転送部6Bの第3の垂直転送電極7A下の全ての領域は、第1の垂直転送部1から第2の垂直転送部9に向かうにつれ転送幅が広くなる。
 このように、固体撮像装置61は、ナローチャネル効果を利用することで、転送電界を向上させることができる。これにより、固体撮像装置61は、L列及びR列で2枚の電極が必要な長さを、C列では1枚の垂直転送電極で構成することが可能である。
 この構成で図20に示す動画モードにおける駆動タイミングを用いれば、実施の形態1と同様の加算動作が実現できる。その場合は転送制御部6における独立電極はφVST-R、φVST-L、φVHLD-R及びφVHLD-Lの4電極に減らすことが可能である。
 以上のように本発明の実施の形態3によれば、転送制御部6における独立電極を低減した固体撮像装置61を実現できる。
 なお、本発明の実施の形態3の構成では、C列が第3の垂直転送部6Bのみを備える場合を示したが、図2A~図2D及び図4A~図4Cで示すように、列の読み出し順を変更することで、C列の代わりにL列又はR列が第3の垂直転送部6Bのみを備える構造も実現可能である。
 また、本発明の実施の形態3の構成を、実施の形態1で示した固体撮像装置51~58及び実施の形態2で示した固体撮像装置60に適用してもよい。
 (実際の形態4)
 実施の形態1で述べたように、転送制御部6から第2の垂直転送部9への転送が困難な場合には、図21に示す駆動を用いて改善することも可能である。
 本発明の実施の形態4に係る固体撮像装置は、3列のうち一の列の信号電荷の水平転送期間に、当該3列のうち他の列の信号電荷を転送制御部6から第4の垂直転送部10へ転送する。
 ここで、第4の垂直転送部10内では、最も電位が深い領域は中央部付近となるため、C列の第3の垂直転送部6Aと第4の垂直転送部10との電位差が大きくなる。これにより、C列の第3の垂直転送部6Aと第4の垂直転送部10との転送電界を大きく確保できるので、C列では、転送が端部(R列及びL列)に比べ容易である。
 そのため、例えば1ラインを3つに分割して水平転送する3:1インターレースの場合では、図21に示すように、第1の水平ブランキング期間にて中央部のC列の信号電荷を、第1の垂直転送部1から転送制御部6及び第2の垂直転送部9を介して、水平転送部2に転送する。その後、R列の信号電荷蓄積電極7から転送阻止電極8への信号電荷の転送を行う。また、転送し終わった中央のC列の水平転送期間(信号出力期間)を用いて、端部のR列の信号電荷を、転送阻止電極8から第4の垂直転送部10へ長い時間をかけて転送する。これにより、転送効率を改善することが出来る。この場合、R列の信号は第2の水平ブランキングの先頭で水平転送部2に転送される。
 第2の水平ブランキング期間においては、L列の信号電荷蓄積電極7から転送阻止電極8へ信号電荷を転送する。また、L列の信号電荷をR列の水平転送期間を用いて、L列の転送阻止電極8から第4の垂直転送部10へ転送を行う。また、第3の水平ブランキングにてL列の信号を水平転送部2に転送する。
 以上のように本発明の実施の形態4によれば、転送不具合が発生しやすい端部の第3の垂直転送部6Aの信号電荷を、水平転送期間に第4の垂直転送部10へ長い時間をかけて転送することが可能であるため、転送不具合を抑制した固体撮像装置を実現できる。
 (実際の形態5)
 本発明は、水平転送部2が複数設けられた場合についても、適用することが可能である。特に動画モードの中でも高速の信号出力が要求されるモード、例えばフルHD動画として使用される画素数(1920×1080)での30フレーム/秒の動画出力を実現するには、水平転送部2を複数設けることにより、水平転送周波数を低減することが重要である。これにより、転送不良を抑制しつつ水平転送部2の低電圧駆動を可能にできるので低消費電力化を実現できるという利点がある。また、出力信号周波数の増大を抑制できるためCDS(相関二重サンプリング)のサンプル・ホールドのタイミング設定を容易化できる。また、市販のAFE(Analog Front End)チップを使用できるためセットが構成しやすくローコストとなる利点がある。更には、通常モードである静止画出力時のフレームレートも向上できると共に、これにより、第1の垂直転送部1で発生する暗電流を抑制できるので、低ノイズ化も可能となる。
 図22は、本発明の実施の形態5に係る固体撮像装置62の構成を示す図である。なお、図1と同様の要素には、同一の符号を付しており、以下では、図1に示す固体撮像装置50との相違点のみを説明する。
 図22に示す固体撮像装置62は、水平転送部2の代わりに、第1の水平転送部21と、第2の水平転送部22と、振り分け転送部23と、第1の水平転送電極24と、第2の水平転送電極25と、振り分け転送電極26と、チャネルストップ領域27とを備える。
 第1の水平転送部21、及び第2の水平転送部22共に4相駆動である。
 第1の水平転送電極24と第2の水平転送電極25は、振り分け転送部23の上下に設けられる。この第1の水平転送電極24及び第2の水平転送電極25には、異なる転送パルスであるφH1a、φH1bが印加される。また、第1の水平転送電極24と第2の水平転送電極25には、水平転送時は同相かつ同電圧の転送パルスが印加される。また、第1の水平転送部21と第2の水平転送部22との間で振り分け転送部23を介して信号電荷を転送する際には、電位差を設ける必要があるため、第1の水平転送電極24及び第2の水平転送電極25には異なる転送パルスが印加される。
 その他の水平転送電極14は、第1の水平転送部21及び第2の水平転送部22で共有しており、φH2、φH3、φH4が印加される。また振り分け転送電極26にはφHHTが印加される。転送制御部6は4列(左からL列、CL列、CR列、R列)を一単位として構成される。一単位の転送制御部6に含まれる3つの信号電荷蓄積電極7には、一単位の左から順にφST-L、φST-CL、φST-Rが印加される。また、一単位の転送制御部6に含まれる3つの転送阻止電極8には、一単位の左からφHLD-L、φHLD-CL、φHLD-Rが印加される。また、実施の形態5では、実施の形態3で示したように、転送制御部6のCR列の電極には画素繰り返し部5に印加されるのと同じ転送パルスφVxが印加される。
 本発明の実施の形態5に係る固体撮像装置62では、4列の第1の垂直転送部1に対して1パケットを構成する4つの水平転送電極14が対応している。つまり、固体撮像装置62は、1ラインの信号が4分割されて転送される水平4:1インターレースの構造を持つ。
 ここで、フルHD動画に対応する画素数(1920×1080)のデータを生成するためには、実施の形態1で説明したような水平方向に3画素加算する構造及び駆動では、水平方向の画素数が5760画素必要である。また、デジタルスチルカメラで使用されるアスペクト比4:3に対応するためには、垂直方向の画素数が4320画素必要となる。よって、全体として約25Mの画素数が必要となる。しかしながら、現在主流となっている画素数は12M~16M程度であるため、フルHD動画の場合には、水平2画素混合が一般によく用いられる。そのため本実施の形態でも動画出力時は水平2画素加算の場合について示す。
 水平4:1インターレースの場合、水平転送部2が1つであれば4回水平転送が必要になる。一方、実施の形態5に係る固体撮像装置62では、水平転送部が並列に2つ設けられているため、水平転送は2回で1ライン出力できる。また、水平転送部が並列に2つ設けられているため、水平2画素加算の場合は、1回の水平転送で1ライン出力できる。
 このように、固体撮像装置62は、水平インターレース方式を用いることにより、水平転送電極の転送方向の長さを大きくすることが可能となる。更に、固体撮像装置62では、4相駆動を適用しているため、従来よく用いられてきた2相駆動のように、1水平転送電極下ごとにバリア領域を形成する必要ない。これにより、1水平転送電極下の全領域で信号電荷を蓄積することができるため、取り扱い電荷量を確保するために必要な水平転送部2の幅を狭くすることが可能になる。特に、固体撮像装置62では、第1の水平転送部21の幅を狭くできることで、第1の水平転送部21から振り分け転送部23への転送を容易に出来るという利点がある。更には、水平転送電極の容量を大幅に低減できる。よって、固体撮像装置62は、この水平転送電極の容量の低減と、4相駆動を用いることによる低電圧化と、並列出力を用いるによる水平転送周波数の増大の抑制とにより、低消費電力を実現できる。
 図23A~図23Eは、固体撮像装置62による通常モードの信号電荷転送を示す図である。また図24は、水平転送部間の振り分け転送に関する駆動タイミングを示す図である。この図24は、水平ブランキング期間における垂直最終電極13から第1の水平転送部21、振り分け転送部23、第2の水平転送部22に係る電極に印加される転送パルスのタイミングについて示している。
 図23A~図23Eに示すように、通常モードにおいては、第1の水平転送部21及び第2の水平転送部22のパケット数は第1の垂直転送部1の列数の1/4になっている。これにより、固体撮像装置62は、第1の垂直転送部1から転送制御部6に信号電荷を転送し(図23A)、その後、例えばCR列、R列、L列、CL列の順で4回に分けて、転送制御部6及び第2の垂直転送部9を介して第1の水平転送部21へ信号電荷を転送する。
 CR列の信号電荷は第1の水平転送部21へ転送された後、更に第1の水平転送部21から振り分け転送部23を介して第2の水平転送部22に転送される(図23B)。この時、転送制御部6における各列の信号電荷蓄積電極7にミドルレベル、転送阻止電極8にローレベルの電圧を印加することで、R列、L列、CL列の信号電荷は、信号電荷蓄積電極7に保持される。よって、R列、L列、CL列の信号電荷は、第1の水平転送部21に転送されることはない。
 次に、固体撮像装置62は、R列の信号電荷を第1の水平転送部21へ転送し、その後、出力アンプへの1回目の水平転送を行う(図23C)。また、第1の水平転送部21に転送しないL列、CL列の信号電荷は、転送制御部6でCR列の転送時と同様に選択的に転送を阻止される。
 その後、固体撮像装置62は、L列の信号電荷を第1の水平転送部21へ転送し、更に第1の水平転送部21から振り分け転送部23を介して第2の水平転送部22に転送動作を行う(図23D)。その後、固体撮像装置62は、CL列の信号電荷を第1の水平転送部21へ転送し、その後で出力アンプへの2回目の水平転送を行う。これにより、固体撮像装置62は、1ラインの信号電荷を出力する(図23E)。また、残りの信号電荷も同様の動作により順次出力することができる。
 次に、図24に示す水平転送部間の振り分け転送に関し説明する。
 第1の水平転送部21では、φH1aが印加される第1の水平転送電極24で、垂直最終電極13から転送される信号電荷を受ける。よって、水平ブランキング期間においては、まず、φH1aがハイレベルになり、その後、時刻t11で垂直最終電極13に印加されるφVLがミドルレベルになる。すなわち信号電荷が撮像部側から垂直最終電極13下に転送される時点(時刻t11)より前の時刻t10に振り分け転送電極26に印加されるφHHTをハイレベルにし、また第2の水平転送電極25に印加されるφH1bもハイレベルにしておくことが望ましい。これにより垂直最終電極13がミドルレベルになった時点(時刻t11)で、第2の水平転送電極25まで信号電荷の転送経路が形成される。
 その後は、時刻t12でφVLを、時刻t13でφH1aを、時刻t14でφHHTを順次ローレベルにすることで、ハイレベルのままのφH1bが印加されている第2の水平転送電極25下に信号電荷が転送される。これにより垂直最終電極13から第2の水平転送部22への転送動作が完了する。
 なお振り分け転送電極26に印加される転送パルスφHHTは、これ以降の水平転送期間もローレベルを維持する。これにより、第2の水平転送部22に転送された信号電荷と、次に垂直最終電極13から第1の水平転送部21に転送される信号電荷とが混合するのを防止できる。
 また、時刻t15で、再び信号電荷を受ける第1の水平転送電極24に印加されるφH1aをハイレベルにした後で、時刻t16で、垂直最終電極13に印加されるφVLをミドルレベルにし、その後、時刻t17でφVLをローレベルに遷移させる。これにより、垂直最終電極13から第1の水平転送部21への信号電荷の転送動作が完了する。また、この後で、固体撮像装置62は、水平転送を実施する。
 また、図23A~図23Eに示したように、通常モードでは、以上の動作を2回実施する。
 次に、固体撮像装置62の動画モードにおける動作を説明する。
 図25A~図25Cは、固体撮像装置62による動画モードにおける信号電荷転送を示す図である。なお、第1の水平転送部21と第2の水平転送部22との間の転送動作については、通常モードと同様であるが、動作が1回である点が異なる。
 固体撮像装置62は、動画モードにおいて、水平方向に隣接する同色の信号電荷を2画素加算する。
 まず、図25Aに示すように、信号電荷が転送制御部6に転送される。次に、図25Bに示すように、CR列及びL列の信号電荷が、転送制御部6を介して、第2の垂直転送部9に転送されるとともに、加算される。また、加算された信号電荷が第1の水平転送部21に転送される。一方で、R列とCL列の信号電荷は、各列の信号電荷蓄積電極7をミドルレベル、転送阻止電極8をローレベルとすることで、第2の垂直転送部9に転送されることなく信号電荷蓄積電極7下に保持される。
 また、第1の水平転送部21に転送されたCR列とL列とが加算された信号電荷は、振り分け転送部23を介して第2の水平転送部22へと転送される。
 次に、図25Cに示すように、R列及びCL列の信号電荷が、信号電荷蓄積電極7から第2の垂直転送部9に転送されるとともに、加算される。また、加算された信号電荷が第1の水平転送部21へと転送される。
 以上の動作により、水平方向の同色2画素加算が完了する。その後1回の水平転送により水平2画素加算された1ラインの信号電荷が出力アンプから順次出力される。
 以上のように、本発明の実施の形態5に係る固体撮像装置62は、水平インターレースを用いて水平転送電極間容量を減らし、かつ2つの水平転送部による並列転送により水平転送周波数の増加を抑制できる。さらに、固体撮像装置62は、4相駆動の採用により水平転送部の幅を狭くでき、また水平転送部を低電圧で駆動できるため、低消費電力を実現できる。さらに、固体撮像装置62は、多画素の動画に対応できるとともに、水平転送部間の転送不具合を低減できる。
 また、上記実施の形態1~5に係る固体撮像装置は集積回路であるLSIとして実現される。
 以上、本発明の実施の形態に係る固体撮像装置について説明したが、本発明は、この実施の形態に限定されるものではない。
 例えば、上記各図において、各構成要素の角部及び辺を直線的に記載しているが、製造上の理由により、角部及び辺が丸みをおびたものも本発明に含まれる。
 また、上記実施の形態1~5に係る固体撮像装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、すべて本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
 また、本発明は、上記実施の形態1~5に係る固体撮像装置、及びその変形例のうちいずれかを備えるデジタルスチルカメラ又はデジタルビデオカメラ等のカメラとして実現してもよい。
 また、本発明は、上記実施の形態1~5に係る固体撮像装置、及びその変形例を駆動する固体撮像装置の駆動方法として実現してもよい。
 本発明は、固体撮像装置に適用でき、特にデジタルスチルカメラ用の固体撮像装置として有用である。
 1 第1の垂直転送部
 2 水平転送部
 3 光電変換部
 4 第1の垂直転送電極
 5 画素繰り返し部
 6 転送制御部
 6A、6B 第3の垂直転送部
 7 信号電荷蓄積電極
 7A 第3の垂直転送電極
 8 転送阻止電極
 9、9A 第2の垂直転送部
 10 第4の垂直転送部
 11 第5の垂直転送部
 12 第4の垂直転送電極
 12A 第2の垂直転送電極
 13 垂直最終電極
 14 水平転送電極
 15 第1のn型不純物注入領域
 16 第2のn型不純物注入領域
 17 第1のp型不純物注入領域
 18 第3のn型不純物注入領域
 19 第2のp型不純物注入領域
 20 水平方向拡張部
 21 第1の水平転送部
 22 第2の水平転送部
 23 振り分け転送部
 24 第1の水平転送電極
 25 第2の水平転送電極
 26 振り分け転送電極
 27 チャネルストップ領域
 50、50A、50B、50C、51、52、53、54、55、56、57、58、60、61、62 固体撮像装置
 101 電荷保持部
 102 ストレージ部
 103 ホールド部
 104 VOG部

Claims (17)

  1.  行列状に配置され、光を信号電荷に変換する複数の光電変換部と、
     各列に対応して設けられ、対応する列に配置された複数の光電変換部により変換された信号電荷を垂直方向へ転送する複数の第1の垂直転送部と、
     前記複数の第1の垂直転送部のうち、水平方向に連続するm(mは2以上の整数)列毎に対応して設けられ、対応する前記m列の第1の垂直転送部のいずれかにより転送された信号電荷を選択的に転送する複数の転送制御部と、
     前記各転送制御部に対応して設けられ、対応する転送制御部により転送された信号電荷を転送する複数の第2の垂直転送部と、
     前記複数の第2の垂直転送部により転送された信号電荷を水平方向に転送する水平転送部とを備え、
     前記各第2の垂直転送部は、前記水平転送部の1転送パケットを形成する2以上の水平転送電極毎に配置され、かつ、前記転送制御部から前記水平転送部に向かうにつれ転送幅が小さくなる領域を有し、
     前記各第2の垂直転送部には、前記複数の第1の垂直転送部及び前記複数の転送制御部の垂直転送電極と独立した垂直転送電極が設けられている
     固体撮像装置。
  2.  前記各転送制御部は、
     前記m列の各列に対応して設けられ、対応する列の垂直転送部により転送された信号電荷の各々を転送するm個の第3の垂直転送部を含み、
     互いに隣接して配置された前記m個の第3の垂直転送部間の水平方向の中心間距離は、互いに隣接して配置された前記第1の垂直転送部の水平方向の中心間距離より短い
     請求項1記載の固体撮像装置。
  3.  前記各第2の垂直転送部は、
     対応する前記転送制御部により転送された信号電荷を転送するとともに、前記転送制御部から前記水平転送部に向かうにつれ転送幅が小さくなる領域を有する第4の垂直転送部と、
     前記第4の垂直転送部により転送された信号電荷を前記水平転送部に転送するとともに、転送幅が一定である第5の垂直転送部とを備え、
     前記第4の垂直転送部と前記第5の垂直転送部上には、それぞれ独立した垂直転送電極が設けられている
     請求項1記載の固体撮像装置。
  4.  前記各転送制御部は、前記m列の各列に対応して設けられ、対応する列の垂直転送部により転送された信号電荷の各々を転送するm個の第3の垂直転送部を含み、
     前記m列の第3の垂直転送部に含まれる1個の第3の垂直転送部である第6の垂直転送部は、前記第1の垂直転送部の垂直転送電極のうちいずれかと同じ転送パルスが印加される第1垂直転送電極を備え、
     前記m列の第3の垂直転送部に含まれる前記第6垂直転送部以外のm-1個の第3の垂直転送部は、前記第1の垂直転送部及び前記第2の垂直転送部の垂直転送電極と独立した信号電荷蓄積電極及び転送阻止電極を備える
     請求項1記載の固体撮像装置。
  5.  前記第6の垂直転送部は、1個の前記第1垂直転送電極のみを備える
     請求項4記載の固体撮像装置。
  6.  前記第6の垂直転送部の前記第1垂直転送電極下の全ての領域は、前記第1の垂直転送部から前記第2の垂直転送部に向かうにつれ転送幅が広くなる
     請求項5記載の固体撮像装置。
  7.  前記第2の垂直転送部の最大の転送幅は、m列の前記第1の垂直転送部のうち両端に位置する列の第1の垂直転送部の外側の端部間の幅よりも広い
     請求項1記載の固体撮像装置。
  8.  前記第1の垂直転送部は、第1のn型不純物注入領域及び第2のn型不純物注入領域で構成され、
     前記第1のn型不純物注入領域は、前記第1の垂直転送部と前記転送制御部と前記第2の垂直転送部と前記水平転送部とに形成され、
     前記第2のn型不純物注入領域は、前記第1の垂直転送部と前記転送制御部とに形成されるとともに、前記第2の垂直転送部と水平転送部とには形成されない
     請求項1記載の固体撮像装置。
  9.  前記第2の垂直転送部には、前記水平転送部側の電位より前記転送制御部側の電位が浅くなるようにポテンシャル段差が形成されている
     請求項1記載の固体撮像装置。
  10.  前記第2の垂直転送部の前記水平転送部側には、前記ポテンシャル段差を形成するために第3のn型不純物注入領域が形成されている
     請求項9記載の固体撮像装置。
  11.  前記第3の垂直転送部の前記転送制御部側には、前記ポテンシャル段差を形成するためのp型不純物注入領域が形成されている
     請求項9記載の固体撮像装置。
  12.  前記第2の垂直転送部には、さらに、第3のn型不純物注入領域が形成されている
     請求項11記載の固体撮像装置。
  13.  前記転送制御部には、p型不純物注入領域が形成されている
     請求項1記載の固体撮像装置。
  14.  前記第1の垂直転送部、前記転送制御部及び前記第2の垂直転送部の垂直転送電極と、前記水平転送部の水平転送電極とは単層で形成されている
     請求項1記載の固体撮像装置。
  15.  請求項3記載の固体撮像装置の駆動方法であって、
     前記m列のうち一の列の信号電荷の水平転送期間に、前記m列のうち他の列の信号電荷を前記転送制御部から前記第4の垂直転送部へ転送する
     固体撮像装置の駆動方法。
  16.  水平ブランキング期間に、前記m列のうち中央部の列の信号電荷を前記転送部から前記第4の垂直転送部へ転送し、
     前記中央部の列の信号電荷の水平転送期間に、前記m列のうち端部の信号電荷を前記転送制御部から前記第4の垂直転送部へ転送する
     請求項15記載の固体撮像装置の駆動方法。
  17.  請求項1記載の固体撮像装置を備える
     カメラ。
PCT/JP2010/006177 2010-01-12 2010-10-19 固体撮像装置、その駆動方法及びカメラ WO2011086622A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011549755A JPWO2011086622A1 (ja) 2010-01-12 2010-10-19 固体撮像装置、その駆動方法及びカメラ
US13/546,798 US20120281124A1 (en) 2010-01-12 2012-07-11 Solid-state imaging device, method for driving the same, and camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010004418 2010-01-12
JP2010-004418 2010-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/546,798 Continuation US20120281124A1 (en) 2010-01-12 2012-07-11 Solid-state imaging device, method for driving the same, and camera

Publications (1)

Publication Number Publication Date
WO2011086622A1 true WO2011086622A1 (ja) 2011-07-21

Family

ID=44303928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006177 WO2011086622A1 (ja) 2010-01-12 2010-10-19 固体撮像装置、その駆動方法及びカメラ

Country Status (3)

Country Link
US (1) US20120281124A1 (ja)
JP (1) JPWO2011086622A1 (ja)
WO (1) WO2011086622A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015596A (ja) * 2013-07-04 2015-01-22 キヤノン株式会社 撮像装置及びその駆動方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310172A (ja) * 1987-06-11 1988-12-19 Nec Corp 電荷転送装置
JPH0258271A (ja) * 1988-08-23 1990-02-27 Toshiba Corp 固体撮像装置
JP2002185870A (ja) * 2000-12-11 2002-06-28 Fuji Film Microdevices Co Ltd 固体撮像素子
JP2006320019A (ja) * 2002-11-12 2006-11-24 Matsushita Electric Ind Co Ltd 固体撮像素子およびこれを備えたカメラ
JP2009044385A (ja) * 2007-08-08 2009-02-26 Panasonic Corp 固体撮像素子の駆動方法、撮像装置、集積回路
JP2009089278A (ja) * 2007-10-02 2009-04-23 Panasonic Corp 固体撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987466A (en) * 1988-06-07 1991-01-22 Kabushiki Kaisha Toshiba Solid state image sensor
JP4171137B2 (ja) * 1999-06-08 2008-10-22 富士フイルム株式会社 固体撮像装置及びその制御方法
JP2001111026A (ja) * 1999-10-07 2001-04-20 Fuji Film Microdevices Co Ltd 固体撮像装置
US6985182B1 (en) * 1999-11-22 2006-01-10 Matsushita Electric Industrial Co., Ltd. Imaging device with vertical charge transfer paths having appropriate lengths and/or vent portions
JP4515617B2 (ja) * 2000-10-23 2010-08-04 富士フイルム株式会社 固体撮像素子およびその駆動方法
JP3848650B2 (ja) * 2002-11-12 2006-11-22 松下電器産業株式会社 固体撮像素子およびこれを備えたカメラ
JP4457961B2 (ja) * 2005-04-28 2010-04-28 ソニー株式会社 固体撮像素子
JP2010073901A (ja) * 2008-09-18 2010-04-02 Sony Corp 固体撮像装置、固体撮像装置の製造方法、及び電子機器
WO2010092644A1 (ja) * 2009-02-13 2010-08-19 パナソニック株式会社 固体撮像装置及びカメラ
WO2011004562A1 (ja) * 2009-07-10 2011-01-13 パナソニック株式会社 固体撮像素子およびその駆動方法
JP2011077939A (ja) * 2009-09-30 2011-04-14 Panasonic Corp 固体撮像装置及びそれを備えるカメラ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310172A (ja) * 1987-06-11 1988-12-19 Nec Corp 電荷転送装置
JPH0258271A (ja) * 1988-08-23 1990-02-27 Toshiba Corp 固体撮像装置
JP2002185870A (ja) * 2000-12-11 2002-06-28 Fuji Film Microdevices Co Ltd 固体撮像素子
JP2006320019A (ja) * 2002-11-12 2006-11-24 Matsushita Electric Ind Co Ltd 固体撮像素子およびこれを備えたカメラ
JP2009044385A (ja) * 2007-08-08 2009-02-26 Panasonic Corp 固体撮像素子の駆動方法、撮像装置、集積回路
JP2009089278A (ja) * 2007-10-02 2009-04-23 Panasonic Corp 固体撮像装置

Also Published As

Publication number Publication date
US20120281124A1 (en) 2012-11-08
JPWO2011086622A1 (ja) 2013-05-16

Similar Documents

Publication Publication Date Title
KR101182973B1 (ko) 고체 촬상 소자, 고체 촬상 소자의 구동 방법 및 촬상 장치
US20070258004A1 (en) Solid-state imaging device, driving method thereof, and camera
JP2009521842A (ja) 静止画またはビデオ撮影用画像センサ
US8373780B2 (en) Solid-state image sensor and camera
JP2011077939A (ja) 固体撮像装置及びそれを備えるカメラ
WO2011086622A1 (ja) 固体撮像装置、その駆動方法及びカメラ
JP5562335B2 (ja) 固体撮像素子およびその駆動方法
JP2009290614A (ja) 固体撮像装置とその駆動方法及びカメラ
JP2007294734A (ja) 固体撮像素子
US20110261240A1 (en) Solid-state imaging device
JP2008060726A (ja) 固体撮像装置
JP5045183B2 (ja) 固体撮像素子および固体撮像素子の駆動方法、並びにカメラシステム
JP4342095B2 (ja) 電荷転送装置、それを用いた固体撮像装置及びその制御方法
JP3960218B2 (ja) 撮像装置
JP2006157624A (ja) 固体撮像装置及び固体撮像装置の駆動方法
JP2010161629A (ja) 固体撮像素子及びその駆動方法並びに撮像装置
JP5466975B2 (ja) 固体撮像装置、固体撮像装置の駆動方法及びカメラ
JP2008118414A (ja) 固体撮像装置およびこれを備えた撮像装置
JP4759450B2 (ja) Ccd型固体撮像素子の駆動方法及びccd型固体撮像装置
JP5211072B2 (ja) 固体撮像装置の駆動方法
JP2004228157A (ja) 固体撮像素子
WO2011092775A1 (ja) 固体撮像装置、駆動方法およびカメラ
JP2014131248A (ja) 固体撮像装置及びその駆動方法
JP2012186751A (ja) 固体撮像素子および固体撮像装置
JP2010010724A (ja) 固体撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011549755

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842982

Country of ref document: EP

Kind code of ref document: A1