WO2011083824A1 - 回路接続用接着フィルム及び回路接続構造体 - Google Patents

回路接続用接着フィルム及び回路接続構造体 Download PDF

Info

Publication number
WO2011083824A1
WO2011083824A1 PCT/JP2011/050125 JP2011050125W WO2011083824A1 WO 2011083824 A1 WO2011083824 A1 WO 2011083824A1 JP 2011050125 W JP2011050125 W JP 2011050125W WO 2011083824 A1 WO2011083824 A1 WO 2011083824A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
adhesive
film
adhesive layer
conductive particles
Prior art date
Application number
PCT/JP2011/050125
Other languages
English (en)
French (fr)
Inventor
立澤 貴
小林 宏治
耕太郎 関
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN201180002362.9A priority Critical patent/CN102474025B/zh
Priority to KR1020117019005A priority patent/KR101223350B1/ko
Priority to JP2011501449A priority patent/JP4752986B1/ja
Publication of WO2011083824A1 publication Critical patent/WO2011083824A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • C09J2301/1242Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape the opposite adhesive layers being different
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1189Pressing leads, bumps or a die through an insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Definitions

  • the present invention relates to an adhesive film for circuit connection and a circuit connection structure.
  • anisotropic conductive adhesive films are known as circuit connection materials for heating and pressurizing opposing circuits to electrically connect electrodes in the pressurizing direction, for example, epoxy adhesives and acrylic adhesives.
  • An anisotropic conductive adhesive film in which conductive particles are dispersed in an agent is known.
  • Such an anisotropic conductive adhesive film is mainly composed of a TCP (Tape Carrier Package) or COF (Chip On Flex) on which a semiconductor for driving a liquid crystal display (hereinafter referred to as “LCD”) is mounted and an LCD panel. Widely used for electrical connection or electrical connection between a TCP or COF and a printed wiring board.
  • flip-chip mounting which is advantageous for thinning and narrow pitch connection, is adopted instead of the conventional wire bonding method even when a semiconductor is directly mounted face-down on an LCD panel or a printed wiring board.
  • an anisotropic conductive adhesive film is used as a circuit connecting material (see, for example, Patent Documents 1 to 4).
  • the circuit connecting material is made of silicone.
  • a method for improving adhesion by incorporating particles for example, see Patent Document 10
  • a method for dispersing rubber particles in a circuit connecting material in order to reduce internal stress based on a difference in coefficient of thermal expansion after adhesion are known. (For example, refer to Patent Document 11).
  • indium-zinc oxide (IZO) electrode has been used instead of an indium-tin oxide (ITO) electrode as a circuit electrode of a glass substrate from the viewpoint of reducing costs.
  • ITO indium-tin oxide
  • ITO indium-tin oxide
  • a metal circuit such as Mo or Al is generally formed under the thin film electrode as a base, but the number of parts such as a driver IC is reduced for the purpose of cost reduction. For this reason, the routing of thin film circuits is also very complicated, and in particular, panels with indium-zinc oxide (IZO) films have high circuit resistance, which causes the problem of burning of electrodes called burnt phenomenon. It has become.
  • IZO indium-zinc oxide
  • connection resistance between circuit electrodes can be reduced without depending on the type of circuit electrodes such as indium-tin oxide (ITO) electrodes and indium-zinc oxide (IZO) electrodes.
  • An object of the present invention is to provide a circuit connection material (adhesive film for circuit connection) in which a burnt phenomenon hardly occurs even in a circuit having a circuit pitch smaller than 40 ⁇ m, and a circuit connection structure using the circuit connection material. .
  • the present invention is an adhesive film for circuit connection for electrically connecting a circuit interposed between opposing circuit boards, and the adhesive film for circuit connection has at least an adhesive layer A and an adhesive layer B.
  • the adhesive layer A contains a curing agent that generates free radicals by heating or light, a radical polymerizable substance, a film-forming polymer, and conductive particles whose outermost layer is covered with a metal having a Vickers hardness of 300 Hv or more.
  • the adhesive layer B is an insulating layer containing a curing agent that generates free radicals by heating or light, a radical polymerizable substance, and a film-forming polymer.
  • the thickness is 0.3 to 1.5 times the average particle diameter of the conductive particles contained in the adhesive layer A, and at least one of the circuit boards has a circuit pitch of 40 ⁇ m or less. Times to To provide an adhesive film for the connection.
  • the present invention also provides a circuit connecting adhesive film for electrically connecting a circuit interposed between opposing circuit boards, and the circuit connecting adhesive film has at least an adhesive layer A and an adhesive layer B.
  • the adhesive layer A is at least one selected from the group consisting of a curing agent that generates free radicals by heating or light, a radical polymerizable substance, a film-forming polymer, and Ni, a Ni alloy, and a Ni oxide.
  • An anisotropic conductive layer containing conductive particles whose outermost layer is covered with a metal containing, adhesive layer B includes a curing agent that generates free radicals by heating or light, a radical polymerizable substance, and a high film-forming property.
  • At least one circuit pin Chi is to provide an adhesive film for circuit connection, characterized in that at 40 ⁇ m or less.
  • the circuit pitch is the sum of the circuit thickness and the circuit interval.
  • the correlation between the burnt phenomenon and the adhesive film for circuit connection can be obtained by measuring the resistance value and IV characteristic of the adhesive film for circuit connection by the four-terminal method.
  • the resistance value by a four-terminal method using an FPC with a 40 ⁇ m pitch is 2 ⁇ or less, and the IV characteristic evaluation using an FPC with a 100 ⁇ m pitch is less than about 300 mA.
  • the burnt phenomenon can be suppressed if the adhesive film for circuit connection can maintain ohmic characteristics even in a large current region.
  • the circuit board having a circuit pitch of 40 ⁇ m or less is preferably a flexible board.
  • a circuit board different from the circuit board having the circuit pitch of 40 ⁇ m or less has a thin film made of indium-zinc oxide (IZO) or indium-tin oxide (ITO) formed on the circuit surface. preferable. In this case, the electrical connection between the circuits can be remarkably improved.
  • IZO indium-zinc oxide
  • ITO indium-tin oxide
  • the average particle size of the conductive particles is preferably 1.5 to 5.0 ⁇ m. In this case, it becomes easier to further suppress a short circuit between adjacent circuits.
  • the present invention also provides a first circuit board having a first circuit having a circuit pitch of 40 ⁇ m or less, and a second circuit board having a second circuit, the first circuit and the second circuit. Between the first circuit and the second circuit arranged opposite to each other, the first circuit arranged opposite to the second circuit and the second circuit arranged opposite to each other.
  • a circuit connection structure in which the first circuit and the second circuit arranged to face each other are electrically connected by heating and pressurizing the adhesive film for circuit connection of the present invention. To do.
  • connection resistance between circuit electrodes is independent of the type of circuit electrode such as an indium-tin oxide (ITO) electrode or an indium-zinc oxide (IZO) electrode.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • FIG. 1 is a schematic cross-sectional view showing an adhesive film for circuit connection according to an embodiment of the present invention.
  • An adhesive film 1 for circuit connection includes an anisotropic conductive layer 11 containing an adhesive component (insulating substance) 3a and conductive particles 5, and an insulation containing an adhesive component 3b formed on the anisotropic conductive layer 11.
  • the adhesive components 3a and 3b are composed of (a) a curing agent that generates free radicals by heating or light (hereinafter sometimes referred to as “(a) free radical generator”), (b) a radical polymerizable substance, and ( c) Contains a film-forming polymer.
  • the free radical generator is appropriately selected depending on the intended connection temperature, connection time, pot life, etc., and heating and light irradiation such as a peroxide compound (organic peroxide), an azo compound or a photoinitiator A compound that generates an active radical by at least one of these treatments is used.
  • the organic peroxide has a half-life temperature of 40 ° C or higher and a half-life temperature of 1 minute is 180 ° C or lower. More preferably, the temperature of the half-life of 10 hours is 60 ° C. or higher, and the temperature of the half-life of 1 minute is 170 ° C. or lower.
  • the organic peroxide preferably has a chlorine ion or organic acid content of 5000 ppm or less in order to prevent corrosion of the circuit electrode of the circuit member, and further generates less organic acid after thermal decomposition. Is more preferable.
  • the organic peroxide can be selected from, for example, diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide and the like.
  • peroxyesters dialkyl peroxides, and hydroperoxides from the viewpoint of suppressing corrosion of connection terminals of circuit members, and from the viewpoint of obtaining high reactivity, it is selected from peroxyesters. More preferably.
  • diacyl peroxide examples include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide , Benzoylperoxytoluene, and benzoyl peroxide.
  • peroxydicarbonate examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, Examples include di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, and di (3-methyl-3-methoxybutylperoxy) dicarbonate.
  • peroxyesters examples include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynoedecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethyl Hexanonate, t-butyl peroxyisobutyrate, 1,1-bis (t-butylperoxy) cycle Hexane
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis ( t-Butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane.
  • dialkyl peroxide examples include ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t -Butylcumyl peroxide.
  • hydroperoxide examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • Examples of the azo compound include 2,2′-azobis-2,4-dimethylvaleronitrile, 1,1′-azobis (1-acetoxy-1-phenylethane), and 2,2′-azobisisobutyronitrile. 2,2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyronitrile, 4,4′-azobis (4-cyanovaleric acid) and 1,1′-azobis ( 1-cyclohexanecarbonitrile).
  • Photoinitiators include, for example, benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ether, benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone, ketones and derivatives thereof such as benzophenone and acetophenone, thioxanthones, and bisimidazoles Are preferably used.
  • an optimal photoinitiator is selected according to the wavelength of the light source used, desired curing characteristics, and the like. Moreover, you may use together sensitizers, such as amines, a sulfur compound, and a phosphorus compound, with a photoinitiator in arbitrary ratios as needed.
  • Sensitizers include aliphatic amines, aromatic amines, cyclic amines such as piperidine having a nitrogen-containing cyclic structure, o-tolylthiourea, sodium diethyldithiophosphate, soluble sulfinic acid salts, N, N′-dimethyl -P-aminobenzonitrile, N, N'-diethyl-p-aminobenzonitrile, N, N'-di ( ⁇ -cyanoethyl) -p-aminobenzonitrile, N, N'-di ( ⁇ -chloroethyl)- P-aminobenzonitrile, tri-n-butylphosphine and the like are preferable.
  • sensitizers propiophenone, acetophenone, xanthone, 4-methylacetophenone, benzophenone, fluorene, triphenylene, biphenyl, thioxanthone, anthraquinone, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bis (diethylamino) benzophenone, phenanthrene, naphthalene, 4-phenylacetophenone, 4-phenylbenzophenone, 1-iodonaphthalene, 2-iodonaphthalene, acenaphthene, 2-naphthonitrile, 1-naphthonitrile, chrysene, benzyl, fluoranthene, pyrene, Non-dye sensitizers such as 1,2-benzoanthracene, acridine, anthracene, perylene, tetracene, 2-methoxynaphthal
  • free radical generators can be used singly or in combination of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like.
  • the content of the free radical generator is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the entire adhesive component.
  • the radically polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates (including corresponding methacrylates, the same shall apply hereinafter) and maleimide compounds.
  • acrylate examples include urethane acrylate, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylol methane tetraacrylate, 2- Hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate , Tricyclodecanyl acrylate, bis (acryloxyethyl) isocyanurate, ⁇ -caprolactone modified tris (acryloxyethyl) Isocyanurate, tris (acryloyloxyethyl) isocyanurate.
  • maleimide compound those containing at least two maleimide groups in the molecule are preferable.
  • the radically polymerizable substance is preferably an acrylate, more preferably a urethane acrylate or a urethane methacrylate, from the viewpoint of improving adhesiveness.
  • a radically polymerizable substance can be used individually by 1 type or in combination of 2 or more types.
  • the adhesive components 3a and 3b preferably contain at least a radically polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa ⁇ s, and more preferably contain a radically polymerizable substance having a viscosity of 100,000 to 500,000 mPa ⁇ s. preferable.
  • the viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.
  • the content of the radical polymerizable substance is preferably 20 to 70 parts by mass, more preferably 30 to 65 parts by mass with respect to 100 parts by mass of the adhesive component.
  • the radical polymerizable substance is further crosslinked with the organic peroxide in order to improve heat resistance, and further includes a radical polymerizable substance having a Tg of 100 ° C. or more alone. It is particularly preferable to contain it.
  • a radical polymerizable substance a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring can be used.
  • radically polymerizable substances having a tricyclodecanyl group or a triazine ring are preferably used.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as appropriate.
  • the radical polymerizable substance further contains a radical polymerizable substance having a phosphate ester structure in addition to the radical polymerizable substance.
  • a radically polymerizable substance having a phosphoric ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyl (meth) acrylate. Specific examples include 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the radical polymerizable substance having a phosphate ester structure is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the adhesive component from the viewpoint of improving the adhesive strength with the surface of an inorganic substance such as a metal. More preferred is 5 to 5 parts by mass.
  • the film-forming polymer polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, epoxy resin, poly Isocyanate resins, phenoxy resins, polyimide resins, polyester urethane resins and the like are used.
  • a resin having a functional group such as a hydroxyl group is more preferable.
  • a resin having a functional group such as a hydroxyl group is more preferable.
  • denatured the said film forming polymer with the radically polymerizable functional group can also be used.
  • the weight average molecular weight of the film-forming polymer is preferably 10,000 or more. Further, the weight average molecular weight is preferably less than 1,000,000 because the mixing property tends to decrease when it becomes 1,000,000 or more.
  • the content of the film-forming polymer is preferably 30 to 80 parts by mass, more preferably 35 to 70 parts by mass with respect to 100 parts by mass of the adhesive component.
  • the adhesive components 3a and 3b may contain, for example, (d) a thermosetting resin and (e) the curing agent.
  • thermosetting resin an epoxy resin is preferable.
  • the epoxy resin is used alone or in combination of two or more of various epoxy compounds having two or more glycidyl groups in one molecule.
  • Epoxy resins include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F and / or bisphenol AD, skeletons containing epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and naphthalene rings.
  • Naphthalene type epoxy resin having glycidyl amine type epoxy resin, glycidyl ether type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin and the like.
  • Epoxy resins can be used alone or in combination of two or more. Epoxy resin, impurity ions (Na +, Cl -, etc.) or hydrolyzable chlorine and the like using a high-purity product was reduced to 300ppm or less preferred in order to prevent electron migration.
  • the curing agent is preferably a latent curing agent from the viewpoint of obtaining a longer pot life.
  • the thermosetting resin is an epoxy resin
  • examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. These can be used individually by 1 type or in mixture of 2 or more types.
  • the latent curing agent may be mixed with a decomposition accelerator, an inhibitor and the like.
  • the latent curing agent is preferably microencapsulated by coating with a polyurethane-based or polyester-based polymeric substance or the like because the pot life is extended.
  • the weight average molecular weight in this specification is calculated
  • GPC conditions Equipment used: Hitachi L-6000 type (manufactured by Hitachi, Ltd., trade name) Detector: L-3300RI (trade name, manufactured by Hitachi, Ltd.) Column: Gel pack GL-R420 + Gel pack GL-R430 + Gel pack GL-R440 (3 in total) (trade name, manufactured by Hitachi Chemical Co., Ltd.)
  • the types and blending amounts of the above-described components in the adhesive components 3a and 3b may be the same or different. Moreover, it is preferable that the kind and compounding quantity of the above-mentioned component are adjusted so that the fluidity
  • the adhesive film 1 for circuit connection of this embodiment is an outermost layer made of a metal having a Vickers hardness of 300 Hv or more, preferably a metal containing at least one selected from the group consisting of Ni, Ni alloy and Ni oxide as the conductive particles 5. Use the one covered with.
  • conductive particles 5a to 5c shown in FIGS. 2 (a) to (c) can be used.
  • FIG. 2 is a schematic cross-sectional view showing conductive particles contained in an adhesive film for circuit connection according to one embodiment of the present invention.
  • the conductive particle 5 a has a nucleus 21 and a metal layer (outermost layer) 22 formed on the surface of the nucleus 21.
  • the core body 21 has a core portion 21a and a protrusion 21b formed on the surface of the core portion 21a.
  • the metal layer 22 has a plurality of protrusions 14 on the surface. The metal layer 22 covers the core body 21 and protrudes at a position corresponding to the protruding portion 21 b, and the protruding portion is the protruding portion 14.
  • the core 21 is preferably made of an organic polymer compound.
  • the core 21 is lower in cost than the core made of metal and has a wide elastic deformation range with respect to the coefficient of thermal expansion and dimensional change at the time of pressure bonding, it is preferably used for circuit connection.
  • Examples of the organic polymer compound constituting the core portion 21a of the core body 21 include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or a copolymer thereof. May be.
  • the organic polymer compound constituting the protruding portion 21b of the core body 21 may be the same as or different from the organic polymer compound constituting the core portion 21a.
  • the average particle size of the core 21a of the core 21 is preferably 1.5 to 5.0 ⁇ m, more preferably 2.0 to 4.5 ⁇ m, and 2.5 to 4.0 ⁇ m. Is more preferable.
  • the average particle size is less than 1 ⁇ m, secondary aggregation of the particles occurs, and the insulation with an adjacent circuit tends to be insufficient.
  • the average particle size exceeds 5 ⁇ m, the insulation from adjacent circuits tends to be insufficient due to the size.
  • the core body 21 can be formed by adsorbing a plurality of protrusions 21b having a smaller diameter than the core 21a on the surface of the core 21a.
  • the core 21a and the protrusion 21b or both particles may be diluted with various coupling agents such as silane, aluminum, titanium, and an adhesive. After surface treatment, the method of mixing and adhering both is mentioned.
  • the average particle diameter of the protrusions 21b is preferably 50 to 500 nm.
  • the metal layer 22 includes a metal having a Vickers hardness of 300 Hv or more such as Ni, Pd, or Rh, preferably a metal including at least one selected from the group consisting of Ni, Ni alloys, and Ni oxides.
  • Ni include at least one selected from the group consisting of pure Ni, Ni alloy, and Ni oxide. Among these, pure Ni and pure Pd are preferable.
  • the Ni alloy include Ni—B, Ni—W, Ni—B, Ni—W—Co, Ni—Fe, and Ni—Cr.
  • the Ni oxide include NiO.
  • the metal layer 22 may be composed of a single metal layer or may be composed of a plurality of metal layers.
  • the Vickers hardness can be measured, for example, by using “Mairoharadness Tester MHT-4 (trade name)” manufactured by Japan High-Tech, under the conditions of a load of 20 kgf, a load speed of 20 kgf / second, and a holding time of 5 seconds. .
  • the metal layer 22 can be formed by plating these metals on the core 21 using an electroless plating method.
  • the electroless plating method is roughly divided into a batch method and a continuous dropping method, and the metal layer 22 can be formed by using any method.
  • the thickness of the metal layer 22 is preferably 50 to 170 nm, and more preferably 50 to 150 nm. By setting the thickness of the metal layer 22 in such a range, the connection resistance between the circuit electrodes 32 and 42 can be further reduced. If the thickness of the metal layer 22 is less than 50 nm, plating defects tend to occur, and if it exceeds 170 nm, condensation occurs between the conductive particles and a short circuit tends to occur between adjacent circuit electrodes.
  • the core 21 may be partially exposed in the conductive particles 5a.
  • the coverage of the metal layer 22 with respect to the surface area of the core 21 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. preferable.
  • the height (H) of the protrusions 14 of the conductive particles 5a is preferably 50 to 500 nm, and more preferably 75 to 300 nm. If the height (H) of the protrusion 14 is less than 50 nm, the connection resistance tends to increase after the high-temperature and high-humidity treatment. If the height (H) exceeds 500 nm, the contact area between the conductive particles and the circuit electrode becomes small, so Tend to be higher.
  • the distance (S) between the adjacent protrusions 14 is preferably 1000 nm or less, and more preferably 500 nm or less. Moreover, the distance (S) between the adjacent protrusions 14 is sufficient for the conductive particles 5a and the circuit electrodes 32 and 42, which will be described later, not to enter the cured bodies 4a and 4b of the adhesive components 3a and 3b. In order to make 5a and circuit electrodes 32 and 42 contact, it is preferred that it is at least 50 nm or more. In addition, the height (H) of the protrusion part 14 and the distance (S) between the adjacent protrusion parts 14 can be measured with an electron microscope.
  • the conductive particles 5 may be conductive particles 5b in which the core body 21 is composed only of the core portion 21a.
  • the protrusion 21b may not be provided in the core body 21 shown in FIG.
  • the conductive particles 5b shown in FIG. 2B can be obtained by metal plating the surface of the core portion 21a and forming the metal layer 22 having the protrusions 14 on the surface of the core portion 21a.
  • the protrusion 14 can be formed by changing the plating conditions in the middle of metal plating and partially changing the thickness of the metal layer 22.
  • the protrusion 14 can be formed by adding a plating solution having a higher concentration than the plating solution used first in the course of the plating reaction and making the concentration of the plating solution non-uniform.
  • the conductive particle 5 may be a conductive particle 5c having a core body 21 and a metal layer (outermost layer) 22 formed on the surface of the core portion 21a. .
  • the conductive particle 5 c is different from the conductive particle 5 a in that it does not have the protrusion 14.
  • the conductive particles 5 may be those in which insulating particles such as non-conductive glass, ceramic, and plastic are coated with a metal layer 22 containing Ni or the like.
  • the metal layer 22 contains Ni and the core 21 is plastic, or when the conductive particles 5 are hot-melt metal particles, the metal layer 22 is deformable by heating and pressurization, and the conductive particles 5 and the electrodes are connected at the time of connection. This is preferable because the contact area is increased and the connection reliability is improved.
  • the content of the conductive particles 5 is preferably 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive component in the anisotropic conductive layer, and is appropriately adjusted depending on the application. Further, the content of the conductive particles 5 is 0.1 to 10 volumes with respect to 100 parts by volume of the adhesive component in the anisotropic conductive layer from the viewpoint of more sufficiently suppressing short circuits between adjacent circuits due to the conductive particles 5. Part is more preferred.
  • the 10% compression modulus (K value) of the conductive particles 5 is preferably 100 to 1000 kgf / mm 2 .
  • the 10% compression modulus (K value) refers to the modulus of elasticity when the conductive particles 5 are 10% compressed and deformed, and can be measured by, for example, an H-100 microhardness meter manufactured by Fisher Instruments Inc. it can.
  • the average particle diameter of the conductive particles 5 is preferably 1.5 to 5.0 ⁇ m from the viewpoint of further easily suppressing a short circuit between adjacent electrodes by making it lower than the height of the circuit electrode to be connected, and 2.0 to 4. 5 ⁇ m is more preferable, and 2.5 to 4.0 ⁇ m is still more preferable. Note that the “average particle diameter” of the conductive particles 5a and 5b does not consider the height (H) of the protrusions 14, but considers the portion of the core 21 and the metal layer 22 where the protrusions 14 are not formed. Mean the particle size calculated as above.
  • the average particle diameter of the conductive particles 5 can be measured as follows. 50 particles are arbitrarily selected from the particle image of the conductive particles magnified 3000 times with a differential scanning electron microscope (SEM: for example, S800, manufactured by HITACHI). Using the enlarged particle image, the maximum diameter and the minimum diameter are measured for each of the selected plurality of particles. The square root of the product of the maximum diameter and the minimum diameter of each particle is defined as the particle diameter of the particle. The particle diameter of each of 50 arbitrarily selected conductive particles is measured as described above, and the value obtained by dividing the sum of the particle diameters by the measured number of particles is taken as the average particle diameter.
  • the adhesive film for circuit connection 1 (anisotropic conductive layer 11 and insulating layer 12) of this embodiment is composed of rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropes. You may contain a tropic agent, a coupling agent, a phenol resin, a melamine resin, isocyanates, etc.
  • the average particle diameter of the particles is not more than twice the average particle diameter of the conductive particles 5 to be blended, and the storage elastic modulus at room temperature (25 ° C.) is the conductive particles 5 and the adhesive components 3a and 3b.
  • the storage elastic modulus at room temperature 25 ° C.
  • Those having a storage elastic modulus of 1/2 or less at room temperature are preferred.
  • the material of the rubber fine particles is silicone, acrylic emulsion, SBR, NBR, or polybutadiene rubber, it is preferable to use one kind alone or a mixture of two or more kinds.
  • These three-dimensionally crosslinked rubber fine particles have excellent solvent resistance and are easily dispersed in the adhesive components 3a and 3b.
  • the maximum diameter of the filler is preferably less than the average particle diameter of the conductive particles 5a.
  • the content of the filler is preferably in the range of 5 to 60% by volume with respect to the entire circuit connecting adhesive film. When the content exceeds 60% by volume, the effect of improving reliability tends to be saturated.
  • a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable from the viewpoint of improving adhesiveness.
  • the adhesive film 1 for circuit connection is one in which the adhesive melts and flows at the time of connection and the circuit electrodes facing each other are connected and then cured to maintain the connection.
  • the fluidity of the adhesive is an important factor. It is.
  • an adhesive film for circuit connection 1 having a thickness of 35 ⁇ m and a thickness of 5 mm ⁇ 5 mm is sandwiched between a glass plate having a thickness of 0.7 mm and 15 mm ⁇ 15 mm, and 10 seconds
  • the value of the fluidity (B) / (A) expressed by using the area (A) and the area (B) after heating and pressing is preferably 1.3 to 3.0, 1.5 More preferably, it is ⁇ 2.5.
  • (B) / (A) is less than 1.3, the fluidity is poor and there is a tendency that good connection cannot be obtained. When it exceeds 3.0, bubbles tend to be generated and the reliability tends to be poor.
  • the elastic modulus at 40 ° C. after curing of the circuit connecting adhesive film 1 of the present embodiment is preferably 100 to 3000 MPa, and more preferably 500 to 2000 MPa.
  • the anisotropic conductive layer 11 has a thickness of 0.3 to 1.5 times the average particle size of the conductive particles 5, preferably 0.7 to 1.3 times. is there.
  • the thickness of the circuit connecting film 1 is preferably 6 to 20 ⁇ m, more preferably 8 to 18 ⁇ m, and 8 to 14 ⁇ m. Is more preferable. That is, the thickness of the insulating layer 12 is preferably (6-T A ) to (20-T A ) ⁇ m, where T A ( ⁇ m) is the thickness of the anisotropic conductive layer 11, and (8-T A ) It is more preferably from (18-T A ) ⁇ m, and further preferably from (8-T A ) to (14-T A ) ⁇ m. When the thickness of the insulating layer 12 is in the above range, the connection between the high-definition circuits can be performed more reliably and the burnt phenomenon can be further suppressed.
  • the film for circuit connection 1 can be produced, for example, by laminating the anisotropic conductive layer 11 and the insulating layer 12 using a laminator.
  • anisotropic conductive layer 11 and the insulating layer 12 prepare the liquid mixture which melt
  • the thickness of the anisotropic conductive layer 11 and the insulating layer 12 can be appropriately changed by controlling the coater gap of the coating apparatus. Even when the coater gap is wide, the thickness of the layer can be reduced by reducing the solid content concentration of the mixed liquid to be applied.
  • the anisotropic conductive layer 11 may be prepared by applying a mixed solution containing the adhesive component 3a and the conductive particles 5, but the mixed solution containing the adhesive component 3a is applied to the adhesive component 3a. After forming a layer to be formed, it can be produced by spreading and embedding conductive particles on the surface of the layer. As the latter method, for example, the method described in JP-A-10-302926 can be used.
  • FIG. 3 is a schematic cross-sectional view showing a circuit connection structure according to an embodiment of the present invention.
  • the circuit connection structure 100 of the present embodiment is interposed between the circuit member (first circuit member) 30 and the circuit member (second circuit member) 40 facing each other, and the circuit member 30 and the circuit member 40. And a circuit connecting member 10 for connecting them.
  • the circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31 a of the circuit board 31.
  • the circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41 a of the circuit board 41.
  • the material of the circuit boards 31 and 41 is not particularly limited, but is usually an organic insulating material, glass or silicon.
  • Examples of the material of the circuit electrodes 32 and 42 include Au, Ag, Sn, Pt group metals, indium-tin oxide (ITO), indium-zinc oxide (IZO), Al, and Cr. At least one of the circuit electrodes 32 and 42 preferably contains at least one of indium-tin oxide (ITO) and indium-zinc oxide (IZO) from the viewpoint of significantly improving electrical connection. Further, the circuit electrodes 32 and 42 may be entirely made of the above material, or only the outermost layer may be made of the above material.
  • the circuit pitch of at least one of the circuit members 30 and 40, preferably the flexible substrate, is 40 ⁇ m or less. Further, the lower limit of the circuit pitch is not particularly limited, but can be about 20 ⁇ m, for example.
  • the surfaces of the circuit electrodes 32 and 42 are preferably flat.
  • “the surface of the circuit electrode is flat” means that the unevenness of the surface of the circuit electrode is 20 nm or less.
  • the conductive particles 5 When the conductive particles 5 have protrusions, if the thickness of the circuit electrodes 32 and 42 is less than 50 nm, the conductive particles 5 are electrically conductive when the circuit connecting adhesive film 1 is pressed between the circuit members 30 and 40. The protrusions on the surface side of the particles may pass through the circuit electrodes 32 and 42 and come into contact with the circuit boards 31 and 41. Therefore, by setting the thickness of the circuit electrodes 32 and 42 to 50 nm or more, the contact area between the circuit electrodes 32 and 42 and the conductive particles 5 is increased, and the connection resistance is further decreased.
  • the thickness of the circuit electrodes 32 and 42 is preferably 1000 nm or less, and more preferably 500 nm or less from the viewpoint of manufacturing cost.
  • an insulating layer may be further provided between the circuit electrode 32 and the circuit board 31.
  • an insulating layer is further provided between the circuit electrode 42 and the circuit board 41. May be.
  • the material of the insulating layer is not particularly limited as long as it is made of an insulating material, but is usually an organic insulating material, silicon dioxide or silicon nitride.
  • first circuit member 30 and the second circuit member 40 include chip parts such as semiconductor chips, resistor chips, capacitor chips, and substrates such as printed boards. These circuit members 30 and 40 are usually provided with a large number of circuit electrodes (connection terminals) 32 and 42 (in some cases, the number may be one).
  • the circuit connecting member 10 is obtained by curing the circuit connecting adhesive film 1, and includes the cured bodies 4a and 4b obtained by curing the adhesive components 3a and 3b, and the conductive particles 5. Including.
  • the facing circuit electrode 32 and the circuit electrode 42 are electrically connected via the conductive particles 5. That is, the conductive particles 5 are electrically connected by directly contacting both the circuit electrodes 32 and 42.
  • the conductive particle 5 has a plurality of protrusions
  • the contact area between the protrusions of the conductive particles and the circuit electrodes 32 and 42 can be further increased, and the connection resistance can be further reduced.
  • the adhesive film 1 for circuit connection is also useful as an adhesive for bonding an IC chip and a substrate or bonding electric circuits to each other.
  • the first circuit electrode and the second circuit electrode are opposed to the first circuit member having the first circuit electrode (connection terminal) and the second circuit member having the second circuit electrode (connection terminal). In this state, the first circuit electrode and the second circuit electrode are heated and pressed by interposing the circuit connecting adhesive film 1 of the present embodiment between the first circuit electrode and the second circuit electrode.
  • the circuit connection structure 100 can be configured by electrically connecting the circuit electrodes.
  • the adhesive film for circuit connection 1 having heat or light curability is placed on one electrode circuit containing a metal whose surface is selected from gold, silver, tin and white metal. After the formation, the other circuit electrodes are aligned, heated, and pressed to connect the circuit electrodes.
  • Examples of the circuit connection structure 100 include chip parts such as a semiconductor chip, a resistor chip, and a capacitor chip, and a substrate such as a printed board. These circuit connection structures 100 are usually provided with a large number of circuit electrodes (connection terminals) (may be a single terminal in some cases), and at least one set of the circuit connection structures 100 is attached to the circuit connection structures 100. At least a part of the provided connection terminals is arranged to face each other, an adhesive is interposed between the arranged circuit electrodes, and the circuit electrodes arranged to face each other by heating and pressing are electrically connected to form a circuit board. By heating and pressurizing at least one set of the circuit connection structure 100, the circuit electrodes arranged to face each other can be electrically connected via the conductive particles of the adhesive film for circuit connection.
  • connection terminals may be a single terminal in some cases
  • FIG. 4 is a process cross-sectional view schematically showing a method for manufacturing a circuit connection structure according to an embodiment of the present invention.
  • FIG. 4A shows a state before the circuit members are connected to each other
  • FIG. 4B shows a state when the circuit members are connected to each other
  • FIG. The circuit connection structure after connecting is shown.
  • an LCD panel 73 having a circuit electrode 72 and a liquid crystal display 74 on the main surface is prepared.
  • the adhesive film 61 for circuit connection is adhered and placed on the circuit electrode 72.
  • the circuit board 75 provided with the circuit electrode 76 such as COF is aligned so that the circuit electrode 72 and the circuit electrode 76 face each other through the circuit connecting adhesive film 61.
  • the circuit electrode 72 and the circuit electrode 76 have, for example, a structure in which a plurality of electrodes are arranged.
  • the circuit electrode 72 and the circuit electrode 76 are opposed to each other through the circuit connecting adhesive film 61 while aligning the LCD panel 73 and the circuit board 75.
  • the circuit board 75 is placed on the adhesive film 61 for circuit connection. Thereby, the circuit electrode 72 and the circuit electrode 76 are connected by the conductive particles 5 in the circuit connecting adhesive film 61.
  • the circuit board 75 is pressed from the surface opposite to the surface on which the circuit electrode 76 is arranged (in the direction of arrow A in FIG. 4B), and the circuit connecting adhesive film 61 is heated. Thereby, the adhesive film 61 for circuit connection hardens
  • the method of a hardening process can employ
  • Example 1 [Synthesis of urethane acrylate] While stirring, 400 parts by weight of polycaprolactone diol having a weight average molecular weight of 800, 131 parts by weight of 2-hydroxypropyl acrylate, 0.5 parts by weight of dibutyltin dilaurate as a catalyst, and 1.0 part by weight of hydroquinone monomethyl ether as a polymerization inhibitor were stirred. Heat to °C and mix. Next, 222 parts by mass of isophorone diisocyanate was dropped, and the temperature was raised to 80 ° C. while stirring to carry out a urethanization reaction. After confirming that the reaction rate of the isocyanate group was 99% or more, the reaction temperature was lowered to obtain urethane acrylate.
  • polyester urethane resin Preparation of polyester urethane resin
  • the dicarboxylic acid was terephthalic acid
  • the diol was propylene glycol
  • the isocyanate was 4,4'-diphenylmethane diisocyanate
  • the molar ratio of terephthalic acid / propylene glycol / 4,4'-diphenylmethane diisocyanate was 1.0 / 1.3 / 0.
  • Two types of polyester urethane resins A and B to be 25 and 1.0 / 2.0 / 0.25 were prepared.
  • the polyester urethane resin was dissolved in methyl ethyl ketone so as to be 20% by mass. Using a methyl ethyl ketone solution of the above-mentioned polyester urethane resin, it was applied to a PET film having a thickness of 80 [mu] m on one surface (silicone treatment) using a coating apparatus. Furthermore, a film having a thickness of 35 ⁇ m was produced by hot air drying at 70 ° C. for 10 minutes. The temperature dependence of the elastic modulus was measured at a tensile load of 5 g and a frequency of 10 Hz using a wide area dynamic viscoelasticity measuring device (Rheometric Scientific, trade name: RSAII). The glass transition temperature of the polyester urethane resin obtained from the measurement results was 105 ° C.
  • 25 parts by mass of the urethane acrylate as a radical polymerizable substance 20 parts by mass of isocyanurate type acrylate (product name: M-325, manufactured by Toagosei Co., Ltd.), 2-methacryloyloxyethyl acid phosphate (product name: P-2M 1 part by mass of Kyoeisha Chemical Co., Ltd.) and 4 parts by mass of benzoyl peroxide (product name: Nyper BMT-K40, manufactured by NOF Corporation) as a free radical generator.
  • isocyanurate type acrylate product name: M-325, manufactured by Toagosei Co., Ltd.
  • 2-methacryloyloxyethyl acid phosphate product name: P-2M 1 part by mass of Kyoeisha Chemical Co., Ltd.
  • benzoyl peroxide product name: Nyper BMT-K40, manufactured by NOF Corporation
  • conductive particles (average particle diameter: 4 ⁇ m, hereinafter sometimes referred to as “Ni-coated particles”) covered with an outermost layer containing Ni whose core is polystyrene and having protrusions on the surface of the outermost layer. 3% by volume was mixed and dispersed in the binder resin. Then, the mixed solution was applied using a coating apparatus to the surface of the PET film having a thickness of 50 ⁇ m that had been subjected to surface treatment (silicone treatment) on one side, and dried by hot air at 70 ° C. for 10 minutes. An anisotropic conductive adhesive layer A (width 15 cm, length 70 m) having a thickness of 4 ⁇ m was obtained.
  • 25 parts by mass of the urethane acrylate as a radical polymerizable substance 20 parts by mass of isocyanurate type acrylate (product name: M-325, manufactured by Toagosei Co., Ltd.), 2-methacryloyloxyethyl acid phosphate (product name: P-2M Polyester resin B as a film-forming polymer, 1 part by mass of Kyoeisha Chemical Co., Ltd.) and 4 parts by mass of benzoyl peroxide (product name: Nyper BMT-K40, manufactured by NOF Corporation) as a free radical generator was mixed with 55 parts by mass of a 20% methyl ethyl ketone solution and stirred to obtain a binder resin.
  • isocyanurate type acrylate product name: M-325, manufactured by Toagosei Co., Ltd.
  • 2-methacryloyloxyethyl acid phosphate product name: P-2M Polyester resin B as a film-forming polymer, 1 part by mass of Kyo
  • the binder resin was applied using a coating apparatus to the surface of the PET film having a thickness of 50 ⁇ m that was surface-treated on one side (silicone treatment), and dried with hot air at 70 ° C. for 10 minutes.
  • An adhesive layer B (width 15 cm, length 70 m) having a thickness of 10 ⁇ m was obtained.
  • the obtained adhesive layers A and B are overlapped in the direction in which the adhesive faces each other, and a laminator (Dupont RISTON, model: HRL, roll pressure is spring load only, roll temperature 40 ° C., speed 50 cm / min) is used.
  • a laminator Duont RISTON, model: HRL, roll pressure is spring load only, roll temperature 40 ° C., speed 50 cm / min
  • the anisotropic conductive adhesive layer A side PET was peeled off to obtain an anisotropic conductive adhesive having a thickness of 14 ⁇ m (width 15 cm, length 60 m).
  • the obtained anisotropic conductive adhesive was cut into a width of 1.5 mm, and wound on a side surface (thickness 1.7 mm) of a plastic reel having an inner diameter of 40 mm and an outer diameter of 48 mm with the adhesive film surface facing inward for 50 m.
  • An adhesive film for circuit connection was obtained.
  • Example 2 An adhesive film for circuit connection was produced in the same manner as in Example 1 except that the K value and particle diameter of the conductive particles were changed as shown in Tables 1 and 2.
  • Example 5 An adhesive film for circuit connection was produced in the same manner as in Example 4 except that the thicknesses of the adhesive layers A and B were changed as shown in Table 2.
  • circuit connection The adhesive surface of the adhesive film for circuit connection (width 1.5 mm, length 3 cm) obtained in the examples and comparative examples was heated and pressed at 70 ° C. and 1 MPa for 2 seconds to provide a 0.7 mm thick Cr / indium. -Transferred onto zinc oxide (IZO) coated glass substrate and peeled off PET film. Next, a flexible circuit board (FPC) having 500 tin-plated copper circuits with a pitch of 40 ⁇ m and a thickness of 8 ⁇ m was placed on the transferred adhesive and temporarily fixed by pressing at 24 ° C. and 0.5 MPa for 1 second.
  • FPC flexible circuit board
  • a glass substrate on which this FPC is temporarily fixed by a circuit connection film is placed in a main pressure bonding apparatus, and a Teflon (registered trademark) sheet having a thickness of 150 ⁇ m is used as a cushion material.
  • a heat tool is used at 180 ° C. and 3 MPa for 6 seconds. Heat and pressure were applied over a width of 1.5 mm to obtain a connection body.
  • Conductive particle capture rate (number of conductive particles on electrode [number]) ⁇ 100 / ⁇ (number of conductive particles per unit area in adhesive [number / mm 2 ]) ⁇ (connection area [mm 2 ] per electrode) ⁇

Abstract

少なくとも接着剤層A及び接着剤層Bを有し、接着剤層Aは、所定の接着剤成分(3a)及び導電粒子(5)を含有する異方導電層(11)であり、接着剤層Bは、所定の接着剤成分(3a)を含有する絶縁層(12)であり、接着剤層Aの厚みは、該接着剤層Aに含有される導電粒子の平均粒径の0.3~1.5倍であり、前記回路基板のうち、少なくとも一方の回路ピッチが40μm以下であることを特徴とする回路接続用接着フィルム。

Description

回路接続用接着フィルム及び回路接続構造体
 本発明は、回路接続用接着フィルム及び回路接続構造体に関するものである。
 従来、相対向する回路を加熱、加圧し加圧方向の電極間を電気的に接続する回路接続材料として、異方導電性接着フィルムが知られており、例えば、エポキシ系接着剤やアクリル系接着剤に導電粒子を分散させた異方導電性接着フィルムが知られている。かかる異方導電性接着フィルムは、主に液晶ディスプレイ(以下、「LCD」とする。)を駆動させる半導体が搭載されたTCP(Tape Carrier Package)又はCOF(Chip On Flex)とLCDパネルとの電気的接続、あるいは、TCP又はCOFとプリント配線板との電気的接続に広く使用されている。
 また、最近では、半導体をフェイスダウンで直接LCDパネルやプリント配線板に実装する場合でも、従来のワイヤーボンディング法ではなく、薄型化や狭ピッチ接続に有利なフリップチップ実装が採用されている。このフリップチップ実装においても、異方導電性接着フィルムが回路接続材料として用いられている(例えば、特許文献1~4参照)。
 ところで、近年、LCDモジュールのCOF化やファインピッチ化に伴い、回路接続材料を用いた接続の際に、隣り合う回路電極間に短絡が発生するという問題が生じている。この対応策として、接着剤成分中に絶縁粒子を分散させて短絡を防止する技術が知られている(例えば、特許文献5~9参照)。
 絶縁粒子を接着剤成分中に分散させる場合、回路接続材料の接着力の低下や、基板と回路接続部との界面での剥離が問題となる傾向がある。このため、基板が絶縁性有機物又はガラスからなる配線部材や、表面の少なくとも一部が窒化シリコン、シリコーン樹脂、ポリイミド樹脂の少なくとも一つからなる配線部材等に接着するために、回路接続材料にシリコーン粒子を含有させて接着力を向上させる方法(例えば、特許文献10参照)や、接着後の熱膨張率差に基づく内部応力を低減させるため、回路接続材料にゴム粒子を分散させる方法が知られている(例えば、特許文献11参照)。
 更に、回路電極間の短絡を防止する手段として、絶縁性を有する被膜で表面を被覆した導電粒子を回路接続材料に分散させる方法が知られている(例えば、特許文献12,13参照)。
特開昭59-120436号公報 特開昭60-191228号公報 特開平1-251787号公報 特開平7-90237号公報 特開昭51-20941号公報 特開平3-29207号公報 特開平4-174980号公報 特許第3048197号公報 特許第3477367号公報 国際公開第01/014484号パンフレット 特開2001-323249号公報 特許第2794009号公報 特開2001-195921号公報
 近年、コストを低下させる観点から、ガラス基板の回路電極としてインジウム-錫酸化物(ITO:Tin doped Indium Oxide)電極に替えてインジウム-亜鉛酸化物(IZO:Zinc doped Indium Oxide)電極が使用されはじめている。インジウム-亜鉛酸化物電極に対しては、接続抵抗を低減する観点から、NiあるいはNi合金やNi酸化物等を含む最外層で覆われた導電粒子を回路接続材料に分散させることが検討されている。
 しかしながら、これら従来の回路接続材料構成では、基板となるガラスのガラスエッジ部に形成された有機膜の突起により、流動した導電粒子がせき止められて凝集することによりショートが発生するという問題もある。この対応策として電極上での導電粒子の捕捉効率を向上させ、余分な導電粒子を削減することで導電粒子の凝集によるショートを防止することも求められている。
 ところで、TFT-LCDにおいては、前述の薄膜電極の下に下地としてMoやAl等の金属回路が形成されていることが一般的であるが、コスト削減を目的としてドライバーIC等の部品点数の低減のため、薄膜回路の引き回し方も非常に複雑になっており、特にインジウム-亜鉛酸化物(IZO)膜を用いたパネルでは回路抵抗が高くなるためバーント現象と呼ばれる電極焼けを起こすことが問題となっている。
 そこで、従来の回路接続材料に比べ、インジウム-錫酸化物(ITO)電極やインジウム-亜鉛酸化物(IZO)電極等の回路電極の種類に依存することなく回路電極間の接続抵抗を低減することが可能であると共に、回路ピッチが40μmよりも微小な回路においてもバーント現象が起こり難い回路接続材料(回路接続用接着フィルム)、及びそれを用いた回路接続構造体を提供することを目的とする。
 本発明は、対向する回路基板間に介在して回路を電気的に接続するための回路接続用接着フィルムであって、回路接続用接着フィルムは少なくとも接着剤層A及び接着剤層Bを有し、接着剤層Aは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、フィルム形成性高分子、並びに、ビッカース硬度が300Hv以上の金属で最外層が覆われた導電粒子を含有する異方導電層であり、接着剤層Bは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、及びフィルム形成性高分子を含有する絶縁層であり、接着剤層Aの厚みは、該接着剤層Aに含有される導電粒子の平均粒径の0.3~1.5倍であり、かつ回路基板のうち、少なくとも一方の回路ピッチが40μm以下であることを特徴とする回路接続用接着フィルムを提供する。
 また本発明は、対向する回路基板間に介在して回路を電気的に接続するための回路接続用接着フィルムであって、回路接続用接着フィルムは少なくとも接着剤層A及び接着剤層Bを有し、接着剤層Aは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、フィルム形成性高分子、並びに、Ni、Ni合金及びNi酸化物からなる群より選ばれる少なくとも1種を含む金属で最外層が覆われた導電粒子を含有する異方導電層であり、接着剤層Bは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、及びフィルム形成性高分子を含有する絶縁層であり、接着剤層Aの厚みは、該接着剤層Aに含有される導電粒子の平均粒径の0.3~1.5倍であり、かつ回路基板のうち、少なくとも一方の回路ピッチが40μm以下であることを特徴とする回路接続用接着フィルムを提供する。
 上記回路接続用接着フィルムによれば、回路の種類に依存することなく回路間の接続抵抗を低減することが可能であり、回路間における短絡及びバーント現象を抑制することが可能である。なお、回路ピッチとは回路の太さと回路間隔との和である。
 ここで、バーント現象と回路接続用接着フィルムとの相関関係は回路接続用接着フィルムの4端子法による抵抗値及びI-V特性を測定することで得られることが分かってきている。特にインジウム-亜鉛酸化物(IZO)回路においては、40μmピッチのFPCを用いた4端子法による抵抗値が2Ω以下、かつ、100μmピッチのFPCを用いたI-V特性評価にて300mA付近よりも大きい電流領域においてもオーミック特性が保持できる回路接続用接着フィルムであればバーント現象を抑制することが可能である。
 上記回路ピッチが40μm以下である回路基板はフレキシブル基板であると好ましい。
 上記回路ピッチが40μm以下である回路基板とは別の回路基板は、回路表面にインジウム-亜鉛酸化物(IZO)又はインジウム-錫酸化物(ITO)からなる薄膜が形成されているものであると好ましい。この場合、回路同士の電気的接続を顕著に良好にすることができる。
 上記導電粒子の平均粒径は1.5~5.0μmであると好ましい。この場合、隣接する回路間の短絡を更に抑制し易くなる。
 また本発明は、回路ピッチが40μm以下である第一の回路を有する第一の回路基板と、第二の回路を有する第二の回路基板とを、前記第一の回路と前記第二の回路とが対向するように配置し、対向配置した前記第一の回路と前記第二の回路とが対向するように配置し、対向配置した前記第一の回路と前記第二の回路との間に、上記本発明の回路接続用接着フィルムを介在させ、加熱加圧することにより、対向配置した前記第一の回路と前記第二の回路とを電気的に接続させてなる、回路接続構造体を提供する。
 本発明によれば、従来の回路接続材料に比べ、インジウム-錫酸化物(ITO)電極やインジウム-亜鉛酸化物(IZO)電極等の回路電極の種類に依存することなく回路電極間の接続抵抗を低減することが可能であると共に、回路ピッチが40μm以下である高精細回路間の接続が可能であり、かつバーント現象を抑制することができる。
本発明の一実施形態に係る回路接続用接着フィルムを示す模式断面図である。 本発明の一実施形態に係る回路接続用接着フィルムに含まれる導電粒子を示す模式断面図である。 本発明の一実施形態に係る回路接続構造体を示す模式断面図である。 本発明の一実施形態に係る回路接続構造体の製造方法を模式的に示す工程断面図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。
<回路接続用接着フィルム>
 まず、図1を参照して、本実施形態の回路接続用接着フィルム1について説明する。図1は、本発明の一実施形態に係る回路接続用接着フィルムを示す模式断面図である。回路接続用接着フィルム1は、接着剤成分(絶縁性物質)3a及び導電粒子5を含有する異方導電層11と、異方導電層11上に形成された、接着剤成分3bを含有する絶縁層12とを有する。
(接着剤成分)
 接着剤成分3a,3bは、(a)加熱又は光によって遊離ラジカルを発生する硬化剤(以下、場合により「(a)遊離ラジカル発生剤」という。)、(b)ラジカル重合性物質、及び(c)フィルム形成性高分子を含有する。
 (a)遊離ラジカル発生剤は、目的とする接続温度、接続時間、ポットライフ等により適宜選定され、過酸化化合物(有機過酸化物)、アゾ化合物又は光開始剤のような、加熱及び光照射の少なくとも一方の処理により活性ラジカルを発生する化合物が用いられる。
 有機過酸化物は、高い反応性と優れたポットライフとを両立する観点から、半減期10時間の温度が40℃以上であり、かつ、半減期1分の温度が180℃以下であることが好ましく、半減期10時間の温度が60℃以上である、かつ、半減期1分の温度が170℃以下であることがより好ましい。また、有機過酸化物は、回路部材の回路電極の腐食を防止するために、塩素イオンや有機酸の含有量が5000ppm以下であることが好ましく、更に、加熱分解後に発生する有機酸が少ないものがより好ましい。
 有機過酸化物としては、例えば、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等から選定できる。これらの中でも、回路部材の接続端子の腐食を抑える観点から、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイドから選定されることが好ましく、高い反応性が得られる観点から、パーオキシエステルから選定されることがより好ましい。
 ジアシルパーオキサイドとしては、例えば、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイドが挙げられる。
 パーオキシジカーボネートとしては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ジ(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートが挙げられる。
 パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシノエデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノネート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノネート、t-ヘキシルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテートが挙げられる。
 パーオキシケタールとしては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(t-ブチルパーオキシ)デカンが挙げられる。
 ジアルキルパーオキサイドとしては、例えば、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイドが挙げられる。
 ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドが挙げられる。
 アゾ化合物としては、例えば、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)及び1,1’-アゾビス(1-シクロヘキサンカルボニトリル)が挙げられる。
 光開始剤としては、例えば、ベンゾインエチルエーテル、イソプロピルベンゾインエーテル等のベンゾインエーテル、ベンジル、ヒドロキシシクロヘキシルフェニルケトン等のベンジルケタール、ベンゾフェノン、アセトフェノン等のケトン類及びその誘導体、チオキサントン類、並びに、ビスイミダゾール類が好適に用いられる。
 光開始剤を用いる場合、用いる光源の波長や所望の硬化特性等に応じて、最適な光開始剤が選択される。また、必要に応じて、アミン類、イオウ化合物、リン化合物等の増感剤を任意の比率で光開始剤と併用してもよい。
 増感剤としては、脂肪族アミン、芳香族アミン、含窒素環状構造を有するピペリジン等の環状アミン、o-トリルチオ尿素、ナトリウムジエチルジチオホスフェート、芳香族スルフィン酸の可溶性塩、N,N’-ジメチル-p-アミノベンゾニトリル、N,N’-ジエチル-p-アミノベンゾニトリル、N,N’-ジ(β-シアノエチル)-p-アミノベンゾニトリル、N,N’-ジ(β-クロロエチル)-p-アミノベンゾニトリル、トリ-n-ブチルホスフィン等が好ましい。また、増感剤としては、プロピオフェノン、アセトフェノン、キサントン、4-メチルアセトフェノン、ベンゾフェノン、フルオレン、トリフェニレン、ビフェニル、チオキサントン、アントラキノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、フェナントレン、ナフタレン、4-フェニルアセトフェノン、4-フェニルベンゾフェノン、1-ヨードナフタレン、2-ヨードナフタレン、アセナフテン、2-ナフトニトリル、1-ナフトニトリル、クリセン、ベンジル、フルオランテン、ピレン、1,2-ベンゾアントラセン、アクリジン、アントラセン、ペリレン、テトラセン、2-メトキシナフタレン等の非色素系増感剤、チオニン、メチレンブルー、ルミフラビン、リボフラビン、ルミクロム、クマリン、ソラレン、8-メトキシソラレン、6-メチルクマリン、5-メトキシソラレン、5-ヒドロキシソラレン、クマリルピロン、アクリジンオレンジ、アクリフラビン、プロフラビン、フルオレセイン、エオシンY、エオシンB、エリトロシン、ローズベンガル等の色素系増感剤が挙げられる。
 これらの(a)遊離ラジカル発生剤は、1種を単独で又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。
 (a)遊離ラジカル発生剤の含有量は、接着剤成分全体に対して0.05~10質量%が好ましく、0.1~5質量%がより好ましい。
 (b)ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質であり、例えば、アクリレート(対応するメタクリレートを含む。以下同じ。)、マレイミド化合物が挙げられる。
 アクリレートとしては、例えば、ウレタンアクリレート、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス〔4-(アクリロキシメトキシ)フェニル〕プロパン、2,2-ビス〔4-(アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、ビス(アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、トリス(アクリロキシエチル)イソシアヌレートが挙げられる。
 マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するものが好ましく、例えば、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-P-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチル-ビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3’-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[3-s-ブチル-4,8-(4-マレイミドフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]デカン、4,4’-シクロヘキシリデン-ビス[1-(4-マレイミドフェノキシ)-2-シクロヘキシル]ベンゼン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ヘキサフルオロプロパンが挙げられる。これらは、1種を単独で又は2種以上を併用して用いてもよく、アリルフェノール、アリルフェニルエーテル、安息香酸アリル等のアリル化合物と併用して用いてもよい。
 (b)ラジカル重合性物質としては、接着性が向上する観点から、アクリレートが好ましく、ウレタンアクリレート又はウレタンメタアクリレートがより好ましい。(b)ラジカル重合性物質は、1種を単独で又は2種以上を併用して用いることができる。
 接着剤成分3a,3bは、25℃での粘度が100000~1000000mPa・sであるラジカル重合性物質を少なくとも含有することが好ましく、100000~500000mPa・sであるラジカル重合性物質を含有することがより好ましい。ラジカル重合性物質の粘度の測定は、市販のE型粘度計を用いて測定できる。
 (b)ラジカル重合性物質の含有量は、接着剤成分100質量部に対して20~70質量部が好ましく、30~65質量部がより好ましい。
 (b)ラジカル重合性物質は、上記ラジカル重合性物質に加えて、耐熱性を向上させるために上記有機過酸化物と架橋して、単独で100℃以上のTgを示すラジカル重合性物質を更に含有することが特に好ましい。このようなラジカル重合性物質としては、ジシクロペンテニル基、トリシクロデカニル基及び/又はトリアジン環を有するものを用いることができる。これらの中でも、トリシクロデカニル基やトリアジン環を有するラジカル重合性物質が好適に用いられる。
 また、必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類等の重合禁止剤を適宜用いてもよい。
 更に、(b)ラジカル重合性物質は、上記ラジカル重合性物質に加えて、リン酸エステル構造を有するラジカル重合性物質を更に含有することが好ましい。リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2-ヒドロキシル(メタ)アクリレートとの反応物として得られる。具体的には、2-メタクリロイロキシエチルアッシドホスフェート、2-アクリロイロキシエチルアッシドホスフェート等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用できる。
 リン酸エステル構造を有するラジカル重合性物質の含有量は、金属等の無機物表面との接着強度が向上する観点から、接着剤成分100質量部に対して0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 (c)フィルム形成性高分子としては、ポリスチレン、ポリエチレン、ポリビニルブチラール、ポリビニルホルマール、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリフェニレンオキサイド、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、エポキシ樹脂、ポリイソシアネート樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリエステルウレタン樹脂等が用いられる。
 これらの中でも、接着性が向上する観点から、水酸基等の官能基を有する樹脂がより好ましい。また、上記フィルム形成性高分子をラジカル重合性の官能基で変性したものも用いることができる。フィルム形成性高分子の重量平均分子量は10000以上が好ましい。また、重量平均分子量は、1000000以上になると混合性が低下する傾向にあることから、1000000未満が好ましい。
 (c)フィルム形成性高分子の含有量は、接着剤成分100質量部に対して30~80質量部が好ましく、35~70質量部がより好ましい。
 接着剤成分3a,3bは、例えば(d)熱硬化性樹脂と(e)その硬化剤とを含有してもよい。
 (d)熱硬化性樹脂としては、エポキシ樹脂が好ましい。エポキシ樹脂は、1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独に、あるいは、その2種以上を混合して用いられる。エポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、ビスフェノールF及び/又はビスフェノールAD等とから誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックとから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種を単独で又は2種以上を混合して用いることが可能である。エポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロンマイグレーション防止のために好ましい。
 (e)硬化剤は、より長いポットライフを得る観点から、潜在性硬化剤が好ましい。熱硬化性樹脂がエポキシ樹脂である場合、潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。これらは1種を単独で又は2種以上を混合して使用することができる。潜在性硬化剤には、分解促進剤、抑制剤等を混合してもよい。上記潜在性硬化剤は、可使時間が延長されるため、ポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化することが好ましい。
 なお、本明細書における重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)分析により下記条件で測定し、標準ポリスチレンの検量線を使用して換算することにより求められるものである。
 (GPC条件)
 使用機器:日立L-6000型((株)日立製作所製、商品名)
 検出器:L-3300RI((株)日立製作所製、商品名)
 カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440(計3本)(日立化成工業(株)製、商品名)
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:1.75ml/min
 また、接着剤成分3a及び3bにおける上述の成分の種類及び配合量等は、それぞれ同じでも異なっていてもよい。また、上述の成分の種類及び配合量は、接着剤成分3bの流動性が、接着剤成分3aの流動性よりも大きくなるように調整されることが好ましい。
(導電粒子)
 本実施形態の回路接続用接着フィルム1は、導電粒子5として、ビッカース硬度が300Hv以上の金属、好ましくはNi、Ni合金及びNi酸化物からなる群より選ばれる少なくとも1種を含む金属で最外層が覆われたものを用いる。
 このような導電粒子5としては、例えば図2(a)~(c)に示す導電粒子5a~5cを用いることができる。
 まず、導電粒子5aの構成について図2(a)を用いて詳細に説明する。図2は、本発明の一実施形態に係る回路接続用接着フィルムに含まれる導電粒子を示す模式断面図である。
 図2(a)に示すように、導電粒子5aは、核体21と、核体21の表面上に形成される金属層(最外層)22とを有する。核体21は、中核部21aと、中核部21aの表面上に形成される突起部21bとを有している。金属層22は、表面に複数の突起部14を有している。金属層22は、核体21を覆っており、突起部21bに対応する位置で突出し、その突出している部分が突起部14となっている。
 核体21は、有機高分子化合物からなることが好ましい。この場合、核体21は、金属からなる核体に比べてコストが低い上、熱膨張率や圧着接合時の寸法変化に対して弾性変形範囲が広いため、回路接続用途に好適に用いられる。
 核体21の中核部21aを構成する有機高分子化合物としては、例えばアクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体が挙げられ、これらを架橋したものを使用してもよい。核体21の突起部21bを構成する有機高分子化合物としては、中核部21aを構成する有機高分子化合物と同一であっても異なっていてもよい。
 核体21の中核部21aの平均粒径は、1.5~5.0μmであることが好ましく、2.0~4.5μmであることがより好ましく、2.5~4.0μmであることが更に好ましい。平均粒径が1μm未満であると粒子の二次凝集が生じ、隣接する回路との絶縁性が不十分となる傾向がある。他方、平均粒径が5μmを越えると、その大きさに起因して隣接する回路との絶縁性が不十分となる傾向がある。
 核体21は、中核部21aの表面に中核部21aよりも小さな径を有する突起部21bを複数個吸着させることにより形成することができる。突起部21bを中核部21aの表面に吸着させる方法としては、例えば、中核部21a及び突起部21bの双方もしくは一方の粒子をシラン、アルミニウム、チタン等の各種カップリング剤及び接着剤の希釈溶液で表面処理した後、両者を混合し付着させる方法が挙げられる。なお、突起部21bの平均粒径は50~500nmであることが好ましい。
 金属層22は、Ni、Pd、Rh等のビッカース硬度が300Hv以上の金属、好ましくはNi、Ni合金及びNi酸化物からなる群より選ばれる少なくとも1種を含む金属を含む。Niとしては、純Ni、Ni合金及びNi酸化物からなる群より選ばれる少なくとも1種が挙げられ、これらの中でも純Ni、純Pdが好ましい。Ni合金としては、例えば、Ni-B、Ni-W、Ni-B、Ni-W-Co、Ni-Fe及びNi-Crが挙げられる。Ni酸化物としては、例えば、NiO等が挙げられる。金属層22は、単一の金属の層からなるものであってもよく、複数の金属の層からなるものであってもよい。なお、ビッカース硬度は、例えば、ジャパンハイテック社製の「Maicroharadness Tester MHT-4(商品名)」を用いて、負荷荷重20kgf、負荷速度20kgf/秒、保持時間5秒の条件で測定することができる。
 金属層22は、これらの金属を核体21に対して無電解めっき法を用いてめっきすることにより形成することができる。無電解めっき法は、大きくバッチ方式と連続滴下方式とに分けられるが、いずれの方式を用いても金属層22を形成することができる。
 金属層22の厚さ(めっきの厚さ)は、50~170nmが好ましく、50~150nmがより好ましい。金属層22の厚さをこのような範囲とすることで、回路電極32,42間の接続抵抗をより一層低減させることができる。金属層22の厚さが50nm未満ではめっきの欠損等が発生する傾向があり、170nmを超えると導電粒子間で凝結が発生して隣接する回路電極間で短絡が生じる傾向がある。
 なお、導電粒子5aは、部分的に核体21が露出している場合がある。この場合、接続信頼性の観点から、核体21の表面積に対する金属層22の被覆率は70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
 導電粒子5aの突起部14の高さ(H)は50~500nmであることが好ましく、75~300nmであることがより好ましい。突起部14の高さ(H)が50nm未満であると、高温高湿処理後に接続抵抗が高くなる傾向があり、500nmを超えると、導電粒子と回路電極との接触面積が小さくなるため接続抵抗が高くなる傾向がある。
 隣接する突起部14間の距離(S)は1000nm以下であることが好ましく、500nm以下であることがより好ましい。また、隣接する突起部14間の距離(S)は、後述する導電粒子5aと回路電極32,42との間に接着剤成分3a,3bの硬化体4a,4bが入り込まず、十分に導電粒子5aと回路電極32,42とを接触させるためには、少なくとも50nm以上であることが好ましい。なお、突起部14の高さ(H)及び隣接する突起部14間の距離(S)は、電子顕微鏡により測定することができる。
 なお、導電粒子5は、図2(b)に示すように、核体21が中核部21aのみで構成された導電粒子5bであってもよい。言い換えると、図2(a)に示す核体21において突起部21bが設けられていなくてもよい。図2(b)に示す導電粒子5bは、中核部21aの表面を金属めっきし、中核部21aの表面上に突起部14を有する金属層22を形成することにより得ることができる。
 突起部14を形成させるためのめっき方法について説明する。突起部14は、金属めっきの際、めっき条件を途中で変更して、金属層22の厚さを部分的に変化させることで形成することができる。例えば、突起部14は、最初に使用しためっき液よりも濃度の高いめっき液をめっき反応の途中で追加し、めっき液の濃度を不均一にすることにより形成することができる。
 また、導電粒子5は、図2(c)に示すように、核体21と、中核部21aの表面上に形成される金属層(最外層)22とを有する導電粒子5cであってもよい。導電粒子5cは、突起部14を有していない点で導電粒子5aと相違する。
 また、導電粒子5は、非導電性のガラス、セラミック、プラスチック等の絶縁粒子を、Ni等を含む金属層22で被覆したものであってもよい。金属層22がNiを含み核体21がプラスチックである場合や、又は導電粒子5が熱溶融金属粒子の場合には、加熱加圧により変形性を有し、接続時に導電粒子5と電極との接触面積が増加し接続信頼性が向上するので好ましい。
 導電粒子5の含有量は、異方導電層における接着剤成分100体積部に対して0.1~30体積部が好ましく、用途に応じて適宜調整される。また、導電粒子5の含有量は、導電粒子5による隣接する回路同士の短絡等を一層十分に抑制する観点から、異方導電層における接着剤成分100体積部に対して0.1~10体積部がより好ましい。
 回路電極32,42間の導通を一層確実にする観点から、導電粒子5の10%圧縮弾性率(K値)は、100~1000kgf/mmであることが好ましい。ここで、10%圧縮弾性率(K値)とは、導電粒子5を10%圧縮変形させた際の弾性率をいい、例えば株式会社フィッシャーインストルメンツ製H-100微小硬度計により測定することができる。
 導電粒子5の平均粒径は、接続する回路電極の高さより低くすることにより隣接電極間の短絡を更に抑制し易くなる観点から、1.5~5.0μmが好ましく、2.0~4.5μmがより好ましく、2.5~4.0μmが更に好ましい。なお、導電粒子5a,5bの「平均粒径」とは、突起部14の高さ(H)は考慮せず、核体21と金属層22の突起部14が形成されていない部分とを考慮して算出される粒径を意味するものとする。
 導電粒子5の平均粒径は、以下のようにして測定できる。示差走査型電子顕微鏡(SEM:例えば、HITACHI製、S800)で3000倍に拡大された導電粒子の粒子像から50個の粒子を任意に選択する。拡大された粒子像を用いて、選択した複数の粒子それぞれについて最大径と最小径とを測定する。そして、それぞれの粒子の最大径及び最小径の積の平方根をその粒子の粒径とする。任意に選択した導電粒子50個について上記のようにして各々粒径を測定し、測定した粒子個数で粒径の和を除した値を平均粒径とする。
 更に、本実施形態の回路接続用接着フィルム1(異方導電層11及び絶縁層12)は、ゴム微粒子、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有してもよい。
 ゴム微粒子としては、粒子の平均粒径が、配合する導電粒子5の平均粒径の2倍以下であり、かつ室温(25℃)での貯蔵弾性率が導電粒子5及び接着剤成分3a,3bの室温での貯蔵弾性率の1/2以下であるものが好ましい。特に、ゴム微粒子の材質がシリコーン、アクリルエマルジョン、SBR、NBR、ポリブタジエンゴムである場合、1種を単独で又は2種以上を混合して用いることが好適である。3次元架橋したこれらゴム微粒子は、耐溶剤性が優れており、接着剤成分3a,3b中に容易に分散される。
 充填材を含有した場合、接続信頼性等が向上するため好ましい。充填材の最大径は、導電粒子5aの平均粒径未満であることが好ましい。充填材の含有量は、回路接続用接着フィルム全体に対して5~60体積%の範囲が好ましい。含有量が60体積%を越えると、信頼性向上の効果が飽和する傾向がある。
 カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基からなる群より選ばれる1種以上の基を含有する化合物が、接着性の向上の点から好ましい。
 本実施形態の回路接続用接着フィルム1は、接続時に接着剤が溶融流動し相対向する回路電極を接続した後、硬化して接続を保持するものであり、接着剤の流動性は重要な因子である。厚さ0.7mm、15mm×15mmのガラス板に、厚さ35μm、5mm×5mmの回路接続用接着フィルム1を挟み、170℃、2MPa、10秒の条件で加熱加圧を行った場合、初期の面積(A)と加熱加圧後の面積(B)とを用いて表される流動性(B)/(A)の値は1.3~3.0であることが好ましく、1.5~2.5であることがより好ましい。(B)/(A)が1.3未満では流動性が悪く、良好な接続が得られない傾向があり、3.0を超える場合は、気泡が発生しやすく信頼性に劣る傾向がある。
 本実施形態の回路接続用接着フィルム1の硬化後の40℃での弾性率は100~3000MPaが好ましく、500~2000MPaがより好ましい。
 本実施形態の回路接続用フィルム1において、異方導電層11の厚みは、導電粒子5の平均粒径の0.3~1.5倍であり、好ましくは0.7~1.3倍である。
 また、回路接続用フィルム1の厚み(異方導電層11及び絶縁層12の総厚み)は、6~20μmであることが好ましく、8~18μmであることがより好ましく、8~14μmであることがさらに好ましい。すなわち、絶縁層12の厚みは、異方導電層11の厚みをT(μm)として、(6-T)~(20-T)μmであることが好ましく、(8-T)~(18-T)μmであることがより好ましく、(8-T)~(14-T)μmであることがさらに好ましい。絶縁層12の厚みが上記範囲であると、高精細回路間の接続が一層信頼性良く行うことができ、かつバーント現象を一層抑制することができる。
 回路接続用フィルム1は、例えば、異方導電層11と絶縁層12とをラミネーターを用いてラミネートすることによって作製することができる。
 また、異方導電層11及び絶縁層12は、例えば、それぞれの層を構成する各成分を溶解又は分散した混合液を準備し、該混合液を塗工装置を用いて塗工して乾燥させることで作製することができる。
 異方導電層11及び絶縁層12の厚みは、塗工装置のコーターギャップを制御することにより適宜変動させることができる。また、コーターギャップが広い場合でも、塗布する混合液の固形分濃度を低くすることにより、層の厚みを小さくすることができる。
 異方導電層11は、接着剤成分3a及び導電粒子5を含む混合液を塗工することで作製してもよいが、接着剤成分3aを含む混合液を塗工して接着剤成分3aからなる層を形成した後、該層の表面に導電粒子を散布し埋め込むこと等によって作製することもできる。後者の方法としては、例えば、特開平10-302926号公報に記載の方法を用いることができる。
<回路接続構造体>
 図3は、本発明の一実施形態に係る回路接続構造体を示す模式断面図である。本実施形態の回路接続構造体100は、相互に対向する回路部材(第1の回路部材)30及び回路部材(第2の回路部材)40と、回路部材30及び回路部材40の間に介在し、これらを接続する回路接続部材10とを備えている。
 回路部材30は、回路基板(第1の回路基板)31と、回路基板31の主面31a上に形成される回路電極(第1の回路電極)32とを備えている。回路部材40は、回路基板(第2の回路基板)41と、回路基板41の主面41a上に形成される回路電極(第2の回路電極)42とを備えている。
 回路基板31,41の材質は特に制限されないが、通常は有機絶縁性物質、ガラス又はシリコンである。
 回路電極32,42の材質としては、Au、Ag、Sn、Pt族の金属、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、Al、Crが挙げられる。回路電極32,42の少なくとも一方は、電気的接続が顕著に良好となる観点から、インジウム-錫酸化物(ITO)及びインジウム-亜鉛酸化物(IZO)の少なくとも一方を含むことが好ましい。また、回路電極32,42は、全体が上記材質で構成されていてもよいし、最外層のみが上記材質で構成されていてもよい。
 上記回路部材30,40のうち少なくとも一方、好ましくはフレキシブル基板の回路ピッチは、40μm以下である。また、回路ピッチの下限は、特に限定されないが、例えば凡そ20μmとすることができる。
 回路電極32、42の表面は平坦になっていることが好ましい。なお、本明細書において「回路電極の表面が平坦」とは、回路電極の表面の凹凸が20nm以下であることをいう。
 導電粒子5が突起部を有するものである場合には、回路電極32,42の厚さを50nm未満にすると、回路部材30及び回路部材40間で回路接続用接着フィルム1を加圧するに際し、導電粒子の表面側にある突起部が回路電極32,42を貫通し回路基板31,41と接触する場合がある。そのため、回路電極32,42の厚さを50nm以上とすることにより、回路電極32,42と導電粒子5との接触面積が増加し、接続抵抗がより低下することとなる。また、回路電極32,42の厚さは、製造コスト等の点から、1000nm以下が好ましく、500nm以下がより好ましい。
 また、回路部材30において、回路電極32及び回路基板31の間に絶縁層が更に設けられてもよいし、回路部材40において、回路電極42及び回路基板41の間に絶縁層が更に設けられていてもよい。絶縁層の材質は、絶縁材料で構成されていれば特に制限されないが、通常は有機絶縁性物質、二酸化珪素又は窒化珪素である。
 第1の回路部材30及び第2の回路部材40の具体例としては、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板が挙げられる。これらの回路部材30,40には通常、回路電極(接続端子)32,42が多数(場合によっては単数でもよい)設けられている。
 回路接続部材10は、上記回路接続用接着フィルム1を硬化処理することによって得られるものであり、上記接着剤成分3a,3bを硬化してなる硬化体4a,4bと、上記導電粒子5とを含む。
 回路接続構造体100において、対向する回路電極32と回路電極42とは、導電粒子5を介して電気的に接続されている。即ち、導電粒子5が、回路電極32,42の双方に直接接触することにより電気的に接続されている。
 導電粒子5が複数の突起部を有する場合には、その一部が回路電極32又は回路電極42に食い込んでいることが好ましい。この場合、導電粒子の突起部と回路電極32,42との接触面積がより増加し、接続抵抗をより低減させることができる。
(回路接続構造体の製造方法)
 本実施形態の回路接続用接着フィルム1は、ICチップと基板との接着や、電気回路相互の接着用の接着剤としても有用である。第1の回路電極(接続端子)を有する第1の回路部材と、第2の回路電極(接続端子)を有する第2の回路部材とを、第1の回路電極及び第2の回路電極が対向した状態で配置して、第1の回路電極と第2の回路電極との間に本実施形態の回路接続用接着フィルム1を介在して加熱加圧することにより、第1の回路電極及び第2の回路電極が電気的に接続させて、回路接続構造体100を構成することができる。
 本実施形態で用いる回路電極の接続方法は、熱又は光による硬化性を有する回路接続用接着フィルム1を、表面が金、銀、錫及び白金属から選ばれる金属を含む一方の電極回路上に形成した後、もう一方の回路電極を位置合わせし加熱、加圧することで、回路電極同士を接続することができる。
 本実施形態の回路接続構造体100としては、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板等が挙げられる。これらの回路接続構造体100には回路電極(接続端子)が通常は多数(場合によっては単数でもよい)設けられており、回路接続構造体100の少なくとも1組をそれらの回路接続構造体100に設けられた接続端子の少なくとも一部を対向配置し、対向配置した回路電極間に接着剤を介在させ、加熱加圧して対向配置した回路電極同士を電気的に接続して回路板とする。回路接続構造体100の少なくとも1組を加熱加圧することにより、対向配置した回路電極同士は、回路接続用接着フィルムの導電粒子を介して電気的に接続することができる。
 次に、図4を用いて、本実施形態の回路接続構造体70の製造方法について具体的に説明する。図4は、本発明の一実施形態に係る回路接続構造体の製造方法を模式的に示す工程断面図である。図4(a)は、回路部材同士を接続する前の状態を示しており、図4(b)は回路部材同士を接続する際の状態を示しており、図4(c)は回路部材同士を接続した後の回路接続構造体を示している。
 まず、図4(a)に示すように、主面上に回路電極72及び液晶表示部74を有するLCDパネル73を用意する。次に、回路接続用接着フィルム61を回路電極72上に接着して載置する。そして、COF等の回路電極76が設けられた回路基板75を、回路電極72と回路電極76とが回路接続用接着フィルム61を介して互いに対向するように位置合わせする。なお、回路電極72及び回路電極76は、例えば複数の電極が並んだ構造を有している。
 次に、図4(b)に示すように、LCDパネル73と回路基板75とを位置合わせをしながら、回路電極72と回路電極76とが回路接続用接着フィルム61を介して互いに対向するように、回路接続用接着フィルム61上に回路基板75を載置する。これにより、回路電極72と回路電極76とが回路接続用接着フィルム61中の導電粒子5により接続されることとなる。
 次に、回路電極76が配置された面とは反対側の面から(図4(b)中の矢印A方向)回路基板75を加圧すると共に、回路接続用接着フィルム61を加熱する。これにより、回路接続用接着フィルム61が硬化し、回路接続部材60が得られる。以上により、図4(c)に示すように、LCDパネル73と回路基板75とが回路接続部材60を介して強固に接続された回路接続構造体70が得られる。なお、硬化処理の方法は、使用する接着剤成分に応じて、加熱及び光照射の一方又は双方を採用することができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
[ウレタンアクリレートの合成]
 重量平均分子量800のポリカプロラクトンジオール400質量部と、2-ヒドロキシプロピルアクリレート131質量部、触媒としてジブチル錫ジラウレート0.5質量部、重合禁止剤としてハイドロキノンモノメチルエーテル1.0質量部を攪拌しながら50℃に加熱して混合した。次いで、イソホロンジイソシアネート222質量部を滴下し更に攪拌しながら80℃に昇温してウレタン化反応を行った。イソシアネート基の反応率が99%以上になったことを確認後、反応温度を下げてウレタンアクリレートを得た。
[ポリエステルウレタン樹脂の調製]
 ジカルボン酸としてテレフタル酸、ジオールとしてプロピレングリコール、イソシアネートとして4,4’-ジフェニルメタンジイソシアネートを用い、テレフタル酸/プロピレングリコール/4,4’-ジフェニルメタンジイソシアネートのモル比が1.0/1.3/0.25及び1.0/2.0/0.25となる2種類のポリエステルウレタン樹脂A、Bを調製した。
 上記ポリエステルウレタン樹脂をメチルエチルケトンに20質量%となるように溶解した。上記ポリエステルウレタン樹脂のメチルエチルケトン溶液を用いて、片面を表面処理(シリコーン処理)した厚さ80μmのPETフィルムに塗工装置を用いて塗布した。更に、70℃、10分の熱風乾燥により、厚さが35μmのフィルムを作製した。広域動的粘弾性測定装置(Rheometric Scientific社製、商品名:RSAII)を用いて引っ張り荷重5g、周波数10Hzにて弾性率の温度依存性を測定した。測定結果から得られたポリエステルウレタン樹脂のガラス転移温度は105℃であった。
 ラジカル重合性物質としての上記ウレタンアクリレート25質量部、イソシアヌレート型アクリレート(製品名:M-325、東亞合成社製)20質量部、2-メタクリロイロキシエチルアッシドホスフェート(製品名:P-2M、共栄社化学社製)1質量部、及び遊離ラジカル発生剤としてのベンゾイルパーオキサイド(製品名:ナイパーBMT-K40、日本油脂製)4質量部を、フィルム形成性高分子としての上記ポリエステルウレタン樹脂Aの20%メチルエチルケトン溶液55質量部に混合し、攪拌しバインダ樹脂とした。
 更に、ポリスチレンを核体とするNiを含む最外層に覆われ、かつ最外層の表面に突起を有する導電粒子(平均粒径:4μm、以下、場合により「Ni被覆粒子」と表記する。)をバインダ樹脂に対して3体積%配合分散させた。そして、混合液を片面を表面処理(シリコーン処理)した厚さ50μmのPETフィルムの表面処理が施されていない側に塗工装置を用いて塗布し、70℃、10分の熱風乾燥により、厚さが4μmの異方導電接着剤層A(幅15cm、長さ70m)を得た。
 ラジカル重合性物質としての上記ウレタンアクリレート25質量部、イソシアヌレート型アクリレート(製品名:M-325、東亞合成社製)20質量部、2-メタクリロイロキシエチルアッシドホスフェート(製品名:P-2M、共栄社化学社製)1質量部、及び遊離ラジカル発生剤としてのベンゾイルパーオキサイド(製品名:ナイパーBMT-K40、日本油脂製)4質量部を、フィルム形成性高分子としての上記ポリエステルウレタン樹脂Bの20%メチルエチルケトン溶液55質量部に混合し、攪拌しバインダ樹脂とした。次いで、前記バインダ樹脂を片面を表面処理(シリコーン処理)した厚さ50μmのPETフィルムの表面処理が施されていない側に塗工装置を用いて塗布し、70℃、10分の熱風乾燥により、厚さが10μmの接着剤層B(幅15cm、長さ70m)を得た。
 得られた接着剤層A、Bを接着剤が向き合う方向に重ね合わせ、ラミネーター(Dupont社製RISTON、モデル;HRL、ロール圧力はバネ加重のみ、ロール温度40℃、速度50cm/分)を用いてラミネートした後に、異方導電接着剤層A側のPETを剥離し、厚み14μmの異方導電接着剤(幅15cm、長さ60m)を得た。得られた異方導電接着剤を1.5mm幅に裁断し、内径40mm、外径48mmのプラスチック製リールの側面(厚み1.7mm)に接着フィルム面を内側にして50m巻きつけ、テープ状の回路接続用接着フィルムを得た。
(実施例2~4)
 導電粒子のK値及び粒子径を表1~2に示すように変化させた以外は、実施例1と同様にして、回路接続用接着フィルムを作製した。
(実施例5~6)
 各接着剤層A、Bの厚みを表2に示すように変化させた以外は、実施例4と同様にして、回路接続用接着フィルムを作製した。
(比較例1~3)
 導電粒子のK値、最外層の金属、及び粒子径を表3に示すように変化させた以外は、実施例1と同様にして、回路接続用接着フィルムを作製した。
(比較例4)
 各接着剤層Aの厚みを表4に示すように変化させ接着剤の構成を単層にした以外は、実施例1と同様にして、回路接続用接着フィルムを作製した。
(比較例5)
 各接着剤層A、Bの厚みを表4に示すように変化させた以外は、実施例1と同様にして、回路接続用接着フィルムを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(回路の接続)
 実施例、比較例で得られた回路接続用接着フィルム(幅1.5mm、長さ3cm)の接着剤面を、70℃、1MPaで2秒間加熱加圧して厚さ0.7mmのCr/インジウム-亜鉛酸化物(IZO)コートガラス基板上に転写し、PETフィルムを剥離した。次いで、ピッチ40μm、厚さ8μmのすずめっき銅回路を500本有するフレキシブル回路板(FPC)を、転写した接着剤上に置き、24℃、0.5MPaで1秒間加圧して仮固定した。このFPCが回路接続フィルムによって仮固定されたガラス基板を本圧着装置に設置し、150μm厚さのテフロン(登録商標)シートをクッション材とし、FPC側から、ヒートツールによって180℃、3MPaで6秒間加熱加圧して幅1.5mmにわたり接続し、接続体を得た。
(接続抵抗の測定)
 上記接続体について、4端子法によりそれぞれの電極における抵抗値をデジタルマルチメータ(装置名:TR6845、アドバンテスト社製)で測定し、10本の電極の平均値を求めた。得られた結果を表5、6に示す。
(I-V特性の評価)
 上記接続体について、4端子法により電流値を50mA/10秒の間隔で増加させながら電圧の変化を記録し、オーミック性から外れた時の電流値を測定した。その結果を表5、6に示す。
(導電粒子捕捉率の評価)
 上記接続体について、オリンパス(株)製BH3-MJL液晶パネル検査用顕微鏡を用い、ガラス基板側からノマルスキー微分干渉観察により1電極当たりの圧痕の数を20電極分測定し平均値を算出した。一方、接着剤中の単位面積当たりの導電粒子個数は、オリンパス(株)製BH3-MJL液晶パネル検査用顕微鏡にて計測した。得られた結果から、次式を用いて導電粒子捕捉率を算出した。得られた値を表5、6に示す。
導電粒子捕捉率=(電極上導電粒子数[個])×100/{(接着剤中単位面積当たり導電粒子数[個/mm])×(電極1本当たりの接続面積[mm])}
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1,61…回路接続用接着フィルム、10,60…回路接続部材、3a,3b…接着剤成分、4a,4b…硬化体、5,5a,5b,5c…導電粒子、11…異方導電層、12…絶縁層、14…突起部、21…核体、21a…中核部、21b…突起部、22…金属層(最外層)、30,40…回路部材、31,41,75…回路基板、32,42,72,76…回路電極、70,100…回路接続構造体、72…回路電極、73…パネル、74…液晶表示部。

Claims (6)

  1.  対向する回路基板間に介在して回路を電気的に接続するための回路接続用接着フィルムであって、
     前記回路接続用接着フィルムは少なくとも接着剤層A及び接着剤層Bを有し、
     前記接着剤層Aは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、フィルム形成性高分子、及び、ビッカース硬度が300Hv以上の金属で最外層が覆われた導電粒子を含有する異方導電層であり、
     前記接着剤層Bは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、及びフィルム形成性高分子を含有する絶縁層であり、
     前記接着剤層Aの厚みは、該接着剤層Aに含有される導電粒子の平均粒径の0.3~1.5倍であり、かつ
     前記回路基板のうち、少なくとも一方の回路ピッチが40μm以下であることを特徴とする回路接続用接着フィルム。
  2.  対向する回路基板間に介在して回路を電気的に接続するための回路接続用接着フィルムであって、
     前記回路接続用接着フィルムは少なくとも接着剤層A及び接着剤層Bを有し、
     前記接着剤層Aは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、フィルム形成性高分子、並びに、Ni、Ni合金及びNi酸化物からなる群より選ばれる少なくとも1種を含む金属で最外層が覆われた導電粒子を含有する異方導電層であり、
     前記接着剤層Bは、加熱又は光により遊離ラジカルを発生する硬化剤、ラジカル重合性物質、及びフィルム形成性高分子を含有する絶縁層であり、
     前記接着剤層Aの厚みは、該接着剤層Aに含有される導電粒子の平均粒径の0.3~1.5倍であり、かつ
     前記回路基板のうち、少なくとも一方の回路ピッチが40μm以下であることを特徴とする回路接続用接着フィルム。
  3.  前記回路ピッチが40μm以下である回路基板がフレキシブル基板である、請求項1又は2記載の回路接続用接着フィルム。
  4.  前記回路ピッチが40μm以下である回路基板とは別の回路基板の回路表面にインジウム-亜鉛酸化物又はインジウム-錫酸化物からなる薄膜が形成されている、請求項1~3のいずれか一項に記載の回路接続用接着フィルム。
  5.  導電粒子の平均粒径が1.5~5.0μmである、請求項1~4のいずれか一項に記載の回路接続用接着フィルム。
  6.  回路ピッチが40μm以下である第一の回路を有する第一の回路基板と、第二の回路を有する第二の回路基板とを、前記第一の回路と前記第二の回路とが対向するように配置し、対向配置した前記第一の回路と前記第二の回路とが対向するように配置し、対向配置した前記第一の回路と前記第二の回路との間に、請求項1~5のいずれか一項に記載の回路接続用接着フィルムを介在させ、加熱加圧することにより、対向配置した前記第一の回路と前記第二の回路とを電気的に接続させてなる、回路接続構造体。
PCT/JP2011/050125 2010-01-08 2011-01-06 回路接続用接着フィルム及び回路接続構造体 WO2011083824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180002362.9A CN102474025B (zh) 2010-01-08 2011-01-06 电路连接用粘接膜以及电路连接结构体
KR1020117019005A KR101223350B1 (ko) 2010-01-08 2011-01-06 회로 접속용 접착 필름 및 회로 접속 구조체
JP2011501449A JP4752986B1 (ja) 2010-01-08 2011-01-06 回路接続用接着フィルム及び回路接続構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-002891 2010-01-08
JP2010002891 2010-01-08

Publications (1)

Publication Number Publication Date
WO2011083824A1 true WO2011083824A1 (ja) 2011-07-14

Family

ID=44305561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050125 WO2011083824A1 (ja) 2010-01-08 2011-01-06 回路接続用接着フィルム及び回路接続構造体

Country Status (5)

Country Link
JP (1) JP4752986B1 (ja)
KR (1) KR101223350B1 (ja)
CN (1) CN102474025B (ja)
TW (1) TW201200577A (ja)
WO (1) WO2011083824A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170005430A (ko) 2014-08-29 2017-01-13 후루카와 덴키 고교 가부시키가이샤 도전성 접착 필름
CN111508855A (zh) * 2014-01-16 2020-08-07 迪睿合株式会社 连接体及其制造方法、连接方法、各向异性导电粘接剂
WO2020189359A1 (ja) 2019-03-15 2020-09-24 古河電気工業株式会社 金属粒子含有組成物及び導電性接着フィルム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748635B (zh) * 2011-12-21 2016-08-31 积水化学工业株式会社 导电性粒子、导电材料及连接结构体
EP2845726A1 (en) * 2013-09-04 2015-03-11 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Electrically interconnecting foil
KR101659139B1 (ko) * 2014-01-29 2016-09-22 제일모직주식회사 접착층을 포함하는 이방 도전성 필름 및 상기 필름에 의해 접속된 반도체 장치
JP2015195198A (ja) * 2014-03-20 2015-11-05 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
WO2017051872A1 (ja) * 2015-09-25 2017-03-30 積水化学工業株式会社 接続構造体の製造方法、導電性粒子、導電フィルム及び接続構造体
KR102569980B1 (ko) * 2017-09-11 2023-08-24 가부시끼가이샤 레조낙 회로 접속용 접착제 필름 및 그의 제조 방법, 회로 접속 구조체의 제조 방법, 그리고 접착제 필름 수용 세트
JPWO2019050006A1 (ja) * 2017-09-11 2020-08-20 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057612A1 (ja) * 2007-10-31 2009-05-07 Hitachi Chemical Company, Ltd. 回路接続材料及び回路部材の接続構造
JP2009170898A (ja) * 2007-12-17 2009-07-30 Hitachi Chem Co Ltd 回路接続材料及び回路部材の接続構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650456B2 (ja) * 2006-08-25 2011-03-16 日立化成工業株式会社 回路接続材料、これを用いた回路部材の接続構造及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057612A1 (ja) * 2007-10-31 2009-05-07 Hitachi Chemical Company, Ltd. 回路接続材料及び回路部材の接続構造
JP2009170898A (ja) * 2007-12-17 2009-07-30 Hitachi Chem Co Ltd 回路接続材料及び回路部材の接続構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508855A (zh) * 2014-01-16 2020-08-07 迪睿合株式会社 连接体及其制造方法、连接方法、各向异性导电粘接剂
CN111508855B (zh) * 2014-01-16 2024-01-02 迪睿合株式会社 连接体及其制造方法、连接方法、各向异性导电粘接剂
KR20170005430A (ko) 2014-08-29 2017-01-13 후루카와 덴키 고교 가부시키가이샤 도전성 접착 필름
WO2020189359A1 (ja) 2019-03-15 2020-09-24 古河電気工業株式会社 金属粒子含有組成物及び導電性接着フィルム
US11466181B2 (en) 2019-03-15 2022-10-11 Furukawa Electric Co., Ltd. Metal particle-containing composition and electrically conductive adhesive film

Also Published As

Publication number Publication date
KR101223350B1 (ko) 2013-01-16
JPWO2011083824A1 (ja) 2013-05-16
CN102474025B (zh) 2014-05-07
JP4752986B1 (ja) 2011-08-17
KR20110116034A (ko) 2011-10-24
CN102474025A (zh) 2012-05-23
TWI378136B (ja) 2012-12-01
TW201200577A (en) 2012-01-01

Similar Documents

Publication Publication Date Title
JP4752986B1 (ja) 回路接続用接着フィルム及び回路接続構造体
JP4862921B2 (ja) 回路接続材料、回路接続構造体及びその製造方法
JP5067355B2 (ja) 回路接続材料及び回路部材の接続構造
JP4737177B2 (ja) 回路接続構造体
JP4862944B2 (ja) 回路接続材料
JP5247968B2 (ja) 回路接続材料、及びこれを用いた回路部材の接続構造
EP2339695A1 (en) Circuit connecting material, connection structure for circuit member using the same and production method thereof
JP5375374B2 (ja) 回路接続材料及び回路接続構造体
KR101929073B1 (ko) 필름상 회로 접속 재료 및 회로 접속 구조체
JPWO2007074652A1 (ja) 接着剤組成物、回路接続材料及び回路部材の接続構造
JP2013055058A (ja) 回路接続材料、及び回路部材の接続構造
JP4165065B2 (ja) 接着剤、接着剤の製造方法及びそれを用いた回路接続構造体の製造方法
JP4154919B2 (ja) 回路接続材料及びそれを用いた回路端子の接続構造
JP4844461B2 (ja) 回路接続材料及びそれを用いた回路端子の接続構造
JP2019065062A (ja) 導電性接着フィルム
JP4945881B2 (ja) 回路接続用支持体付接着剤、及びそれを用いた回路接続構造体
JP2012160546A (ja) 回路接続用接着フィルム及び回路接続構造体
JP4816827B2 (ja) 回路接続材料、これを用いた回路部材の接続構造及びその製造方法
JP2011054988A (ja) 回路接続材料
JP2011119154A (ja) 接続方法及び接続構造体
JP4400674B2 (ja) 回路接続材料及びそれを用いた回路端子の接続構造
JP5387592B2 (ja) 回路接続材料、及び回路部材の接続構造の製造方法
JP2006111806A (ja) 回路接続材料及びそれを用いた回路接続構造体
CN115516057A (zh) 导电性黏合剂、电路连接结构体的制造方法及电路连接结构体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002362.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011501449

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117019005

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731822

Country of ref document: EP

Kind code of ref document: A1