WO2011080884A1 - 非水電解質二次電池用負極および非水電解質二次電池 - Google Patents

非水電解質二次電池用負極および非水電解質二次電池 Download PDF

Info

Publication number
WO2011080884A1
WO2011080884A1 PCT/JP2010/007298 JP2010007298W WO2011080884A1 WO 2011080884 A1 WO2011080884 A1 WO 2011080884A1 JP 2010007298 W JP2010007298 W JP 2010007298W WO 2011080884 A1 WO2011080884 A1 WO 2011080884A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphite particles
water
soluble polymer
secondary battery
Prior art date
Application number
PCT/JP2010/007298
Other languages
English (en)
French (fr)
Inventor
真治 笠松
暢宏 平野
正弥 宇賀治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800052082A priority Critical patent/CN102292852A/zh
Priority to US13/147,139 priority patent/US20110281163A1/en
Priority to JP2011547283A priority patent/JPWO2011080884A1/ja
Publication of WO2011080884A1 publication Critical patent/WO2011080884A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery containing graphite particles as an active material, and more particularly to improvement of a negative electrode mixture layer.
  • Various materials are used as active materials for negative electrodes of non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries.
  • graphite materials that can insert and desorb lithium ions are the mainstream, and natural graphite, artificial graphite, graphitized mesophase carbon particles, graphitized mesophase carbon fibers, and the like are used.
  • graphite particles when graphite particles are used as a negative electrode active material, graphite particles and a binder are mixed in the presence of a predetermined dispersion medium to prepare a negative electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • the negative electrode mixture slurry is applied to a negative electrode core material made of copper foil or the like and dried to form a negative electrode mixture layer. Thereafter, the negative electrode mixture layer is rolled with a rolling roll.
  • a negative electrode is obtained by cutting the negative electrode mixture layer integrated with the negative electrode core into a predetermined shape (see Patent Documents 1 and 2).
  • the graphite particles When repeatedly charging and discharging a battery including the negative electrode as described above, the graphite particles repeatedly expand and contract with the insertion and desorption of lithium ions. Therefore, the negative electrode mixture may be peeled off from the negative electrode core material and cycle characteristics may be deteriorated.
  • the average circularity of the graphite particles as the negative electrode active material is 0.93 or more from the viewpoint of increasing the adhesive strength between the negative electrode mixture layer and the negative electrode core material and improving the cycle characteristics.
  • the adhesive strength by the crosscut tape method of a negative mix layer and a negative electrode core material improves to 8 or more (refer patent document 3).
  • the nonaqueous electrolyte secondary battery includes a nonaqueous electrolyte composed of a nonaqueous solvent and a solute. Since the surface of the graphite particles has a large activity for the decomposition reaction of the non-aqueous electrolyte, the non-aqueous electrolyte is likely to be decomposed on the surface of the graphite particles during charging, particularly in a battery at the initial use stage. When the nonaqueous electrolyte is decomposed, the charge / discharge efficiency of the battery decreases. Thus, it has been proposed to coat graphite particles with a water-soluble surfactant (see Patent Document 4).
  • JP 2008-277231 A JP 2004-303572 A Patent No. 4151459 JP 2002-216757 A JP 2003-168432 A
  • Cycle characteristics cannot be sufficiently improved only by increasing the particle circularity of graphite particles and increasing the adhesive strength between the negative electrode core material and the negative electrode mixture layer.
  • the negative electrode mixture layer repeatedly expands and contracts due to the charge / discharge cycle, the graphite particles may fall off from the negative electrode mixture. Such falling off of the graphite particles is considered to occur easily when the adhesive strength between the graphite particles is insufficient.
  • the step of preparing the negative electrode mixture slurry and the step of rolling the negative electrode mixture layer (hereinafter, also simply referred to as the negative electrode mixture layer manufacturing step)
  • a part of the graphite particles Excessive shear force or stress is applied.
  • cracks occur in some of the particles, and a large active cross section is formed in the graphite particles. Therefore, the decomposition reaction of the nonaqueous electrolyte due to the graphite particles easily occurs.
  • the graphite particles By reducing the specific surface area of the graphite particles, it may be possible to suppress the decomposition reaction of the nonaqueous electrolyte by the graphite particles, but in this case, the rate characteristics of the battery are insufficient. Further, the graphite particles having a small specific surface area are liable to crack in the production process of the negative electrode mixture layer.
  • One aspect of the present invention includes a negative electrode core material and a negative electrode mixture layer attached to the negative electrode core material.
  • the negative electrode mixture layer includes graphite particles, a water-soluble polymer that covers the surface of the graphite particles, Between the graphite particles coated with a water-soluble polymer, wherein the negative electrode mixture layer has a specific surface area of 2.2 to 3 m 2 / g.
  • the non-aqueous electrolyte secondary battery negative electrode has an adhesive strength of 14 kgf / cm 2 or more.
  • (i) graphite particles having a specific surface area X of 4 to 6 m 2 / g, water, and a water-soluble polymer dissolved in water are mixed, and the resulting mixture is obtained. Drying to obtain a dry mixture having a specific surface area Y of 2.9 to 4.3 m 2 / g and satisfying Y / X of 0.6 to 0.8, (ii) the dry mixture and binding A step of mixing an agent and a dispersion medium to prepare a negative electrode mixture slurry, (iii) a step of applying the negative electrode mixture slurry to the negative electrode core material and drying to form a coating film, and (iv)
  • the present invention relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, including a step of rolling a coating film at a linear pressure of 40 to 60 kgf / cm to form a negative electrode mixture layer.
  • the specific surface area of the negative electrode mixture layer is 2.2 to 3 m 2 / g, it is considered that the surface of the graphite particles is appropriately exposed. Therefore, the decomposition reaction of the nonaqueous electrolyte is also suppressed while maintaining sufficient rate characteristics. Further, since the adhesive strength between the graphite particles coated with the water-soluble polymer is 14 kgf / cm 2 or more, even if the graphite particles repeatedly expand and contract, the expansion and contraction of the negative electrode mixture layer are suppressed. . Therefore, the probability that the surface of the graphite particles is newly exposed is reduced, and the effect of suppressing the decomposition reaction of the nonaqueous electrolyte is further enhanced.
  • FIG. 1 is a longitudinal sectional view schematically showing a rectangular lithium ion secondary battery according to an embodiment of the present invention.
  • the negative electrode of the present invention includes a negative electrode core material and a negative electrode mixture layer attached to the negative electrode core material.
  • the negative electrode mixture layer includes graphite particles, a water-soluble polymer that covers the surface of the graphite particles, and a water-soluble polymer. And a binder for adhering the graphite particles coated with.
  • the specific surface area of the negative electrode mixture layer is controlled to 2.2 to 3 m 2 / g, preferably 2.6 to 3 m 2 / g, and preferably 2.6 to 2.8 m 2 / g. Is more preferable, and it is even more preferable to control to 2.65 to 2.8 m 2 / g. If the specific surface area of the negative electrode mixture layer is smaller than 2.2 m 2 / g, sufficient rate characteristics cannot be obtained. On the other hand, when the specific surface area exceeds 3 m 2 / g, the surface of the graphite particles is not sufficiently covered with the water-soluble polymer, and the degree of exposure of the surface of the graphite particles increases. As a result, the nonaqueous electrolyte is easily decomposed, and the charge / discharge efficiency is lowered.
  • the specific surface area of the negative electrode mixture layer is often about 3.3 m 2 / g.
  • the specific surface area of the negative electrode mixture layer can be controlled to 3 m 2 / g or less, and sufficient rate characteristics can be maintained. This is presumably because an excessive shear force or stress can be suppressed from being applied to a part of the graphite particles in the production process of the negative electrode mixture layer. As a result, the probability of cracking in the graphite particles is reduced, and it is considered that a highly active cross section is less likely to be formed in the graphite particles.
  • the adhesive strength of the graphite grains coated with a water-soluble polymer is controlled to be 14 kgf / cm 2 or more, preferably to 17 kgf / cm 2 or more and more preferably be 20 kgf / cm 2 or more.
  • the upper limit of the adhesive strength between graphite particles is considered to be about 30 kgf / cm 2, and it is impractical to improve it further. Thereby, even if the negative electrode mixture layer repeats expansion and contraction due to the charge / discharge cycle, the graphite particles are less likely to fall off.
  • the distance between the graphite particles is difficult to increase, battery swelling due to an increase in the thickness of the negative electrode can be reduced. Therefore, the probability that the surface of the graphite particles is newly exposed is reduced, and the effect of suppressing the decomposition reaction of the nonaqueous electrolyte is further enhanced.
  • the specific surface area of the negative electrode mixture layer and the adhesion strength between the graphite particles are the specific surface area of the raw material graphite particles, the degree of coating of the graphite particles with the water-soluble polymer, the preparation conditions of the negative electrode mixture slurry, the rolling conditions of the negative electrode mixture layer Influenced by. Therefore, it is required to appropriately control these conditions.
  • method A and method B are exemplified.
  • Method A is a dry mixture having a specific surface area of 2.9 to 4.3 m 2 / g by mixing graphite particles, water, and a water-soluble polymer dissolved in water, and drying the resulting mixture.
  • Step (i) For example, a water-soluble polymer is dissolved in water to prepare a water-soluble polymer aqueous solution. The obtained water-soluble polymer aqueous solution and graphite particles (raw material graphite particles) are mixed, and then the water is removed and the mixture is dried. Thus, once the mixture is dried, the water-soluble polymer efficiently adheres to the surface of the graphite particles, and the coverage of the graphite particle surface with the water-soluble polymer is increased.
  • the specific surface area of the raw graphite particles is preferably 4 to 6 m 2 / g, more preferably 4.5 to 5.5 m 2 / g.
  • the graphite particles as the negative electrode active material are a generic term for particles including a region having a graphite structure.
  • the graphite particles include natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like. These graphite particles may be used alone or in combination of two or more.
  • the diffraction image of graphite particles measured by the wide angle X-ray diffraction method has a peak attributed to the (110) plane and a peak attributed to the (004) plane.
  • the ratio of the peak intensity I (110) attributed to the (110) plane and the peak intensity I (004) attributed to the (004) plane is 0.01 ⁇ I (110) / I. (004) ⁇ 0.25 is preferably satisfied, and 0.08 ⁇ I (110) / I (004) ⁇ 0.2 is more preferably satisfied.
  • the peak intensity means the peak height.
  • the average particle diameter (median diameter) of the graphite particles is preferably 14 to 22 ⁇ m, and more preferably 16 to 20 ⁇ m.
  • the average particle size means a particle size (D50) at which the cumulative volume is 50% in the particle size distribution of the graphite particles.
  • the volume-based particle size distribution of the graphite particles can be measured by a commercially available laser diffraction type particle size distribution measuring device (for example, Microtrack manufactured by Nikkiso Co., Ltd.).
  • the average circularity of the graphite particles is preferably 0.9 to 0.95, and more preferably 0.91 to 0.94.
  • the average circularity is represented by 4 ⁇ S / L 2 (where S is the area of the orthographic image of graphite particles, and L is the perimeter of the orthographic image).
  • S is the area of the orthographic image of graphite particles
  • L is the perimeter of the orthographic image.
  • the average value of the circularity of any 100 graphite particles is preferably within the above range.
  • the specific surface area of the dry mixture is preferably 2.9 to 4.3 m 2 / g, and more preferably 2.9 to 4 m 2 / g.
  • the degree of coating of the graphite particles with the water-soluble polymer is improved.
  • the water-soluble polymer effectively acts as a lubricant that improves the fluidity of the graphite particles. Therefore, it becomes difficult to apply an excessive shear force or stress to the graphite particles in the manufacturing process of the negative electrode mixture layer.
  • the surface of the graphite particles is coated with a water-soluble polymer so that the Y / X ratio is 0.6 to 0.8, where X is the specific surface area of the raw graphite particles and Y is the specific surface area of the dry mixture. To do.
  • the viscosity of the water-soluble polymer aqueous solution is preferably controlled to 1000 to 10000 cP (that is, 1 to 10 Pa ⁇ s) at 25 ° C.
  • the viscosity is measured using a B-type viscometer at a peripheral speed of 20 mm / s and using a 5 mm ⁇ spindle.
  • the amount of graphite particles mixed with 100 parts by weight of the water-soluble polymer aqueous solution is preferably 50 to 150 parts by weight.
  • the drying temperature of the mixture is preferably 80 to 150 ° C., and the drying time is preferably 1 to 8 hours.
  • the states of the graphite particles and the water-soluble polymer in the mixture before and after drying are schematically shown in FIGS. 1 and 2, respectively. In FIG. 1 showing the state before drying, the ratio of the water-soluble polymer 15 in contact with the surface of the graphite particles 10 is relatively small, whereas in FIG. 2 showing the state after drying, the surface of the graphite particles 10 is shown. The ratio of the water-soluble polymer 15 in contact with the water is increased.
  • step (ii) the obtained dry mixture, a binder, and a dispersion medium are mixed to prepare a negative electrode mixture slurry.
  • a water-soluble polymer may be further added.
  • the binder adheres to the surface of the graphite particles coated with the water-soluble polymer. Since the slipperiness between the graphite particles is good, the binder attached to the surface of the graphite particles receives a sufficient shearing force and effectively acts on the surface of the graphite particles.
  • the negative electrode mixture slurry obtained is applied to a negative electrode core material and dried to form a negative electrode mixture layer, whereby a negative electrode is obtained (step (iii)).
  • the method for applying the negative electrode mixture slurry to the negative electrode core material is not particularly limited.
  • the negative electrode mixture slurry is applied in a predetermined pattern on the raw material of the negative electrode core material using a die coat.
  • the drying temperature of the coating film is not particularly limited.
  • the coated film after drying is rolled with a rolling roll and controlled to a predetermined thickness. By the rolling process, the adhesive strength between the negative electrode mixture layer and the negative electrode core material and the adhesive strength between the graphite particles coated with the water-soluble polymer are increased.
  • Rolling is preferably performed at a linear pressure of 40 to 60 kgf / cm, and more preferably at a linear pressure of 40 to 55 kgf / cm. Thereby, the crack of a graphite particle is suppressed and the exposure degree of a cross section with large activity can be reduced.
  • the negative electrode mixture layer thus obtained is cut into a predetermined shape together with the negative electrode core material, whereby the negative electrode is completed.
  • Method B includes a step of mixing graphite particles, a binder, water, and a water-soluble polymer dissolved in water, and drying the resulting mixture to obtain a dry mixture (step (i)).
  • a water-soluble polymer is dissolved in water to prepare a water-soluble polymer aqueous solution.
  • the viscosity of the water-soluble polymer aqueous solution may be the same as in Method A.
  • the obtained water-soluble polymer aqueous solution, the binder, and the graphite particles are mixed, then moisture is removed, and the mixture is dried.
  • the water-soluble polymer and the binder are efficiently attached to the surface of the graphite particles.
  • the binder is preferably mixed with the water-soluble polymer aqueous solution in the form of a dispersion using water as a dispersion medium from the viewpoint of enhancing the dispersibility in the water-soluble polymer aqueous solution.
  • the specific surface area X of the raw material graphite particles, the specific surface area Y of the dry mixture, and the Y / X ratio may be the same as in Method A.
  • step (ii) the obtained dry mixture and the dispersion medium are mixed to prepare a negative electrode mixture slurry.
  • a water-soluble polymer and / or a binder may be further added.
  • the graphite particles coated with the water-soluble polymer and the binder are swollen to some extent by the dispersion medium, and the slipperiness between the graphite particles is improved.
  • step (ii) it is usually preferable to mix the dry mixture, the binder and the dispersion medium with a load smaller than the applied maximum load.
  • the negative electrode mixture slurry is apply
  • graphite particles, a water-soluble polymer, and a binder are mixed to prepare a negative electrode mixture slurry, and without passing through a drying step, the negative electrode mixture slurry is applied to the negative electrode core material and dried.
  • a production method in which a negative electrode mixture layer is formed by rolling is also conceivable.
  • the surface of the graphite particles cannot be sufficiently covered with the water-soluble polymer. Therefore, it is difficult to set the specific surface area of the negative electrode mixture layer to 2.2 to 3 m 2 / g, and the adhesive strength between the graphite particles coated with the water-soluble polymer can be set to 14 kgf / cm 2 or more. Have difficulty.
  • the dispersion medium used when preparing the negative electrode mixture slurry in Method A and Method B is not particularly limited, but water, an aqueous alcohol solution, and the like are preferable, and water is most preferable.
  • a non-aqueous solvent such as N-methyl-2-pyrrolidone (hereinafter referred to as NMP) may be used.
  • the type of the water-soluble polymer is not particularly limited, and examples thereof include cellulose derivatives, polyvinyl alcohol, polyvinyl pyrrolidone, and derivatives thereof. Among these, a cellulose derivative is particularly preferable. As the cellulose derivative, methyl cellulose, carboxymethyl cellulose, Na salt of carboxymethyl cellulose and the like are preferable.
  • the molecular weight of the cellulose derivative is preferably 10,000 to 1,000,000, more preferably 50,000 to 500,000. Further, the etherification degree of the cellulose derivative is preferably 0.6 to 1. Only one type of water-soluble polymer may be used alone, or two or more types may be used in combination.
  • the amount of the water-soluble polymer contained in the negative electrode mixture layer is preferably 0.5 to 2.5 parts by weight, more preferably 0.7 to 1 part by weight per 100 parts by weight of the graphite particles.
  • the water-soluble polymer can easily cover the surface of the graphite particles with a high coverage. Thereby, decomposition
  • the graphite particle surface is not excessively covered with the water-soluble polymer, and the internal resistance of the negative electrode can be further reduced.
  • the binder contained in the negative electrode mixture layer is preferably in the form of particles and has rubber elasticity.
  • the particulate binder preferably has an average particle size of 0.1 to 0.3 ⁇ m, and more preferably satisfies the following conditions.
  • the particle size (D50) at which the cumulative volume is 50% is 0.1 ⁇ m to 0.15 ⁇ m.
  • the particle size (D90) with a cumulative volume of 90% is 0.18 ⁇ m or less.
  • the volume-based particle size distribution of the binder can be obtained using, for example, a microtrack manufactured by Nikkiso Co., Ltd.
  • Such a binder has good compatibility with the surface state of the graphite particles coated with the water-soluble polymer, and can be easily adhered uniformly to the graphite particles. Therefore, the adhesion points between graphite particles increase, and the distribution of adhesion points becomes more uniform. Further, the binder having rubber elasticity has an action of relaxing internal stress of the negative electrode mixture layer. Therefore, mutual adhesion is enhanced and the adhesion strength between the graphite particles is further improved.
  • the particle size (D50) at which the cumulative volume is 50% is 0.1 ⁇ m to 0.15 ⁇ m, that is, when the average particle size of the binder is relatively smaller than before, there are more adhesion points between graphite particles. And the distribution of adhesion points becomes more uniform. Moreover, even if the binder having such a particle size is interposed between the graphite particles, the adhesion between the graphite particles is not hindered.
  • the particle size (D90) at which the cumulative volume, which is a relatively large particle size, is 90% is 0.18 ⁇ m or less, the distribution of adhesion points becomes more uniform. Further, the adhesion between the graphite particles becomes extremely uniform, and the adhesive strength between the graphite particles is greatly improved. Therefore, the adhesive strength between the graphite particles coated with the water-soluble polymer is extremely high.
  • a polymer containing a styrene unit and a butadiene unit is particularly preferable. Such a polymer is excellent in elasticity and stable at the negative electrode potential.
  • the amount of butadiene units in the total of styrene units and butadiene units contained in the polymer as a binder is preferably 30 to 70 mol%.
  • the amount of monomer units different from styrene units and butadiene units is preferably 40 mol% or less of the total monomer units.
  • the amount of the binder contained in the negative electrode mixture layer is preferably 0.4 to 1.5 parts by weight, more preferably 0.6 to 1.2 parts by weight per 100 parts by weight of the graphite particles.
  • the water-soluble polymer coats the surface of the graphite particles, the slippage between the graphite particles is good, so the binder adhering to the surface of the graphite particles receives a sufficient shear force and It works effectively. Therefore, even if the amount of the binder is small, sufficient binding properties are exhibited, and it becomes easy to achieve both the binding properties and the high capacity of the battery.
  • the water-soluble polymer contains a cellulose derivative
  • the binder is particulate, has rubber elasticity, and has an average particle size of 0.1 to 0.3 ⁇ m.
  • the non-aqueous electrolyte secondary battery of the present invention includes the above-described negative electrode, a positive electrode capable of electrochemically inserting and extracting Li, a separator interposed between the negative electrode and the positive electrode, and a non-aqueous electrolyte.
  • the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited.
  • the positive electrode is not particularly limited as long as it can be used as a positive electrode of a nonaqueous electrolyte secondary battery.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride is applied to a positive electrode core material such as an aluminum foil, dried, and rolled. Can be obtained.
  • a lithium-containing transition metal oxide is preferable.
  • Typical examples of the lithium-containing transition metal oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiNi 1-y Co y O 2 (0 ⁇ y ⁇ 1), LiNi 1-yz Co y. Mn z O 2 (0 ⁇ y + z ⁇ 1) and the like can be mentioned. Only one type of positive electrode active material may be used alone, or two or more types may be used in combination.
  • a liquid electrolyte comprising a non-aqueous solvent and a lithium salt dissolved therein is preferable.
  • a non-aqueous solvent a mixed solvent of cyclic carbonates such as ethylene carbonate and propylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is generally used. Further, ⁇ -butyrolactone, dimethoxyethane and the like are also used.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the lithium salt include inorganic lithium fluoride and a lithium imide compound. Examples of the inorganic lithium fluoride include LiPF 6 and LiBF 4 , and examples of the lithium imide compound include LiN (CF 3 SO 2 ) 2 . Only one lithium salt may be used alone, or two or more lithium salts may be used in combination.
  • a microporous film made of polyethylene, polypropylene or the like is generally used as the separator.
  • the thickness of the separator is, for example, 10 to 30 ⁇ m.
  • Example 1 Negative electrode manufacturing process
  • CMC carboxymethylcellulose
  • degree of etherification 0.7 which is a water-soluble polymer
  • the viscosity at 25 ° C. of an aqueous solution having a CMC concentration of 0.7% by weight was 1.5 Pa ⁇ s as measured with a B-type viscometer.
  • the temperature of the mixture is controlled at 25 ° C. Stir.
  • the mixture was dried at 80 ° C. for 5 hours to obtain a dry mixture.
  • the amount of CMC per 100 parts by weight of graphite particles was 0.7 parts by weight.
  • the specific surface areas of the natural graphite particles and the dry mixture were measured by using a macsorb HM model-1201 manufactured by Mountec Co., Ltd., by a nitrogen adsorption method using nitrogen (N 2 ) as an adsorption gas.
  • the amount of the sample for measuring the specific surface area was 2 g. Nitrogen was introduced into the apparatus, and the specific surface area of the natural graphite particles was measured.
  • Step (ii) 100.7 parts by weight of the obtained dry mixture (that is, 100 parts by weight of graphite + 0.7 part by weight of CMC) and a particulate binder (hereinafter referred to as SBR) 0.6 having rubber elasticity, including styrene units and butadiene units.
  • a dispersion containing parts by weight and 100 parts by weight of water were mixed to prepare a negative electrode mixture slurry.
  • SBR was mixed with other components in a dispersion liquid (manufactured by JSR Corporation, SBR content 48 wt%) using water as a dispersion medium (the amount of the dispersion used is 1.25 parts by weight).
  • the particle size (D50) at which the cumulative volume of SBR was 50% was 0.12 ⁇ m
  • the particle size (D90) at which the cumulative volume was 90% was 0.15 ⁇ m.
  • Step (iii) The obtained negative electrode mixture slurry was applied to both surfaces of an electrolytic copper foil (thickness 10 ⁇ m) as a negative electrode core material using a die coat, and the coating film was dried at 110 ° C. Thereafter, the dried coating film was rolled with a rolling roller at a linear pressure of 50 kgf / cm to form a negative electrode mixture layer having a thickness of 145 ⁇ m and a graphite density of 1.6 g / cm 3 . The negative electrode mixture layer was cut into a predetermined shape together with the negative electrode core material to obtain a negative electrode.
  • (D) Battery assembly A square lithium ion secondary battery as shown in FIG. 3 was produced. A negative electrode and a positive electrode are wound through a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 ⁇ m between the negative electrode and the positive electrode. Group 21 was configured. The electrode group 21 was housed in an aluminum square battery can 20. The battery can 20 has a bottom portion 20a and a side wall 20b, and an upper portion is open. The shape of the main flat part of the side wall 20b was a rectangle, and the thickness was 80 ⁇ m.
  • an insulator 24 for preventing a short circuit between the battery can 20 and the positive electrode lead 22 or the negative electrode lead 23 was disposed on the electrode group 21.
  • a rectangular sealing plate 25 having a negative electrode terminal 27 surrounded by an insulating gasket 26 in the center was disposed in the opening of the battery can 20.
  • the negative electrode lead 23 was connected to the negative electrode terminal 27.
  • the positive electrode lead 22 was connected to the lower surface of the sealing plate 25.
  • the end of the opening and the sealing plate 25 were welded with a laser to seal the opening of the battery can 20.
  • 2.5 g of nonaqueous electrolyte was injected into the battery can 20 from the injection hole of the sealing plate 25.
  • the injection hole was closed by welding with a plug 29 to complete a prismatic lithium ion secondary battery having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh.
  • the specific surface area of the negative electrode mixture layer after rolling was measured by the following method using the same BET specific surface area measuring apparatus as the specific surface area measurement of the natural graphite particles and the dry mixture.
  • the battery was disassembled, the negative electrode was taken out and dried, and the negative electrode mixture was peeled off from the negative electrode core material.
  • the obtained negative electrode mixture was crushed and passed through a sieve having a mesh size of 75 ⁇ m as a sample for measuring the specific surface area.
  • the sample amount was 2 g.
  • the specific surface area of the negative electrode mixture layer after rolling was measured in the same manner as natural graphite particles and the dry mixture except that 2 g of the above sample was used. The results are shown in Table 1.
  • the adhesive strength between the graphite particles coated with the water-soluble polymer was measured by the following method.
  • a tacking tester TAC-II manufactured by Reska Co., Ltd.
  • TAC-II manufactured by Reska Co., Ltd.
  • the negative electrode to be evaluated was cut into a 2 cm ⁇ 3 cm shape to produce an electrode piece.
  • a double-sided tape No. 515 manufactured by Nitto Denko Corporation
  • the negative electrode mixture layer was peeled off from one surface of the electrode piece, and the other surface (negative electrode mixture layer side) was attached to a double-sided tape on a glass substrate. Thereafter, the negative electrode core material was peeled off from the negative electrode mixture layer attached to the double-sided tape, and the negative electrode mixture layer was exposed to obtain a sample for evaluation.
  • the coin-type battery for evaluating the thickness increase rate was produced using the said negative electrode. Specifically, the negative electrode punched out to a diameter of 12.5 mm ⁇ is placed on a shallow bottomed case via a spacer, and a separator (thickness 16 ⁇ m, ND416 manufactured by Asahi Kasei Corporation) is placed on the negative electrode. Then, a non-aqueous electrolyte was injected. Next, a lithium foil as a counter electrode punched into a diameter of 18 mm ⁇ was attached to the inner surface of the sealing plate, the counter electrode and the negative electrode were opposed to each other through a separator, and the opening of the bottomed case was sealed with the sealing plate.
  • Comparative Example 1 Using the same method and materials as in Example 1, an aqueous CMC solution was prepared, and 100 parts by weight of natural graphite particles and 100 parts by weight of the CMC aqueous solution were mixed. To the obtained mixture, 1.25 parts by weight of a dispersion (SBR content: 48% by weight) containing SBR similar to that used in Example 1 and an appropriate amount of water were added and mixed thoroughly. A negative electrode mixture slurry was prepared. A negative electrode was produced in the same manner as in Example 1 except that this negative electrode mixture slurry was used. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. Evaluation similar to Example 1 was performed about the negative electrode and the battery.
  • SBR content 48% by weight
  • Example 2 In step (iii), a negative electrode was produced in the same manner as in Example 1 except that the dried coating film was rolled with a rolling roller at a linear pressure of 40 kgf / cm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. Evaluation similar to Example 1 was performed about the negative electrode and the battery.
  • Comparative Example 2 A negative electrode was produced in the same manner as in Comparative Example 1 except that the dried coating film was rolled under the same conditions as in Example 2. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. Evaluation similar to Example 1 was performed about the negative electrode and the battery.
  • Example 3 In step (iii), a negative electrode was produced in the same manner as in Example 1 except that the dried coating film was rolled with a rolling roller at a linear pressure of 60 kgf / cm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. Evaluation similar to Example 1 was performed about the negative electrode and the battery.
  • Comparative Example 3 A negative electrode was produced in the same manner as in Comparative Example 1 except that the dried coating film was rolled under the same conditions as in Example 3. A lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used. Evaluation similar to Example 1 was performed about the negative electrode and the battery.
  • Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 to 3.
  • Example 4 A negative electrode was prepared in the same manner as in Example 1 except that the amount of water-soluble polymer (CMC) per 100 parts by weight of graphite particles was changed as shown in Table 2 in step (i). A secondary battery was produced. Evaluation similar to Example 1 was performed about the negative electrode and the battery. The results are shown in Table 2. A battery in which the specific surface area of the negative electrode mixture layer exceeds 3 m 2 / g is a comparative example.
  • CMC water-soluble polymer
  • the batteries in which the amount of the water-soluble polymer contained in the negative electrode mixture layer is 0.5 to 2.5 parts by weight per 100 parts by weight of the graphite particles are extremely high in thickness increase rate It was getting smaller. This is presumably because the decomposition of the electrolyte component due to the reaction between the graphite particles and the non-aqueous electrolyte was suppressed by coating the surface of the graphite particles with a high coverage by the water-soluble polymer.
  • Example 5 In step (ii), a negative electrode was produced in the same manner as in Example 1 except that the amount of the binder per 100 parts by weight of the graphite particles was changed as shown in Table 3, and a lithium ion secondary battery was further manufactured. Produced. Evaluation similar to Example 1 was performed about the negative electrode and the battery. The results are shown in Table 3. A battery having a tacking test value smaller than 14 kgf / cm 2 is a comparative example.
  • any battery in which the amount of the binder contained in the negative electrode mixture layer is 0.4 to 1.5 parts by weight per 100 parts by weight of the graphite particles exhibits excellent cycle characteristics. At the same time, the rate of increase in thickness was extremely small.
  • the water-soluble polymer coats the surface of the graphite particles, so that the sliding property between the graphite particles is good. Therefore, the binder adhering to the surface of the graphite particles receives a sufficient shearing force and effectively acts on the surface of the graphite particles. Therefore, it is considered that sufficient binding properties were exhibited even when the amount of the binder was small.
  • the present invention can be generally applied to a negative electrode for a non-aqueous electrolyte secondary battery including a negative electrode mixture layer containing graphite particles, a binder for bonding the graphite particles, and a water-soluble polymer. According to the present invention, the reaction between the graphite particles and the non-aqueous electrolyte can be satisfactorily suppressed, so that a non-aqueous electrolyte secondary battery having excellent charge / discharge efficiency can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 負極芯材および負極芯材に付着した負極合剤層を含み、負極合剤層が、黒鉛粒子と、黒鉛粒子の表面を被覆する水溶性高分子と、水溶性高分子で被覆された黒鉛粒子間を接着する結着剤と、を含み、負極合剤層の比表面積が、2.2~3m2/gであり、水溶性高分子で被覆された黒鉛粒子間の接着強度が、14kgf/cm2以上である、非水電解質二次電池用負極。この電極を含む非水電解質二次電池は、黒鉛粒子と非水電解質との反応による非水電解質成分の分解が抑制されるため、充放電効率に優れる。

Description

非水電解質二次電池用負極および非水電解質二次電池
 本発明は、活物質として黒鉛粒子を含む非水電解質二次電池用負極に関し、特に負極合剤層の改良に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池の負極には、活物質として様々な材料が用いられている。なかでもリチウムイオンを挿入および脱離可能な黒鉛材料が主流であり、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子、黒鉛化メソフェーズカーボン繊維などが用いられている。
 例えば黒鉛粒子を負極活物質として用いる場合、黒鉛粒子と結着剤とを、所定の分散媒の存在下で混合して、負極合剤スラリーを調製する。その際、結着剤には、一般にポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)などが用いられている。負極合剤スラリーを、銅箔などからなる負極芯材に塗布し、乾燥させて、負極合剤層が形成される。その後、負極合剤層は圧延ロールで圧延される。負極芯材と一体化された負極合剤層を、所定形状に裁断することにより、負極が得られる(特許文献1、2参照)。
 上記のような負極を含む電池の充放電を繰り返す場合、リチウムイオンの挿入および脱離に伴い、黒鉛粒子は膨張と収縮を繰り返す。そのため、負極芯材から負極合剤が剥離して、サイクル特性が低下する場合がある。
 そこで、負極合剤層と負極芯材との接着強度を高め、サイクル特性を向上させる観点から、負極活物質である黒鉛粒子の平均円形度を0.93以上とすることが提案されている。これにより、負極合剤層と負極芯材とのクロスカットテープ法による接着強度が8以上に向上する(特許文献3参照)。
 一方、非水電解質二次電池は、非水溶媒と溶質からなる非水電解質を含む。黒鉛粒子の表面は、非水電解質の分解反応に対する活性が大きいため、特に使用初期の電池において、充電時に黒鉛粒子の表面で非水電解質が分解し易い。非水電解質が分解されると、電池の充放電効率が低下する。そこで、黒鉛粒子を水溶性の界面活性剤で被覆することが提案されている(特許文献4参照)。
特開2008-277231号公報 特開2004-303572号公報(特許4151459号) 特開2002-216757号公報 特開2003-168432号公報
 黒鉛粒子の粒子円形度を高め、負極芯材と負極合剤層との接着強度を高めるだけでは、サイクル特性を十分に向上させることはできない。充放電サイクルにより、負極合剤層が膨張と収縮を繰り返すと、負極合剤から黒鉛粒子が脱落する場合がある。このような黒鉛粒子の脱落は、黒鉛粒子間の接着強度が不十分である場合に起こりやすいと考えられる。
 また、従来の負極の製造方法では、負極合剤スラリーを調製する工程および負極合剤層を圧延する工程(以下、単に負極合剤層の製造工程ともいう)において、黒鉛粒子の一部に、過剰なせん断力もしくは応力が印加される。そのため、粒子の一部に割れが生じ、活性の大きな断面が黒鉛粒子に形成される。よって、黒鉛粒子による非水電解質の分解反応が起こり易い。
 黒鉛粒子の比表面積を小さくすることにより、黒鉛粒子による非水電解質の分解反応を抑制することも考えられるが、その場合、電池のレート特性が不十分となる。また、比表面積の小さな黒鉛粒子は、負極合剤層の製造工程において、割れを生じやすい。
 本発明の一局面は、負極芯材および負極芯材に付着した負極合剤層を含み、負極合剤層が、黒鉛粒子と、黒鉛粒子の表面を被覆する水溶性高分子と、水溶性高分子で被覆された黒鉛粒子間を接着する結着剤と、を含み、負極合剤層の比表面積が、2.2~3m2/gであり、水溶性高分子で被覆された黒鉛粒子間の接着強度が、14kgf/cm2以上である、非水電解質二次電池用負極に関する。
 本発明の他の一局面は、(i)比表面積Xが4~6m2/gである黒鉛粒子と、水と、水に溶解した水溶性高分子と、を混合し、得られた混合物を乾燥させて、比表面積Yが2.9~4.3m2/gであり、かつY/Xが0.6~0.8を満たす乾燥混合物を得る工程、(ii)乾燥混合物と、結着剤と、分散媒と、を混合し、負極合剤スラリーを調製する工程、(iii)負極合剤スラリーを、負極芯材に塗布し、乾燥させて、塗膜を形成する工程、および(iv)塗膜を、線圧40~60kgf/cmで圧延して、負極合剤層を形成する工程を含む、非水電解質二次電池用負極の製造方法に関する。
 本発明によれば、負極合剤層の比表面積が2.2~3m2/gであることから、黒鉛粒子の表面が適度に露出していると考えられる。よって、十分なレート特性を維持しつつ、非水電解質の分解反応も抑制される。また、水溶性高分子で被覆された黒鉛粒子間の接着強度が14kgf/cm2以上であることから、黒鉛粒子が膨張および収縮を繰り返しても、負極合剤層の膨張および収縮は抑制される。よって、黒鉛粒子の表面が新たに露出する確率が減少し、非水電解質の分解反応を抑制する効果が更に高められる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
乾燥前の黒鉛粒子と水溶性高分子との混合物中における黒鉛粒子と水溶性高分子の状態を模式的に示す図である。 乾燥後の黒鉛粒子と水溶性高分子との混合物中における黒鉛粒子と水溶性高分子の状態を模式的に示す図である。 本発明の一実施の形態に係る角型のリチウムイオン二次電池を模式的に示す縦断面図である。
 本発明の負極は、負極芯材および負極芯材に付着した負極合剤層を含み、負極合剤層が、黒鉛粒子と、黒鉛粒子の表面を被覆する水溶性高分子と、水溶性高分子で被覆された黒鉛粒子間を接着する結着剤と、を含む。黒鉛粒子の表面を水溶性高分子で被覆することにより、黒鉛粒子の表面の露出度を適度に制御することが可能となり、かつ黒鉛粒子同士の接着強度が大きく向上する。
 負極合剤層の比表面積は、2.2~3m2/gに制御され、2.6~3m2/gに制御することが好ましく、2.6~2.8m2/gに制御することがより好ましく、2.65~2.8m2/gに制御することが更に好ましい。負極合剤層の比表面積が2.2m2/gより小さいと、十分なレート特性が得られない。一方、比表面積が3m2/gを超える場合、黒鉛粒子の表面が水溶性高分子で十分に被覆されておらず、黒鉛粒子の表面の露出度が大きくなる。その結果、非水電解質が分解され易くなり、充放電効率が低下する。
 通常、比表面積の小さな黒鉛粒子を用いたとしても、負極合剤層の比表面積は3.3m2/g程度となることが多い。一方、黒鉛粒子の表面を水溶性高分子で被覆することにより、負極合剤層の比表面積を3m2/g以下に制御するとともに、十分なレート特性を維持することができる。これは、負極合剤層の製造工程において、黒鉛粒子の一部に過剰なせん断力もしくは応力が印加されることを抑制できるためと考えられる。その結果、黒鉛粒子に割れが発生する確率が減少し、活性の大きな断面が黒鉛粒子に形成されにくくなると考えられる。
 水溶性高分子で被覆された黒鉛粒子同士の接着強度は、14kgf/cm2以上に制御され、17kgf/cm2以上とすることが好ましく、20kgf/cm2以上とすることが更に好ましい。ただし、黒鉛粒子間の接着強度の上限は30kgf/cm2程度と考えられ、これ以上に向上させることは非現実的である。これにより、充放電サイクルにより負極合剤層が膨張と収縮とを繰り返しても、黒鉛粒子が脱落しにくくなる。また、黒鉛粒子間の距離が増大しにくくなるため、負極の厚さの増大による電池の膨れを低減できる。よって、黒鉛粒子の表面が新たに露出する確率が減少し、非水電解質の分解反応を抑制する効果が更に高められる。
 負極合剤層の比表面積および黒鉛粒子同士の接着強度は、原料黒鉛粒子の比表面積、水溶性高分子による黒鉛粒子の被覆の程度、負極合剤スラリーの調製条件、負極合剤層の圧延条件などの影響を受ける。よって、これらの条件を適切に制御することが求められる。例えば、以下の製造方法で負極を製造することが望ましい。ここでは、方法Aおよび方法Bを例示する。
 まず、方法Aについて説明する。
 方法Aは、黒鉛粒子と、水と、水に溶解した水溶性高分子とを混合し、得られた混合物を乾燥させて、比表面積が2.9~4.3m2/gである乾燥混合物とする工程(工程(i))を含む。例えば、水溶性高分子を水に溶解させて、水溶性高分子水溶液を調製する。得られた水溶性高分子水溶液と黒鉛粒子(原料黒鉛粒子)とを混合し、その後、水分を除去して、混合物を乾燥させる。このように、混合物を一旦乾燥させることにより、黒鉛粒子の表面に水溶性高分子が効率的に付着し、水溶性高分子による黒鉛粒子表面の被覆率が高められる。
 このとき、原料黒鉛粒子の比表面積は、4~6m2/gであることが好ましく、4.5~5.5m2/gであることが更に好ましい。これにより、負極合剤層の比表面積を所定範囲に制御することが容易となる。また、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子間の接着強度の向上に有利である。
 負極活物質である黒鉛粒子は、黒鉛構造を有する領域を含む粒子の総称である。よって、黒鉛粒子には、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。これらの黒鉛粒子は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 広角X線回折法で測定される黒鉛粒子の回折像は、(110)面に帰属されるピークと、(004)面に帰属されるピークとを有する。ここで、(110)面に帰属されるピークの強度I(110)と、(004)面に帰属されるピークの強度I(004)との比は、0.01<I(110)/I(004)<0.25を満たすことが好ましく、0.08<I(110)/I(004)<0.2を満たすことが更に好ましい。なお、ピークの強度とは、ピークの高さを意味する。
 黒鉛粒子の平均粒径(メディアン径)は、14~22μmが好ましく、16~20μmが更に好ましい。平均粒径が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子の充填状態が良好となり、黒鉛粒子間の接着強度の向上に有利である。なお、平均粒径とは、黒鉛粒子の粒度分布において、累積体積が50%となる粒径(D50)を意味する。黒鉛粒子の体積基準の粒度分布は、市販のレーザー回折式の粒度分布測定装置(例えば日機装(株)製のマイクロトラック)により測定することができる。
 黒鉛粒子の平均円形度は、0.9~0.95が好ましく、0.91~0.94が更に好ましい。平均円形度が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子の充填性の向上や、黒鉛粒子間の接着強度の向上に有利である。なお、平均円形度は、4πS/L2(ただし、Sは黒鉛粒子の正投影像の面積、Lは正投影像の周囲長)で表される。例えば、任意の100個の黒鉛粒子の円形度の平均値が上記範囲であることが好ましい。
 乾燥混合物の比表面積は、2.9~4.3m2/gであることが好ましく、2.9~4m2/gであることがより好ましい。これにより、水溶性高分子による黒鉛粒子の被覆の程度が良好となる。この場合、水溶性高分子は、黒鉛粒子の流動性を高める潤滑剤として有効に作用する。よって、負極合剤層の製造工程において、黒鉛粒子に過剰なせん断力もしくは応力が印加されにくくなる。なお、原料黒鉛粒子の比表面積をX、乾燥混合物の比表面積をYとするとき、Y/X比が0.6~0.8となるように、黒鉛粒子の表面を水溶性高分子で被覆する。
 水溶性高分子水溶液の粘度は、25℃において、1000~10000cP(すなわち1~10Pa・s)に制御することが好ましい。粘度は、B型粘度計を用い、周速度20mm/sで、5mmφのスピンドルを用いて測定する。また、水溶性高分子水溶液100重量部と混合する黒鉛粒子の量は、50~150重量部が好適である。
 混合物の乾燥温度は80~150℃が好ましく、乾燥時間は1~8時間が好適である。乾燥前および乾燥後の混合物中における黒鉛粒子と水溶性高分子の状態を、それぞれ図1および図2に模式的に示す。乾燥前の状態を示す図1では、黒鉛粒子10の表面に接触した状態の水溶性高分子15の割合が比較的小さいのに対し、乾燥後の状態を示す図2では、黒鉛粒子10の表面に接触した状態の水溶性高分子15の割合が増大している。
 次に、得られた乾燥混合物と、結着剤と、分散媒とを混合し、負極合剤スラリーを調製する(工程(ii))。このとき、さらに水溶性高分子を追加してもよい。この工程により、水溶性高分子で被覆された黒鉛粒子の表面に、結着剤が付着する。黒鉛粒子間の滑り性が良好なため、黒鉛粒子表面に付着した結着剤は、十分なせん断力を受け、黒鉛粒子表面に有効に作用する。
 そして、得られた負極合剤スラリーを、負極芯材に塗布し、乾燥させて、負極合剤層を形成することにより、負極が得られる(工程(iii))。負極合剤スラリーを負極芯材に塗布する方法は、特に限定されない。例えば、ダイコートを用いて、負極芯材の原反に負極合剤スラリーを所定パターンで塗布する。塗膜の乾燥温度も特に限定されない。乾燥後の塗膜は、圧延ロールで圧延し、所定厚さに制御される。圧延工程により、負極合剤層と負極芯材との接着強度や、水溶性高分子で被覆された黒鉛粒子間の接着強度が高められる。圧延は、線圧40~60kgf/cmで行うことが好ましく、線圧40~55kgf/cmで行うことがより好ましい。これにより、黒鉛粒子の割れが抑制され、活性の大きい断面の露出度を低減できる。こうして得られた負極合剤層を負極芯材とともに所定形状に裁断することにより、負極が完成する。
 次に、方法Bについて説明する。
 方法Bは、黒鉛粒子と、結着剤と、水と、水に溶解した水溶性高分子とを混合し、得られた混合物を乾燥させて、乾燥混合物とする工程(工程(i))を含む。例えば、水溶性高分子を水に溶解させて、水溶性高分子水溶液を調製する。水溶性高分子水溶液の粘度は、方法Aと同様でよい。次に、得られた水溶性高分子水溶液と、結着剤と、黒鉛粒子とを混合し、その後、水分を除去して、混合物を乾燥させる。このように、混合物を一旦乾燥させることにより、黒鉛粒子の表面に水溶性高分子と結着剤とが効率的に付着する。よって、水溶性高分子による黒鉛粒子表面の被覆率が高められると同時に、結着剤が黒鉛粒子表面に良好な状態で付着する。結着剤は、水溶性高分子水溶液に対する分散性を高める観点から、水を分散媒とする分散液の状態で水溶性高分子水溶液と混合することが好ましい。原料黒鉛粒子の比表面積X、乾燥混合物の比表面積Y、Y/X比は、方法Aと同様でよい。
 次に、得られた乾燥混合物と、分散媒とを混合し、負極合剤スラリーを調製する(工程(ii))。このとき、さらに水溶性高分子および/または結着剤を追加してもよい。この工程により、水溶性高分子と結着剤で被覆された黒鉛粒子が、分散媒である程度膨潤し、黒鉛粒子間の滑り性が良好となる。
 方法Aおよび方法Bのいずれにおいても、工程(ii)では、通常、印加される最大負荷よりも小さい負荷で、乾燥混合物と、結着剤と、分散媒とを混合することが好ましい。これにより、負極合剤スラリーの調製の際に、黒鉛粒子が割れにくくなり、活性の大きい断面の露出を更に抑制できる。
 そして、得られた負極合剤スラリーを、方法Aと同様に、負極芯材に塗布し、乾燥させ、圧延して、負極合剤層を形成することにより、負極が得られる(工程(iii))。
 なお、黒鉛粒子と、水溶性高分子と、結着剤とを混合して負極合剤スラリーを調製し、乾燥工程を経ずに、負極合剤スラリーを負極芯材に塗布し、乾燥させ、圧延して負極合剤層を形成する製造方法も考えられる。しかし、このような方法で製造した負極の場合、黒鉛粒子の表面を水溶性高分子で十分に被覆することができない。よって、負極合剤層の比表面積を2.2~3m2/gとすることは困難であり、水溶性高分子で被覆された黒鉛粒子間の接着強度を14kgf/cm2以上とすることも困難である。
 方法Aおよび方法Bで、負極合剤スラリーを調製する際に用いる分散媒は、特に限定されないが、水、アルコール水溶液などが好ましく、水が最も好ましい。ただし、N-メチル-2-ピロリドン(以下、NMP)などの非水溶媒を用いてもよい。
 水溶性高分子の種類は、特に限定されないが、セルロース誘導体またはポリビニルアルコール、ポリビニルピロリドンもしくはこれらの誘導体が挙げられる。これらのうちでも特に、セルロース誘導体が好ましい。セルロース誘導体としては、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースのNa塩などが好ましい。セルロース誘導体の分子量は1万~100万が好適であり、5万~50万がより好適である。また、セルロース誘導体のエーテル化度は、0.6~1が好適である。水溶性高分子は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極合剤層に含まれる水溶性高分子の量は、黒鉛粒子100重量部あたり、0.5~2.5重量部が好ましく、0.7~1重量部が更に好ましい。水溶性高分子の量が上記範囲に含まれる場合、水溶性高分子が黒鉛粒子の表面を高い被覆率で被覆することが容易となる。これにより、黒鉛粒子と非水電解質との反応による電解質成分の分解を良好に抑制できる。そのため、非水電解質二次電池の充放電効率が向上する。また、黒鉛粒子表面が水溶性高分子で過度に被覆されることがなく、負極の内部抵抗をより低減できる。
 負極合剤層に含ませる結着剤は、粒子状であり、ゴム弾性を有することが好ましい。
 粒子状の結着剤は、平均粒径が0.1~0.3μmであることが好ましく、下記条件を満たすことがより望ましい。
 (a)結着剤の粒度分布において、累積体積が50%となる粒径(D50)が0.1μm~0.15μmである。
 (b)結着剤の粒度分布において、累積体積が90%となる粒径(D90)が0.18μm以下である。
 結着剤の体積基準の粒度分布は、例えば、日機装(株)製のマイクロトラックを用いて求めることができる。
 このような結着剤は、水溶性高分子で被覆された黒鉛粒子の表面状態との相性が良く、黒鉛粒子に均一に付着させることが容易である。よって、黒鉛粒子同士の接着ポイントが多くなり、接着ポイントの分布がより均一になる。また、ゴム弾性を有する結着剤は、負極合剤層の内部応力を緩和する作用を有する。よって、相互の密着性が高められ、黒鉛粒子同士の接着強度が更に向上する。
 累積体積が50%となる粒径(D50)が0.1μm~0.15μmである場合、すなわち結着剤の平均粒径が従来よりも比較的小さい場合、黒鉛粒子同士の接着ポイントがより多くなり、接着ポイントの分布がより均一になる。また、このような粒径を有する結着剤は、黒鉛粒子間に介在しても、黒鉛粒子同士の密着性を阻害することがない。
 更に、比較的大粒径である累積体積が90%となる粒径(D90)が0.18μm以下である場合、接着ポイントの分布が更に均一になる。また、黒鉛粒子同士の密着性が極めて均質となり、黒鉛粒子同士の接着強度が大きく向上する。よって、水溶性高分子で被覆された黒鉛粒子間の接着強度は極めて高くなる。 
 粒子状であり、ゴム弾性を有し、平均粒径が十分に小さい結着剤としては、特にスチレン単位およびブタジエン単位を含む高分子が好ましい。このような高分子は、弾性に優れ、負極電位で安定である。結着剤である高分子に含まれるスチレン単位およびブタジエン単位の合計に占めるブタジエン単位の量は、30~70モル%であることが好ましい。スチレン単位およびブタジエン単位とは異なるモノマー単位の量は、全モノマー単位の40モル%以下であることが好ましい。
 負極合剤層に含まれる結着剤の量は、黒鉛粒子100重量部あたり、0.4~1.5重量部が好ましく、0.6~1.2重量部が更に好ましい。水溶性高分子が黒鉛粒子の表面を被覆している場合、黒鉛粒子間の滑り性が良好であるため、黒鉛粒子表面に付着した結着剤は、十分なせん断力を受け、黒鉛粒子表面に有効に作用する。よって、結着剤の量が少なくても十分な結着性が発揮され、結着性と電池の高容量とを両立することが容易となる。
 なかでも、水溶性高分子が、セルロース誘導体を含み、結着剤が、粒子状であり、ゴム弾性を有し、かつ平均粒径が0.1~0.3μmであることが好ましい。これにより、負極合剤層の比表面積を良好に制御することができ、電解質成分の分解を良好に抑制できる。よって、非水電解質二次電池の充放電効率が更に向上する。
 本発明の非水電解質二次電池は、上記の負極と、Liを電気化学的に吸蔵および放出可能な正極と、負極と正極との間に介在するセパレータと、非水電解質とを具備する。本発明は、円筒型、扁平型、コイン型、角形など、様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。
 正極は、非水電解質二次電池の正極として用いることのできるものであれば、特に限定されない。正極は、例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを含む正極合剤スラリーを、アルミニウム箔などの正極芯材に塗布し、乾燥し、圧延することにより得られる。
 正極活物質としては、リチウム含有遷移金属酸化物が好ましい。リチウム含有遷移金属酸化物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2、LiNi1-yCoy2(0<y<1)、LiNi1-y-zCoyMnz2(0<y+z<1)などを挙げることができる。正極活物質は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水電解質としては、非水溶媒およびこれに溶解するリチウム塩からなる液状の電解質が好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が一般的に用いられる。また、γ-ブチロラクトンやジメトキシエタンなども用いられる。非水溶媒は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウム塩としては、無機リチウムフッ化物やリチウムイミド化合物などが挙げられる。無機リチウムフッ化物としては、LiPF6、LiBF4等が挙げられ、リチウムイミド化合物としてはLiN(CF3SO22等が挙げられる。リチウム塩は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 セパレータとしては、ポリエチレン、ポリプロピレンなどからなる微多孔性フィルムが一般に用いられている。セパレータの厚みは、例えば10~30μmである。
 次に、本発明を実施例および比較例に基づいて具体的に説明する。ただし、本発明が下記の実施例に限定されるわけではない。
《実施例1》
(a)負極の作製
工程(i)
 まず、水溶性高分子であるカルボキシメチルセルロース(以下、CMC、分子量20万、エーテル化度0.7)を水に溶解し、CMC濃度0.7重量%の水溶液を得た。CMC濃度0.7重量%の水溶液の25℃における粘度をB型粘度計で測定したところ、1.5Pa・sであった。天然黒鉛粒子(平均粒径18μm、平均円形度0.92、比表面積4.8m2/g)100重量部と、CMC水溶液100重量部とを混合し、混合物の温度を25℃に制御しながら攪拌した。その後、混合物を80℃で5時間乾燥させ、乾燥混合物を得た。乾燥混合物において、黒鉛粒子100重量部あたりのCMC量は0.7重量部であった。
 なお、天然黒鉛粒子および乾燥混合物の比表面積は、吸着ガスとして窒素(N2)を用いる窒素吸着法により、(株)マウンテック製のmacsorb HM model-1201を用いて測定した。
 比表面積測定用のサンプルの量は2gとした。装置に窒素を導入して、天然黒鉛粒子の比表面積を測定した。
 乾燥混合物については、目開き75μmの篩いを通過したものを比表面積測定用のサンプルとした。上記のサンプルを2g用いたこと以外、天然黒鉛粒子と同様にして、乾燥混合物の比表面積を測定したところ、3.4m2/gであった。
工程(ii)
 得られた乾燥混合物100.7重量部(すなわち黒鉛100重量部+CMC0.7重量部)と、スチレン単位およびブタジエン単位を含み、ゴム弾性を有する粒子状の結着剤(以下、SBR)0.6重量部を含む分散液と、100重量部の水とを混合し、負極合剤スラリーを調製した。なお、SBRは水を分散媒とする分散液(JSR株式会社製、SBR含有量48重量%)の状態で他の成分と混合した(分散液の使用量は1.25重量部)。
 SBRの累積体積が50%となる粒径(D50)は0.12μmであり、累積体積が90%となる粒径(D90)は0.15μmであった。
工程(iii)
 得られた負極合剤スラリーを、負極芯材である電解銅箔(厚さ10μm)の両面にダイコートを用いて塗布し、塗膜を110℃で乾燥させた。その後、乾燥塗膜を圧延ローラで線圧50kgf/cmで圧延して、厚さ145μm、黒鉛密度1.6g/cm3の負極合剤層を形成した。負極合剤層を負極芯材とともに所定形状に裁断することにより、負極を得た。
(b)正極の作製
 正極活物質である100重量部のLiCoO2に対し、結着剤であるポリフッ化ビニリデン(PVDF)を4重量部添加し、適量のNMPとともに混合し、正極合剤スラリーを調製した。得られた正極合剤スラリーを、正極芯材である厚さ15μmのアルミニウム箔の両面に、ダイコートを用いて塗布し、塗膜を乾燥し、圧延して、正極合剤層を形成した。正極合剤層を正極芯材とともに所定形状に裁断することにより、正極を得た。
(c)非水電解質の調製
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPF6を溶解させて非水電解質を調製した。非水電解質には3重量%のビニレンカーボネートを含ませた。
(d)電池の組み立て
 図3に示すような角型リチウムイオン二次電池を作製した。
 負極と正極とを、これらの間に厚さ20μmのポリエチレン製の微多孔性フィルムからなるセパレータ(セルガード(株)製のA089(商品名))を介して捲回し、断面が略楕円形の電極群21を構成した。電極群21はアルミニウム製の角型の電池缶20に収容した。電池缶20は、底部20aと、側壁20bとを有し、上部は開口している。側壁20bの主要平坦部の形状は矩形であり、厚みは80μmとした。その後、電池缶20と正極リード22または負極リード23との短絡を防ぐための絶縁体24を、電極群21の上部に配置した。次に、絶縁ガスケット26で囲まれた負極端子27を中央に有する矩形の封口板25を、電池缶20の開口に配置した。負極リード23は、負極端子27と接続した。正極リード22は、封口板25の下面と接続した。開口の端部と封口板25とをレーザーで溶接し、電池缶20の開口を封口した。その後、封口板25の注液孔から2.5gの非水電解質を電池缶20に注入した。最後に、注液孔を封栓29で溶接により塞ぎ、高さ50mm、幅34mm、内空間の厚み約5.2mm、設計容量850mAhの角型リチウムイオン二次電池を完成させた。
[圧延後の負極合剤層の比表面積の測定]
 圧延後の負極合剤層の比表面積は、天然黒鉛粒子および乾燥混合物の比表面積測定と同様のBET比表面積測定装置を用いて、以下の方法により測定した。
 電池を分解して負極を取り出して乾燥させ、負極芯材から負極合剤を剥がした。得られた負極合剤を解砕し、目開き75μmの篩いを通過したものを比表面積測定用のサンプルとした。サンプルの量は2gとした。上記のサンプルを2g用いたこと以外、天然黒鉛粒子および乾燥混合物と同様にして、圧延後の負極合剤層の比表面積を測定した。結果を表1に示す。
[負極の評価]
 負極合剤層において、水溶性高分子で被覆された黒鉛粒子間の接着強度を以下の方法で測定した。
 タッキング試験機(株式会社レスカ製のTAC-II)を用いた。まず、評価対象の負極を2cm×3cmの形状に切り出し、電極片を作製した。一方、ガラス板上に両面テープ(日東電工株式会社製のNo.515)を貼り付けた。電極片の一方の面から負極合剤層を剥がし、他方の面(負極合剤層側)を、ガラス基板上の両面テープに貼り付けた。その後、両面テープに付着した負極合剤層から負極芯材を剥離し、負極合剤層を露出させ、評価用試料とした。
 タッキング試験機の測定子(先端直径0.2cm)の先端に、上記と同じ両面テープを取り付け、下記条件で剥離試験を行った。
<タッキング試験条件>
 押し込み速度:30mm/min
 押し込み時間:10秒
 押し込み時の荷重:0.4kgf
 引き上げ速度:600mm/min
 測定子を押し込んだ後、引き上げるときの最大荷重を測定し、最大荷重を測定子の断面積(0.031cm2)で除した値を接着強度(kgf/cm2)として求めた。なお、測定終了後、評価用試料の測定子側の剥離面を観察し、黒鉛粒子間で剥離が起こっていることを確認した。
[角型電池の評価]
 20℃環境下で、以下の条件で、充放電を100サイクル繰り返した。1サイクル目の放電容量に対する100サイクル目の放電容量の割合(容量維持率)を百分率で求めた。<サイクル試験条件>
 定電流充電:充電電流値850mA/充電終止電圧4.2V
 定電圧充電:充電電圧値4.2V/充電終止電流100mA
 定電流放電:放電電流値1700mA/放電終止電圧3V
[厚み増加率の評価]
 また、上記負極を用いて、厚み増加率を評価するためのコイン型電池を作製した。具体的には、直径12.5mmφに打ち抜いた上記の負極を浅底の有底ケースにスペーサを介して載置し、負極上にセパレータ(厚さ16μm、旭化成(株)製のND416)を配置し、非水電解質を注入した。次に直径18mmφに打ち抜いた、対極であるリチウム箔を、封口板の内面に貼り付け、セパレータを介して対極と負極とを対向させ、封口板で有底ケースの開口を封口した。
 得られたコイン型電池の充放電を下記条件で3回行い、最後に負極にリチウムが挿入された状態まで分極させて終了した。コイン型電池を分解し、負極を取り出し、厚みを測定した。コイン型電池の組立直前の負極厚みに対する、3.5サイクル充放電後の負極厚みから、増加率(%)を求めた。結果を表1に示す。
<充放電試験条件>
定電流充電:充電電流値0.15mA/cm2、充電終止電圧0.01V
定電流放電:放電電流値0.15mA/cm2、放電終止電圧1.5V
《比較例1》
 実施例1と同様の方法および材料を用いて、CMC水溶液を調製し、天然黒鉛粒子100重量部と、CMC水溶液100重量部とを混合した。得られた混合物に、実施例1で用いたものと同様のSBRを含む分散液(SBR含有量48重量%)を1.25重量部と、適量の水とを添加し、十分に混合して負極合剤スラリーを調製した。この負極合剤スラリーを用いたこと以外、実施例1と同様にして負極を作製した。この負極を用いたこと以外、実施例1と同様にしてリチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。 
《実施例2》
 工程(iii)において、乾燥塗膜を圧延ローラで線圧40kgf/cmで圧延したこと以外、実施例1と同様にして負極を作製した。この負極を用いたこと以外、実施例1と同様にしてリチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。
《比較例2》
 乾燥塗膜を実施例2と同様の条件で圧延したこと以外、比較例1と同様にして負極を作製した。この負極を用いたこと以外、実施例1と同様にしてリチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。
《実施例3》
 工程(iii)において、乾燥塗膜を圧延ローラで線圧60kgf/cmで圧延したこと以外、実施例1と同様にして負極を作製した。この負極を用いたこと以外、実施例1と同様にしてリチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。
《比較例3》
 乾燥塗膜を実施例3と同様の条件で圧延したこと以外、比較例1と同様にして負極を作製した。この負極を用いたこと以外、実施例1と同様にしてリチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。
 実施例1~3および比較例1~3の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、実施例1~3と比較例1~3とを対比すると、実施例1~3の電池は、いずれも優れたサイクル特性を示すとともに、厚み増加率が小さくなっていた。このことから、方法Aとして例示したように、黒鉛粒子と水溶性高分子との乾燥混合物を用いて負極合剤層を形成することの重要性が理解できる。実施例1~3のなかでも、線圧40kgf/cmで圧延を行った実施例2は、特に良好なサイクル特性を示していた。
《実施例4》
 工程(i)において、黒鉛粒子100重量部あたりの水溶性高分子(CMC)の量を表2のように変化させたこと以外、実施例1と同様にして負極を作製し、更に、リチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。結果を表2に示す。なお、負極合剤層の比表面積が3m2/gを超える電池は、比較例である。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、負極合剤層に含まれる水溶性高分子の量が、黒鉛粒子100重量部あたり、0.5~2.5重量部である電池は、いずれも厚み増加率が極めて小さくなっていた。これは、水溶性高分子が黒鉛粒子の表面を高い被覆率で被覆することで、黒鉛粒子と非水電解質との反応による電解質成分の分解が抑制されたためと考えられる。
《実施例5》
 工程(ii)において、黒鉛粒子100重量部あたりの結着剤の量を表3のように変化させたこと以外、実施例1と同様にして負極を作製し、更に、リチウムイオン二次電池を作製した。負極および電池について、実施例1と同様の評価を行った。結果を表3に示す。なお、タッキング試験の値が14kgf/cm2より小さい電池は、比較例である。
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すように、負極合剤層に含まれる結着剤の量が、黒鉛粒子100重量部あたり、0.4~1.5重量部である電池は、いずれも優れたサイクル特性を示すとともに、厚み増加率が極めて小さくなっていた。本実施例の電池は、水溶性高分子が黒鉛粒子の表面を被覆していることから、黒鉛粒子間の滑り性が良好である。そのため、黒鉛粒子表面に付着した結着剤は、十分なせん断力を受け、黒鉛粒子表面に有効に作用する。よって、結着剤の量が少なくても、十分な結着性が発揮されたと考えられる。
 本発明は、黒鉛粒子と、黒鉛粒子間を接着する結着剤と、水溶性高分子とを含む負極合剤層を具備する非水電解質二次電池用負極一般に適用できる。本発明によれば、黒鉛粒子と非水電解質との反応を良好に抑制できるため、充放電効率に優れる非水電解質二次電池が得られる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 10 黒鉛粒子
 15 水溶性高分子
 20 電池缶; 20a 底部; 20b 側壁
 21 電極群
 22 正極リード
 23 負極リード
 24 絶縁体
 25 封口板
 26 絶縁ガスケット
 27 負極端子
 29 封栓
 

Claims (11)

  1.  負極芯材および前記負極芯材に付着した負極合剤層を含み、
     負極合剤層が、黒鉛粒子と、前記黒鉛粒子の表面を被覆する水溶性高分子と、前記水溶性高分子で被覆された黒鉛粒子間を接着する結着剤と、を含み、
     前記負極合剤層の比表面積が、2.2~3m2/gであり、
     前記水溶性高分子で被覆された黒鉛粒子間の接着強度が、14kgf/cm2以上である、非水電解質二次電池用負極。
  2.  前記負極合剤層の比表面積が、2.6~3m2/gである、請求項1記載の非水電解質二次電池用負極。
  3.  前記黒鉛粒子の比表面積が、4~6m2/gである、請求項1または2記載の非水電解質二次電池用負極。
  4.  前記結着剤の量が、前記黒鉛粒子100重量部あたり、0.4~1.5重量部であり、
     前記水溶性高分子の量が、前記黒鉛粒子100重量部あたり、0.5~2.5重量部である、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。
  5.  前記水溶性高分子が、セルロース誘導体である、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極。
  6.  前記結着剤が、平均粒径0.1~0.3μmの粒子状であり、かつゴム弾性を有する、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極。
  7.  請求項1~6のいずれか1項に記載の負極、正極、前記負極と前記正極との間に介在するセパレータ、および非水電解質を具備する非水電解質二次電池。
  8.  (i)比表面積Xが4~6m2/gである黒鉛粒子と、水と、前記水に溶解した水溶性高分子と、を混合し、得られた混合物を乾燥させて、比表面積Yが2.9~4.3m2/gであり、かつY/Xが0.6~0.8を満たす乾燥混合物を得る工程、
     (ii)前記乾燥混合物と、結着剤と、分散媒と、を混合し、負極合剤スラリーを調製する工程、
     (iii)前記負極合剤スラリーを、負極芯材に塗布し、乾燥させて、塗膜を形成する工程、および
     (iv)前記塗膜を、線圧40~60kgf/cmで圧延して、負極合剤層を形成する工程を含む、非水電解質二次電池用負極の製造方法。 
  9.  前記結着剤の量が、前記黒鉛粒子100重量部あたり、0.4~1.5重量部であり、
     前記水溶性高分子の量が、前記黒鉛粒子100重量部あたり、0.5~2.5重量部である、請求項8記載の非水電解質二次電池用負極の製造方法。
  10.  前記水溶性高分子が、セルロース誘導体である、請求項8または9記載の非水電解質二次電池用負極の製造方法。
  11.  前記結着剤が、平均粒径0.1~0.3μmの粒子状であり、かつゴム弾性を有する、請求項8~10のいずれか1項に記載の非水電解質二次電池用負極の製造方法。
     
PCT/JP2010/007298 2009-12-28 2010-12-16 非水電解質二次電池用負極および非水電解質二次電池 WO2011080884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800052082A CN102292852A (zh) 2009-12-28 2010-12-16 非水电解质二次电池用负极及非水电解质二次电池
US13/147,139 US20110281163A1 (en) 2009-12-28 2010-12-16 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011547283A JPWO2011080884A1 (ja) 2009-12-28 2010-12-16 非水電解質二次電池用負極および非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009297714 2009-12-28
JP2009-297714 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080884A1 true WO2011080884A1 (ja) 2011-07-07

Family

ID=44226312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007298 WO2011080884A1 (ja) 2009-12-28 2010-12-16 非水電解質二次電池用負極および非水電解質二次電池

Country Status (5)

Country Link
US (1) US20110281163A1 (ja)
JP (1) JPWO2011080884A1 (ja)
KR (1) KR20110098850A (ja)
CN (1) CN102292852A (ja)
WO (1) WO2011080884A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045714A (ja) * 2011-08-25 2013-03-04 Toyota Motor Corp 非水二次電池製造方法
JP2013073756A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp リチウムイオン二次電池
JP2017076525A (ja) * 2015-10-15 2017-04-20 株式会社クレハ 非水電解質二次電池用負極電極及びそれを含む非水電解質二次電池
JP2018137087A (ja) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 電極の製造方法
CN113054159A (zh) * 2019-12-26 2021-06-29 松下电器产业株式会社 非水电解质二次电池用负极和非水电解质二次电池
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same
JP7513652B2 (ja) 2022-04-12 2024-07-09 プライムプラネットエナジー&ソリューションズ株式会社 負極の製造方法及び負極

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106292A (ko) 2013-02-26 2014-09-03 삼성에스디아이 주식회사 리튬 이차전지용 음극 및 이를 채용한 리튬 이차전지
JP6164289B2 (ja) * 2013-03-26 2017-07-19 日産自動車株式会社 非水電解質二次電池
US10381690B2 (en) * 2013-08-14 2019-08-13 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2015159107A (ja) 2014-01-23 2015-09-03 株式会社半導体エネルギー研究所 電極、蓄電装置および電子機器
JPWO2015186363A1 (ja) * 2014-06-04 2017-04-20 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
KR102470559B1 (ko) * 2017-09-20 2022-11-23 한양대학교 산학협력단 금속 전극을 구비하는 금속이차전지
KR102277734B1 (ko) * 2018-02-26 2021-07-16 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
JP7349346B2 (ja) * 2019-12-23 2023-09-22 パナソニックホールディングス株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
CN113454810A (zh) * 2020-10-15 2021-09-28 宁德新能源科技有限公司 电化学装置和电子装置
JP7167119B2 (ja) * 2020-12-14 2022-11-08 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池用負極板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075458A (ja) * 2000-09-04 2002-03-15 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2002134171A (ja) * 2000-10-23 2002-05-10 Mitsubishi Chemicals Corp リチウム二次電池
JP2002246020A (ja) * 2001-02-13 2002-08-30 Sony Corp 活物質およびこれを用いた非水電解質電池、ならびに電極の製造方法
JP2008016456A (ja) * 2004-01-05 2008-01-24 Showa Denko Kk リチウム電池用負極材及びリチウム電池
JP2010287472A (ja) * 2009-06-12 2010-12-24 Panasonic Corp 非水電解質二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773838B2 (en) * 2000-09-04 2004-08-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and negative electrode for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075458A (ja) * 2000-09-04 2002-03-15 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2002134171A (ja) * 2000-10-23 2002-05-10 Mitsubishi Chemicals Corp リチウム二次電池
JP2002246020A (ja) * 2001-02-13 2002-08-30 Sony Corp 活物質およびこれを用いた非水電解質電池、ならびに電極の製造方法
JP2008016456A (ja) * 2004-01-05 2008-01-24 Showa Denko Kk リチウム電池用負極材及びリチウム電池
JP2010287472A (ja) * 2009-06-12 2010-12-24 Panasonic Corp 非水電解質二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045714A (ja) * 2011-08-25 2013-03-04 Toyota Motor Corp 非水二次電池製造方法
JP2013073756A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp リチウムイオン二次電池
JP2017076525A (ja) * 2015-10-15 2017-04-20 株式会社クレハ 非水電解質二次電池用負極電極及びそれを含む非水電解質二次電池
JP2018137087A (ja) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 電極の製造方法
US12009520B2 (en) 2018-04-26 2024-06-11 Samsung Sdi Co., Ltd. Secondary lithium battery anode and secondary lithium battery including same
CN113054159A (zh) * 2019-12-26 2021-06-29 松下电器产业株式会社 非水电解质二次电池用负极和非水电解质二次电池
JP7513652B2 (ja) 2022-04-12 2024-07-09 プライムプラネットエナジー&ソリューションズ株式会社 負極の製造方法及び負極

Also Published As

Publication number Publication date
CN102292852A (zh) 2011-12-21
JPWO2011080884A1 (ja) 2013-05-09
KR20110098850A (ko) 2011-09-01
US20110281163A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2011080884A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
KR100962857B1 (ko) 리튬 이온 이차 전지
JP5221660B2 (ja) 電池の負極、及びそれを用いたリチウムイオン電池
US20140038041A1 (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
WO2010113419A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
US20110200886A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
WO2005098997A1 (ja) 非水電解液二次電池
JP2010267540A (ja) 非水電解質二次電池
JP2011065929A (ja) 非水電解質二次電池用負極およびその製造方法
JP4746278B2 (ja) 非水電解質二次電池
JP2010287472A (ja) 非水電解質二次電池
JP2010182626A (ja) 非水系二次電池用負極電極
JP2011192561A (ja) 非水電解液二次電池の製造方法
JP2007328977A (ja) 非水系二次電池用電極板とその製造方法および非水系二次電池
WO2010146832A1 (ja) 非水電解質二次電池用負極の製造方法、負極、およびそれを用いた非水電解質二次電池
JPWO2011118144A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
EP2631973B1 (en) Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
JP2010140737A (ja) 非水電解質二次電池
JP5679206B2 (ja) リチウムイオン二次電池用負極の製造方法およびリチウムイオン二次電池の製造方法
JP2018060751A (ja) リチウムイオン二次電池、及び、リチウムイオン二次電池の製造方法
JP5181607B2 (ja) 非水電解液二次電池負極用電極板の製造方法
JP6244623B2 (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
JP2005310617A (ja) 非水電解液二次電池およびその製造方法
JP2011134535A (ja) リチウム二次電池用正極およびその製造方法
JP2003123765A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005208.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117017274

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13147139

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011547283

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840744

Country of ref document: EP

Kind code of ref document: A1