WO2011085609A1 - 新风换气机用逆流式换热芯体 - Google Patents

新风换气机用逆流式换热芯体 Download PDF

Info

Publication number
WO2011085609A1
WO2011085609A1 PCT/CN2010/078260 CN2010078260W WO2011085609A1 WO 2011085609 A1 WO2011085609 A1 WO 2011085609A1 CN 2010078260 W CN2010078260 W CN 2010078260W WO 2011085609 A1 WO2011085609 A1 WO 2011085609A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fresh air
counterflow
air ventilator
exchange core
Prior art date
Application number
PCT/CN2010/078260
Other languages
English (en)
French (fr)
Inventor
朱丽
王一平
王启
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2011085609A1 publication Critical patent/WO2011085609A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Definitions

  • the invention relates to a heat exchange core, in particular to a counterflow heat exchange core body for a fresh air ventilator.
  • the fresh air ventilators appearing in the market mostly adopt the plate-fin type cross-flow heat exchange core body with corrugated plate support structure.
  • the corrugated plate support can solve the support problem of the heat exchanger plate, but the resistance pressure drop increases accordingly.
  • the cross-flow heat exchange effect is far less than the reverse flow.
  • the volume of the fresh air ventilator is directly limited by the diagonal length of the core. Therefore, such heat exchange cores have low heat exchange efficiency, large volume, and large pressure drop. The problem thus limits the development and popularity of the fresh air ventilator. Summary of the invention
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a counterflow heat exchange core body for a fresh air ventilator with high heat exchange efficiency, no cross-contamination, small volume, light weight, low cost and low resistance pressure drop. .
  • a counterflow heat exchange core body for a fresh air ventilator comprising a top plate, a bottom plate and a 2-500 heat exchange unit of the same shape, the heat exchange unit comprising a heat exchange diaphragm, an end seal and two sides a seal member, the end seal is disposed on an upper surface of one end side of the heat transfer membrane, and one end of the side seal is flush with the other end of the heat transfer membrane on the heat exchange membrane
  • the upper surface of the side edge, the length of the side seal is 9/10-1/2 of the length of the side of the heat exchange film, and the heat exchange units adjacent to each other are 180 degrees superposed and fixedly connected, the top plate It is fixedly disposed on the uppermost heat exchange unit, and the bottom plate is fixedly disposed under the lowermost heat exchange unit.
  • the heat exchange film is a plastic heat exchange film or a composite heat transfer film.
  • the plastic heat transfer film is preferably made of polyethylene, polypropylene, polyvinyl chloride, polybutene, polybutylene terephthalate, polyethylene terephthalate or polycarbonate.
  • the plastic heat transfer film has a thickness of 0.01-1.0 mm.
  • the total heat exchange paper is preferably Mitsubishi full heat exchange paper -01A, Mitsubishi total heat exchange paper -01C or porous polysulfone membrane.
  • the total heat exchange paper has a thickness of 0.01 to 0.2 mm, preferably 0.02 to 0.1 mm.
  • the material of the perforated support frame is preferably polyethylene, polypropylene, polyvinyl chloride, polybutene, polybutylene terephthalate, polyethylene terephthalate or polycarbonate.
  • the perforated support frame has a thickness of 0.01 to 1.0 mm.
  • the hole of the perforated support frame is quadrilateral, circular, elliptical or triangular.
  • the seal height is l-10 mm.
  • Different heat exchange materials can realize different heat exchange functions of the heat exchange core.
  • the heat exchange core heat exchange material is used for sensible heat exchange when the plastic heat transfer film is used, and the heat exchange core heat exchange material is a composite heat transfer film. The film is used for full heat exchange.
  • the core still has high heat exchange efficiency at higher inter-panel wind speeds, and is used for sensible heat recovery.
  • the counterflow heat exchange core of the present invention has no support in the channel for sensible heat exchange, and replaces the traditional corrugated corrugated board as a support frame for the whole heat exchange paper with a support frame with holes for full heat exchange. There are no fins, inserts and support structures in the hot aisle, and the pressure drop is greatly reduced, only 10-50Pa.
  • the plastic heat transfer diaphragm is used as the sensible heat exchange material.
  • the perforated support frame and the total heat exchange paper composite material are used as the total heat exchange material, which greatly reduces the weight and cost of the total heat exchanger.
  • FIG. 1 is a schematic view showing the structure of a counterflow heat exchange core body for a fresh air ventilator of the present invention.
  • Figure 2 is a schematic view showing the bonding of the full heat exchange paper and the perforated support frame.
  • Figure 3 is a schematic view showing the connection of the heat transfer film, the seal, the bottom plate and the top plate.
  • Figure 4 is a schematic diagram of the airflow organization of the airflow of the fresh air ventilator through the counterflow heat exchange core.
  • a counterflow heat exchange core body for a fresh air ventilator comprising a top plate 1, a bottom plate 5 and 2-500 heat exchange units of the same shape, the heat exchange unit consists of a heat exchange membrane 3, an end seal 4 and two
  • the root side seal 2 is composed, and the end seal strip is disposed on the upper surface of one end side of the heat transfer membrane, and one end of the side seal strip is flush with the other end side of the heat transfer membrane on the side of the heat transfer membrane
  • the length of the side seal is 9/10-1/2 of the length of the side of the heat transfer membrane, and the heat transfer membrane is composed of the total heat exchange paper 3-1 and the support frame 3-2 with the hole, the upper and lower phases
  • the adjacent heat exchange units are stacked and fixedly connected at 180 degrees, the top plate is fixedly disposed on the uppermost heat exchange unit, and the bottom plate is fixedly disposed under the lowermost heat exchange unit (see Fig. 1, Fig. 2 and Fig. 3). .
  • the top plate, the bottom plate and the heat exchange unit may be in the shape of a rectangle, a square or a diamond, preferably a rectangle.
  • the full heat exchange paper is preferably Mitsubishi full heat exchange paper -01A, Mitsubishi full heat exchange paper -01C or porous polysulfone membrane.
  • the thickness of the exchange paper is 0.01 to 0.2 mm, preferably 0.05 to 0.1 mm.
  • the material of the perforated support frame is preferably polyethylene, polypropylene, polyvinyl chloride, polybutene, polybutylene terephthalate, polyethylene terephthalate or polycarbonate.
  • the thickness of the support frame with holes may be selected to be 0.01 mm, 0.05 mm, 0.10 mm, 0.20 mm, 0.50 mm or 1.0 mm, preferably 0.05 mm or 0.10 mm.
  • the hole of the perforated support frame is quadrilateral, circular, elliptical or triangular.
  • Seal heights can be selected from 1 to 10 mm, including 1 mm and 10 mm.
  • a counterflow heat exchange core for a fresh air ventilator of the present invention When manufacturing a counterflow heat exchange core for a fresh air ventilator of the present invention, a plurality of heat exchange units are first produced, as shown in FIG. 2 and FIG. 3, a heat exchange core body in which a heat exchange material is a plastic heat exchange diaphragm is produced. When the steps shown in Figure 2 are omitted, go directly to the next step.
  • Each heat exchange unit is bonded by a heat exchange diaphragm, two side seals and an end seal.
  • Each heat exchange unit is fixedly connected to the adjacent heat exchange unit by 180 degrees to form an air flow passage, and each air flow passage has one inlet and two outlets or two inlets and one outlet.
  • the odd air flow channel and the even air flow channel may be respectively referred to as a fresh air channel and an air exhaust channel, and the number of heat exchange units is determined by the spatial arrangement of the heat exchange core body, and then the top plate is fixedly connected with the uppermost heat exchange unit, and the bottom plate is fixed.
  • the side seal strip and the end seal strip are fixedly connected with the lowermost heat exchange unit to form a whole body, that is, a counterflow heat exchange core body for a fresh air ventilator, as shown in FIG.
  • the outer surface of the corner formed by the adjacent sides is provided with reinforcing corner strips for reinforcing the counterflow heat exchange core body of the fresh air ventilator.
  • the invention When the invention is implemented, the invention is placed in the fresh air ventilating casing body 7, and a baffle 6 is arranged between the counterflow heat exchange core body of the fresh air ventilator and the inner surface of the fresh air ventilating casing body to completely separate the fresh air and the exhaust air. Open, as shown in Fig. 4, a fan is arranged at the exhaust inlet 9 and the fresh air inlet 11.
  • the outdoor fresh air is introduced into the fresh air ventilator through the bellows-shaped flow guiding device 12 through the fresh air inlet 11
  • the counterflow heat exchange core body the indoor exhaust air passes through the exhaust air inlet 9 through the bell mouth-shaped flow guiding device 12, and all enters the counterflow heat exchange core body of the fresh air ventilator, and the fresh air is exchanged under the influence of the temperature difference and the humidity difference.
  • the convective heat and latent heat exchange are realized in the counterflow heat exchange core of the gas machine, and the exchanged gas is respectively sent into the indoor or discharged outside by the fresh air outlet 8 and the exhaust air outlet 10, thereby realizing indoor and outdoor air exchange and energy recovery, thereby It achieves the effect of ventilating and maintaining indoor temperature and humidity.
  • the airflow flows through the counterflow heat exchange core of the fresh air ventilator of the present invention, turbulence can be realized at a lower flow rate, and high heat transfer performance can be realized without consuming additional energy.
  • the bright core still has high heat exchange efficiency at higher inter-panel wind speeds, and is used for sensible heat recovery.
  • the counterflow heat exchange core body has no support in the channel for sensible heat exchange, and replaces the traditional corrugated corrugated board as a support frame of the total heat exchange paper with the support frame with holes in the full heat exchange.
  • the structure greatly reduces the resistance pressure drop.
  • the fresh air passage and the exhaust air passage are arranged as one inlet and two outlets, and the conventional one-in-one-out arrangement is abandoned, thereby realizing the counterflow heat exchange and effectively improving the heat transfer effect.
  • a seal is arranged between each two heat exchange membranes, and the airflow passage is formed by the connection of the seal and the plastic heat exchange membrane, and the adjacent two airflow passages are stacked on each other to form a fresh air passage and an exhaust air.
  • the passageway is provided with a baffle in the casing, and fresh air and exhaust air flow in the respective passages to avoid cross-contamination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

新风换气机用逆流式换热芯体 技术领域
本发明涉及一种换热芯体, 特别涉及一种新风换气机用逆流式换热芯体。
技术背景
目前市场出现的新风换气机多采用含有波纹板支撑结构的板翅式错流热交换芯体, 波 纹板支撑能解决换热板的支撑问题, 但随之而来的是阻力压降增大, 错流式热交换效果远 不如逆流, 另外新风换气机的体积直接受到芯体对角线长度的限制, 所以这类热交换芯体 存在换热效率低、 体积大以及阻力压降大等问题, 从而限制了新风换气机的发展和普及。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种换热效率高、 不存在交叉污染、 体 积小, 重量轻, 成本低, 阻力压降小的新风换气机用逆流式换热芯体。
本发明的技术方案概述如下:
一种新风换气机用逆流式换热芯体, 由相同形状的顶板、 底板和 2-500个换热单元组 成, 所述换热单元由换热膜片、 一根端封条和两根侧封条组成, 所述端封条设置在所述换 热膜片的一端边的上表面, 所述侧封条的一端与所述换热膜片的另一端边齐平设置在所述 换热膜片的侧边的上表面, 所述侧封条的长为所述换热膜片侧边长的 9/10-1/2, 上下相邻 的换热单元呈 180度叠置并固定连接, 所述顶板固定设置在最上面的换热单元之上, 所述 底板固定设置在最下面的换热单元之下。
所述换热膜片为塑料换热膜片或复合换热膜片。
所述塑料换热膜片材质较好的是聚乙烯、 聚丙烯、 聚氯乙烯、 聚丁烯、 聚对苯二酸丁 二酯、 聚对苯二甲酸乙二酯或聚碳酸酯。
所述塑料换热膜片厚度为 0.01-1.0mm。
所述全热交换纸优选三菱全热交换纸 -01A、 三菱全热交换纸 -01C或多孔聚砜膜。 所述全热交换纸的厚度为 0.01-0.2mm, 较好的是 0.02-0.1mm。
所述带孔的支撑架的材质较好的是聚乙烯、 聚丙烯、 聚氯乙烯、 聚丁烯、 聚对苯二酸 丁二酯、 聚对苯二甲酸乙二酯或聚碳酸酯。
所述带孔的支撑架的厚度为 0.01-1.0mm。
所述带孔的支撑架的孔为四边形、 圆形、 椭圆形或三角形。
所述封条高度为 l-10mm。 采用不同的换热材料能够实现换热芯体不同的换热功能, 换热芯体换热材料为塑料换 热膜片时用于显热交换, 换热芯体换热材料为复合换热膜片时用于全热交换。
本发明的优点为:
1. 采用逆流式换热方式, 在相同的板间风速和换热面积下比错流式换热效率高
3%-8%。
2. 气流通过换热膜片时, 能够引起换热膜片的振动, 破坏流体近壁面附近的滞流底 层, 实现流体低速湍流, 不用消耗外加的能量, 就可实现较高的传热性能, 芯体 在较高的板间风速下依然有较高的换热效率, 用于显热回收时, 显热效率
75%-90%, 用于全热回收时, 全热效率 70%-90%。 在膜片振动提高对流换热系数 的同时能够清除传热表面污垢, 降低污垢热阻, 实现复合强化传热。
3. 本发明的逆流式换热芯体用于显热交换时通道内没有支撑, 用于全热交换时用带 孔的支撑架取代传统的波纹瓦楞板作为全热交换纸的支撑架, 换热通道内无翅片、 插物和支撑结构, 阻力压降大大减小, 仅为 10-50Pa。
4. 采用塑料换热膜片作为显热交换材料, 带孔的支撑架和全热交换纸复合材料作为 全热交换材料, 大大降低全热交换器的重量和成本。
5. 结构简单, 生产运行成本低, 安装方便, 易于和建筑实现一体化、 不占用额外空 间。
附图说明
图 1是本发明新风换气机用逆流式换热芯体结构示意图。
图 2是全热交换纸和带孔的支撑架粘接示意图。
图 3是换热膜片、 封条、 底板以及顶板连接示意图。
图 4是新风换气机中空气流经逆流式换热芯体的气流组织形式示意图。
本发明说明书附图中主要部件和细节的说明如下: 1顶板; 2侧封条; 3换热膜片; 3-1 全热交换纸; 3-2带孔的支撑架; 4端封条; 5底板; 6挡板; 7新风换气机箱体; 8新风 出口; 9排风进口; 10排风出口; 11新风进口; 12喇叭口状导流装置。
具体实施方式
下面结合附图对本发明进一步的说明:
一种新风换气机用逆流式换热芯体, 由相同形状的顶板 1、 底板 5和 2-500个换热单 元组成, 换热单元由换热膜片 3、 一根端封条 4和两根侧封条 2组成, 端封条设置在换热 膜片的一端边的上表面, 侧封条的一端与换热膜片的另一端边齐平设置在换热膜片的侧边 的上表面,侧封条的长为换热膜片侧边长的 9/10-1/2,换热膜片由全热交换纸 3-1和带孔的 支撑架 3-2组成, 上下相邻的换热单元呈 180度叠置并固定连接, 顶板固定设置在最上面 的换热单元之上, 底板固定设置在最下面的换热单元之下 (见图 1、 图 2和图 3 ) 。
顶板、 底板和换热单元的形状可以是长方形、 正方形或菱形, 最好是长方形。
全热交换纸优选三菱全热交换纸 -01A、 三菱全热交换纸 -01C或多孔聚砜膜。
交换纸的厚度为 0.01-0.2mm, 较好的是 0.05-0.1mm。
带孔的支撑架的材质较好的是聚乙烯、 聚丙烯、 聚氯乙烯、 聚丁烯、 聚对苯二酸丁二 酯、 聚对苯二甲酸乙二酯或聚碳酸酯。
带孔的支撑架的厚度可以选为 0.01mm 、 0.05mm 、 0.10mm 、 0.20mm 、 0.50mm或 1.0mm, 最好是选 0.05mm或 0.10mm。
所述带孔的支撑架的孔为四边形、 圆形、 椭圆形或三角形。
封条高度可以在 l-10mm之间进行选择, 包括 1 mm和 10mm。
制作本发明的一种新风换气机用逆流式换热芯体时先制作若干个换热单元, 如图 2和 图 3所示, 制作换热材料为塑料换热膜片的换热芯体时省去图 2所示步骤, 直接进入下一 步。 每个换热单元由一个换热膜片、 两个侧封条和一个端封条粘接而成。 每个换热单元与 相邻换热单元呈 180度叠加固定连接, 构成一个气流通道, 每个气流通道有一个进口两个 出口或两个进口一个出口。 奇数气流通道和偶数气流通道可分别称为新风通道和排风通 道, 换热单元的数量由换热芯体的空间布置情况而定, 然后将顶板与最上面的换热单元固 定连接, 将底板通过侧封条和端封条与最下面的换热单元固定连接, 使其形成整体, 即一 种新风换气机用逆流式换热芯体, 如图 1所示, 还可以在这个整体的两个相邻的边所形成 的角的外表面设置加固角条, 加固新风换气机用逆流式换热芯体。
实施时将本发明置于新风换气机箱体 7内,在新风换气机用逆流式换热芯体与新风换 气机箱体的内表面之间设置挡板 6, 将新风和排风完全隔开, 如图 4所示, 在排风进口 9 和新风进口 11处设置有风机, 在风机的作用下, 室外新风通过新风进口 11通过喇叭口状 导流装置 12均勾进入新风换气机用逆流式换热芯体, 室内排风通过排风进口 9通过喇叭 口状导流装置 12均勾进入新风换气机用逆流式换热芯体, 在温度差和湿度差的作用下在 新风换气机用逆流式换热芯体内实现显热和潜热交换, 交换后的气体再分别由新风出口 8 和排风出口 10送进室内或排出室外, 实现了室内外空气的交换和能量回收, 从而达到既 通风换气又保持室内温、 湿度稳定的效果。 气流流经本发明的新风换气机用逆流式换热芯 体时在较低流速下即可实现湍流, 不用消耗外加的能量, 就可实现较高的传热性能, 本发 明的芯体在较高的板间风速下依然有较高的换热效率, 用于显热回收时, 显热效率
75%-90%, 用于全热回收时, 全热效率 70%-90%。 采用本发明的新风换气机用逆流式换热 芯体时, 在通风换气的同时可将大部分能量回收至室内, 有效解决了通风换气和高能耗的 矛盾, 避免了热污染, 从而达到节能, 健康和环保的功效。
本发明的技术方案中, 逆流式换热芯体用于显热交换时通道内没有支撑, 用于全热交 换时用带孔的支撑架取代传统的波纹瓦楞板作为全热交换纸的支撑架结构大大降低了阻 力压降。
本发明的技术方案中, 将新风通道和排风通道布置为一个进口两个出口, 放弃传统一 进一出的布置方式, 从而实现逆流式换热, 有效地改善了传热效果。
本发明的技术方案中, 在每两个换热膜片之间设置了封条, 用封条和塑料换热膜片的 连接形成气流通道, 相邻的两气流通道相互叠置构成新风通道和排风通道, 在壳体内设置 挡板, 新风和排风在各自通道内流动, 避免了交叉污染。

Claims

权利要求
1. 一种新风换气机用逆流式换热芯体, 其特征是由相同形状的顶板、底板和 2-500个换热 单元组成, 所述换热单元由换热膜片、 一根端封条和两根侧封条组成, 所述端封条设 置在所述换热膜片的一端边的上表面, 所述侧封条的一端与所述换热膜片的另一端边 齐平设置在所述换热膜片的侧边的上表面, 所述侧封条的长为所述换热膜片侧边长的 9/10-1/2, 上下相邻的换热单元呈 180度叠置并固定连接, 所述顶板固定设置在最上面 的换热单元之上, 所述底板固定设置在最下面的换热单元之下。
2. 根据权利要求 1 所述一种新风换气机用逆流式换热芯体, 其特征是所述换热膜片为塑 料换热膜片或复合换热膜片。
3. 根据权利要求 1或 2所述一种新风换气机用逆流式换热芯体, 其特征是所塑料换热膜 片的材质为聚乙烯、 聚丙烯、 聚氯乙烯、 聚丁烯、 聚对苯二酸丁二酯、 聚对苯二甲酸 乙二酯或聚碳酸酯。
4. 根据权利要求 2或 3所述一种新风换气机用逆流式换热芯体, 其特征是所述塑料换热 膜片的厚度为 0.01-1.0mm。
5. 根据权利要求 1或 2所述一种新风换气机用逆流式换热芯体, 其特征是所述复合换热 膜片由全热交换纸和带孔的支撑架组成。
6. 根据权利要求 1或 2或 5所述一种新风换气机用逆流式换热芯体, 其特征是所述全热 交换纸为三菱全热交换纸 -01A、 三菱全热交换纸 -01C或多孔聚砜膜。
7. 根据权利要求 1或 2或 5所述一种新风换气机用逆流式换热芯体, 其特征是所述全热 交换纸的厚度为 0.01-0.2mm。
8. 根据权利要求 1或 2或 5所述一种新风换气机用逆流式换热芯体, 其特征是所述带孔 的支撑架的材质为聚乙烯、 聚丙烯、 聚氯乙烯、 聚丁烯、 聚对苯二酸丁二酯、 聚对苯 二甲酸乙二酯或聚碳酸酯。
9. 根据权利要求 1或 4所述一种新风换气机用逆流式换热芯体, 其特征是所述带孔的支 撑架的厚度为 0.01-1.0mm。
10.根据权利要求 1或 5所述一种新风换气机用逆流式换热芯体, 其特征是所述带孔的支 撑架的孔为四边形、 圆形、 椭圆形或三角形。
11.根据权利要求 1 所述的一种新风换气机用逆流式换热芯体, 其特征是所述封条高度为 l-10mm。
PCT/CN2010/078260 2010-01-14 2010-10-29 新风换气机用逆流式换热芯体 WO2011085609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010031357.8 2010-01-14
CN2010100313578A CN101776406B (zh) 2010-01-14 2010-01-14 新风换气机用逆流式换热芯体

Publications (1)

Publication Number Publication Date
WO2011085609A1 true WO2011085609A1 (zh) 2011-07-21

Family

ID=42512928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078260 WO2011085609A1 (zh) 2010-01-14 2010-10-29 新风换气机用逆流式换热芯体

Country Status (2)

Country Link
CN (1) CN101776406B (zh)
WO (1) WO2011085609A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568343A (zh) * 2016-11-15 2017-04-19 武汉理工大学 一种适用于列车的高效板翅式全热换热器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776406B (zh) * 2010-01-14 2012-12-05 天津大学 新风换气机用逆流式换热芯体
EP2585784A4 (en) 2010-06-24 2016-02-24 Venmar Ces Inc ENERGY EXCHANGER FOR A LIQUID AIR MEMBRANE
CN102095319B (zh) * 2010-12-16 2012-07-25 重庆大学 一种板式热交换器及空调客车的新风装置
CN102213558B (zh) * 2011-04-13 2012-10-03 甘肃蓝科石化高新装备股份有限公司 一种纯逆流板壳式热交换器板束
CN102183168A (zh) * 2011-04-21 2011-09-14 无锡马山永红换热器有限公司 低成本高可焊性封条
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
CN104354408B (zh) * 2012-10-25 2016-05-18 宁波东大空调设备有限公司 一种异相膜机芯,及其制造装置和方法
CN103968491B (zh) * 2013-01-25 2017-11-10 沈阳市沈海牧业有限公司 一种留温新风换气机
US10352628B2 (en) * 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
CN103175293B (zh) * 2013-03-26 2015-05-20 中南大学 新风换气机用平板全热换热芯体
CN103175292B (zh) * 2013-03-26 2015-05-20 中南大学 新风换气机用导板膜式全热换热芯体
CN103256683B (zh) * 2013-05-27 2015-08-05 沈阳市沈海牧业有限公司 组装式换气机
CN104154784B (zh) * 2014-08-01 2015-11-25 浙江银轮机械股份有限公司 一种用于道路柴油机废热利用orc系统的铝封条蒸发器
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
CN106839831B (zh) * 2017-01-18 2018-09-21 中国石油大学(华东) 一种紧凑高效换热器芯体及其焊接工装
CN110785615A (zh) 2017-04-18 2020-02-11 北狄空气应对加拿大公司 被干燥剂增强的蒸发冷却系统和方法
CN113715468B (zh) * 2021-09-18 2023-09-22 安徽统达智慧科技有限公司 往复法对新风换气机逆流式换热芯体的叠层贴合设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313694A (ja) * 1993-04-28 1994-11-08 Toshiba Corp 熱交換器および空調換気扇
US20020185266A1 (en) * 1999-10-08 2002-12-12 Carrier Corporation Plate-type heat exchanger
CN1508506A (zh) * 2002-12-16 2004-06-30 清华大学 一种空气逆流换热器
WO2008126372A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 熱交換素子
CN101776406A (zh) * 2010-01-14 2010-07-14 天津大学 新风换气机用逆流式换热芯体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2453380Y (zh) * 2000-11-10 2001-10-10 邓金荣 叠装式空气热交换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313694A (ja) * 1993-04-28 1994-11-08 Toshiba Corp 熱交換器および空調換気扇
US20020185266A1 (en) * 1999-10-08 2002-12-12 Carrier Corporation Plate-type heat exchanger
CN1508506A (zh) * 2002-12-16 2004-06-30 清华大学 一种空气逆流换热器
WO2008126372A1 (ja) * 2007-03-30 2008-10-23 Panasonic Corporation 熱交換素子
CN101776406A (zh) * 2010-01-14 2010-07-14 天津大学 新风换气机用逆流式换热芯体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568343A (zh) * 2016-11-15 2017-04-19 武汉理工大学 一种适用于列车的高效板翅式全热换热器

Also Published As

Publication number Publication date
CN101776406B (zh) 2012-12-05
CN101776406A (zh) 2010-07-14

Similar Documents

Publication Publication Date Title
WO2011085609A1 (zh) 新风换气机用逆流式换热芯体
US10317095B2 (en) Counter-flow energy recovery ventilator (ERV) core
JP3577863B2 (ja) 対向流型熱交換器
JP5110641B2 (ja) 全熱交換器
JP4994450B2 (ja) 熱交換素子およびその製造方法ならびに熱交換器および熱交換換気装置
JP2015509178A5 (zh)
CN102840657B (zh) 改变流道提高效率的空气全热交换器
DK177457B1 (en) An element based ventilation unit with energy recovery
CN101650141A (zh) 新风换气机用平板式换热器芯体
CN103175293B (zh) 新风换气机用平板全热换热芯体
CN203224023U (zh) 改变流道提高效率的空气全热交换器
JP6695495B2 (ja) 全熱交換素子、全熱交換素子の製造方法および全熱交換装置
CN207163278U (zh) 一种全热交换芯体的换热结构
JP2008122042A (ja) 換気装置
JP2008070070A (ja) 全熱交換器
CN100498090C (zh) 具有温湿度双重交换的通风装置
CN203286704U (zh) 组装式换气机
JP2009121727A (ja) 全熱交換型換気装置
CN201302267Y (zh) 一种全热交换器滤芯
CN203231512U (zh) 一种新风换气机用平板全热换热芯体
CN210050949U (zh) 新型空气能量湿量回收换气装置传热风道结构
CN203203214U (zh) 一种新风换气机用导板膜式全热换热芯体
JP6430089B1 (ja) 熱交換素子、熱交換換気装置及び熱交換素子の製造方法
JP6950517B2 (ja) 熱交換素子とそれを用いた熱交換形換気装置
JP2013245871A (ja) 熱交換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842892

Country of ref document: EP

Kind code of ref document: A1