WO2023245427A1 - 发光基板、显示面板和显示装置 - Google Patents

发光基板、显示面板和显示装置 Download PDF

Info

Publication number
WO2023245427A1
WO2023245427A1 PCT/CN2022/100167 CN2022100167W WO2023245427A1 WO 2023245427 A1 WO2023245427 A1 WO 2023245427A1 CN 2022100167 W CN2022100167 W CN 2022100167W WO 2023245427 A1 WO2023245427 A1 WO 2023245427A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
hole transport
sub
Prior art date
Application number
PCT/CN2022/100167
Other languages
English (en)
French (fr)
Inventor
张智辉
王蓓
高昊
樊燕
温向敏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001841.7A priority Critical patent/CN117643201A/zh
Priority to PCT/CN2022/100167 priority patent/WO2023245427A1/zh
Publication of WO2023245427A1 publication Critical patent/WO2023245427A1/zh

Links

Images

Definitions

  • Embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, to a light-emitting substrate, a display panel and a display device.
  • Quantum Dot is generally in the nanometer range (2nm to 10nm). It is composed of a core and a shell and is wrapped by a polymer coating. Since the size of quantum dots is within the Bohr radius range, it can exhibit obvious quantum confinement effect, so quantum dots can emit light of different color wavelengths, and the emission spectrum is narrow (for example, 15nm to 30nm), with higher color Purity, can present a good level of color gamut.
  • Quantum Dots-Organic Light Emitting Diode is a new display device that uses OLED as the excitation light source and QD as the color conversion layer to achieve full-color display.
  • QD-OLED devices show good application prospects and can show good color purity and color gamut levels.
  • QD can be formed using inorganic materials through a printing process, which reduces material waste to a certain extent.
  • the properties of inorganic materials have better stability and resistance to water and oxygen, showing high commercial value and display level.
  • An embodiment of the present disclosure provides a light-emitting substrate, including:
  • the light-emitting devices include a first light-emitting device, a second light-emitting device and a third light-emitting device.
  • Each of the light-emitting devices includes a stacked first electrode layer, A light-emitting functional layer and a second electrode layer.
  • the light-emitting functional layer includes a light-emitting layer.
  • the light-emitting layer includes a first light-emitting layer located in the first light-emitting device and a second light-emitting layer located in the second light-emitting device. and a third light-emitting layer located within the third light-emitting device;
  • the material of the first luminescent layer is different from the material of the second luminescent layer, and the material of the first luminescent layer is different from the material of the third luminescent layer.
  • An embodiment of the present disclosure also provides a display panel having a plurality of repeated pixel units, at least one pixel unit including a first sub-pixel, a second sub-pixel and a third sub-pixel displaying different colors, wherein the display panel includes : including the light-emitting substrate, thin film encapsulation layer, color conversion layer and color filter layer provided by the above embodiments of the present disclosure; wherein,
  • the first light-emitting device of the light-emitting substrate is located in the first sub-pixel, the second light-emitting device of the light-emitting substrate is located in the second sub-pixel, and the third light-emitting device of the light-emitting substrate is located in the third within sub-pixels;
  • the thin film encapsulation layer is disposed on a side of the light-emitting substrate away from the first base substrate;
  • the color conversion layer is disposed on a side of the film encapsulation layer away from the first substrate.
  • the color conversion layer includes a transmission pattern, a first color conversion pattern and a second color conversion pattern.
  • the transmission pattern is located on In the first sub-pixel, the first color conversion pattern is located in the second sub-pixel, and the second color conversion pattern is located in the third sub-pixel;
  • the color filter layer is located on a side of the color conversion layer away from the first base substrate and includes at least a first light-shielding pattern, a first color filter pattern and a second color filter pattern, and the first light-shielding pattern defines There are multiple light-transmitting areas, and the light-transmitting areas include a first light-transmitting area corresponding to the first sub-pixel, a second light-transmitting area corresponding to the second sub-pixel, and a third light-transmitting area corresponding to the third sub-pixel. area.
  • An embodiment of the present disclosure also provides a display device, including the display panel, a driving integrated circuit and a power supply circuit as provided in the above embodiment of the present disclosure.
  • Figure 1 is a schematic structural diagram of a currently common quantum dot-organic light-emitting diode
  • Figure 2 is a schematic structural diagram of a light-emitting substrate according to an exemplary embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a light-emitting substrate according to another exemplary embodiment of the present disclosure.
  • Figure 4 is a spectrum diagram of the electroluminescence spectrum and absorption spectrum of the first light-emitting layer of a light-emitting substrate according to an exemplary embodiment of the present disclosure under different backlight viewing angles;
  • Figure 5 is a spectrum diagram of the electroluminescence spectrum and absorption spectrum of the second light-emitting layer of the light-emitting substrate shown in Figure 4 under different backlight viewing angles;
  • Figure 6 is a photoluminescence spectrum diagram of the first luminescent layer and the second luminescent layer of a luminescent substrate according to an exemplary embodiment of the present disclosure
  • Figure 7 is a schematic structural diagram of a light-emitting substrate according to another exemplary embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a light-emitting substrate according to another exemplary embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a display panel according to an exemplary embodiment of the present disclosure.
  • Figure 10 shows the electroluminescence spectrum and absorption spectrum of device structure 1 and device structure 3 when the backlight viewing angle is 0°;
  • Figure 11 shows the electroluminescence spectrum and absorption spectrum of device structure 1 and device structure 3 when the backlight viewing angle is 50°.
  • the scale of the drawings in this disclosure can be used as a reference in actual processes, but is not limited thereto.
  • the width-to-length ratio of the channel, the thickness and spacing of each film layer, and the width and spacing of each signal line can be adjusted according to actual needs.
  • the number of pixels in the display substrate and the number of sub-pixels in each pixel are not limited to the numbers shown in the figures.
  • the figures described in the present disclosure are only structural schematic diagrams, and one mode of the present disclosure is not limited to the figures. The shape or numerical value shown in the figure.
  • ordinal numbers such as “first”, “second” and “third” are provided to avoid confusion of constituent elements and are not intended to limit the quantity.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • set and “connection” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or an electrical connection; it can be a direct connection, an indirect connection through an intermediate piece, or an internal connection between two elements.
  • film and “layer” may be interchanged.
  • light-emitting layer may sometimes be replaced by “light-emitting film”.
  • FIG 1 is a schematic structural diagram of a currently common quantum dot-organic light-emitting diode.
  • currently common quantum dot-organic light-emitting diodes include a first substrate 10, a first electrode layer 20, a hole transport layer 30 (Hole Transport Layer, HTL), and an emitting layer 40 (Emitting Layer, EML).
  • HTL Hole Transport Layer
  • EML emitting Layer
  • the second electrode layer 50 the pixel definition layer 60 (Pixel Definition Layer, PDL), the thin film encapsulation layer 70, the light blocking layer 80, the quantum dot conversion layer 90, the transparent light extraction layer 100 and the back film layer 110 (including the second liner base substrate, etc.), wherein the first electrode layer 20 is disposed on one side of the first base substrate 10 , the hole transport layer 30 is disposed on the side of the first electrode layer 20 away from the first base substrate 10 , and the light-emitting layer 40
  • the second electrode layer 50 is disposed on the side of the hole transport layer 30 away from the first base substrate 10
  • the second electrode layer 50 is disposed on the side of the light emitting layer 40 away from the first base substrate 10
  • the pixel definition layer 60 separates the first pixels of different sub-pixels.
  • the electrode layer 20, the hole transport layer 30, the light-emitting layer 40 and the second electrode layer 50 are spaced apart, the thin film encapsulation layer 70 is provided on the side of the second electrode layer 50 away from the first base substrate 10, the light blocking layer 80, the quantum The point conversion layer 90 and the transparent light extraction layer 100 are disposed on the side of the film encapsulation layer 70 away from the first substrate 10 , and the transparent light extraction layer 100 is located in the blue sub-pixel area, and the quantum dot conversion layer 90 is located in the red sub-pixel area and green sub-pixel area.
  • the sub-pixel area includes a red quantum dot conversion pattern and a green quantum dot conversion pattern.
  • the light blocking layer 80 is located between the transparent light extraction layer 100 and the quantum dot conversion layer 90 and between the red quantum dot conversion pattern and the green quantum dot conversion pattern.
  • the film layer 110 is disposed on the side of the light blocking layer 80, the quantum dot conversion layer 90 and the transparent light extraction layer 100 away from the first substrate 10; wherein, the light-emitting layers 40 of different sub-pixels are formed of the same material.
  • the blue light emitted by the luminescent layer corresponding to the blue sub-pixel area of the quantum dot-organic light-emitting diode device can be emitted directly, and the blue light emitted by the luminescent layer corresponding to the red sub-pixel area and green sub-pixel area is converted by the red quantum dot pattern and the green quantum dot
  • the switching pattern of quantum dots absorbs and converts red and green light out. Therefore, the light absorption and conversion efficiency of the quantum dots in the red quantum dot conversion pattern and the green quantum dot conversion pattern have a greater impact on device performance.
  • the quantum dots As the viewing angle of the blue light emitted from the light-emitting layer increases, it is easy for the quantum dots to not absorb enough light energy at large viewing angles, resulting in a reduction in the light extraction efficiency of the red sub-pixel area and green sub-pixel area, which in turn leads to a reduction in the efficiency and color gamut of the device. .
  • An embodiment of the present disclosure provides a light-emitting substrate, including:
  • the light-emitting devices include a first light-emitting device, a second light-emitting device and a third light-emitting device.
  • Each of the light-emitting devices includes a stacked first electrode layer, A light-emitting functional layer and a second electrode layer.
  • the light-emitting functional layer includes a light-emitting layer.
  • the light-emitting layer includes a first light-emitting layer located in the first light-emitting device and a second light-emitting layer located in the second light-emitting device. and a third light-emitting layer located within the third light-emitting device;
  • the material of the first luminescent layer is different from the material of the second luminescent layer, and the material of the first luminescent layer is different from the material of the third luminescent layer.
  • EL Electroluminescent Spectroscopy
  • MC Microcavity enhanced spectrum, which is affected by microcavity gain factor (G cav )
  • PL Photoluminescence Spectroscopy
  • the shape of the microcavity enhancement spectrum MC is basically unchanged, so the EL and PL of the final emitted light are closely related, so the limiting relationship of PL can be determined by analyzing the changing relationship of EL.
  • the first light-emitting layer of the light-emitting substrate provided by the embodiment of the present disclosure is formed of a light-emitting material that is different from the second light-emitting layer and the third light-emitting layer, so that the first light-emitting layer of the blue sub-pixel area is different from the red sub-pixel area and the green sub-pixel area.
  • the electroluminescent spectrum of the second luminescent layer and the third luminescent layer in the pixel area may be different, so that the electroluminescent spectrum and the photoluminescent spectrum of the luminescent layer can be adjusted by selecting appropriate luminescent materials.
  • the light-emitting substrate provided by the embodiment of the present disclosure is used as the backlight source of the QD-OLED device, it is possible to ensure the efficiency and color gamut level of the blue sub-pixel area and improve the red sub-pixel area and green sub-pixel area.
  • the absorption and emission of light by quantum dots can further improve the overall efficiency and color gamut level of the device and reduce the power consumption of the display device.
  • FIG. 2 is a schematic structural diagram of a light-emitting substrate according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a light-emitting substrate according to another exemplary embodiment of the present disclosure.
  • the light-emitting substrate includes: a first base substrate 10, and a plurality of light-emitting devices located on the first base substrate 10.
  • the light-emitting devices include: a first light-emitting device LD1 , the second light-emitting device LD2 and the third light-emitting device LD3.
  • the light-emitting device includes: a first electrode layer 20, a light-emitting functional layer, a second electrode layer 50 and a pixel definition layer 60.
  • the material of the second light-emitting layer and the material of the third light-emitting layer may be the same or different.
  • the material of the second light-emitting layer 42 and the third light-emitting layer 43 are the same.
  • the material of the second light-emitting layer 42 is the same as the material of the third light-emitting layer 43 .
  • the materials of the three luminescent layers 43 are different.
  • the photoluminescence spectrum of the first emitting layer may include a first main peak and a first shoulder peak
  • the photoluminescence spectrum of the second emitting layer may include a second main peak and a second
  • the photoluminescence spectrum of the third light-emitting layer may include a third main peak and a third shoulder peak.
  • a Full Width At Half-Maximum (FWHM) of the photoluminescence spectrum of the first emitting layer may be narrower than a half-width of the photoluminescence spectrum of the second emitting layer.
  • the peak width, the half-peak width of the photoluminescence spectrum of the first light-emitting layer may be narrower than the half-peak width of the photoluminescence spectrum of the third light-emitting layer.
  • the ratio of the half-peak width of the photoluminescence spectrum of the first light-emitting layer to the half-peak width of the photoluminescence spectrum of the second light-emitting layer may be 0.6:1, 0.65:1, 0.7:1, 0.75 :1, 0.8:1, 0.85:1
  • the ratio of the half-peak width of the photoluminescence spectrum of the first luminescent layer to the half-peak width of the photoluminescence spectrum of the third luminescent layer may be 0.6:1, 0.65:1, 0.7:1, 0.75:1, 0.8:1, 0.85:1.
  • the first light-emitting layer When the ratio of the half-peak width of the photoluminescence spectrum of the first light-emitting layer to the half-peak width of the photoluminescence spectrum of the second light-emitting layer is about 0.6:1 to 0.85:1, the first light-emitting layer When the ratio of the half-peak width of the photoluminescence spectrum to the half-peak width of the photoluminescence spectrum of the third light-emitting layer is about 0.6:1 to 0.85:1, it is beneficial to ensure the efficiency and color of the blue sub-pixel area.
  • the gamut level can also improve the light absorption and light emission of quantum dots in the red sub-pixel area and green sub-pixel area, which will help further improve the overall efficiency and color gamut level of the display device and reduce the power consumption of the display device.
  • the proportion of the area of the first shoulder peak in the photoluminescence spectrum of the first luminescent layer is equal to the proportion of the area of the second shoulder peak in the photoluminescence spectrum of the second luminescent layer.
  • the proportion of the photoluminescence spectrum may be 0.5:1 to 0.9:1, and the area of the first shoulder in the photoluminescence spectrum of the first emitting layer is equal to the proportion of the third shoulder.
  • the ratio of the peak area to the photoluminescence spectrum of the third light-emitting layer may be 0.5:1 to 0.9:1.
  • the area of the first shoulder may account for 23% ⁇ 4% of the photoluminescence spectrum area of the first luminescent layer
  • the area of the second shoulder may account for the 34% ⁇ 4% of the photoluminescence spectrum area of the second luminescent layer
  • the area of the third shoulder peak may account for 34% ⁇ 4% of the photoluminescence spectrum area of the third luminescent layer.
  • the difference between the peak wavelength of the first shoulder and the peak wavelength of the second shoulder may be 5 nm to 25 nm, and the peak wavelength of the first shoulder is different from the peak wavelength of the second shoulder.
  • the difference in peak wavelengths of the three shoulder peaks may be 5 nm to 25 nm.
  • the difference between the peak wavelength of the first shoulder and the peak wavelength of the second shoulder is about 5 nm to 25 nm
  • the difference between the peak wavelength of the first shoulder and the peak wavelength of the third shoulder When the value is about 5nm to 25nm, it is helpful to ensure the efficiency and color gamut level of the blue sub-pixel area, and it can also improve the light absorption and light emission of the quantum dots in the red sub-pixel area and green sub-pixel area, which is conducive to further improvement. Improve the overall efficiency and color gamut level of the display device and reduce the power consumption of the display device.
  • the peak wavelength of the first shoulder may be 5 nm to 25 nm smaller than the peak wavelength of the second shoulder, and the peak wavelength of the first shoulder may be smaller than the peak wavelength of the third shoulder.
  • the peak wavelength of the peak is 5 nm to 25 nm.
  • the peak wavelength of the first shoulder may be 5 nm, 10 nm, 15 nm, 20 nm, or 25 nm smaller than the peak wavelength of the second shoulder, and the peak wavelength of the first shoulder may be smaller than the peak wavelength of the third shoulder.
  • the peak wavelength is 5nm, 10nm, 15nm, 20nm, 25nm.
  • FIG. 6 is a photoluminescence spectrum diagram of the first luminescent layer and the second luminescent layer of a luminescent substrate according to an exemplary embodiment of the present disclosure, wherein the materials of the first luminescent layer, the material of the second luminescent layer, the third luminescent layer
  • the materials are selected from oxadiazole and its derivatives luminescent materials, triazole and its derivatives luminescent materials, rhodamine and its derivatives luminescent materials, 1,8-naphthalimide and its derivatives luminescent materials , Pyrazoline and its derivatives luminescent materials, triphenylamine and its derivatives luminescent materials, porphyrin and its derivatives luminescent materials, carbazole and its derivatives luminescent materials, pyrazine and its derivatives luminescent materials Materials, thiazole and its derivatives luminescent materials, perylene and its derivatives luminescent materials, silole and its derivatives luminescent materials, tetraphenylethylene and its
  • the material of the second luminescent layer and the material of the third luminescent layer may be the same or different; the first luminescent layer
  • the thickness of the second luminescent layer is 15nm to 25nm
  • the thickness of the second luminescent layer is 15nm to 35nm
  • the thickness of the third luminescent layer is 15nm to 35nm
  • the thicknesses of the first luminescent layer, the second luminescent layer and the third luminescent layer may be the same or different.
  • the half-peak width of the photoluminescence spectrum is approximately 20 ⁇ 2nm, and the area of the first shoulder accounts for approximately 23% ⁇ 4% of the photoluminescence spectrum area of the first luminescent layer; half of the photoluminescence spectrum of the second luminescent layer
  • the peak width is about 28 ⁇ 2nm, and the area of the second shoulder peak accounts for about 34% ⁇ 4% of the photoluminescence spectrum area of the second luminescent layer.
  • the peak wavelength of the first main peak is blue-shifted compared to the peak wavelength of the second main peak, and may be equal in other exemplary embodiments.
  • the peak wavelength of the first shoulder is approximately 490 ⁇ 5nm, and the peak wavelength of the second shoulder is approximately 505 ⁇ 5nm.
  • FIG. 7 is a schematic structural diagram of a light-emitting substrate according to yet another exemplary embodiment of the present disclosure.
  • the light-emitting functional layer may further include a hole transport layer 30 .
  • the hole transport layer 30 includes a first hole transport layer 31 located in the first light-emitting device LD1 .
  • the thickness of the first hole transport layer is less than the thickness of the second hole transport layer and the thickness of the first hole transport layer is less than the thickness of the third hole transport layer, it is beneficial to enhance the red color
  • the quantum dots in the sub-pixel area and green sub-pixel area absorb and utilize light, thereby improving the light conversion efficiency and light emission value of the red sub-pixel area and green sub-pixel area, improving the overall efficiency and color gamut level of the display device, and reducing the display device power consumption.
  • the thickness of the second hole transport layer and the thickness of the third hole transport layer may be the same or different.
  • the thickness of the second hole transport layer may be larger than the thickness of the third hole transport layer.
  • the thickness of the third hole transport layer may range from 2 nm to 10 nm, for example, may range from 2 nm, 4 nm, 6 nm, 8 nm, or 10 nm.
  • FIG. 8 is a schematic structural diagram of a light-emitting substrate according to another exemplary embodiment of the present disclosure.
  • the hole transport layer 30 may include a stacked first sub-hole transport layer 34 and a second sub-hole transport layer. 35.
  • the first sub-hole transport layer 34 is provided between the first electrode layer 20 and the light-emitting functional layer
  • the second sub-hole transport layer 35 is provided between the first sub-hole transport layer 34 and the light-emitting functional layer.
  • a sub-hole transport layer 34 includes a first hole transport layer first sub-layer 311 and a second hole transport layer first sub-layer 311 respectively located in the first light-emitting device LD1, the second light-emitting device LD2 and the third light-emitting device LD3.
  • the layer 321 and the third hole transport layer first sub-layer 331, the second sub-hole transport layer 35 include the first hole transport layer located in the first light-emitting device LD1, the second light-emitting device LD2 and the third light-emitting device LD3 respectively.
  • the thickness of the first hole transport layer first sub-layer, the second hole transport layer first sub-layer and the third hole transport layer first sub-layer may be are all the same, the thickness H 12 of the second sub-layer of the first hole transport layer, the thickness H 22 of the second sub-layer of the second hole transport layer and the thickness H 22 of the second sub-layer of the third hole transport layer Thickness H 32 can meet:
  • the difference between the band gaps of the second sub-hole transport layer and the first sub-hole transport layer may not exceed 0.25 eV, which is more conducive to realizing the carrier transfer in
  • the transmission at the interface of the first sub-hole transport layer ⁇ second sub-hole transport layer ⁇ emitting layer reduces the loss of excitons to a certain extent and optimizes the interface barrier.
  • the material of the hole transport layer may include polyparaphenylene vinylene-based hole transport materials, polythiophene-based hole transport materials, polysilane-based hole transport materials, triphenylmethane-based hole transport materials Hole transport materials, triarylamine hole transport materials, hydrazone hole transport materials, pyrazoline hole transport materials, azole hole transport materials, carbazole hole transport materials and butadiene hole transport materials Any one or more types of hole transport materials.
  • materials of the first hole transport layer, the second hole transport layer, and the third hole transport layer may be the same or different.
  • materials of the first sub-hole transport layer and the second sub-hole transport layer may be the same or different.
  • an evaporation chamber needs to be added to form two layers of hole transport layers, but the material selection of the hole transport layer can be increased. , can further realize the enhancement of blue light emission as RGQD backlight source.
  • the materials of the first sub-layer of the first hole transport layer and the second sub-layer of the first hole transport layer may be the same or different, and the materials of the second hole transport layer may be the same or different.
  • the materials of one sub-layer and the second sub-layer of the second hole transport layer may be the same or different, and the materials of the first sub-layer of the third hole transport layer and the second sub-layer of the third hole transport layer Can be the same or different.
  • the light-emitting functional layer may further include: any one or more of a hole injection layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer.
  • the first electrode layer is an anode layer
  • the second electrode layer is a cathode layer
  • the light-emitting device may include: an anode layer, a hole injection layer, a hole transport layer, an electron blocking layer, light-emitting layer, hole blocking layer, electron transport layer, electron injection layer, cathode layer and pixel definition layer, the hole injection layer is arranged on one side of the anode layer, and the hole transport layer is arranged on the side of the anode layer.
  • the hole injection layer is arranged on a side away from the anode layer, the electron blocking layer is arranged on a side of the hole transport layer away from the anode layer, and the light emitting layer is arranged on a side of the electron blocking layer away from the anode layer.
  • the hole blocking layer is disposed on the side of the light-emitting layer away from the anode layer
  • the electron transport layer is disposed on the side of the hole blocking layer away from the anode layer, so
  • the electron injection layer is disposed on a side of the electron transport layer away from the anode layer
  • the cathode layer is disposed on a side of the electron injection layer away from the anode layer.
  • the material of the anode layer may be a material with a high work function.
  • the anode layer can adopt a composite structure of metal and transparent oxide, such as Ag/ITO (Indium Tin Oxide), Ag/IZO (Indium Zinc Oxide), Al/ ITO, Al/IZO or ITO/Ag/ITO, etc., can ensure good reflectivity.
  • the material of the hole injection layer may include transition metal oxides, for example, may include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide Any one or more of zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide and manganese oxide.
  • the material of the hole injection layer may include a p-type dopant of a strong electron-withdrawing system and a hole transport material;
  • the p-type dopant includes 2,3,6,7,1011-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene, 2,3,5,6-tetrakis Fluoro-7,7',8,8'-tetracyano-p-benzoquinone, 1,2,3-tris[(cyano)(4-cyano-2,3,5,6-tetrafluorophenyl) Any one or more of methylene]cyclopropane;
  • the hole transport material may include any one or more of arylamine-based hole transport materials, dimethylfluorene-based hole transport materials, and carbazole-based hole transport materials; for example, the hole transport material Can include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl)-N,N'- Diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenylamine (BAFLP) ), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'-bis(9-carbazolyl) ) any one or more of biphenyl (CBP) and 9-phenyl-3-[4-
  • the hole injection layer may be formed by evaporation.
  • the hole transport layer may be formed by evaporation.
  • the material of the electron transport layer may include aromatic heterocyclic electron transport materials, for example, may include benzimidazole and its derivatives electron transport materials, imidazopyridine and its derivatives Electronic transmission materials, benziimidazophenanthridine derivatives, electron transmission materials, pyrimidine and its derivatives, triazine derivatives, pyridine and its derivatives, pyrazine and Its derivatives electron transport materials, quinoxaline and its derivatives electron transport materials, oxadiazole and its derivatives electron transport materials, quinoline and its derivatives electron transport materials, isoquinoline derivatives electron transport materials Materials, phenanthroline derivatives electron transport materials, diazophosphoryl electron transport materials, phosphine oxide electron transport materials, aromatic ketone electron transport materials, lactams, borane types Any one or more types of electron transport materials.
  • aromatic heterocyclic electron transport materials for example, may include benzimidazole and its derivatives electron transport materials, imidazopyridine and its derivatives Electronic transmission materials, benziimi
  • the material of the electron transport layer may include 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3 -Bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4-benzene Base-5-(4-biphenyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5-( 4-Biphenyl)-1,2,4-triazole (p-EtTAZ), biphenanthroline (BPhen), (BCP), 4,4'-bis(5-methylbenzoxazole-2) - any one or more of stilbene (BzOs).
  • PBD 2-(4-biphenyl)-5-(4-tert
  • the material of the electron blocking layer may include any one or more of arylamine-based electron blocking materials, dimethylfluorene-based electron blocking materials, and carbazole-based electron blocking materials; for example , the material of the electron blocking layer may include 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylbenzene) base)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluorene-9- yl) triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4' - Any of bis(9-carbazolyl)biphenyl
  • the electron blocking layer may be formed by evaporation.
  • the material of the hole blocking layer may include aromatic heterocyclic hole blocking materials, for example, may include benzimidazole and its derivatives hole blocking materials, imidazopyridine and Its derivatives hole blocking materials, benziimidazophenanthridine derivatives hole blocking materials, pyrimidine and its derivatives hole blocking materials, triazine derivatives hole blocking materials, pyridine and its derivatives Hole blocking materials, pyrazine and its derivatives hole blocking materials, quinoxaline and its derivatives hole blocking materials, oxadiazole and its derivatives hole blocking materials, quinoline and its derivatives hole blocking materials Hole blocking materials, isoquinoline derivatives hole blocking materials, phenanthroline derivatives hole blocking materials, diazophospholine hole blocking materials, phosphine oxide hole blocking materials, aromatic Any one or more of ketone hole blocking materials, lactams, and borane hole blocking materials.
  • aromatic heterocyclic hole blocking materials for example, may include benzimidazole and its derivatives hole blocking materials, imidazopyridine and
  • the material of the hole blocking layer may include 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1, 3-Bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (OXD-7), 3-(4-tert-butylphenyl)-4- Phenyl-5-(4-biphenyl)-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4-ethylphenyl)-5- (4-Biphenyl)-1,2,4-triazole (p-EtTAZ), biphenanthroline (BPhen), (BCP), 4,4'-bis(5-methylbenzoxazole- Any one or more of 2-yl)stilbene (BzOs).
  • PBD 2-(4-biphenyl)-5-(4-tert-
  • the hole blocking layer may be formed by evaporation.
  • the material of the electron injection layer may include any one or more of alkali metal electron injection materials and metal electron injection materials.
  • the electron injection layer material may include any one or more of LiF, Yb, Mg, and Ca.
  • the electron injection layer may be formed by evaporation.
  • the cathode layer may be formed of lower work function metals such as Al, Ag, Mg, or an alloy containing low work function metal materials.
  • An embodiment of the present disclosure also provides a display panel, which may have a plurality of repeated pixel units, at least one pixel unit including a first sub-pixel, a second sub-pixel and a third sub-pixel displaying different colors, wherein,
  • the display panel includes: a light-emitting substrate, a film encapsulation layer, a color conversion layer and a color filter layer as provided in the embodiments of the present disclosure; wherein,
  • the first light-emitting device of the light-emitting substrate is located in the first sub-pixel, the second light-emitting device of the light-emitting substrate is located in the second sub-pixel, and the third light-emitting device of the light-emitting substrate is located in the third within sub-pixels;
  • the thin film encapsulation layer is disposed on a side of the light-emitting substrate away from the first base substrate;
  • the color conversion layer is disposed on a side of the film encapsulation layer away from the first substrate.
  • the color conversion layer includes a transmission pattern, a first color conversion pattern and a second color conversion pattern.
  • the transmission pattern is located on In the first sub-pixel, the first color conversion pattern is located in the second sub-pixel, and the second color conversion pattern is located in the third sub-pixel;
  • the color filter layer is located on a side of the color conversion layer away from the first base substrate and includes at least a first light-shielding pattern, a first color filter pattern and a second color filter pattern, and the first light-shielding pattern defines There are multiple light-transmitting areas, and the light-transmitting areas include a first light-transmitting area corresponding to the first sub-pixel, a second light-transmitting area corresponding to the second sub-pixel, and a third light-transmitting area corresponding to the third sub-pixel. area.
  • the light-emitting substrate includes a first base substrate 10 and a plurality of light-emitting devices arranged on the first base substrate 10.
  • the light-emitting devices include: a first light-emitting device LD1, a second light-emitting device LD2 and a third light-emitting device LD3.
  • the first light-emitting device The device LD1 is located in the first sub-pixel, the second light-emitting device LD2 is located in the second sub-pixel, and the third light-emitting device LD3 is located in the third sub-pixel;
  • the light-emitting device includes: a first electrode layer 20, a light-emitting functional layer, a second electrode layer 50 and pixel definition layer 60, the light-emitting functional layer includes a hole transport layer 30 and a light-emitting layer 40, the first electrode layer 20 is provided on one side of the first base substrate 10, and the hole transport layer 30 is provided on the first electrode layer 20
  • the light-emitting layer 40 is disposed on the side of the hole transport layer 30 away from the first base substrate 10 , and the second electrode layer 50 is disposed on the side of the light-emitting layer 40 away from the first base substrate 10 .
  • the pixel definition layer 60 separates the first light-emitting device LD1, the second light-emitting device LD2 and the third light-emitting device LD3 of the light-emitting device;
  • the light-emitting layer 40 includes a first light-emitting layer 41 located in the first light-emitting device LD1, The second light-emitting layer 42 located in the second light-emitting device LD2 and the third light-emitting layer 43 located in the third light-emitting device LD3; wherein the material of the first light-emitting layer 41 is different from the material of the second light-emitting layer 42, and the first The material of the light-emitting layer 41 is different from the material of the third light-emitting layer 43;
  • the thin film encapsulation layer 70 is provided on the side of the light-emitting substrate away from the first base substrate 10;
  • the color conversion layer 120 is disposed on the side of the film encapsulation layer 70 away from the first substrate 10 .
  • the color conversion layer 120 includes a transmission pattern 121 , a first color conversion pattern 122 , a second color conversion pattern 123 and a spaced transmission pattern 121 .
  • the transmission pattern 121 is located in the first sub-pixel, the first color conversion pattern 122 is located in the second sub-pixel, and the second color conversion pattern 123 is located in the first sub-pixel.
  • the color filter layer 130 is located on the side of the color conversion layer 120 away from the first base substrate 10 and includes at least a first light-shielding pattern 131, a first color filter pattern 132 and a second color filter pattern 133 (ie, a red color filter pattern and a second color filter pattern 133).
  • the green color filter pattern, the blue color filter pattern can be omitted, and the light-shielding pattern can also be made using a blue color filter pattern).
  • the first light-shielding pattern 131 defines a plurality of light-transmitting areas, and the light-transmitting areas include and the first The first light-transmitting area TA1 corresponding to the sub-pixel, the second light-transmitting area TA2 corresponding to the second sub-pixel, and the third light-transmitting area TA3 corresponding to the third sub-pixel; the color filter layer 130 may also include sub-pixels with different intervals. Black matrix (BM) of pixels 134.
  • BM Black matrix
  • the thin film encapsulation layer may include a first encapsulation layer, a second encapsulation layer and a third encapsulation layer that are sequentially stacked in a direction close to the first substrate.
  • the first encapsulation layer and the third encapsulation layer may be inorganic encapsulation layers
  • the second encapsulation layer may be an organic encapsulation layer.
  • the material of the first packaging layer may be silicon nitride (SiN x ), the refractive index may be 1.85 to 1.9 (for example, it may be 1.85 or 1.9), and the thickness may be 0.6 ⁇ m; the second packaging layer may be acrylic
  • the organic layer for example, can be an acrylic organic layer with a refractive index of 1.45 to 1.5, and the thickness can be 8 ⁇ m to 10 ⁇ m (for example, 8.4 ⁇ m).
  • the second encapsulation layer can be printed by ink-jet printing.
  • the material of the third packaging layer can be silicon oxynitride (SiON), the refractive index can be 1.70 to 1.8 (for example, it can be 1.70, 1.75 or 1.8), and the thickness can be 0.6 ⁇ m to 1 ⁇ m (for example , can be 1 ⁇ m).
  • the display panel may further include a plurality of switch elements located on the first substrate substrate 10 .
  • the switching elements include a first switching element T1, a second switching element T2, and a third switching element T3.
  • the first switching element T1 may be located in the first light emitting area LA1
  • the second switching element T2 may be located in the second light emitting area LA2
  • the third switching element T3 may be located in the third light emitting area LA3.
  • at least one of the first switching element T1, the second switching element T2, and the third switching element T3 may be located in the non-light-emitting area NLA.
  • At least one of the first switching element T1, the second switching element T2, and the third switching element T3 may be a thin film transistor including polysilicon or a thin film transistor including an oxide semiconductor.
  • the switching element when it is a thin film transistor including an oxide semiconductor, it may have a top-gate thin film transistor structure.
  • the switching element may be connected to signal lines, including but not limited to gate lines, data lines and power lines.
  • the display panel may further include a filling layer 140 , and the filling layer 140 may be disposed between the film encapsulation layer 70 and the color conversion layer 120 .
  • the filling layer may be an organic filling layer, which plays the role of flattening and bonding the back plate and the cover plate.
  • the display panel may further include an insulating layer 150 , and the insulating layer 150 may be located on the first switching element T1 , the second switching element T2 , and the third switching element T3 .
  • the insulation layer 150 may have a planarized surface.
  • the insulating layer 150 may be formed of an organic layer.
  • the insulating layer 150 may include acrylic resin, epoxy resin, imide resin, ester resin, or the like.
  • the insulating layer 150 may have through holes to expose electrodes of the first switching element T1 , the second switching element T2 and the third switching element T3 to facilitate electrical connection.
  • the display panel may further include a second substrate substrate 180 located on a side of the color filter layer 130 away from the first substrate substrate 10 .
  • An embodiment of the present disclosure also provides a display device, which includes a plurality of display panels as provided in the above embodiments of the present disclosure.
  • the display device may further include an integrated circuit (IC) and a power supply circuit for driving the display panel.
  • IC integrated circuit
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle display, a smart watch, a smart bracelet, etc.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle display, a smart watch, a smart bracelet, etc.
  • the only difference between the currently common quantum dot-organic light-emitting diode and the display panel of the exemplary embodiment of the present disclosure is the material of the light-emitting layer (and the thickness of the hole transport layer):
  • the material of the light-emitting layer of a currently common quantum dot-organic light-emitting diode is A, the thickness of the light-emitting layer is 20nm, and the thickness of the hole transport layer is 100nm, recorded as device structure 1;
  • the material of the light-emitting layer of a currently common quantum dot-organic light-emitting diode is B, the thickness of the light-emitting layer is 20nm, and the thickness of the hole transport layer is 100nm, which is recorded as device structure 1’;
  • the light-emitting layer of a display panel includes a first light-emitting layer located in a blue sub-pixel, a second light-emitting layer located in a red sub-pixel, and a third light-emitting layer located in a green sub-pixel.
  • the first The material of the luminescent layer is A
  • the thickness of the first luminescent layer is 15nm to 25nm
  • the material of the second luminescent layer and the third luminescent layer is both B
  • the thickness of the second luminescent layer and the third luminescent layer is both 15nm to 35nm.
  • the thickness of the hole transport layer is 100nm, recorded as device structure 2;
  • the light-emitting layer of another display panel includes a first light-emitting layer located in a blue sub-pixel, a second light-emitting layer located in a red sub-pixel, and a third light-emitting layer located in a green sub-pixel.
  • the material of the first light-emitting layer is A
  • the thickness of the first light-emitting layer is 15nm to 25nm
  • the material of the second light-emitting layer and the third light-emitting layer are both B
  • the thickness of the second light-emitting layer and the third light-emitting layer are both 15nm to 25nm.
  • the hole transport layer includes a first hole transport layer located in the blue sub-pixel, a second hole transport layer located in the red sub-pixel, a third hole transport layer located in the green sub-pixel, the first hole transport layer
  • the thickness of the hole transport layer is 95nm to 105nm, and the thickness of the second hole transport layer and the third hole transport layer are both 100nm to 115nm, which is recorded as device structure 3;
  • Figure 10 is the electroluminescence spectrum and absorption spectrum of device structure 1 and device structure 3 when the backlight viewing angle is 0°;
  • Figure 11 is the electroluminescence spectrum of device structure 1 and device structure 3 when the backlight viewing angle is 50°. Spectrum and absorption spectrum, where A represents the absorption spectrum curve, and the other curves represent the electroluminescence spectrum curve.
  • the maximum peak of the electroluminescence spectrum of device structure 3 is The intensity is reduced and the spectrum is broadened, so the difference in quantum dot absorption and conversion effects between the backlights of device structure 3 and device structure 1 is smaller; in a larger viewing angle range (e.g., 50° to 80°), Taking 50° as an example, combined with the gain effect of the microcavity, the maximum peak intensity of the device structure 3 is higher and the spectral width is larger. Therefore, the display panel according to the exemplary embodiment of the present disclosure is more conducive to the absorption and utilization of quantum dots as a backlight source.
  • Table 1 shows the monochromatic efficiency and white light efficiency of device structure 1 and device structure 2, including color coordinates, efficiency, W efficiency, color gamut, etc.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种发光基板、显示面板和显示装置,所述发光基板包括第一衬底基板;位于所述第一衬底基板上的多个发光器件,所述发光器件包括第一发光器件、第二发光器件和第三发光器件,每个所述发光器件包括层叠设置的第一电极层、发光功能层和第二电极层,所述发光功能层包括发光层,所述发光层包括位于所述第一发光器件内的第一发光层、位于所述第二发光器件内的第二发光层和位于所述第三发光器件内的第三发光层;其中,所述第一发光层的材料与所述第二发光层的材料不同,所述第一发光层的材料与所述第三发光层的材料不同。

Description

发光基板、显示面板和显示装置 技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种发光基板、显示面板和显示装置。
背景技术
量子点(Quantum Dot,QD)的粒径一般在纳米量级(2nm至10nm),由内核和外壳组合,通过高分子涂层包裹形成。由于量子点的尺寸在波尔半径范围,可以表现出明显的量子限域效应,因此量子点可以发出不同颜色波长的光,而且发射光谱较窄(例如,15nm至30nm),具有较高的色纯度,可以呈现很好的色域水平。
量子点-有机发光二极管(Quantum Dots-Organic Light Emitting Diode,QD-OLED)是一种利用OLED作为激发光源、QD作为颜色转换层从而实现全彩显示的新型显示器件。QD-OLED器件展现了良好的应用前景,可以表现出较好的色纯度和色域水平。其中,QD可以采用无机材料通过打印工艺形成,一定程度上减少材料的浪费,而且无机材料的属性具有更好的稳定性和抗水氧能力,表现出较高的商业价值和显示水平。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制本公开的保护范围。
本公开实施例提供一种发光基板,包括:
第一衬底基板;
位于所述第一衬底基板上的多个发光器件,所述发光器件包括第一发光器件、第二发光器件和第三发光器件,每个所述发光器件包括层叠设置的第一电极层、发光功能层和第二电极层,所述发光功能层包括发光层,所述发光层包括位于所述第一发光器件内的第一发光层、位于所述第二发光器件内的第二发光层和位于所述第三发光器件内的第三发光层;
其中,所述第一发光层的材料与所述第二发光层的材料不同,所述第一发光层的材料与所述第三发光层的材料不同。
本公开实施例还提供一种显示面板,具有多个重复的像素单元,至少一个像素单元包括显示不同颜色的第一子像素、第二子像素和第三子像素,其中,所述显示面板包括:包括如上本公开实施例提供的所述发光基板、薄膜封装层、颜色转换层和滤色器层;其中,
所述发光基板的第一发光器件位于所述第一子像素内,所述发光基板的第二发光器件位于所述第二子像素内,所述发光基板的第三发光器件位于所述第三子像素内;
所述薄膜封装层设置在所述发光基板远离所述第一衬底基板的一侧;
所述颜色转换层设置在所述薄膜封装层远离所述第一衬底基板的一侧,所述颜色转换层包括透射图案、第一颜色转换图案和第二颜色转换图案,所述透射图案位于所述第一子像素内,所述第一颜色转换图案位于所述第二子像素内,所述第二颜色转换图案位于所述第三子像素内;
所述滤色器层位于所述颜色转换层远离所述第一衬底基板的一侧,至少包括第一遮光图案、第一滤色图案和第二滤色图案,所述第一遮光图案限定有多个透光区域,所述透光区域包括和第一子像素对应的第一透光区域、和第二子像素对应的第二透光区域以及和第三子像素对应的第三透光区域。
本公开实施例还提供一种显示装置,包括如上本公开实施例提供的所述显示面板、驱动集成电路和供电电路。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为目前常见的量子点-有机发光二极管的结构示意图;
图2为本公开一示例性实施例的发光基板的结构示意图;
图3为本公开另一示例性实施例的发光基板的结构示意图;
图4为本公开示例性实施例的一个发光基板的第一发光层在不同背光源视角下的电致发光光谱和吸收谱的谱图;
图5为图4所示的发光基板的第二发光层在不同背光源视角下的电致发光光谱和吸收谱的谱图;
图6为本公开示例性实施例的一个发光基板的第一发光层和第二发光层的光致发光光谱图;
图7为本公开又一示例性实施例的发光基板的结构示意图;
图8为本公开又一示例性实施例的发光基板的结构示意图;
图9为本公开示例性实施例的显示面板的结构示意图;
图10为背光源视角为0°下器件结构1和器件结构3的电致发光光谱和吸收谱的谱图;
图11为背光源视角为50°下器件结构1和器件结构3的电致发光光谱和吸收谱的谱图。
附图中的标记符号的含义为:
10-第一衬底基板;20-第一电极层;30-空穴传输层;31-第一空穴传输层;311-第一空穴传输层第一子层;312-第一空穴传输层第二子层;32-第二空穴传输层;321-第二空穴传输层第一子层;322-第二空穴传输层第二子层;33-第三空穴传输层;331-第三空穴传输层第一子层;332-和第三空穴传输层第二子层;34-第一子空穴传输层;35-第二子空穴传输层;40-发光层;41-第一发光层;42-第二发光层;43-第三发光层;50-第二电极层;60-像素定义层;70-薄膜封装层;80-光阻挡层;90-量子点转换层;100-透明出光层;110-后膜层;120-颜色转换层;121-透射图案;122-第一颜色转换图案;123-第二颜色转换图案;124-挡墙;130-滤色器层;131-第一遮光图案;132-第一滤色图案;133-第二滤色图案;134-黑矩阵;140-填充层;150-绝缘层;160-第一覆盖层;170-第二覆盖层;180-第二衬底基板;LD1-第一发光器件;LD2第二发光器件;LD3-第三发光器件;TA1-第一透光区域;TA2-第二透光区域;TA3-第三透光区域;T1-第一开关元件;T2-第二开关元件;T3-第三开关元件; LA1-第一发光区域;LA2-第二发光区域;LA3-第三发光区域;NLA-非发光区域。
具体实施方式
本文中的实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是实现方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开中的附图比例可以作为实际工艺中的参考,但不限于此。例如:沟道的宽长比、各个膜层的厚度和间距、各个信号线的宽度和间距,可以根据实际需要进行调整。显示基板中像素的个数和每个像素中子像素的个数也不是限定为图中所示的数量,本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。
在本公开的描述中,“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“垂直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“发光层”换成为“发光膜”。
图1为目前常见的量子点-有机发光二极管的结构示意图。如图1所示,目前常见的量子点-有机发光二极管包括第一衬底基板10、第一电极层20、空穴传输层30(Hole Transport Layer,HTL)、发光层40(Emitting Layer,EML)、第二电极层50、像素定义层60(Pixel Definition Layer,PDL)、薄膜封装层70、光阻挡层80、量子点转换层90、透明出光层100和后膜层110(包括第二衬底基板等等),其中,第一电极层20设置在第一衬底基板10一侧,空穴传输层30设置在第一电极层20远离第一衬底基板10的一侧,发光层40设置在空穴传输层30远离第一衬底基板10的一侧,第二电极层50设置在发光层40远离第一衬底基板10的一侧,像素定义层60将不同子像素的第一电极层20、空穴传输层30、发光层40和第二电极层50间隔开,薄膜封装层70设置在第二电极层50远离第一衬底基板10的一侧,光阻挡层80、量子点转换层90、透明出光层100设置在薄膜封装层70远离第一衬底基板10的一侧,并且透明出光层100位于蓝色子像素区,量子点转换层90位于红色子像素区和绿色子像素区并且包括红色量子点转换图案和绿色量子点转换图案,光阻挡层80位于透明出光层100与量子点转换层90之间以及红色量子点转换图案与绿色量子点转换图案之间,后膜层110设置在光阻挡层80、量子点转换层90和透明出光层100远离第一衬底基板10的一侧;其中,不同子像素的发光层40采用相同的材料形成。
量子点-有机发光二极管器件的蓝色子像素区对应的发光层发出的蓝光可以直接出射,红色子像素区和绿色子像素区对应的发光层发出的蓝光被红色量子点转换图案和绿色量子点转换图案的量子点吸收并转化为红光和绿光出射。因此,红色量子点转换图案和绿色量子点转换图案的量子点对光的吸收和转化效率对器件性能有较大影响。随着发光层出射蓝光视角的增大,容易出现量子点对大视角光能吸收不够的情况,导致红色子像素区和绿色子像素区的出光效率降低,进而导致器件的效率和色域水平降低。
本公开实施例提供一种发光基板,包括:
第一衬底基板;
位于所述第一衬底基板上的多个发光器件,所述发光器件包括第一发光器件、第二发光器件和第三发光器件,每个所述发光器件包括层叠设置的第一电极层、发光功能层和第二电极层,所述发光功能层包括发光层,所述发光层包括位于所述第一发光器件内的第一发光层、位于所述第二发光器件内的第二发光层和位于所述第三发光器件内的第三发光层;
其中,所述第一发光层的材料与所述第二发光层的材料不同,所述第一发光层的材料与所述第三发光层的材料不同。
根据下述公式可知,量子点-有机发光二极管器件的性能受发光材料本征的光谱微腔效应影响明显:
EL=MC×PL;
其中,EL是电致发光光谱(Electroluminescent Spectroscopy);MC是微腔(Microcavity)加强谱,受微腔增益因子(G cav)影响;PL是光致发光光谱(Photoluminescence Spectroscopy);
微腔增益因子(G cav)的计算公式为:
Figure PCTCN2022100167-appb-000001
其中,K是波矢量;λ是波长;R1是阳极反射率;L1是发光中心到阳极的光学长度;L是器件的总腔长;R2是阴极反射率;T2是阴极侧透过率;τ o是自由空间激发态寿命,τ cav是微腔中激发态寿命。
当器件的膜层结构固定时,微腔加强谱MC的形状基本不变,因此最终出射光的EL和PL关系密切,所以可以通过分析EL的变化关系,确定PL的限定关系。
本公开实施例提供的发光基板的第一发光层采用与第二发光层和第三发光层均不同的发光材料形成,使得蓝色子像素区的第一发光层与红色子像素区和绿色子像素区的第二发光层和第三发光层的电致发光光谱可以不同,从而可以通过选择合适的发光材料去调节发光层的电致发光光谱和光致发光光谱。当采用本公开实施例提供的发光基板作为QD-OLED器件的背光源时,可以实现了既能保证蓝色子像素区的效率和色域水平,又能提升红色子像素 区和绿色子像素区的量子点对光的吸收和光出射,从而可以进一步提升器件整体的效率和色域水平,降低显示器件的功耗。
图2为本公开一示例性实施例的发光基板的结构示意图;图3为本公开另一示例性实施例的发光基板的结构示意图。如图2和图3所示,所述发光基板包括:第一衬底基板10,和位于所述第一衬底基板10上的多个发光器件,所述发光器件包括:第一发光器件LD1、第二发光器件LD2和第三发光器件LD3,所述发光器件包括:第一电极层20、发光功能层、第二电极层50和像素定义层60,所述发光功能层包括发光层40,发光层40包括位于第一发光器件LD1内的第一发光层41、位于第二发光器件LD2内的第二发光层42和位于第三发光器件LD3内的第三发光层43;
其中,第一发光层41的材料与第二发光层42的材料不同,并且第一发光层41的材料与第三发光层43的材料不同。
在本公开示例性实施例中,所述第二发光层的材料与所述第三发光层的材料可以相同或不同。在如图2所示的发光基板中,第二发光层42的材料与第三发光层43的材料是相同的,在如图3所示的发光基板中,第二发光层42的材料与第三发光层43的材料是不同的。
在本公开示例性实施例中,如图2所示,第二发光层42和第三发光层43可以由一个连续的膜层形成,或者如图3所示,第二发光层42与第三发光层43可以由两个膜层分别形成。
在本公开示例性实施例中,所述第一发光层的光致发光光谱可以包括第一主峰和第一肩峰,所述第二发光层的光致发光光谱可以包括第二主峰和第二肩峰,所述第三发光层的光致发光光谱可以包括第三主峰和第三肩峰。
在本公开示例性实施例中,所述第一发光层的光致发光光谱的半峰宽(Full Width At Half-Maximum,FWHM)可以窄于所述第二发光层的光致发光光谱的半峰宽,所述第一发光层的光致发光光谱的半峰宽可以窄于所述第三发光层的光致发光光谱的半峰宽。
在本公开示例性实施例中,所述第一发光层的光致发光光谱的半峰宽与所述第二发光层的光致发光光谱的半峰宽的比例可以为0.6:1至0.85:1,所述第一发光层的光致发光光谱的半峰宽与所述第三发光层的光致发光光谱的 半峰宽的比例可以为0.6:1至0.85:1。例如,所述第一发光层的光致发光光谱的半峰宽与所述第二发光层的光致发光光谱的半峰宽的比例可以为0.6:1、0.65:1、0.7:1、0.75:1、0.8:1、0.85:1,所述第一发光层的光致发光光谱的半峰宽与所述第三发光层的光致发光光谱的半峰宽的比例可以为0.6:1、0.65:1、0.7:1、0.75:1、0.8:1、0.85:1。
当所述第一发光层的光致发光光谱的半峰宽与所述第二发光层的光致发光光谱的半峰宽的比例约为0.6:1至0.85:1、所述第一发光层的光致发光光谱的半峰宽与所述第三发光层的光致发光光谱的半峰宽的比例约为0.6:1至0.85:1时,有利于保证蓝色子像素区的效率和色域水平,又能提升红色子像素区和绿色子像素区的量子点对光的吸收和光出射,从而有利于进一步提升显示器件整体的效率和色域水平,降低显示器件的功耗问题。
在本公开示例性实施例中,所述第一发光层的光致发光光谱的半峰宽可以为20±2nm,所述第二发光层的光致发光光谱的半峰宽可以为28±2nm,所述第三发光层的光致发光光谱的半峰宽可以为28±2nm。
在本公开示例性实施例中,所述第一肩峰的面积在所述第一发光层的光致发光光谱中的占比与所述第二肩峰的面积在所述第二发光层的光致发光光谱中的占比的比例可以为0.5:1至0.9:1,所述第一肩峰的面积在所述第一发光层的光致发光光谱中的占比与所述第三肩峰的面积在所述第三发光层的光致发光光谱中的占比的比例可以为0.5:1至0.9:1。
例如,所述第一肩峰的面积在所述第一发光层的光致发光光谱中的占比与所述第二肩峰的面积在所述第二发光层的光致发光光谱中的占比的比例可以为0.5:1、0.55:1、0.6:1、0.65:1、0.7:1、0.75:1、0.8:1、0.85:1、0.9:1,所述第一肩峰的面积在所述第一发光层的光致发光光谱中的占比与所述第三肩峰的面积在所述第三发光层的光致发光光谱中的占比的比例可以为0.5:1、0.55:1、0.6:1、0.65:1、0.7:1、0.75:1、0.8:1、0.85:1、0.9:1。
当所述第一肩峰的面积在所述第一发光层的光致发光光谱面积中的占比与所述第二肩峰的面积在所述第二发光层的光致发光光谱中的占比的比例约为0.5:1至0.9:1,所述第一肩峰的面积在所述第一发光层的光致发光光谱面积中的占比与所述第三肩峰的面积在所述第三发光层的光致发光光谱中的占 比的比例约为0.5:1至0.9:1时,有利于保证蓝色子像素区的效率和色域水平,又能提升红色子像素区和绿色子像素区的量子点对光的吸收和光出射,从而有利于进一步提升显示器件整体的效率和色域水平,降低显示器件的功耗问题。
在本公开示例性实施例中,所述第一肩峰的面积可以占所述第一发光层的光致发光光谱面积的23%±4%,所述第二肩峰的面积可以占所述第二发光层的光致发光光谱面积的34%±4%,所述第三肩峰的面积可以占所述第三发光层的光致发光光谱面积的34%±4%。
在本公开示例性实施例中,所述第一肩峰的峰值波长与所述第二肩峰的峰值波长的差值可以为5nm至25nm,所述第一肩峰的峰值波长与所述第三肩峰的峰值波长的差值可以为5nm至25nm。
当所述第一肩峰的峰值波长与所述第二肩峰的峰值波长的差值约为5nm至25nm,所述第一肩峰的峰值波长与所述第三肩峰的峰值波长的差值约为5nm至25nm时,有利于保证蓝色子像素区的效率和色域水平,又能提升红色子像素区和绿色子像素区的量子点对光的吸收和光出射,从而有利于进一步提升显示器件整体的效率和色域水平,降低显示器件的功耗问题。
在本公开示例性实施例中,所述第一肩峰的峰值波长可以比所述第二肩峰的峰值波长小5nm至25nm,所述第一肩峰的峰值波长可以比所述第三肩峰的峰值波长小5nm至25nm。例如,所述第一肩峰的峰值波长可以比所述第二肩峰的峰值波长小5nm、10nm、15nm、20nm、25nm,所述第一肩峰的峰值波长可以比所述第三肩峰的峰值波长小5nm、10nm、15nm、20nm、25nm。
在本公开示例性实施例中,所述第一肩峰的峰值波长可以为490±5nm,所述第二肩峰的峰值波长可以为505±5nm,所述第三肩峰的峰值波长可以为505±5nm。
在本公开示例性实施例中,所述第一发光层的材料、所述第二发光层的材料、所述第三发光层的材料可以各自独立地包括噁二唑及其衍生物类发光材料、三唑及其衍生物类发光材料、罗丹明及其衍生物类发光材料、1,8-萘酰亚胺及其衍生物类发光材料、吡唑啉及其衍生物类发光材料、三苯胺及其衍生物类发光材料、卟啉及其衍生物类发光材料、咔唑及其衍生物类发光材 料、吡嗪及其衍生物类发光材料、噻唑及其衍生物类发光材料、苝及其衍生物类发光材料、噻咯及其衍生物类发光材料、四苯基乙烯及其衍生物类发光材料、聚苯撑乙烯及其衍生物类发光材料、聚噻吩及其衍生物类发光材料、聚芴及其衍生物类发光材料、聚乙炔及其衍生物类发光材料、聚咔唑及其衍生物类发光材料、聚吡啶及其衍生物类发光材料中的任意一种或多种。
在本公开示例性实施例中,所述第一发光层、所述第二发光层、所述第三发光层的厚度可以相同或不同。
在本公开示例性实施例中,所述第一发光层的厚度与所述第二发光层的厚度的差值可以为10nm至20nm,所述第一发光层的厚度与所述第三发光层的厚度的差值可以为10nm至20nm。例如,所述第一发光层的厚度与所述第二发光层的厚度的差值可以为10nm、12nm、14nm、16nm、17nm、20nm,所述第一发光层的厚度与所述第三发光层的厚度的差值可以为10nm、12nm、14nm、16nm、17nm、20nm。
在本公开示例性实施例中,所述第一发光层的厚度可以比所述第二发光层的厚度小10nm至20nm,所述第一发光层的厚度可以比所述第三发光层的厚度小10nm至20nm。
在本公开示例性实施例中,所述第一发光层的厚度可以为15nm至25nm,例如,可以为15nm、16nm、18nm、20nm、22nm、24nm、25nm;所述第二发光层的厚度可以为15nm至35nm,例如,可以为15nm、16nm、18nm、20nm、22nm、24nm、25nm;所述第三发光层的厚度可以为15nm至35nm,例如,可以为15nm、16nm、18nm、20nm、22nm、24nm、26nm、28nm、30nm、32nm、34nm、35nm。
图4为本公开示例性实施例的一个发光基板的第一发光层在不同背光源视角下的电致发光光谱和吸收谱的谱图,图5为图4所示的发光基板的第二发光层在不同背光源视角下的电致发光光谱和吸收谱的谱图,其中,A代表吸收谱曲线,其他曲线代表电致发光光谱曲线;第一发光层的材料、第二发光层的材料、第三发光层的材料选自噁二唑及其衍生物类发光材料、三唑及其衍生物类发光材料、罗丹明及其衍生物类发光材料、1,8-萘酰亚胺及其衍生物类发光材料、吡唑啉及其衍生物类发光材料、三苯胺及其衍生物类发光 材料、卟啉及其衍生物类发光材料、咔唑及其衍生物类发光材料、吡嗪及其衍生物类发光材料、噻唑及其衍生物类发光材料、苝及其衍生物类发光材料、噻咯及其衍生物类发光材料、四苯基乙烯及其衍生物类发光材料、聚苯撑乙烯及其衍生物类发光材料、聚噻吩及其衍生物类发光材料、聚芴及其衍生物类发光材料、聚乙炔及其衍生物类发光材料、聚咔唑及其衍生物类发光材料、聚吡啶及其衍生物类发光材料,第一发光层的材料与第二发光层的材料不同且第一发光层的材料与第三发光层的材料不同,第二发光层的材料和第三发光层的材料可以相同或不同;第一发光层的厚度为15nm至25nm,第二发光层的厚度为15nm至35nm,第三发光层的厚度为15nm至35nm,第一发光层、第二发光层、第三发光层的厚度可以相同或不同。
从图4和图5中可以看出,在较小的背光源视角(例如,0°至20°)下,第一发光层与第二发光层(或第三发光层)的电致发光光谱的强度相差不大,但在较大的背光源视角(例如,40°至60°)下,第二发光层(或第三发光层)的电致发光光谱的强度明显大于第一发光层的电致发光光谱的强度,因此第二发光层(或第三发光层)发出的光更有利于量子点的吸收利用,且随着背光源视角的增大,可以在一定程度上弥补发光层强度下降偏快导致量子点对大视角光能吸收不够的情况,因此当采用该发光基板作为QD-OLED器件的背光源时,可以提高红色子像素区和绿色子像素区的出光效率。
图6为本公开示例性实施例的一个发光基板的第一发光层和第二发光层的光致发光光谱图,其中,第一发光层的材料、第二发光层的材料、第三发光层的材料选自噁二唑及其衍生物类发光材料、三唑及其衍生物类发光材料、罗丹明及其衍生物类发光材料、1,8-萘酰亚胺及其衍生物类发光材料、吡唑啉及其衍生物类发光材料、三苯胺及其衍生物类发光材料、卟啉及其衍生物类发光材料、咔唑及其衍生物类发光材料、吡嗪及其衍生物类发光材料、噻唑及其衍生物类发光材料、苝及其衍生物类发光材料、噻咯及其衍生物类发光材料、四苯基乙烯及其衍生物类发光材料、聚苯撑乙烯及其衍生物类发光材料、聚噻吩及其衍生物类发光材料、聚芴及其衍生物类发光材料、聚乙炔及其衍生物类发光材料、聚咔唑及其衍生物类发光材料、聚吡啶及其衍生物类发光材料,第一发光层的材料与第二发光层的材料和第三发光层的材料均 不同,第二发光层的材料和第三发光层的材料可以相同或不同;第一发光层的厚度为15nm至25nm,第二发光层的厚度为15nm至35nm,第三发光层的厚度为15nm至35nm,第一发光层、第二发光层、第三发光层的厚度可以相同或不同。
从图6可以看出,第一发光层的光致发光光谱包括第一主峰和第一肩峰,第二发光层的光致发光光谱包括第二主峰和第二肩峰,第一发光层的光致发光光谱的半峰宽约为20±2nm,第一肩峰的面积约占第一发光层的光致发光光谱面积的23%±4%;第二发光层的光致发光光谱的半峰宽约为28±2nm,第二肩峰的面积约占第二发光层的光致发光光谱面积的34%±4%。第一主峰的峰值波长较第二主峰的峰值波长发生了蓝移,在其他示例性实施例中也可以相等。第一肩峰的峰值波长约为490±5nm,第二肩峰的峰值波长约为505±5nm。
图7为本公开又一示例性实施例的发光基板的结构示意图。在本公开示例性实施例中,如图7所示,发光功能层还可以包括空穴传输层30,空穴传输层30包括位于第一发光器件LD1内的第一空穴传输层31、位于第二发光器件LD2内的第二空穴传输层32和位于第三发光器件LD3内的第三空穴传输层33;
其中,第一空穴传输层31的厚度H 1小于第二空穴传输层32的厚度H 2,第一空穴传输层31的厚度H 1小于第三空穴传输层33的厚度H 3
在本公开的描述中,第一空穴传输层、第二空穴传输层、第三空穴传输层的厚度指其位于发光区域的部分的厚度。
当所述第一空穴传输层的厚度小于所述第二空穴传输层的厚度并且所述第一空穴传输层的厚度小于所述第三空穴传输层的厚度时,有利于提升红色子像素区和绿色子像素区的量子点对光的吸收利用,从而提升红色子像素区和绿色子像素区的光转换效率和出光值,提升显示器件的整体的效率和色域水平,降低显示器件的功耗。
在本公开示例性实施例中,所述第一空穴传输层的厚度可以比所述第二空穴传输层的厚度小10nm至30nm,例如,所述第一空穴传输层的厚度可以比所述第二空穴传输层的厚度小10nm、15nm、20nm、25nm或30nm;
所述第一空穴传输层的厚度可以比所述第三空穴传输层的厚度小10nm至30nm,例如,所述第一空穴传输层的厚度可以比所述第三空穴传输层的厚度小10nm、15nm、20nm、25nm或30nm。
在本公开示例性实施例中,所述第二空穴传输层的厚度和所述第三空穴传输层的厚度可以相同或不同,例如,所述第二空穴传输层的厚度可以比所述第三空穴传输层的厚度小2nm至10nm,再例如,小2nm、4nm、6nm、8nm、10nm。
当第一空穴传输层的厚度既比第二空穴传输层的厚度小10nm至30nm,又比第三空穴传输层的厚度小10nm至30nm时,可以提高红色子像素区和绿色子像素区的量子点对光的吸收和激发,使红色子像素区和绿色子像素区的出光效率提升,可以保证色域水平与目前的器件结构一致。
图8为本公开又一示例性实施例的发光基板的结构示意图。在本公开示例性实施例中,如图8所示,在本公开示例性实施例中,空穴传输层30可以包括叠设的第一子空穴传输层34和第二子空穴传输层35,第一子空穴传输层34设置在第一电极层20与发光功能层之间,第二子空穴传输层35设置在第一子空穴传输层34与发光功能层之间,第一子空穴传输层34包括分别位于第一发光器件LD1、第二发光器件LD2和第三发光器件LD3内的第一空穴传输层第一子层311、第二空穴传输层第一子层321和第三空穴传输层第一子层331,第二子空穴传输层35包括分别位于第一发光器件LD1、第二发光器件LD2和第三发光器件LD3内的第一空穴传输层第二子层312、第二空穴传输层第二子层322和第三空穴传输层第二子层332,第一空穴传输层第一子层311和第一空穴传输层第二子层312构成第一空穴传输层31,第二空穴传输层第一子层321和第二空穴传输层第二子层322构成第二空穴传输层32,第三空穴传输层第一子层331和第三空穴传输层第二子层332构成第三空穴传输层33。
在本公开示例性实施例中,所述第一空穴传输层第一子层、所述第二空穴传输层第一子层和所述第三空穴传输层第一子层的厚度可以均相同,所述第一空穴传输层第二子层的厚度H 12、所述第二空穴传输层第二子层的厚度H 22和所述第三空穴传输层第二子层的厚度H 32可以满足:
H 12<H 22,H 12<H 32,0≤H 12<50nm,0<H 22≤50nm,0<H 32≤50nm。
在本公开示例性实施例中,所述第二子空穴传输层与所述第一子空穴传输层的带隙的差值可以不超过0.25eV,此时更有利于实现载流子在第一子空穴传输层\第二子空穴传输层\发光层界面的传输,一定程度减少激子的损耗,优化了界面势垒。
在本公开示例性实施例中,所述第二子空穴传输层的折射率可以小于所述第一子空穴传输层的折射率和所述发光层的折射率,此时可以有利于减少第一子空穴传输层与第二子空穴传输层界面间的菲涅尔损耗,实现更强的光出射。
在本公开示例性实施例中,所述空穴传输层的材料可以包括聚对苯撑乙烯类空穴传输材料、聚噻吩类空穴传输材料、聚硅烷类空穴传输材料、三苯甲烷类空穴传输材料、三芳胺类空穴传输材料、腙类空穴传输材料、吡唑啉类空穴传输材料、嚼唑类空穴传输材料、咔唑类空穴传输材料和丁二烯类空穴传输材料中的任意一种或多种。
在本公开示例性实施例中,所述第一空穴传输层、所述第二空穴传输层、所述第三空穴传输层的材料可以相同或不同。
在本公开示例性实施例中,所述第一子空穴传输层和所述第二子空穴传输层的材料可以相同或不同。当所述第一子空穴传输层和所述第二子空穴传输层的材料不同时需要增加一个蒸镀腔室去形成两层空穴传输层,但可以增加空穴传输层的材料选择,可以进一步实现作为RGQD背光源的蓝光出光增强。
在本公开示例性实施例中,所述第一空穴传输层第一子层和所述第一空穴传输层第二子层的材料可以相同或不同,所述第二空穴传输层第一子层和所述第二空穴传输层第二子层的材料可以相同或不同,所述第三空穴传输层第一子层和所述第三空穴传输层第二子层的材料可以相同或不同。
在本公开示例性实施例中,所述发光功能层还可以包括:空穴注入层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的任意一个或多个。
在本公开示例性实施例中,所述第一电极层可以为阳极层,所述第二电 极层可以为阴极层;或者,所述第一电极层可以为阴极层,所述第二电极层可以为阳极层。
在本公开示例性实施例中,所述第一电极层为阳极层,所述第二电极层为阴极层,所述发光器件可以包括:阳极层、空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层、阴极层和像素定义层,所述空穴注入层设置在所述阳极层一侧,所述空穴传输层设置在所述空穴注入层远离所述阳极层的一侧,所述电子阻挡层设置在所述空穴传输层远离所述阳极层的一侧,所述发光层设置在所述电子阻挡层远离所述阳极层的一侧,所述空穴阻挡层设置在所述发光层远离所述阳极层的一侧,所述电子传输层设置在所述空穴阻挡层远离所述阳极层的一侧,所述电子注入层设置在所述电子传输层远离所述阳极层的一侧,所述阴极层设置在所述电子注入层远离所述阳极层的一侧。
在本公开示例性实施例中,所述阳极层的材料可以为具有高功函数的材料。例如,对于顶发射型器件,阳极层可以采用金属和透明氧化物的复合结构,如Ag/ITO(氧化铟锡,Indium Tin Oxide)、Ag/IZO(氧化铟锌,Indium Zinc Oxide)、Al/ITO、Al/IZO或者ITO/Ag/ITO等,可保证良好的反射率。
在本公开示例性实施例中,所述空穴注入层的材料可以包括过渡金属氧化物,例如,可以包括钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物、锰氧化物中的任意一种或多种。
在另一示例性实施例中,所述空穴注入层的材料可以包括强吸电子体系的p型掺杂剂和空穴传输材料;
所述p型掺杂剂包括2,3,6,7,1011-六氰基-1,4,5,8,9,12-六氮杂苯并菲、2,3,5,6-四氟-7,7’,8,8’-四氰基对苯醌、1,2,3-三[(氰基)(4-氰基-2,3,5,6-四氟苯基)亚甲基]环丙烷中的任意一种或多种;
所述空穴传输材料可以包括芳胺类空穴传输材料、二甲基芴类空穴传输材料、咔唑类空穴传输材料中的任意一种或多种;例如,所述空穴传输材料可以包括4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(TPD)、4-苯基-4’-(9-苯基芴-9-基)三苯 基胺(BAFLP)、4,4’-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4’-二(9-咔唑基)联苯(CBP)和9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)中的任意一种或多种。
在本公开示例性实施例中,所述空穴注入层可以通过蒸镀形成。
在本公开示例性实施例中,所述空穴传输层可以通过蒸镀形成。
在本公开示例性实施例中,所述电子传输层的材料可以包括芳族杂环类电子传输材料,例如,可以包括苯并咪唑及其衍生物类电子传输材料、咪唑并吡啶及其衍生物类电子传输材料、苯并咪唑并菲啶衍生物类电子传输材料、嘧啶及其衍生物类电子传输材料、三嗪衍生物类电子传输材料、吡啶及其衍生物类电子传输材料、吡嗪及其衍生物类电子传输材料、喹喔啉及其衍生物类电子传输材料、二唑及其衍生物类电子传输材料、喹啉及其衍生物类电子传输材料、异喹啉衍生物类电子传输材料、菲咯啉衍生物类电子传输材料、二氮磷杂环戊二烯类电子传输材料、氧化膦类电子传输材料、芳族酮类电子传输材料类电子传输材料、内酰胺、硼烷类电子传输材料中的任意一种或多种。
再例如,所述电子传输层的材料可以包括2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、(BCP)、4,4’-双(5-甲基苯并噁唑-2-基)芪(BzOs)中的任意一种或多种。
在本公开示例性实施例中,所述电子阻挡层的材料可以包括芳胺类电子阻挡材料、二甲基芴类电子阻挡材料、咔唑类电子阻挡材料中的任意一种或多种;例如,所述电子阻挡层的材料可以包括4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(TPD)、4-苯基-4’-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4’-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4’-二(9-咔唑基)联苯(CBP)和9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)中的任意一种或多种。
在本公开示例性实施例中,所述电子阻挡层可以通过蒸镀形成。
在本公开示例性实施例中,所述空穴阻挡层的材料可以包括芳族杂环类 空穴阻挡材料,例如,可以包括苯并咪唑及其衍生物类空穴阻挡材料、咪唑并吡啶及其衍生物类空穴阻挡材料、苯并咪唑并菲啶衍生物类空穴阻挡材料、嘧啶及其衍生物类空穴阻挡材料、三嗪衍生物类空穴阻挡材料、吡啶及其衍生物类空穴阻挡材料、吡嗪及其衍生物类空穴阻挡材料、喹喔啉及其衍生物类空穴阻挡材料、二唑及其衍生物类空穴阻挡材料、喹啉及其衍生物类空穴阻挡材料、异喹啉衍生物类空穴阻挡材料、菲咯啉衍生物类空穴阻挡材料、二氮磷杂环戊二烯类空穴阻挡材料、氧化膦类空穴阻挡材料、芳族酮类空穴阻挡材料类空穴阻挡材料、内酰胺、硼烷类空穴阻挡材料中的任意一种或多种。
再例如,所述空穴阻挡层的材料可以包括2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、(BCP)、4,4’-双(5-甲基苯并噁唑-2-基)芪(BzOs)中的任意一种或多种。
在本公开示例性实施例中,所述空穴阻挡层可以通过蒸镀形成。
在本公开示例性实施例中,所述电子注入层的材料可以包括碱金属电子注入材料和金属电子注入材料中的任意一种或多种。例如,所述电子注入层材料可以包括LiF、Yb、Mg、Ca中的任意一种或多种。
在本公开示例性实施例中,所述电子注入层可以通过蒸镀形成。
在本公开示例性实施例中,所述阴极层可以采用Al、Ag、Mg等较低功函数的金属形成,或采用含有低功函数金属材料的合金形成。
本公开实施例还提供一种显示面板,所述显示面板可以具有多个重复的像素单元,至少一个像素单元包括显示不同颜色的第一子像素、第二子像素和第三子像素,其中,所述显示面板包括:如上本公开实施例提供的发光基板、薄膜封装层、颜色转换层和滤色器层;其中,
所述发光基板的第一发光器件位于所述第一子像素内,所述发光基板的第二发光器件位于所述第二子像素内,所述发光基板的第三发光器件位于所述第三子像素内;
所述薄膜封装层设置在所述发光基板远离所述第一衬底基板的一侧;
所述颜色转换层设置在所述薄膜封装层远离所述第一衬底基板的一侧,所述颜色转换层包括透射图案、第一颜色转换图案和第二颜色转换图案,所述透射图案位于所述第一子像素内,所述第一颜色转换图案位于所述第二子像素内,所述第二颜色转换图案位于所述第三子像素内;
所述滤色器层位于所述颜色转换层远离所述第一衬底基板的一侧,至少包括第一遮光图案、第一滤色图案和第二滤色图案,所述第一遮光图案限定有多个透光区域,所述透光区域包括和第一子像素对应的第一透光区域、和第二子像素对应的第二透光区域以及和第三子像素对应的第三透光区域。
图9为本公开示例性实施例的显示面板的结构示意图。如图9所示,所述显示面板可以具有多个重复的像素单元,至少一个像素单元包括显示不同颜色的第一子像素、第二子像素和第三子像素,显示面板包括第一衬底基板10、如上本公开实施例提供的发光基板、薄膜封装层70、颜色转换层120和滤色器层130;其中,
发光基板包括第一衬底基板10、设置在第一衬底基板10上的多个发光器件,发光器件包括:第一发光器件LD1、第二发光器件LD2和第三发光器件LD3,第一发光器件LD1位于第一子像素内,第二发光器件LD2位于第二子像素内,第三发光器件LD3位于第三子像素内;发光器件包括:第一电极层20、发光功能层、第二电极层50和像素定义层60,发光功能层包括空穴传输层30和发光层40,第一电极层20设置在第一衬底基板10一侧,空穴传输层30设置在第一电极层20远离第一衬底基板10的一侧,发光层40设置在空穴传输层30远离第一衬底基板10的一侧,第二电极层50设置在发光层40远离第一衬底基板10的一侧,像素定义层60将发光器件的第一发光器件LD1、第二发光器件LD2和第三发光器件LD3间隔开来;发光层40包括位于第一发光器件LD1内的第一发光层41、位于第二发光器件LD2内的第二发光层42和位于第三发光器件LD3内的第三发光层43;其中,第一发光层41的材料与第二发光层42的材料不同,并且第一发光层41的材料与第三发光层43的材料不同;
薄膜封装层70设置在所述发光基板远离第一衬底基板10的一侧;
颜色转换层120设置在薄膜封装层70远离第一衬底基板10的一侧,颜色转换层120包括透射图案121、第一颜色转换图案122、第二颜色转换图案123和间隔透射图案121、第一颜色转换图案122、第二颜色转换图案123的挡墙(Bank)124,透射图案121位于第一子像素内,第一颜色转换图案122位于第二子像素内,第二颜色转换图案123位于第三子像素内;
滤色器层130位于颜色转换层120远离第一衬底基板10的一侧,至少包括第一遮光图案131、第一滤色图案132和第二滤色图案133(即红色的滤色图案和绿色的滤色图案,蓝色的滤色图案可以省略,遮光图案也可以采用蓝色的滤色图案来制作),第一遮光图案131限定有多个透光区域,透光区域包括和第一子像素对应的第一透光区域TA1、和第二子像素对应的第二透光区域TA2以及和第三子像素对应的第三透光区域TA3;滤色器层130还可以包括间隔不同子像素的黑矩阵(Black matrix,BM)134。
在本公开示例性实施例中,所述薄膜封装层可以包括沿着靠近所述第一衬底基板的方向依次层叠设置的第一封装层、第二封装层和第三封装层。其中,所述第一封装层和所述第三封装层可以为无机封装层,所述第二封装层可以为有机封装层。所述第一封装层的材料可以为氮化硅(SiN x),折射率可以为1.85至1.9(例如,可以为1.85或1.9),厚度可以为0.6μm;所述第二封装层可以为亚克力有机层,例如,可以为折射率为1.45至1.5的亚克力有机层,厚度可以为8μm至10μm(例如,可以为8.4μm),所述第二封装层可以通过喷墨打印(Ink-jet printing,IJP)工艺形成;所述第三封装层的材料可以为氮氧化硅(SiON),折射率可以为1.70至1.8(例如,可以为1.70、1.75或1.8),厚度可以为0.6μm至1μm(例如,可以为1μm)。
在本公开示例性实施例中,如图9所示,所述显示面板还可以包括多个位于第一衬底基板10上的开关元件。在一个发光区域重复单元中,开关元件包括第一开关元件T1、第二开关元件T2和第三开关元件T3。例如,第一开关元件T1可以位于第一发光区域LA1中,第二开关元件T2可以位于第二发光区域LA2中,并且第三开关元件T3可以位于第三发光区域LA3中。又例如,第一开关元件T1、第二开关元件T2和第三开关元件T3中的至少一个可以位于非发光区域NLA中。第一开关元件T1、第二开关元件T2和第 三开关元件T3中的至少一个可以是包括多晶硅的薄膜晶体管或包括氧化物半导体的薄膜晶体管。例如,当开关元件为包括氧化物半导体的薄膜晶体管时,可以具有顶栅的薄膜晶体管结构。所述开关元件可以和信号线连接,所述信号线包括但不限于栅极线、数据线和电源线。
在本公开示例性实施例中,如图9所示,所述显示面板还可以包括填充层140,填充层140可以设置在薄膜封装层70与颜色转换层120之间。所述填充层可以为有机填充层,起到平坦、粘结背板和盖板的作用。
在本公开示例性实施例中,如图9所示,所述显示面板还可以包括绝缘层150,绝缘层150可以位于第一开关元件T1、第二开关元件T2和第三开关元件T3上。绝缘层150可以具有平坦化的表面。绝缘层150可以由有机层形成。例如,绝缘层150可以包括丙烯酸树脂、环氧树脂、酰亚胺树脂或酯树脂等。绝缘层150可以具有通孔,以暴露第一开关元件T1、第二开关元件T2和第三开关元件T3的电极而便于实现电连接。
在本公开示例性实施例中,如图9所示,所述显示面板还可以包括位于填充层140与颜色转换层120之间的第一覆盖层160,和位于颜色转换层120与滤色器层130之间的第二覆盖层170。量子点可能与水分和/或氧气等反应而发生劣化,因此,为了防止或减少水分和/或氧气等渗透至颜色转换层中,设置围绕颜色转换层的覆盖层能够有效防止或减少由于水分和/或氧气等渗入颜色转换层而可能引起的发光效率劣化和缺陷的发生。第一覆盖层160和第二覆盖层170可以为无机材料层,例如,第一覆盖层160的材料可以为氮氧化硅(SiON),折射率可以为1.8,厚度可以为1μm。
在本公开示例性实施例中,如图9所示,所述显示面板还可以包括位于滤色器层130远离所述第一衬底基板10一侧的第二衬底基板180。
在本公开示例性实施例中,如图9所示,所述显示面板还可以包括填充层140、绝缘层150、第一覆盖层160、第二覆盖层170和第二衬底基板180。
本公开实施例还提供一种显示装置,所述显示装置包括多个如上本公开实施例提供的显示面板。所述显示装置还可以包括用于驱动所述显示面板的集成电路(Integrated Circuit,IC)和供电电路。
所述显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、 数码相框、导航仪、车载显示器、智能手表、智能手环等任何具有显示功能的产品或部件。
以下通过图表对目前常见的量子点-有机发光二极管和本公开示例性实施例的显示面板的性能进行对比。
其中,目前常见的量子点-有机发光二极管和本公开示例性实施例的显示面板的区别仅在于发光层的材料(和空穴传输层的厚度)不同:
目前常见的一个量子点-有机发光二极管的发光层的材料为A,发光层的厚度为20nm,空穴传输层的厚度为100nm,记为器件结构1;
目前常见的一个量子点-有机发光二极管的发光层的材料为B,发光层的厚度为20nm,空穴传输层的厚度为100nm,记为器件结构1’;
本公开示例性实施例的一个显示面板的发光层包括位于蓝色子像素内的第一发光层、位于红色子像素内的第二发光层、位于绿色子像素内的第三发光层,第一发光层的材料为A,第一发光层的的厚度为15nm至25nm,第二发光层和第三发光层的材料均为B,第二发光层和第三发光层的厚度均为15nm至35nm;空穴传输层的厚度均为100nm,记为器件结构2;
本公开示例性实施例的另一个显示面板的发光层包括位于蓝色子像素内的第一发光层、位于红色子像素内的第二发光层、位于绿色子像素内的第三发光层,第一发光层的材料为A,第一发光层的的厚度为15nm至25nm,第二发光层和第三发光层的材料均为B,第二发光层和第三发光层的厚度均为15nm至35nm;空穴传输层包括位于蓝色子像素内的第一空穴传输层、位于红色子像素内的第二空穴传输层、位于绿色子像素内的第三空穴传输层,第一空穴传输层的厚度为95nm至105nm,第二空穴传输层和第三空穴传输层的厚度均为100nm至115nm,记为器件结构3;
材料A、B均选自噁二唑及其衍生物类发光材料、三唑及其衍生物类发光材料、罗丹明及其衍生物类发光材料、1,8-萘酰亚胺及其衍生物类发光材料、吡唑啉及其衍生物类发光材料、三苯胺及其衍生物类发光材料、卟啉及其衍生物类发光材料、咔唑及其衍生物类发光材料、吡嗪及其衍生物类发光 材料、噻唑及其衍生物类发光材料、苝及其衍生物类发光材料、噻咯及其衍生物类发光材料、四苯基乙烯及其衍生物类发光材料、聚苯撑乙烯及其衍生物类发光材料、聚噻吩及其衍生物类发光材料、聚芴及其衍生物类发光材料、聚乙炔及其衍生物类发光材料、聚咔唑及其衍生物类发光材料、聚吡啶及其衍生物类发光材料,但材料A与材料B是不同的。
图10为背光源视角为0°下器件结构1和器件结构3的电致发光光谱和吸收谱的谱图;图11为背光源视角为50°下器件结构1和器件结构3的电致发光光谱和吸收谱的谱图,其中,A代表吸收谱曲线,其他曲线代表电致发光光谱曲线。
从图10和图11可以看出,相较于器件结构1,在较小视角范围内(例如,0°至45°),以0°为例,器件结构3的电致发光光谱的最大峰强度降低了,光谱变宽了,因此器件结构3和器件结构1的背光源在量子点吸收和转换效果方面的差异较小;在较大视角范围内(例如,50°至80°),以50°为例,结合微腔的增益效果,器件结构3的最大峰强度更高、光谱宽度更大,因此本公开示例性实施例的显示面板作为背光源更有利于量子点的吸收利用。
表1为器件结构1和器件结构2的单色效率和白光效率,包括色坐标、效率、W效率、色域等。
表1
Figure PCTCN2022100167-appb-000002
表2为器件结构1和器件结构3的单色效率和白光效率,包括色坐标、效率、W效率、色域等。
表2
Figure PCTCN2022100167-appb-000003
从表1和表2可以看出,本公开示例性实施例的显示面板通过设计不同材料的发光层(和不同厚度的空穴传输层),可以达到提升器件色域和出光效率、降低器件功耗的效果。其中,相较于器件结构1或器件结构1’,本公开示例性实施例的器件结构2的器件功耗大约下降8%至10%;相较于器件结构1,本公开示例性实施例的器件结构3的器件效率提升大约11%,色域@BT2020在95%,因此器件功耗降低11%。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (21)

  1. 一种发光基板,包括:
    第一衬底基板;
    位于所述第一衬底基板上的多个发光器件,所述发光器件包括第一发光器件、第二发光器件和第三发光器件,每个所述发光器件包括层叠设置的第一电极层、发光功能层和第二电极层,所述发光功能层包括发光层,所述发光层包括位于所述第一发光器件内的第一发光层、位于所述第二发光器件内的第二发光层和位于所述第三发光器件内的第三发光层;
    其中,所述第一发光层的材料与所述第二发光层的材料不同,所述第一发光层的材料与所述第三发光层的材料不同。
  2. 根据权利要求1所述的发光基板,其中,所述第一发光层的光致发光光谱包括第一主峰和第一肩峰,所述第二发光层的光致发光光谱包括第二主峰和第二肩峰,所述第三发光层的光致发光光谱包括第三主峰和第三肩峰。
  3. 根据权利要求2所述的发光基板,其中,所述第一发光层的光致发光光谱的半峰宽窄于所述第二发光层的光致发光光谱的半峰宽,所述第一发光层的光致发光光谱的半峰宽窄于所述第三发光层的光致发光光谱的半峰宽。
  4. 根据权利要求3所述的发光基板,其中,所述第一发光层的光致发光光谱的半峰宽与所述第二发光层的光致发光光谱的半峰宽的比例为0.6:1至0.85:1,所述第一发光层的光致发光光谱的半峰宽与所述第三发光层的光致发光光谱的半峰宽的比例为0.6:1至0.85:1。
  5. 根据权利要求4所述的发光基板,其中,所述第一发光层的光致发光光谱的半峰宽为20±2nm,所述第二发光层的光致发光光谱的半峰宽为28±2nm,所述第三发光层的光致发光光谱的半峰宽为28±2nm。
  6. 根据权利要求2所述的发光基板,其中,所述第一肩峰的面积在所述第一发光层的光致发光光谱中的占比与所述第二肩峰的面积在所述第二发光层的光致发光光谱中的占比的比例为0.5:1至0.9:1,所述第一肩峰的面积在所述第一发光层的光致发光光谱中的占比与所述第三肩峰的面积在所述第三发光层的光致发光光谱中的占比的比例为0.5:1至0.9:1。
  7. 根据权利要求6所述的发光基板,其中,所述第一肩峰的面积占所述第一发光层的光致发光光谱面积的23%±4%,所述第二肩峰的面积占所述第二发光层的光致发光光谱面积的34%±4%,所述第三肩峰的面积占所述第三发光层的光致发光光谱面积的34%±4%。
  8. 根据权利要求2所述的发光基板,其中,所述第一肩峰的峰值波长与所述第二肩峰的峰值波长的差值为5nm至25nm,所述第一肩峰的峰值波长与所述第三肩峰的峰值波长的差值为5nm至25nm。
  9. 根据权利要求8所述的发光基板,其中,所述第一肩峰的峰值波长为490±5nm,所述第二肩峰的峰值波长为505±5nm,所述第三肩峰的峰值波长为505±5nm。
  10. 根据权利要求1至9中任一项所述的发光基板,其中,所述第一发光层的材料、所述第二发光层的材料、所述第三发光层的材料各自独立地包括噁二唑及其衍生物类发光材料、三唑及其衍生物类发光材料、罗丹明及其衍生物类发光材料、1,8-萘酰亚胺及其衍生物类发光材料、吡唑啉及其衍生物类发光材料、三苯胺及其衍生物类发光材料、卟啉及其衍生物类发光材料、咔唑及其衍生物类发光材料、吡嗪及其衍生物类发光材料、噻唑及其衍生物类发光材料、苝及其衍生物类发光材料、噻咯及其衍生物类发光材料、四苯基乙烯及其衍生物类发光材料、聚苯撑乙烯及其衍生物类发光材料、聚噻吩及其衍生物类发光材料、聚芴及其衍生物类发光材料、聚乙炔及其衍生物类发光材料、聚咔唑及其衍生物类发光材料、聚吡啶及其衍生物类发光材料中的任意一种或多种。
  11. 根据权利要求1至9中任一项所述的发光基板,其中,所述第一发光层的厚度与所述第二发光层的厚度的差值为10nm至20nm,所述第一发光层的厚度与所述第三发光层的厚度的差值为10nm至20nm。
  12. 根据权利要求11所述的发光基板,其中,所述第一发光层的厚度为15nm至25nm,所述第二发光层的厚度为15nm至35nm,所述第三发光层的厚度为15nm至35nm。
  13. 根据权利要求1至12中任一项所述的发光基板,其中,所述发光功能层还包括空穴传输层,所述空穴传输层包括位于所述第一发光器件内的第 一空穴传输层、位于所述第二发光器件内的第二空穴传输层和位于所述第三发光器件内的第三空穴传输层;
    其中,所述第一空穴传输层的厚度小于所述第二空穴传输层的厚度,所述第一空穴传输层的厚度小于所述第三空穴传输层的厚度。
  14. 根据权利要求13所述的发光基板,其中,所述第一空穴传输层的厚度比所述第二空穴传输层的厚度小10nm至30nm,所述第一空穴传输层的厚度比所述第三空穴传输层的厚度小10nm至30nm。
  15. 根据权利要求13所述的发光基板,其中,所述空穴传输层包括叠设的第一子空穴传输层和第二子空穴传输层,所述第一子空穴传输层设置在所述第一电极层与所述发光功能层之间,所述第二子空穴传输层设置在所述第一子空穴传输层与所述发光功能层之间,所述第一子空穴传输层包括分别位于所述第一发光器件、所述第二发光器件、所述第三发光器件内的第一空穴传输层第一子层、第二空穴传输层第一子层和第三空穴传输层第一子层,所述第二子空穴传输层包括分别位于所述第一发光器件、所述第二发光器件、所述第三发光器件内的第一空穴传输层第二子层、第二空穴传输层第二子层和第三空穴传输层第二子层,所述第一空穴传输层第一子层和所述第一空穴传输层第二子层构成所述第一空穴传输层,所述第二空穴传输层第一子层和所述第二空穴传输层第二子层构成所述第二空穴传输层,所述第三空穴传输层第一子层和所述第三空穴传输层第二子层构成所述第三空穴传输层。
  16. 根据权利要求15所述的发光基板,其中,所述第一空穴传输层第一子层、所述第二空穴传输层第一子层和所述第三空穴传输层第一子层的厚度均相同,所述第一空穴传输层第二子层的厚度H 12、所述第二空穴传输层第二子层的厚度H 22和所述第三空穴传输层第二子层的厚度H 32满足:
    H 12<H 22,H 12<H 32,0≤H 12<50nm,0<H 22≤50nm,0<H 32≤50nm。
  17. 根据权利要求15所述的发光基板,其中,所述第二子空穴传输层与所述第一子空穴传输层的带隙的差值不超过0.25eV。
  18. 根据权利要求15所述的发光基板,其中,所述第二子空穴传输层的折射率小于所述第一子空穴传输层的折射率和所述发光层的折射率。
  19. 根据权利要求13至18中任一项所述的发光基板,其中,所述空穴传输层的材料包括聚对苯撑乙烯类空穴传输材料、聚噻吩类空穴传输材料、聚硅烷类空穴传输材料、三苯甲烷类空穴传输材料、三芳胺类空穴传输材料、腙类空穴传输材料、吡唑啉类空穴传输材料、嚼唑类空穴传输材料、咔唑类空穴传输材料和丁二烯类空穴传输材料中的任意一种或多种。
  20. 一种显示面板,具有多个重复的像素单元,至少一个像素单元包括显示不同颜色的第一子像素、第二子像素和第三子像素,其中,所述显示面板包括:根据权利要求1至19中任一项所述的发光基板、薄膜封装层、颜色转换层和滤色器层;其中,
    所述发光基板的第一发光器件位于所述第一子像素内,所述发光基板的第二发光器件位于所述第二子像素内,所述发光基板的第三发光器件位于所述第三子像素内;
    所述薄膜封装层设置在所述发光基板远离所述第一衬底基板的一侧;
    所述颜色转换层设置在所述薄膜封装层远离所述第一衬底基板的一侧,所述颜色转换层包括透射图案、第一颜色转换图案和第二颜色转换图案,所述透射图案位于所述第一子像素内,所述第一颜色转换图案位于所述第二子像素内,所述第二颜色转换图案位于所述第三子像素内;
    所述滤色器层位于所述颜色转换层远离所述第一衬底基板的一侧,至少包括第一遮光图案、第一滤色图案和第二滤色图案,所述第一遮光图案限定有多个透光区域,所述透光区域包括和第一子像素对应的第一透光区域、和第二子像素对应的第二透光区域以及和第三子像素对应的第三透光区域。
  21. 一种显示装置,包括根据权利要求20所述的显示面板、驱动集成电路和供电电路。
PCT/CN2022/100167 2022-06-21 2022-06-21 发光基板、显示面板和显示装置 WO2023245427A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001841.7A CN117643201A (zh) 2022-06-21 2022-06-21 发光基板、显示面板和显示装置
PCT/CN2022/100167 WO2023245427A1 (zh) 2022-06-21 2022-06-21 发光基板、显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100167 WO2023245427A1 (zh) 2022-06-21 2022-06-21 发光基板、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023245427A1 true WO2023245427A1 (zh) 2023-12-28

Family

ID=89378784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100167 WO2023245427A1 (zh) 2022-06-21 2022-06-21 发光基板、显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN117643201A (zh)
WO (1) WO2023245427A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120241780A1 (en) * 2010-01-08 2012-09-27 Panasonic Corporation Organic el panel, display device using same, and method for producing organic el panel
US20120309252A1 (en) * 2011-06-03 2012-12-06 Panasonic Corporation Method of manufacturing organic el display panel
CN106711340A (zh) * 2015-11-17 2017-05-24 乐金显示有限公司 有机发光显示设备
CN106784354A (zh) * 2016-12-29 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示器件及其制造方法、以及有机发光显示装置
US20210074945A1 (en) * 2019-09-05 2021-03-11 Lg Display Co., Ltd. Display device having transmission portion and emission portion
CN112768613A (zh) * 2021-01-11 2021-05-07 昆山国显光电有限公司 有机发光器件及显示面板
US20210328172A1 (en) * 2020-04-17 2021-10-21 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
US20220158111A1 (en) * 2019-03-22 2022-05-19 Sharp Kabushiki Kaisha Light-emitting element and light-emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120241780A1 (en) * 2010-01-08 2012-09-27 Panasonic Corporation Organic el panel, display device using same, and method for producing organic el panel
US20120309252A1 (en) * 2011-06-03 2012-12-06 Panasonic Corporation Method of manufacturing organic el display panel
CN106711340A (zh) * 2015-11-17 2017-05-24 乐金显示有限公司 有机发光显示设备
CN106784354A (zh) * 2016-12-29 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示器件及其制造方法、以及有机发光显示装置
US20220158111A1 (en) * 2019-03-22 2022-05-19 Sharp Kabushiki Kaisha Light-emitting element and light-emitting device
US20210074945A1 (en) * 2019-09-05 2021-03-11 Lg Display Co., Ltd. Display device having transmission portion and emission portion
US20210328172A1 (en) * 2020-04-17 2021-10-21 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
CN112768613A (zh) * 2021-01-11 2021-05-07 昆山国显光电有限公司 有机发光器件及显示面板

Also Published As

Publication number Publication date
CN117643201A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
TWI684636B (zh) 有機發光裝置及其製造方法
KR102477262B1 (ko) 유기 전계 발광 표시 장치
EP3301732B1 (en) Organic light emitting diode
TWI535822B (zh) Organic electroluminescent elements and display devices
JP2022189942A (ja) 発光装置
US8076841B2 (en) Organic electroluminescent display apparatus
KR101135539B1 (ko) 유기 발광 표시 장치
KR102421769B1 (ko) 유기 발광 소자 및 이를 포함하는 유기 발광 표시장치
KR102528355B1 (ko) 유기 발광 소자 및 이를 포함하는 발광 장치
JP2016164855A (ja) 発光装置並びにこれを備えた表示装置、照明装置および電子機器
WO2022205918A1 (zh) 有机电致发光器件、显示基板和显示装置
JP5627809B2 (ja) 有機el表示装置
KR20190071971A (ko) 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
WO2022156313A1 (zh) 蓝色发光层形成用材料、发光器件、发光基板和发光装置
KR20220018535A (ko) 유기발광 표시장치
CN112864332B (zh) 有机发光二极管和包括其的有机发光装置
CN114667291A (zh) 有机电致发光器件和显示装置
WO2023245427A1 (zh) 发光基板、显示面板和显示装置
KR20160073461A (ko) 유기발광 표시장치
JP7288033B2 (ja) 有機発光ダイオードおよび有機発光装置
WO2022226718A1 (zh) 有机电致发光器件及其制备方法、显示装置
KR102358545B1 (ko) 유기발광 표시장치
KR20230100043A (ko) 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
CN118102748A (zh) 包括有机金属化合物和多个基质材料的有机发光二极管
KR20210046540A (ko) 유기발광다이오드 및 유기발광장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001841.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18020420

Country of ref document: US