JP2008070070A - 全熱交換器 - Google Patents

全熱交換器 Download PDF

Info

Publication number
JP2008070070A
JP2008070070A JP2006250764A JP2006250764A JP2008070070A JP 2008070070 A JP2008070070 A JP 2008070070A JP 2006250764 A JP2006250764 A JP 2006250764A JP 2006250764 A JP2006250764 A JP 2006250764A JP 2008070070 A JP2008070070 A JP 2008070070A
Authority
JP
Japan
Prior art keywords
heat exchange
flow path
exhaust
air
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250764A
Other languages
English (en)
Inventor
Sadao Odajima
貞雄 小田島
Kenzo Takahashi
健造 高橋
Makoto Okada
誠 岡田
Akira Inoue
彰 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO FRONTIER KK
Techno Frontier Ltd
Original Assignee
TECHNO FRONTIER KK
Techno Frontier Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO FRONTIER KK, Techno Frontier Ltd filed Critical TECHNO FRONTIER KK
Priority to JP2006250764A priority Critical patent/JP2008070070A/ja
Publication of JP2008070070A publication Critical patent/JP2008070070A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】有効伝熱面積が大きい全熱交換素子を有し、熱交換効率が高く、省エネルギー化を図って地球温暖化を防ぐ全熱交換器を提供することを目的とする。
【解決手段】熱交換仕切膜1と仕切膜1に固着された流路形成部材2とから成る熱交換部材20を複数枚積層して、仕切膜1を隔てて給気側と排気側の2つの気流を流通させると共に、仕切膜1を介して2つの気流の顕熱及び潜熱を熱交換させる対向流型のものである。流路形成部材2は、仕切膜1の外縁に沿って配設されるフレーム部材3と、2つのフレーム部材3,3間に所定間隔でもって配設されると共にフレーム部材3よりも小さい幅寸法D4 の細リブ材4とから成る。さらに、仕切膜1のうち流路形成部材2が当接する部分を除いた面積の、仕切膜1の面積に対する面積比率を、70%以上、95%以下に設定した。
【選択図】図4

Description

本発明は、全熱交換器に関するものである。
近年、冷暖房効果を高めるために居住空間の高断熱化・高気密化が進むにつれて、室内空気の汚染が問題となり、換気の重要性が再認識されてきている。冷暖房効果を損なわずに換気を行う方法として、給気と排気の間で熱交換する方法が有効であり、温度(顕熱)と共に湿度(潜熱)の交換も同時に行うことができればその効果は著しく大きい。そこで、この要求に応えるために、従来より、給気と排気を仕切板を介して全熱交換させる直交流型全熱交換素子を有する全熱交換器が知られている(例えば、特許文献1参照)。
この直交流型全熱交換素子は、図12に示したように、平板状の熱交換板(仕切膜41)と波形の流路形成部材42を貼り合わせた熱交換部材43を交互に積層する際に、上下に隣り合う流路形成部材42の波形の方向を直交させて、給気流路と排気流路が平面視において直交するように形成される。そして、例えば、冬期に、戸外の冷たい乾燥空気を室内へ給気し、室内の温かい高湿度空気を戸外へ排気すると、仕切膜41を介して、顕熱と潜熱の交換が行われ、給気は温められると共に加湿されて、室内に送られる。一方、排気は冷やされると共に減湿されて、戸外に送られる。
特公昭47−19990号公報
近年、環境問題において、地球温暖化の原因物質である二酸化炭素の排出量を削減するためにはさらなる冷暖房エネルギーの削減が必要であり、全熱交換素子の省エネ効果を高めるためには、従来には50〜60%の全熱交換効率を、70%以上に改善することが要求される。しかし、特許文献1の全熱交換器の直交流型全熱交換素子では、仕切膜と流路形成部材の接着部分は、顕熱の伝熱は有効であるが、潜熱の伝熱(水蒸気の透過)は無効であり、しかも、直交流型全熱交換素子は、対向流型全熱交換素子よりも原理的に熱交換効率が低いため、全熱交換効率は50〜60%程度が限界である。
そこで、本発明は、有効伝熱面積が大きい全熱交換素子を有し、熱交換効率が高く、省エネルギー化を図って地球温暖化を防止する全熱交換器を提供することを目的とする。
上記目的を達成するために、本発明に係る全熱交換器は、仕切膜と該仕切膜に固着された流路形成部材とから成る熱交換部材を複数枚積層して、該仕切膜を隔てて給気側と排気側の2つの気流を流通させると共に、該仕切膜を介して該2つの気流の顕熱及び潜熱を熱交換させる対向流型全熱交換器に於て、該流路形成部材は、該仕切膜の外縁に沿って配設されるフレーム部材と、2つの該フレーム部材間に所定間隔でもって配設されると共に該フレーム部材よりも小さい幅寸法の細リブ材とから成り、さらに、上記仕切膜のうち上記流路形成部材が当接する部分を除いた面積の、該仕切膜の面積に対する面積比率を、70%以上、95%以下に設定したものである。
また、上記細リブ材は、開口端まで端部が延伸する長寸部材と、該開口端より内方に端部が設けられた短寸部材と、を有して、隣り合う細リブ材によって形成される風路幅よりも大きい拡大流路部を上記開口端に設け、上記面積比率を75%以上、95%以下に設定した。
また、上記熱交換部材は、給気流路が形成される第1熱交換部材と、排気流路が形成される第2熱交換部材と、を有し、さらに、該第1熱交換部材と該第2熱交換部材とは、上記流路形成部材の厚さ寸法を相違させた。
そして、給気側の気流を発生させる給気送風機と、排気側の気流を発生させる排気送風機と、を備え、上記給気送風機を上記給気流路の下流側に配設すると共に上記排気送風機を上記排気流路の下流側に配設して両吸込方式とし、さらに、上記第1熱交換部材の上記流路形成部材の厚さ寸法を、上記第2熱交換部材の厚さ寸法よりも低く設定した。
あるいは、給気側の気流を発生させる給気送風機と、排気側の気流を発生させる排気送風機と、を備え、上記給気送風機を上記給気流路の下流側に配設すると共に上記排気送風機を上記排気流路の下流側に配設して両吸込方式とし、さらに、上記第1熱交換部材の上記流路形成部材の厚さ寸法を、上記第2熱交換部材の厚さ寸法よりも高く設定した。
本発明は、次のような著大な効果を奏する。
本発明に係る全熱交換器は、熱交換仕切膜と流路形成部材とから成る熱交換部材を複数枚積層した対向流型のものであり、流路形成部材は、仕切膜の外縁に沿って配設される2つのフレーム部材と、その間の気流方向に所定間隔でもって配設されフレーム部材よりも小さい幅寸法の細リブ材とから成り、仕切膜のうち流路形成部材が当接する部分を除いた面積の、仕切膜の面積に対する面積比率を、70%以上、95%以下に設定したものなので、冬期暖房時、夏期冷房時のいずれの場合でも、顕熱交換効率が80%以上、かつ、潜熱交換効率が70%以上に改善し、また、圧力損失も少なくすることができる。このように、簡易な構成でありながら、熱交換を非常に効率よく行うことができ、省エネルギー化を図ることができる。そして、地球温暖化防止のために大きく貢献することができる。
以下、実施の形態を示す図面に基づき、本発明を詳説する。
図1〜図6に示した本発明に係る全熱交換器の第1の実施の形態に於て、23は、全熱交換器本体であり、この全熱交換器本体23は、仕切膜1と仕切膜1に固着される流路形成部材2とから成る熱交換部材20を複数枚積層したものである。
そして、全熱交換器本体23は、その一方面及び他方面(図1では上面及び下面)に、積層方向から見て(後述するように)六角形状の補強用基板15,15が積層されて、対向流型全熱交換素子40が形成される。
熱交換部材20は、給気流路10が形成される第1熱交換部材20Aと、排気流路11が形成される第2熱交換部材20Bと、を有している。そして、全熱交換器本体23は、第1熱交換部材20Aと第2熱交換部材20Bを交互に積層して形成されて、給気側と排気側の2つの気流を流通させると共に、仕切膜1を介して2つの気流の顕熱及び潜熱を熱交換させる対向流型のものである。
各熱交換部材20について説明する。熱交換部材20は、矩形部(直角四角形部)35と、その両端に配設される三角形部34,34と、を有する長六角形に形成されている(図3参照)。
図4において、Aは流路形成部材2により形成された給気流路10を流れる空気(給気空気)の流れを示し、Bは流路形成部材2により形成された排気流路11を流れる空気(排気空気)の流れを示す。
流路形成部材2は、仕切膜1の外縁に沿って配設される2つのフレーム部材3,3と、フレーム部材3, 3間に所定間隔でもって複数配設されると共にフレーム部材3の幅寸法D3 よりも小さい幅寸法D4 の細リブ材4…とから成る。
仕切膜1は、矩形部とその両側に連設される三角形部とにより六角形状に形成され(図10参照)、その輪郭は、平面視において、熱交換部材20の輪郭と一致している。
また、図4において、各フレーム部材3は、仕切膜1の矩形部35の外縁一辺に配設された直進部3aと、一方の三角形部34の外縁一辺に沿って直進部3aに連続状に配設された振り分け部3bとから成り、かつ、一対のフレーム部材3,3は、互いに点対称の位置に配設されている。また、細リブ材4…は、一対のフレーム部材3,3間に平行かつ等間隔の幅寸法W0 をもって、複数(実施例では7つ)配設されている。そして、各細リブ材4は、矩形部35に配設されフレーム部材3の直進部3aと平行に形成された直進部4aと、フレーム部材3の振り分け部3bに平行状であり直進部4aの両端から開口端5,6まで延伸し三角形部34,34に配設された振り分け部4b,4bとから成る。そして、第1熱交換部材20Aに於ては、フレーム部材3・細リブ材4…の振り分け部3b,4b…が、一方の三角形部34の傾斜面18において、複数の給気入口32…(開口部14)を形成し、かつ、他方の三角形部34の傾斜面18において、複数の給気出口31…(開口部14)を形成する。また、第2熱交換部材20Bに於ては、フレーム部材3・細リブ材4…の振り分け部3b,4b…が、一方の三角形部34の傾斜面18において、複数の排気入口22…(開口部14)を形成し、かつ、他方の三角形部34の傾斜面18において、複数の排気出口21…(開口部14)を形成する。
そして、全熱交換器本体23は、給気空気と排気空気とが相互に平行かつ反対向きに流れる対向流部16を、矩形部35に有すると共に、給気空気と排気空気とが仕切膜1と直交する方向から見て(平面視にて)交差して流れる交差流部17,17を、三角形部34,34に有する。
そして、第1熱交換部材20Aと第2熱交換部材20Bでは、フレーム部材3の振り分け部3bと、細リブ材4…の振り分け部4b…とが、(長六角形の中央線に対し)線対称位置になるように配設されている。
即ち、第1熱交換部材20Aと第2熱交換部材20Bを積層したものを平面視すると、三角形部34,34において、フレーム部材3・細リブ材4…の振り分け部3b,4b…が、交差状となる。また、両部材20A,20Aのフレーム部材3,3の直進部3a,3a同士、細リブ材4,4の直進部4a,4a同士は、夫々、長六角形の長手方向に一致して配置される。
そして、第1熱交換部材20Aは、給気入口32が成す方向と、給気出口31が成す方向とが平行となり、また、第2熱交換部材20Bは、排気入口22が成す方向と、排気出口21が成す方向とが平行となる。即ち、各部材20A,20Bは、フレーム部材3と細リブ材4とによって略(横倒)Z字状の給気流路10、排気流路11が形成されている。
細リブ材4とフレーム部材3は、厚紙、プレスボード、その他樹脂材等から成る。
全熱交換器本体23の対向流部16は直方体であり、交差流部17は三角柱となっている。
また、フレーム部材3と細リブ材4…は同じ厚さ寸法(高さ寸法)Hを有し、第1の実施の形態では、第1熱交換部材20A・第2熱交換部材20Bのフレーム部材3と細リブ材4…は同じ厚さ寸法(高さ寸法)Hに形成される(図1,図2,図5参照)。
後述の表1と表2に示した比較実験(測定)に使用した第1の実施の形態の各部材の寸法について説明すると、図3に於て、熱交換部材20を平面視したとき、矩形部35の給気流路10又は排気流路11の方向(長六角形の長手方向)の寸法P1 が 410〜 430mm(好ましくは420mm )に、一対の三角形部34,34の端側の頂点同士の間隔寸法P2 が 760〜 800mm(好ましくは 780mm)に、矩形部35の給気流路10(又は排気流路11)に直交する方向の寸法P3 が 380〜400mm(好ましくは 390mm)に形成される。
また、図5に於て、各フレーム部材3の幅寸法D3 が10〜22mm(好ましくは18mm)に、各細リブ材4の幅寸法D4 が2〜5mm(好ましくは4mm)に形成され、さらに、フレーム部材3と細リブ材4の厚さ寸法Hが 1.7〜2.3mm(好ましくは2mm)に形成される。
そして、第1熱交換部材20Aと第2熱交換部材20Bは、流路形成部材2の厚さ寸法を同じ大きさに形成した。即ち、この全熱交換器本体23を有する全熱交換素子40は、均一ピッチ方式の対向流型である。
そして、仕切膜1のうち流路形成部材2が当接する部分を除いた(有効伝熱)面積S1 (図11の白い部分)の、仕切膜1の面積S0 (図10参照)に対する(有効伝熱)面積比率Eが、70%以上、95%以下に設定される。
後述の表1・表2の比較実験(測定)に用いた第1の実施の形態を具体的に説明すると、図3〜図5、及び、図10,図11に於て、各熱交換部材20の仕切膜1において、矩形部35の上記寸法P1 を420mm に、かつ、一対の三角形部34,34の頂点同士の上記寸法P2 を 780mmに、かつ、矩形部35の上記寸法P3 を 390mmに形成し、さらに、7つの細リブ材4…の各幅寸法D4 を4mmに、フレーム部材3の幅寸法D3 を18mmに形成すると、仕切膜1の面積S0 が2418cm2 で、仕切膜1のうち流路形成部材2が当接する部分を除いた面積S1 が 480cm2 であるため、上記面積比率Eは約80%となる。この具体例のように、各部材の寸法P1 ,P2 ,P3 ,D3 ,D4 は、面積比率Eが70%以上95%以下となるように、上述した範囲内で設定される。
なお、仕切膜1の材質は、特殊紙(セルロース繊維と合成繊維の混紙)の表層にセルロース系高分子薄膜を形成した透湿性と気体遮蔽性を有する透湿膜が使用される。例えば、親水性繊維を含有する多孔質シートに、親水性高分子(例えば、ビスコースから再生されたセルロース)を含有する水溶液を塗布し、多孔質シートの表面や内部で上記の親水性高分子を水不溶化させてシートの孔を塞いだ親水性高分子加工シートが好ましい。その他にも、仕切膜1として、ポリエチレン、ポリプロピレン、酢酸セルロース、ポリテトラフルオロエチレン等を素材とする多孔質シートの表面に親水性高分子の薄膜を塗布した透湿膜を用いてもよい。
図6は、本発明の使用状態の一例を示す図であり、室内Xと屋外Yとを分ける壁Zには、内部に全熱交換素子40を備えたケーシング25が付設されている。また、ケーシング25内には、給気送風機12と排気送風機13とが設けられ、室内X側の吸込口26aと屋外Y側の吸込口26b近傍には、フィルタ24が取付けられている。給気送風機12は、給気流路10の下流側に配設されると共に、排気送風機13は、排気流路11の下流側に配設されて、この全熱交換器は両吸込方式に形成される。なお、ケーシング25内で、給気空気と排気空気を混在させず全熱交換素子40を通過させるために複数個の間仕切板27…が設けられる。
なお、一方の送風機を全熱交換素子40の風上側に設置し、かつ、他方の送風機を全熱交換素子40の風下側に設置すると、前者は空気(気流)を熱交換部材20の流路内に押し込むように流入させ、後者は、空気(気流)を熱交換部材20の流路内から吸引するため、仕切膜1の両側に大きな静圧差が発生して変形が生じてしまい、圧力損失が増大するので、不適当であるため、本実施例では両吸込方式とした。
次に、対向流型全熱交換素子40を形成する手順について説明する。
図2に於て、補強用基板15は、積層方向から見て仕切膜1と同形状を有し、厚さが2〜20mmのプラスチック板や金属板あるいは木板から成り、基板15の各頂点部位Cには、孔部19が設けられている。
そして、一対の基板15,15を、複数の熱交換部材20…を挟むように配設し、各熱交換部材20の頂部に形成された孔部29を貫通状として、補強棒28にて連結する。具体的には、一方の基板15の各頂点部位Cの孔部19に、補強棒28の一端部を嵌込み、そして、各熱交換部材20を、その流路形成部材2(フレーム部材3)の孔部29をもって、補強棒28に貫通させる。このように、複数の熱交換部材20…を次々に積層して補強棒28に通し、かつ、補強棒28の他端部に、他方の基板15の孔部19に嵌込む。そして、補強棒28の両端部は、ねじ止めや、接着剤による接着や、融着等により、基板15,15に固定される。補強棒28は、アルミ、鉄、ステンレス等の金属、あるいは樹脂にて形成される。
なお、図1は簡略図であり、全熱交換素子40は、給気流路10を有する第1熱交換部材20Aと、排気流路11を有する第2熱交換部材20Bとを、交互に 150〜 250段、好ましくは約 200段積層されている。
次に、図7は本発明に係る全熱交換器の第2の実施の形態を示し、第1の実施の形態との相違点は、細リブ材4…が、(三角形部34,34の)開口端5, 6まで端部7aが延伸する長寸部材7と、開口端5, 6より内方に端部8aが設けられた短寸部材8と、を有し、隣り合う細リブ材4, 4によって形成される風路幅W0 よりも大きい風路幅W9 の拡大流路部9を開口端5,6に設けられている点であり、面積比率Eが75%以上、95%以下に設定される。この全熱交換素子40も、全ての熱交換部材20の流路形成部材2の厚さ寸法が等しい、均一ピッチ方式のものである。
具体的には、長寸部材7は、図4の細リブ材4と同じように形成され、短寸部材8は、その両端部8a,8aが、開口端5,6から20〜40mm内側の位置となる。そして、各熱交換部材20は、長寸部材7と短寸部材8とが交互に配設されている。そして、拡大流路部9は、隣り合う長寸部材7,7の端部7a,7a近傍部位により形成される。
この熱交換部材20を有する対向流型全熱交換素子40によれば、有効伝熱面積S1 が第1の実施の形態のものに比べて増えて面積比率Eが大きくなり、圧力損失が減少する(後述の表1参照)。
なお、隣り合う長寸部材7,7の間に、2つの短寸部材8,8が配設されるように設計変更するも自由である。
次に、図8は本発明に係る全熱交換器の第3の実施の形態を示し、第1の実施の形態との相違点は、第1熱交換部材20Aと第2熱交換部材20Bにおいて、流路形成部材2の厚さ寸法H1 , H2 を相違させた点であり、即ち、この全熱交換素子40は、複合ピッチ方式の対向流型である。具体的には、第1熱交換部材20Aの流路形成部材2の厚さ寸法H1 が、第2熱交換部材20Bの厚さ寸法H2 よりも小さく設定されている。また、給気送風機12と排気送風機13は、同じ送風量に設定される。
表1・表2に示す測定用実施品では、寸法については、H1 を 1.7mmに設定し、H2 を 2.3mmに設定する。また、図8は簡略図であり、全熱交換素子40は、第1熱交換部材20Aと熱交換部材20Bとを交互に 150〜 250段、好ましくは約 200段積層して形成される。
そして、後述するが、この対向流型全熱交換素子40によれば、顕熱交換効率が90%以上、全熱交換効率が80%以上となる(表1,表2参照)。
次に、図9は本発明に係る全熱交換器の第4の実施の形態を示し、図8のものとの相違点は、第1熱交換部材20Aの流路形成部材2の厚さ寸法H1 を、第2熱交換部材20Bの厚さ寸法H2 よりも大きく形成した点である。
表1・表2に示す測定用実施品では、H1 を 2.3mmに設定し、H2 を 1.7mmに設定する。
そして、後述するが、この対向流型全熱交換素子40によれば、有効換気量率が98%以上となる。
次に、本発明の全熱交換器の上記素子に対し、以下説明する比較例1、比較例2の素子を形成して、熱交換効率の比較を行う。
先ず、比較例1の全熱交換素子は図12の簡略図に示した通りであり、上述の特許文献1と同じ直交流型全熱交換素子である。即ち、この直交流型全熱交換素子は、仕切膜41と仕切膜41に貼り合わされた波板状流路形成部材42とから成る熱交換部材43を、流路形成部材42の向きが交互に直交するように積層したものである。仕切膜41は、図1〜図5で説明したものと同じ材質から成り、一辺が 500mmの正方形に形成されている。また、流路形成部材42は剛性の大きなクラフト紙をコルゲート(波状)加工したものであり、その高さ(厚さ)寸法を 2.0mmに、隣り合う山辺部同士の間隔寸法を 2.5mmに、山辺部又は谷辺部と仕切膜41との接着幅を1mmに形成した。そして、熱交換部材43を 200段積層して、直交流型全熱交換素子を形成した。この場合、仕切膜41の面積が2500cm2 であり、接着部の全面積は1000cm2 なので、有効伝熱面積は1500cm2 となり、仕切膜41の全面積に対する伝熱面積比率は60%である。
次に、比較例2については、図1〜図5で説明した全熱交換器本体23とは、仕切膜1の材質が厚さ約 100ミクロンの(市販の)ポリプロピレンシートから成る点でのみ相違し、それ以外の構造は同じである。
次に、本発明の全熱交換器の作用について説明する。図4,図6において、給気送風機12と排気送風機13を、同じ送風量となるように作動させることで、屋外Yの空気(給気空気)が、給気入口32から給気流路10内へ入り、給気出口31から室内Xへ送られる。また、室内Xの空気(排気空気)が、排気入口22から排気流路11内へ入り、排気出口21から屋外Yへ排出される。
このとき、対向流部16では、給気流路10を通過する空気と排気流路11を通過する空気とが相互に平行かつ反対向きに流れ、(仕切膜1と直交する方向から見て)交差流部17,17では、交差して流れる。そして、全熱交換素子40内では、給気流路10を通過する給気空気と排気流路11を通過する排気空気との間で、仕切膜1を介して全熱交換が行われる。
そして、上述の第1〜第4の実施の形態、及び、比較例1,比較例2の全熱交換素子において、顕熱交換効率、潜熱交換効率、全熱交換効率、及び、圧力損失の測定結果を、表1,表2に示した。表1は、JIS−B8628に規定された冬期暖房時の空気条件における測定結果であり、表2は同じ規定の夏期冷房時の空気条件における測定結果である。なお、熱交換効率の測定は、新鮮外気の給気が重要であり、これを重視するために、給気側のデータを測定した。
Figure 2008070070
Figure 2008070070
表1,表2によれば、第1〜第4の実施の形態の全熱交換素子は、顕熱交換効率が80%以上に、かつ、潜熱交換効率が70%以上になり、また、全熱交換効率が、冬期暖房時で80%以上に、夏期冷房時で75%以上になり、いずれも、高い数値を示しており、高性能であることが明らかになった。また、圧力損失については60Pa以下で低い数値を示した。
これに対し、比較例1の直交流型全熱交換素子は、顕熱交換効率、潜熱交換効率、及び、全熱交換効率のいずれもが50〜60%になり、低い数値を示した。また、圧力損失が 120Paとなり、高い数値を示した。
また、比較例2の全熱交換素子は、全熱交換効率が、冬期暖房時で52%に、夏期冷房時で20%となり、性能が低い。
次に、第3・第4の実施の形態の複合ピッチ方式の全熱交換素子(以下、「複合ピッチ素子」とよぶ)の顕熱交換効率と全熱交換効率が、第1・第2の実施の形態の均一ピッチ方式の全熱交換素子(以下、「均一ピッチ素子」とよぶ)に比べ、表1,表2に示したように、高い数値になった理由について考察する。
図1〜図5で説明したように、均一ピッチ素子の流路形成部材2(フレーム部材3及び細リブ材4)の厚さ寸法Hは、全ての熱交換部材20において均一である。
一方、複合ピッチ素子は、図8,図9で説明したように、全ての仕切膜1…の枚数は均一ピッチ素子の仕切膜1…の枚数と同じであり、各熱交換部材20の有効伝熱面積S1 も同じ大きさとなるが、複合ピッチ素子の隣り合う流路形成部材2A,2Bの厚さ寸法は、H1 <H2 、又は、H2 <H1 の関係で不均一である。
そして、図8において、複合ピッチ素子における熱交換のプロセスについて述べると、一方の気流(給気流路10)から仕切膜1に顕熱及び潜熱が伝熱し、仕切膜1から他方の気流(排気流路11)に顕熱及び潜熱が伝熱する場合の熱交換メカニズムとして、(i) 二種の気流が仕切膜1と接触している時間と、(ii)仕切膜1の表面における熱伝達速度と、が重要となる。
ここで、一般的に、熱交換効率は、基本的に空気と仕切膜1の接触時間によって変化し、気流の速度が遅くなるほど熱交換効率は高くなり、反対に、気流の速度が早くなるほど熱交換効率は低くなる。また、仕切膜1の表面における熱伝達速度は風速によって変化し、高速度になるほど乱流効果(攪拌効果)の影響が大きくなり、熱伝達速度は大きくなる。
そして、給気送風機12と排気送風機13が同じ量の送風運転をすると、複合ピッチ素子では、一方の気流速度に比べ、他方の気流速度が速くなる。遅い速度の気流側では、上記メカニズム(i) が大きく関係し、また、速い気流側では、上記メカニズム(ii)が大きく関係するものと考えられる。即ち、遅い気流側では、気流から仕切膜1への伝熱は、気流の仕切膜1への接触時間が比較的に長いため多くの顕熱及び潜熱が仕切膜1へ伝達される。また、速い気流側では、高風速による乱流効果が大きく働き、仕切膜1から他方の気流に顕熱及び潜熱が効率的に伝達されたと考えられ、表1,表2に示したように、複合ピッチ素子の方が、均一ピッチ素子よりも高性能となったと考えられる。具体的には、図8の第3の実施の形態では、給気流路10…が狭く高風速側となるので、上記メカニズム(ii)が大きく関係し、給気側で高風速による乱流効果が大きく働き、仕切膜1から給気に顕熱及び潜熱が効率よく伝達されたため、給気側の熱交換効率が、表1,表2から明らかなように、第4の実施の形態のものよりも高くなったと考えられる。
以上のように、本発明に係る全熱交換器は、仕切膜1と仕切膜1に固着された流路形成部材2とから成る熱交換部材20を複数枚積層して、仕切膜1を隔てて給気側と排気側の2つの気流を流通させると共に、仕切膜1を介して2つの気流の顕熱及び潜熱を熱交換させる対向流型全熱交換器に於て、流路形成部材2は、仕切膜1の外縁に沿って配設されるフレーム部材3と、2つのフレーム部材3, 3間に所定間隔でもって配設されると共にフレーム部材3よりも小さい幅寸法D4 の細リブ材4とから成り、さらに、仕切膜1のうち流路形成部材2が当接する部分を除いた面積S1 の、仕切膜1の面積S0 に対する面積比率Eを、70%以上、95%以下に設定したものなので、冬期暖房時、夏期冷房時のいずれの場合でも、顕熱交換効率が80%以上、かつ、潜熱交換効率が70%以上の高い数値になり、また、圧力損失を60Pa以下へと、低い数値にすることができる。このように、簡易な構成でありながら、熱交換を非常に効率よく行うことができ、省エネルギー化を図ることができる。そして、地球温暖化防止のために大きく貢献することができる。
また、細リブ材4は、開口端5, 6まで端部7aが延伸する長寸部材7と、開口端5, 6より内方に端部8aが設けられた短寸部材8と、を有して、隣り合う細リブ材4, 4によって形成される風路幅W0 よりも大きい拡大流路部9を開口端5,6に設け、面積比率Eを75%以上、95%以下に設定したものなので、簡易な構成でありながら、全ての細リブ材4…を長寸部材7とする場合よりも、有効伝熱面積が大きくなることから顕熱交換効率及び潜熱交換効率を一層高い数値にすることができると共に、圧力損失を一層減少させることができる。
また、熱交換部材20は、給気流路10が形成される第1熱交換部材20Aと、排気流路11が形成される第2熱交換部材20Bと、を有し、さらに、第1熱交換部材20Aと第2熱交換部材20Bとは、流路形成部材2の厚さ寸法H1 , H2 を相違させたので、給気送風機12と排気送風機13から同じ送風量を送ることによって、給気流路10を通過する給気空気と、排気流路11を通過する排気空気の速さが相違する。これにより、全ての熱交換部材20…の流路形成部材2…の厚さ寸法Hが同じである場合に比べて、顕熱交換効率、潜熱交換効率、全熱交換効率を上昇させることができ、簡易な構成でありながら、一層大きな省エネルギー効果を発揮することができる。
また、給気側の気流を発生させる給気送風機12と、排気側の気流を発生させる排気送風機13と、を備え、給気送風機12を給気流路10の下流側に配設すると共に排気送風機13を排気流路11の下流側に配設して両吸込方式とし、さらに、第1熱交換部材20Aの流路形成部材2の厚さ寸法H1 を、第2熱交換部材20Bの厚さ寸法H2 よりも低く設定したので、給気流路10を通過する給気空気を、排気流路11を通過する排気空気よりも速く通過させることができる。これにより、顕熱交換効率を90%以上に、かつ、全熱交換効率を80%以上にできる。よって、簡易な構成でありながら、効率よく省エネルギー化を図ることができる。
また、給気側の気流を発生させる給気送風機12と、排気側の気流を発生させる排気送風機13と、を備え、給気送風機12を給気流路10の下流側に配設すると共に排気送風機13を排気流路11の下流側に配設して両吸込方式とし、さらに、第1熱交換部材20Aの流路形成部材2の厚さ寸法H1 を、第2熱交換部材20Bの厚さ寸法H2 よりも高く設定したので、排気流路11を通過する排気空気を、給気流路10を通過する給気空気よりも速く通過させることができる。これにより、有効換気量率を98%以上にすることができるので、非常に効率よく換気を行うことができ、簡易な構成でありながら、効率よく省エネルギー化を図ることができる。
本発明の全熱交換器の第1の実施の形態を示す簡略斜視図である。 分解簡略斜視図である。 平面図である。 全熱交換素子の断面平面図である。 図4のイ−イ断面図である。 使用状態の一例を示す断面平面図である。 本発明の全熱交換器の第2の実施の形態を示す断面平面図である。 本発明の全熱交換器の第3の実施の形態を示す簡略側面図である。 本発明の全熱交換器の第4の実施の形態を示す簡略側面図である。 仕切膜を示す平面図である。 説明用平面図である。 従来の直交流型熱交換素子を示す斜視図である。
符号の説明
1 仕切膜
2 流路形成部材
3 フレーム部材
4 細リブ材
5 開口端
6 開口端
7 長寸部材
7a 端部
8 短寸部材
8a 端部
9 拡大流路部
10 給気流路
11 排気流路
12 給気送風機
13 排気送風機
20 熱交換部材
20A 第1熱交換部材
20B 第2熱交換部材
23 全熱交換器本体
40 全熱交換素子
4 幅寸法
E 面積比率
1 ,H2 厚さ寸法
0 ,S1 面積
0 幅寸法

Claims (5)

  1. 仕切膜(1)と該仕切膜(1)に固着された流路形成部材(2)とから成る熱交換部材(20)を複数枚積層して、該仕切膜(1)を隔てて給気側と排気側の2つの気流を流通させると共に、該仕切膜(1)を介して該2つの気流の顕熱及び潜熱を熱交換させる対向流型全熱交換器に於て、
    該流路形成部材(2)は、該仕切膜(1)の外縁に沿って配設されるフレーム部材(3)と、2つの該フレーム部材(3)(3)間に所定間隔でもって配設されると共に該フレーム部材(3)よりも小さい幅寸法(D4 )の細リブ材(4)とから成り、
    さらに、上記仕切膜(1)のうち上記流路形成部材(2)が当接する部分を除いた面積(S1 )の、該仕切膜(1)の面積(S0 )に対する面積比率(E)を、70%以上、95%以下に設定したことを特徴とする全熱交換器。
  2. 上記細リブ材(4)は、開口端(5)(6)まで端部(7a)が延伸する長寸部材(7)と、該開口端(5)(6)より内方に端部(8a)が設けられた短寸部材(8)と、を有して、隣り合う細リブ材(4)(4)によって形成される風路幅(W0 )よりも大きい拡大流路部(9)を上記開口端(5)(6)に設け、上記面積比率(E)を75%以上、95%以下に設定した請求項1記載の全熱交換器。
  3. 上記熱交換部材(20)は、給気流路(10)が形成される第1熱交換部材(20A)と、排気流路(11)が形成される第2熱交換部材(20B)と、を有し、
    さらに、該第1熱交換部材(20A)と該第2熱交換部材(20B)とは、上記流路形成部材(2)の厚さ寸法(H1 )(H2 )を相違させた請求項1又は2記載の全熱交換器。
  4. 給気側の気流を発生させる給気送風機(12)と、排気側の気流を発生させる排気送風機(13)と、を備え、
    上記給気送風機(12)を上記給気流路(10)の下流側に配設すると共に上記排気送風機(13)を上記排気流路(11)の下流側に配設して両吸込方式とし、
    さらに、上記第1熱交換部材(20A)の上記流路形成部材(2)の厚さ寸法(H1 )を、上記第2熱交換部材(20B)の厚さ寸法(H2 )よりも低く設定した請求項3記載の全熱交換器。
  5. 給気側の気流を発生させる給気送風機(12)と、排気側の気流を発生させる排気送風機(13)と、を備え、
    上記給気送風機(12)を上記給気流路(10)の下流側に配設すると共に上記排気送風機(13)を上記排気流路(11)の下流側に配設して両吸込方式とし、
    さらに、上記第1熱交換部材(20A)の上記流路形成部材(2)の厚さ寸法(H1 )を、上記第2熱交換部材(20B)の厚さ寸法(H2 )よりも高く設定した請求項3記載の全熱交換器。
JP2006250764A 2006-09-15 2006-09-15 全熱交換器 Pending JP2008070070A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250764A JP2008070070A (ja) 2006-09-15 2006-09-15 全熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250764A JP2008070070A (ja) 2006-09-15 2006-09-15 全熱交換器

Publications (1)

Publication Number Publication Date
JP2008070070A true JP2008070070A (ja) 2008-03-27

Family

ID=39291803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250764A Pending JP2008070070A (ja) 2006-09-15 2006-09-15 全熱交換器

Country Status (1)

Country Link
JP (1) JP2008070070A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139192A (ja) * 2008-12-15 2010-06-24 Honda Motor Co Ltd 加湿器
WO2013168772A1 (ja) 2012-05-11 2013-11-14 三菱電機株式会社 積層型全熱交換素子および熱交換換気装置
CN110006278A (zh) * 2019-05-08 2019-07-12 科林贝思(深圳)科技有限公司 一种全热换热器
JPWO2021156979A1 (ja) * 2020-02-05 2021-08-12
CN115218322A (zh) * 2021-04-18 2022-10-21 大金工业株式会社 空气处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353394A (ja) * 1991-05-29 1992-12-08 Daikin Ind Ltd 熱交換エレメント
JPH06281379A (ja) * 1992-09-24 1994-10-07 Daikin Ind Ltd 熱交換エレメント及びこれを含む熱交換換気装置
JP2002195785A (ja) * 2000-12-25 2002-07-10 Honda Motor Co Ltd 熱交換器
JP2005282904A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 熱交換器
JP2005282981A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353394A (ja) * 1991-05-29 1992-12-08 Daikin Ind Ltd 熱交換エレメント
JPH06281379A (ja) * 1992-09-24 1994-10-07 Daikin Ind Ltd 熱交換エレメント及びこれを含む熱交換換気装置
JP2002195785A (ja) * 2000-12-25 2002-07-10 Honda Motor Co Ltd 熱交換器
JP2005282904A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 熱交換器
JP2005282981A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 冷却装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139192A (ja) * 2008-12-15 2010-06-24 Honda Motor Co Ltd 加湿器
WO2013168772A1 (ja) 2012-05-11 2013-11-14 三菱電機株式会社 積層型全熱交換素子および熱交換換気装置
US9863710B2 (en) 2012-05-11 2018-01-09 Mitsubishi Electric Corporation Laminated total heat exchange element
CN110006278A (zh) * 2019-05-08 2019-07-12 科林贝思(深圳)科技有限公司 一种全热换热器
JPWO2021156979A1 (ja) * 2020-02-05 2021-08-12
JP7308990B2 (ja) 2020-02-05 2023-07-14 三菱電機株式会社 熱交換素子
CN115218322A (zh) * 2021-04-18 2022-10-21 大金工业株式会社 空气处理设备

Similar Documents

Publication Publication Date Title
JP5110641B2 (ja) 全熱交換器
TWI525294B (zh) Heat exchange components and air conditioning devices
US9404689B2 (en) Heat exchange matrix
JP2008070070A (ja) 全熱交換器
US6282915B1 (en) Evaporative cooler
JP4928295B2 (ja) 顕熱交換素子
KR20080060932A (ko) 환기 장치의 열교환기
JP5610777B2 (ja) 全熱交換素子
JP2008122042A (ja) 換気装置
CN101571360A (zh) 显热交换元件
JP5191877B2 (ja) 全熱交換器
KR101443053B1 (ko) 현열 교환 소자
JP2023105326A (ja) 熱交換素子及びそれを用いた熱交換形換気装置
JPH11108580A (ja) 熱交換素子
JP7126617B2 (ja) 熱交換素子および熱交換換気装置
KR101276562B1 (ko) 전열 교환기 및 그 제조법
JP4021048B2 (ja) 熱交換素子
JP2019158319A (ja) 全熱交換素子及び全熱交換器
JPS6124995A (ja) 熱交換器の製造方法
JP2011102688A (ja) 熱交換器及び除湿空気調和装置
CN102410618A (zh) 一种全热交换单元
KR20040040176A (ko) 공기조화기용 열교환소자 조립체
CN102410619A (zh) 全热交换单元

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110623

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108