WO2011083515A1 - 有機elパネル、それを用いた表示装置および有機elパネルの製造方法 - Google Patents

有機elパネル、それを用いた表示装置および有機elパネルの製造方法 Download PDF

Info

Publication number
WO2011083515A1
WO2011083515A1 PCT/JP2010/000087 JP2010000087W WO2011083515A1 WO 2011083515 A1 WO2011083515 A1 WO 2011083515A1 JP 2010000087 W JP2010000087 W JP 2010000087W WO 2011083515 A1 WO2011083515 A1 WO 2011083515A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
thickness
organic
hole transport
Prior art date
Application number
PCT/JP2010/000087
Other languages
English (en)
French (fr)
Inventor
倉田恵子
松末哲征
米田和弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/000087 priority Critical patent/WO2011083515A1/ja
Priority to CN201080059449.5A priority patent/CN102687592B/zh
Priority to JP2011548860A priority patent/JP5607654B2/ja
Publication of WO2011083515A1 publication Critical patent/WO2011083515A1/ja
Priority to US13/488,987 priority patent/US8933471B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an organic EL panel using an electroluminescence phenomenon of an organic material, a display device using the same, and a method for manufacturing the organic EL panel.
  • the organic EL panel has a configuration in which organic EL elements of each color of R (red), G (green), and B (blue) are arranged on a substrate.
  • Patent Document 1 in an organic EL element in which a reflective film, an interlayer insulating film, a first transparent electrode, a hole transport layer, an organic light emitting layer, an electron injection layer, and a second transparent electrode are stacked on a substrate, organic light emission is performed.
  • a technique has been proposed for increasing the intensity of emitted light by utilizing the interference effect between the direct light directly from the layer toward the second transparent electrode and the reflected light from the light emitting layer through the reflective film toward the second transparent electrode. (Paragraphs 0022-0024).
  • the light is reflected from the organic light emitting layer so that the optical path difference between the direct light and the reflected light in each color of R, G, and B is 1.5 times, 3.5 times, and 3.5 times the wavelength of the light.
  • the film thickness up to the film is adjusted to 245 [nm] for R, 563 [nm] for G, and 503 [nm] for B (paragraphs 0041-0046). This document describes that this configuration can increase the emitted light intensity of each color of R, G, and B.
  • the film thickness from the organic light emitting layer to the reflective film is different up to 318 [nm] for each color of R, G, B, so that the film thickness adjustment for each color of R, G, B is complicated. There's a problem.
  • the present invention increases the light extraction efficiency by utilizing the light interference effect, and an organic EL panel in which the film thickness adjustment in each of R, G, and B colors is easier than in the prior art, and a display using the same
  • An object is to provide a device and a method for manufacturing an organic EL panel.
  • An organic EL panel includes a first electrode that reflects incident light, a second electrode that is disposed to face the first electrode and transmits incident light, and the first electrode.
  • a voltage is provided between the first electrode and the second electrode, which is disposed between the electrode and the second electrode, and is provided corresponding to each color of R (red), G (green), and B (blue).
  • An organic light emitting layer that emits light of each color of R, G, and B when applied, and is disposed between the first electrode and the organic light emitting layer, and is provided corresponding to each color of R, G, and B. And a part of the light of each color R, G, B emitted from the organic light emitting layer without traveling to the first electrode side.
  • the remaining part of the R, G, B color light is incident on the first electrode through the functional layer and reflected by the first electrode, and then the functional layer, the organic light emitting layer, and the A second optical path that is emitted to the outside through the second electrode, and the film thickness of the functional layer of each color of R, G, B is 60 nm or less, and the film corresponds to the film thickness at which the luminous efficiency shows a maximum value
  • the optical distance from the organic light emitting layer to the first electrode in each of the R, G, and B colors is 100 nm or less, and , R, G, B colors are almost equal.
  • the thickness of the functional layer disposed between the organic light emitting layer and the first electrode is set to a thickness corresponding to the thickness at which the light emission efficiency has a maximum value. Since it is adjusted, the light extraction efficiency in each color of R, G, B can be increased. Further, since the film thickness of the functional layer is almost equal for each color of R, G, and B, it is easier to adjust the film thickness for each color of R, G, and B than in the prior art.
  • FIGS. 10A and 10B are diagrams for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 7.
  • FIGS. 10A and 10B are the viewing angles of luminance in Example 1 and Comparative Example 1.
  • FIGS. 10 (c) and 10 (d) are diagrams showing the viewing angle dependence of the chromaticity of Example 1 and Comparative Example 1.
  • FIG. FIGS. 11A and 11B are diagrams for explaining the viewing angle characteristics of R (red) in the organic EL element under the same conditions as in FIG. 7, and FIGS. 11A and 11B are luminance viewing angles of Example 1 and Comparative Example 1; 11C and 11D show the viewing angle dependence of the chromaticity of Example 1 and Comparative Example 1.
  • FIGS. 12A and 12B are diagrams for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 7, and FIGS. 12A and 12B are luminance viewing angles of Example 1 and Comparative Example 1; FIGS.
  • FIG. 12C and 12D show the viewing angle dependence of the chromaticity of Example 1 and Comparative Example 1.
  • FIGS. 16A and 16B are diagrams for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 14, and FIGS.
  • FIGS. 16A and 16B are luminance viewing angles of Example 2 and Comparative Example 2; FIGS. 16C and 16D show the viewing angle dependence of the chromaticity of Example 2 and Comparative Example 2.
  • FIG. FIGS. 17A and 17B are diagrams for explaining the viewing angle characteristics of R (red) in the organic EL element under the same conditions as in FIG. 14, and FIGS. FIGS. 17C and 17D are diagrams showing the viewing angle dependency of the chromaticity of Example 2 and Comparative Example 2.
  • FIGS. 18A and 18B are diagrams for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 14.
  • FIGS. 18A and 18B are luminance viewing angles of Example 2 and Comparative Example 2.
  • FIG. 18 (c) and 18 (d) are diagrams showing the viewing angle dependence of the chromaticity of Example 2 and Comparative Example 2.
  • FIG. 22 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 20, and FIGS.
  • FIG. 22 (a) and 22 (b) are luminance viewing angles of Example 3 and Comparative Example 3;
  • FIGS. 22C and 22D show the viewing angle dependence of the chromaticity of Example 3 and Comparative Example 3.
  • FIG. FIG. 23 is a diagram for explaining the viewing angle characteristics of R (red) in the organic EL element under the same conditions as in FIG. 20, and
  • FIGS. 23 (a) and 23 (b) are luminance viewing angles of Example 3 and Comparative Example 3;
  • 23 (c) and 23 (d) are diagrams showing the viewing angle dependence of chromaticity in Example 3 and Comparative Example 3.
  • FIG. 24A and FIG. 24B are diagrams for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 20, and FIGS.
  • FIGS. 24A and 24B are luminance viewing angles of Example 3 and Comparative Example 3; FIGS. 24C and 24D show the viewing angle dependence of the chromaticity of Example 3 and Comparative Example 3.
  • FIG. Under the conditions of the fourth simulation, the thickness of the transparent conductive layer is 20 [nm], the thickness of the hole injection layer is 5 [nm], and the thickness of the hole transport layer is 0 [nm] to 600 [nm].
  • FIG. 9 is a graph showing a change in luminous efficiency [cd / A] when changed to [nm].
  • 25 is a diagram for comparing the case where the 1st cavity is adopted with the case where the 2nd cavity is adopted in the organic EL element under the same conditions as FIG. The figure which shows each parameter of several 1 in Example 4 and the comparative example 4.
  • FIG. 28A and FIG. 28B are diagrams for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 26, and FIGS. 28A and 28B are luminance viewing angles of Example 4 and Comparative Example 4; 28C and 28D show the viewing angle dependence of the chromaticity of Example 4 and Comparative Example 4.
  • FIG. 29 is a diagram for explaining the viewing angle characteristics of R (red) in the organic EL element under the same conditions as in FIG. 26, and FIGS. 29 (a) and 29 (b) are luminance viewing angles of Example 4 and Comparative Example 4; FIGS. 29C and 29D show the viewing angle dependence of the chromaticity of Example 4 and Comparative Example 4.
  • FIG. 30 is a diagram for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 26, and FIGS. 30 (a) and 30 (b) are the luminance viewing angles of Example 4 and Comparative Example 4; FIGS. 30C and 30D show the viewing angle dependence of the chromaticity of Example 4 and Comparative Example 4.
  • FIG. 9 is a graph showing a change in luminous efficiency [cd / A] when changed to [nm].
  • FIG. 31 is a diagram for comparing the case where 1st cavity is adopted and the case where 2nd cavity is adopted in the organic EL element under the same condition as FIG.
  • FIG. 34A and FIG. 34B are views for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 32.
  • FIGS. 34C and 34D show the viewing angle dependence of the chromaticity of Example 5 and Comparative Example 5.
  • FIG. FIG. 35 is a diagram for explaining the viewing angle characteristics of R (red) in the organic EL element under the same conditions as in FIG. 32, and FIGS. 35 (a) and 35 (b) are luminance viewing angles of Example 5 and Comparative Example 5;
  • FIGS. 35 a) and 35 (b) are luminance viewing angles of Example 5 and Comparative Example 5;
  • FIG. 35C and 35D show the viewing angle dependence of the chromaticity of Example 5 and Comparative Example 5.
  • FIG. FIG. 36A and FIG. 36B are diagrams for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as FIG. 32, and FIGS. 36 (c) and 36 (d) show the viewing angle dependence of the chromaticity of Example 5 and Comparative Example 5.
  • List of film thicknesses of functional layers for each color of R, G, and B in the first to fifth simulations Table of functional layer thickness differences between RG, GB, and RB in the first to fifth simulations
  • the figure which illustrates the external appearance of the display apparatus which concerns on embodiment of this invention The figure which shows the functional block of the display apparatus which concerns on embodiment of this invention.
  • the figure for demonstrating the manufacturing method of the organic electroluminescent panel which concerns on embodiment of this invention.
  • the figure for demonstrating the manufacturing method of the organic electroluminescent panel which concerns on embodiment of this invention. The figure for demonstrating the manufacturing method of the
  • a film thickness capable of stable film formation is obtained for the film thickness of each layer included in the functional layer, and then a film in which the luminous efficiency becomes a maximum value in the vicinity of the film thickness.
  • a method of finding the thickness by simulation is employed.
  • the thickness of each layer included in the functional layer needs to be secured to some extent, and the thickness of the functional layer is considered to exceed 100 [nm]. It has been. Therefore, it is conventional general technical knowledge for those skilled in the art that the optimum value of the thickness of the functional layer exceeds 100 [nm].
  • the optimum film thicknesses of R, G, and B colors are 245 [nm], 563 [nm], and 503 [nm], respectively.
  • the inventors of the present application previously applied a hole transport layer as a functional layer, set the film thickness to 100 [nm] or more, and changed the luminous efficiency when the film thickness of the functional layer was changed. A simulation was carried out.
  • FIG. 1 shows changes in luminous efficiency [cd / A] when the thickness of the transparent conductive layer is 20 [nm] and the thickness of the hole transport layer is changed from 100 [nm] to 600 [nm].
  • FIG. 1 Based on FIG. 1, the present inventors have found that the luminous efficiency fluctuates periodically with respect to the change in the thickness of the functional layer. Further, as the thickness of the functional layer increases, R, G, B It was clarified that the emission efficiency of each color decreased and the shift in film thickness indicating the maximum emission efficiency of each color of R, G, B increased (FIG. 1, arrow reference).
  • the present inventors consider the above in light of the analysis result of the above simulation, whereby the luminous efficiency is maximized, and the film thickness deviation of each color of R, G, B at that time is minimized.
  • the film thickness of the hole transport layer is smaller than that of the waveform (the film thickness of the hole transport layer is 100 [nm] to 250 [nm])
  • the R Presence of an unknown waveform in which the film thickness deviation between the G and B colors is further reduced was assumed (FIG. 1, arrow symbols indicated by broken lines).
  • the present inventors are not limited to the conventional technical knowledge, and further simulation is performed in a range of 100 [nm] or less, which is a range that would be considered by those skilled in the art to actively study. It came to carry out.
  • the organic EL panel according to the first aspect of the present invention includes a first electrode that reflects incident light, a second electrode that is disposed to face the first electrode and transmits incident light, and Between the first electrode and the second electrode, which is disposed between the first electrode and the second electrode and is provided corresponding to each color of R (red), G (green), and B (blue).
  • An organic light emitting layer that emits light of each color of R, G, and B when a voltage is applied, and is disposed between the first electrode and the organic light emitting layer, and corresponds to each color of R, G, and B.
  • a functional layer composed of one or more layers provided, and a part of the light of each color of R, G, B emitted from the organic light emitting layer does not travel to the first electrode side.
  • the optical distance from the organic light emitting layer to the first electrode in each of the R, G, and B colors is 100 nm or less. In addition, the R, G and B colors are almost equal.
  • the film thickness of the functional layer disposed between the organic light emitting layer and the first electrode is adjusted to a film thickness corresponding to the film thickness at which the light emission efficiency exhibits a maximum value, The light extraction efficiency in each of the G and B colors can be increased.
  • the film thickness of the functional layer is substantially equal for each color of R, G, and B, the film thickness adjustment for each color of R, G, and B is easier than in the prior art.
  • the functional layer may be composed of a transparent conductive layer provided on the first electrode and a hole transport layer provided on the transparent conductive layer.
  • the thickness of each layer can be secured to some extent under the restriction that the thickness of the functional layer is 60 [nm] or less. Can be stably formed.
  • the film thickness of the hole transport layer may be substantially the same for each of the R, G, and B colors, and the film thickness of the transparent conductive layer may be the same for each of the R, G, and B colors.
  • the film thickness of the functional layer can be finely adjusted by finely adjusting the film thickness of the hole transport layer in each of R, G, and B colors. This is especially effective when the transparent conductive layer is formed by vapor deposition or sputtering, which makes it difficult to fine-tune the film thickness of each color, and the hole transport layer is formed by ink-jet method, which makes it easy to fine-tune the film thickness of each color. It is.
  • the film thickness of the hole transport layer may be different for each color of R, G, B, and the film thickness of the transparent conductive layer may be the same for each color of R, G, B.
  • the film thicknesses of the functional layers of R, G, and B colors can be made different within a substantially equal range.
  • the transparent conductive layer has the same thickness and the hole transport layer has a different thickness because the transparent conductive layer is formed by vapor deposition or sputtering, and the hole transport layer is formed by inkjet. This is because it is assumed.
  • the film thickness of each color of R, G, B can be adjusted only by adjusting the number of ink droplets to be dropped. Therefore, the film thickness adjustment for each color is easier than the vapor deposition method or the sputtering method. Therefore, by making the thickness of the hole transport layer different, the thickness of the functional layer can be finely adjusted easily and accurately, and the optical characteristics can be further improved.
  • the R hole transport layer has a thickness of 13 nm to 30 nm
  • the G hole transport layer has a thickness of 12 nm to 21 nm
  • the B hole transport layer has a thickness of 10 nm.
  • the thickness of the transparent conductive layer of each of the R, G, and B colors may be 15 nm or more and 20 nm or less.
  • the hole transport layer may have a function of injecting holes into the organic light emitting layer.
  • the hole injection property can be enhanced even if the functional layer includes only two layers.
  • the functional layer includes a transparent conductive layer provided on the first electrode, a hole injection layer provided on the transparent conductive layer, and a hole transport layer provided on the hole injection layer. It is good as well.
  • the hole injection property can be improved as compared with the case where the functional layer is composed of a transparent conductive layer and a hole transport layer.
  • the film thickness of the hole transport layer is almost equal for each color of R, G, B, and the film thickness of the transparent conductive layer and the hole injection layer is the same for R, G, B. Also good.
  • the film thickness of the functional layer can be finely adjusted by finely adjusting the film thickness of the hole transport layer in each of R, G, and B colors.
  • the transparent conductive layer and the hole injection layer are formed by a vapor deposition method or a sputtering method in which the film thickness of each color is difficult to finely adjust, and the hole transport layer is formed by an ink jet method in which the film thickness of each color is easy to finely adjust. This is effective when filming.
  • the film thickness of the hole transport layer is different for each color of R, G, B, and the film thickness of the transparent conductive layer and the hole injection layer is the same for R, G, B. Also good.
  • the film thicknesses of the functional layers of R, G, and B colors can be made different within a substantially equal range.
  • the transparent conductive layer and the hole injection layer have the same thickness and the hole transport layer has a different thickness because the transparent conductive layer and the hole injection layer are formed by vapor deposition or sputtering.
  • the hole transport layer is assumed to be formed by an inkjet method.
  • the film thickness of each color of R, G, B can be adjusted only by adjusting the number of ink droplets to be dropped. Therefore, the film thickness adjustment for each color is easier than the vapor deposition method or the sputtering method. Therefore, by making the thickness of the hole transport layer different, the thickness of the functional layer can be finely adjusted easily and accurately, and the optical characteristics can be further improved.
  • the R, G, and B color hole injection layers each have a thickness greater than 0 nm and 5 nm or less, the R hole transport layer has a thickness of 15 nm to 25 nm, and the G hole.
  • the film thickness of the transport layer is 9 nm or more and 16 nm or less, the film thickness of the B hole transport layer is 5 nm or more and 9 nm or less, and the film thickness of the transparent conductive layer of each color of R, G, B is 15 nm or more and 20 nm or less. It is good also as being.
  • the R functional layer has a thickness of 28 nm to 50 nm
  • the G functional layer has a thickness of 27 nm to 41 nm
  • the B functional layer has a thickness of 26 nm to 35 nm. It is good.
  • An organic EL panel includes a first electrode that reflects incident light, a second electrode that is disposed to face the first electrode and transmits incident light, and Between the first electrode and the second electrode, which is disposed between the first electrode and the second electrode and is provided corresponding to each color of R (red), G (green), and B (blue).
  • An organic light emitting layer that emits light of each color of R, G, and B when a voltage is applied, and is disposed between the first electrode and the organic light emitting layer, and corresponds to each color of R, G, and B.
  • a functional layer composed of one or more layers provided, and a part of the light of each color of R, G, B emitted from the organic light emitting layer does not travel to the first electrode side.
  • the remaining part of the emitted R, G, B light is incident on the first electrode through the functional layer and reflected by the first electrode, and then the functional layer, the organic light emitting layer, and
  • a second optical path that is emitted to the outside through the second electrode, and the thicknesses of the functional layers of the colors R, G, and B are all 26 nm or more and 50 nm or less, and the R, G,
  • the difference in film thickness between the functional layers of B colors is 1 nm or more and 16 nm or less, and the optical distance from the organic light emitting layer to the first electrode in each color of R, G, B is 49 nm or more and 90 nm or less.
  • the film thickness of the functional layer disposed between the organic light emitting layer and the first electrode is adjusted to a film thickness corresponding to the film thickness at which the light emission efficiency exhibits a maximum value, The light extraction efficiency in each of the G and B colors can be increased.
  • the film thickness of the functional layer is substantially equal for each color of R, G, and B, the film thickness adjustment for each color of R, G, and B is easier than in the prior art.
  • a display device includes the organic EL panel, and a drive circuit that applies a voltage between the first electrode and the second electrode.
  • the organic EL panel manufacturing method includes a first step of preparing a first electrode that reflects incident light, and R (red) and G (green) on the first electrode. ), B (blue) corresponding to each color, a second step of providing a functional layer composed of one or more layers, and the R, G, B color functional layers on the R, G, B color functional layers, respectively.
  • the thicknesses of the functional layers of the R, G, and B colors are the thicknesses corresponding to the thicknesses at which the light emission efficiency shows maximum values when the thickness is 60 nm or less, and the R, G, , B are substantially equal for each color, and from the organic light emitting layer in each color of R, G, B Optical distance to the electrodes, there is 100nm or less, and the R, G, formed to be substantially equal in B colors.
  • the organic EL panel of the first aspect can be manufactured.
  • the organic EL panel manufacturing method includes a first step of preparing a first electrode that reflects incident light, and R (red) and G (green) on the first electrode. ), B (blue) corresponding to each color, a second step of providing a functional layer composed of one or more layers, and the R, G, B color functional layers on the R, G, B color functional layers, respectively.
  • the thicknesses of the functional layers of the R, G, and B colors are all 26 nm to 50 nm, and the difference in thickness of the functional layers of the R, G, and B colors is 1 nm. 16 nm or less from the organic light emitting layer in each of the R, G, and B colors.
  • the optical distance to the electrodes, a less than 49 nm 90 nm, and the R, G, to form B the difference between the color optical distance below 25nm than 0 nm.
  • the organic EL panel of the second aspect can be manufactured.
  • the “film thickness corresponding to the film thickness at which the light emission efficiency has a maximum value” means a film thickness within a range of ⁇ 10% with respect to the film thickness at which the light emission efficiency has a maximum value.
  • “substantially equal for each color of R, G, B” includes the following (1) to (3), and “same for each color of R, G, B” means “(1) and (2) ).
  • the design values of R, G, B colors are the same, and the measured values are also the same.
  • the design values of R, G, and B colors are the same, the measured values are shifted within the range of manufacturing error ( ⁇ 5 [nm] per layer).
  • the design values of the R, G, and B colors are deviated within a range that satisfies the allowable range of luminance deviation and chromaticity deviation.
  • FIG. 3 is a cross-sectional view schematically showing the pixel structure of the organic EL panel according to the embodiment of the present invention.
  • R red
  • G green
  • B blue
  • Each pixel is composed of an organic EL element using an organic material.
  • the blue organic EL device includes a substrate 1, a reflective electrode 3, a transparent conductive layer 4, a hole transport layer 6, an organic light emitting layer 7b, an electron transport layer 8, a transparent electrode 9, a thin film sealing layer 10, and a resin sealing layer 11. And a color filter (CF) 12b.
  • An organic light emitting layer 7 b is disposed between the reflective electrode 3 and the transparent electrode 9.
  • the transparent conductive layer 4 and the hole transport layer 6 are disposed between the reflective electrode 3 and the organic light emitting layer 7b (hereinafter referred to as 1 disposed between the reflective electrode and the organic light emitting layer).
  • two or more layers are referred to as “functional layers”.
  • the green organic EL element has the same configuration as the blue organic EL element except for the organic light emitting layer 7g and the color filter 12g.
  • the red organic EL element also has the same configuration as the blue organic EL element except for the organic light emitting layer 7r and the color filter 12r.
  • the substrate 1, the electron transport layer 8, the transparent electrode 9, the thin film sealing layer 10, and the resin sealing layer 11 are common in the organic EL elements of each color, and the other layers are divided by the bank 2. Yes.
  • each color organic EL element a resonator structure is realized by the presence of the reflective electrode 3.
  • a part of the light emitted from the organic light emitting layer 7 proceeds to the transparent electrode 9 side without proceeding to the reflective electrode 3 side, and is emitted to the outside through the transparent electrode 9;
  • the remaining part of the light emitted from the organic light emitting layer 7 is incident on the reflective electrode 3 through the functional layer, reflected by the reflective electrode 3, and then emitted to the outside through the functional layer, the organic light emitting layer 7 and the transparent electrode 9.
  • a second optical path is formed.
  • the organic EL element By adjusting the distance between the organic light emitting layers 7b, 7g and 7r and the reflective electrode 3 so that the direct light passing through the first optical path and the reflected light passing through the second optical path are intensified by the interference effect, the organic EL element The light extraction efficiency can be increased.
  • the adjustment of the distance can be realized by adjusting the film thickness of the functional layer.
  • the thickness of the functional layer for each color of R, G, and B is a thickness corresponding to the thickness at which the light emission efficiency is maximum at 60 nm or less, and each color of R, G, and B Is adjusted almost equally.
  • the optical distance from the organic light emitting layer 7 to the reflective electrode 3 in each color of R, G, and B is 100 nm or less, and is adjusted almost equally in each color of R, G, and B.
  • the optical distance is obtained by the product of the film thickness and the refractive index in the case of a single layer structure, and is obtained by taking the product of the film thickness and the refractive index for each layer in the case of two or more multilayer structures. It is obtained by summing up the products.
  • the functional layer has a three-layer structure of the transparent conductive layer 4, the hole injection layer 5, and the hole transport layer 6.
  • the hole transport layer 6 may have a hole injection function.
  • the functional layer has a two-layer structure of a transparent conductive layer and a hole transport layer.
  • the material of the transparent conductive layer is ITO (Indium Tin Oxide)
  • the material of the hole transport layer is an organic material
  • the material of the reflective electrode is the material of the organic light emitting layer of silver, R, G, B colors, and the summation.
  • RP158, GP1200, and BP105 manufactured by the company are used.
  • FIG. 5 shows the luminous efficiency [cd / A] when the film thickness of the transparent conductive layer is 20 [nm] and the film thickness of the hole transport layer is changed from 0 [nm] to 600 [nm] under the above conditions.
  • FIG. 5 shows that when the film thickness of the hole transport layer is changed, the light emission efficiency periodically varies due to the light interference effect. It can also be seen that when the film thickness of the hole transport layer is in the range from 0 [nm] to 600 [nm], the emission efficiency shows maximum values at four locations for each of the R, G, and B colors.
  • FIG. 6 is a diagram showing changes in chromaticity of R, G, and B colors when the film thickness of the hole transport layer is changed from 0 [nm] to 600 [nm] under the same conditions as FIG. .
  • the film thickness at which the luminous efficiency has a maximum value and the film thickness at which the chromaticity (x, y) of each color of R, G, and B is optimal do not always match.
  • the film thickness of the functional layer is adjusted to a film thickness (within a range of ⁇ 10%) in the vicinity of which the light emission efficiency shows a maximum value in consideration of chromaticity.
  • a resonator structure can be realized by adjusting the film thickness of the functional layer to a film thickness in the vicinity where the light emission efficiency shows a maximum value.
  • the resonator structure having the smallest thickness of the functional layer is referred to as 1st cavity, 2nd cavity, 3rd cavity, and 4th cavity in order.
  • the luminous efficiency of 1st cavity is higher than that of 2nd cavity. Therefore, if the 1st cavity is adopted, the luminous efficiency of the organic EL element can be increased as compared with the case where the 2nd cavity is adopted.
  • the film thickness of the hole transport layer in which the light emission efficiency of each color of R, G, B shows the maximum value is a narrow range (function) of 0 [nm] or more and 40 [nm] or less.
  • the film thickness of the layer is concentrated in the range of 0 [nm] to 60 [nm].
  • the film thickness of the hole transport layer in which the luminous efficiency of each color of R, G, B shows the maximum value is dispersed in a wide range of 100 [nm] to 250 [nm]. .
  • FIG. 7 is a diagram for comparing the case where the 1st cavity is adopted with the case where the 2nd cavity is adopted in the organic EL element under the same conditions as in FIG.
  • Example 1 (1st cavity), the R, G, and B transparent conductive layers have a common thickness of 20 [nm], and the hole transport layers have a thickness of 25 [nm], 15 [nm], The chromaticity of each color of R, G, B is adjusted to an appropriate range using CF (color filter).
  • CF color filter
  • the luminous efficiencies of the R, G, and B colors are 2.1 [cd / A], 4.9 [cd / A], and 0.49 [cd / A].
  • the allowable film misalignment ranges for R, G, and B colors are ⁇ 15 to +10 [nm], ⁇ 15 to +7 [nm], and ⁇ 20 to +8 [nm], and the allowable margin width for each color of R, G, and B Are 25 [nm], 22 [nm], and 28 [nm].
  • the “allowable film misalignment range” indicates a limit at which the film thickness of the functional layer can be shifted from the optimum value on condition that the allowable range shown in FIG. 8 is satisfied.
  • FIG. 8 shows the following allowable range.
  • Variation in luminous efficiency within the surface of the organic EL panel is within 20 [%]
  • Variation in chromaticity within the surface of the organic EL panel is within 0.04 for both x and y
  • Viewing angle The luminance at 30 ° is 90% or more with respect to the luminance at the viewing angle 0 °, and the luminance at 45 ° viewing angle is 80% or more with respect to the luminance at the viewing angle 0 °.
  • Viewing angle 50 ° The difference between the chromaticity at the angle of view and the chromaticity at the viewing angle of 0 ° is within 0.04 for both x and y. The wider the allowable film deviation range, the wider the allowable range of manufacturing errors in the film thickness of the functional layer.
  • the “allowable margin width” is the difference between the upper limit and the lower limit of the allowable film deviation range (for example, in R of Example 1, the upper limit is +10 and the lower limit is ⁇ 15, so the difference is 25).
  • the R, G, B transparent conductive layers have a common film thickness of 20 [nm], and the hole transport layers have a thickness of 220 [nm], 172 [nm], The color chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using a color filter.
  • the luminous efficiencies of the R, G, and B colors are 1.4 [cd / A], 4.2 [cd / A], and 0.23 [cd / A].
  • the allowable film misalignment range for each color of R, G, B is -8 to +6 [nm],-(non-standard) [nm], -10 to +7 [nm], and the allowable margin for each color of R, G, B The width is 14 [nm], 0 [nm], and 17 [nm].
  • Example 1 is superior to Comparative Example 1 in both luminous efficiency and ease of film thickness adjustment.
  • the optical distance L [nm], the resonance wavelength ⁇ [nm], and the phase shift ⁇ [radian] between the reflective electrode 3 and the organic light emitting layers 7b, 7g, and 7r satisfy the following formula 1. Fulfill.
  • phase shift ⁇ at the reflective electrode 3 can be obtained by the following formula 2.
  • n 1 is the refractive index of the transparent conductive layer 4
  • n 0 is the refractive index of the reflective electrode 3
  • k 0 is the extinction coefficient of the reflective electrode 3.
  • Example 1 and Comparative Example 1 As shown in FIG. 9, in Example 1 and Comparative Example 1, it can be confirmed that the right side m of Equation 1 is an integer.
  • the resonance wavelengths ⁇ of the R, G, and B colors are 638 [nm], 535 [nm], and 468 [nm].
  • the allowable margin width of the thickness of the functional layer in Example 1 is 20 [nm] or more, it can be seen that the right side m of Equation 1 may be other than an integer as in Example 1 ′ of FIG. .
  • FIG. 10 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 10A and 10B show the viewing angle dependence of the luminance in Example 1 and Comparative Example 1.
  • Example 1 the viewing angle is 30 ° and the luminance is around 100 [%], the viewing angle is 45 ° and the luminance is around 95 [%] (with CF).
  • Comparative Example 1 the viewing angle is 30 ° and the luminance is around 95 [%]
  • the viewing angle is 45 ° and the luminance is around 80 [%] (with CF). Therefore, it can be seen that both Example 1 and Comparative Example 1 satisfy the allowable range of FIG. However, it can be said that Example 1 is superior in viewing angle characteristics because the viewing angle dependency of luminance is smaller than that in Comparative Example 1.
  • FIGS. 10C and 10D show the viewing angle dependence of the chromaticity of Example 1 and Comparative Example 1.
  • Example 1 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.005, and ⁇ y is about 0.005 (with CF).
  • ⁇ x is the absolute value of ⁇ CIE for x
  • ⁇ y is the absolute value of ⁇ CIE for y.
  • Comparative Example 1 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.038, and ⁇ y is about 0.025 (with CF). Therefore, it can be seen that both Example 1 and Comparative Example 1 satisfy the allowable range of FIG. However, it can be said that Example 1 is superior in viewing angle characteristics because the viewing angle dependency of chromaticity is smaller than that in Comparative Example 1.
  • FIG. 11 is a diagram for explaining the viewing angle characteristic of R (red) in the organic EL element under the same conditions as in FIG.
  • FIGS. 11A and 11B show the viewing angle dependence of luminance in Example 1 and Comparative Example 1.
  • the viewing angle is 30 ° and the luminance is around 100 [%]
  • the viewing angle is 45 ° and the luminance is around 95 [%] (with CF).
  • Comparative Example 1 the viewing angle is 30 ° and the luminance is around 110 [%]
  • the viewing angle is 45 ° and the luminance is around 102 [%] (with CF). Therefore, it can be seen that both Example 1 and Comparative Example 1 satisfy the allowable range of FIG. However, it can be said that Example 1 is superior in viewing angle characteristics because the viewing angle dependency of luminance is smaller than that in Comparative Example 1.
  • FIG. 11C and 11D show the viewing angle dependence of the chromaticity of Example 1 and Comparative Example 1.
  • the viewing angle is 50 °
  • the chromaticity change ⁇ x is about 0.012
  • ⁇ y is about 0.013 (with CF).
  • Comparative Example 1 the viewing angle is 50 °
  • the chromaticity change ⁇ x is about 0.023
  • ⁇ y is about 0.025 (with CF). Therefore, it can be seen that both Example 1 and Comparative Example 1 satisfy the allowable range of FIG. However, it can be said that Example 1 is superior in viewing angle characteristics because the viewing angle dependency of chromaticity is smaller than that in Comparative Example 1. (blue)
  • Example 12 is a diagram for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 12A and 12B show the viewing angle dependence of the luminance of Example 1 and Comparative Example 1.
  • FIG. According to this, in Example 1, the viewing angle is 30 ° and the luminance is around 100 [%], the viewing angle is 45 ° and the luminance is around 95 [%] (with CF).
  • Comparative Example 1 the viewing angle is 30 ° and the luminance is around 110 [%]
  • the viewing angle is 45 ° and the luminance is around 117 [%] (with CF). Therefore, it can be seen that both Example 1 and Comparative Example 1 satisfy the allowable range of FIG. However, it can be said that Example 1 is superior in viewing angle characteristics because the viewing angle dependency of luminance is smaller than that in Comparative Example 1.
  • FIGS. 12C and 12D show the viewing angle dependence of the chromaticity of Example 1 and Comparative Example 1.
  • Example 1 the viewing angle is 50 °, the chromaticity change ⁇ x is almost 0, and ⁇ y is almost 0 (with CF).
  • Comparative Example 1 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.005, and ⁇ y is about 0.01 (with CF). Therefore, it can be seen that both Example 1 and Comparative Example 1 satisfy the allowable range of FIG. However, it can be said that Example 1 is superior in viewing angle characteristics because the viewing angle dependency of chromaticity is smaller than that in Comparative Example 1.
  • Example 1 the viewing angle characteristics of Example 1 are superior to Comparative Example 1 for each of R, G, and B colors.
  • G green
  • Comparative Example 1 barely satisfies the allowable range of FIG. 8, so that the film thickness margin of the functional layer cannot be secured
  • Example 1 satisfies the allowable range of FIG. 8 with a margin. Therefore, the advantage is high in that the film thickness margin of the functional layer can be secured.
  • the luminous efficiency of the first cavity is higher than the luminous efficiency of the second cavity. Therefore, if the 1st cavity is adopted, the light emission efficiency of the organic EL element can be increased as compared with the case where the 2nd cavity is adopted. Further, according to FIG. 13, in the 1st cavity, the film thickness of the hole transport layer in which the light emission efficiency of each color of R, G, B shows the maximum value is a narrow range (function) of 0 [nm] or more and 45 [nm] or less.
  • the film thickness of the layer is concentrated in the range of 0 [nm] to 60 [nm].
  • the film thickness of the hole transport layer in which the luminous efficiency of each color of R, G, and B has a maximum value is dispersed in a wide range of 100 [nm] to 250 [nm]. . Therefore, if the 1st cavity is adopted for the organic EL elements of each color of R, G, B, compared with the case where the 2nd cavity is adopted, it is not necessary to make a hole transport layer of each color of R, G, B so much. It is easy to adjust the film thickness in the manufacturing process.
  • FIG. 14 is a diagram for comparing the case where 1st cavity is adopted with the case where 2nd cavity is adopted in the organic EL element under the same condition as FIG.
  • Example 2 In Example 2 (1st cavity), the R, G, and B transparent conductive layers have a common thickness of 15 [nm], and the hole transport layers have a thickness of 13 [nm], 12 [nm], 11 [nm], and the chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using a CF (color filter).
  • Comparative Example 2 (2nd cavity) the R, G, and B transparent conductive layers have a common film thickness of 15 [nm], and the hole transport layers have film thicknesses of 195 [nm] and 170 [nm], respectively. The color chromaticity of each of R, G, and B is adjusted to an appropriate range using a color filter. Comparing Example 2 and Comparative Example 2, it can be seen that Example 2 is superior to Comparative Example 2 in both light emission efficiency and ease of film thickness adjustment.
  • FIG. 16 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG.
  • FIGS. 16A and 16B show the viewing angle dependence of luminance in Example 2 and Comparative Example 2.
  • Example 2 the viewing angle is 30 ° and the luminance is around 95 [%], the viewing angle is 45 ° and the luminance is around 90 [%] (with CF).
  • Comparative Example 2 the viewing angle is 30 ° and the luminance is around 90 [%], the viewing angle is 45 ° and the luminance is around 78 [%] (with CF). Therefore, it can be seen that Example 2 satisfies the allowable range of FIG. 8, but Comparative Example 2 does not satisfy the allowable range of FIG.
  • FIG. 16C and 16D show the viewing angle dependence of chromaticity in Example 2 and Comparative Example 2.
  • FIG. According to this, in Example 2, the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.007, and ⁇ y is about 0.007 (with CF).
  • Comparative Example 2 the viewing angle is 50 °, the chromaticity change ⁇ x exceeds 0.04, and ⁇ y is about 0.023 (with CF). Therefore, it can be seen that Example 2 satisfies the allowable range of FIG. 8, but Comparative Example 2 does not satisfy the allowable range of FIG. (Red)
  • FIG. 17 is a diagram for explaining the viewing angle characteristic of R (red) in the organic EL element under the same conditions as in FIG.
  • FIG. 17 (a) and 17 (b) show the viewing angle dependence of luminance in Example 2 and Comparative Example 2.
  • the viewing angle is 30 ° and the luminance is around 93 [%]
  • the viewing angle is 45 ° and the luminance is around 87 [%] (with CF).
  • Comparative Example 2 the viewing angle is 30 ° and the luminance is around 100 [%]
  • the viewing angle is 45 ° and the luminance is around 90 [%] (with CF). Therefore, it can be seen that both Example 2 and Comparative Example 2 satisfy the allowable range of FIG.
  • FIG. 17C and 17D show the viewing angle dependence of chromaticity in Example 2 and Comparative Example 2.
  • FIG. According to this, in Example 2, the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.002, and ⁇ y is about 0.002 (with CF).
  • Comparative Example 2 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.007, and ⁇ y is about 0.007 (with CF). Therefore, it can be seen that both Example 2 and Comparative Example 2 satisfy the allowable range of FIG. However, it can be said that Example 2 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 2. (blue) FIG.
  • Example 18 is a diagram for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 18A and 18B show the viewing angle dependence of the luminance in Example 2 and Comparative Example 2.
  • FIG. According to this, in Example 2, the viewing angle is 30 ° and the luminance is around 98 [%], the viewing angle is 45 ° and the luminance is around 95 [%] (with CF).
  • Comparative Example 2 the viewing angle is 30 ° and the luminance is around 100 [%], the viewing angle is 45 ° and the luminance is around 98 [%] (with CF). Therefore, it can be seen that both Example 2 and Comparative Example 2 satisfy the allowable range of FIG.
  • Example 18 (c) and 18 (d) show the viewing angle dependence of chromaticity in Example 2 and Comparative Example 2.
  • FIG. According to this, in Example 2, the viewing angle is 50 °, the chromaticity change ⁇ x is approximately 0, and ⁇ y is approximately 0.004 (with CF).
  • Comparative Example 2 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.005, and ⁇ y is about 0.008 (with CF). Therefore, it can be seen that both Example 2 and Comparative Example 2 satisfy the allowable range of FIG. However, it can be said that Example 2 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 2.
  • Example 2 the viewing angle characteristics of Example 2 are superior to Comparative Example 2 for each of R, G, and B colors.
  • Comparative Example 2 does not satisfy the allowable range of FIG. 8, whereas Example 2 is highly advantageous in that it satisfies the allowable range of FIG. [Third simulation] ⁇ Conditions>
  • the transparent conductive layer is made of IZO (Indium Zinc Oxide) and the reflective electrode is made of aluminum. The rest is the same as the first simulation. ⁇ Emission efficiency and ease of film thickness adjustment> FIG.
  • the film thickness of the hole transport layer in which the light emission efficiency of each color of R, G, B shows the maximum value is a narrow range (function) of 0 [nm] or more and 40 [nm] or less.
  • the film thickness of the layer is concentrated in the range of 0 [nm] to 60 [nm].
  • the film thickness of the hole transport layer in which the luminous efficiency of each color of R, G, and B has a maximum value is dispersed in a wide range of 100 [nm] to 250 [nm]. . Therefore, if the 1st cavity is adopted for the organic EL elements of each color of R, G, B, compared with the case where the 2nd cavity is adopted, it is not necessary to make a hole transport layer of each color of R, G, B so much. It is easy to adjust the film thickness in the manufacturing process.
  • FIG. 20 is a diagram for comparing the case where the 1st cavity is employed with the case where the 2nd cavity is employed in the organic EL element under the same conditions as in FIG.
  • Example 3 In Example 3 (1st cavity), the thickness of the transparent conductive layer of each color of R, G, B is 20 [nm] in common, and the thickness of the hole transport layer is 30 [nm], 21 [nm], respectively. The chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using CF (color filter).
  • Comparative Example 3 (2nd cavity) the R, G, and B transparent conductive layers have a common thickness of 20 [nm], and the hole transport layers have a thickness of 217 [nm], 185 [nm], The chromaticity of each color of R, G, and B is adjusted to an appropriate range using a color filter. Comparing Example 3 and Comparative Example 3, it can be seen that Example 3 is superior to Comparative Example 3 in both light emission efficiency and ease of film thickness adjustment.
  • FIG. 21 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 22 (a) and 22 (b) show the viewing angle dependence of luminance in Example 3 and Comparative Example 3.
  • FIG. 22 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 22 (a) and 22 (b) show the viewing angle dependence of luminance in Example 3 and Comparative Example 3.
  • Example 3 the viewing angle is 30 ° and the luminance is around 100%, and the viewing angle is 45 ° and the luminance is around 90% (with CF).
  • Comparative Example 3 the viewing angle is 30 ° and the luminance is around 97 [%], the viewing angle is 45 ° and the luminance is around 79 [%] (with CF). Therefore, it can be seen that Example 3 satisfies the allowable range of FIG. 8, but Comparative Example 3 does not satisfy the allowable range of FIG.
  • Example 3 shows the viewing angle dependence of chromaticity in Example 3 and Comparative Example 3.
  • FIG. According to this, in Example 3, the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.005, and ⁇ y is about 0.005 (with CF).
  • Comparative Example 3 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.04, and ⁇ y is about 0.025 (with CF). Therefore, it can be seen that both Example 3 and Comparative Example 3 satisfy the allowable range of FIG. However, it can be said that Example 3 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 3. (Red) FIG.
  • FIG. 23 is a diagram for explaining the viewing angle characteristic of R (red) in the organic EL element under the same conditions as in FIG.
  • FIGS. 23A and 23B show the viewing angle dependence of luminance in Example 3 and Comparative Example 3.
  • the viewing angle is 30 ° and the luminance is around 98 [%]
  • the viewing angle is 45 ° and the luminance is around 90 [%] (with CF).
  • Comparative Example 3 the viewing angle is 30 ° and the luminance is around 98 [%]
  • the viewing angle is 45 ° and the luminance is around 80 [%] (with CF). Therefore, it can be seen that both Example 3 and Comparative Example 3 satisfy the allowable range of FIG. However, it can be said that Example 3 is superior in viewing angle characteristics since the viewing angle dependency of luminance is smaller than that in Comparative Example 3.
  • Example 3 shows the viewing angle dependence of the chromaticity of Example 3 and Comparative Example 3.
  • the viewing angle is 50 °
  • the chromaticity change ⁇ x is about 0.012
  • ⁇ y is about 0.012 (with CF).
  • Comparative Example 3 the viewing angle is 50 °
  • the chromaticity change ⁇ x is about 0.023
  • ⁇ y is about 0.023 (with CF). Therefore, it can be seen that both Example 3 and Comparative Example 3 satisfy the allowable range of FIG. However, it can be said that Example 3 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 3. (blue)
  • FIG. 1 shows the viewing angle dependence of the chromaticity of Example 3 and Comparative Example 3.
  • Example 3 is a diagram for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG. 24A and 24B show the viewing angle dependence of the luminance of Example 3 and Comparative Example 3.
  • FIG. According to this, in Example 3, the viewing angle is 30 ° and the luminance is around 98 [%], the viewing angle is 45 ° and the luminance is around 95 [%] (with CF).
  • Comparative Example 3 the viewing angle is 30 ° and the luminance is around 97 [%], the viewing angle is 45 ° and the luminance is around 87 [%] (with CF). Therefore, it can be seen that both Example 3 and Comparative Example 3 satisfy the allowable range of FIG. However, it can be said that Example 3 is superior in viewing angle characteristics since the viewing angle dependency of luminance is smaller than that in Comparative Example 3.
  • Example 3 shows the viewing angle dependence of the chromaticity of Example 3 and Comparative Example 3.
  • FIG. According to this, in Example 3, the viewing angle is 50 °, the chromaticity change ⁇ x is almost 0, and ⁇ y is almost 0 (with CF).
  • Comparative Example 3 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.005, and ⁇ y is about 0.01 (with CF). Therefore, it can be seen that both Example 3 and Comparative Example 3 satisfy the allowable range of FIG. However, it can be said that Example 3 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 3.
  • the functional layer has a three-layer structure including a transparent conductive layer, a hole injection layer, and a hole transport layer.
  • the transparent conductive layer material is IZO (Indium Zinc Oxide)
  • the hole injection layer material is an inorganic material
  • the hole transport layer material is an organic material
  • the reflective electrode material is aluminum, R, G, and B organic colors.
  • FIG. 25 shows that, under the above conditions, the thickness of the transparent conductive layer is 20 [nm], the thickness of the hole injection layer is 5 [nm], and the thickness of the hole transport layer is 0 [nm] to 600 [nm]. It is a figure which shows the change of luminous efficiency [cd / A] when changing to nm]. According to FIG. 25, the luminous efficiency of the first cavity is higher than the luminous efficiency of the second cavity. Therefore, if the 1st cavity is adopted, the light emission efficiency of the organic EL element can be increased as compared with the case where the 2nd cavity is adopted.
  • the film thickness of the hole transport layer in which the light emission efficiency of each color of R, G, and B shows the maximum value is a narrow range (function) of 0 [nm] or more and 35 [nm] or less.
  • the film thickness of the layer is concentrated in the range of 0 [nm] to 60 [nm].
  • the film thickness of the hole transport layer in which the luminous efficiency of each color of R, G, and B has a maximum value is dispersed in a wide range of 100 [nm] to 250 [nm]. .
  • FIG. 26 is a diagram for comparing the case where the 1st cavity is employed with the case where the 2nd cavity is employed in the organic EL element under the same conditions as in FIG.
  • Example 4 In Example 4 (1st cavity), the R, G, and B transparent conductive layers have a common film thickness of 20 [nm], the hole injection layers have a common film thickness of 5 [nm], and hole transport.
  • the film thicknesses of the layers are 25 [nm], 16 [nm], and 9 [nm], respectively, and the chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using a CF (color filter).
  • the R, G, and B transparent conductive layers In Comparative Example 4 (2nd cavity), the R, G, and B transparent conductive layers have a common film thickness of 20 [nm], the hole injection layers have a common film thickness of 5 [nm], and hole transport.
  • the film thicknesses of the layers are 212 [nm], 180 [nm], and 146 [nm], respectively, and the chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using a color filter. Comparing Example 4 and Comparative Example 4, it can be seen that Example 4 is superior to Comparative Example 4 in both luminous efficiency and ease of film thickness adjustment.
  • FIG. 27 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG.
  • FIGS. 28A and 28B show the viewing angle dependence of the luminance of Example 4 and Comparative Example 4.
  • FIG. 28A and 28B show the viewing angle dependence of the luminance of Example 4 and Comparative Example 4.
  • Example 4 the viewing angle is 30 ° and the luminance is around 98 [%], the viewing angle is 45 ° and the luminance is around 92 [%] (with CF).
  • Comparative Example 4 the viewing angle is 30 ° and the luminance is around 97 [%], the viewing angle is 45 ° and the luminance is around 80 [%] (with CF). Therefore, it can be seen that both Example 4 and Comparative Example 4 satisfy the allowable range of FIG. However, it can be said that Example 4 is superior in viewing angle characteristics because the viewing angle dependency of luminance is smaller than that in Comparative Example 4.
  • FIG. 28C and 28D show the viewing angle dependence of chromaticity in Example 4 and Comparative Example 4.
  • FIG. According to this, in Example 4, the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.006, and ⁇ y is about 0.004 (with CF).
  • Comparative Example 4 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.04, and ⁇ y is about 0.026 (with CF). Therefore, it can be seen that both Example 4 and Comparative Example 4 satisfy the allowable range of FIG. However, it can be said that Example 4 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 4. (Red) FIG.
  • FIGS. 29A and 29B show the viewing angle dependence of luminance in Example 4 and Comparative Example 4.
  • Example 4 the viewing angle is 30 ° and the luminance is around 98 [%]
  • the viewing angle is 45 ° and the luminance is around 90 [%] (with CF).
  • Comparative Example 4 the viewing angle is 30 ° and the luminance is around 98 [%]
  • the viewing angle is 45 ° and the luminance is around 80 [%] (with CF). Therefore, it can be seen that both Example 4 and Comparative Example 4 satisfy the allowable range of FIG. However, it can be said that Example 4 is superior in viewing angle characteristics because the viewing angle dependency of luminance is smaller than that in Comparative Example 4.
  • FIGS. 29C and 29D show the viewing angle dependence of the chromaticity of Example 4 and Comparative Example 4.
  • Example 4 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.011, and ⁇ y is about 0.013 (with CF).
  • Comparative Example 4 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.022, and ⁇ y is about 0.023 (with CF). Therefore, it can be seen that both Example 4 and Comparative Example 4 satisfy the allowable range of FIG. However, it can be said that Example 4 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 4. (blue) FIG.
  • FIG. 30 is a diagram for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as in FIG.
  • FIGS. 30A and 30B show the viewing angle dependence of luminance in Example 4 and Comparative Example 4.
  • FIG. According to this, in Example 4, the viewing angle is 30 ° and the luminance is around 98 [%], the viewing angle is 45 ° and the luminance is around 92 [%] (with CF).
  • Comparative Example 4 the viewing angle is 30 ° and the luminance is around 97 [%], the viewing angle is 45 ° and the luminance is around 85 [%] (with CF). Therefore, it can be seen that both Example 4 and Comparative Example 4 satisfy the allowable range of FIG. However, it can be said that Example 4 is superior in viewing angle characteristics because the viewing angle dependency of luminance is smaller than that in Comparative Example 4.
  • Example 4 shows the viewing angle dependence of the chromaticity of Example 4 and Comparative Example 4.
  • FIG. According to this, in Example 4, the viewing angle is 50 °, the chromaticity change ⁇ x is almost 0, and ⁇ y is almost 0 (with CF).
  • Comparative Example 4 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.005, and ⁇ y is about 0.011 (with CF). Therefore, it can be seen that both Example 4 and Comparative Example 4 satisfy the allowable range of FIG. However, it can be said that Example 4 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 4.
  • Example 4 the viewing angle characteristics of Example 4 are superior to Comparative Example 4 for each of the R, G, and B colors.
  • G green
  • Comparative Example 4 barely satisfies the allowable range of FIG. 8, so that the film thickness margin of the functional layer cannot be secured
  • Example 4 satisfies the allowable range of FIG. 8 with a margin. Therefore, the advantage is high in that the film thickness margin of the functional layer can be secured.
  • the transparent conductive layer is made of IZO (Indium Zinc Oxide), and the reflective electrode is made of aluminum. The rest is the same as the fourth simulation. ⁇ Emission efficiency and ease of film thickness adjustment> FIG.
  • the thickness of the transparent conductive layer is 20 [nm]
  • the thickness of the hole injection layer is 5 [nm]
  • the thickness of the hole transport layer is 0 [nm] to 600 [nm]. It is a figure which shows the change of luminous efficiency [cd / A] when changing to nm].
  • the luminous efficiency of the 1st cavity is higher than the luminous efficiency of the 2nd cavity. Therefore, if the 1st cavity is adopted, the light emission efficiency of the organic EL element can be increased as compared with the case where the 2nd cavity is adopted. Further, according to FIG.
  • the film thickness of the hole transport layer in which the light emission efficiency of each color of R, G, B shows the maximum value is in a narrow range (functions from 0 [nm] to 35 [nm]).
  • the film thickness of the layer is concentrated in the range of 0 [nm] to 60 [nm].
  • the film thickness of the hole transport layer in which the luminous efficiency of each color of R, G, and B has a maximum value is dispersed in a wide range of 100 [nm] to 250 [nm]. .
  • the 1st cavity is adopted for the organic EL elements of each color of R, G, B, compared with the case of adopting the 2nd cavity, it is not necessary to make the hole transport layer of each color of R, G, B so much. It is easy to adjust the film thickness in the manufacturing process.
  • FIG. 32 is a diagram for comparing the case where the 1st cavity is employed with the case where the 2nd cavity is employed in the organic EL element under the same conditions as in FIG.
  • Example 5 In Example 5 (1st cavity), the R, G, and B transparent conductive layers have a common film thickness of 20 [nm], the hole injection layers have a common film thickness of 5 [nm], and hole transport. The film thicknesses of the layers are 15 [nm], 9 [nm], and 5 [nm], respectively, and the chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using a CF (color filter).
  • the R, G, and B transparent conductive layers In Comparative Example 5 (2nd cavity), the R, G, and B transparent conductive layers have a common film thickness of 20 [nm], and the hole injection layer has a common film thickness of 5 [nm].
  • the layer thicknesses are 213 [nm], 166 [nm], and 143 [nm], respectively, and the chromaticity of each of the R, G, and B colors is adjusted to an appropriate range using a color filter. Comparing Example 5 and Comparative Example 5, it can be seen that Example 5 is superior to Comparative Example 5 in both light emission efficiency and ease of film thickness adjustment.
  • FIG. 33 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 34 (a) and 34 (b) show the viewing angle dependence of luminance in Example 5 and Comparative Example 5.
  • FIG. 34 is a diagram for explaining the viewing angle characteristics of G (green) in the organic EL element under the same conditions as in FIG. 34 (a) and 34 (b) show the viewing angle dependence of luminance in Example 5 and Comparative Example 5.
  • Example 5 the viewing angle is 30 ° and the luminance is around 100 [%], the viewing angle is 45 ° and the luminance is around 98 [%] (with CF).
  • Comparative Example 5 the viewing angle is 30 ° and the luminance is around 95%, and the viewing angle is 45 ° and the luminance is around 78% (with CF). Therefore, it can be seen that Example 5 satisfies the allowable range of FIG. 8, but Comparative Example 5 does not satisfy the allowable range of FIG.
  • FIGS. 34C and 34D show the viewing angle dependence of chromaticity in Example 5 and Comparative Example 5.
  • Example 5 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.007, and ⁇ y is about 0.005 (with CF).
  • Comparative Example 5 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.038, and ⁇ y is about 0.025 (with CF). Therefore, it can be seen that both Example 5 and Comparative Example 5 satisfy the allowable range of FIG. However, it can be said that Example 5 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 5. (Red) FIG.
  • FIG. 35 is a diagram for explaining the viewing angle characteristics of R (red) in the organic EL element under the same conditions as FIG.
  • FIGS. 35A and 35B show the viewing angle dependence of luminance in Example 5 and Comparative Example 5.
  • FIG. According to this, in Example 5, the viewing angle is 30 ° and the luminance is around 100%, and the viewing angle is 45 ° and the luminance is around 90% (with CF).
  • Comparative Example 5 the viewing angle is 30 ° and the luminance is around 110 [%], the viewing angle is 45 ° and the luminance is around 100 [%] (with CF). Therefore, it can be seen that both Example 5 and Comparative Example 5 satisfy the allowable range of FIG.
  • FIGS. 35C and 35D show the viewing angle dependence of the chromaticity of Example 5 and Comparative Example 5.
  • Example 5 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.012, and ⁇ y is about 0.013 (with CF).
  • Comparative Example 5 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.023, and ⁇ y is about 0.023 (with CF). Therefore, it can be seen that both Example 5 and Comparative Example 5 satisfy the allowable range of FIG. However, it can be said that Example 5 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 5. (blue) FIG.
  • FIG. 36 is a diagram for explaining the viewing angle characteristics of B (blue) in the organic EL element under the same conditions as FIG. 36 (a) and 36 (b) show the viewing angle dependence of luminance in Example 5 and Comparative Example 5.
  • FIG. According to this, in Example 5, the viewing angle is 30 ° and the luminance is around 100 [%], the viewing angle is 45 ° and the luminance is around 98 [%] (with CF).
  • Comparative Example 5 the viewing angle is 30 ° and the luminance is around 104 [%], the viewing angle is 45 ° and the luminance is around 100 [%] (with CF). Therefore, it can be seen that both Example 5 and Comparative Example 5 satisfy the allowable range of FIG. However, it can be said that Example 5 is superior in viewing angle characteristics since the viewing angle dependency of luminance is smaller than that in Comparative Example 5.
  • Example 5 shows the viewing angle dependence of the chromaticity of Example 5 and Comparative Example 5.
  • FIG. According to this, in Example 5, the viewing angle is 50 °, the chromaticity change ⁇ x is almost 0, and ⁇ y is almost 0 (with CF).
  • Comparative Example 5 the viewing angle is 50 °, the chromaticity change ⁇ x is about 0.006, and ⁇ y is about 0.014 (with CF). Therefore, it can be seen that both Example 5 and Comparative Example 5 satisfy the allowable range of FIG. However, it can be said that Example 5 is superior in viewing angle characteristics because chromaticity has less viewing angle dependency than Comparative Example 5.
  • Example 5 is superior to Comparative Example 5 for each of R, G, and B colors.
  • Comparative Example 5 does not satisfy the allowable range of FIG. 8, whereas Example 5 is highly advantageous in that it satisfies the allowable range of FIG.
  • FIG. 37 is a list of film thicknesses of the functional layers of each color of R, G, and B in the simulation
  • FIG. 38 is a list of film thickness differences of the functional layers between RG, GB, and RB in the simulation. It is a table.
  • Examples 1 to 5 have been found to be suitable. Summarizing Examples 1 to 5, the following can be said.
  • the thickness of the functional layer for each color of R, G, B is set to 26 [nm] or more and 50 [nm] or less, and the difference in the thickness of the functional layer for each color of R, G, B is set to 1 [nm] or more. What is necessary is just to be 16 [nm] or less.
  • the optical distance from the organic light emitting layer of each color of R, G, B to the reflective electrode is set to 49 [nm] or more and 90 [nm] or less, and the difference of the optical distance of each color of R, G, B is 0 [ nm] or more and 25 [nm] or less. The optical distance is rounded off to the nearest 0.1.
  • the thickness of the R hole transport layer is set to 13 nm to 30 nm, and the G hole transport layer
  • the film thickness of the transparent transport layer of R, G, B is set to be 12 [nm] or more and 21 [nm] or less
  • the film thickness of the B hole transport layer is 10 [nm] or more and 15 [nm] or less. May be set to 15 [nm] or more and 20 [nm] or less.
  • the thickness of the hole injection layer of each color of R, G, B is larger than 0 [nm]. [Nm] or less, the R hole transport layer thickness is 15 [nm] or more and 25 [nm] or less, and the G hole transport layer thickness is 9 [nm] or more and 16 [nm] or less.
  • the film thickness of the B hole transport layer may be 5 nm or more and 9 nm or less, and the film thickness of the transparent conductive layer of each color of R, G, and B may be 15 nm or more and 20 nm or less.
  • the thickness of the functional layer of R is 28 [nm] or more and 50 [nm] or less
  • the thickness of the functional layer of G is 27 [nm] or more and 41 [nm] or less
  • the thickness of the functional layer of B May be 26 [nm] or more and 35 [nm] or less.
  • the transparent conductive layer and the hole injection layer have the same thickness for each color of R, G, and B, and It is preferable to make the thickness of the transport layer different. This is because it is assumed that the transparent conductive layer and the hole injection layer are formed by a vapor deposition method or a sputtering method, and the hole transport layer is formed by an ink jet method. In the ink jet method, the film thickness of each color of R, G, B can be adjusted only by adjusting the number of ink droplets to be dropped. Therefore, the film thickness adjustment for each color is easier than the vapor deposition method or the sputtering method.
  • the substrate 1 is, for example, a TFT (Thin Film Transistor) substrate.
  • the material of the substrate 1 include glass plates and quartz plates such as soda glass, non-fluorescent glass, phosphate glass, and borate glass, and acrylic resins, styrene resins, polycarbonate resins, epoxy resins, polyethylene, Examples thereof include plastic plates or plastic films such as polyester and silicone resin, and metal plates or foils such as alumina.
  • the bank 2 only needs to be formed of an insulating material, and preferably has organic solvent resistance. Moreover, since the bank 2 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 2 be formed of a material having high resistance to these processes.
  • the material of the bank 2 may be an organic material such as resin or an inorganic material such as glass. An acrylic resin, a polyimide resin, a novolac type phenol resin, or the like can be used as the organic material, and silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or the like can be used as the inorganic material. it can.
  • the reflective electrode 3 is electrically connected to the TFT disposed on the substrate 1, functions as a positive electrode of the organic EL element, and emits light emitted from the organic light emitting layers 7b, 7g, and 7r toward the reflective electrode 3.
  • the reflective function may be exhibited by the constituent material of the reflective electrode 3 or may be exhibited by applying a reflective coating to the surface portion of the reflective electrode 3.
  • the reflective electrode 3 is, for example, Ag (silver), APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy). ) Etc.
  • the transparent conductive layer 4 functions as a protective layer that prevents the reflective electrode 3 from being naturally oxidized during the manufacturing process.
  • the material of the transparent conductive layer 4 may be formed of a conductive material having a sufficient translucency with respect to the light generated in the organic light emitting layers 7b, 7g, and 7r.
  • ITO or IZO is preferable. This is because good conductivity can be obtained even if the film is formed at room temperature.
  • the hole injection layer 5 has a function of injecting holes into the organic light emitting layers 7b, 7g, and 7r.
  • an oxide of a transition metal such as tungsten oxide (WOx), molybdenum oxide (MoOx), or molybdenum tungsten oxide (MoxWyOz) is used.
  • tungsten oxide WOx
  • MoOx molybdenum oxide
  • MoxWyOz molybdenum tungsten oxide
  • metal compounds such as nitrides of transition metals can also be applied.
  • Examples of the material for the hole transport layer 6 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives described in JP-A-5-163488.
  • Particularly preferred are a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound.
  • Organic light emitting layer 7b, 7g, and 7r examples include oxinoid compounds, perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, and pyrrolopyrrole compounds described in JP-A-5-163488.
  • the material constituting the electron transport layer may be doped with an alkali metal such as Na, Ba, or Ca or an alkaline earth metal.
  • the transparent electrode 9 functions as a negative electrode of the organic EL element.
  • the material of the transparent electrode 9 may be formed of a conductive material having sufficient translucency with respect to the light generated in the organic light emitting layers 7b, 7g, and 7r.
  • ITO or IZO is preferable.
  • Thin film sealing layer The thin film sealing layer 10 has a function of preventing each layer sandwiched between the substrate 1 from being exposed to moisture or air.
  • the material of the thin film sealing layer 10 is, for example, silicon nitride (SiN), silicon oxynitride (SiON), resin, or the like.
  • the resin sealing layer 11 is formed by bonding a back panel composed of layers from the substrate 1 to the thin film sealing layer 10 and a front panel on which the color filters 12b, 12g, and 12r are formed, and exposing each layer to moisture and air. It has a function to prevent
  • the material of the resin sealing layer 11 is, for example, a resin adhesive.
  • the color filters 12b, 12g, and 12r have a function of correcting the chromaticity of light emitted from the organic EL element. [Display device] FIG.
  • FIG. 39 is a diagram illustrating the appearance of a display device according to an embodiment of the invention.
  • FIG. 40 is a diagram showing functional blocks of the display device according to the embodiment of the present invention.
  • the display device 15 includes an organic EL panel 16 and a drive control unit 17 electrically connected thereto.
  • the organic EL panel 16 has a pixel structure shown in FIG.
  • the drive control unit 17 includes drive circuits 18 to 21 that apply a voltage between the reflective electrode 3 and the transparent electrode 9 of each organic EL element, and a control circuit 22 that controls the operation of the drive circuits 18 to 21.
  • Method for manufacturing organic EL panel Next, a method for manufacturing the organic EL panel will be described. 41 and 42 are views for explaining a method of manufacturing an organic EL panel according to an embodiment of the present invention.
  • the reflective electrode 3 is formed on the substrate 1 by vapor deposition or sputtering (FIG. 41A).
  • the transparent conductive layer 4 is formed on the reflective electrode 3 by vapor deposition or sputtering (FIG. 41B).
  • the bank 2 is formed (FIG. 41C).
  • the hole transport layer 6 is formed on the transparent conductive layer 4 by, for example, an ink jet method or the like (FIG. 41D).
  • organic light emitting layers 7b, 7g and 7r are formed on the hole transport layer 6 (FIG. 42A).
  • the electron transport layer 8, the transparent electrode 9, and the thin film sealing layer 10 are laminated (FIG. 42B).
  • the front panel on which the color filters 12b, 12g, and 12r are formed is bonded using the resin sealing layer 11 (FIG. 42C).
  • the film thickness of the transparent conductive layer 4 and the film thickness of the hole transport layer 6 are adjusted to the ranges described above as suitable examples of the film thickness of the functional layer.
  • the ink jet method is easier than the vapor deposition method or the sputtering method to finely adjust the film thicknesses of the functional layers of R, G, and B colors. Therefore, it is preferable that the film thickness of the transparent conductive layer 4 is the same for each color of R, G, B, and the film thickness of the hole transport layer 6 is finely adjusted for each color of R, G, B.
  • the hole injection layer 5 may be formed on the transparent conductive layer 4, and then the hole transport layer 6 may be formed on the hole injection layer 5.
  • the hole injection layer 5 is made of a metal oxide and is formed by vapor deposition or sputtering. Also in this case, for the same reason as described above, the transparent conductive layer 4 and the hole injection layer 5 have the same film thickness for each color of R, G, B, and the hole transport layer 6 has the film thickness of R, G, B. It is preferable to make fine adjustments for each color.
  • the present invention can be used for an organic EL display or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機ELパネルは、反射電極3と、透明電極9と、有機発光層7b,7g,7rと、反射電極3および有機発光層7b,7g,7rの間に配置された機能層とを備えている。R,G,B各色の機能層の膜厚は、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、R,G,B各色でほぼ等しい。R,G,B各色における有機発光層7b,7g,7rから反射電極3までの光学的な距離は、100nm以下であって、かつ、R,G,B各色でほぼ等しい。

Description

有機ELパネル、それを用いた表示装置および有機ELパネルの製造方法
 本発明は、有機材料の電界発光現象を利用した有機ELパネル、それを用いた表示装置および有機ELパネルの製造方法に関する。
 近年、デジタルテレビ等の表示装置に用いられる表示パネルとして、有機材料の電界発光現象を利用した有機EL(Electro Luminescence)パネルの採用が提案されている。有機ELパネルは、基板上にR(レッド),G(グリーン),B(ブルー)の各色の有機EL素子が配列された構成を有している。
 有機ELパネルでは、消費電力低減や長寿命化などの観点から、R,G,B各色の有機EL素子の光取り出し効率を向上させることが重要である。そこで、特許文献1では、基板上に反射膜、層間絶縁膜、第1透明電極、正孔輸送層、有機発光層、電子注入層、第2透明電極が積層された有機EL素子において、有機発光層から直接に第2透明電極に向かう直接光と、発光層から反射膜を経て第2透明電極に向かう反射光との光の干渉効果を利用することにより出射光強度を高める技術が提案されている(段落0022-0024)。具体的には、R,G,B各色における直接光と反射光との光路差が光の波長の1.5倍,3.5倍,3.5倍となるように、有機発光層から反射膜までの膜厚がRで245[nm]、Gで563[nm]、Bで503[nm]に調整されている(段落0041-0046)。同文献には、この構成により、R,G,B各色の出射光強度を高めることができると記載されている。
特許第4046948号公報
 しかしながら、上記従来技術では、有機発光層から反射膜までの膜厚がR,G,B各色で最大318[nm]も異なるので、R,G,B各色での膜厚調整が煩雑であるという問題がある。
 そこで、本発明は、光の干渉効果を利用することにより光取り出し効率を高め、かつ、従来技術よりもR,G,B各色での膜厚調整が容易な有機ELパネル、それを用いた表示装置および有機ELパネルの製造方法を提供することを目的とする。
 本発明の一態様である有機ELパネルは、入射された光を反射する第1電極と、前記第1電極に対向して配置され、入射された光を透過する第2電極と、前記第1電極と前記第2電極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられる、前記第1電極と第2電極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記第1電極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられる1または2以上の層からなる機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1電極側に進行することなく前記第2電極側に進行し、前記第2電極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記機能層、前記有機発光層および前記第2電極を通じて外部に出射される第2光路とが形成され、前記R,G,B各色の機能層の膜厚は、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、前記R,G,B各色でほぼ等しく、前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離は、100nm以下であって、かつ、前記R,G,B各色でほぼ等しい。
 本発明の一態様である有機ELパネルによれば、有機発光層と第1電極との間に配置された機能層の膜厚が、発光効率が極大値を示す膜厚に相当する膜厚に調整されているので、R,G,B各色における光取り出し効率を高めることができる。また、機能層の膜厚がR,G,B各色でほぼ等しいので、従来技術よりもR,G,B各色での膜厚調整が容易である。
 なお、上記有機ELパネルにおいては、特に、Gの視野角特性が大幅に改善もされることも判明している。
本発明の一態様を得るに至った経緯を説明するための図 本発明の一態様を得るに至った経緯を説明するための図 本発明の実施形態に係る有機ELパネルの画素構造を模式的に示す断面図 本発明の実施形態に係る有機ELパネルの画素構図を模式的に示す断面図 第1のシミュレーションの条件において、透明導電層の膜厚を20[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図 図5と同条件において、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときのR,G,B各色の色度の変化を示す図 図5と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図 輝度ずれおよび色度ずれの許容範囲を示す図 実施例1,比較例1における数1の各パラメータを示す図 図7と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図であり、図10(a),(b)は、実施例1,比較例1の輝度の視野角依存性を示し、図10(c),(d)は、実施例1,比較例1の色度の視野角依存性を示す図 図7と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図であり、図11(a),(b)は、実施例1,比較例1の輝度の視野角依存性を示し、図11(c),(d)は、実施例1,比較例1の色度の視野角依存性を示す図 図7と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図であり、図12(a),(b)は、実施例1,比較例1の輝度の視野角依存性を示し、図12(c),(d)は、実施例1,比較例1の色度の視野角依存性を示す図 第2のシミュレーションの条件において、透明導電層の膜厚を15[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図 図13と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図 実施例2,比較例2における数1の各パラメータを示す図 図14と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図であり、図16(a),(b)は、実施例2,比較例2の輝度の視野角依存性を示し、図16(c),(d)は、実施例2,比較例2の色度の視野角依存性を示す図 図14と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図であり、図17(a),(b)は、実施例2,比較例2の輝度の視野角依存性を示し、図17(c),(d)は、実施例2,比較例2の色度の視野角依存性を示す図 図14と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図であり、図18(a),(b)は、実施例2,比較例2の輝度の視野角依存性を示し、図18(c),(d)は、実施例2,比較例2の色度の視野角依存性を示す図 第3のシミュレーションの条件において、透明導電層の膜厚を20[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図 図19と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図 実施例3,比較例3における数1の各パラメータを示す図 図20と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図であり、図22(a),(b)は、実施例3,比較例3の輝度の視野角依存性を示し、図22(c),(d)は、実施例3,比較例3の色度の視野角依存性を示す図 図20と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図であり、図23(a),(b)は、実施例3,比較例3の輝度の視野角依存性を示し、図23(c),(d)は、実施例3,比較例3の色度の視野角依存性を示す図 図20と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図であり、図24(a),(b)は、実施例3,比較例3の輝度の視野角依存性を示し、図24(c),(d)は、実施例3,比較例3の色度の視野角依存性を示す図 第4のシミュレーションの条件において、透明導電層の膜厚を20[nm]とし、正孔注入層の膜厚を5[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図 図25と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図 実施例4,比較例4における数1の各パラメータを示す図 図26と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図であり、図28(a),(b)は、実施例4,比較例4の輝度の視野角依存性を示し、図28(c),(d)は、実施例4,比較例4の色度の視野角依存性を示す図 図26と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図であり、図29(a),(b)は、実施例4,比較例4の輝度の視野角依存性を示し、図29(c),(d)は、実施例4,比較例4の色度の視野角依存性を示す図 図26と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図であり、図30(a),(b)は、実施例4,比較例4の輝度の視野角依存性を示し、図30(c),(d)は、実施例4,比較例4の色度の視野角依存性を示す図 第5のシミュレーションの条件において、透明導電層の膜厚を20[nm]とし、正孔注入層の膜厚を5[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図 図31と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図 実施例5,比較例5における数1の各パラメータを示す図 図32と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図であり、図34(a),(b)は、実施例5,比較例5の輝度の視野角依存性を示し、図34(c),(d)は、実施例5,比較例5の色度の視野角依存性を示す図 図32と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図であり、図35(a),(b)は、実施例5,比較例5の輝度の視野角依存性を示し、図35(c),(d)は、実施例5,比較例5の色度の視野角依存性を示す図 図32と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図であり、図36(a),(b)は、実施例5,比較例5の輝度の視野角依存性を示し、図36(c),(d)は、実施例5,比較例5の色度の視野角依存性を示す図 第1から第5までのシミュレーションでのR,G,B各色の機能層の膜厚の一覧表 第1から第5までのシミュレーションでのRG間,GB間,RB間の機能層の膜厚の差の一覧表 本発明の実施形態に係る表示装置の外観を例示する図 本発明の実施形態に係る表示装置の機能ブロックを示す図 本発明の実施形態に係る有機ELパネルの製造方法を説明するための図 本発明の実施形態に係る有機ELパネルの製造方法を説明するための図
[本発明の一態様を得るに至った経緯]
 以下、本発明の態様を具体的に説明するに先立ち、本発明の態様を得るに至った経緯について説明する。
 従来の一般的な光学設計では、まず、機能層に含まれる各層の膜厚について安定的な成膜が可能な膜厚を求め、次に、その膜厚付近で発光効率が極大値となる膜厚をシミュレーションにより探し出す手法が採られている。また、安定的な成膜を実現するには機能層に含まれる各層の膜厚をある程度確保される必要があるとの認識の下、機能層の膜厚は100[nm]を超えるものと考えられている。したがって、機能層の膜厚の最適値は100[nm]を超えるというのが当業者における従来の一般的な技術知見である。現に、特許文献1でも、R,G,B各色の膜厚はそれぞれ245[nm],563[nm],503[nm]が最適であるとされている。
 今回、本願の発明者らは、あらかじめ、機能層として正孔輸送層を適用し、その膜厚を100[nm]以上に設定し、機能層の膜厚を変化させたときの発光効率の変化について、シミュレーションを実施した。
 この結果を図1に示す。図1は、透明導電層の膜厚を20[nm]とし、正孔輸送層の膜厚を100[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図である。本発明者らは、図1に基づき、機能層の膜厚の変化に対し、発光効率が周期的に変動することを見出し、更に、機能層の膜厚が大きくなるに従って、R,G,B各色の発光効率が減少すると共に、R,G,B各色の最大発光効率を示す膜厚のズレが増大することを解明した(図1、矢符号 ご参考)。
 そして、本発明者らは、上記のシミュレーションの解析結果に照らして考察することにより、発光効率が最大となり、且つ、その際のR,G,B各色の膜厚のズレが最小となる第1の波形(正孔輸送層の膜厚が100[nm]~250[nm])に比べ、正孔輸送層の膜厚がさらに小さな領域において、発光効率が更に大きく、且つ、その際のR,G,B各色の膜厚のズレが更に小さくなる未知の波形の存在を想定した(図1、破線で示す矢符号)。
 この結果、本発明者らは、従来の技術的知見にとらわれずに、当業者であれば積極的な検討を躊躇することになると考えられる範囲である100[nm]以下の範囲において、さらなるシミュレーションを実施するに至った。
 さらなるシミュレーションの結果、 図2に示すように、機能層の膜厚が60[nm]以下の範囲において、発光効率に大きな極大値が現れ、この発光効率が最大となることが判明した。しかも、この範囲であれば、発光効率が最大値となるR,G,B各色の膜厚のズレが最小であって、かつ、ほぼ等しくなることも判明した。
 以上のような新たな知見、考察を積み重ねることにより、本発明者らは、本発明の一態様である有機ELパネルの構成を得ることができたのである。
[本発明の一態様の概要]
 本発明の第1の態様である有機ELパネルは、入射された光を反射する第1電極と、前記第1電極に対向して配置され、入射された光を透過する第2電極と、前記第1電極と前記第2電極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられる、前記第1電極と第2電極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記第1電極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられる1または2以上の層からなる機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1電極側に進行することなく前記第2電極側に進行し、前記第2電極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記機能層、前記有機発光層および前記第2電極を通じて外部に出射される第2光路とが形成され、前記R,G,B各色の機能層の膜厚は、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、前記R,G,B各色でほぼ等しく、前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離は、100nm以下であって、かつ、前記R,G,B各色でほぼ等しい。
 上記構成によれば、有機発光層と第1電極との間に配置された機能層の膜厚が、発光効率が極大値を示す膜厚に相当する膜厚に調整されているので、R,G,B各色における光取り出し効率を高めることができる。しかも、機能層の膜厚がR,G,B各色でほぼ等しいので、従来技術よりもR,G,B各色での膜厚調整が容易である。
 また、前記機能層は、前記第1電極上に設けられる透明導電層と、前記透明導電層上に設けられる正孔輸送層とからなることとしてもよい。
 上記構成によれば、機能層に2層しか含まれないので、機能層の膜厚が60[nm]以下という制限の下で、各層の膜厚をある程度確保することができ、その結果、各層を安定的に成膜することができる。
 また、前記正孔輸送層の膜厚は、前記R,G,B各色でほぼ等しく、前記透明導電層の膜厚は、前記R,G,B各色で同一であることとしてもよい。
 上記構成によれば、R,G,B各色で正孔輸送層の膜厚を微調整することにより、機能層の膜厚を微調整することができる。特に、透明導電層を各色の膜厚の微調整がしにくい蒸着法やスパッタ法で成膜し、正孔輸送層を各色の膜厚の微調整がしやすいインクジェット法で成膜する場合に有効である。
 また、前記正孔輸送層の膜厚は、前記R,G,B各色で相違し、前記透明導電層の膜厚は、前記R,G,B各色で同一であることとしてもよい。
 上記構成によれば、光学特性を更に向上させるためにR,G,B各色の機能層の膜厚をほぼ等しい範囲内で相違させることができる。なお、透明導電層の膜厚を同一とし、正孔輸送層の膜厚を相違させるのは、透明導電層は蒸着法またはスパッタ法で成膜され、正孔輸送層はインクジェット法で成膜されることが想定されるからである。インクジェット法は、滴下するインク滴数を調整するだけでR,G,B各色の膜厚を調整することができるので、蒸着法やスパッタ法に比べて各色ごとの膜厚調整が容易である。そのため、正孔輸送層の膜厚を相違させることにより、容易かつ精度よく機能層の膜厚を微調整することができ、光学特性を更に向上させることができる。
 また、前記Rの正孔輸送層の膜厚は13nm以上30nm以下であり、前記Gの正孔輸送層の膜厚は12nm以上21nm以下であり、前記Bの正孔輸送層の膜厚は10nm以上15nm以下であり、前記R,G,B各色の透明導電層の膜厚は15nm以上20nm以下であることとしてもよい。
 上記構成によれば、光取り出し効率を高めながら容易な膜厚調整を実現することができる。
 また、前記正孔輸送層は、正孔を輸送する機能に加え、正孔を有機発光層に注入する機能を備えることとしてもよい。
 上記構成によれば、機能層に2層しか含まれなくても、正孔注入性を高めることができる。
 また、前記機能層は、前記第1電極上に設けられる透明導電層と、前記透明導電層上に設けられる正孔注入層と、前記正孔注入層上に設けられる正孔輸送層とからなることとしてもよい。
 上記構成によれば、機能層が透明導電層と正孔輸送層からなる場合に比べて、正孔注入性を高めることができる。
 また、前記正孔輸送層の膜厚は、前記R,G,B各色でほぼ等しく、前記透明導電層および前記正孔注入層の膜厚は、前記R,G,Bで同一であることとしてもよい。
 上記構成によれば、R,G,B各色で正孔輸送層の膜厚を微調整することにより、機能層の膜厚を微調整することができる。特に、透明導電層および正孔注入層を各色の膜厚の微調整がしにくい蒸着法やスパッタ法で成膜し、正孔輸送層を各色の膜厚の微調整がしやすいインクジェット法で成膜する場合に有効である。
 また、前記正孔輸送層の膜厚は、前記R,G,B各色で相違し、前記透明導電層および前記正孔注入層の膜厚は、前記R,G,Bで同一であることとしてもよい。
 上記構成によれば、光学特性を更に向上させるためにR,G,B各色の機能層の膜厚をほぼ等しい範囲内で相違させることができる。なお、透明導電層および正孔注入層の膜厚を同一とし、正孔輸送層の膜厚を相違させるのは、透明導電層および正孔注入層は蒸着法またはスパッタ法で成膜され、正孔輸送層はインクジェット法で成膜されることが想定されるからである。インクジェット法は、滴下するインク滴数を調整するだけでR,G,B各色の膜厚を調整することができるので、蒸着法やスパッタ法に比べて各色ごとの膜厚調整が容易である。そのため、正孔輸送層の膜厚を相違させることにより、容易かつ精度よく機能層の膜厚を微調整することができ、光学特性を更に向上させることができる。
 また、前記R,G,B各色の正孔注入層の膜厚は0nmよりも大きく5nm以下であり、前記Rの正孔輸送層の膜厚は15nm以上25nm以下であり、前記Gの正孔輸送層の膜厚は9nm以上16nm以下であり、前記Bの正孔輸送層の膜厚は5nm以上9nm以下であり、前記R,G,B各色の透明導電層の膜厚は15nm以上20nm以下であることとしてもよい。
 上記構成によれば、光取り出し効率を高めながら容易な膜厚調整を実現することができる。
 また、前記Rの機能層の膜厚は28nm以上50nm以下であり、前記Gの機能層の膜厚は27nm以上41nm以下であり、前記Bの機能層の膜厚は26nm以上35nm以下であることとしてもよい。
 上記構成によれば、光取り出し効率を高めながら容易な膜厚調整を実現することができる。
 本発明の第2の態様である有機ELパネルは、入射された光を反射する第1電極と、前記第1電極に対向して配置され、入射された光を透過する第2電極と、前記第1電極と前記第2電極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられる、前記第1電極と第2電極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記第1電極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられる1または2以上の層からなる機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1電極側に進行することなく前記第2電極側に進行し、前記第2電極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記機能層、前記有機発光層および前記第2電極を通じて外部に出射される第2光路とが形成され、前記R,G,B各色の機能層の膜厚は、いずれも26nm以上50nm以下であって、かつ、前記R,G,B各色の機能層の膜厚の差は1nm以上16nm以下であり、前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離は、49nm以上90nm以下であって、かつ、前記R,G,B各色の光学的な距離の差は0nm以上25nm以下である。
 上記構成によれば、有機発光層と第1電極との間に配置された機能層の膜厚が、発光効率が極大値を示す膜厚に相当する膜厚に調整されているので、R,G,B各色における光取り出し効率を高めることができる。しかも、機能層の膜厚がR,G,B各色でほぼ等しいので、従来技術よりもR,G,B各色での膜厚調整が容易である。
 本発明の第3の態様である表示装置は、上記有機ELパネルと前記第1電極と前記第2電極との間に電圧を印加する駆動回路とを備える。
 本発明の第4の態様である有機ELパネルの製造方法は、入射された光を反射する第1電極を準備する第1工程と、前記第1電極上に、R(レッド),G(グリーン),B(ブルー)の各色に対応して1または2以上の層からなる機能層を設ける第2工程と、前記R,G,B各色の機能層上に、それぞれR,G,B各色の光を出射する有機発光層を設ける第3工程と、前記有機発光層の上方における前記第1電極と対向するように、入射された光を透過する第2電極を設ける第4工程とを含み、前記第2工程では、前記R,G,B各色の機能層の膜厚を、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、前記R,G,B各色でほぼ等しくし、前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離が、100nm以下であって、かつ、前記R,G,B各色でほぼ等しくなるように形成する。
 上記構成によれば、上記第1の態様の有機ELパネルを製造することができる。
 本発明の第5の態様である有機ELパネルの製造方法は、入射された光を反射する第1電極を準備する第1工程と、前記第1電極上に、R(レッド),G(グリーン),B(ブルー)の各色に対応して1または2以上の層からなる機能層を設ける第2工程と、前記R,G,B各色の機能層上に、それぞれR,G,B各色の光を出射する有機発光層を設ける第3工程と、前記有機発光層の上方における前記第1電極と対向するように、入射された光を透過する第2電極を設ける第4工程とを含み、前記第2工程では、前記R,G,B各色の機能層の膜厚を、いずれも26nm以上50nm以下であって、かつ、前記R,G,B各色の機能層の膜厚の差を1nm以上16nm以下であり、前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離を、49nm以上90nm以下であって、かつ、前記R,G,B各色の光学的な距離の差を0nm以上25nm以下に形成する。
 上記構成によれば、上記第2の態様の有機ELパネルを製造することができる。
 なお、本明細書において、「発光効率が極大値を示す膜厚に対応する膜厚」とは、発光効率が極大値となる膜厚に対して±10%の範囲内の膜厚をいうものとする。また、「R,G,B各色でほぼ等しい」とは、以下の(1)から(3)までを含み、「R,G,B各色で同一」とは、以下の(1)および(2)を含むものとする。
(1)R,G,B各色の設計値が同一であり、実測値も同一である。
(2)R,G,B各色の設計値が同一であるが、製造誤差の範囲内(一層当たり±5[nm])で実測値がずれている。
(3)R,G,B各色の設計値が輝度ずれおよび色度ずれの許容範囲を満たす範囲内でずれている。
 また、本明細書において膜厚の具体的な数値を挙げている場合、その数値は設計値である。したがって、実測値は製造誤差の範囲内(一層当たり±5[nm])でずれることがある。
[有機ELパネルの画素構造]
 図3は、本発明の実施形態に係る有機ELパネルの画素構造を模式的に示す断面図である。有機ELパネルでは、R(レッド),G(グリーン),B(ブルー)各色の画素が行方向及び列方向にマトリックス状に規則的に配置されている。各画素は有機材料を用いた有機EL素子で構成されている。
 青色の有機EL素子は、基板1、反射電極3、透明導電層4、正孔輸送層6、有機発光層7b、電子輸送層8、透明電極9、薄膜封止層10、樹脂封止層11、カラーフィルタ(CF)12bを含む。反射電極3と透明電極9との間に有機発光層7bが配置されている。また、この例では、反射電極3と有機発光層7bとの間に透明導電層4および正孔輸送層6が配置されている(以下、反射電極と有機発光層との間に配置された1または2以上の層を「機能層」と称する。)。
 緑色の有機EL素子は、有機発光層7gおよびカラーフィルタ12gを除き、青色の有機EL素子と同様の構成を有する。赤色の有機EL素子も、有機発光層7rおよびカラーフィルタ12rを除き、青色の有機EL素子と同様の構成を有する。この例では、各色の有機EL素子において、基板1、電子輸送層8、透明電極9、薄膜封止層10、樹脂封止層11が共通であり、それ以外の層はバンク2で区分されている。
 また、各色の有機EL素子では、反射電極3の存在により共振器構造が実現されている。有機EL素子には、有機発光層7から出射された光の一部が反射電極3側に進行することなく透明電極9側に進行し、透明電極9を通じて外部に出射される第1光路と、有機発光層7から出射された光の残りの一部が機能層を通じて反射電極3に入射され、反射電極3により反射された後、機能層、有機発光層7および透明電極9を通じて外部に出射される第2光路とが形成される。第1光路を通る直接光と第2光路を通る反射光とが干渉効果で強め合うように有機発光層7b,7g,7rと反射電極3との間の距離を調整することで、有機EL素子の光取り出し効率を高めることができる。距離の調整は、機能層の膜厚を調整することにより実現できる。
 具体的には、R,G,B各色の機能層の膜厚は、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、R,G,B各色でほぼ等しく調整されている。また、R,G,B各色における有機発光層7から反射電極3までの光学的な距離は、100nm以下であって、かつ、R,G,B各色でほぼ等しく調整されている。光学的な距離は、単層構造の場合には膜厚と屈折率の積により求められ、2以上の多層構造の場合には、層毎に膜厚と屈折率の積をとり、得られた積を合計することにより求められる。
 なお、図4に示すように、各色の有機EL素子において透明導電層4と正孔輸送層6との間に、正孔注入層5が挿入された構造としてもよい。この例では、機能層が、透明導電層4、正孔注入層5および正孔輸送層6の3層構造となる。また、図3の構造において、正孔輸送層6が正孔注入機能を備えることとしてもよい。
 以下、R,G,B各色の機能層の膜厚に関する5種類のシミュレーションについて説明し、その次に、これらのシミュレーションから得られる機能層の最適範囲について説明する。
[第1のシミュレーション]
<条件>
 第1のシミュレーションでは、機能層の構造を透明導電層と正孔輸送層の2層構造としている。また、透明導電層の材料をITO(Indium Tin Oxide)、正孔輸送層の材料を有機材料、反射電極の材料を銀、R,G,B各色の有機発光層の材料を、サメイション(SUMATION)社製のRP158、GP1200、BP105としている。
<発光効率と膜厚調整の容易性>
 図5は、上記条件において、透明導電層の膜厚を20[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図である。図5から、正孔輸送層の膜厚を変化させると光の干渉効果により発光効率が周期的に変動することが分かる。また、正孔輸送層の膜厚が0[nm]から600[nm]までの範囲では、R,G,B各色とも4箇所で発光効率が極大値を示すことが分かる。
 図6は、図5と同条件において、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときのR,G,B各色の色度の変化を示す図である。有機EL素子では、発光効率が極大値を示す膜厚と、R,G,B各色の色度(x,y)が最適な膜厚とが必ずしも一致しているとは限らない。そのため、機能層の膜厚は、色度との兼ね合いで、発光効率が極大値を示す付近の膜厚(±10%の範囲内)に調整される。
 このように、機能層の膜厚を発光効率が極大値を示す付近の膜厚に調整することにより共振器構造を実現することができる。本明細書では、機能層の膜厚が最も薄い共振器構造から順に、1st cavity,2nd cavity ,3rd cavity ,4th cavityと称することとする。
 図5によれば、1st cavityの発光効率は、2nd cavityの発光効率よりも高い。したがって、1st cavityを採用すれば、2nd cavityを採用する場合に比べて、有機EL素子の発光効率を高めることができる。
 また、図5によれば、1st cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、0[nm]以上40[nm]以下の狭い範囲(機能層の膜厚が0[nm]以上60[nm]以下の範囲)に集中して存在している。一方、2nd cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、100[nm]以上250[nm]以下の広い範囲に分散して存在している。したがって、R,G,B各色の有機EL素子に1st cavityを採用すれば、2nd cavityを採用する場合に比べて、R,G,B各色の正孔輸送層の作り分けをあまり必要とせず、製造工程における膜厚調整が容易である。
 図7は、図5と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図である。
 実施例1(1st cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔輸送層の膜厚をそれぞれ25[nm],15[nm],10[nm]とし、CF(カラーフィルタ)を用いてR,G,B各色の色度を適正範囲に調整している。
 このとき、R,G,B各色の発光効率は、2.1[cd/A],4.9[cd/A],0.49[cd/A]となる。また、R,G,B各色の許容膜ズレ範囲は、-15~+10[nm],-15~+7[nm],-20~+8[nm]となり、R,G,B各色の許容マージン幅は、25[nm],22[nm],28[nm]となる。「許容膜ズレ範囲」とは、図8に示す許容範囲を満たすことを条件として、機能層の膜厚を最適値からずらすことができる限度を示している。 図8では次の許容範囲が示されている。
(1)有機ELパネルの面内での発光効率のばらつきが20[%]以内
(2)有機ELパネルの面内での色度のばらつきがx,yともに0.04以内
(3)視野角30°における輝度が視野角0°における輝度に対して90[%]以上、かつ、視野角45°における輝度が視野角0°における輝度に対して80[%]以上
(4)視野角50°における色度と視野角0°における色度との差がx,yともに0.04以内
 許容膜ズレ範囲が広いほど、機能層の膜厚について製造誤差の許容範囲が広くなり、ひいては製造工程において機能層の膜厚調整が容易となることを意味する。「許容マージン幅」とは、許容膜ズレ範囲の上限と下限の差である(例えば、実施例1のRでは、上限が+10、下限が-15なので、差が25となる)。
 比較例1(2nd cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔輸送層の膜厚をそれぞれ220[nm],172[nm],155[nm]とし、カラーフィルタを用いてR,G,B各色の色度を適正範囲に調整している。
 このとき、R,G,B各色の発光効率は、1.4[cd/A],4.2[cd/A],0.23[cd/A]となる。また、R,G,B各色の許容膜ズレ範囲は、-8~+6[nm],-(規格外)[nm],-10~+7[nm]となり、R,G,B各色の許容マージン幅は、14[nm],0[nm],17[nm]となる。
 実施例1と比較例1を対比すると、実施例1が比較例1よりも発光効率および膜厚調整の容易性の両方において優れていることが分かる。
 また、共振器構造の一般的な分析手法により、次の事項も導き出すことができる。共振器構造では、反射電極3と有機発光層7b,7g,7rとの間の光学的な距離L[nm]、共振波長λ[nm]、位相シフトΦ[ラジアン]が、以下の数1を満たす。
Figure JPOXMLDOC01-appb-M000001
 反射電極3での位相シフトΦは、以下の数2で求めることができる。
Figure JPOXMLDOC01-appb-M000002
 ただし、n1は透明導電層4の屈折率、n0は反射電極3の屈折率、k0は反射電極3の消衰係数である。
 図9に示すように、実施例1,比較例1では、数1の右辺mが整数になることが確認できる。ここでは、R,G,B各色の共振波長λを、638[nm],535[nm],468[nm]としている。また、実施例1において機能層の膜厚の許容マージン幅が20[nm]以上あることを考慮すると、図9の実施例1’のように数1の右辺mが整数以外でもよいことが分かる。
<視野角特性>
(グリーン)
 図10は、図7と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図である。図10(a),(b)は、実施例1,比較例1の輝度の視野角依存性を示す。これによれば、実施例1では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が95[%]付近である(CF有)。これに対し、比較例1では、視野角が30°で輝度が95[%]付近であり、視野角が45°で輝度が80[%]付近である(CF有)。したがって、実施例1,比較例1の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例1のほうが比較例1よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図10(c),(d)は、実施例1,比較例1の色度の視野角依存性を示す。これによれば、実施例1では、視野角が50°で色度変化Δxが0.005程度,Δyが0.005程度である(CF有)。ここで、Δxは、xについてのΔCIEの絶対値,Δyは、yについてのΔCIEの絶対値である。これに対し、比較例1では、視野角が50°で色度変化Δxが0.038程度,Δyが0.025程度である(CF有)。したがって、実施例1,比較例1の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例1のほうが比較例1よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
 (レッド)
 図11は、図7と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図である。図11(a),(b)は、実施例1,比較例1の輝度の視野角依存性を示す。これによれば、実施例1では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が95[%]付近である(CF有)。これに対し、比較例1では、視野角が30°で輝度が110[%]付近であり、視野角が45°で輝度が102[%]付近である(CF有)。したがって、実施例1,比較例1の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例1のほうが比較例1よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図11(c),(d)は、実施例1,比較例1の色度の視野角依存性を示す。これによれば、実施例1では、視野角が50°で色度変化Δxが0.012程度,Δyが0.013程度である(CF有)。これに対し、比較例1では、視野角が50°で色度変化Δxが0.023程度,Δyが0.025程度である(CF有)。したがって、実施例1,比較例1の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例1のほうが比較例1よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(ブルー)
 図12は、図7と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図である。図12(a),(b)は、実施例1,比較例1の輝度の視野角依存性を示す。これによれば、実施例1では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が95[%]付近である(CF有)。これに対し、比較例1では、視野角が30°で輝度が110[%]付近であり、視野角が45°で輝度が117[%]付近である(CF有)。したがって、実施例1,比較例1の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例1のほうが比較例1よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図12(c),(d)は、実施例1,比較例1の色度の視野角依存性を示す。これによれば、実施例1では、視野角が50°で色度変化Δxがほぼ0,Δyがほぼ0である(CF有)。これに対し、比較例1では、視野角が50°で色度変化Δxが0.005程度,Δyが0.01程度である(CF有)。したがって、実施例1,比較例1の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例1のほうが比較例1よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
 以上より、視野角特性については、R,G,B各色とも実施例1が比較例1よりも優れていることが分かる。特に、G(グリーン)では比較例1は図8の許容範囲を辛うじて満たしているため機能層の膜厚マージンを確保できないのに対し、実施例1は図8の許容範囲を余裕をもって満たしているため機能層の膜厚マージンを確保できる点において優位性が高い。
[第2のシミュレーション]
<条件>
 第2のシミュレーションは、機能層の構造および各層の材料については第1のシミュレーションと同様である。
<発光効率と膜厚調整の容易性>
 図13は、上記条件において、透明導電層の膜厚を15[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図である。図13によれば、1st cavityの発光効率は、2nd cavityの発光効率よりも高い。したがって、1st cavityを採用すれば、2nd cavityを採用する場合に比べて、有機EL素子の発光効率を高めることができる。また、図13によれば、1st cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、0[nm]以上45[nm]以下の狭い範囲(機能層の膜厚が0[nm]以上60[nm]以下の範囲)に集中して存在している。一方、2nd cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、100[nm]以上250[nm]以下の広い範囲に分散して存在している。したがって、R,G,B各色の有機EL素子に1st cavityを採用すれば、2nd cavityを採用する場合に比べて、R,G,B各色の正孔輸送層の作り分けをあまり必要とせず、製造工程における膜厚調整が容易である。
 図14は、図13と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図である。
 実施例2(1st cavity)では、R,G,B各色の透明導電層の膜厚を共通に15[nm]とし、正孔輸送層の膜厚をそれぞれ13[nm],12[nm],11[nm]とし、CF(カラーフィルタ)を用いてR,G,B各色の色度を適正範囲に調整している。比較例2(2nd cavity)では、R,G,B各色の透明導電層の膜厚を共通に15[nm]とし、正孔輸送層の膜厚をそれぞれ195[nm],170[nm],148[nm]とし、カラーフィルタを用いてR,G,B各色の色度を適正範囲に調整している。実施例2と比較例2を対比すると、実施例2が比較例2よりも発光効率および膜厚調整の容易性の両方において優れていることが分かる。
 また、図15に示すように、実施例2,比較例2では、数1の右辺mが整数になることが確認できる。また、実施例2において機能層の膜厚の許容マージン幅が20[nm]程度あることを考慮すると、図15の実施例2’のように数1の右辺mが整数以外でもよいことが分かる。
<視野角特性>
(グリーン)
 図16は、図14と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図である。図16(a),(b)は、実施例2,比較例2の輝度の視野角依存性を示す。これによれば、実施例2では、視野角が30°で輝度が95[%]付近であり、視野角が45°で輝度が90[%]付近である(CF有)。これに対し、比較例2では、視野角が30°で輝度が90[%]付近であり、視野角が45°で輝度が78[%]付近である(CF有)。したがって、実施例2では図8の許容範囲を満たしているが、比較例2では図8の許容範囲を満たしていないことが分かる。
 図16(c),(d)は、実施例2,比較例2の色度の視野角依存性を示す。これによれば、実施例2では、視野角が50°で色度変化Δxが0.007程度,Δyが0.007程度である(CF有)。これに対し、比較例2では、視野角が50°で色度変化Δxが0.04を超え,Δyが0.023程度である(CF有)。したがって、実施例2では図8の許容範囲を満たしているが、比較例2では図8の許容範囲を満たしていないことが分かる。
(レッド)
 図17は、図14と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図である。図17(a),(b)は、実施例2,比較例2の輝度の視野角依存性を示す。これによれば、実施例2では、視野角が30°で輝度が93[%]付近であり、視野角が45°で輝度が87[%]付近である(CF有)。これに対し、比較例2では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が90[%]付近である(CF有)。したがって、実施例2,比較例2の両方とも図8の許容範囲を満たしていることが分かる。
 図17(c),(d)は、実施例2,比較例2の色度の視野角依存性を示す。これによれば、実施例2では、視野角が50°で色度変化Δxが0.002程度,Δyが0.002程度である(CF有)。これに対し、比較例2では、視野角が50°で色度変化Δxが0.007程度,Δyが0.007程度である(CF有)。したがって、実施例2,比較例2の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例2のほうが比較例2よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(ブルー)
 図18は、図14と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図である。図18(a),(b)は、実施例2,比較例2の輝度の視野角依存性を示す。これによれば、実施例2では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が95[%]付近である(CF有)。これに対し、比較例2では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が98[%]付近である(CF有)。したがって、実施例2,比較例2の両方とも図8の許容範囲を満たしていることが分かる。
 図18(c),(d)は、実施例2,比較例2の色度の視野角依存性を示す。これによれば、実施例2では、視野角が50°で色度変化Δxがほぼ0,Δyが0.004程度である(CF有)。これに対し、比較例2では、視野角が50°で色度変化Δxが0.005程度,Δyが0.008程度である(CF有)。したがって、実施例2,比較例2の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例2のほうが比較例2よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
 以上より、視野角特性については、R,G,B各色とも実施例2が比較例2よりも優れていることが分かる。特に、G(グリーン)では比較例2は図8の許容範囲を満たしていないのに対し、実施例2は図8の許容範囲を満たしている点において優位性が高い。
[第3のシミュレーション]
<条件>
 第3のシミュレーションでは、透明導電層の材料をIZO(Indium Zinc Oxide)、反射電極の材料をアルミニウムとしている。それ以外は第1のシミュレーションと同様である。
<発光効率と膜厚調整の容易性>
 図19は、上記条件において、透明導電層の膜厚を20[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図である。図19によれば、1st cavityの発光効率は、2nd cavityの発光効率よりも高い。したがって、1st cavityを採用すれば、2nd cavityを採用する場合に比べて、有機EL素子の発光効率を高めることができる。また、図19によれば、1st cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、0[nm]以上40[nm]以下の狭い範囲(機能層の膜厚が0[nm]以上60[nm]以下の範囲)に集中して存在している。一方、2nd cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、100[nm]以上250[nm]以下の広い範囲に分散して存在している。したがって、R,G,B各色の有機EL素子に1st cavityを採用すれば、2nd cavityを採用する場合に比べて、R,G,B各色の正孔輸送層の作り分けをあまり必要とせず、製造工程における膜厚調整が容易である。
 図20は、図19と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図である。
 実施例3(1st cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔輸送層の膜厚をそれぞれ30[nm],21[nm],15[nm]とし、CF(カラーフィルタ)を用いてR,G,B各色の色度を適正範囲に調整している。比較例3(2nd cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔輸送層の膜厚をそれぞれ217[nm],185[nm],152[nm]とし、カラーフィルタを用いてR,G,B各色の色度を適正範囲に調整している。実施例3と比較例3を対比すると、実施例3が比較例3よりも発光効率および膜厚調整の容易性の両方において優れていることが分かる。
 また、図21に示すように、実施例3,比較例3では、数1の右辺mが整数になることが確認できる。また、実施例3において機能層の膜厚の許容マージン幅が20[nm]以上あることを考慮すると、図21の実施例3’のように数1の右辺mが整数以外でもよいことが分かる。
<視野角特性>
(グリーン)
 図22は、図20と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図である。図22(a),(b)は、実施例3,比較例3の輝度の視野角依存性を示す。これによれば、実施例3では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が90[%]付近である(CF有)。これに対し、比較例3では、視野角が30°で輝度が97[%]付近であり、視野角が45°で輝度が79[%]付近である(CF有)。したがって、実施例3は図8の許容範囲を満たしているが、比較例3は図8の許容範囲を満たしていないことが分かる。
 図22(c),(d)は、実施例3,比較例3の色度の視野角依存性を示す。これによれば、実施例3では、視野角が50°で色度変化Δxが0.005程度,Δyが0.005程度である(CF有)。これに対し、比較例3では、視野角が50°で色度変化Δxが0.04程度,Δyが0.025程度である(CF有)。したがって、実施例3,比較例3の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例3のほうが比較例3よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(レッド)
 図23は、図20と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図である。図23(a),(b)は、実施例3,比較例3の輝度の視野角依存性を示す。これによれば、実施例3では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が90[%]付近である(CF有)。これに対し、比較例3では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が80[%]付近である(CF有)。したがって、実施例3,比較例3の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例3のほうが比較例3よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図23(c),(d)は、実施例3,比較例3の色度の視野角依存性を示す。これによれば、実施例3では、視野角が50°で色度変化Δxが0.012程度,Δyが0.012程度である(CF有)。これに対し、比較例3では、視野角が50°で色度変化Δxが0.023程度,Δyが0.023程度である(CF有)。したがって、実施例3,比較例3の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例3のほうが比較例3よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(ブルー)
 図24は、図20と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図である。図24(a),(b)は、実施例3,比較例3の輝度の視野角依存性を示す。これによれば、実施例3では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が95[%]付近である(CF有)。これに対し、比較例3では、視野角が30°で輝度が97[%]付近であり、視野角が45°で輝度が87[%]付近である(CF有)。したがって、実施例3,比較例3の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例3のほうが比較例3よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図24(c),(d)は、実施例3,比較例3の色度の視野角依存性を示す。これによれば、実施例3では、視野角が50°で色度変化Δxがほぼ0,Δyがほぼ0である(CF有)。これに対し、比較例3では、視野角が50°で色度変化Δxが0.005程度,Δyが0.01程度である(CF有)。したがって、実施例3,比較例3の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例3のほうが比較例3よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
 以上より、視野角特性については、R,G,B各色とも実施例3が比較例3よりも優れていることが分かる。特に、G(グリーン)では比較例3は図8の許容範囲を満たしていないのに対し、実施例3は図8の許容範囲を満たしている点において優位性が高い。
[第4のシミュレーション]
<条件>
 第4のシミュレーションでは、機能層の構造を透明導電層と正孔注入層と正孔輸送層の3層構造としている。また、透明導電層の材料をIZO(Indium Zinc Oxide)、正孔注入層の材料を無機材料、正孔輸送層の材料を有機材料、反射電極の材料をアルミニウム、R,G,B各色の有機発光層の材料を、サメイション(SUMATION)社製のRP158、GP1200、BP105としている。
<発光効率と膜厚調整の容易性>
 図25は、上記条件において、透明導電層の膜厚を20[nm]とし、正孔注入層の膜厚を5[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図である。図25によれば、1st cavityの発光効率は、2nd cavityの発光効率よりも高い。したがって、1st cavityを採用すれば、2nd cavityを採用する場合に比べて、有機EL素子の発光効率を高めることができる。また、図25によれば、1st cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、0[nm]以上35[nm]以下の狭い範囲(機能層の膜厚が0[nm]以上60[nm]以下の範囲)に集中して存在している。一方、2nd cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、100[nm]以上250[nm]以下の広い範囲に分散して存在している。したがって、R,G,B各色の有機EL素子に1st cavityを採用すれば、2nd cavityを採用する場合に比べて、R,G,B各色の正孔輸送層の作り分けをあまり必要とせず、製造工程における膜厚調整が容易である。
 図26は、図25と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図である。
 実施例4(1st cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔注入層の膜厚を共通に5[nm]とし、正孔輸送層の膜厚をそれぞれ25[nm],16[nm],9[nm]とし、CF(カラーフィルタ)を用いてR,G,B各色の色度を適正範囲に調整している。比較例4(2nd cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔注入層の膜厚を共通に5[nm]とし、正孔輸送層の膜厚をそれぞれ212[nm],180[nm],146[nm]とし、カラーフィルタを用いてR,G,B各色の色度を適正範囲に調整している。実施例4と比較例4を対比すると、実施例4が比較例4よりも発光効率および膜厚調整の容易性の両方において優れていることが分かる。
 また、図27に示すように、実施例4,比較例4では、数1の右辺mが整数になることが確認できる。また、実施例4において機能層の膜厚の許容マージン幅が20[nm]以上あることを考慮すると、図27の実施例4’のように数1の右辺mが整数以外でもよいことが分かる。
<視野角特性>
(グリーン)
 図28は、図26と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図である。図28(a),(b)は、実施例4,比較例4の輝度の視野角依存性を示す。これによれば、実施例4では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が92[%]付近である(CF有)。これに対し、比較例4では、視野角が30°で輝度が97[%]付近であり、視野角が45°で輝度が80[%]付近である(CF有)。したがって、実施例4,比較例4の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例4のほうが比較例4よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図28(c),(d)は、実施例4,比較例4の色度の視野角依存性を示す。これによれば、実施例4では、視野角が50°で色度変化Δxが0.006程度,Δyが0.004程度である(CF有)。これに対し、比較例4では、視野角が50°で色度変化Δxが0.04程度,Δyが0.026程度である(CF有)。したがって、実施例4,比較例4の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例4のほうが比較例4よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(レッド)
 図29は、図26と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図である。図29(a),(b)は、実施例4,比較例4の輝度の視野角依存性を示す。これによれば、実施例4では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が90[%]付近である(CF有)。これに対し、比較例4では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が80[%]付近である(CF有)。したがって、実施例4,比較例4の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例4のほうが比較例4よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図29(c),(d)は、実施例4,比較例4の色度の視野角依存性を示す。これによれば、実施例4では、視野角が50°で色度変化Δxが0.011程度,Δyが0.013程度である(CF有)。これに対し、比較例4では、視野角が50°で色度変化Δxが0.022程度,Δyが0.023程度である(CF有)。したがって、実施例4,比較例4の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例4のほうが比較例4よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(ブルー)
 図30は、図26と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図である。図30(a),(b)は、実施例4,比較例4の輝度の視野角依存性を示す。これによれば、実施例4では、視野角が30°で輝度が98[%]付近であり、視野角が45°で輝度が92[%]付近である(CF有)。これに対し、比較例4では、視野角が30°で輝度が97[%]付近であり、視野角が45°で輝度が85[%]付近である(CF有)。したがって、実施例4,比較例4の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例4のほうが比較例4よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図30(c),(d)は、実施例4,比較例4の色度の視野角依存性を示す。これによれば、実施例4では、視野角が50°で色度変化Δxがほぼ0,Δyがほぼ0である(CF有)。これに対し、比較例4では、視野角が50°で色度変化Δxが0.005程度,Δyが0.011程度である(CF有)。したがって、実施例4,比較例4の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例4のほうが比較例4よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
 以上より、視野角特性については、R,G,B各色とも実施例4が比較例4よりも優れていることが分かる。特に、G(グリーン)では比較例4は図8の許容範囲を辛うじて満たしているので機能層の膜厚マージンを確保できないのに対し、実施例4は図8の許容範囲を余裕をもって満たしているため機能層の膜厚マージンを確保できる点において優位性が高い。
[第5のシミュレーション]
<条件>
 第5のシミュレーションでは、透明導電層の材料をIZO(Indium Zinc Oxide)、反射電極の材料をアルミニウムとしている。それ以外は第4のシミュレーションと同様である。
<発光効率と膜厚調整の容易性>
 図31は、上記条件において、透明導電層の膜厚を20[nm]とし、正孔注入層の膜厚を5[nm]とし、正孔輸送層の膜厚を0[nm]から600[nm]まで変化させたときの発光効率[cd/A]の変化を示す図である。図31によれば、1st cavityの発光効率は、2nd cavityの発光効率よりも高い。したがって、1st cavityを採用すれば、2nd cavityを採用する場合に比べて、有機EL素子の発光効率を高めることができる。また、図31によれば、1st cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、0[nm]以上35[nm]以下の狭い範囲(機能層の膜厚が0[nm]以上60[nm]以下の範囲)に集中して存在している。一方、2nd cavityでは、R,G,B各色の発光効率が極大値を示す正孔輸送層の膜厚が、100[nm]以上250[nm]以下の広い範囲に分散して存在している。したがって、R,G,B各色の有機EL素子に1st cavityを採用すれば、2nd cavityを採用する場合に比べて、R,G,B各色の正孔輸送層の作り分けをあまり必要とせず、製造工程における膜厚調整が容易である。
 図32は、図31と同条件の有機EL素子において、1st cavityを採用した場合と2nd cavityを採用した場合を対比するための図である。
 実施例5(1st cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔注入層の膜厚を共通に5[nm]とし、正孔輸送層の膜厚をそれぞれ15[nm],9[nm],5[nm]とし、CF(カラーフィルタ)を用いてR,G,B各色の色度を適正範囲に調整している。比較例5(2nd cavity)では、R,G,B各色の透明導電層の膜厚を共通に20[nm]とし、正孔注入層の膜厚を共通に5[nm]とし、正孔輸送層の膜厚をそれぞれ213[nm],166[nm],143[nm]とし、カラーフィルタを用いてR,G,B各色の色度を適正範囲に調整している。実施例5と比較例5を対比すると、実施例5が比較例5よりも発光効率および膜厚調整の容易性の両方において優れていることが分かる。
 また、図33に示すように、実施例5,比較例5では、数1の右辺mが整数になることが確認できる。また、実施例5において機能層の膜厚の許容マージン幅が20[nm]以上あることを考慮すると、図33の実施例5’のように数1の右辺mが整数以外でもよいことが分かる。
<視野角特性>
(グリーン)
 図34は、図32と同条件の有機EL素子においてG(グリーン)の視野角特性を説明するための図である。図34(a),(b)は、実施例5,比較例5の輝度の視野角依存性を示す。これによれば、実施例5では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が98[%]付近である(CF有)。これに対し、比較例5では、視野角が30°で輝度が95[%]付近であり、視野角が45°で輝度が78[%]付近である(CF有)。したがって、実施例5は図8の許容範囲を満たしているが、比較例5は図8の許容範囲を満たしていないことが分かる。
 図34(c),(d)は、実施例5,比較例5の色度の視野角依存性を示す。これによれば、実施例5では、視野角が50°で色度変化Δxが0.007程度,Δyが0.005程度である(CF有)。これに対し、比較例5では、視野角が50°で色度変化Δxが0.038程度,Δyが0.025程度である(CF有)。したがって、実施例5,比較例5の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例5のほうが比較例5よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(レッド)
 図35は、図32と同条件の有機EL素子においてR(レッド)の視野角特性を説明するための図である。図35(a),(b)は、実施例5,比較例5の輝度の視野角依存性を示す。これによれば、実施例5では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が90[%]付近である(CF有)。これに対し、比較例5では、視野角が30°で輝度が110[%]付近であり、視野角が45°で輝度が100[%]付近である(CF有)。したがって、実施例5,比較例5の両方とも図8の許容範囲を満たしていることが分かる。
 図35(c),(d)は、実施例5,比較例5の色度の視野角依存性を示す。これによれば、実施例5では、視野角が50°で色度変化Δxが0.012程度,Δyが0.013程度である(CF有)。これに対し、比較例5では、視野角が50°で色度変化Δxが0.023程度,Δyが0.023程度である(CF有)。したがって、実施例5,比較例5の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例5のほうが比較例5よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
(ブルー)
 図36は、図32と同条件の有機EL素子においてB(ブルー)の視野角特性を説明するための図である。図36(a),(b)は、実施例5,比較例5の輝度の視野角依存性を示す。これによれば、実施例5では、視野角が30°で輝度が100[%]付近であり、視野角が45°で輝度が98[%]付近である(CF有)。これに対し、比較例5では、視野角が30°で輝度が104[%]付近であり、視野角が45°で輝度が100[%]付近である(CF有)。したがって、実施例5,比較例5の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例5のほうが比較例5よりも輝度の視野角依存性が小さいので視野角特性に優れているといえる。
 図36(c),(d)は、実施例5,比較例5の色度の視野角依存性を示す。これによれば、実施例5では、視野角が50°で色度変化Δxがほぼ0,Δyがほぼ0である(CF有)。これに対し、比較例5では、視野角が50°で色度変化Δxが0.006程度,Δyが0.014程度である(CF有)。したがって、実施例5,比較例5の両方とも図8の許容範囲を満たしていることが分かる。ただし、実施例5のほうが比較例5よりも色度の視野角依存性が小さいので視野角特性に優れているといえる。
 以上より、視野角特性については、R,G,B各色とも実施例5が比較例5よりも優れていることが分かる。特に、G(グリーン)では比較例5は図8の許容範囲を満たしていないのに対し、実施例5は図8の許容範囲を満たしている点において優位性が高い。
[シミュレーションのまとめ]
 図37は、シミュレーションでのR,G,B各色の機能層の膜厚の一覧表であり、図38は、シミュレーションでのRG間,GB間,RB間の機能層の膜厚の差の一覧表である。シミュレーションの結果、実施例1~5が好適であることが判明している。実施例1~5をまとめると次のことが言える。
(1)R,G,B各色の機能層の膜厚を26[nm]以上50[nm]以下とし、かつ、R,G,B各色の機能層の膜厚の差を1[nm]以上16[nm]以下とすればよい。また、R,G,B各色の有機発光層から反射電極までの光学的な距離を49[nm]以上90[nm]以下とし、R,G,B各色の光学的な距離の差を0[nm]以上25[nm]以下とすればよい。光学的な距離については、0.1の位を四捨五入している。
(2)機能層が透明導電層と正孔輸送層の2層構造の場合において、Rの正孔輸送層の膜厚を13[nm]以上30[nm]以下とし、Gの正孔輸送層の膜厚を12[nm]以上21[nm]以下とし、Bの正孔輸送層の膜厚を10[nm]以上15[nm]以下とし、R,G,Bの透明導電層の膜厚を15[nm]以上20[nm]以下とすればよい。
(3)機能層が透明導電層と正孔注入層と正孔輸送層の3層構造の場合において、R,G,B各色の正孔注入層の膜厚を0[nm]よりも大きく5[nm]以下とし、Rの正孔輸送層の膜厚を15[nm]以上25[nm]以下とし、Gの正孔輸送層の膜厚を9[nm]以上16[nm]以下とし、Bの正孔輸送層の膜厚を5[nm]以上9[nm]以下とし、R,G,B各色の透明導電層の膜厚を15[nm]以上20[nm]以下とすればよい。
(4)Rの機能層の膜厚を28[nm]以上50[nm]以下とし、Gの機能層の膜厚を27[nm]以上41[nm]以下とし、Bの機能層の膜厚を26[nm]以上35[nm]以下とすればよい。
(5)光学特性を更に向上させるために、R,G,B各色で機能層の膜厚をほぼ等しい範囲内で相違させるのが好ましい場合がある。この場合には、機能層が透明導電層と正孔輸送層の2層構造であれば、R,G,B各色で透明導電層の膜厚を同一とし、正孔輸送層の膜厚を相違させるのが好ましい。また、機能層が透明導電層、正孔注入層および正孔輸送層の3層構造であれば、R,G,B各色で透明導電層および正孔注入層の膜厚を同一とし、正孔輸送層の膜厚を相違させるのが好ましい。これは、透明導電層および正孔注入層は蒸着法やスパッタ法で形成され、正孔輸送層はインクジェット法で形成されることが想定されるからである。インクジェット法は、滴下するインク滴数を調整するだけでR,G,B各色の膜厚を調整することができるので、蒸着法やスパッタ法に比べて各色ごとの膜厚調整が容易である。そのため、正孔輸送層の膜厚を相違させることにより、容易かつ精度よく機能層の膜厚を微調整することができ、光学特性を更に向上させることができる。
[各層の具体例]
 <基板>
 基板1は、例えば、TFT(Thin Film Transistor)基板である。基板1の材料は、例えば、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラスなどのガラス板及び石英板、並びに、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂などのプラスチック板又はプラスチックフィルム、並びに、アルミナなどの金属板又は金属ホイルなどである。
 <バンク>
 バンク2は、絶縁性材料により形成されていれば良く、有機溶剤耐性を有することが好ましい。また、バンク2はエッチング処理、ベーク処理などされることがあるので、それらの処理に対する耐性の高い材料で形成されることが好ましい。バンク2の材料は、樹脂などの有機材料であっても、ガラスなどの無機材料であっても良い。有機材料として、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂などを使用することができ、無機材料として、シリコンオキサイド(SiO2)、シリコンナイトライド(Si34)などを使用することができる。
 <反射電極>
 反射電極3は、基板1に配されたTFTに電気的に接続されており、有機EL素子の正極として機能すると共に、有機発光層7b,7g,7rから反射電極3に向けて出射された光を反射する機能を有する。反射機能は、反射電極3の構成材料により発揮されるものでもよいし、反射電極3の表面部分に反射コーティングを施すことにより発揮されるものでもよい。反射電極3は、例えば、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等で形成されている。
<透明導電層>
 透明導電層4は、製造過程において反射電極3が自然酸化するのを防止する保護層として機能する。透明導電層4の材料は、有機発光層7b,7g,7rで発生した光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどが好ましい。室温で成膜しても良好な導電性を得ることができるからである。
<正孔注入層>
 正孔注入層5は、正孔を有機発光層7b,7g,7rに注入する機能を有する。例えば、酸化タングステン(WOx)、酸化モリブデン(MoOx)、酸化モリブデンタングステン(MoxWyOz)などの遷移金属の酸化物で形成される。遷移金属の酸化物で形成することで、電圧-電流密度特性を向上させ、また、電流密度を高めて発光強度を高めることができる。なお、これ以外に、遷移金属の窒化物などの金属化合物も適用できる。
<正孔輸送層>
 正孔輸送層6の材料は、例えば、特開平5-163488号に記載のトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体である。特に好ましくは、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物である。
<有機発光層>
 有機発光層7b,7g,7rの材料は、例えば、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属鎖体、2-ビピリジン化合物の金属鎖体、シッフ塩とIII族金属との鎖体、オキシン金属鎖体、希土類鎖体等の蛍光物質である。
<電子輸送層>
 電子輸送層8の材料は、例えば、特開平5-163488号公報のニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体である。
 なお、電子注入性を更に向上させる点から、上記電子輸送層を構成する材料に、Na,Ba,Caなどのアルカリ金属またはアルカリ土類金属をドーピングしてもよい。
<透明電極>
 透明電極9は、有機EL素子の負極として機能する。透明電極9の材料は、有機発光層7b,7g,7rで発生した光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどが好ましい。
<薄膜封止層>
 薄膜封止層10は、基板1との間に挟まれた各層が水分や空気に晒されることを防止する機能を有する。薄膜封止層10の材料は、例えば、窒化シリコン(SiN)、酸窒化シリコン(SiON)や樹脂等である。
<樹脂封止層>
 樹脂封止層11は、基板1から薄膜封止層10までの各層からなる背面パネルと、カラーフィルタ12b,12g,12rが形成された前面パネルとを貼り合わせるとともに、各層が水分や空気に晒されることを防止する機能を有する。樹脂封止層11の材料は、例えば、樹脂接着剤等である。
<カラーフィルタ>
 カラーフィルタ12b,12g,12rは、有機EL素子から出射された光の色度を矯正する機能を有する。
[表示装置]
 図39は、本発明の実施形態に係る表示装置の外観を例示する図である。図40は、本発明の実施形態に係る表示装置の機能ブロックを示す図である。表示装置15は、有機ELパネル16と、これに電気的に接続された駆動制御部17とを備える。有機ELパネル16は、図3に示す画素構造を有するものである。駆動制御部17は、各有機EL素子の反射電極3と透明電極9との間に電圧を印加する駆動回路18~21と、駆動回路18~21の動作を制御する制御回路22とからなる。
[有機ELパネルの製造方法]
 次に、有機ELパネルの製造方法を説明する。図41,42は、本発明の実施形態に係る有機ELパネルの製造方法を説明するための図である。
 まず、基板1上に反射電極3を蒸着法やスパッタ法等によって形成する(図41(a))。次に、反射電極3上に、蒸着法やスパッタ法等により透明導電層4を形成する(図41(b))。次に、バンク2を形成する(図41(c))。次に、透明導電層4上に、例えばインクジェット法等により正孔輸送層6を形成する(図41(d))。次に、正孔輸送層6上に、有機発光層7b,7g,7rを形成する(図42(a))。次に、電子輸送層8、透明電極9、薄膜封止層10を積層する(図42(b))。次に、カラーフィルタ12b,12g,12rが形成された前面パネルを、樹脂封止層11を用いて貼り合わせる(図42(c))。透明導電層4の膜厚および正孔輸送層6の膜厚は、機能層の膜厚の好適例として上述した範囲に調整される。R,G,B各色の機能層の膜厚を微調整するには、蒸着法やスパッタ法に比べてインクジェット法のほうが容易である。そのため、透明導電層4の膜厚をR,G,B各色で同一とし、正孔輸送層6の膜厚をR,G,B各色で微調整するのが好ましい。
 なお、図4の構造を得るには、透明導電層4上に正孔注入層5を形成し、次に、正孔注入層5上に正孔輸送層6を形成すればよい。正孔注入層5は、金属酸化物を用いて構成されており、蒸着法またはスパッタ法等により形成される。この場合においても、上記と同様の理由により、透明導電層4および正孔注入層5の膜厚をR,G,B各色で同一とし、正孔輸送層6の膜厚をR,G,B各色で微調整するのが好ましい。
 本発明は、有機ELディスプレイ等に利用可能である。
    1  基板
    2  バンク
    3  反射電極
    4  透明導電層
    5  正孔注入層
    6  正孔輸送層
    7b,7g,7r 有機発光層
    8  電子輸送層
    9  透明電極
   10  薄膜封止層
   11  樹脂封止層
   12b,12g,12r カラーフィルタ
   15  表示装置
   16  有機ELパネル
   17  駆動制御部
   18,19,20,21 駆動回路
   22  制御回路

Claims (35)

  1.  入射された光を反射する第1電極と、
     前記第1電極に対向して配置され、入射された光を透過する第2電極と、
     前記第1電極と前記第2電極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられる、前記第1電極と第2電極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、
     前記第1電極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられる1または2以上の層からなる機能層とを備え、
     前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1電極側に進行することなく前記第2電極側に進行し、前記第2電極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記機能層、前記有機発光層および前記第2電極を通じて外部に出射される第2光路とが形成され、
     前記R,G,B各色の機能層の膜厚は、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、前記R,G,B各色でほぼ等しく、
     前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離は、100nm以下であって、かつ、前記R,G,B各色でほぼ等しいこと
     を特徴とする有機ELパネル。
  2.  前記機能層は、前記第1電極上に設けられる透明導電層と、前記透明導電層上に設けられる正孔輸送層とからなる、請求項1記載の有機ELパネル。
  3.  前記正孔輸送層の膜厚は、前記R,G,B各色でほぼ等しく、
     前記透明導電層の膜厚は、前記R,G,B各色で同一である、
     請求項2記載の有機ELパネル。
  4.  前記正孔輸送層の膜厚は、前記R,G,B各色で相違し、
     前記透明導電層の膜厚は、前記R,G,B各色で同一である、
     請求項2記載の有機ELパネル。
  5.  前記Rの正孔輸送層の膜厚は13nm以上30nm以下であり、前記Gの正孔輸送層の膜厚は12nm以上21nm以下であり、前記Bの正孔輸送層の膜厚は10nm以上15nm以下であり、
     前記R,G,B各色の透明導電層の膜厚は15nm以上20nm以下である、
     請求項3または4記載の有機ELパネル。
  6.  前記正孔輸送層は、正孔を輸送する機能に加え、正孔を有機発光層に注入する機能を備える、請求項2記載の有機ELパネル。
  7.  前記機能層は、前記第1電極上に設けられる透明導電層と、前記透明導電層上に設けられる正孔注入層と、前記正孔注入層上に設けられる正孔輸送層とからなる、請求項1記載の有機ELパネル。
  8.  前記正孔輸送層の膜厚は、前記R,G,B各色でほぼ等しく、
     前記透明導電層および前記正孔注入層の膜厚は、前記R,G,Bで同一である、
     請求項7記載の有機ELパネル。
  9.  前記正孔輸送層の膜厚は、前記R,G,B各色で相違し、
     前記透明導電層および前記正孔注入層の膜厚は、前記R,G,Bで同一である、
     請求項7記載の有機ELパネル。
  10.  前記R,G,B各色の正孔注入層の膜厚は0nmよりも大きく5nm以下であり、
     前記Rの正孔輸送層の膜厚は15nm以上25nm以下であり、前記Gの正孔輸送層の膜厚は9nm以上16nm以下であり、前記Bの正孔輸送層の膜厚は5nm以上9nm以下であり、
     前記R,G,B各色の透明導電層の膜厚は15nm以上20nm以下である、
     請求項8または9記載の有機ELパネル。
  11.  前記Rの機能層の膜厚は28nm以上50nm以下であり、前記Gの機能層の膜厚は27nm以上41nm以下であり、前記Bの機能層の膜厚は26nm以上35nm以下である、
     請求項1記載の有機ELパネル。
  12.  入射された光を反射する第1電極と、
     前記第1電極に対向して配置され、入射された光を透過する第2電極と、
     前記第1電極と前記第2電極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられる、前記第1電極と第2電極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、
     前記第1電極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられる1または2以上の層からなる機能層とを備え、
     前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1電極側に進行することなく前記第2電極側に進行し、前記第2電極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記機能層を通じて前記第1電極に入射されて前記第1電極により反射された後、前記機能層、前記有機発光層および前記第2電極を通じて外部に出射される第2光路とが形成され、
     前記R,G,B各色の機能層の膜厚は、いずれも26nm以上50nm以下であって、かつ、前記R,G,B各色の機能層の膜厚の差は1nm以上16nm以下であり、
     前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離は、49nm以上90nm以下であって、かつ、前記R,G,B各色の光学的な距離の差は0nm以上25nm以下であること
     を特徴とする有機ELパネル。
  13.  前記機能層は、前記第1電極上に設けられる透明導電層と、前記透明導電層上に設けられる正孔輸送層とからなる、請求項12記載の有機ELパネル。
  14.  前記Rの正孔輸送層の膜厚は13nm以上30nm以下であり、前記Gの正孔輸送層の膜厚は12nm以上21nm以下であり、前記Bの正孔輸送層の膜厚は10nm以上15nm以下であり、
     前記R,G,Bの透明導電層の膜厚は15nm以上20nm以下である、
     請求項13記載の有機ELパネル。
  15.  前記正孔輸送層は、正孔を輸送する機能に加え、正孔を有機発光層に注入する機能を備える、請求項13記載の有機ELパネル。
  16.  前記機能層は、前記第1電極上に設けられる透明導電層と、前記透明導電層上に設けられる正孔注入層と、前記正孔注入層上に設けられる正孔輸送層とからなる、請求項12記載の有機ELパネル。
  17.  前記R,G,B各色の正孔注入層の膜厚は0nmよりも大きく5nm以下であり、
     前記Rの正孔輸送層の膜厚は15nm以上25nm以下であり、前記Gの正孔輸送層の膜厚は9nm以上16nm以下であり、前記Bの正孔輸送層の膜厚は5nm以上9nm以下であり、
     前記R,G,B各色の透明導電層の膜厚は15nm以上20nm以下である、
     請求項16記載の有機ELパネル。
  18.  前記Rの機能層の膜厚は28nm以上50nm以下であり、前記Gの機能層の膜厚は27nm以上41nm以下であり、前記Bの機能層の膜厚は26nm以上35nm以下である、
     請求項12記載の有機ELパネル。
  19.  前記光学的な距離は、前記機能層を構成する層毎にその膜厚とその屈折率の積をとり、層毎に得られた積を合計することにより求められる、請求項1または12記載の有機ELパネル。
  20.  請求項1から19の何れかに記載された有機ELパネルと、前記第1電極と前記第2電極との間に電圧を印加する駆動回路とを備える表示装置。
  21.  入射された光を反射する第1電極を準備する第1工程と、
     前記第1電極上に、R(レッド),G(グリーン),B(ブルー)の各色に対応して1または2以上の層からなる機能層を設ける第2工程と、
     前記R,G,B各色の機能層上に、それぞれR,G,B各色の光を出射する有機発光層を設ける第3工程と、
     前記有機発光層の上方における前記第1電極と対向するように、入射された光を透過する第2電極を設ける第4工程とを含み、
     前記第2工程では、前記R,G,B各色の機能層の膜厚を、60nm以下において、その発光効率が極大値を示す膜厚に対応する膜厚であって、かつ、前記R,G,B各色でほぼ等しくし、
     前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離が、100nm以下であって、かつ、前記R,G,B各色でほぼ等しくなるように形成すること
     を特徴とする有機ELパネルの製造方法。
  22.  入射された光を反射する第1電極を準備する第1工程と、
     前記第1電極上に、R(レッド),G(グリーン),B(ブルー)の各色に対応して1または2以上の層からなる機能層を設ける第2工程と、
     前記R,G,B各色の機能層上に、それぞれR,G,B各色の光を出射する有機発光層を設ける第3工程と、
     前記有機発光層の上方における前記第1電極と対向するように、入射された光を透過する第2電極を設ける第4工程とを含み、
     前記第2工程では、前記R,G,B各色の機能層の膜厚を、いずれも26nm以上50nm以下であって、かつ、前記R,G,B各色の機能層の膜厚の差を1nm以上16nm以下であり、
     前記R,G,B各色における前記有機発光層から前記第1電極までの光学的な距離を、49nm以上90nm以下であって、かつ、前記R,G,B各色の光学的な距離の差を0nm以上25nm以下に形成すること
     を特徴とする有機ELパネルの製造方法。
  23.  前記第2工程は、前記第1電極上に透明導電層を設ける工程と、前記透明導電層上に正孔輸送層を設ける工程とを含む、請求項21または22記載の有機ELパネルの製造方法。
  24.  前記透明導電層を設ける工程では、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、前記正孔輸送層の膜厚を、前記R,G,B各色でほぼ等しくする、
     請求項23記載の有機ELパネルの製造方法。
  25.  前記透明導電層を設ける工程では、蒸着法またはスパッタ法を用いて、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、インクジェット法を用いて、前記正孔輸送層の膜厚を、前記R,G,B各色でほぼ等しくする、
     請求項24記載の有機ELパネルの製造方法。
  26.  前記透明導電層を設ける工程では、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、前記正孔輸送層の膜厚を、前記R,G,B各色で相違させる、
     請求項23記載の有機ELパネルの製造方法。
  27.  前記透明導電層を設ける工程では、蒸着法またはスパッタ法を用いて、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、インクジェット法を用いて、前記正孔輸送層の膜厚を、前記R,G,B各色で相違させる、
     請求項26記載の有機ELパネルの製造方法。
  28.  前記正孔輸送層を設ける工程では、前記Rの正孔輸送層の膜厚を13nm以上30nm以下、前記Gの正孔輸送層の膜厚を12nm以上21nm以下、前記Bの正孔輸送層の膜厚を10nm以上15nm以下に形成し、
     前記透明導電層を設ける工程では、前記R,G,Bの透明導電層の膜厚を15nm以上20nm以下に形成する、
     請求項24または26記載の有機ELパネル。
  29.  前記第2工程は、前記第1電極上に透明導電層を設ける工程と、前記透明導電層上に正孔注入層を設ける工程と、前記正孔注入層上に正孔輸送層を設ける工程とを含む、請求項21または22記載の有機ELパネルの製造方法。
  30.  前記透明導電層を設ける工程では、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔注入層を設ける工程では、前記正孔注入層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、前記正孔輸送層の膜厚を、前記R,G,B各色でほぼ等しくする、
     請求項29記載の有機ELパネルの製造方法。
  31.  前記透明導電層を設ける工程では、蒸着法またはスパッタ法を用いて、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔注入層を設ける工程では、蒸着法またはスパッタ法を用いて、前記正孔注入層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、インクジェット法を用いて、前記正孔輸送層の膜厚を、前記R,G,B各色でほぼ等しくする、
     請求項30記載の有機ELパネルの製造方法。
  32.  前記透明導電層を設ける工程では、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔注入層を設ける工程では、前記正孔注入層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、前記正孔輸送層の膜厚を、前記R,G,B各色で相違させる、
     請求項29記載の有機ELパネルの製造方法。
  33.  前記透明導電層を設ける工程では、蒸着法またはスパッタ法を用いて、前記透明導電層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔注入層を設ける工程では、蒸着法またはスパッタ法を用いて、前記正孔注入層の膜厚を、前記R,G,B各色で同一とし、
     前記正孔輸送層を設ける工程では、インクジェット法を用いて、前記正孔輸送層の膜厚を、前記R,G,B各色で相違させる、
     請求項32記載の有機ELパネルの製造方法。
  34.  前記正孔注入層を設ける工程では、前記R,G,B各色の正孔注入層の膜厚を0nmよりも大きく5nm以下に形成し、
     前記正孔輸送層を設ける工程では、前記Rの正孔輸送層の膜厚を15nm以上25nm以下、前記Gの正孔輸送層の膜厚を9nm以上16nm以下、前記Bの正孔輸送層の膜厚を5nm以上9nm以下に形成し、
     前記透明導電層を設ける工程では、前記R,G,B各色の透明導電層の膜厚を15nm以上20nm以下に形成する、
     請求項30または32記載の有機ELパネルの製造方法。
  35.  前記第2工程では、
     前記Rの機能層の膜厚を28nm以上50nm以下、前記Gの機能層の膜厚を27nm以上41nm以下、前記Bの機能層の膜厚を26nm以上35nm以下に形成する、
     請求項21または22記載の有機ELパネルの製造方法。
PCT/JP2010/000087 2010-01-08 2010-01-08 有機elパネル、それを用いた表示装置および有機elパネルの製造方法 WO2011083515A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/000087 WO2011083515A1 (ja) 2010-01-08 2010-01-08 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
CN201080059449.5A CN102687592B (zh) 2010-01-08 2010-01-08 有机el面板、使用了该有机el面板的显示装置以及有机el面板的制造方法
JP2011548860A JP5607654B2 (ja) 2010-01-08 2010-01-08 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
US13/488,987 US8933471B2 (en) 2010-01-08 2012-06-05 Organic EL panel, display device using same, and method for producing organic EL panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000087 WO2011083515A1 (ja) 2010-01-08 2010-01-08 有機elパネル、それを用いた表示装置および有機elパネルの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/488,987 Continuation US8933471B2 (en) 2010-01-08 2012-06-05 Organic EL panel, display device using same, and method for producing organic EL panel

Publications (1)

Publication Number Publication Date
WO2011083515A1 true WO2011083515A1 (ja) 2011-07-14

Family

ID=44305261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000087 WO2011083515A1 (ja) 2010-01-08 2010-01-08 有機elパネル、それを用いた表示装置および有機elパネルの製造方法

Country Status (4)

Country Link
US (1) US8933471B2 (ja)
JP (1) JP5607654B2 (ja)
CN (1) CN102687592B (ja)
WO (1) WO2011083515A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853716B2 (en) 2010-11-24 2014-10-07 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel
US8907329B2 (en) 2010-11-24 2014-12-09 Panasonic Corporation Organic el panel, display device using same, and method for producing organic el panel
US8916862B2 (en) 2010-11-24 2014-12-23 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel
KR20180014350A (ko) * 2016-07-29 2018-02-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP2019186011A (ja) * 2018-04-09 2019-10-24 株式会社Joled 有機電界発光素子、有機電界発光パネルおよび電子機器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847217B2 (en) * 2010-11-24 2014-09-30 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel
JPWO2012073269A1 (ja) 2010-11-29 2014-05-19 パナソニック株式会社 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
CN104752611B (zh) * 2013-12-25 2017-09-01 清华大学 有机发光二极管阵列
CN104752459B (zh) * 2013-12-25 2018-04-03 清华大学 有机发光二极管阵列
CN104752347B (zh) * 2013-12-25 2017-11-14 清华大学 有机发光二极管阵列的制备方法
JP2016072250A (ja) * 2014-09-30 2016-05-09 株式会社半導体エネルギー研究所 発光装置、電子機器、及び照明装置
KR20160060170A (ko) * 2014-10-21 2016-05-30 엘지디스플레이 주식회사 유기전계 발광소자
CN105720081B (zh) * 2016-02-24 2021-04-16 京东方科技集团股份有限公司 一种有机发光二极管阵列基板、显示装置和制作方法
JP2017220528A (ja) * 2016-06-06 2017-12-14 株式会社Joled 有機el表示パネル
KR102597673B1 (ko) * 2018-05-16 2023-11-02 삼성디스플레이 주식회사 표시 장치
US11980046B2 (en) * 2020-05-27 2024-05-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming an isolation structure having multiple thicknesses to mitigate damage to a display device
WO2023245427A1 (zh) * 2022-06-21 2023-12-28 京东方科技集团股份有限公司 发光基板、显示面板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137485A (ja) * 1990-09-28 1992-05-12 Ricoh Co Ltd 電界発光素子
JPH04328294A (ja) * 1991-04-26 1992-11-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JP2000323277A (ja) * 1999-05-12 2000-11-24 Pioneer Electronic Corp 有機エレクトロルミネッセンス多色ディスプレイ及びその製造方法
JP2004014360A (ja) * 2002-06-07 2004-01-15 Fuji Electric Holdings Co Ltd 有機el発光素子
JP2006012579A (ja) * 2004-06-25 2006-01-12 Kyocera Corp カラー有機elディスプレイ及びその製造方法
JP2006179780A (ja) * 2004-12-24 2006-07-06 Canon Inc 有機発光素子及び表示パネル
JP2006303463A (ja) * 2005-03-25 2006-11-02 Semiconductor Energy Lab Co Ltd 発光装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046948A (ja) 1990-04-24 1992-01-10 Canon Inc カラー画像の2値化方法
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
US6911772B2 (en) * 2002-06-12 2005-06-28 Eastman Kodak Company Oled display having color filters for improving contrast
US6737800B1 (en) * 2003-02-18 2004-05-18 Eastman Kodak Company White-emitting organic electroluminescent device with color filters and reflective layer for causing colored light constructive interference
JP4543798B2 (ja) 2003-08-18 2010-09-15 セイコーエプソン株式会社 有機el装置および電子機器
JP4403399B2 (ja) 2003-09-19 2010-01-27 ソニー株式会社 表示装置および表示装置の製造方法
EP3413369A1 (en) 2003-09-19 2018-12-12 Sony Corporation Organic light emitting display
JP4479250B2 (ja) 2004-01-21 2010-06-09 ソニー株式会社 表示装置の製造方法および表示装置
KR100846586B1 (ko) 2006-05-29 2008-07-16 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
KR100573137B1 (ko) 2004-04-02 2006-04-24 삼성에스디아이 주식회사 플루오렌계 화합물 및 이를 이용한 유기 전계 발광 소자
KR100787425B1 (ko) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 페닐카바졸계 화합물 및 이를 이용한 유기 전계 발광 소자
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
KR100669716B1 (ko) 2004-07-14 2007-01-16 삼성에스디아이 주식회사 페닐카르바졸 화합물 및 이를 이용한 유기 전계 발광 소자
JP2005317255A (ja) 2004-04-27 2005-11-10 Seiko Epson Corp 電界発光素子及び表示素子
JP2005322435A (ja) 2004-05-06 2005-11-17 Seiko Epson Corp 電界発光素子及び表示素子
KR100721554B1 (ko) 2004-07-22 2007-05-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조 방법
JP4823629B2 (ja) 2004-09-24 2011-11-24 株式会社半導体エネルギー研究所 発光装置
US7601988B2 (en) 2004-09-24 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4525536B2 (ja) 2004-11-22 2010-08-18 セイコーエプソン株式会社 El装置および電子機器
US8021765B2 (en) 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
KR100721562B1 (ko) * 2004-12-03 2007-05-23 삼성에스디아이 주식회사 마그네슘-칼슘 막인 캐소드를 구비하는 유기전계발광소자및 그의 제조방법
JP2006253015A (ja) 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンスカラー発光装置
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4984433B2 (ja) * 2005-05-16 2012-07-25 大日本印刷株式会社 発光層の形成方法およびそれを用いた有機発光デバイスの製造方法
US7960908B2 (en) 2005-07-15 2011-06-14 Toshiba Matsushita Display Technology Co., Ltd. Organic EL display
JP2007027042A (ja) * 2005-07-21 2007-02-01 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
JP4412264B2 (ja) 2005-09-12 2010-02-10 ソニー株式会社 表示装置および表示装置の製造方法
JP5207645B2 (ja) 2006-03-29 2013-06-12 キヤノン株式会社 多色有機発光装置
JP4967423B2 (ja) * 2006-04-04 2012-07-04 セイコーエプソン株式会社 発光装置および電子機器
TW200803606A (en) 2006-06-13 2008-01-01 Itc Inc Ltd The fabrication of full color OLED panel using micro-cavity structure
JP4658877B2 (ja) 2006-08-07 2011-03-23 株式会社 日立ディスプレイズ 有機発光表示装置
JP2008135373A (ja) 2006-10-24 2008-06-12 Canon Inc 有機発光装置及びその製造方法
KR100823511B1 (ko) 2006-11-10 2008-04-21 삼성에스디아이 주식회사 유기 발광 표시 장치 및 그 제조방법
JP2007157732A (ja) 2007-01-29 2007-06-21 Sony Corp 発光素子およびこれを用いた表示装置
JP4899929B2 (ja) 2007-02-28 2012-03-21 セイコーエプソン株式会社 表示装置
JP4858379B2 (ja) 2007-09-18 2012-01-18 セイコーエプソン株式会社 発光装置および電子機器
US7741770B2 (en) 2007-10-05 2010-06-22 Global Oled Technology Llc LED device having improved light output
US8227978B2 (en) 2007-10-10 2012-07-24 Samsung Electronics Co., Ltd. White organic light emitting device and color display apparatus employing the same
KR101434361B1 (ko) 2007-10-16 2014-08-26 삼성디스플레이 주식회사 백색 유기 전계 발광소자 및 이를 이용한 컬러 디스플레이장치
JP5251239B2 (ja) 2008-05-08 2013-07-31 セイコーエプソン株式会社 有機el装置、電子機器、有機el装置の製造方法
JP5515237B2 (ja) * 2008-05-14 2014-06-11 セイコーエプソン株式会社 発光装置及び電子機器
JP2010067482A (ja) 2008-09-11 2010-03-25 Fujifilm Corp 有機el表示装置
JP2010118163A (ja) 2008-11-11 2010-05-27 Seiko Epson Corp 発光装置及び電子機器
JP2010251156A (ja) 2009-04-16 2010-11-04 Panasonic Corp カラー有機エレクトロルミネッセンス表示装置およびその製造方法
KR101403420B1 (ko) 2009-06-11 2014-06-03 파이오니아 가부시키가이샤 발광소자 및 표시장치
JP2011009017A (ja) 2009-06-24 2011-01-13 Panasonic Corp 有機elディスプレイパネル
JP5303036B2 (ja) 2009-09-29 2013-10-02 パナソニック株式会社 発光素子およびそれを用いた表示装置
WO2012001727A1 (ja) 2010-06-28 2012-01-05 パナソニック株式会社 有機発光素子とその製造方法、有機表示パネル、有機表示装置
CN102960069B (zh) 2010-07-27 2015-09-02 株式会社日本有机雷特显示器 有机el显示面板及其制造方法
CN102440073B (zh) 2010-08-10 2014-10-08 松下电器产业株式会社 有机发光元件、有机发光装置、有机显示面板、有机显示装置以及有机发光元件的制造方法
JP5425242B2 (ja) 2012-01-31 2014-02-26 キヤノン株式会社 有機el素子及びこれを用いた表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137485A (ja) * 1990-09-28 1992-05-12 Ricoh Co Ltd 電界発光素子
JPH04328294A (ja) * 1991-04-26 1992-11-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JP2000323277A (ja) * 1999-05-12 2000-11-24 Pioneer Electronic Corp 有機エレクトロルミネッセンス多色ディスプレイ及びその製造方法
JP2004014360A (ja) * 2002-06-07 2004-01-15 Fuji Electric Holdings Co Ltd 有機el発光素子
JP2006012579A (ja) * 2004-06-25 2006-01-12 Kyocera Corp カラー有機elディスプレイ及びその製造方法
JP2006179780A (ja) * 2004-12-24 2006-07-06 Canon Inc 有機発光素子及び表示パネル
JP2006303463A (ja) * 2005-03-25 2006-11-02 Semiconductor Energy Lab Co Ltd 発光装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853716B2 (en) 2010-11-24 2014-10-07 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel
US8907329B2 (en) 2010-11-24 2014-12-09 Panasonic Corporation Organic el panel, display device using same, and method for producing organic el panel
US8916862B2 (en) 2010-11-24 2014-12-23 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel
KR20180014350A (ko) * 2016-07-29 2018-02-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR102629936B1 (ko) * 2016-07-29 2024-01-29 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP2019186011A (ja) * 2018-04-09 2019-10-24 株式会社Joled 有機電界発光素子、有機電界発光パネルおよび電子機器

Also Published As

Publication number Publication date
CN102687592A (zh) 2012-09-19
JP5607654B2 (ja) 2014-10-15
CN102687592B (zh) 2016-01-20
JPWO2011083515A1 (ja) 2013-05-13
US20120241780A1 (en) 2012-09-27
US8933471B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
JP5607654B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5574450B2 (ja) 有機発光素子、有機発光装置、有機表示パネル、有機表示装置および有機発光素子の製造方法
JP5303036B2 (ja) 発光素子およびそれを用いた表示装置
JP5600752B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5753191B2 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP6379347B2 (ja) 有機発光パネルおよびその製造方法
JP6019375B2 (ja) 発光素子およびそれを用いた表示装置
WO2012070087A1 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP5879613B2 (ja) 表示装置
WO2012070088A1 (ja) 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
JP6111478B2 (ja) 発光素子及び表示装置
WO2012168978A1 (ja) 有機発光パネルおよびその製造方法
WO2015178003A1 (ja) 発光デバイスの製造方法および発光デバイス
JP5778799B2 (ja) 有機発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059449.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842039

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011548860

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842039

Country of ref document: EP

Kind code of ref document: A1