WO2022205918A1 - 有机电致发光器件、显示基板和显示装置 - Google Patents

有机电致发光器件、显示基板和显示装置 Download PDF

Info

Publication number
WO2022205918A1
WO2022205918A1 PCT/CN2021/129208 CN2021129208W WO2022205918A1 WO 2022205918 A1 WO2022205918 A1 WO 2022205918A1 CN 2021129208 W CN2021129208 W CN 2021129208W WO 2022205918 A1 WO2022205918 A1 WO 2022205918A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
injection layer
electron injection
emitting
Prior art date
Application number
PCT/CN2021/129208
Other languages
English (en)
French (fr)
Inventor
贾文斌
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022205918A1 publication Critical patent/WO2022205918A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/157Hole transporting layers between the light-emitting layer and the cathode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, to an organic electroluminescence device, a display substrate, and a display device.
  • OLED Organic Light Emitting Device
  • OLED is an active light-emitting device, which has the advantages of light emission, ultra-thin, wide viewing angle, high brightness, high contrast, low power consumption, and extremely high response speed. Promising next-generation display technology.
  • OLED includes an anode, a cathode, and a light-emitting layer arranged between the anode and the cathode.
  • the light-emitting principle is to inject holes and electrons into the light-emitting layer from the anode and the cathode, respectively.
  • the electrons and holes meet in the light-emitting layer, the electrons and The holes recombine to generate excitons, which emit light while transitioning from an excited state to a ground state.
  • a hole injection layer is arranged between the anode and the light-emitting layer, and an electron injection layer is arranged between the cathode and the light-emitting layer.
  • the present disclosure provides an organic electroluminescent device, comprising: an anode, an organic light-emitting layer, a first transition protective layer and a cathode stacked in sequence;
  • the organic light-emitting layer includes: a hole injection layer, a light-emitting material layer, electron transport layer and electron injection layer;
  • the first transition protective layer is disposed between the electron injection layer and the cathode, and forms a PN junction with the electron injection layer.
  • it further includes: a second transition protection layer disposed between the first transition protection layer and the cathode;
  • the second transition protective layer and the first transition protective layer form a PN junction.
  • the material for making the electron injection layer includes: an N-doped organic material, and the dopant material for the electron injection layer includes: lithium fluoride or a composite of lithium and cesium carbonate;
  • the manufacturing material of the first transition protective layer includes: P-doped organic material, and the doping material of the first transition protective layer includes: molybdenum trioxide.
  • the material for making the second transition protective layer includes: an N-doped organic material
  • the doping material for the second transition protective layer includes: lithium fluoride or a composite of lithium and cesium carbonate thing.
  • the number of the electron injection layers is greater than or equal to one.
  • the organic light-emitting layer further includes: a hole transport layer, when the number of the electron injection layers is 1, the hole injection layer is located between the light-emitting material layer and the anode the hole transport layer is located between the hole injection layer and the light-emitting material layer, and the electron transport layer is located between the light-emitting material layer and the electron injection layer;
  • the fabrication material of the hole injection layer includes: P-doped organic material, and the dopant material of the hole injection layer includes: molybdenum trioxide.
  • the organic light-emitting layer further includes: a hole transport layer, when the number of the electron injection layers is 1, the electron injection layer and the electron transport layer are the same film layer;
  • the hole injection layer is located between the light-emitting material layer and the anode, the hole transport layer is located between the hole injection layer and the light-emitting material layer;
  • the electron injection layer is located between the light-emitting material between the layer and the first transition protective layer;
  • the fabrication material of the hole injection layer includes: P-doped organic material, and the dopant material of the hole injection layer includes: molybdenum trioxide.
  • the organic light-emitting layer further includes: a hole blocking layer and an electron blocking layer;
  • the hole blocking layer is located between the light-emitting material layer and the electron transport layer, and the electron blocking layer is located between the light-emitting material layer and the hole transport layer.
  • the anode is a transparent electrode
  • the cathode is a reflective electrode
  • the i-th electron injection layer when the number of the electron injection layers is greater than 1, the i-th electron injection layer is located on the side of the i+1-th electron injection layer close to the anode; 1 ⁇ i ⁇ N -1, N is the number of electron injection layers;
  • the transition protective layer and the Nth electron injection layer form a PN junction.
  • the number of the hole injection layers is three, and the number of the light-emitting material layers is four;
  • the first luminescent material layer is located between the first hole injection layer and the first electron injection layer, the first hole injection layer is located on the side of the first luminescent material layer close to the anode, and the first electron injection layer on the side of the first luminescent material layer away from the anode;
  • the second light-emitting material layer and the third light-emitting material layer are located between the second hole injection layer and the second electron injection layer, and the third light-emitting material layer is located on the side of the second light-emitting material layer away from the anode,
  • the second hole injection layer is located on the side of the second luminescent material layer close to the anode, and the second electron injection layer is located on the side of the third luminescent material layer away from the anode;
  • the fourth luminescent material layer is located between the third hole injection layer and the third electron injection layer, the third hole injection layer is located on the side of the fourth luminescent material layer close to the anode, and the third electron injection layer on the side of the fourth luminescent material layer away from the anode;
  • the second hole injection layer is located between the first electron injection layer and the second light-emitting material layer, and the third hole injection layer is located between the second electron injection layer and the fourth light-emitting material layer; the first transition The protective layer is located between the third electron injection layer and the cathode; the third electron injection layer is multiplexed into an electron transport layer.
  • the fabrication material of the first luminescent material layer is the same as the fabrication material of the fourth luminescent material layer, and is a blue light emitting material;
  • the second light-emitting material layer is a red light-emitting material
  • the third light-emitting material layer is a yellow light-emitting material
  • the fabrication materials of the three hole injection layers include: P-doped organic materials, and the dopant materials of the hole injection layers include: molybdenum trioxide.
  • both the anode and the cathode are transparent electrodes.
  • the present disclosure also provides a display substrate, comprising: the above organic electroluminescence device.
  • the present disclosure also provides a display device, comprising: the above-mentioned display substrate.
  • FIG. 1 is a schematic structural diagram of an OLED display device
  • FIG. 2 is a schematic plan view of a display area of a display substrate
  • FIG. 3 is a schematic cross-sectional structure diagram of a display substrate
  • FIG. 5 is a schematic structural diagram of an organic electroluminescent device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an organic electroluminescent device provided by an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of an organic electroluminescent device provided by another exemplary embodiment
  • FIG. 8 is a schematic structural diagram of an organic electroluminescent device provided by another exemplary embodiment.
  • Fig. 9 is the corresponding spectrogram of device I and device II;
  • FIG. 10 shows the corresponding relationship between the brightness and the time corresponding to the device I and the device II.
  • the terms “installed”, “connected” and “connected” should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • installed may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between the drain electrode (or drain electrode terminal, drain region or drain electrode) and the source electrode (or source electrode terminal, source region or source electrode), and current can flow through the drain electrode, channel region and source electrode.
  • the channel region refers to a region through which current mainly flows.
  • the first electrode may be the drain electrode and the second electrode may be the source electrode, or the first electrode may be the source electrode and the second electrode may be the drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged. Therefore, herein, “source electrode” and “drain electrode” may be interchanged with each other.
  • electrically connected includes the case where constituent elements are connected together by means of elements having some electrical function.
  • the "element having a certain electrical effect” is not particularly limited as long as it can transmit and receive electrical signals between the connected constituent elements.
  • the “element having a certain electrical effect” may be, for example, electrodes or wirings, or switching elements such as transistors, or other functional elements such as resistors, inductors, or capacitors.
  • parallel refers to a state where the angle formed by two straight lines is -10° or more and 10° or less, and therefore, also includes a state where the angle is -5° or more and 5° or less.
  • perpendicular refers to the state where the angle formed by two straight lines is 80° or more and 100° or less, and therefore includes the state where the angle is 85° or more and 95° or less.
  • film and “layer” are interchangeable.
  • conductive layer may be replaced by “conductive film” in some cases.
  • insulating film may be replaced with “insulating layer” in some cases.
  • FIG. 1 is a schematic structural diagram of an OLED display device.
  • the OLED display device may include a scan signal driver, a data signal driver, a lighting signal driver, an OLED display substrate, a first power supply unit, a second power supply unit and an initial power supply unit.
  • the OLED display substrate includes at least a plurality of scan signal lines (S1 to SN), a plurality of data signal lines (D1 to DM) and a plurality of light emission signal lines (EM1 to EMN).
  • the scan signal driver is configured to sequentially provide scan signals to the plurality of scan signal lines (S1 to SN)
  • the data signal driver is configured to provide the data signals to the plurality of data signal lines (D1 to DM)
  • the lighting signal driver is configured to sequentially
  • a light emission control signal is supplied to a plurality of light emission signal lines (EM1 to EMN).
  • the plurality of scan signal lines and the plurality of light emitting signal lines extend in a horizontal direction
  • the plurality of data signal lines extend in a vertical direction
  • the OLED display device includes a plurality of sub-pixels, and one sub-pixel is connected to, for example, a scan signal line, a light emission control line and a data signal line.
  • the first power supply unit, the second power supply unit and the initial power supply unit are respectively configured to supply the first power supply voltage, the second power supply voltage and the initial power supply voltage to the pixel circuit through the first power supply line, the second power supply line and the initial signal line.
  • FIG. 2 is a schematic plan view of a display area of a display substrate.
  • the display area may include a plurality of pixel units P arranged in a matrix, and at least one of the plurality of pixel units P includes a first sub-pixel P1 that emits light of a first color, and a sub-pixel P1 that emits light of a second color.
  • the second sub-pixel P2 and the third sub-pixel P3 emitting light of the third color, the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3 all include a pixel driving circuit and a light-emitting device.
  • the pixel driving circuits in the first sub-pixel P1, the second sub-pixel P2 and the third sub-pixel P3 are respectively connected to the scanning signal line, the data signal line and the light-emitting signal line, and the pixel driving circuit is configured to connect the scanning signal line and the light-emitting signal line. Under the control of the line, the data voltage transmitted by the data signal line is received, and the corresponding current is output to the light-emitting device.
  • the light-emitting devices in the first sub-pixel P1, the second sub-pixel P2, and the third sub-pixel P3 are respectively connected to the pixel driving circuit of the sub-pixel, and the light-emitting device is configured to respond to the current output by the pixel driving circuit of the sub-pixel. Brightness of light.
  • the pixel unit P may include red (R) sub-pixels, green (G) sub-pixels and blue (B) sub-pixels, or may include red sub-pixels, green sub-pixels, blue sub-pixels
  • the sub-pixel and the white (W) sub-pixel, or the pixel unit P may emit white light, which is not limited in the present disclosure.
  • the shape of the sub-pixels in the pixel unit may be a rectangle, a diamond, a pentagon or a hexagon.
  • the pixel unit includes three sub-pixels, the three sub-pixels can be arranged horizontally, vertically, or in a zigzag manner.
  • the pixel unit includes four sub-pixels, the four sub-pixels can be arranged in a horizontal, vertical, or square manner. The arrangement is not limited in this disclosure.
  • FIG. 3 is a schematic cross-sectional structure diagram of a display substrate, illustrating the structure of three sub-pixels of the OLED display substrate.
  • the display substrate may include a driving circuit layer 102 disposed on a substrate 101 , a light emitting device 103 disposed on a side of the driving circuit layer 102 away from the substrate 101 , and a light emitting device 103 disposed on the substrate 101 .
  • 103 is the encapsulation layer 104 on the side away from the substrate 101 .
  • the display substrate may include other film layers, such as spacer columns, etc., which are not limited in the present disclosure.
  • the substrate may be a flexible substrate, or it may be a rigid substrate.
  • the flexible substrate may include a stacked first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer and a second inorganic material layer, and the materials of the first flexible material layer and the second flexible material layer may be made of polymer.
  • the materials of the first inorganic material layer and the second inorganic material layer can be silicon nitride (SiNx ) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate, and the material of the semiconductor layer can be amorphous silicon (a-si).
  • PI imide
  • PET polyethylene terephthalate
  • surface-treated soft polymer film the materials of the first inorganic material layer and the second inorganic material layer can be silicon nitride (SiNx ) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate, and the material of the semiconductor layer can be amorphous silicon (a-si).
  • the driving circuit layer 102 of each sub-pixel may include a plurality of transistors and storage capacitors constituting the pixel driving circuit.
  • each sub-pixel includes one driving transistor and one storage capacitor as an example. signal.
  • the driving circuit layer 102 of each sub-pixel may include: a first insulating layer 201 disposed on the substrate; an active layer disposed on the first insulating layer; a second insulating layer covering the active layer layer 202; the gate electrode and the first capacitor electrode disposed on the second insulating layer 202; the third insulating layer 203 covering the gate electrode and the first capacitor electrode; the second capacitor electrode disposed on the third insulating layer 203; covering
  • the fourth insulating layer 204 of the second capacitor electrode, the second insulating layer 202, the third insulating layer 203 and the fourth insulating layer 204 are provided with via holes, and the via holes expose the active layer; they are arranged on the fourth insulating layer 204
  • the light emitting device 103 may include an anode 301 , a pixel definition layer 302 , an organic light emitting layer 303 and a cathode 304 .
  • the anode 301 is arranged on the flat layer 205 and is connected to the drain electrode of the driving transistor 210 through a via hole opened on the flat layer 205;
  • the pixel definition layer 302 is arranged on the anode 301 and the flat layer 205, and a pixel opening is arranged on the pixel definition layer 302 , the pixel opening exposes the anode 301;
  • the organic light-emitting layer 303 is at least partially disposed in the pixel opening, and the organic light-emitting layer 303 is connected to the anode 301;
  • the cathode 304 is disposed on the organic light-emitting layer 303, and the cathode 304 is connected to the organic light-emitting layer 303;
  • the layer 303 is driven by the anode 301 and
  • the encapsulation layer 104 may include a stacked first encapsulation layer 401 , a second encapsulation layer 402 and a third encapsulation layer 403 , and the first encapsulation layer 401 and the third encapsulation layer 403 may be made of inorganic materials
  • the second encapsulation layer 402 can be made of organic materials.
  • the second encapsulation layer 402 is arranged between the first encapsulation layer 401 and the third encapsulation layer 403 to ensure that the outside water vapor cannot enter the light emitting device 103 .
  • the organic light emitting layer 303 may at least include the hole injection layer 20 , the hole transport layer 30 , the light emitting layer 50 and the hole blocking layer 60 stacked on the anode 301 .
  • the hole injection layers 20 of all subpixels are a common layer connected together
  • the hole transport layers 30 of all subpixels are a common layer connected together
  • the light emitting layers of adjacent subpixels are 50 may have a small amount of overlap, or may be isolated
  • the hole blocking layer 60 is a common layer connected together.
  • the pixel driving circuit may be a 3T1C, 4T1C, 5T1C, 5T2C, 6T1C or 7T1C structure.
  • FIG. 4 is an equivalent circuit diagram of a pixel driving circuit.
  • the pixel driving circuit may include 7 switching transistors (the first transistor T1 to the seventh transistor T7 ), 1 storage capacitor C and 8 signal lines (the data signal line DATA, the first scan signal line S1, The second scan signal line S2, the first initial signal line INIT1, the second initial signal line INIT2, the first power supply line VSS, the second power supply line VDD, and the light emitting signal line EM).
  • the first initial signal line INIT1 and the second initial signal line INIT2 may be the same signal line.
  • the control electrode of the first transistor T1 is connected to the second scan signal line S2, the first electrode of the first transistor T1 is connected to the first initial signal line INIT1, and the second electrode of the first transistor is connected to the first initial signal line INIT1.
  • the second node N2 is connected.
  • the control electrode of the second transistor T2 is connected to the first scan signal line S1, the first electrode of the second transistor T2 is connected to the second node N2, and the second electrode of the second transistor T2 is connected to the third node N3.
  • the control electrode of the third transistor T3 is connected to the second node N2, the first electrode of the third transistor T3 is connected to the first node N1, and the second electrode of the third transistor T3 is connected to the third node N3.
  • the control electrode of the fourth transistor T4 is connected to the first scan signal line S1, the first electrode of the fourth transistor T4 is connected to the data signal line DATA, and the second electrode of the fourth transistor T4 is connected to the first node N1.
  • the control electrode of the fifth transistor T5 is connected to the light-emitting signal line EM, the first electrode of the fifth transistor T5 is connected to the second power supply line VDD, and the second electrode of the fifth transistor T5 is connected to the first node N1.
  • the control electrode of the sixth transistor T6 is connected to the light emitting signal line EM, the first electrode of the sixth transistor T6 is connected to the third node N3, and the second electrode of the sixth transistor T6 is connected to the first electrode of the light emitting device.
  • the control electrode of the seventh transistor T7 is connected to the first scan signal line S1, the first electrode of the seventh transistor T7 is connected to the second initial signal line INIT2, and the second electrode of the seventh transistor T7 is connected to the first electrode of the light emitting device.
  • the first end of the storage capacitor C is connected to the second power line VDD, and the second end of the storage capacitor C is connected to the second node N2.
  • the first to seventh transistors T1 to T7 may be P-type transistors, or may be N-type transistors. Using the same type of transistors in the pixel driving circuit can simplify the process flow, reduce the process difficulty of the display panel, and improve the product yield.
  • the first to seventh transistors T1 to T7 may include P-type transistors and N-type transistors.
  • the second pole of the light emitting device is connected to the first power supply line VSS, the signal of the first power supply line VSS is a low-level signal, and the signal of the second power supply line VDD is to continuously provide a high-level signal .
  • the first scan signal line S1 is the scan signal line in the pixel driving circuit of the display row
  • the second scan signal line S2 is the scan signal line in the pixel driving circuit of the previous display row, that is, for the nth display row, the first scan signal
  • the line S1 is S(n)
  • the second scanning signal line S2 is S(n-1)
  • the second scanning signal line S2 of this display line is the same as the first scanning signal line S1 in the pixel driving circuit of the previous display line
  • the signal lines can reduce the signal lines of the display panel and realize the narrow frame of the display panel.
  • An organic light-emitting layer of a light-emitting device may include an emission layer (Emitting Layer, referred to as EML), and a hole injection layer (Hole Injection Layer, referred to as HIL), a hole transport layer (Hole Transport Layer, referred to as HTL), electron injection layer One or more film layers in Electron Injection Layer (EIL for short) and Electron Transport Layer (ETL for short).
  • EML emission layer
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL Electron Transport Layer
  • ETL Electron Transport Layer
  • the water and oxygen of the cathode will penetrate into the electron injection layer, and at the same time, the particles in the electron injection layer will also migrate to other film layers, so that the performance of the electron injection layer is low, the electron injection is difficult, and the The stability of the light-emitting device reduces the lifespan of the light-emitting device.
  • FIG. 5 is a schematic structural diagram of an organic electroluminescence device provided by an embodiment of the present disclosure.
  • the organic electroluminescent device provided by the embodiment of the present disclosure includes: an anode 10 , an organic light-emitting layer, a first transition protective layer 20 and a cathode 30 that are stacked in sequence.
  • the organic light-emitting layer may include: a hole injection layer 40 , a light-emitting material layer 60 , an electron transport layer 70 and an electron injection layer 80 .
  • the first transition protective layer 20 is disposed between the electron injection layer 80 and the cathode 30 and forms a PN junction with the electron injection layer 80 .
  • the organic light-emitting layer may further include: a hole transport layer 50 .
  • the hole injection layer 40 is configured to lower the barrier to injection of holes from the anode 10 , enabling efficient injection of holes from the anode into the luminescent material layer 60 .
  • the hole transport layer 50 is configured to achieve controlled migration of the directional order of the injected holes.
  • the light-emitting material layer 60 is configured to recombine electrons and holes to emit light.
  • Electron transport layer 70 is configured to achieve controlled migration of the directional order of injected electrons.
  • the electron injection layer 80 is configured to lower a barrier for injecting electrons from the cathode, enabling efficient injection of electrons from the cathode into the light-emitting material layer 60 .
  • the organic electroluminescent device may be of a bottom emission type, or may be of a top emission type.
  • the anode layer serves as a connection layer for the forward voltage of the organic electroluminescent device, and has better electrical conductivity, visible light transparency and higher work function.
  • the anode 10 may employ a material having a high work function.
  • the anode can be made of a transparent oxide material, such as indium tin oxide (ITO) or indium zinc oxide (IZO), and the thickness of the anode can be about 80 nanometers to 200 nanometers.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the anode can use a composite structure of metal and transparent oxide, such as Ag/ITO, Ag/IZO or ITO/Ag/ITO, etc.
  • the thickness of the metal layer in the anode can be about 80 nm to At 100 nanometers, the thickness of the transparent oxide in the anode can be about 5 nanometers to 20 nanometers, so that the average reflectance of the anode in the visible light region is about 85% to 95%.
  • the cathode layer is used as a connection layer for the negative voltage of the organic electroluminescent device, and has better conductivity and lower work function.
  • the cathode can be magnesium (Mg), silver (Ag), aluminum (Al) or Mg:Ag alloy, and the thickness of the cathode can be greater than about 80 nanometers, so that the cathode has good reflectivity .
  • the cathode can be made of a transparent oxide material, such as indium zinc oxide (IZO), and the thickness of the cathode can be about 10 nm to 20 nm, so that the average transmittance of the cathode at a wavelength of 530 nm is about 50% to 60%.
  • IZO indium zinc oxide
  • the hole injection layer 40 may use inorganic oxides, such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, Hafnium oxide, tantalum oxide, silver oxide, tungsten oxide or manganese oxide, or P-type dopants and dopants of hole transport materials such as hexacyanohexaaza can be used in strong electron withdrawing systems Triphenylene, 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanoquinodimethane (F4-TCNQ) dimethyl or 1,2,3-tri[( cyano)(4-cyano-2,3,5,6-tetrafluorophenyl)methylene]cyclopropane, etc.
  • inorganic oxides such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, Hafn
  • the thickness of the hole injection layer 40 may be about 5 nanometers to 20 nanometers.
  • the hole transport layer 50 may use a hole transport material with high hole mobility, such as an aromatic amine compound with hole transport properties, the substituents of which may be carbazole, methyl fluorene, spirofluorene, dibenzothiophene or furan, etc., such as 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis( 3-Methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-benzene Fluoren-9-yl)triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi) , 4,4'-bis(9-carbazoly
  • the thickness of the hole transport layer 50 may be about 80 nm to 120 nm, and the carrier mobility of the material for making the hole transport layer may be about 10 ⁇ 3 cm 2 /Vs to 10 -5 cm 2 /Vs.
  • the conductivity of hole transport layer 50 is less than or equal to the conductivity of hole injection layer 40 .
  • the electron transport layer 70 may use an aromatic heterocyclic compound, such as benzimidazole derivatives, imidazopyridine derivatives, benzimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine derivatives , triazine derivatives and other azine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, etc., compounds containing nitrogen-containing six-membered ring structures (including phosphine oxide-based substituents on heterocycles) compounds), etc.
  • aromatic heterocyclic compound such as benzimidazole derivatives, imidazopyridine derivatives, benzimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine derivatives , triazine derivatives and other azine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, etc., compounds containing nitrogen-containing six-membered ring structures (including phosphine oxide-
  • the thickness of the electron transport layer may be about 20 nanometers to 70 nanometers.
  • the fabrication material of the electron injection layer 80 may include: N-doped organic material.
  • the electron injection layer adopts a doped structure, and the electron injection layer includes a host material and a dopant material.
  • the dopant material can be an N-type doping (P-doping) material. heterostructure.
  • the host material of the electron injection layer 80 may be an organic molecular material with high electron mobility and effective electron conduction.
  • the host material of the electron injection layer 80 may be the same as that of the electron transport layer 70 .
  • the dopant material of the electron injection layer 80 may be lithium fluoride or a composite of lithium and cesium carbonate.
  • the first transition protective layer 20 may be made of a P-doped organic material.
  • the first transition protective layer is functionally equivalent to the hole injection layer and the hole transport layer.
  • the host material of the first transition protective layer 20 is an organic material, such as an organic molecular material with high hole mobility and capable of effectively conducting holes.
  • the dopant material of the first transition protective layer may be a P-type dopant material.
  • the host material of the first transition protective layer 20 may be the same as that of the hole transport layer.
  • the dopant material of the first transition protective layer 20 may be molybdenum trioxide, or may be tungsten trioxide or vanadium pentoxide.
  • the thickness of the light-emitting material layer 60 may be about 10 nanometers to 30 nanometers, for example, the thickness of the light-emitting material layer 60 may be about 15 nanometers to 25 nanometers,
  • the layers of light-emitting materials are different for organic electroluminescent devices of different colors.
  • a red light-emitting device includes a red light-emitting material layer
  • a green light-emitting device includes a green light-emitting material layer
  • a blue light-emitting device includes a blue light-emitting material layer.
  • each sub-pixel includes the same organic electroluminescent device.
  • the luminescent material layer 60 may include a luminescent host material and a luminescent guest material.
  • the doping ratio of the guest material of the light-emitting material layer is 1% to 20%.
  • the host material of the luminescent material layer can effectively transfer exciton energy to the guest material of the luminescent layer to excite the guest material of the luminescent layer to emit light;
  • the "dilution" is effectively improved, and the fluorescence quenching caused by the collision between the molecules of the guest material in the luminescent material layer and the collision between energies is effectively improved, and the luminous efficiency and the life of the device are improved.
  • the doping ratio refers to the ratio of the mass of the guest material to the mass of the light-emitting material layer, that is, the mass percentage.
  • the host material and the guest material can be co-evaporated through a multi-source evaporation process, so that the host material and the guest material are uniformly dispersed in the luminescent material layer, and the evaporation process can be controlled by controlling the amount of the guest material.
  • the doping ratio can be regulated by the evaporation rate, or the doping ratio can be regulated by controlling the evaporation rate ratio of the host material and the guest material.
  • the light-emitting host material may use a bipolar single host, or may use a dual host formed by blending a hole-type host and an electron-type host.
  • the light-emitting guest material can be a phosphorescent material, a fluorescent material, a delayed fluorescent material, etc., and the doping ratio of the light-emitting guest material is about 5% to 15%.
  • the orthographic projection of the luminescent material layer of at least part of the sub-pixels on the substrate overlaps with the orthographic projection of the pixel driving circuit driving on the substrate.
  • any one or more of the hole injection layer, hole transport layer, electron injection layer, and electron transport layer may pass through a single process (one evaporation process or one inkjet printing process) However, isolation is achieved through the surface step difference of the formed film layer or through surface treatment.
  • any one or more of the hole injection layer, hole transport layer, electron injection layer and electron transport layer corresponding to adjacent sub-pixels may be isolated.
  • the organic light-emitting layer may be formed by using a fine metal mask (FMM, Fine Metal Mask) or an open mask (Open Mask) evaporation deposition, or by using an inkjet process.
  • the PN junction in the embodiment of the present disclosure can be used as an intermediate connector, which is equivalent to a charge generation layer, so that hole carriers can be injected from the first transition protective layer 20 to the cathode 30 , and electron carriers can be injected into the cathode 30 .
  • the electron injection layer 80 is injected into the electron transport layer 70 .
  • the loss of the external quantum efficiency of the organic electroluminescent device closer to the cathode is greater, and the first transition protective layer provided in the present disclosure can reduce the loss of the external quantum efficiency of the electron injection layer close to the cathode .
  • the organic electroluminescent device includes: an anode, an organic light-emitting layer, a first transition protective layer, and a cathode stacked in sequence; the organic light-emitting layer includes: a hole injection layer, a light-emitting material layer, and an electron transport layer and the electron injection layer; the first transition protective layer is arranged between the electron injection layer and the cathode, and forms a PN junction with the electron injection layer.
  • a first transition protective layer that can form a PN junction with the electron injection layer is disposed between the electron injection layer and the cathode, so that hole carriers are injected from the first transition protective layer to the cathode, and electron carriers are injected from the electrons.
  • the electron transport layer is injected into the electron transport layer, which improves the conductivity, strengthens the ability of electron injection into the light-emitting layer, balances electrons and holes, and increases the recombination rate; the existence of the first transition protective layer can be used as the protective layer of the electron injection layer, The direct contact of water and oxygen permeating from the cathode to the electron injection layer is alleviated, and the stability and lifetime of the OLED are improved.
  • FIG. 6 is a schematic structural diagram of an organic electroluminescent device provided by an exemplary embodiment. As shown in FIG. 6 , an organic electroluminescent device provided by an exemplary embodiment further includes: a second transition protection layer 90 disposed between the first transition protection layer 20 and the cathode 30 , the second transition protection layer 90 is connected to The first transition protective layer 80 forms a PN junction.
  • the fabrication material of the second transition protective layer 90 includes: N-doped organic material.
  • the fabrication material of the second transition protection layer 90 may be the same as the fabrication material of the electron injection layer, that is, the host material of the second transition protection layer may be an aromatic heterocyclic compound, such as a benzimidazole derivative , imidazopyridine derivatives, benzimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine derivatives, triazine derivatives and other azine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives, etc. , a compound containing a nitrogen-containing six-membered ring structure (including a compound having a phosphine oxide-based substituent on a heterocyclic ring), and the like.
  • an aromatic heterocyclic compound such as a benzimidazole derivative , imidazopyridine derivatives, benzimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine derivatives, triazine derivatives and other azine derivatives
  • the doping material of the second transition protective layer is lithium fluoride or a composite of lithium and cesium
  • the second transition protective layer can cooperate with the first transition protective layer to inject electron carriers from the electron injection layer to the electron transport layer, improve electrical conductivity, and enhance the ability of electron injection into the light emitting layer , balances electrons and holes, and increases the recombination rate; in addition, the existence of the second transition protective layer can also be used as the protective layer of the electron injection layer, which relieves the water and oxygen permeating from the cathode to directly contact the electron injection layer and improves the stability of the OLED. and longevity.
  • the number of electron injection layers is greater than or equal to one.
  • the number of electron injection layers is equal to one.
  • the organic electroluminescence device has a top emission structure and the organic electroluminescence device is a top emission structure and emits white light, the number of electron injection layers is greater than 1, and at this time, the number of electron injection layers is equal to 3.
  • 5 and 6 illustrate an example in which the number of electron injection layers is equal to one.
  • the hole injection layer 40 is located between the light-emitting material layer 60 and the anode 10
  • the hole transport layer 50 is located between the hole injection layers
  • the electron transport layer 70 is located between the luminescent material layer 60 and the electron injection layer 80 .
  • the material for making the hole injection layer 40 may be a P-doped organic material.
  • the hole injection layer adopts a doped structure, the hole injection layer includes a host material and a dopant material, the dopant material is a P-doping material, and the host material and the dopant material are doped according to a certain proportion. doping structure. Since the P-type doping material is a material with strong electron-absorbing ability, it lacks electrons and has the ability to strongly pull electrons. Therefore, the P-type doping has the characteristics of strong electron-absorbing ability, so that the electrons can move to the anode under the action of the electric field. One side moves rapidly, resulting in the rapid transport of holes to the side of the hole transport layer, achieving efficient hole injection performance.
  • the host material of the hole injection layer may include: an aromatic amine compound with hole transport properties, the substituent group of which may be carbazole, methylfluorene, spirofluorene, dibenzothiophene Or furan, etc., such as 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl)-N, N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenyl Amine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'-bis(9- carbazolyl)biphenyl (CBP) or
  • the doping material of the hole injection layer can be inorganic oxides, such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide , silver oxide, tungsten oxide or manganese oxide, such as molybdenum trioxide, or it may be tungsten trioxide or vanadium pentoxide.
  • inorganic oxides such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide , silver oxide, tungsten oxide or manganese oxide, such as molybdenum trioxide, or it may be tungsten trioxide or vanadium pentoxide.
  • FIG. 7 is a schematic structural diagram of an organic electroluminescent device provided by another exemplary embodiment.
  • the electron injection layer 80 and the electron transport layer 70 are the same film layer; the hole injection layer 40 is located between the luminescent material layer 60 and the anode 10, the hole transport layer 50 is located between the hole injection layer 40 and the luminescent material layer 60, The electron injection layer 80 is located between the light-emitting material layer 60 and the first transition protective layer 20 .
  • the material for making the hole injection layer 40 may be a P-doped organic material.
  • the hole injection layer adopts a doped structure, the hole injection layer includes a host material and a dopant material, the dopant material is a P-doping material, and the host material and the dopant material are doped according to a certain proportion. doping structure. Since the P-type doping material is a material with strong electron-absorbing ability, it lacks electrons and has the ability to strongly pull electrons. Therefore, the P-type doping has the characteristics of strong electron-absorbing ability, so that the electrons can move to the anode under the action of the electric field. One side moves rapidly, resulting in the rapid transport of holes to the side of the hole transport layer, achieving efficient hole injection performance.
  • the host material of the hole injection layer may include: an aromatic amine compound with hole transport properties, the substituent group of which may be carbazole, methylfluorene, spirofluorene, dibenzothiophene Or furan, etc., such as 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl)-N, N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenyl Amine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'-bis(9- carbazolyl)biphenyl (CBP) or
  • the doping material of the hole injection layer can be inorganic oxides, such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide , silver oxide, tungsten oxide or manganese oxide, such as molybdenum trioxide, or it may be tungsten trioxide or vanadium pentoxide.
  • inorganic oxides such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide , silver oxide, tungsten oxide or manganese oxide, such as molybdenum trioxide, or it may be tungsten trioxide or vanadium pentoxide.
  • the hole injection layer and the hole transport layer on one side of the light-emitting material layer may be the same film layer, and the electron injection layer and the electron transport layer on the other side of the light-emitting material layer may be the same film Layers can reduce process difficulty and improve yield.
  • the organic light-emitting layer may further include: an electron blocking layer 91 and a hole blocking layer 92 .
  • the hole blocking layer 92 is located between the light-emitting material layer 60 and the electron transport layer 70
  • the electron blocking layer 91 is located between the light-emitting material layer 60 and the hole transport layer 50 .
  • the electron blocking layer may be an aromatic amine compound with hole transport properties, and its substituent may be carbazole, methylfluorene, spirofluorene, dibenzothiophene or furan, etc., such as 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl)-N,N'-diphenyl yl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenylamine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'-bis(9-carbazolyl)biphenyl Benzene (CBP) or
  • the electron blocking layer 91 may have a thickness of about 1 nanometer to 20 nanometers, and is configured to transfer holes, block electrons, and block excitons generated within the light-emitting material layer.
  • the conductivity of electron blocking layer 91 is less than or equal to the conductivity of hole injection layer 40 .
  • the hole blocking layer 92 has a thickness of about 2 nanometers to 20 nanometers and is configured to block holes as well as excitons generated within the light emitting material layer.
  • the thicknesses of the light emitting material layer 60 and the hole blocking layer 60 are different.
  • the thickness of the luminescent material layer 60 may be greater than the thickness of the hole blocking layer 92 .
  • the thicknesses of the luminescent material layer 60 and the electron blocking layer 91 are different.
  • the thickness of the luminescent material layer 60 may be greater than the thickness of the electron blocking layer 91 .
  • the organic electroluminescence device when the organic electroluminescence device is a bottom emission organic electroluminescence device, the anode may be a transparent electrode, and the cathode may be a reflective electrode.
  • FIG. 8 is a schematic structural diagram of an organic electroluminescent device provided by another exemplary embodiment.
  • the i-th electron injection layer when the number of electron injection layers is greater than 1, the i-th electron injection layer is located at the i+1-th electron injection layer close to the anode 1 ⁇ i ⁇ N-1, where N is the number of electron injection layers.
  • the first transition protective layer and the Nth electron injection layer form a PN junction.
  • the three electron injection layers include: a first electron injection layer 80A, a second electron injection layer 80B, and a third electron injection layer 80C.
  • the number of hole injection layers in the organic light-emitting layer is three, and the number of light-emitting material layers is four.
  • the three hole injection layers include: a first hole injection layer 40A, a second hole injection layer 40B and a third hole injection layer 40C.
  • the four light-emitting material layers include: a first light-emitting material layer 60A, a second light-emitting material layer 60B, a third light-emitting material layer 60C, and a fourth light-emitting material layer 60D.
  • the first luminescent material layer 60A is located between the first hole injection layer 40A and the first electron injection layer 80A, the first hole injection layer 40A is located on the side of the first luminescent material layer 60A close to the anode 10, The first electron injection layer 80A is located on the side of the first luminescent material layer 60A away from the anode 10 .
  • the second light-emitting material layer 60B and the third light-emitting material layer 60C are located between the second hole injection layer 40B and the second electron injection layer 80B, and the third light-emitting material layer 60C is located between the second light-emitting material layer 60B
  • the second hole injection layer 40B is located on the side of the second luminescent material layer 60B close to the anode 10
  • the second electron injection layer 80B is located on the side of the third luminescent material layer 60C away from the anode 10 .
  • the fourth luminescent material layer 60D is located between the third hole injection layer 40C and the third electron injection layer 80C, and the third hole injection layer 40C is located on the side of the fourth luminescent material layer 60D close to the anode 10 ,
  • the third electron injection layer 80C is located on the side of the fourth light emitting material layer 60D away from the anode 10 .
  • the second hole injection layer 40B is located between the first electron injection layer 80A and the second light-emitting material layer 60B, and the third hole injection layer 40C is located between the second electron injection layer 80B and the fourth light-emitting material layer 60D between;
  • the first transition protective layer 20 is located between the third electron injection layer 80C and the cathode 30 .
  • the third electron injection layer 80C that is, the electron injection layer forming the PN junction with the first transition protective layer, can be multiplexed into an electron transport layer.
  • the first light-emitting material layer 60A is made of the same material as the fourth light-emitting material layer 60D, and is a blue light-emitting material.
  • the blue light emitting material may be 9,10-bis-p-tetrastyryl anthracene.
  • the second luminescent material layer 60B is a red luminescent material.
  • the red light emitting material may be 9,10-di-p-N,N-diheptylstyrene anthracene.
  • the third luminescent material layer 60C is a yellow luminescent material.
  • the yellow light emitting material may be 9,10-di-p-N,N-dipropylstyrene anthracene.
  • the material for making the hole injection layer 40 may be a P-doped organic material.
  • the hole injection layer adopts a doped structure, the hole injection layer includes a host material and a dopant material, the dopant material is a P-doping material, and the host material and the dopant material are doped according to a certain proportion. doping structure. Since the P-type doping material is a material with strong electron-absorbing ability, it lacks electrons and has the ability to strongly pull electrons. Therefore, the P-type doping has the characteristics of strong electron-absorbing ability, so that the electrons can move to the anode under the action of the electric field. One side moves rapidly, resulting in the rapid transport of holes to the side of the hole transport layer, achieving efficient hole injection performance.
  • the host material of the hole injection layer may include: an aromatic amine compound with hole transport properties, the substituent group of which may be carbazole, methylfluorene, spirofluorene, dibenzothiophene Or furan, etc., such as 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl)-N, N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (TPD), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenyl Amine (BAFLP), 4,4'-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl (DFLDPBi), 4,4'-bis(9- carbazolyl)biphenyl (CBP) or
  • the doping material of the hole injection layer can be inorganic oxides, such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide , silver oxide, tungsten oxide or manganese oxide, such as molybdenum trioxide, or it may be tungsten trioxide or vanadium pentoxide.
  • inorganic oxides such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide , silver oxide, tungsten oxide or manganese oxide, such as molybdenum trioxide, or it may be tungsten trioxide or vanadium pentoxide.
  • the thickness of the hole injection layer is about 20 nanometers to 80 nanometers.
  • the electron injection layer has a thickness of about 0.5 nanometers to 10 nanometers.
  • the anode when the organic electroluminescent device is a top emission structure emitting white light, the anode may be a transparent electrode, and the cathode may be a transparent electrode.
  • the thickness of the organic light-emitting layer between the cathode and the anode can be designed to meet the optical path requirement of the optical micro-resonator, so as to obtain the optimal light intensity and color.
  • an orthographic projection of one or more of the hole injection layer, hole transport layer, electron blocking layer, hole blocking layer, electron transport layer, electron injection layer, and cathode on the substrate is continuous.
  • at least one of the hole injection layer, hole transport layer, electron blocking layer, hole blocking layer, electron transport layer, electron injection layer, and cathode of at least one row or column of subpixels is connected.
  • at least one of the hole injection layer, hole transport layer, electron blocking layer, hole blocking layer, electron transport layer, electron injection layer, and cathode of the plurality of subpixels is connected.
  • the hole injection layers of all sub-pixels may be a common layer connected together, the electron injection layers of all sub-pixels may be a common layer connected together, and the hole transport layers of all sub-pixels may be connected together It can be a common layer connected together, the electron transport layer of all subpixels can be a common layer connected together, the hole blocking layer of all subpixels can be a common layer connected together, and the light emitting layer of adjacent subpixels can be a common layer connected together. There may be a small amount of overlap, or may be isolated, and the electron blocking layers of adjacent subpixels may have a small amount of overlap, or may be isolated.
  • the present disclosure analyzes the performance of the organic electroluminescent devices provided in the embodiments of the present disclosure through experiments, and the analysis results are shown in Table 1.
  • device I is an organic electroluminescence device provided in the embodiment of the present disclosure
  • device II is an organic electroluminescence device without a first transition protective layer and a second transition protective layer.
  • the time required for the brightness to drop refers to the time required for the brightness to drop from 100 to 95.
  • the time required is longer and the external quantum efficiency is higher than that of Device II.
  • FIG. 9 is a spectrogram corresponding to the device I and the device II
  • FIG. 10 is the corresponding relationship between the brightness and the time of the device I and the device II. It can be seen from FIG. 9 that the absorption intensity of device I is higher when device I and device II have the same wavelength. As shown in FIG. 10 , compared with the device II, the time required for the device I to decrease the same brightness is longer. Device I has higher performance than device II.
  • the display substrate including the organic electroluminescent device as shown in FIG. 6 may be formed in the following manner.
  • a driving circuit layer is formed on the substrate through a patterning process, and the driving circuit layer of each sub-pixel may include a driving transistor and a storage capacitor constituting a pixel driving circuit.
  • a flat layer is formed on the substrate on which the aforementioned structure is formed, and a via hole exposing the drain electrode of the driving transistor is formed on the flat layer of each sub-pixel.
  • an anode is formed through a patterning process, and the anode of each sub-pixel is connected to the drain electrode of the driving transistor through a via hole on the flat layer.
  • a pixel definition layer is formed by a patterning process, and a pixel opening exposing the anode is formed on the pixel definition layer of each sub-pixel, and each pixel opening serves as a light-emitting area of each sub-pixel.
  • the hole injection layer, the hole transport layer and the electron blocking layer are sequentially evaporated using an open mask, and the hole injection layer, the hole transport layer and the electron blocking layer are formed on the display substrate. That is, the hole injection layers of all sub-pixels are connected, and the electron blocking layers of all sub-pixels are connected.
  • the area of each of the hole injection layer, the hole transport layer, and the electron blocking layer is approximately the same, and the thicknesses are different. Then, the red light-emitting material layer, the green light-emitting material layer and the blue light-emitting material layer are respectively evaporated on different sub-pixels using a fine metal mask, and the light-emitting material layers of adjacent sub-pixels may have a small overlap (for example, overlapping parts occupy less than 10% of the area of the respective light-emitting layer patterns), or may be isolated.
  • the hole blocking layer, the electron transport layer, the electron injection layer and the cathode are sequentially evaporated using an open mask to form a common layer of the hole blocking layer, the electron transport layer, the electron injection layer and the cathode on the display substrate, that is, all the The hole blocking layers of the sub-pixels are connected, the electron transport layers of all the sub-pixels are connected, the electron injection layers of all the sub-pixels are connected, and the cathodes of all the sub-pixels are connected.
  • the display substrate including the organic electroluminescent device as shown in FIG. 7 may be formed in the following manner.
  • a driving circuit layer is formed on the substrate through a patterning process, and the driving circuit layer of each sub-pixel may include a driving transistor and a storage capacitor constituting a pixel driving circuit.
  • a flat layer is formed on the substrate on which the aforementioned structure is formed, and a via hole exposing the drain electrode of the driving transistor is formed on the flat layer of each sub-pixel.
  • an anode is formed through a patterning process, and the anode of each sub-pixel is connected to the drain electrode of the driving transistor through a via hole on the flat layer.
  • a pixel definition layer is formed by a patterning process, and a pixel opening exposing the anode is formed on the pixel definition layer of each sub-pixel, and each pixel opening serves as a light-emitting area of each sub-pixel.
  • the hole injection layer and the electron blocking layer are sequentially evaporated using an open mask, and a common layer of the hole injection layer and the electron blocking layer is formed on the display substrate, that is, the empty space of all sub-pixels is formed.
  • the hole injection layers are connected, and the electron blocking layers of all sub-pixels are connected.
  • the area of each of the hole injection layer and the electron blocking layer is approximately the same, and the thickness thereof is different. Then, the red light-emitting material layer, the green light-emitting material layer and the blue light-emitting material layer are respectively evaporated on different sub-pixels using a fine metal mask, and the light-emitting material layers of adjacent sub-pixels may have a small overlap (for example, overlapping portions occupy less than 10% of the area of the respective light-emitting layer patterns), or may be isolated.
  • the hole blocking layer, the electron injection layer and the cathode are sequentially evaporated using an open mask, and a common layer of the hole blocking layer, the electron injection layer and the cathode is formed on the display substrate, that is, the hole blocking layer of all sub-pixels is The electron injection layers of all the connected sub-pixels are connected, and the cathodes of all the sub-pixels are connected.
  • the display substrate including the organic electroluminescent device shown in FIG. 8 may be formed in the following manner.
  • a driving circuit layer is formed on the substrate through a patterning process, and the driving circuit layer of each sub-pixel may include a driving transistor and a storage capacitor constituting a pixel driving circuit.
  • a flat layer is formed on the substrate on which the aforementioned structure is formed, and a via hole exposing the drain electrode of the driving transistor is formed on the flat layer of each sub-pixel.
  • an anode is formed through a patterning process, and the anode of each sub-pixel is connected to the drain electrode of the driving transistor through a via hole on the flat layer.
  • a pixel definition layer is formed by a patterning process, and a pixel opening exposing the anode is formed on the pixel definition layer of each sub-pixel, and each pixel opening serves as a light-emitting area of each sub-pixel.
  • the first hole injection layer is vapor-deposited using an open mask
  • the first luminescent material layer is vapor-deposited using a fine metal mask
  • the first layer is sequentially vapor-deposited using an open mask.
  • the second luminescent material layer and the third luminescent material are sequentially evaporated using a fine metal mask, and the second electron injection layer and the third luminescent material are evaporated using an open mask.
  • a hole injection layer is used, the fourth luminescent material layer is sequentially evaporated using a fine metal mask, and the third electron injection layer, the first transition protection layer and the cathode are sequentially evaporated using an open mask.
  • the luminescent material layers of adjacent sub-pixels may overlap slightly (for example, the overlapping portion occupies less than 10% of the area of the respective luminescent material layer patterns), or may be isolated.
  • the first hole injection layers of all sub-pixels are connected, the first electron injection layers of all sub-pixels are connected, the second hole injection layers of all sub-pixels are connected, and the second hole injection layers of all sub-pixels are connected.
  • the electron injection layers are connected, the third hole injection layers of all sub-pixels are connected, the third electron injection layers of all sub-pixels are connected, and the cathodes of all sub-pixels are connected.
  • Embodiments of the present disclosure also provide a display substrate, including: an organic electroluminescence device.
  • the organic electroluminescence device is the organic electroluminescence device provided in any of the foregoing embodiments, and the implementation principle and effect are similar, and details are not repeated here.
  • Embodiments of the present disclosure also provide a display device, including: a display substrate.
  • the display substrate is the display substrate provided in any one of the foregoing embodiments, and the implementation principle and effect are similar, and details are not described herein again.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle monitor, a watch, a wristband, and the like.
  • a display function such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, a vehicle monitor, a watch, a wristband, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件、显示基板和显示装置,其中,有机电致发光器件包括:依次叠设的阳极、有机发光层、第一过渡保护层和阴极;有机发光层包括:空穴注入层、发光材料层、电子传输层和电子注入层;第一过渡保护层设置在电子注入层和阴极之间,且与电子注入层形成PN结。

Description

有机电致发光器件、显示基板和显示装置
本申请要求于2021年3月31日提交中国专利局、申请号为202110349562.7、发明名称为“有机电致发光器件、显示基板和显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于显示技术领域,特别涉及一种有机电致发光器件、显示基板和显示装置。
背景技术
有机电致发光器件(Organic Light Emitting Device,简称OLED)为主动发光器件,具有发光、超薄、广视角、高亮度、高对比度、较低耗电、极高反应速度等优点,已逐渐成为极具发展前景的下一代显示技术。
OLED包括阳极、阴极以及设置在阳极和阴极之间的发光层,其发光原理是将空穴、电子分别由阳极、阴极注入至发光层,当电子和空穴在发光层中相遇时,电子和空穴复合从而产生激子(exciton),在从激发态转变为基态的同时,这些激子发光。为了使电子和空穴在较低的驱动电压下顺利地从电极注入至发光层,阳极与发光层之间配置有空穴注入层,阴极与发光层之间配置有电子注入层。
发明概述
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开提供了一种有机电致发光器件,包括:依次叠设的阳极、有机发光层、第一过渡保护层和阴极;所述有机发光层包括:空穴注入层、发光材料层、电子传输层和电子注入层;
所述第一过渡保护层设置在电子注入层和阴极之间,且与所述电子注入 层形成PN结。
在一些可能的实现方式中,还包括:设置在所述第一过渡保护层和所述阴极之间的第二过渡保护层;
所述第二过渡保护层与所述第一过渡保护层形成PN结。
在一些可能的实现方式中,所述电子注入层的制作材料包括:N掺杂的有机材料,所述电子注入层的掺杂材料包括:氟化锂或者锂和碳酸铯的复合物;
所述第一过渡保护层的制作材料包括:P掺杂的有机材料,所述第一过渡保护层的掺杂材料包括:三氧化钼。
在一些可能的实现方式中,所述第二过渡保护层的制作材料包括:N掺杂的有机材料,所述第二过渡保护层的掺杂材料包括:氟化锂或者锂和碳酸铯的复合物。
在一些可能的实现方式中,所述电子注入层的数量大于或者等于1。
在一些可能的实现方式中,所述有机发光层还包括:空穴传输层,当所述电子注入层的数量为1时,所述空穴注入层位于所述发光材料层和所述阳极之间,所述空穴传输层位于所述空穴注入层和所述发光材料层之间,所述电子传输层位于所述发光材料层和所述电子注入层之间;
所述空穴注入层的制作材料包括:P掺杂的有机材料,所述空穴注入层的掺杂材料包括:三氧化钼。
在一些可能的实现方式中,所述有机发光层还包括:空穴传输层,当所述电子注入层的数量为1时,所述电子注入层和所述电子传输层为同一膜层;所述空穴注入层位于所述发光材料层和所述阳极之间,所述空穴传输层位于所述空穴注入层和所述发光材料层之间;所述电子注入层位于所述发光材料层和所述第一过渡保护层之间;
所述空穴注入层的制作材料包括:P掺杂的有机材料,所述空穴注入层的掺杂材料包括:三氧化钼。
在一些可能的实现方式中,所述有机发光层还包括:空穴阻挡层和电子阻挡层;
所述空穴阻挡层位于所述发光材料层和所述电子传输层之间,所述电子阻挡层位于所述发光材料层和所述空穴传输层之间。
在一些可能的实现方式中,所述阳极为透明电极,所述阴极为反射电极。
在一些可能的实现方式中,当所述电子注入层的数量大于1时,第i个电子注入层位于所述第i+1个电子注入层靠近所述阳极的一侧;1≤i≤N-1,N为电子注入层的数量;
所述过渡保护层与第N个电子注入层形成PN结。
在一些可能的实现方式中,当N=3时,所述空穴注入层的数量为三个,所述发光材料层的数量为四个;
第一个发光材料层位于第一个空穴注入层和第一个电子注入层之间,第一个空穴注入层位于第一个发光材料层靠近阳极的一侧,第一个电子注入层位于第一个发光材料层远离阳极的一侧;
第二个发光材料层和第三个发光材料层位于第二个空穴注入层和第二个电子注入层之间,第三个发光材料层位于第二个发光材料层远离阳极的一侧,第二个空穴注入层位于第二个发光材料层靠近阳极的一侧,第二个电子注入层位于第三发光材料层远离阳极的一侧;
第四个发光材料层位于第三个空穴注入层和第三个电子注入层之间,第三个空穴注入层位于第四个发光材料层靠近阳极的一侧,第三个电子注入层位于第四发光材料层远离阳极的一侧;
第二个空穴注入层位于第一个电子注入层和第二个发光材料层之间,第三个空穴注入层位于第二电子注入层和第四个发光材料层之间;第一过渡保护层位于第三个电子注入层和阴极之间;所述第三个电子注入层复用为电子传输层。
在一些可能的实现方式中,第一个发光材料层的制作材料和第四个发光材料层的制作材料相同,且为蓝光发光材料;
第二个发光材料层为红光发光材料,第三个发光材料层为黄光发光材料。
在一些可能的实现方式中,三个空穴注入层的制作材料包括:P掺杂的有机材料,所述空穴注入层的掺杂材料包括:三氧化钼。
在一些可能的实现方式中,所述阳极和所述阴极均为透明电极。
第二方面,本公开还提供了一种显示基板,包括:上述有机电致发光器件。
第三方面,本公开还提供了一种显示装置,包括:上述显示基板。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为一种OLED显示装置的结构示意图;
图2为一种显示基板显示区域的平面结构示意图;
图3为一种显示基板的剖面结构示意图;
图4为一种像素驱动电路的等效电路图;
图5为本公开实施例提供的有机电致发光器件的结构示意图;
图6为一种示例性实施例提供的有机电致发光器件的结构示意图;
图7为另一示例性实施例提供的有机电致发光器件的结构示意图;
图8为又一示例性实施例提供的有机电致发光器件的结构示意图;
图9为器件I和器件II对应的光谱图;
图10为器件I和器件II对应的亮度与时间的对应关系。
详述
本文中的实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是实现方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,可能夸大表示了构成要素的大小、层的厚度或区域。因此,本公开的任意一个实现方式并不一定限定于图中所示尺寸,附图中部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的任意一个实现方式不局限于附图所示的形状或数值等。
本文中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本文中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系可根据描述的构成要素的方向进行适当地改变。因此,不局限于在文中说明的词句,根据情况可以适当地更换。
在本文中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本文中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(或称漏电极端子、漏区域或漏电极)与源电极(或称源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本文中,沟道区域是指电流主要流过的区域。
在本文中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况下,“源电极”及“漏电极”的功能有时可以互相调换。因此,在本文中,“源电极”和“漏电极”可以互相调换。
在本文中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”例如可以是电 极或布线,或者是晶体管等开关元件,或者是电阻器、电感器或电容器等其它功能元件等。
在本文中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本文中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本文中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
图1为一种OLED显示装置的结构示意图。如图1所示,OLED显示装置可以包括扫描信号驱动器、数据信号驱动器、发光信号驱动器、OLED显示基板、第一电源单元、第二电源单元和初始电源单元。
在一种示例性实施例中,OLED显示基板至少包括多个扫描信号线(S1到SN)、多个数据信号线(D1到DM)和多个发光信号线(EM1到EMN)。扫描信号驱动器被配置为依次向多个扫描信号线(S1到SN)提供扫描信号,数据信号驱动器被配置为向多个数据信号线(D1到DM)提供数据信号,发光信号驱动器被配置为依次向多个发光信号线(EM1到EMN)提供发光控制信号。
在一种示例性实施例中,多个扫描信号线和多个发光信号线沿着水平方向延伸,多个数据信号线沿着竖直方向延伸。OLED显示装置包括多个子像素,一个子像素例如连接一条扫描信号线、一条发光控制线和一条数据信号线。第一电源单元、第二电源单元和初始电源单元分别被配置为通过第一电源线、第二电源线和初始信号线向像素电路提供第一电源电压、第二电源电压和初始电源电压。
图2为一种显示基板显示区域的平面结构示意图。如图2所示,显示区域可以包括以矩阵方式排布的多个像素单元P,多个像素单元P的至少一个中包括出射第一颜色光线的第一子像素P1、出射第二颜色光线的第二子像素P2和出射第三颜色光线的第三子像素P3,第一子像素P1、第二子像素P2 和第三子像素P3均包括像素驱动电路和发光器件。第一子像素P1、第二子像素P2和第三子像素P3中的像素驱动电路分别与扫描信号线、数据信号线和发光信号线连接,像素驱动电路被配置为在扫描信号线和发光信号线的控制下,接收数据信号线传输的数据电压,向所述发光器件输出相应的电流。第一子像素P1、第二子像素P2和第三子像素P3中的发光器件分别与所在子像素的像素驱动电路连接,发光器件被配置为响应所在子像素的像素驱动电路输出的电流发出相应亮度的光。
在一种示例性实施例中,像素单元P中可以包括红色(R)子像素、绿色(G)子像素和蓝色(B)子像素,或者可以包括红色子像素、绿色子像素、蓝色子像素和白色(W)子像素,或者,像素单元P可以发射白光,本公开在此不做限定。在一种示例性实施例中,像素单元中子像素的形状可以是矩形状、菱形、五边形或六边形。像素单元包括三个子像素时,三个子像素可以采用水平并列、竖直并列或品字方式排列,像素单元包括四个子像素时,四个子像素可以采用水平并列、竖直并列或正方形(Square)方式排列,本公开在此不做限定。
图3为一种显示基板的剖面结构示意图,示意了OLED显示基板三个子像素的结构。如图3所示,在垂直于显示基板的平面上,显示基板可以包括设置在基底101上的驱动电路层102、设置在驱动电路层102远离基底101一侧的发光器件103以及设置在发光器件103远离基底101一侧的封装层104。
在一种示例性实施例中,显示基板可以包括其它膜层,如隔垫柱等,本公开在此不做限定。
在一种示例性实施例中,基底可以是柔性基底,或者可以是刚性基底。柔性基底可以包括叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层,第一柔性材料层和第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一无机材料层和第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,半导体层的材料可以采用非晶硅(a-si)。
在一种示例性实施例中,每个子像素的驱动电路层102可以包括构成像 素驱动电路的多个晶体管和存储电容,图3中以每个子像素中包括一个驱动晶体管和一个存储电容为例进行示意。在一些可能的实现方式中,每个子像素的驱动电路层102可以包括:设置在基底上的第一绝缘层201;设置在第一绝缘层上的有源层;覆盖有源层的第二绝缘层202;设置在第二绝缘层202上的栅电极和第一电容电极;覆盖栅电极和第一电容电极的第三绝缘层203;设置在第三绝缘层203上的第二电容电极;覆盖第二电容电极的第四绝缘层204,第二绝缘层202、第三绝缘层203和第四绝缘层204上开设有过孔,过孔暴露出有源层;设置在第四绝缘层204上的源电极和漏电极,源电极和漏电极分别通过过孔与有源层连接;覆盖前述结构的平坦层205,平坦层205上开设有过孔,过孔暴露出漏电极。有源层、栅电极、源电极和漏电极组成驱动晶体管210,第一电容电极和第二电容电极组成存储电容211。
在一种示例性实施例中,发光器件103可以包括阳极301、像素定义层302、有机发光层303和阴极304。阳极301设置在平坦层205上,通过平坦层205上开设的过孔与驱动晶体管210的漏电极连接;像素定义层302设置在阳极301和平坦层205上,像素定义层302上设置有像素开口,像素开口暴露出阳极301;有机发光层303至少部分设置在像素开口内,有机发光层303与阳极301连接;阴极304设置在有机发光层303上,阴极304与有机发光层303连接;有机发光层303在阳极301和阴极304驱动下出射相应颜色的光线。
在一种示例性实施例中,封装层104可以包括叠设的第一封装层401、第二封装层402和第三封装层403,第一封装层401和第三封装层403可采用无机材料,第二封装层402可采用有机材料,第二封装层402设置在第一封装层401和第三封装层403之间,可以保证外界水汽无法进入发光器件103。
在一种示例性实施例中,有机发光层303可以至少包括在阳极301上叠设的空穴注入层20、空穴传输层30、发光层50和空穴阻挡层60。在一种示例性实施例中,所有子像素的空穴注入层20是连接在一起的共通层,所有子像素的空穴传输层30是连接在一起的共通层,相邻子像素的发光层50可以有少量的交叠,或者可以是隔离的,空穴阻挡层60是连接在一起的共通层。
在一种示例性实施例中,像素驱动电路可以是3T1C、4T1C、5T1C、5T2C、 6T1C或7T1C结构。图4为一种像素驱动电路的等效电路图。如图4所示,像素驱动电路可以包括7个开关晶体管(第一晶体管T1到第七晶体管T7)、1个存储电容C和8个信号线(数据信号线DATA、第一扫描信号线S1、第二扫描信号线S2、第一初始信号线INIT1、第二初始信号线INIT2、第一电源线VSS、第二电源线VDD和发光信号线EM)。其中,第一初始信号线INIT1、第二初始信号线INIT2可以为同一条信号线。
在一种示例性实施例中,第一晶体管T1的控制极与第二扫描信号线S2连接,第一晶体管T1的第一极与第一初始信号线INIT1连接,第一晶体管的第二极与第二节点N2连接。第二晶体管T2的控制极与第一扫描信号线S1连接,第二晶体管T2的第一极与第二节点N2连接,第二晶体管T2的第二极与第三节点N3连接。第三晶体管T3的控制极与第二节点N2连接,第三晶体管T3的第一极与第一节点N1连接,第三晶体管T3的第二极与第三节点N3连接。第四晶体管T4的控制极与第一扫描信号线S1连接,第四晶体管T4的第一极与数据信号线DATA连接,第四晶体管T4的第二极与第一节点N1连接。第五晶体管T5的控制极与发光信号线EM连接,第五晶体管T5的第一极与第二电源线VDD连接,第五晶体管T5的第二极与第一节点N1连接。第六晶体管T6的控制极与发光信号线EM连接,第六晶体管T6的第一极与第三节点N3连接,第六晶体管T6的第二极与发光器件的第一极连接。第七晶体管T7的控制极与第一扫描信号线S1连接,第七晶体管T7的第一极与第二初始信号线INIT2连接,第七晶体管T7的第二极与发光器件的第一极连接。存储电容C的第一端与第二电源线VDD连接,存储电容C的第二端与第二节点N2连接。
在一种示例性实施例中,第一晶体管T1到第七晶体管T7可以是P型晶体管,或者可以是N型晶体管。像素驱动电路中采用相同类型的晶体管可以简化工艺流程,减少显示面板的工艺难度,提高产品的良率。
在一种示例性实施例中,第一晶体管T1到第七晶体管T7可以包括P型晶体管和N型晶体管。
在一种示例性实施例中,发光器件的第二极与第一电源线VSS连接,第一电源线VSS的信号为低电平信号,第二电源线VDD的信号为持续提供高 电平信号。第一扫描信号线S1为本显示行像素驱动电路中的扫描信号线,第二扫描信号线S2为上一显示行像素驱动电路中的扫描信号线,即对于第n显示行,第一扫描信号线S1为S(n),第二扫描信号线S2为S(n-1),本显示行的第二扫描信号线S2与上一显示行像素驱动电路中的第一扫描信号线S1为同一信号线,可以减少显示面板的信号线,实现显示面板的窄边框。
一种发光器件的有机发光层可以包括发光层(Emitting Layer,简称EML),以及包括空穴注入层(Hole Injection Layer,简称HIL)、空穴传输层(Hole Transport Layer,简称HTL)、电子注入层(Electron Injection Layer,简称EIL)、电子传输层(Electron Transport Layer,简称ETL)中的一个或多个膜层。在阳极和阴极的电压驱动下,利用有机材料的发光特性根据需要的灰度发光。其中,电子注入层和阴极直接接触。在发光器件正常工作时候,阴极的水氧会渗入到电子注入层,同时,电子注入层中的粒子也会迁移到其他膜层中,使得电子注入层的性能较低,电子注入困难,降低了发光器件的稳定性,减少了发光器件的寿命。
图5为本公开实施例提供的有机电致发光器件的结构示意图。如图5所示,本公开实施例提供的有机电致发光器件包括:依次叠设的阳极10、有机发光层、第一过渡保护层20和阴极30。其中,有机发光层可以包括:空穴注入层40、发光材料层60、电子传输层70和电子注入层80。第一过渡保护层20设置在电子注入层80和阴极30之间,且与电子注入层80形成PN结。有机发光层还可以包括:空穴传输层50。
在一种示例性实施例中,空穴注入层40被配置为降低从阳极10注入空穴的势垒,使空穴能从阳极有效地注入到发光材料层60中。空穴传输层50被配置为实现注入空穴定向有序的可控迁移。发光材料层60被配置为使电子和空穴发生复合而发出光线。电子传输层70被配置为实现注入电子定向有序的可控迁移。电子注入层80被配置为降低从阴极注入电子的势垒,使电子能从阴极有效地注入到发光材料层60。
在一种示例性实施例中,有机电致发光器件可以为底发射型,或者可以为顶发射型。
在一种示例性实施例中,阳极层作为有机电致发光器件正向电压的连接层,具有较好的导电性能、可见光透明性以及较高的功函数。阳极10可以采用具有高功函数的材料。对于底发射型有机电致发光器件,阳极可以采用透明氧化物材料,如氧化铟锡(ITO)或氧化铟锌(IZO)等,阳极的厚度可以约为80纳米至200纳米。对于顶发射型有机电致发光器件,阳极可以采用金属和透明氧化物的复合结构,如Ag/ITO、Ag/IZO或者ITO/Ag/ITO等,阳极中金属层的厚度可以约为80纳米至100纳米,阳极中透明氧化物的厚度可以约为5纳米至20纳米,使阳极在可见光区的平均反射率约为85%至95%。
在一种示例性实施例中,阴极层作为有机电致发光器件负向电压的连接层,具有较好的导电性能和较低的功函数。对于底发射型有机电致发光器件,阴极可以采用镁(Mg)、银(Ag)、铝(Al)或Mg:Ag的合金,阴极的厚度可以约大于80纳米,使阴极具有良好的反射率。对于有机电致发光器件,阴极可以采用透明氧化物材料,如氧化铟锌(IZO)等,阴极的厚度可以约为10纳米至20纳米,使阴极在波长530纳米处的平均透过率约为50%~60%。
在一种示例性实施例中,空穴注入层40可以采用无机的氧化物,如钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物或锰氧化物,或者可以采用强吸电子体系的P型掺杂剂和空穴传输材料的掺杂物,如六氰基六氮杂三亚苯基、2,3,5,6-四氟-7,7',8,8'-四氰基对醌二甲烷(F4-TCNQ)二甲基或者1,2,3-三[(氰基)(4-氰基-2,3,5,6-四氟苯基)亚甲基]环丙烷等。
在一种示例性实施例中,空穴注入层40的厚度可以约为5纳米至20纳米。
在一种示例性实施例中,空穴传输层50可以采用空穴迁移率较高的空穴传输材料,如具有空穴传输特性的芳胺类化合物,其取代基团可以是咔唑、甲基芴、螺芴、二苯并噻吩或呋喃等,如4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)或者9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)。
在一种示例性实施例中,空穴传输层50的厚度可以约为80纳米至120纳米,空穴传输层的制作材料的载流子迁移率可以约为10 -3cm 2/Vs至10 -5cm 2/Vs。
在一种示例性实施例中,空穴传输层50的导电率小于或等于空穴注入层40的导电率。
在一种示例性实施例中,电子传输层70可以采用芳族杂环化合物,例如苯并咪唑衍生物、咪唑并吡啶衍生物、苯并咪唑并菲啶衍生物等咪唑衍生物;嘧啶衍生物、三嗪衍生物等嗪衍生物;喹啉衍生物、异喹啉衍生物、菲咯啉衍生物等,包含含氮六元环结构的化合物(包括在杂环上具有氧化膦系的取代基的化合物)等。例如2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、浴铜灵(BCP)或者4,4'-双(5-甲基苯并噁唑-2-基)芪(BzOs)等。
在一种示例性实施例中,电子传输层的厚度可以约为20纳米至70纳米。
在一种示例性实施例中,电子注入层80的制作材料可以包括:N掺杂的有机材料。其中,电子注入层采用掺杂结构,电子注入层包括主体材料和掺杂材料,掺杂材料可以为N型掺杂(P-doping)材料,主体材料和掺杂材料按照一定比例掺杂形成掺杂结构。电子注入层80的主体材料可以为具有较高的电子迁移率、能有效传导电子的有机分子材料。
在一种示例性实施例中,电子注入层80的主体材料可以与电子传输层70的制作材料相同。
在一种示例性实施例中,电子注入层80的掺杂材料可以为氟化锂或者锂和碳酸铯的复合物。
在一种示例性实施例中,第一过渡保护层20的制作材料可以为P掺杂的有机材料。第一过渡保护层在功能上相当于空穴注入层和空穴传输层。第一过渡保护层20的主体材料为有机材料,例如具有较高的空穴迁移率、能有效传导空穴的有机分子材料。第一过渡保护层的掺杂材料可以为P型掺杂材料。
在一种示例性实施例中,第一过渡保护层20的主体材料可以与空穴传输层的制作材料相同。
在一种示例性实施例中,第一过渡保护层20的掺杂材料可以为三氧化钼,或者可以为三氧化钨或五氧化二钒。
在一种示例性实施例中,发光材料层60的厚度可以约为10纳米至30纳米,例如发光材料层60的厚度可以约为15纳米至25纳米,
在一种示例性实施例中,对于发射单色光的有机电致发光器件,不同颜色的有机电致发光器件的发光材料层不同。例如,红色发光器件包括红色发光材料层,绿色发光器件包括绿色发光材料层,蓝色发光器件包括蓝色发光材料层。对于发射白光的有机电致发光器件,每个子像素包括的有机电致发光器件相同。
在一种示例性实施例中,发光材料层60可以包括发光主体材料和发光客体材料。发光材料层客体材料的掺杂比例为1%至20%。在该掺杂比例范围内,一方面发光材料层主体材料可将激子能量有效转移给发光层客体材料来激发发光层客体材料发光,另一方面发光材料层主体材料对发光材料层客体材料进行了“稀释”,有效改善了发光材料层客体材料分子间相互碰撞、以及能量间相互碰撞引起的荧光淬灭,提高了发光效率和器件寿命。
在一种示例性实施例中,掺杂比例是指客体材料的质量与发光材料层的质量之比,即质量百分比。在一种示例性实施例中,可以通过多源蒸镀工艺共同蒸镀主体材料和客体材料,使主体材料和客体材料均匀分散在发光材料层中,可以在蒸镀过程中通过控制客体材料的蒸镀速率来调控掺杂比例,或者通过控制主体材料和客体材料的蒸镀速率比来调控掺杂比例。
在一种示例性实施例中,发光主体材料可以采用双极性单主体,或者可以采用由空穴型主体和电子型主体共混形成的双主体。发光客体材料可以采用磷光材料、荧光材料、延迟荧光材料等,发光客体材料的掺杂比例约为5%至15%。
在一种示例性实施例中,至少部分子像素的发光材料层在基板上的正投影与像素驱动电路驱动在基板上的正投影有交叠。
在一种示例性实施例中,空穴注入层、空穴传输层、电子注入层和电子传输层中的任意一层或多层可以通过一次工艺(一次蒸镀工艺或一次喷墨打印工艺)制作,但通过形成的膜层表面段差或者通过表面处理等手段实现隔离。例如,相邻子像素对应的空穴注入层、空穴传输层、电子注入层和电子传输层中的任意一层或多层可以是隔离的。在一种示例性实施例中,有机发光层可以通过采用精细金属掩模版(FMM,Fine Metal Mask)或者开放式掩膜版(Open Mask)蒸镀制备形成,或者采用喷墨工艺制备形成。
如图5所示,本公开实施例中的PN结可以作为一个中间连接器,相当于电荷产生层,使得空穴载流子可以从第一过渡保护层20注入到阴极30,电子载流子从电子注入层80注入到电子传输层70。
当阴极采用溅射工艺制成时,有机电致发光器件中越靠近阴极的外部量子效率损耗越大,本公开设置的第一过渡保护层可以较少靠近阴极的电子注入层的外部量子效率的损耗。
本公开实施例提供的有机电致发光器件包括:依次叠设的阳极、有机发光层、第一过渡保护层和阴极;所述有机发光层包括:空穴注入层、发光材料层、电子传输层和电子注入层;第一过渡保护层设置在电子注入层和阴极之间,且与电子注入层形成PN结。本公开通过在电子注入层和阴极之间设置可以与电子注入层形成PN结的第一过渡保护层,使得空穴载流子从第一过渡保护层注入到阴极,电子载流子从电子注入层注入到电子传输层,提高了导电性,加强了电子注入到发光层的能力,平衡了电子和空穴,增大复合率;第一过渡保护层的存在可以作为电子注入层的保护层,缓解了从阴极渗透的水氧直接接触电子注入层,提高OLED稳定性和寿命。
图6为一种示例性实施例提供的有机电致发光器件的结构示意图。如图6所示,一种示例性实施例提供的有机电致发光器件还包括:设置在第一过渡保护层20和阴极30之间的第二过渡保护层90,第二过渡保护层90与第一过渡保护层80形成PN结。
在一种示例性实施例中,第二过渡保护层90的制作材料包括:N掺杂的有机材料。
在一种示例性实施例中,第二过渡保护层90的制作材料可以与电子注入 层的制作材料相同,即第二过渡保护层的主体材料可以芳族杂环化合物,例如苯并咪唑衍生物、咪唑并吡啶衍生物、苯并咪唑并菲啶衍生物等咪唑衍生物;嘧啶衍生物、三嗪衍生物等嗪衍生物;喹啉衍生物、异喹啉衍生物、菲咯啉衍生物等,包含含氮六元环结构的化合物(包括在杂环上具有氧化膦系的取代基的化合物)等。例如2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-联苯基)-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、浴铜灵(BCP)或者4,4'-双(5-甲基苯并噁唑-2-基)芪(BzOs)等。第二过渡保护层的掺杂材料为氟化锂或者锂和碳酸铯的复合物。
一种示例性实施例设置第二过渡保护层可以与第一过渡保护层配合作用使得电子载流子从电子注入层注入到电子传输层,提高了导电性,加强了电子注入到发光层的能力,平衡了电子和空穴,增大复合率;另外,第二过渡保护层的存在也可以作为电子注入层的保护层,缓解了从阴极渗透的水氧直接接触电子注入层,提高OLED稳定性和寿命。
在一种示例性实施例中,电子注入层的数量大于或者等于1。当有机电致发光器件为底发射结构时,电子注入层的数量等于1。当有机电致发光器件为顶发射结构时,且有机电致发光器件为顶发射结构,且发射白光时,电子注入层的数量大于1,此时,电子注入层的数量等于3。图5和图6是以电子注入层的数量等于1为例进行说明的。
如图5所示,在一种示例性实施例中,当电子注入层的数量为1时,空穴注入层40位于发光材料层60和阳极10之间,空穴传输层50位于空穴注入层40和发光材料层60之间,电子传输层70位于发光材料层60和电子注入层80之间。
在一种示例性实施例中,空穴注入层40的制作材料可以为P掺杂的有机材料。其中,空穴注入层采用掺杂结构,空穴注入层包括主体材料和掺杂材料,掺杂材料为P型掺杂(P-doping)材料,主体材料和掺杂材料按照一定比例掺杂形成掺杂结构。由于P型掺杂材料是一种具有强吸电子能力的材料,本身缺电子,具有强拉电子的能力,因而利用P型掺杂具有强吸电子能 力的特性,使得电子在电场作用下向阳极一侧快速移动,导致空穴向空穴传输层一侧快速传输,实现高效的空穴注入性能。
在一种示例性实施例中,空穴注入层的主体材料可以包括:具有空穴传输特性的芳胺类化合物,其取代基团可以是咔唑、甲基芴、螺芴、二苯并噻吩或呋喃等,如4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)或者9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)。空穴注入层的掺杂材料可以为无机的氧化物,如钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物或锰氧化物,例如三氧化钼,或者可以为三氧化钨或五氧化二钒。
图7为另一示例性实施例提供的有机电致发光器件的结构示意图,如图7所示,另一示例性实施例提供的有机电致发光器件中,当电子注入层的数量为1时,电子注入层80和电子传输层70为同一膜层;空穴注入层40位于发光材料层60和阳极10之间,空穴传输层50位于空穴注入层40和发光材料层60之间,电子注入层80位于发光材料层60和第一过渡保护层20之间。
在一种示例性实施例中,空穴注入层40的制作材料可以为P掺杂的有机材料。其中,空穴注入层采用掺杂结构,空穴注入层包括主体材料和掺杂材料,掺杂材料为P型掺杂(P-doping)材料,主体材料和掺杂材料按照一定比例掺杂形成掺杂结构。由于P型掺杂材料是一种具有强吸电子能力的材料,本身缺电子,具有强拉电子的能力,因而利用P型掺杂具有强吸电子能力的特性,使得电子在电场作用下向阳极一侧快速移动,导致空穴向空穴传输层一侧快速传输,实现高效的空穴注入性能。
在一种示例性实施例中,空穴注入层的主体材料可以包括:具有空穴传输特性的芳胺类化合物,其取代基团可以是咔唑、甲基芴、螺芴、二苯并噻吩或呋喃等,如4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯 (DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)或者9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)。空穴注入层的掺杂材料可以为无机的氧化物,如钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物或锰氧化物,例如三氧化钼,或者可以为三氧化钨或五氧化二钒。
在一种示例性实施例中,位于发光材料层一侧的空穴注入层和空穴传输层可以为同一膜层,位于发光材料层另一侧的电子注入层和电子传输层可以为同一膜层可以降低工艺难度和提升良率。
在一种示例性实施例中,如图6和7所示,有机发光层还可以包括:电子阻挡层91和空穴阻挡层92。空穴阻挡层92位于发光材料层60和电子传输层70之间,电子阻挡层91位于发光材料层60和空穴传输层50之间。
在一种示例性实施例中,电子阻挡层可以采用具有空穴传输特性的芳胺类化合物,其取代基团可以是咔唑、甲基芴、螺芴、二苯并噻吩或呋喃等,如4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)或者9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)等。
在一种示例性实施例中,电子阻挡层91的厚度可以约为1纳米至20纳米,配置为传递空穴、阻挡电子以及阻挡发光材料层内产生的激子。
在一种示例性实施例中,电子阻挡层91的导电率小于或等于空穴注入层40的导电率。
在一种示例性实施例中,空穴阻挡层92的厚度约为2纳米至20纳米,配置为阻挡空穴以及阻挡发光材料层内产生的激子。
在一种示例性实施例中,发光材料层60和空穴阻挡层60的厚度不同。例如,发光材料层60的厚度可以大于空穴阻挡层92的厚度。
在一种示例性实施例中,发光材料层60和电子阻挡层91的厚度不同。例如,发光材料层60的厚度可以大于电子阻挡层91的厚度。
如图6和图7所示,在一种示例性实施例中,当有机电致发光器件为底发射有机电致发光器件时,阳极可以为透明电极,阴极可以为反射电极。
图8为又一示例性实施例提供的有机电致发光器件的结构示意图。如图8所示,一种示例性实施例提供的有机电致发光器件中,当电子注入层的数量大于1时,第i个电子注入层位于第i+1个电子注入层靠近所述阳极的一侧;1≤i≤N-1,N为电子注入层的数量。第一过渡保护层与第N个电子注入层形成PN结。图8是以N=3为例进行说明的。如图8所示,三个电子注入层包括:第一个电子注入层80A、第二个电子注入层80B和第三个电子注入层80C。
如图8所示,有机发光层中的空穴注入层的数量为三个,发光材料层的数量为四个。其中,三个空穴注入层包括:第一个空穴注入层40A、第二个空穴注入层40B和第三个空穴注入层40C。四个发光材料层包括:第一个发光材料层60A、第二个发光材料层60B、第三个发光材料层60C和第四个发光材料层60D。
第一个发光材料层60A位于第一个空穴注入层40A和第一个电子注入层80A之间,第一个空穴注入层40A位于第一个发光材料层60A靠近阳极10的一侧,第一个电子注入层80A位于第一个发光材料层60A远离阳极10的一侧。第二个发光材料层60B和第三个发光材料层60C位于第二个空穴注入层40B和第二个电子注入层80B之间,第三个发光材料层60C位于第二个发光材料层60B远离阳极10的一侧,第二个空穴注入层40B位于第二个发光材料层60B靠近阳极10的一侧,第二个电子注入层80B位于第三发光材料层60C远离阳极10的一侧。第四个发光材料层60D位于第三个空穴注入层40C和第三个电子注入层80C之间,第三个空穴注入层40C位于第四个发光材料层60D靠近阳极10的一侧,第三个电子注入层80C位于第四发光材料层60D远离阳极10的一侧。第二个空穴注入层40B位于第一个电子注入层80A和第二个发光材料层60B之间,第三个空穴注入层40C位于第二电子注入层80B和第四个发光材料层60D之间;第一过渡保护层20位于第三个电子注入层80C和阴极30之间。第三个电子注入层80C,即与第一过渡保护层形成PN结的电子注入层可以复用为电子传输层。
在一种示例性实施例中,第一个发光材料层60A的制作材料和第四个发光材料层60D的制作材料相同,且为蓝光发光材料。在一种示例性实施例中,蓝光发光材料可以为9,10-二对四苯乙烯基蒽。
在一种示例性实施例中,第二个发光材料层60B为红光发光材料。在一种示例性实施例中,红光发光材料可以为9,10-二对N,N-二庚基苯乙烯蒽。
在一种示例性实施例中,第三个发光材料层60C为黄光发光材料。在一种示例性实施例中,黄光发光材料可以为9,10-二对N,N-二丙基苯乙烯蒽。
在一种示例性实施例中,空穴注入层40的制作材料可以为P掺杂的有机材料。其中,空穴注入层采用掺杂结构,空穴注入层包括主体材料和掺杂材料,掺杂材料为P型掺杂(P-doping)材料,主体材料和掺杂材料按照一定比例掺杂形成掺杂结构。由于P型掺杂材料是一种具有强吸电子能力的材料,本身缺电子,具有强拉电子的能力,因而利用P型掺杂具有强吸电子能力的特性,使得电子在电场作用下向阳极一侧快速移动,导致空穴向空穴传输层一侧快速传输,实现高效的空穴注入性能。
在一种示例性实施例中,空穴注入层的主体材料可以包括:具有空穴传输特性的芳胺类化合物,其取代基团可以是咔唑、甲基芴、螺芴、二苯并噻吩或呋喃等,如4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(TPD)、4-苯基-4'-(9-苯基芴-9-基)三苯基胺(BAFLP)、4,4'-双[N-(9,9-二甲基芴-2-基)-N-苯基氨基]联苯(DFLDPBi)、4,4'-二(9-咔唑基)联苯(CBP)或者9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(PCzPA)。空穴注入层的掺杂材料可以为无机的氧化物,如钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物或锰氧化物,例如三氧化钼,或者可以为三氧化钨或五氧化二钒。
在一种示例性实施例中,空穴注入层的厚度约为20纳米至80纳米。
在一种示例性实施例中,电子注入层的厚度约为0.5纳米至10纳米。
在一种示例性实施例中,有机电致发光器件为发射白光的顶发射结构时,阳极可以为透明电极,阴极可以为透明电极。
在一种示例性实施例中,对于顶发射型有机电致发光器件,阴极和阳极之间的有机发光层的厚度可以按照满足光学微谐振腔的光程要求设计,以获得最优的出光强度和颜色。
在一种示例性实施例中,空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层、电子注入层和阴极中的一层或多层在基底上的正投影是连续的。在一些示例中,至少一行或一列的子像素的空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层、电子注入层和阴极中的至少一层是连通的。在一些示例中,多个子像素的空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层、电子注入层和阴极中的至少一层是连通的。
在一种示例性实施例中,所有子像素的空穴注入层可以是连接在一起的共通层,所有子像素的电子注入层可以是连接在一起的共通层,所有子像素的空穴传输层可以是连接在一起的共通层,所有子像素的电子传输层可以是连接在一起的共通层,所有子像素的空穴阻挡层可以是连接在一起的共通层,相邻子像素的发光层可以有少量的交叠,或者可以是隔离的,相邻子像素的电子阻挡层可以有少量的交叠,或者可以是隔离的。
本公开通过实验对本公开实施例提供的有机电致发光器件的性能进行了分析,分析结果如表1所示。其中,器件I为本公开实施例提供的有机电致发光器件,器件II为没有设置第一过渡保护层和第二过渡保护层的有机电致发光器件。其中,亮度下降所需时间指的是亮度从100降至95所需的时间。
表1
Figure PCTCN2021129208-appb-000001
根据表1可知,器件I和器件II在电流密度、电压、色度坐标大致相同的状态下,器件I的发光效率比器件II的发光效率更高,亮度从100降至95
所需的时间更长,外部量子效率比器件II的外部量子效率较高。
在一种示例性实施例中,图9为器件I和器件II对应的光谱图,图10为器件I和器件II对应的亮度与时间的对应关系。由图9可知,器件I和器件II在相同波长的状态下,器件I的吸收强度更高。由图10所示,器件I和器件II相比,下降相同亮度的状态下,器件I所需的时间更长。器件I与器件II相比,器件I的性能更高。
在一种示例性实施例中,可以采用如下方式形成包括如图6所示的有机电致发光器件的显示基板。通过图案化工艺在基底上形成驱动电路层,每个子像素的驱动电路层可以包括构成像素驱动电路的驱动晶体管和存储电容。在形成前述结构的基底上形成平坦层,每个子像素的平坦层上形成有暴露出驱动晶体管的漏电极的过孔。在形成前述结构的基底上,通过图案化工艺形成阳极,每个子像素的阳极通过平坦层上的过孔与驱动晶体管的漏电极连接。在形成前述结构的基底上,通过图案化工艺形成像素定义层,每个子像素的像素定义层上形成有暴露出阳极的像素开口,每个像素开口作为每个子像素的发光区域。在形成前述结构的基底上,先采用开放式掩膜版依次蒸镀空穴注入层、空穴传输层和电子阻挡层,在显示基板上形成空穴注入层、空穴传输层和电子阻挡层的共通层,即所有子像素的空穴注入层是连通的,所有子像素的电子阻挡层是连通的。例如,空穴注入层、空穴传输层和电子阻挡层各自的面积大致是相同的,厚度是不同的。然后采用精细金属掩模版在不同的子像素分别蒸镀红色发光材料层、绿色发光材料层和蓝色发光材料层,相邻子像素的发光材料层是可以有少量的交叠(例如,交叠部分占各自发光层图案的面积小于10%),或者可以是隔离的。随后采用开放式掩膜版依次蒸镀空穴阻挡层、电子传输层、电子注入层和阴极,在显示基板上形成空穴阻挡层、电子传输层、电子注入层和阴极的共通层,即所有子像素的空穴阻挡层是连通的,所有子像素的电子传输层是连通的,所有子像素电子注入层的是连通的,所有子像素的阴极是连通的。
在一种示例性实施例中,可以采用如下方式形成包括如图7所示的有机电致发光器件的显示基板。通过图案化工艺在基底上形成驱动电路层,每个子像素的驱动电路层可以包括构成像素驱动电路的驱动晶体管和存储电容。在形成前述结构的基底上形成平坦层,每个子像素的平坦层上形成有暴露出 驱动晶体管的漏电极的过孔。在形成前述结构的基底上,通过图案化工艺形成阳极,每个子像素的阳极通过平坦层上的过孔与驱动晶体管的漏电极连接。在形成前述结构的基底上,通过图案化工艺形成像素定义层,每个子像素的像素定义层上形成有暴露出阳极的像素开口,每个像素开口作为每个子像素的发光区域。在形成前述结构的基底上,先采用开放式掩膜版依次蒸镀空穴注入层和电子阻挡层,在显示基板上形成空穴注入层和电子阻挡层的共通层,即所有子像素的空穴注入层是连通的,所有子像素的电子阻挡层是连通的。例如,空穴注入层和电子阻挡层各自的面积大致是相同的,厚度是不同的。然后采用精细金属掩模版在不同的子像素分别蒸镀红色发光材料层、绿色发光材料层和蓝色发光材料层,相邻子像素的发光材料层是可以有少量的交叠(例如,交叠部分占各自发光层图案的面积小于10%),或者可以是隔离的。随后采用开放式掩膜版依次蒸镀空穴阻挡层、电子注入层和阴极,在显示基板上形成空穴阻挡层、电子注入层和阴极的共通层,即所有子像素的空穴阻挡层是连通的所有子像素电子注入层的是连通的,所有子像素的阴极是连通的。
在一种示例性实施例中,可以采用如下方式形成包括如图8所示的有机电致发光器件的显示基板。通过图案化工艺在基底上形成驱动电路层,每个子像素的驱动电路层可以包括构成像素驱动电路的驱动晶体管和存储电容。在形成前述结构的基底上形成平坦层,每个子像素的平坦层上形成有暴露出驱动晶体管的漏电极的过孔。在形成前述结构的基底上,通过图案化工艺形成阳极,每个子像素的阳极通过平坦层上的过孔与驱动晶体管的漏电极连接。在形成前述结构的基底上,通过图案化工艺形成像素定义层,每个子像素的像素定义层上形成有暴露出阳极的像素开口,每个像素开口作为每个子像素的发光区域。在形成前述结构的基底上,采用开放式掩膜版蒸镀第一个空穴注入层,采用精细金属掩模版蒸镀第一个发光材料层,采用开放式掩膜版依次蒸镀第一个电子注入层和第二个空穴注入层,采用精细金属掩模版依次蒸镀第二个发光材料层和第三个发光材料,采用开放式掩膜版蒸镀第二个电子注入层和第三个空穴注入层,采用精细金属掩模版依次蒸镀第四个发光材料层,采用开放式掩膜版依次蒸镀第三个电子注入层、第一过渡保护层和阴极。相邻子像素的发光材料层是可以有少量的交叠(例如,交叠部分占各自发光 材料层图案的面积小于10%),或者可以是隔离的。所有子像素的第一个空穴注入层是连通的,所有子像素的第一个电子注入层是连通的,所有子像素的第二个空穴注入层是连通的,所有子像素的第二个电子注入层是连通的,所有子像素的第三个空穴注入层是连通的,所有子像素的第三个电子注入层是连通的,所有子像素的阴极是连通的。
本公开实施例还提供了一种显示基板,包括:有机电致发光器件。
有机电致发光器件为前述任一个实施例提供的有机电致发光器件,实现原理和实现效果类似,在此不再赘述。
本公开实施例还提供了一种显示装置,包括:显示基板。
显示基板为前述任一个实施例提供的显示基板,实现原理和实现效果类似,在此不再赘述。
在一种示例性实施例中,显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、车载显示器、手表、手环等任何具有显示功能的产品或部件。
本公开中的附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
为了清晰起见,在用于描述本公开的实施例的附图中,层或微结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (16)

  1. 一种有机电致发光器件,包括:依次叠设的阳极、有机发光层、第一过渡保护层和阴极;所述有机发光层包括:空穴注入层、发光材料层、电子传输层和电子注入层;
    所述第一过渡保护层设置在电子注入层和阴极之间,且与所述电子注入层形成PN结。
  2. 根据权利要求1所述的有机电致发光器件,还包括:设置在所述第一过渡保护层和所述阴极之间的第二过渡保护层;
    所述第二过渡保护层与所述第一过渡保护层形成PN结。
  3. 根据权利要求1或2所述的有机电致发光器件,其中,所述电子注入层的制作材料包括:N掺杂的有机材料,所述电子注入层的掺杂材料包括:氟化锂或者锂和碳酸铯的复合物;
    所述第一过渡保护层的制作材料包括:P掺杂的有机材料,所述第一过渡保护层的掺杂材料包括:三氧化钼。
  4. 根据权利要求2所述的有机电致发光器件,其中,所述第二过渡保护层的制作材料包括:N掺杂的有机材料,所述第二过渡保护层的掺杂材料包括:氟化锂或者锂和碳酸铯的复合物。
  5. 根据权利要求1所述的有机电致发光器件,其中,所述电子注入层的数量大于或者等于1。
  6. 根据权利要求5所述的有机电致发光器件,其中,所述有机发光层还包括:空穴传输层,当所述电子注入层的数量为1时,所述空穴注入层位于所述发光材料层和所述阳极之间,所述空穴传输层位于所述空穴注入层和所述发光材料层之间,所述电子传输层位于所述发光材料层和所述电子注入层之间;
    所述空穴注入层的制作材料包括:P掺杂的有机材料,所述空穴注入层的掺杂材料包括:三氧化钼。
  7. 根据权利要求5所述的有机电致发光器件,其中,所述有机发光层还 包括:空穴传输层,当所述电子注入层的数量为1时,所述电子注入层和所述电子传输层为同一膜层;所述空穴注入层位于所述发光材料层和所述阳极之间,所述空穴传输层位于所述空穴注入层和所述发光材料层之间;所述电子注入层位于所述发光材料层和所述第一过渡保护层之间;
    所述空穴注入层的制作材料包括:P掺杂的有机材料,所述空穴注入层的掺杂材料包括:三氧化钼。
  8. 根据权利要求6或7所述的有机电致发光器件,其中,所述有机发光层还包括:空穴阻挡层和电子阻挡层;
    所述空穴阻挡层位于所述发光材料层和所述电子传输层之间,所述电子阻挡层位于所述发光材料层和所述空穴传输层之间。
  9. 根据权利要求8所述的有机电致发光器件,其中,所述阳极为透明电极,所述阴极为反射电极。
  10. 根据权利要求5所述的有机电致发光器件,其中,当所述电子注入层的数量大于1时,第i个电子注入层位于所述第i+1个电子注入层靠近所述阳极的一侧;1≤i≤N-1,N为电子注入层的数量;
    所述过渡保护层与第N个电子注入层形成PN结。
  11. 根据权利要求10所述的有机电致发光器件,其中,当N=3时,所述空穴注入层的数量为三个,所述发光材料层的数量为四个;
    第一个发光材料层位于第一个空穴注入层和第一个电子注入层之间,第一个空穴注入层位于第一个发光材料层靠近阳极的一侧,第一个电子注入层位于第一个发光材料层远离阳极的一侧;
    第二个发光材料层和第三个发光材料层位于第二个空穴注入层和第二个电子注入层之间,第三个发光材料层位于第二个发光材料层远离阳极的一侧,第二个空穴注入层位于第二个发光材料层靠近阳极的一侧,第二个电子注入层位于第三发光材料层远离阳极的一侧;
    第四个发光材料层位于第三个空穴注入层和第三个电子注入层之间,第三个空穴注入层位于第四个发光材料层靠近阳极的一侧,第三个电子注入层位于第四发光材料层远离阳极的一侧;
    第二个空穴注入层位于第一个电子注入层和第二个发光材料层之间,第三个空穴注入层位于第二电子注入层和第四个发光材料层之间;第一过渡保护层位于第三个电子注入层和阴极之间;所述第三个电子注入层复用为电子传输层。
  12. 根据权利要求11所述的有机电致发光器件,其中,第一个发光材料层的制作材料和第四个发光材料层的制作材料相同,且为蓝光发光材料;
    第二个发光材料层为红光发光材料,第三个发光材料层为黄光发光材料。
  13. 根据权利要求12所述的有机电致发光器件,其中,三个空穴注入层的制作材料包括:P掺杂的有机材料,所述空穴注入层的掺杂材料包括:三氧化钼。
  14. 根据权利要求13所述的有机电致发光器件,其中,所述阳极和所述阴极均为透明电极。
  15. 一种显示基板,包括:如权利要求1至14任一项所述的有机电致发光器件。
  16. 一种显示装置,包括:如权利要求15所述的显示基板。
PCT/CN2021/129208 2021-03-31 2021-11-08 有机电致发光器件、显示基板和显示装置 WO2022205918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110349562.7A CN113097399B (zh) 2021-03-31 2021-03-31 有机电致发光器件、显示基板和显示装置
CN202110349562.7 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205918A1 true WO2022205918A1 (zh) 2022-10-06

Family

ID=76672154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129208 WO2022205918A1 (zh) 2021-03-31 2021-11-08 有机电致发光器件、显示基板和显示装置

Country Status (2)

Country Link
CN (1) CN113097399B (zh)
WO (1) WO2022205918A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097399B (zh) * 2021-03-31 2023-02-10 合肥京东方卓印科技有限公司 有机电致发光器件、显示基板和显示装置
CN113823752B (zh) * 2021-09-18 2023-09-01 京东方科技集团股份有限公司 空穴注入材料、电致发光器件和显示装置
CN115020615B (zh) * 2022-06-16 2023-10-31 武汉华星光电半导体显示技术有限公司 显示器件及显示终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140077198A1 (en) * 2012-09-20 2014-03-20 Samsung Display Co., Ltd. Organic electroluminescence display device
CN103730579A (zh) * 2012-10-11 2014-04-16 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104321896A (zh) * 2012-05-31 2015-01-28 株式会社Lg化学 堆叠式有机发光二极管
CN104335378A (zh) * 2012-05-31 2015-02-04 株式会社Lg化学 有机电致发光装置
CN113097399A (zh) * 2021-03-31 2021-07-09 合肥京东方卓印科技有限公司 有机电致发光器件、显示基板和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064995A1 (en) * 2003-12-26 2005-07-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
CN101841002B (zh) * 2004-09-24 2011-11-16 株式会社半导体能源研究所 发光器件
EP2752906B1 (en) * 2012-05-31 2016-07-20 LG Display Co., Ltd. Organic light emitting diode
CN104051653A (zh) * 2013-03-11 2014-09-17 海洋王照明科技股份有限公司 倒置型有机电致发光器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321896A (zh) * 2012-05-31 2015-01-28 株式会社Lg化学 堆叠式有机发光二极管
CN104335378A (zh) * 2012-05-31 2015-02-04 株式会社Lg化学 有机电致发光装置
US20140077198A1 (en) * 2012-09-20 2014-03-20 Samsung Display Co., Ltd. Organic electroluminescence display device
CN103730579A (zh) * 2012-10-11 2014-04-16 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN113097399A (zh) * 2021-03-31 2021-07-09 合肥京东方卓印科技有限公司 有机电致发光器件、显示基板和显示装置

Also Published As

Publication number Publication date
CN113097399B (zh) 2023-02-10
CN113097399A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
KR102641614B1 (ko) 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
CN112071996B (zh) 有机发光装置及使用该有机发光装置的有机发光显示装置
WO2022205918A1 (zh) 有机电致发光器件、显示基板和显示装置
US9966551B2 (en) White organic light emitting device
US10249838B2 (en) White organic light emitting device having emission area control layer separating emission areas of at least two emission layers
US10950812B2 (en) Organic light emitting display device (OLED) having p-type charge generation layer (CGL) formed between emissions stack
JP2009245747A (ja) 有機発光表示装置
GB2492855A (en) Organic light emitting diode (OLED)
KR20180076857A (ko) 유기발광다이오드 표시장치
KR102529109B1 (ko) 발광다이오드 및 전계발광 표시장치
WO2022082764A1 (zh) 有机电致发光器件和显示装置
CN112687815B (zh) 有机发光二极管和包括有机发光二极管的有机发光装置
KR102551866B1 (ko) 백색 유기전계 발광 소자 및 그를 이용한 표시 장치
CN111628094A (zh) 有机发光显示装置及有机发光堆叠结构
WO2022160082A1 (zh) 有机电致发光器件和显示装置
WO2022120774A1 (zh) 有机电致发光器件和显示装置
WO2022061938A1 (zh) 有机电致发光器件和显示装置
KR102567321B1 (ko) 유기전계 발광 소자 및 그를 이용한 표시 장치
WO2022120773A1 (zh) 有机电致发光器件和显示装置
WO2022155893A1 (zh) 有机电致发光器件和显示装置
WO2022160083A1 (zh) 有机电致发光器件和显示装置
WO2022061939A1 (zh) 有机电致发光器件和显示装置
WO2022226718A1 (zh) 有机电致发光器件及其制备方法、显示装置
WO2022205090A1 (zh) 显示基板和显示装置
CN112786811B (zh) 有机发光二极管和包括其的显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17802156

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.01.2024)