WO2011080882A1 - 動作空間提示装置、動作空間提示方法およびプログラム - Google Patents

動作空間提示装置、動作空間提示方法およびプログラム Download PDF

Info

Publication number
WO2011080882A1
WO2011080882A1 PCT/JP2010/007167 JP2010007167W WO2011080882A1 WO 2011080882 A1 WO2011080882 A1 WO 2011080882A1 JP 2010007167 W JP2010007167 W JP 2010007167W WO 2011080882 A1 WO2011080882 A1 WO 2011080882A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
movable robot
imaging
dimensional
Prior art date
Application number
PCT/JP2010/007167
Other languages
English (en)
French (fr)
Inventor
水谷 研治
太一 佐藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011532405A priority Critical patent/JP4850984B2/ja
Priority to CN201080023195.1A priority patent/CN102448681B/zh
Publication of WO2011080882A1 publication Critical patent/WO2011080882A1/ja
Priority to US13/220,749 priority patent/US8731276B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40478Graphic display of work area of robot, forbidden, permitted zone
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49137Store working envelop, limit, allowed zone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose

Definitions

  • the present invention relates to a motion space presentation device and a motion space presentation method for generating data for presenting a motion space of a movable robot that operates according to a motion plan.
  • the person When a person performs a work adjacent to such a robot, the person may come into contact with the robot and be injured if the person does not properly perceive the movement space of the robot. Even if a person is not injured, the emergency stop of the robot increases idling time, or the task being executed by the robot fails.
  • the mobile robot disclosed in Patent Document 1 projects a dangerous range on the road surface on which the mobile robot moves. Thereby, the mobile robot presents a danger range and realizes a smooth operation.
  • FIG. 27 is a diagram showing an outline of the mobile robot disclosed in Patent Document 1.
  • the operation planning unit 9902 determines the operation content of the mobile robot 9901.
  • the operation control unit 9903 calculates information for driving the wheel 9906 based on the determined operation content and information on the wheel 9906 measured by the encoder 9908.
  • the driving unit 9904 drives the wheels 9906 based on the calculated information.
  • the operation control unit 9903 calculates information for driving the arm unit 9907 based on the determined operation content and information on the arm unit 9907 measured by the encoder 9909.
  • the driving unit 9905 drives the arm unit 9907 according to the calculated information.
  • the display control unit 9910 determines a danger range that may move and operate based on the determined operation content.
  • the projector 9911 projects the determined danger range on the road surface on which the mobile robot 9901 moves. Thereby, the mobile robot 9901 presents a danger range and realizes a smooth operation.
  • the image projected on the installation surface of the arm robot by the projector also moves at high speed. Furthermore, when the ground contact surface projected by the projector is a curved surface or the like, the projected image may be deformed, and the operation space may be erroneously determined.
  • an object of the present invention is to provide an operation space presentation device that generates data for displaying the operation space of a robot in a three-dimensional manner.
  • the motion space presentation device is a motion space presentation device that generates data for presenting the motion space of the movable robot, and generates a three-dimensional region in which the movable robot operates.
  • a position and orientation detection unit that detects a work area generation unit, an imaging unit that captures an actual image, an imaging position that is a position of the imaging unit, and an imaging direction of the imaging unit, and an imaging unit that captures the image.
  • the real image includes a line segment approximation model image that is an image of the movable robot when the line segment approximation model is viewed from the imaging position toward the imaging direction, and the three-dimensional area from the imaging position.
  • a work area image that is an image when viewed in the direction, and an overlay unit that selectively superimposes either of them according to the difficulty of being seen.
  • the motion space presentation device can generate data for stereoscopically displaying the motion space of the movable robot that operates according to the motion plan. Also, data suitable for display is generated by selective superimposition based on invisibility.
  • the overlay unit may superimpose the line segment approximate model image on the actual image when evaluating that the work area image is difficult to see according to a criterion for evaluating the invisibility.
  • the work area generation unit includes a line segment approximation model holding unit that holds the line segment approximation model of the movable robot and an operation plan for operating the movable robot in the virtual space.
  • An operation simulator that operates a model, and a three-dimensional region generation unit that generates the three-dimensional region in which the movable robot operates from the result of the operation simulator operating the line segment approximation model may be provided.
  • the motion space presentation device generates a three-dimensional region that is the motion space of the movable robot using the line segment approximation model of the movable robot. Therefore, the motion space presentation device can reduce the arithmetic processing.
  • the overlay unit is configured so that the line on which the motion simulator is operated on the real image according to at least one of the smoothness of the three-dimensional region and the distance from the imaging position to the position of the movable robot.
  • the line segment approximate model image which is an image when the segment approximate model is viewed from the imaging position toward the imaging direction, or the work area image may be superimposed.
  • the overlay unit superimposes the line segment approximate model image on the real image when evaluating that the three-dimensional region is smooth, and when evaluating that the three-dimensional region is not smooth,
  • the work area image may be superimposed.
  • the overlay unit superimposes the line segment approximate model image on the real image when the distance from the imaging position to the position of the movable robot satisfies a predetermined condition, and the movable robot from the imaging position When the distance to the position does not satisfy the predetermined condition, the work area image may be superimposed on the actual image.
  • the action space presentation device may further include an area expression adjustment unit that changes an expression format of the three-dimensional area generated by the work area generation unit.
  • the region representation adjustment unit may change the representation form of the two-dimensional plane constituting the three-dimensional region according to the amount of movement per unit time that the movable robot moves the three-dimensional region according to the motion plan. Good.
  • the motion space presentation device can express that the danger is higher for a part having a high speed.
  • the region representation adjustment unit may change the representation format of the two-dimensional plane that constitutes the three-dimensional region according to the difference of modes classified in the operation plan.
  • the overlay unit may further superimpose the execution order determined in accordance with the operation plan on at least one of the work area image and the actual image.
  • the overlay unit may further superimpose the scheduled end time of the currently executed mode on at least one of the work area image and the actual image.
  • the action space presentation device can express that a space other than the action space used in the currently executing mode can be used until the scheduled end time.
  • the overlay portion has a distance from the imaging position to the position of the movable robot as described above.
  • the work area image may be superimposed on the actual image by lowering the transparency of the work area image than when the length is the first length.
  • the motion space presentation device can express that the danger is approaching by lowering the transparency.
  • the work area generation unit generates the three-dimensional area by associating an area where the movable robot operates in the three-dimensional area and a time when the movable robot operates in the three-dimensional area,
  • the overlay unit extracts the region in which the movable robot operates after the current time from the three-dimensional region, and when the extracted region is viewed from the imaging position toward the imaging direction in the real image.
  • An image may be superimposed as the work area image.
  • the motion space presentation device can generate in advance a three-dimensional region based on the motion plan, which is the motion space of the movable robot. Therefore, the motion space presentation device can reduce the arithmetic processing when superimposing.
  • the position / orientation detection unit may detect the imaging position and the imaging direction using a visual tag indicating the position imaged by the imaging unit.
  • the motion space presentation device can detect the imaging position and the imaging direction of the imaging unit without using the position sensing device and the posture sensing device.
  • the operation space presentation device may further include a display unit that moves together with the imaging unit, and the display unit may display the work area image superimposed on the actual image by the overlay unit. .
  • the action space presentation device can display the superimposed image without using an external display means. Further, when the imaging unit and the display unit move together, the image is displayed on the display unit without a sense of incongruity.
  • the motion space presentation device further includes an motion plan holding unit that holds a motion plan for operating the movable robot, and the work area generation unit uses the motion plan holding unit to move the three-dimensional area. You may produce
  • the motion space presentation device can acquire the motion plan of the movable robot without using communication means such as a network.
  • the motion space presentation method is a motion space presentation method for generating data for presenting the motion space of a movable robot, and a work region generation step for generating a three-dimensional region in which the movable robot operates.
  • a position and orientation detection step for detecting an imaging position that is a position of an imaging unit that captures an actual image and an imaging direction of the imaging unit; and the actual image captured by the imaging unit
  • a line segment approximation model image that is an image when the line segment approximation model is viewed from the imaging position toward the imaging direction, and an image when the three-dimensional region is viewed from the imaging position toward the imaging direction.
  • It may be a motion space presentation method including a certain work area image and an overlay step for selectively superimposing either of them according to the difficulty of being seen.
  • This generates data for stereoscopically displaying the motion space of the movable robot that operates according to the motion plan. Also, data suitable for display is generated by selective superimposition based on invisibility.
  • the program according to the present invention is a program for generating data for presenting an operation space of a movable robot, and includes a work area generation step for generating a three-dimensional area in which the movable robot operates, and an actual image is captured.
  • a position and orientation detection step for detecting an imaging position that is the position of the imaging unit and an imaging direction of the imaging unit, and a line segment approximation model of the movable robot is added to the real image captured by the imaging unit.
  • the operation space presentation method is realized as a program.
  • FIG. 1 is a functional block diagram of the action space presentation device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a usage state of the motion space presentation device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an appearance of the motion space presentation device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of display contents of the action space presentation device according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of an operation plan of the operation plan holding unit in the first embodiment.
  • FIG. 6 is a functional block diagram of the work area generation unit in the first embodiment.
  • FIG. 7 is a diagram illustrating an example of the line segment approximation model in the first embodiment.
  • FIG. 8 is a diagram illustrating an example of the operation of the three-dimensional region generation unit in the first embodiment.
  • FIG. 9 is a diagram illustrating an example of the operation of the region expression adjustment unit in the first embodiment.
  • FIG. 10 is a diagram illustrating an example of the operation of the overlay unit in the first embodiment.
  • FIG. 11 is a diagram illustrating an example of an action space displayed on the action space presentation device according to the first embodiment.
  • FIG. 12 is a diagram illustrating an example of the operation of the region expression adjustment unit in the second embodiment.
  • FIG. 13 is a diagram illustrating an example of an action space displayed on the action space presentation device according to the second embodiment.
  • FIG. 14 is a diagram illustrating an example of an operation plan of the operation plan holding unit in the third embodiment.
  • FIG. 15 is a diagram illustrating an example of the operation of the region expression adjustment unit in the third embodiment.
  • FIG. 16 is a diagram illustrating an example of an action space displayed on the action space presentation device according to the third embodiment.
  • FIG. 17 is a diagram illustrating a first modification of the motion space displayed on the motion space presentation device in the third embodiment.
  • FIG. 18 is a diagram illustrating a second modification of the motion space displayed on the motion space presentation device in the third embodiment.
  • FIG. 19 is a diagram illustrating an example of the operation of the region expression adjustment unit in the fourth embodiment.
  • FIG. 20 is a diagram illustrating an example of a three-dimensional region in the fourth embodiment.
  • FIG. 21 is a diagram illustrating an example of an action space displayed on the action space presentation device according to the fourth embodiment.
  • FIG. 22 is a functional block diagram of the action space presentation device according to the fifth embodiment.
  • FIG. 23 is a diagram illustrating a usage state of the motion space presentation device according to the fifth embodiment.
  • FIG. 24 is a diagram illustrating an appearance of the motion space presentation device according to the fifth embodiment.
  • FIG. 25 is a diagram illustrating an example of the operation of the overlay unit in the fifth embodiment.
  • FIG. 26 is a functional block diagram of the action space presentation device according to the sixth embodiment.
  • FIG. 27 is a functional block diagram of a device for presenting a danger range in the prior art.
  • FIG. 1 is a functional block diagram of the action space presentation device according to the first embodiment.
  • the operation plan holding unit 101 in FIG. 1 holds an operation plan of a movable robot such as an arm robot.
  • the work area generation unit 102 generates a three-dimensional area that is an operation space of the movable robot from the operation plan held by the operation plan holding unit 101.
  • the region representation adjustment unit 103 deforms or processes the texture of a two-dimensional plane constituting the three-dimensional region so that the generated three-dimensional region can be easily perceived by humans.
  • the imaging unit 104 captures a real world image.
  • the position and orientation detection unit 105 detects the position and orientation of the imaging unit 104 in the real world.
  • the overlay unit 106 extracts a three-dimensional region used by the movable robot after the current time from the three-dimensional region output from the region representation adjustment unit 103, and uses the viewpoint of the imaging unit 104 to generate a two-dimensional plane of the real world image. Superimpose on.
  • the display unit 107 is a display unit for a person to confirm a three-dimensional area.
  • the work area generation unit 102 and the area expression adjustment unit 103 complete the process until the movable robot starts operation.
  • the overlay unit 106 displays a three-dimensional area corresponding to the operation space of the movable robot according to the position and posture of the imaging unit 104 and the elapsed time of the operation of the movable robot. 107.
  • the motion space presentation device 100 presents the motion space of the movable robot to a person.
  • the work area generation unit 102 and the area expression adjustment unit 103 may perform processing in parallel with the operation of the movable robot.
  • FIG. 2 is a diagram showing a usage state of the action space presentation device 100 shown in FIG.
  • the motion space presentation device 100 is used in an environment where a person 201 and a movable robot 202 work adjacent to each other.
  • the motion plan holding unit 101, the work area generation unit 102, the area expression adjustment unit 103, and the overlay unit 106 are implemented as electronic circuits of the motion space presentation device 100.
  • the imaging unit 104 and the display unit 107 are mounted on the surface of the operation space presentation device 100.
  • the position / orientation detection unit 105 detects the imaging position and the imaging direction of the imaging unit 104 by using a sensing device mounted on the operation space presentation device 100 and a sensing device mounted in the work environment.
  • a sensing device mounted on the operation space presentation device 100 and a sensing device mounted in the work environment.
  • a plurality of position sensing devices 204 are installed on the ceiling, and a plurality of posture sensing devices 205 are installed on the floor.
  • FIG. 3 is a diagram showing an appearance of the action space presentation device 100 shown in FIG.
  • the motion space presentation device 100 is configured as a display terminal including a camera 301 that captures an image of the real world and a display screen 302 that displays an image in which a three-dimensional region is superimposed on the real world.
  • the imaging unit 104 illustrated in FIG. 1 is implemented by a camera 301 or the like.
  • the display unit 107 shown in FIG. 1 is implemented by a display screen 302 or the like.
  • the display screen 302 may be realized in a size that the person 201 can hold in a hand, such as a mobile phone and a PDA (Personal Digital Assistant).
  • the display screen 302 is about the size of a spectacle lens, and may be realized as a head mounted display with an eyepiece.
  • the position sensing device 303 is a position sensing device of the action space presentation device 100, and detects the position of the action space presentation device 100 in the real world in cooperation with the position sensing device 204 on the environment side.
  • the position sensing device 303 of the motion space presentation device 100 and the position sensing device 204 in the work environment realize position detection by, for example, a well-known indoor GPS (Global Positioning System) using UWB (Ultra Wide Band).
  • the posture sensing device 304 is a posture sensing device of the motion space presentation device 100 and detects the posture of the motion space presentation device 100 in cooperation with the posture sensing device 205 in the work environment.
  • the posture sensing device 304 and the environment-side posture sensing device 205 of the motion space presentation device 100 realize posture detection by using, for example, a known three-dimensional tilt sensor using magnetism.
  • the position and orientation of the motion space presentation device 100 can be replaced with the imaging position and imaging direction of the imaging unit 104 shown in FIG.
  • the imaging position means the position of the imaging unit 104 itself.
  • the imaging direction means the direction from the imaging unit 104 to the subject.
  • FIG. 4 is a diagram illustrating an example of display contents of the action space presentation device 100 according to the first embodiment.
  • the person 201 can intuitively grasp the motion space of the movable robot 202 by observing the movable robot 202 via the motion space presentation device 100. For example, when the distance between the person 201 and the movable robot 202 is long, the display content 401 is displayed on the display screen 302. An operation space 402 of the display content 401 is an operation space of the movable robot 202.
  • the display content 403 is displayed on the display screen 302.
  • the operation space 404 of the movable robot 202 is displayed larger than the operation space 402 because the distance between the person 201 and the movable robot 202 is short.
  • the motion space presentation device 100 presents the motion space to the person 201 more clearly by reducing the transparency of the motion space.
  • the overlay unit 106 of the motion space presentation device 100 operates more when the distance from the imaging position to the movable robot 202 is the second length shorter than the first length than when the distance is the first length. Decrease the transparency of the work area image showing the space. Then, the overlay unit 106 superimposes the work area image with reduced transparency and the real world image.
  • FIG. 5 is a diagram showing an example of an operation plan held by the operation plan holding unit 101 shown in FIG.
  • the operation plan 501 shown in FIG. 5 is described in SLIM (Standard Language for Industrial Manipulator) which is a JIS standard industrial robot language. There are various languages for operating robots, from those whose specifications are standardized to those designed for specific robots.
  • the operation plan 501 may be described by a language specification other than SLIM.
  • the present invention can be implemented even in other languages.
  • the operation based on the operation plan 501 is as follows. That is, when the motion plan 501 is executed when the tip of the movable robot 202 is at the spatial position C, the tip of the movable robot 202 moves to the spatial position A with a speed of 100. Next, the tip of the movable robot 202 moves to the spatial position B with the speed being 50, and then moves to the spatial position C. The tip of the movable robot 202 repeats the operation of moving sequentially to the spatial position A, the spatial position B, and the spatial position C ten times.
  • FIG. 6 is a functional block diagram of the work area generation unit 102 shown in FIG.
  • the shape of the movable robot 202 is expressed by approximated line segments, and is stored in the line segment approximate model holding unit 601 as a line segment approximate model (also called a linear approximate model or a piecewise linear approximate model).
  • a line segment approximate model also called a linear approximate model or a piecewise linear approximate model.
  • FIG. 7 is a diagram illustrating an example of a line segment approximation model according to the first embodiment.
  • the actual robot shape 701 is generally not a straight line but a shape that uses many curved surfaces in consideration of safety and weight reduction.
  • the motion space presentation device 100 can more accurately represent the motion space presented to the person 201 by using a mathematical expression that represents a curved surface.
  • the calculation of the shape of the robot based on the mathematical expression expressing the curved surface has a problem that the amount of calculation increases. Therefore, for example, the actual robot shape 701 is converted into an approximate model in advance like a line segment approximate model 702 expressed by a plurality of approximate line segments.
  • the line segment approximation model 702 is an example of a line segment approximation model, and is the smallest polyhedron that can contain the actual robot shape 701.
  • the line segment approximation model 702 is expressed by, for example, an internal format 703 of the line segment approximation model.
  • the internal format 703 of the line segment approximation model is expressed by XML (Extensible Markup Language) as a set of line segments constituting the polyhedron.
  • the line segment is represented by a ⁇ line> tag.
  • the attribute start indicates the start point of the line segment, and the attribute end indicates the end point of the line segment.
  • the attribute attr is “body”
  • the line segment is a line segment constituting the shape of the movable robot 202, and when the attribute attr is traj, it indicates that the line segment is a trajectory of movement.
  • a set of line segments is represented by a ⁇ polygons> tag.
  • three-dimensional coordinate values having units are stored in p1 to p8 of the internal format 703 of the line segment approximation model shown in FIG.
  • the three-dimensional region generation unit 603 samples the operation of the movable robot 202 at a constant time interval ⁇ T, generates a three-dimensional region that is an operation space of the movable robot 202, and outputs it.
  • FIG. 8 is a diagram illustrating an example of the operation of the three-dimensional region generation unit 603 illustrated in FIG.
  • the three-dimensional region generation unit 603 sets the start time of the operation plan 501 in the attribute time of the ⁇ polygons> tag.
  • the notation of time is described as [hour]: [minute]: [second].
  • the three-dimensional region internal format 804 shown in FIG. 8 includes p1 (0), p2 (0), p1 ( ⁇ T), p2 ( ⁇ T), p1 (2 ⁇ T), and p2 (2 ⁇ T).
  • a three-dimensional coordinate value having a unit is stored.
  • the region representation adjustment unit 103 processes the shape of the three-dimensional region output from the work region generation unit 102 or the texture of the two-dimensional plane constituting the three-dimensional region.
  • FIG. 9 is a diagram illustrating an example in which the region expression adjustment unit 103 changes the color of the two-dimensional plane that forms the three-dimensional region according to the operation speed of the movable robot 202.
  • the line segments that represent the three-dimensional area form a polygon having the line segments as sides.
  • the ⁇ polygon> tag in the internal format 903 of the three-dimensional area indicates a polygon.
  • the value of the attribute “start” indicates a relative time when the movable robot 202 enters the two-dimensional plane.
  • the value of the attribute end indicates a relative time when the movable robot 202 leaves the two-dimensional plane.
  • the internal format 903 of the three-dimensional region shown in FIG. 9 includes a two-dimensional plane 901 formed by the operation from time 0 to ⁇ T, and a two-dimensional plane formed by the operation from time ⁇ T to 2 ⁇ T. And 902.
  • a line segment generated by the movement trajectory is represented by a ⁇ line> tag whose attr attribute value is traj. Further, the length of the line segment generated by the movement trajectory is proportional to the operation speed.
  • the color of the two-dimensional plane 901 including the trajectory indicating the fast motion is red
  • the value of the attribute color of the ⁇ polygon> tag is red
  • the color of the two-dimensional plane 902 including the trajectory indicating the slow motion is yellow
  • the value of the attribute color of the ⁇ polygon> tag is yellow.
  • the overlay unit 106 extracts a three-dimensional region used by the movable robot 202 after the current time from the three-dimensional region processed by the region representation adjustment unit 103. More specifically, the overlay unit 106 calculates the current relative time with the time when the movable robot 202 starts to move as the relative time 00:00:00. Then, only the three-dimensional region in which the value of the attribute time of the ⁇ polygons> tag is after the current relative time is extracted.
  • the overlay unit 106 superimposes a three-dimensional region, which is an operation space of the movable robot 202, on a real-world image captured by the camera 301 as a translucent texture.
  • FIG. 10 is a diagram illustrating an example in which the overlay unit 106 superimposes an image obtained when the three-dimensional region is viewed from the imaging position toward the imaging direction on the actual image captured by the camera 301.
  • the position of the movable robot 202 is known.
  • the imaging position and imaging direction of the imaging unit 104 in the real world are traced by the position and orientation detection unit 105.
  • the specifications of the camera 301 (lens focal length, image sensor shape) are known.
  • a determinant for converting the operation space of the movable robot 202 into an image when viewed from the imaging position of the imaging unit 104 toward the imaging direction is calculated by processing of CG (Computer Graphics). That is, a determinant for converting the world coordinate system (Xw, Yw, Zw) to the display coordinate system (xc, yc) is calculated.
  • the overlay unit 106 projects a three-dimensional region onto a two-dimensional plane using this determinant and superimposes it on a real image including the movable robot 202.
  • the transparency when superimposing is set to a value proportional to the distance calculated from the imaging position and the position of the movable robot 202.
  • the distance between the person 201 and the movable robot 202 approximates the distance between the imaging position and the movable robot 202 and the distance between the motion space presentation device 100 and the movable robot 202.
  • the world coordinates Pr of the movable robot 202 are known.
  • the overlay unit 106 can superimpose the image of the three-dimensional region on the actual image according to the calculated distance.
  • the motion space presentation device 100 presents a motion space as shown in FIG. Thereby, the person 201 can perceive the movement space of the movable robot 202 in a three-dimensional and intuitive manner, and can avoid dangers such as a collision.
  • the person 201 can effectively use the motion space by perceiving a three-dimensional region that is within the movable range of the movable robot 202 but is not currently used.
  • Embodiment 2 Next, a second embodiment will be described. Description of the same parts as those in Embodiment 1 is omitted.
  • the motion space presentation device according to the second embodiment includes the same components as those of the motion space presentation device 100 according to the first embodiment shown in FIG.
  • FIG. 12 is a diagram illustrating an example of the operation of the region expression adjustment unit according to the second embodiment.
  • the region expression adjustment unit 103 changes the color indicating the three-dimensional region.
  • the region representation adjustment unit 103 copies based on the internal format of the two-dimensional plane 1201 constituting the three-dimensional region.
  • the region representation adjustment unit 103 changes the internal format 1202 of the three-dimensional region by setting the base two-dimensional plane color to red and the copied two-dimensional plane color to yellow.
  • the operation space presentation device 100 can display the operation space in different colors.
  • FIG. 13 is a diagram illustrating an example of an operation space displayed on the operation space presentation device 100 according to the second embodiment.
  • the motion space presentation device 100 displays an image as the display content 1301 at a position far from the movable robot 202 and enlarges and displays the image as a display content 1302 at a position near the movable robot 202. Further, when the motion space presentation device 100 approaches the movable robot 202, the three-dimensional area is displayed as a display content 1303 with a different color.
  • the distance between the person 201 and the movable robot 202 can be calculated.
  • the overlay unit 106 superimposes three-dimensional Change the color of the area to red.
  • the overlay unit 106 changes the color of the three-dimensional region to be superimposed to yellow.
  • the person 201 can perceive the distance between the person 201 and the operation space of the movable robot 202 by color, and can more intuitively understand the operation space of the movable robot 202.
  • the action space presentation device in the third embodiment includes the same components as those of the action space presentation device 100 in the first embodiment shown in FIG.
  • the movable robot 202 operates according to a plurality of operation modes determined by the operation plan.
  • the action space presentation device 100 changes the expression format of the action space according to the action mode.
  • FIG. 14 is a diagram illustrating an example of an operation plan of the operation plan holding unit 101 according to the third embodiment.
  • the area representation adjustment unit 103 changes the color of the three-dimensional area by switching the operation mode of the movable robot 202.
  • the movable robot 202 has two operation modes and executes the operation mode 2 after the operation mode 1 is executed.
  • FIG. 15 is a diagram illustrating an example of the operation of the region expression adjustment unit 103 according to the third embodiment.
  • each three-dimensional region is generated according to each operation mode.
  • the three-dimensional region of the operation mode 1 is set to yellow, and the attribute color of the ⁇ polygons> tag corresponding to the operation mode 1 is set to yellow.
  • the three-dimensional area of the operation mode 2 is set to green, and the attribute color of the ⁇ polygons> tag corresponding to the operation mode 2 is set to green.
  • the color of the three-dimensional area is changed.
  • the relative time at which the operation in each operation mode starts is stored with the time at which the entire operation starts as 00:00:00. More specifically, this relative time is stored as the value of the attribute time of the ⁇ polygons> tag.
  • FIG. 16 is a diagram illustrating an example of an operation space displayed on the operation space presentation device 100 according to the third embodiment.
  • the three-dimensional area of the current motion mode is displayed in yellow, and the three-dimensional area of the next motion mode is displayed. Is displayed in green.
  • the motion space presentation device 100 can call attention to the person 201 so as not to approach the motion space of the current motion mode. Moreover, the motion space presentation device 100 can notify the person 201 that the danger is approaching the motion space of the next motion mode.
  • FIG. 17 is a diagram illustrating a first modification of the motion space displayed on the motion space presentation device 100 according to the third embodiment.
  • the overlay unit 106 After projecting the three-dimensional region onto the two-dimensional plane, the overlay unit 106 acquires a numerical value indicating the order of the operation mode from the attribute mode of the ⁇ polygons> tag. The overlay unit 106 further superimposes a numerical value 1701 indicating the order of the current operation mode and a numerical value 1702 indicating the order of the next operation mode on the two-dimensional plane. This makes it easier for the person 201 to understand the order in which the operation space transitions.
  • FIG. 18 is a diagram illustrating a second modification of the motion space displayed on the motion space presentation device 100 according to the third embodiment.
  • the overlay unit 106 After projecting the three-dimensional region onto the two-dimensional plane, the overlay unit 106 acquires the start time of the next operation mode from the attribute time of the ⁇ polygons> tag. Then, the overlay unit 106 superimposes the difference between the current time and the start time of the next operation mode on the two-dimensional plane as the time required until the current operation mode ends. This makes it easier for the person 201 to know the time at which the operation space transitions.
  • the required time 1801 until the end of the operation mode 1 is displayed on the operation space presentation device 100 at the relative time 00:00:00 from the operation start time of the movable robot 202. Further, at the relative time 00:05:30, a required time 1802 until the end of the operation mode 1 is displayed.
  • the region representation adjustment unit 103 changes the representation form of the two-dimensional plane that configures the three-dimensional region according to the difference of modes divided in the operation plan. Then, the overlay unit 106 superimposes the execution order and the scheduled end time on the real image or the image of the three-dimensional region.
  • the position where the execution order and the scheduled end time are superimposed may be either a real image or a three-dimensional region image.
  • the execution order may be superimposed in the vicinity of an image indicating an operation space corresponding to the operation mode.
  • the action space presentation device in the fourth embodiment includes the same components as those of the action space presentation device 100 in the first embodiment shown in FIG.
  • FIG. 19 is a diagram illustrating an example of the operation of the region expression adjustment unit 103 according to the fourth embodiment.
  • the area representation adjustment unit 103 processes the shape of the three-dimensional area output from the work area generation unit 102 or the texture of the two-dimensional plane constituting the three-dimensional area.
  • FIG. 19 shows an example in which the area representation adjustment unit 103 changes the color of the two-dimensional plane that constitutes the three-dimensional area according to the operation speed of the movable robot 202.
  • the internal format 1903 of the three-dimensional region shown in FIG. 19 includes a two-dimensional plane 1901 formed by an operation from time 0 to ⁇ T and a two-dimensional plane formed by an operation from time ⁇ T to 2 ⁇ T. 1902.
  • a line segment generated by the movement trajectory is represented by a ⁇ line> tag whose attr attribute value is traj. Further, the length of the line segment generated by the movement trajectory is proportional to the operation speed.
  • the color of the two-dimensional plane 1901 including the trajectory indicating the fast motion is red
  • the value of the attribute color of the ⁇ polygon> tag is red
  • the color of the two-dimensional plane 1902 including the trajectory indicating the slow motion is yellow
  • the value of the attribute color of the ⁇ polygon> tag is yellow.
  • the area representation adjustment unit 103 calculates a unit normal vector of each two-dimensional plane and adds it to the polygon attribute.
  • the added unit normal vector is stored in the attribute norm of the ⁇ polygon> tag in the internal format 1903 of the three-dimensional region.
  • three-dimensional coordinate values having units are described in n1 and n2 of the internal format 1903 of the three-dimensional area shown in FIG.
  • the overlay unit 106 calculates an angle ⁇ ij formed by all adjacent two-dimensional planes i and j of the three-dimensional region output by the region representation adjustment unit 103. Then, the overlay unit 106 calculates the number n of angles ( ⁇ ij ⁇ th) where ⁇ ij is smaller than a preset threshold value ⁇ th. Then, the overlay unit 106 calculates the value of n ( ⁇ ij ⁇ th) / n ( ⁇ ij) using the number n ( ⁇ ij) of all the corners including other corners.
  • the overlay unit 106 determines whether the three-dimensional region output from the region representation adjustment unit 103 is undulated. Judged to be small and smooth. When the three-dimensional region is not smooth, or when the distance between the person 201 and the movable robot 202 is equal to or greater than a predetermined threshold value dth, the overlay unit 106 superimposes the three-dimensional region output by the region expression adjustment unit 103.
  • the overlay unit 106 changes the shape of the movable robot 202 approximated to a line segment to a two-dimensional plane. Superimpose on.
  • n ( ⁇ ij) 12 is established.
  • the overlay unit 106 calculates the angle ⁇ ij formed by each two-dimensional plane by applying an inverse cosine function to the inner product of the normal vectors.
  • the angle 2007 formed by the two-dimensional plane 2001 and the two-dimensional plane 2003 is ⁇ .
  • n ( ⁇ ij ⁇ th) 4
  • the overlay unit 106 determines that the three-dimensional region is smooth. Therefore, when the distance between the person 201 and the movable robot 202 is less than a predetermined threshold value dth, the overlay unit 106 forms the shape of the movable robot 202 approximated by a line segment from the three-dimensional region output from the region representation adjustment unit 103. Is extracted and superimposed on a two-dimensional plane.
  • the extraction of the shape of the movable robot 202 approximated to the line segment is realized as follows. That is, first, the overlay unit 106 calculates the current relative time by setting the time when the movable robot 202 starts to operate as the relative time 00:00:00. Next, the overlay unit 106 selects a line segment ( ⁇ line> tag) in which the value of the attribute time of the ⁇ polygons> tag includes only a specific time after the current relative time (for example, a time after ⁇ T has elapsed). Extract. Thereafter, the overlay unit 106 reconstructs the two-dimensional plane constituting the line segment approximation model 702 by determining the connection relation of the line segments from the matching points.
  • the overlay unit 106 may reconstruct a two-dimensional plane constituting a plurality of line segment approximation models by extracting line segments at a plurality of times.
  • the overlay unit 106 superimposes an image and a real image when the line segment approximation model 702 is viewed from the imaging position of the imaging unit 104 in the imaging direction according to a predetermined condition.
  • FIG. 21 is a diagram illustrating an example of an operation space displayed on the operation space presentation device 100 according to the fourth embodiment.
  • the operation space presentation device 100 When the operation space presentation device 100 is far from the movable robot 202, the operation space presentation device 100 displays an image like the display content 2101. When the action space presentation device 100 is close to the movable robot 202, the operation space presentation device 100 enlarges and displays the image as in the display content 2102.
  • the motion space presentation device 100 when the motion space presentation device 100 is closer to the movable robot 202 and the surface of the three-dimensional region is smooth, it becomes difficult for the person 201 to intuitively perceive the motion space. Therefore, the motion space presentation device 100 automatically switches to a display indicating the shape of the movable robot 202 approximated to a line segment. Then, the operation space presentation device 100 displays an image like the display content 2103. As a result, the person 201 can grasp the operation space of the movable robot 202 more intuitively.
  • the distance between the person 201 and the movable robot 202 can be calculated.
  • the overlay unit 106 superimposes either the line segment approximate model image or the three-dimensional region image on the actual image according to the smoothness and the distance. Depending on at least one of them, either the image of the line segment approximation model or the image of the three-dimensional region may be superimposed on the actual image.
  • the overlay unit 106 may determine whether to superimpose the image of the line segment approximation model or the image of the three-dimensional region according to only the smoothness of the three-dimensional region. In this case, the overlay unit 106 superimposes the image of the line segment approximation model on the real image when evaluating that the three-dimensional region is smooth, and superimposes the image of the three-dimensional region on the real image when evaluating that the three-dimensional region is not smooth. May be.
  • the overlay unit 106 may determine which of the image of the line segment approximate model and the image of the three-dimensional region is to be superimposed according to only the distance between the imaging position and the movable robot 202. In this case, when the distance between the imaging position and the position of the movable robot 202 satisfies a predetermined condition, the overlay unit 106 superimposes an image of a line segment approximation model on the actual image, and the imaging position and the position of the movable robot 202 When the distance between and does not satisfy a predetermined condition, an image of a three-dimensional region may be superimposed on the actual image.
  • the overlay unit 106 may superimpose either the image of the line segment approximation model or the image of the three-dimensional region on the actual image by a separate switching unit.
  • the area representation adjustment unit 103 calculates the unit normal vector of each two-dimensional plane, but the work area generation unit 102 may calculate the unit normal vector.
  • the overlay unit 106 can evaluate the smoothness of the three-dimensional area and can selectively superimpose a line segment approximation model or an image of the three-dimensional area on the actual image.
  • FIG. 22 is a functional block diagram of the motion space presentation device according to the fifth embodiment.
  • the position / orientation detection unit 2205 detects the imaging position and imaging direction of the imaging unit 104 from the real world image captured by the imaging unit 104.
  • FIG. 23 is a diagram showing a usage state of the action space presentation device 2200 shown in FIG.
  • the motion space presentation device 2200 is used in an environment where a person 201 and a movable robot 202 work adjacent to each other.
  • the motion plan holding unit 101, the work area generation unit 102, the region expression adjustment unit 103, the position / orientation detection unit 2205, and the overlay unit 106 are implemented as electronic circuits of the motion space presentation device 2200.
  • the imaging unit 104 and the display unit 107 are mounted on the surface of the action space presentation device 2200.
  • the visual tag 2304 is used when the position / orientation detection unit 2205 detects an imaging position and an imaging direction.
  • FIG. 24 is a diagram showing an appearance of the action space presentation device 2200 shown in FIG.
  • the motion space presentation device 2200 includes a camera 301 that images the real world and a display screen 302 that displays an image in which a three-dimensional region is superimposed on the real world.
  • the display screen 302 may be realized by a size that the person 201 can hold in the hand, such as a mobile phone and a PDA (Personal Digital Assistant).
  • the display screen 302 is about the size of a spectacle lens, and may be realized as a head mounted display with an eyepiece.
  • the visual tag 2304 is imaged by the imaging unit 104 and displayed on the display screen 302.
  • the position / orientation detection unit 2205 detects the imaging position and imaging direction of the imaging unit 104 using the captured visual tag 2304.
  • FIG. 25 is a diagram illustrating an example of the operation of the overlay unit 106 illustrated in FIG.
  • the overlay unit 106 projects a three-dimensional region onto a two-dimensional plane using the visual tag 2304.
  • the visual tag 2304 calibrated in advance is arranged so as to be included in the imaging range of the camera 301.
  • the overlay unit 106 projects the three-dimensional region with a translucent texture on the real-world image captured by the camera 301.
  • image processing such as ARTToolKit
  • the marker coordinate system and the display coordinate system are easily associated by calibration or the like.
  • the overlay unit 106 associates the visual tag 2304 with the marker coordinate system in advance, so that when the visual tag 2304 is imaged, the overlay coordinate system (Xm, Ym, Zm) displays the display coordinate system (xc, The determinant to convert to yc) can be determined.
  • the overlay unit 106 projects the three-dimensional region onto the two-dimensional plane using this determinant and superimposes it on the real-world image.
  • FIG. 26 is a functional block diagram of the motion space presentation device according to the sixth embodiment.
  • the action space presentation device 2600 includes a work area generation unit 2602, an imaging unit 104, a position / orientation detection unit 105, and an overlay unit 2606.
  • the work area generation unit 2602 acquires an operation plan of the movable robot 202 via a communication network, for example. Thus, even without the motion plan holding unit 101 shown in the first embodiment, the work area generation unit 2602 can generate a three-dimensional region according to the motion plan of the movable robot 202.
  • the imaging unit 104 captures a real image. That is, the imaging unit 104 captures a subject and generates a real image.
  • the position / orientation detection unit 105 detects the imaging position and imaging direction of the imaging unit 104.
  • the position and orientation detection unit 105 may use the visual tag 2304 shown in the fifth embodiment in order to detect the imaging position and the imaging direction.
  • the overlay unit 2606 acquires the three-dimensional region generated by the work region generation unit 2602 and calculates a work region image that is an image when the three-dimensional region is viewed from the imaging position of the imaging unit 104 in the imaging direction. . Then, the calculated work area image and the actual image captured by the imaging unit 104 are superimposed. The superimposed data is output to the outside. The output data is displayed by, for example, an external display unit.
  • the motion space presentation device 2600 displays the motion space of the movable robot 202 in a three-dimensional manner without the motion plan holding unit 101, the region expression adjustment unit 103, and the display unit 107 shown in the first embodiment.
  • Data can be generated.
  • the generated data is displayed, for example, as an image that stereoscopically displays the operation space by an external display unit. Thereby, the person 201 can intuitively perceive the operation space of the movable robot 202.
  • the overlay unit 2606 displays either a line segment approximate model image that is an image obtained when the line segment approximate model of the movable robot 202 is viewed from the image capturing position toward the image capturing direction, or a work area image. May be selectively superimposed depending on the difficulty of seeing the line segment approximate model image or the work area image. For example, the overlay unit 2606 superimposes the line segment approximate model image on the actual image when evaluating that the work area image is difficult to see according to the criterion for evaluating the invisibility. Thereby, data for realizing a more easily understandable display is generated.
  • the overlay unit 2606 makes it difficult to see whether the distance from the imaging position to the movable robot 202 is short, or whether the three-dimensional area generated by the work area generation unit 2602 is smooth. It may be used as a reference for evaluation, and the invisibility may be evaluated.
  • the motion space presentation device can generate data for stereoscopically displaying the motion space of the movable robot generated according to the motion plan.
  • the generated data is displayed as an image for stereoscopically displaying the operation space by the display means. Thereby, the person can intuitively perceive the operation space of the movable robot.
  • the present invention can be realized not only as a motion space presentation device, but also as a method using the processing means constituting the motion space presentation device as a step. And this invention is realizable as a program which makes a computer perform the step contained in those methods. Furthermore, the present invention can be realized as a computer-readable storage medium such as a CD-ROM storing the program.
  • the motion space presentation device can generate data for displaying the motion space in a three-dimensional manner, and is useful for avoiding a collision with a robot in a site that works closely with a robot such as a cell production site. is there. Moreover, the motion space presentation device according to the present invention can be applied as a tool for presenting the motion of the robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)
  • Manipulator (AREA)

Abstract

 可動ロボットの動作空間を立体的に表示するためのデータを生成する動作空間提示装置を提供する。動作空間提示装置は、可動ロボットの動作空間を提示するためのデータを生成する動作空間提示装置であって、可動ロボットが動作する三次元領域を生成する作業領域生成部(102)と、実画像を撮像する撮像部(104)と、撮像部(104)の撮像位置と撮像方向とを検出する位置姿勢検出部(105)と、撮像部(104)により撮像された実画像に、可動ロボットの線分近似モデルを撮像位置から撮像方向に向かって見たときの像と、三次元領域を撮像位置から撮像方向に向かって見たときの像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイ部(106)とを備える。

Description

動作空間提示装置、動作空間提示方法およびプログラム
 本発明は、動作計画に従って動作する可動ロボットの動作空間を提示するためのデータを生成する動作空間提示装置および動作空間提示方法に関する。
 従来のロボットは、人の立ち入りが禁止されたロボット専用の動作空間が十分に与えられていた。しかし近年では、家事支援ロボット、および、双碗型のセル生産向けロボットなど、人と空間を共有しながらタスクを実行するロボットが増えつつある。
 このようなロボットに隣接して人が作業を行う場合、人がロボットの動作空間を適切に知覚しなければ、人は、ロボットと接触して負傷する場合がある。人が負傷しなかったとしても、ロボットの緊急停止により、アイドリング時間が増加したり、あるいは、ロボットによって実行されているタスクが失敗したりすることになる。
 このような支障を回避するため、例えば、特許文献1に示された移動ロボットは、移動ロボットが移動する路面上に危険範囲を投影する。これにより、移動ロボットは、危険範囲を提示し、円滑な動作を実現する。
 図27は、特許文献1に示された移動ロボットの概要を示す図である。
 動作計画部9902は、移動ロボット9901の動作内容を決定する。
 動作制御部9903は、決定された動作内容、および、エンコーダ9908により計測された車輪9906の情報に基づいて、車輪9906を駆動するための情報を算出する。駆動部9904は、算出された情報に基づいて、車輪9906を駆動する。また、動作制御部9903は、決定された動作内容、および、エンコーダ9909により計測された腕部9907の情報に基づいて、腕部9907を駆動するための情報を算出する。駆動部9905は、算出された情報に従って、腕部9907を駆動する。
 これにより、移動ロボット9901は移動し、また、腕部9907を動作させる。表示制御部9910は、決定された動作内容に基づいて、移動および動作する可能性のある危険範囲を決定する。プロジェクタ9911は、移動ロボット9901が移動する路面上に、決定された危険範囲を投影する。これにより、移動ロボット9901は、危険範囲を提示し、円滑な動作を実現する。
特開2009-123045号公報
 しかしながら、特許文献1に示された移動ロボットは、どの高さが危険範囲であるかを提示できない。
 例えば、アームロボットの場合、アームロボットがプロジェクタによって利用する範囲をアームロボットの設置面に投影するだけでは、どの高さがアームロボットにより利用されるかを判断することが困難である。仮に、アームロボットが設置面から60cm以上の部分しか動作空間として使用しない場合であっても、特許文献1に示された方法では、高さ方向のすべてが動作空間として判断される。したがって、アームロボットが動作空間として使用しない空間も、利用不可能な空間となる。
 また、アームロボットが高速で動作する場合、プロジェクタによってアームロボットの設置面に投影される像も高速で移動する。さらに、プロジェクタが投影する接地面が曲面などの場合は投影された像が変形し、動作空間が誤って判断される可能性もある。
 したがって、設置面に投影される像により、アームロボットの動作空間全体を直感的に判断することは困難である。そこで、本発明は、ロボットの動作空間を立体的に表示するためのデータを生成する動作空間提示装置を提供することを目的とする。
 上記課題を解決するため、本発明に係る動作空間提示装置は、可動ロボットの動作空間を提示するためのデータを生成する動作空間提示装置であって、前記可動ロボットが動作する三次元領域を生成する作業領域生成部と、実画像を撮像する撮像部と、前記撮像部の位置である撮像位置と、前記撮像部の撮像方向と、を検出する位置姿勢検出部と、前記撮像部により撮像された前記実画像に、前記可動ロボットの線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である線分近似モデル像と、前記三次元領域を前記撮像位置から前記撮像方向に向かって見たときの像である作業領域像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイ部とを備える。
 これにより、動作空間提示装置は、動作計画に従って動作する可動ロボットの動作空間を立体的に表示するためのデータを生成することができる。また、見えにくさに基づく選択的な重畳によって、表示に適切なデータが生成される。
 また、前記オーバレイ部は、前記見えにくさを評価するための基準に従って前記作業領域像が見えにくいと評価するとき、前記実画像に前記線分近似モデル像を重畳してもよい。
 これにより、作業領域像が見えにくいときに線分近似モデル像が重畳される。したがって、表示に適切なデータが生成される。
 また、前記作業領域生成部は、前記可動ロボットの前記線分近似モデルを保持する線分近似モデル保持部と、前記可動ロボットを動作させるための動作計画に従って、仮想空間内で、前記線分近似モデルを動作させる動作シミュレータと、前記動作シミュレータが前記線分近似モデルを動作させた結果から、前記可動ロボットが動作する前記三次元領域を生成する三次元領域生成部とを備えてもよい。
 これにより、動作空間提示装置は、可動ロボットの線分近似モデルを用いて、可動ロボットの動作空間である三次元領域を生成する。よって、動作空間提示装置は、演算処理を削減できる。
 また、前記オーバレイ部は、前記三次元領域の滑らかさと、前記撮像位置から前記可動ロボットの位置までの距離と、の少なくとも一方に応じて、前記実画像に、前記動作シミュレータが動作させた前記線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である前記線分近似モデル像と、前記作業領域像と、のいずれかを重畳してもよい。
 これにより、動作空間提示装置は、滑らかさまたは距離に応じて、より知覚しやすい形態を表現できる。
 また、前記オーバレイ部は、前記三次元領域が滑らかであると評価するとき、前記実画像に前記線分近似モデル像を重畳し、前記三次元領域が滑らかでないと評価するとき、前記実画像に前記作業領域像を重畳してもよい。
 これにより、動作空間が滑らかでわかりにくい場合、より知覚しやすい表示をするために、線分近似モデルが用いられる。
 また、前記オーバレイ部は、前記撮像位置から前記可動ロボットの位置までの距離が予め定められた条件を満たすとき、前記実画像に前記線分近似モデル像を重畳し、前記撮像位置から前記可動ロボットの位置までの距離が前記予め定められた条件を満たさないとき、前記実画像に前記作業領域像を重畳してもよい。
 これにより、撮像部から動作空間までの距離が近すぎてわかりにくい場合、より知覚しやすい表示をするために、線分近似モデルが用いられる。
 また、前記動作空間提示装置は、さらに、前記作業領域生成部により生成された前記三次元領域の表現形式を変更する領域表現調整部を備えてもよい。
 これにより、動作空間の表現形式が、よりわかりやすい表現形式に変更される。
 また、前記領域表現調整部は、前記可動ロボットが前記動作計画に従って前記三次元領域を動作する単位時間当たりの移動量によって、前記三次元領域を構成する二次元平面の表現形式を変更してもよい。
 これにより、速度に基づいて、動作空間の表現形式が変更される。例えば、動作空間提示装置は、速度が速い部分について、より危険が高いことを表現できる。
 また、前記領域表現調整部は、前記動作計画において区分されるモードの違いにより前記三次元領域を構成する二次元平面の表現形式を変更してもよい。
 これにより、動作空間提示装置は、モード毎の動作空間を表現できる。
 また、前記オーバレイ部は、さらに、前記モードの実行順序であって、前記動作計画に従って決定される前記実行順序を前記作業領域像と前記実画像とのうち少なくとも一方に重畳してもよい。
 これにより、動作空間提示装置は、モード毎に動作空間が利用される順序を表現できる。
 また、前記オーバレイ部は、さらに、現在実行中の前記モードの終了予定時間を前記作業領域像と前記実画像とのうち少なくとも一方に重畳してもよい。
 これにより、動作空間提示装置は、現在実行中のモードにより利用される動作空間以外の空間が、終了予定時間まで、利用可能であることを表現できる。
 また、前記オーバレイ部は、前記撮像位置から前記可動ロボットの位置までの距離が第1の長さよりも短い第2の長さであるとき、前記撮像位置から前記可動ロボットの位置までの距離が前記第1の長さであるときよりも前記作業領域像の透明度を下げて、前記実画像に前記作業領域像を重畳してもよい。
 これにより、動作空間提示装置は、動作空間までの近さを表現できる。また、動作空間提示装置は、透明度を下げることにより、危険が近づいていることを表現できる。
 また、前記作業領域生成部は、前記三次元領域において前記可動ロボットが動作する領域と、前記三次元領域において前記可動ロボットが動作する時刻と、を対応づけて前記三次元領域を生成し、前記オーバレイ部は、前記三次元領域から現在時刻以降に前記可動ロボットが動作する前記領域を抽出し、前記実画像に、抽出された前記領域を前記撮像位置から前記撮像方向に向かって見たときの像を、前記作業領域像として、重畳してもよい。
 これにより、動作空間提示装置は、可動ロボットの動作空間である、動作計画に基づく三次元領域を、予め生成しておくことができる。よって、動作空間提示装置は、重畳するときの演算処理を削減することができる。
 また、前記位置姿勢検出部は、前記撮像部によって撮像された、位置を示すビジュアルタグにより、前記撮像位置と前記撮像方向とを検出してもよい。
 これにより、動作空間提示装置は、位置センシングデバイスおよび姿勢センシングデバイスによることなく、撮像部の撮像位置および撮像方向を検出できる。
 また、前記動作空間提示装置は、さらに、前記撮像部と一緒に移動する表示部を備え、前記表示部は、前記オーバレイ部により前記実画像に重畳された前記作業領域像を表示してもよい。
 これにより、動作空間提示装置は、外部の表示手段によることなく、重畳された画像を表示できる。また、撮像部と表示部とが一緒に移動することにより、表示部に画像が違和感無く表示される。
 また、前記動作空間提示装置は、さらに、前記可動ロボットを動作させるための動作計画を保持する動作計画保持部を備え、前記作業領域生成部は、前記三次元領域を、前記動作計画保持部により保持された前記動作計画に従って生成してもよい。
 これにより、動作空間提示装置は、ネットワーク等の通信手段によることなく、可動ロボットの動作計画を取得できる。
 また、本発明に係る動作空間提示方法は、可動ロボットの動作空間を提示するためのデータを生成する動作空間提示方法であって、前記可動ロボットが動作する三次元領域を生成する作業領域生成ステップと、実画像を撮像する撮像部の位置である撮像位置と、前記撮像部の撮像方向と、を検出する位置姿勢検出ステップと、前記撮像部により撮像された前記実画像に、前記可動ロボットの線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である線分近似モデル像と、前記三次元領域を前記撮像位置から前記撮像方向に向かって見たときの像である作業領域像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイステップとを含む動作空間提示方法であってもよい。
 これにより、動作計画に従って動作する可動ロボットの動作空間を立体的に表示するためのデータが生成される。また、見えにくさに基づく選択的な重畳によって、表示に適切なデータが生成される。
 また、本発明に係るプログラムは、可動ロボットの動作空間を提示するためのデータを生成するプログラムであって、前記可動ロボットが動作する三次元領域を生成する作業領域生成ステップと、実画像を撮像する撮像部の位置である撮像位置と、前記撮像部の撮像方向と、を検出する位置姿勢検出ステップと、前記撮像部により撮像された前記実画像に、前記可動ロボットの線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である線分近似モデル像と、前記三次元領域を前記撮像位置から前記撮像方向に向かって見たときの像である作業領域像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイステップとをコンピュータに実行させるためのプログラムであってもよい。
 これにより、前記動作空間提示方法がプログラムとして実現される。
 本発明により、ロボットの動作空間を立体的に表示するためのデータを生成することができる。
図1は、実施の形態1における動作空間提示装置の機能ブロック図である。 図2は、実施の形態1における動作空間提示装置の利用状態を示す図である。 図3は、実施の形態1における動作空間提示装置の外観を示す図である。 図4は、実施の形態1における動作空間提示装置の表示内容の一例を示す図である。 図5は、実施の形態1における動作計画保持部の動作計画の一例を示す図である。 図6は、実施の形態1における作業領域生成部の機能ブロック図である。 図7は、実施の形態1における線分近似モデルの一例を示す図である。 図8は、実施の形態1における三次元領域生成部の動作の一例を示す図である。 図9は、実施の形態1における領域表現調整部の動作の一例を示す図である。 図10は、実施の形態1におけるオーバレイ部の動作の一例を示す図である。 図11は、実施の形態1における動作空間提示装置に表示される動作空間の一例を示す図である。 図12は、実施の形態2における領域表現調整部の動作の一例を示す図である。 図13は、実施の形態2における動作空間提示装置に表示される動作空間の一例を示す図である。 図14は、実施の形態3における動作計画保持部の動作計画の一例を示す図である。 図15は、実施の形態3における領域表現調整部の動作の一例を示す図である。 図16は、実施の形態3における動作空間提示装置に表示される動作空間の一例を示す図である。 図17は、実施の形態3における動作空間提示装置に表示される動作空間の第1の変形例を示す図である。 図18は、実施の形態3における動作空間提示装置に表示される動作空間の第2の変形例を示す図である。 図19は、実施の形態4における領域表現調整部の動作の一例を示す図である。 図20は、実施の形態4における三次元領域の一例を示す図である。 図21は、実施の形態4における動作空間提示装置に表示される動作空間の一例を示す図である。 図22は、実施の形態5における動作空間提示装置の機能ブロック図である。 図23は、実施の形態5における動作空間提示装置の利用状態を示す図である。 図24は、実施の形態5における動作空間提示装置の外観を示す図である。 図25は、実施の形態5におけるオーバレイ部の動作の一例を示す図である。 図26は、実施の形態6における動作空間提示装置の機能ブロック図である。 図27は、従来技術における危険範囲を提示する装置の機能ブロック図を示す図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、実施の形態1における動作空間提示装置の機能ブロック図である。
 図1の動作計画保持部101は、アームロボットなどの可動ロボットの動作計画を保持する。作業領域生成部102は、動作計画保持部101により保持された動作計画から、可動ロボットの動作空間である三次元領域を生成する。領域表現調整部103は、生成された三次元領域を人が知覚しやすいように変形または三次元領域を構成する二次元平面のテクスチャを加工する。
 撮像部104は、実世界画像を撮像する。位置姿勢検出部105は、撮像部104の実世界における位置と姿勢を検出する。オーバレイ部106は、領域表現調整部103により出力された三次元領域から、現在時刻以降に可動ロボットが使用する三次元領域を抽出し、撮像部104の視点を用いて実世界画像の二次元平面に重畳する。表示部107は、人が三次元領域を確認するための表示手段である。
 作業領域生成部102と領域表現調整部103は、可動ロボットが動作を開始するまでに処理を完了する。可動ロボットが動作を開始した後、オーバレイ部106は、撮像部104の位置および姿勢と、可動ロボットの動作の経過時間と、に応じて、可動ロボットの動作空間に相当する三次元領域を表示部107に表示する。これにより、動作空間提示装置100は、可動ロボットの動作空間を人に提示する。なお、作業領域生成部102と領域表現調整部103は、可動ロボットの動作と並行して、処理を行ってもよい。
 図2は、図1に示された動作空間提示装置100の利用状態を示す図である。
 動作空間提示装置100は、人201と可動ロボット202が隣接して作業を行う環境において利用される。動作計画保持部101、作業領域生成部102、領域表現調整部103およびオーバレイ部106は、動作空間提示装置100の電子回路として実装されている。撮像部104および表示部107は動作空間提示装置100の表面に実装されている。
 また、位置姿勢検出部105は、動作空間提示装置100に実装されたセンシングデバイスと、作業環境内に実装されたセンシングデバイスとによって、撮像部104の撮像位置および撮像方向を検出する。実施の形態1では、作業環境内のセンシングデバイスとして、天井に複数の位置センシングデバイス204が設置され、床に複数の姿勢センシングデバイス205が設置されている。
 図3は、図1に示された動作空間提示装置100の外観を示す図である。
 動作空間提示装置100は、現実世界を撮像するカメラ301と、現実世界に三次元領域が重畳された画像を表示する表示画面302とを備える表示端末として構成される。図1に示された撮像部104は、カメラ301等により実装される。また、図1に示された表示部107は、表示画面302等により実装される。
 表示画面302は、携帯電話およびPDA(Personal Digital Assistant)等のように、人201が手に持つことができる大きさで実現してもよい。また、表示画面302は、眼鏡レンズ程度の大きさであって、接眼レンズを付けてヘッドマウントディスプレイとして実現してもよい。
 位置センシングデバイス303は、動作空間提示装置100の位置センシングデバイスであり、環境側の位置センシングデバイス204と連携して動作空間提示装置100の実世界における位置を検出する。動作空間提示装置100の位置センシングデバイス303と作業環境内の位置センシングデバイス204は、例えばUWB(Ultra Wide Band)を利用した公知の屋内GPS(Global Positioning System)などにより位置の検出を実現する。
 また、姿勢センシングデバイス304は、動作空間提示装置100の姿勢センシングデバイスであり、作業環境内の姿勢センシングデバイス205と連携して動作空間提示装置100の姿勢を検出する。動作空間提示装置100の姿勢センシングデバイス304と環境側の姿勢センシングデバイス205は、例えば、磁気を利用した公知の三次元傾きセンサを利用することにより姿勢検出を実現する。
 なお、動作空間提示装置100と撮像部104とは一体であるため、動作空間提示装置100の位置および姿勢は、図1に示された撮像部104の撮像位置および撮像方向に置き換え可能である。ここで、撮像位置は、撮像部104自体の位置を意味する。また、撮像方向は、撮像部104から被写体への方向を意味する。
 図4は、実施の形態1における動作空間提示装置100の表示内容の一例を示す図である。
 人201は、動作空間提示装置100を介して、可動ロボット202を観察することにより、可動ロボット202の動作空間を直感的に把握することができる。例えば、人201と可動ロボット202の距離が遠い場合、表示内容401が表示画面302に表示される。表示内容401の動作空間402は、可動ロボット202の動作空間である。
 また、人201と可動ロボット202の距離が近くなれば、例えば、表示内容403が、表示画面302に表示される。この場合、可動ロボット202の動作空間404は、人201と可動ロボット202の距離が近いため、動作空間402よりも大きく表示される。
 また、さらに距離が近くなれば、例えば、表示内容405が表示画面302に表示される。可動ロボット202の動作空間406は、人201と可動ロボット202の距離がさらに近いため、動作空間404よりも、さらに大きく表示される。ところで、動作空間が大きく表示される場合、人201は動作空間と動作空間以外の空間との区別が困難になる場合がある。そのため、この例では、動作空間提示装置100は、動作空間の透明度を下げることにより、より明確に、動作空間を人201に提示している。
 つまり、動作空間提示装置100のオーバレイ部106は、撮像位置から可動ロボット202までの距離が第1の長さよりも短い第2の長さであるとき、第1の長さであるときよりも動作空間を示す作業領域像の透明度を下げる。そして、オーバレイ部106は、透明度を下げた作業領域像と、現実世界の画像とを重畳する。
 図5は、図1に示された動作計画保持部101により保持される動作計画の一例を示す図である。
 図5に示す動作計画501は、JIS規格の産業用ロボット言語であるSLIM(Standard Language for Industrial Manipulator)によって記述されている。ロボットを操作するための言語は、仕様が標準化されたものから特定のロボット向けに設計されたものまで様々な言語が存在する。動作計画501は、SLIM以外の言語仕様によって記述されていてもよい。他の言語であっても、本発明は、実施可能である。
 動作計画501に基づく動作は、次の通りである。すなわち、可動ロボット202の先端が空間位置Cにある時に動作計画501が実行された場合、可動ロボット202の先端は、速度を100として空間位置Aへ動く。次に、可動ロボット202の先端は、速度を半分の50として空間位置Bへ動き、次に、空間位置Cに動く。可動ロボット202の先端は、空間位置A、空間位置Bおよび空間位置Cへ順次動く動作を10回繰返す。
 図6は、図1に示された作業領域生成部102の機能ブロック図である。可動ロボット202の形状は、近似する線分により表現され、線分近似モデル(線形近似モデルまたは区分線形近似モデルとも呼ばれる)として線分近似モデル保持部601に格納される。
 図7は、実施の形態1における線分近似モデルの一例を示す図である。
 実際のロボットの形状701は、一般的に、直線的ではなく、安全性と軽量化を考慮して曲面を多用した形状である。動作空間提示装置100は、曲面を表現する数式を利用することにより、人201に提示される動作空間をより精密に表現できる。しかし、曲面を表現する数式に基づくロボットの形状の計算には、計算量が増加する問題がある。そのため、例えば、実際のロボットの形状701は、近似する複数の直線の線分によって表現された線分近似モデル702のように、事前に近似モデルに変換される。
 線分近似モデル702は、線分近似モデルの一例であって、実際のロボットの形状701を内包可能な最小の多面体である。線分近似モデル702は、例えば、線分近似モデルの内部形式703によって表現される。線分近似モデルの内部形式703は、多面体を構成する線分の集合として、XML(Extensible Markup Language)により表現される。
 線分近似モデルの内部形式703において、線分は、<line>タグにより表現される。また、属性startは、線分の始点を示し、属性endは、線分の終点を示す。属性attrがbodyの場合、線分が可動ロボット202の形状を構成する線分であることを示し、属性attrがtrajの場合、線分が動作の軌跡であることを示す。また、線分の集合は、<polygons>タグにより表現される。なお、実際には、図7に示された線分近似モデルの内部形式703のp1~p8に、単位を持つ三次元座標値が格納される。
 図6に示された動作シミュレータ602は、動作計画保持部101が保持する動作計画に基づき、線分近似モデル保持部601に保持された線分近似モデルを仮想空間内で動作させる。三次元領域生成部603は、可動ロボット202の動作を一定時間間隔ΔTでサンプリングし、可動ロボット202の動作空間である三次元領域を生成して出力する。
 図8は、図6に示された三次元領域生成部603の動作の一例を示す図である。
 図8に示された線分近似モデル702は、可動ロボット202の一部を構成する。そして、線分近似モデル702は、動作計画501に従って、空間位置A(時刻t=0)から空間位置B(時刻t=2ΔT)に、姿勢の変化を伴いながら動く。
 一般性を失わずに説明を簡単にするため、図8における線分近似モデル702を構成する線分p1-p2に着目する。可動ロボット202が空間位置Aから空間位置Bに移動するのに伴い、線分p1-p2は、空間位置Aの線分801から空間位置Bの線分803へ移動する。ただし、三次元領域生成部603は、一定時間間隔ΔTで動作をサンプリングする。そのため、中間の位置の線分802もサンプリングされる。
 そして、三次元領域の内部形式804に示すように、動作空間を表現する三次元領域が生成される。なお、三次元領域生成部603は、<polygons>タグの属性timeに動作計画501の開始時刻を設定する。以下、時刻の表記は、[時]:[分]:[秒]と記載される。また、実際には、図8に示された三次元領域の内部形式804のp1(0)、p2(0)、p1(ΔT)、p2(ΔT)、p1(2ΔT)およびp2(2ΔT)に、単位を持つ三次元座標値が格納される。
 領域表現調整部103は、作業領域生成部102によって出力される三次元領域の形状または三次元領域を構成する二次元平面のテクスチャを加工する。図9は、領域表現調整部103が可動ロボット202の動作速度によって、三次元領域を構成する二次元平面の色を変化させる例を示す図である。
 三次元領域を表現する線分は、それらの線分を辺とする多角形を形成する。三次元領域の内部形式903の<polygon>タグは、多角形を示す。属性startの値は、可動ロボット202が二次元平面に入る相対時刻を示す。属性endの値は、可動ロボット202が二次元平面から出る相対時刻を示す。また、図9に示された三次元領域の内部形式903は、時刻が0からΔTまでの動作により形成される二次元平面901と、時刻がΔTから2ΔTまでの動作により形成される二次元平面902と、に区分される。
 そして、各二次元平面を構成する線分のうち、移動の軌跡により生成された線分は、attr属性の値がtrajである<line>タグにより表現される。また、移動の軌跡により生成された線分の長さは、動作速度に比例する。
 また、図9に示された例において、速い動作を示す軌跡を含む二次元平面901の色は、赤であり、<polygon>タグの属性colorの値は、redである。遅い動作を示す軌跡を含む二次元平面902の色は、黄色であり、<polygon>タグの属性colorの値は、yellowである。
 オーバレイ部106は、領域表現調整部103によって加工された三次元領域から、現在時刻以降に可動ロボット202が使用する三次元領域を抽出する。より具体的には、オーバレイ部106は、可動ロボット202が動作を開始した時刻を、相対時刻00:00:00として現在の相対時刻を算出する。そして、<polygons>タグの属性timeの値が現在の相対時刻よりも後の三次元領域のみを抽出する。
 オーバレイ部106は、カメラ301で撮像された現実世界の画像に、可動ロボット202の動作空間である三次元領域を半透明のテクスチャとして重畳する。図10は、オーバレイ部106が、カメラ301で撮像された実画像に、三次元領域を撮像位置から撮像方向に向かって見たときの像を重畳する例を示す図である。
 可動ロボット202の位置は、既知である。また、実世界における撮像部104の撮像位置と撮像方向は、位置姿勢検出部105によってトレースされている。カメラ301の仕様(レンズ焦点距離、撮像素子の形状)は、既知である。
 CG(Computer Graphics)の処理により、可動ロボット202の動作空間を撮像部104の撮像位置から撮像方向に向かって見たときの像に変換する行列式が計算される。すなわち、世界座標系(Xw,Yw,Zw)を表示座標系(xc,yc)へ変換する行列式が計算される。オーバレイ部106は、この行列式を用いて三次元領域を二次元平面に射影し、可動ロボット202を含む実画像に重畳する。
 実施の形態1において、重畳する際の透明度は、撮像位置と可動ロボット202の位置とから計算される距離に比例する値に設定される。
 なお、人201と可動ロボット202との距離は、撮像位置と可動ロボット202との距離、および、動作空間提示装置100と可動ロボット202との距離に近似する。そして、図10に示すように可動ロボット202の世界座標Prは、既知である。また、時刻tにおける動作空間提示装置100の世界座標Pd(t)は、位置センシングデバイス204により既知である。したがって、時刻tにおける人201と可動ロボット202との距離d(t)は、d(t)=|Pr-Pd(t)|によって計算される。そして、オーバレイ部106は、計算された距離に応じて、実画像に三次元領域の像を重畳できる。
 このような構成により、図11に示すように、動作空間提示装置100は動作空間を提示する。これにより、人201は、可動ロボット202の動作空間を立体的に、かつ、直感的に知覚することが可能になり、衝突などの危険を回避することが可能になる。
 また、可動ロボット202に近いほど重畳されて表示される動作空間の透明度は低くなるため、人201は動作空間を視覚的に把握することが容易になる。また、人201は、可動ロボット202の可動範囲ではあるが現在は使用されていない三次元領域を知覚することで、動作空間を有効に活用することが可能になる。
 (実施の形態2)
 次に、実施の形態2について説明する。実施の形態1と同じ部分は、記述を省略する。また、実施の形態2における動作空間提示装置は、図1に示された実施の形態1における動作空間提示装置100と同じ構成要素を備える。
 図12は、実施の形態2における領域表現調整部の動作の一例を示す図である。実施の形態2において、領域表現調整部103は、三次元領域を示す色を変化させる。
 まず、領域表現調整部103は、三次元領域を構成する二次元平面1201の内部形式をベースとしてコピーする。次に、領域表現調整部103は、ベースとした二次元平面の色を赤、コピーされた二次元平面の色を黄色に設定することにより、三次元領域の内部形式1202を変更する。これにより、動作空間提示装置100は、異なる色で動作空間を表示できる。
 図13は、実施の形態2における動作空間提示装置100に表示される動作空間の一例を示す図である。動作空間提示装置100は、可動ロボット202から遠い位置において、表示内容1301のように、画像を表示し、可動ロボット202から近い位置において、表示内容1302のように、画像を拡大して表示する。さらに、動作空間提示装置100が可動ロボット202に近づいた場合、三次元領域が、別の色によって表示内容1303のように表示される。
 ここで、実施の形態1に示されたように、人201と可動ロボット202の距離は、算出可能である。例えば、オーバレイ部106は、可動ロボット202の最大到達距離Drを閾値として、時刻tにおける人201と可動ロボット202との距離d(t)がd(t)<=Drの場合、重畳する三次元領域の色を赤色にする。そして、d(t)>Drの場合、オーバレイ部106は、重畳する三次元領域の色を黄色にする。これにより、図13のように三次元領域が表示される。
 したがって、人201は、人201と可動ロボット202の動作空間との距離を色によって知覚し、可動ロボット202の動作空間をより直感的に把握することが可能になる。
 (実施の形態3)
 次に、実施の形態3について説明する。実施の形態1と同じ部分は、記述を省略する。また、実施の形態3における動作空間提示装置は、図1に示された実施の形態1における動作空間提示装置100と同じ構成要素を備える。実施の形態3において、可動ロボット202は、動作計画により定められた複数の動作モードに従って動作する。動作空間提示装置100は、動作モードにより、動作空間の表現形式を変更する。
 図14は、実施の形態3における動作計画保持部101の動作計画の一例を示す図である。領域表現調整部103は、可動ロボット202の動作モードの切り替わりで三次元領域の色を変化させる。実施の形態3において、可動ロボット202は、2つの動作モードを持ち、動作モード1の実行後に動作モード2を実行する。
 図15は、実施の形態3における領域表現調整部103の動作の一例を示す図である。図15に示すように、各動作モードに応じて、それぞれの三次元領域が生成される。そして、動作モード1の三次元領域は、黄色に設定され、動作モード1に対応する<polygons>タグの属性colorはyellowに設定される。そして、動作モード2の三次元領域は、緑色に設定され、動作モード2に対応する<polygons>タグの属性colorはgreenに設定される。これにより、三次元領域の色が変更される。
 また、三次元領域の内部形式1501には、全体の動作が開始する時刻を00:00:00として、各動作モードの動作が開始する相対時刻が格納される。より具体的には、この相対時刻は、<polygons>タグの属性timeの値として格納される。
 図16は、実施の形態3における動作空間提示装置100に表示される動作空間の一例を示す図である。実施の形態3において、人201が動作空間提示装置100を用いて可動ロボット202の動作空間を観察した場合、現在の動作モードの三次元領域が黄色で表示され、次の動作モードの三次元領域が緑色で表示される。
 これにより、動作空間提示装置100は、人201に現在の動作モードの動作空間に近づかないように注意を喚起することができる。また、動作空間提示装置100は、次の動作モードの動作空間に危険が近づいていることを人201に知らせることができる。
 図17は、実施の形態3における動作空間提示装置100に表示される動作空間の第1の変形例を示す図である。オーバレイ部106は、三次元領域を二次元平面に投射した後、<polygons>タグの属性modeから動作モードの順序を示す数値を取得する。そして、オーバレイ部106は、現在の動作モードの順序を示す数値1701および次の動作モードの順序を示す数値1702を二次元平面にさらに重畳する。これにより、人201にとって、動作空間が遷移する順序がよりわかりやすくなる。
 図18は、実施の形態3における動作空間提示装置100に表示される動作空間の第2の変形例を示す図である。オーバレイ部106は、三次元領域を二次元平面に投射した後、次の動作モードの開始時刻を<polygons>タグの属性timeから取得する。そして、オーバレイ部106は、現在の時刻と次の動作モードの開始時刻との差分を、現在の動作モードが終了するまでに要する時間として、二次元平面に重畳する。これにより、人201にとって、動作空間が遷移する時刻がよりわかりやすくなる。
 図18に示すように、可動ロボット202の動作開始時点からの相対時刻00:00:00において、動作空間提示装置100に動作モード1の終了までの所要時間1801が表示される。また、相対時刻00:05:30において、動作モード1の終了までの所要時間1802が表示される。
 以上のように、実施の形態3における領域表現調整部103は、動作計画において区分されるモードの違いにより三次元領域を構成する二次元平面の表現形式を変更する。そして、オーバレイ部106は、実画像または三次元領域の像に、実行順序および終了予定時間を重畳する。実行順序および終了予定時間が重畳される位置は、実画像および三次元領域の像のいずれであってもよい。例えば、実行順序は、動作モードに対応する動作空間を示す像の付近に重畳されてもよい。
 (実施の形態4)
 次に、実施の形態4について、説明する。実施の形態1と同じ部分については記述を省略する。また、実施の形態4における動作空間提示装置は、図1に示された実施の形態1における動作空間提示装置100と同じ構成要素を備える。
 図19は、実施の形態4における領域表現調整部103の動作の一例を示す図である。領域表現調整部103は、作業領域生成部102によって出力される三次元領域の形状または三次元領域を構成する二次元平面のテクスチャを加工する。図19に領域表現調整部103が可動ロボット202の動作速度によって、三次元領域を構成する二次元平面の色を変化させる例が示されている。
 三次元領域を表現する線分は、それらの線分を辺とする多角形を構成する。三次元領域の内部形式1903の<polygon>タグは、多角形を示す。属性startの値は、可動ロボット202が二次元平面に入る相対時刻を示す。属性endの値は、可動ロボット202が二次元平面から出る相対時刻を示す。また、図19に示された三次元領域の内部形式1903は、時刻が0からΔTまでの動作により形成される二次元平面1901と、時刻がΔTから2ΔTまでの動作により形成される二次元平面1902と、に区分される。
 そして、各二次元平面を構成する線分のうち、移動の軌跡により生成された線分は、attr属性の値がtrajである<line>タグにより表現される。また、移動の軌跡により生成された線分の長さは、動作速度に比例する。
 また、図19に示された例において、速い動作を示す軌跡を含む二次元平面1901の色は、赤であり、<polygon>タグの属性colorの値は、redである。遅い動作を示す軌跡を含む二次元平面1902の色は、黄色であり、<polygon>タグの属性colorの値は、yellowである。
 また、領域表現調整部103は、各二次元平面の単位法線ベクトルを計算し、多角形の属性に追加する。追加された単位法線ベクトルは、三次元領域の内部形式1903の<polygon>タグの属性normに格納される。なお、実際には、図19に示された三次元領域の内部形式1903のn1およびn2に、単位を持つ三次元座標値が記述される。
 オーバレイ部106は、領域表現調整部103により出力された三次元領域のすべての隣接する二次元平面i,jについて、そのなす角θijを計算する。そして、オーバレイ部106は、θijが予め設定された閾値θthよりも小さい角の数n(θij<θth)を計算する。そして、オーバレイ部106は、その他の角も含めたすべての角の数n(θij)を用いて、n(θij<θth)/n(θij)の値を計算する。
 そして、オーバレイ部106は、計算されたn(θij<θth)/n(θij)の値が、予め定められた閾値pth以上の場合は、領域表現調整部103が出力した三次元領域の起伏が少なく、滑らかであると判断する。三次元領域が滑らかでない場合、または、人201と可動ロボット202の距離が予め定められた閾値dth以上の場合、オーバレイ部106は、領域表現調整部103により出力された三次元領域を重畳する。三次元領域が滑らかである場合、かつ、人201と可動ロボット202の距離が予め定められた閾値dth未満の場合、オーバレイ部106は、線分近似された可動ロボット202の形状を、二次元平面に重畳する。
 より具体的には、例えば、図20に示すように、三次元領域が6つの二次元平面2001~2006によって構成される六面体の場合、隣接する二次元平面は以下の12である。すなわち、n(θij)=12が成立している。
  (二次元平面2001,二次元平面2002)
  (二次元平面2001,二次元平面2003)
  (二次元平面2001,二次元平面2005)
  (二次元平面2001,二次元平面2006)
  (二次元平面2002,二次元平面2005)
  (二次元平面2002,二次元平面2003)
  (二次元平面2003,二次元平面2006)
  (二次元平面2005,二次元平面2006)
  (二次元平面2004,二次元平面2002)
  (二次元平面2004,二次元平面2003)
  (二次元平面2004,二次元平面2006)
  (二次元平面2004,二次元平面2005)
 オーバレイ部106は、各二次元平面のなす角θijを、法線ベクトルの内積に余弦の逆関数を適用することで計算する。例えば、二次元平面2001と二次元平面2003とのなす角度2007は、θである。ここで、閾値であるθthおよびpthは、それぞれ、θth=30[deg]、pth=0.3と設定されているとする。n(θij<θth)=4の場合、n(θij<θth)/n(θij)=4/12=1/3>pthが成立する。
 したがって、オーバレイ部106は、三次元領域が滑らかであると判断する。よって、人201と可動ロボット202との距離が予め定められた閾値dth未満の場合、オーバレイ部106は、領域表現調整部103が出力した三次元領域から、線分近似された可動ロボット202の形状を抽出して、二次元平面に重畳する。
 線分近似された可動ロボット202の形状の抽出は、より具体的には、下記により実現する。すなわち、まず、オーバレイ部106は、可動ロボット202が動作を開始した時刻を相対時刻00:00:00として、現在の相対時刻を算出する。次に、オーバレイ部106は、<polygons>タグの属性timeの値が現在の相対時刻よりも後の特定の時刻(例えば、ΔT経過後の時刻)のみを含む線分(<line>タグ)を抽出する。その後、オーバレイ部106は、一致する点から線分の接続関係を判定することにより、線分近似モデル702を構成する二次元平面を再構成する。
 または、オーバレイ部106は、複数の時刻の線分を抽出することにより、複数の線分近似モデルを構成する二次元平面を再構成してもよい。
 オーバレイ部106は、所定の条件に従って、線分近似モデル702を撮像部104の撮像位置から撮像方向に向かって見たときの像と実画像とを重畳する。
 図21は、実施の形態4における動作空間提示装置100に表示される動作空間の一例を示す図である。
 動作空間提示装置100は、可動ロボット202から遠い場合、表示内容2101のように、画像を表示する。そして、動作空間提示装置100は、可動ロボット202から近い場合、表示内容2102のように、画像を拡大して表示する。
 さらに、動作空間提示装置100が可動ロボット202に、より近い場合、かつ、三次元領域の表面が滑らかである場合、人201は、動作空間を直感的に知覚することが困難になる。そのため、動作空間提示装置100は、自動的に線分近似された可動ロボット202の形状を示す表示に切り替える。そして、動作空間提示装置100は、表示内容2103のように、画像を表示する。これにより、人201は、可動ロボット202の動作空間をより直感的に把握することが可能になる。
 ここで、実施の形態1に示されたように、人201と可動ロボット202の距離は、算出可能である。例えば、比較に用いられる閾値dthは、可動ロボット202の最大到達距離Drであってもよい。すなわち、閾値dthは、dth=Drとして設定されてもよい。これにより、図21のように三次元領域が表示される。
 なお、実施の形態4において、オーバレイ部106は、滑らかさと距離とに応じて、実画像に線分近似モデルの像と三次元領域の像とのいずれかを重畳したが、滑らかさおよび距離のうち少なくともいずれか一方に応じて、実画像に線分近似モデルの像と三次元領域の像とのいずれかを重畳してもよい。
 例えば、オーバレイ部106は、三次元領域の滑らかさのみに応じて、線分近似モデルの像と三次元領域の像とのいずれを重畳するかを判定してもよい。この場合、オーバレイ部106は、三次元領域が滑らかであると評価するとき、実画像に線分近似モデルの像を重畳し、滑らかでないと評価するとき、実画像に三次元領域の像を重畳してもよい。
 あるいは、オーバレイ部106は、撮像位置と可動ロボット202の距離のみに応じて、線分近似モデルの像と三次元領域の像とのいずれを重畳するかを判定してもよい。この場合、オーバレイ部106は、撮像位置と可動ロボット202の位置との距離が予め定められた条件を満たすとき、実画像に線分近似モデルの像を重畳し、撮像位置と可動ロボット202の位置との距離が予め定められた条件を満たさないとき、実画像に三次元領域の像を重畳してもよい。
 また、オーバレイ部106は、別途の切り替え手段により、実画像に線分近似モデルの像と三次元領域の像とのいずれかを重畳してもよい。
 また、実施の形態4において、領域表現調整部103が各二次元平面の単位法線ベクトルを計算したが、作業領域生成部102が単位法線ベクトルを計算してもよい。これにより、領域表現調整部103がなくても、オーバレイ部106は三次元領域の滑らかさを評価し、実画像に線分近似モデルまたは三次元領域の像を選択的に重畳できる。
 (実施の形態5)
 次に、実施の形態5について説明する。実施の形態1と同じ部分については記述を省略する。
 図22は、実施の形態5における動作空間提示装置の機能ブロック図である。位置姿勢検出部2205は、撮像部104が撮像する実世界画像から撮像部104の撮像位置と撮像方向を検出する。
 図23は、図22に示された動作空間提示装置2200の利用状態を示す図である。
 動作空間提示装置2200は、人201と可動ロボット202が隣接して作業を行う環境において利用される。動作計画保持部101、作業領域生成部102、領域表現調整部103、位置姿勢検出部2205およびオーバレイ部106は、動作空間提示装置2200の電子回路として実装されている。撮像部104および表示部107は、動作空間提示装置2200の表面に実装されている。ビジュアルタグ2304は、位置姿勢検出部2205が撮像位置および撮像方向を検出するときに利用される。
 図24は、図22に示された動作空間提示装置2200の外観を示す図である。
 動作空間提示装置2200は、現実世界を撮像するカメラ301と現実世界に三次元領域を重畳した画像を表示する表示画面302とを備える。表示画面302は、携帯電話およびPDA(Personal Digital Assistant)等のように、人201が手に持つことができる大きさによって、実現してもよい。また、表示画面302は、眼鏡レンズ程度の大きさであって、接眼レンズを付けてヘッドマウントディスプレイとして実現してもよい。
 ビジュアルタグ2304は、撮像部104によって撮像され、表示画面302に表示されている。位置姿勢検出部2205は、撮像されたビジュアルタグ2304を用いて、撮像部104の撮像位置および撮像方向を検出する。
 図25は、図22に示されたオーバレイ部106の動作の一例を示す図である。オーバレイ部106は、ビジュアルタグ2304を利用して三次元領域を二次元平面に投射する。
 具体的には、予めキャリブレーションされたビジュアルタグ2304は、カメラ301の撮像範囲に含められるように配置される。そして、オーバレイ部106は、カメラ301で撮像された現実世界の画像に、三次元領域を半透明のテクスチャで投射する。座標系の変換には、表示座標系とマーカ座標系を対応付ける画像処理(ARToolKitなど)が利用される。マーカ座標系と表示座標系とは、キャリブレーションなどによって簡単に対応付けられる。
 したがって、オーバレイ部106は、事前にビジュアルタグ2304をマーカ座標系に対応付けておくことにより、ビジュアルタグ2304が撮像された時に、マーカ座標系(Xm,Ym,Zm)から表示座標系(xc,yc)へ変換する行列式を決定できる。オーバレイ部106は、この行列式を用いて三次元領域を二次元平面に射影し、実世界の画像に重畳する。
 (実施の形態6)
 次に、実施の形態6について説明する。実施の形態1と同じ部分については記述を省略する。
 図26は、実施の形態6における動作空間提示装置の機能ブロック図である。
 動作空間提示装置2600は、作業領域生成部2602、撮像部104、位置姿勢検出部105およびオーバレイ部2606を備える。
 作業領域生成部2602は、例えば、通信ネットワークを介して可動ロボット202の動作計画を取得する。これにより、実施の形態1に示された動作計画保持部101が無くても、作業領域生成部2602は、可動ロボット202の動作計画に従って三次元領域を生成できる。
 撮像部104は、実画像を撮像する。すなわち、撮像部104は、被写体を撮影して、実画像を生成する。位置姿勢検出部105は、撮像部104の撮像位置および撮像方向を検出する。位置姿勢検出部105は、撮像位置および撮像方向を検出するため、実施の形態5に示されたビジュアルタグ2304を利用してもよい。
 オーバレイ部2606は、作業領域生成部2602により生成された三次元領域を取得し、三次元領域を撮像部104の撮像位置から撮像方向に向かって見たときの像である作業領域像を算出する。そして、算出された作業領域像と撮像部104により撮像された実画像とを重畳する。そして、重畳されたデータは、外部に出力される。出力されたデータは、例えば、外部の表示手段によって表示される。
 すなわち、動作空間提示装置2600は、実施の形態1に示された動作計画保持部101、領域表現調整部103および表示部107を備えなくても、可動ロボット202の動作空間を立体的に表示するためのデータを生成することができる。生成されたデータは、例えば、外部の表示手段により、動作空間を立体的に表示する画像として表示される。これにより、人201は、可動ロボット202の動作空間を直感的に知覚できる。
 なお、オーバレイ部2606は、実画像に、可動ロボット202の線分近似モデルを撮像位置から撮像方向に向かって見たときの像である線分近似モデル像と、作業領域像と、のいずれかを、線分近似モデル像または作業領域像の見えにくさに応じて選択的に重畳してもよい。例えば、オーバレイ部2606は、見えにくさを評価するための基準に従って作業領域像が見えにくいと評価するとき、実画像に線分近似モデル像を重畳する。これにより、よりわかりやすい表示を実現するためのデータが生成される。
 具体的には、撮像位置から可動ロボット202までの距離が近すぎる場合、作業領域像が見えにくい。また、可動ロボット202の動作空間が滑らかである場合、人201は動作空間を直感的に知覚しにくい。つまり、この場合も、作業領域像が見えにくい。そこで、オーバレイ部2606は、撮像位置から可動ロボット202までの距離が近いか否か、または、作業領域生成部2602により生成された三次元領域が滑らかであるか否か等を、見えにくさを評価するための基準として用いて、見えにくさを評価してもよい。
 以上、複数の実施の形態に示されたように、本発明に係る動作空間提示装置は、動作計画に従って生成された可動ロボットの動作空間を立体的に表示するためのデータを生成することができる。生成されたデータは、表示手段により、動作空間を立体的に表示する画像として表示される。これにより、人は、可動ロボットの動作空間を直感的に知覚できる。
 なお、これらの実施の形態は例であり、本発明はこれらの実施の形態に限定されるのではない。これらの実施の形態に対して当業者が思いつく変形を施して得られる形態、および、これらの実施の形態における構成要素を任意に組み合わせて実現される別の形態も、動作空間を立体的に表示するためのデータを生成することが可能であり、本発明に含まれる。
 また、本発明は、動作空間提示装置として実現できるだけでなく、動作空間提示装置を構成する処理手段をステップとする方法として実現できる。そして、本発明は、それらの方法に含まれるステップをコンピュータに実行させるプログラムとして実現できる。さらに、本発明は、そのプログラムを記憶したCD-ROM等のコンピュータ読み取り可能な記憶媒体として実現できる。
 本発明に係る動作空間提示装置は、動作空間を立体的に表示するためのデータを生成でき、セル生産現場などのロボットと密に連携して作業する現場において、ロボットとの衝突回避に有用である。また、本発明に係る動作空間提示装置は、ロボットの動作をプレゼンテーションするためのツールとして適用できる。
  100、2200、2600 動作空間提示装置
  101 動作計画保持部
  102、2602 作業領域生成部
  103 領域表現調整部
  104 撮像部
  105、2205 位置姿勢検出部
  106、2606 オーバレイ部
  107 表示部
  201 人
  202 可動ロボット
  204、303 位置センシングデバイス
  205、304 姿勢センシングデバイス
  301 カメラ
  302 表示画面
  401、403、405、1301、1302、1303、2101、2102、2103 表示内容
  402、404、406 動作空間
  501 動作計画
  601 線分近似モデル保持部
  602 動作シミュレータ
  603 三次元領域生成部
  701 ロボットの形状
  702 線分近似モデル
  703 線分近似モデルの内部形式
  801、802、803 線分
  804、903、1202、1501、1903 三次元領域の内部形式
  901、902、1201、1901、1902、2001、2002、2003、2004、2005、2006 二次元平面
  1701、1702 数値
  1801、1802 所要時間
  2007 角度
  2304 ビジュアルタグ
  9901 移動ロボット
  9902 動作計画部
  9903 動作制御部
  9904、9905 駆動部
  9906 車輪
  9907 腕部
  9908、9909 エンコーダ
  9910 表示制御部
  9911 プロジェクタ

Claims (18)

  1.  可動ロボットの動作空間を提示するためのデータを生成する動作空間提示装置であって、
     前記可動ロボットが動作する三次元領域を生成する作業領域生成部と、
     実画像を撮像する撮像部と、
     前記撮像部の位置である撮像位置と、前記撮像部の撮像方向と、を検出する位置姿勢検出部と、
     前記撮像部により撮像された前記実画像に、前記可動ロボットの線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である線分近似モデル像と、前記三次元領域を前記撮像位置から前記撮像方向に向かって見たときの像である作業領域像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイ部とを備える
     動作空間提示装置。
  2.  前記オーバレイ部は、前記見えにくさを評価するための基準に従って前記作業領域像が見えにくいと評価するとき、前記実画像に前記線分近似モデル像を重畳する
     請求項1に記載の動作空間提示装置。
  3.  前記作業領域生成部は、
     前記可動ロボットの前記線分近似モデルを保持する線分近似モデル保持部と、
     前記可動ロボットを動作させるための動作計画に従って、仮想空間内で、前記線分近似モデルを動作させる動作シミュレータと、
     前記動作シミュレータが前記線分近似モデルを動作させた結果から、前記可動ロボットが動作する前記三次元領域を生成する三次元領域生成部とを備える
     請求項1または請求項2に記載の動作空間提示装置。
  4.  前記オーバレイ部は、前記三次元領域の滑らかさと、前記撮像位置から前記可動ロボットの位置までの距離と、の少なくとも一方に応じて、前記実画像に、前記動作シミュレータが動作させた前記線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である前記線分近似モデル像と、前記作業領域像と、のいずれかを重畳する
     請求項3に記載の動作空間提示装置。
  5.  前記オーバレイ部は、前記三次元領域が滑らかであると評価するとき、前記実画像に前記線分近似モデル像を重畳し、前記三次元領域が滑らかでないと評価するとき、前記実画像に前記作業領域像を重畳する
     請求項4に記載の動作空間提示装置。
  6.  前記オーバレイ部は、前記撮像位置から前記可動ロボットの位置までの距離が予め定められた条件を満たすとき、前記実画像に前記線分近似モデル像を重畳し、前記撮像位置から前記可動ロボットの位置までの距離が前記予め定められた条件を満たさないとき、前記実画像に前記作業領域像を重畳する
     請求項4に記載の動作空間提示装置。
  7.  前記動作空間提示装置は、さらに、前記作業領域生成部により生成された前記三次元領域の表現形式を変更する領域表現調整部を備える
     請求項3~6のいずれか1項に記載の動作空間提示装置。
  8.  前記領域表現調整部は、前記可動ロボットが前記動作計画に従って前記三次元領域を動作する単位時間当たりの移動量によって、前記三次元領域を構成する二次元平面の表現形式を変更する
     請求項7に記載の動作空間提示装置。
  9.  前記領域表現調整部は、前記動作計画において区分されるモードの違いにより前記三次元領域を構成する二次元平面の表現形式を変更する
     請求項7または請求項8に記載の動作空間提示装置。
  10.  前記オーバレイ部は、さらに、前記モードの実行順序であって、前記動作計画に従って決定される前記実行順序を前記作業領域像と前記実画像とのうち少なくとも一方に重畳する
     請求項9に記載の動作空間提示装置。
  11.  前記オーバレイ部は、さらに、現在実行中の前記モードの終了予定時間を前記作業領域像と前記実画像とのうち少なくとも一方に重畳する
     請求項9または請求項10に記載の動作空間提示装置。
  12.  前記オーバレイ部は、前記撮像位置から前記可動ロボットの位置までの距離が第1の長さよりも短い第2の長さであるとき、前記撮像位置から前記可動ロボットの位置までの距離が前記第1の長さであるときよりも前記作業領域像の透明度を下げて、前記実画像に前記作業領域像を重畳する
     請求項1~11のいずれか1項に記載の動作空間提示装置。
  13.  前記作業領域生成部は、前記三次元領域において前記可動ロボットが動作する領域と、前記三次元領域において前記可動ロボットが動作する時刻と、を対応づけて前記三次元領域を生成し、
     前記オーバレイ部は、前記三次元領域から現在時刻以降に前記可動ロボットが動作する前記領域を抽出し、前記実画像に、抽出された前記領域を前記撮像位置から前記撮像方向に向かって見たときの像を、前記作業領域像として、重畳する
     請求項1~12のいずれか1項に記載の動作空間提示装置。
  14.  前記位置姿勢検出部は、前記撮像部によって撮像された、位置を示すビジュアルタグにより、前記撮像位置と前記撮像方向とを検出する
     請求項1~13のいずれか1項に記載の動作空間提示装置。
  15.  前記動作空間提示装置は、さらに、前記撮像部と一緒に移動する表示部を備え、
     前記表示部は、前記オーバレイ部により前記実画像に重畳された前記作業領域像を表示する
     請求項1~14のいずれか1項に記載の動作空間提示装置。
  16.  前記動作空間提示装置は、さらに、前記可動ロボットを動作させるための動作計画を保持する動作計画保持部を備え、
     前記作業領域生成部は、前記三次元領域を、前記動作計画保持部により保持された前記動作計画に従って生成する
     請求項1~15のいずれか1項に記載の動作空間提示装置。
  17.  可動ロボットの動作空間を提示するためのデータを生成する動作空間提示方法であって、
     前記可動ロボットが動作する三次元領域を生成する作業領域生成ステップと、
     実画像を撮像する撮像部の位置である撮像位置と、前記撮像部の撮像方向と、を検出する位置姿勢検出ステップと、
     前記撮像部により撮像された前記実画像に、前記可動ロボットの線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である線分近似モデル像と、前記三次元領域を前記撮像位置から前記撮像方向に向かって見たときの像である作業領域像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイステップとを含む
     動作空間提示方法。
  18.  可動ロボットの動作空間を提示するためのデータを生成するプログラムであって、
     前記可動ロボットが動作する三次元領域を生成する作業領域生成ステップと、
     実画像を撮像する撮像部の位置である撮像位置と、前記撮像部の撮像方向と、を検出する位置姿勢検出ステップと、
     前記撮像部により撮像された前記実画像に、前記可動ロボットの線分近似モデルを前記撮像位置から前記撮像方向に向かって見たときの像である線分近似モデル像と、前記三次元領域を前記撮像位置から前記撮像方向に向かって見たときの像である作業領域像と、のいずれかを見えにくさに応じて選択的に重畳するオーバレイステップとを
     コンピュータに実行させるためのプログラム。
PCT/JP2010/007167 2009-12-28 2010-12-09 動作空間提示装置、動作空間提示方法およびプログラム WO2011080882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011532405A JP4850984B2 (ja) 2009-12-28 2010-12-09 動作空間提示装置、動作空間提示方法およびプログラム
CN201080023195.1A CN102448681B (zh) 2009-12-28 2010-12-09 动作空间提示装置、动作空间提示方法以及程序
US13/220,749 US8731276B2 (en) 2009-12-28 2011-08-30 Motion space presentation device and motion space presentation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-297790 2009-12-28
JP2009297790 2009-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/220,749 Continuation US8731276B2 (en) 2009-12-28 2011-08-30 Motion space presentation device and motion space presentation method

Publications (1)

Publication Number Publication Date
WO2011080882A1 true WO2011080882A1 (ja) 2011-07-07

Family

ID=44226310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007167 WO2011080882A1 (ja) 2009-12-28 2010-12-09 動作空間提示装置、動作空間提示方法およびプログラム

Country Status (4)

Country Link
US (1) US8731276B2 (ja)
JP (1) JP4850984B2 (ja)
CN (1) CN102448681B (ja)
WO (1) WO2011080882A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227879A (ja) * 2010-03-30 2011-11-10 Ns Solutions Corp 情報提供装置、情報提供方法、及びプログラム
JP2013094961A (ja) * 2011-11-04 2013-05-20 Fanuc Robotics America Corp 3次元表示部を備えたロボット教示装置
JP2013240849A (ja) * 2012-05-18 2013-12-05 Fanuc Ltd ロボットシステムの動作シミュレーション装置
EP2783812A2 (en) 2013-03-18 2014-10-01 Kabushiki Kaisha Yaskawa Denki Robot device and method for manufacturing an object
US9001152B2 (en) 2010-03-30 2015-04-07 Ns Solutions Corporation Information processing apparatus, information processing method, and program
JP2017094466A (ja) * 2015-11-26 2017-06-01 株式会社デンソーウェーブ ロボットモニタシステム
JP2017100205A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ バーチャルフェンス表示システム
JP2017100204A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ ロボット操作システム
JP2017100207A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ ロボット安全システム
JP2017100206A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ ロボット安全システム
JP2017102242A (ja) * 2015-12-01 2017-06-08 株式会社デンソーウェーブ 情報表示システム
JP2017520419A (ja) * 2014-07-02 2017-07-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 警報方法およびロボットシステム
JP2017523054A (ja) * 2014-07-16 2017-08-17 エックス デベロップメント エルエルシー ロボット装置用仮想セーフティケージ
JP2017148905A (ja) * 2016-02-25 2017-08-31 ファナック株式会社 ロボットシステムおよびロボット制御装置
JP2018008347A (ja) * 2016-07-13 2018-01-18 東芝機械株式会社 ロボットシステムおよび動作領域表示方法
WO2018020568A1 (ja) * 2016-07-26 2018-02-01 三菱電機株式会社 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
JPWO2017199619A1 (ja) * 2016-05-16 2018-08-09 三菱電機株式会社 ロボット動作評価装置、ロボット動作評価方法及びロボットシステム
JP2019008473A (ja) * 2017-06-22 2019-01-17 ファナック株式会社 複合現実シミュレーション装置及び複合現実シミュレーションプログラム
JP2019084615A (ja) * 2017-11-06 2019-06-06 トヨタ自動車株式会社 マスタ操縦装置
US10406689B2 (en) 2016-02-17 2019-09-10 Fanuc Corporation Robot simulation apparatus that calculates swept space
JP2019188531A (ja) * 2018-04-25 2019-10-31 ファナック株式会社 ロボットのシミュレーション装置
JP2019206050A (ja) * 2018-05-29 2019-12-05 セイコーエプソン株式会社 制御装置、ヘッドマウントディスプレイ、及びロボットシステム
JP2020011357A (ja) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 制御装置、ヘッドマウントディスプレイおよびロボットシステム
WO2020066475A1 (ja) * 2018-09-26 2020-04-02 コベルコ建機株式会社 作業機械情報表示システム
WO2021095316A1 (ja) * 2019-11-11 2021-05-20 株式会社日立製作所 ロボットシステム
JPWO2021220915A1 (ja) * 2020-04-27 2021-11-04
US11218480B2 (en) 2015-09-21 2022-01-04 Payfone, Inc. Authenticator centralization and protection based on authenticator type and authentication policy
US11223948B2 (en) 2015-04-15 2022-01-11 Payfone, Inc. Anonymous authentication and remote wireless token access
WO2022131068A1 (ja) * 2020-12-14 2022-06-23 ファナック株式会社 拡張現実表示装置、及び拡張現実表示システム
WO2023037456A1 (ja) * 2021-09-08 2023-03-16 ファナック株式会社 シミュレーション装置

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708196B2 (ja) 2011-04-21 2015-04-30 セイコーエプソン株式会社 衝突検出システム、ロボットシステム、衝突検出方法及びプログラム
US9656392B2 (en) * 2011-09-20 2017-05-23 Disney Enterprises, Inc. System for controlling robotic characters to enhance photographic results
CN102841679B (zh) * 2012-05-14 2015-02-04 乐金电子研发中心(上海)有限公司 一种非接触式人机互动方法与装置
US20130343640A1 (en) 2012-06-21 2013-12-26 Rethink Robotics, Inc. Vision-guided robots and methods of training them
US9103873B1 (en) * 2013-03-01 2015-08-11 Anritsu Company Systems and methods for improved power control in millimeter wave transceivers
JP5673717B2 (ja) * 2013-03-19 2015-02-18 株式会社安川電機 ロボットシステム及び被加工物の製造方法
US10888998B2 (en) * 2013-10-07 2021-01-12 Abb Schweiz Ag Method and device for verifying one or more safety volumes for a movable mechanical unit
JP5911933B2 (ja) * 2014-09-16 2016-04-27 ファナック株式会社 ロボットの動作監視領域を設定するロボットシステム
JP2016107379A (ja) 2014-12-08 2016-06-20 ファナック株式会社 拡張現実対応ディスプレイを備えたロボットシステム
DE102015209896B3 (de) * 2015-05-29 2016-08-18 Kuka Roboter Gmbh Ermittlung der Roboterachswinkel und Auswahl eines Roboters mit Hilfe einer Kamera
JP6554945B2 (ja) * 2015-07-03 2019-08-07 株式会社デンソーウェーブ ロボットシステム
US9919427B1 (en) 2015-07-25 2018-03-20 X Development Llc Visualizing robot trajectory points in augmented reality
US9916506B1 (en) 2015-07-25 2018-03-13 X Development Llc Invisible fiducial markers on a robot to visualize the robot in augmented reality
CN107921639B (zh) 2015-08-25 2021-09-21 川崎重工业株式会社 多个机器人系统间的信息共享系统及信息共享方法
US9855664B2 (en) * 2015-11-25 2018-01-02 Denso Wave Incorporated Robot safety system
JP6690203B2 (ja) * 2015-11-25 2020-04-28 株式会社デンソーウェーブ ロボット安全システム
US10712566B2 (en) 2015-11-26 2020-07-14 Denso Wave Incorporated Information displaying system provided with head-mounted type display
JP6420229B2 (ja) 2015-12-10 2018-11-07 ファナック株式会社 仮想物体の画像をロボットの映像に重畳表示する映像表示装置を備えるロボットシステム
CN107717982B (zh) * 2016-08-12 2020-09-25 财团法人工业技术研究院 机械手臂的控制装置及操作方法
JP6809267B2 (ja) * 2017-02-10 2021-01-06 富士ゼロックス株式会社 情報処理装置、情報処理システム及びプログラム
JP6950192B2 (ja) * 2017-02-10 2021-10-13 富士フイルムビジネスイノベーション株式会社 情報処理装置、情報処理システム及びプログラム
US11219422B2 (en) * 2017-03-14 2022-01-11 Canon Medical Systems Corporation Image displaying system, image processing apparatus and x-ray imaging system
CN106956261A (zh) * 2017-04-11 2017-07-18 华南理工大学 一种具有安全识别区的人机交互机械臂系统及方法
US11106967B2 (en) 2017-07-03 2021-08-31 X Development Llc Update of local features model based on correction to robot action
US10562181B2 (en) * 2017-07-03 2020-02-18 X Development Llc Determining and utilizing corrections to robot actions
AU2018341547B2 (en) * 2017-09-26 2021-07-08 Palfinger Ag Operating device and loading crane having an operating device
JP6633584B2 (ja) * 2017-10-02 2020-01-22 ファナック株式会社 ロボットシステム
US10676022B2 (en) 2017-12-27 2020-06-09 X Development Llc Visually indicating vehicle caution regions
KR102499576B1 (ko) * 2018-01-08 2023-02-15 삼성전자주식회사 전자 장치 및 그 제어 방법
JP7232437B2 (ja) * 2018-02-19 2023-03-03 国立大学法人 東京大学 作業車両の表示システム及び生成方法
DE102018113336A1 (de) * 2018-06-05 2019-12-05 GESTALT Robotics GmbH Verfahren zum Verwenden mit einer Maschine zum Einstellen einer Erweiterte-Realität-Anzeigeumgebung
JP7204513B2 (ja) * 2019-02-13 2023-01-16 株式会社東芝 制御装置及びプログラム
WO2021060466A1 (ja) * 2019-09-27 2021-04-01 株式会社タダノ クレーン情報表示システム
US11775148B2 (en) * 2020-11-06 2023-10-03 Motional Ad Llc Augmented reality enabled autonomous vehicle command center
DE102020129823B4 (de) * 2020-11-12 2022-07-07 Sick Ag Visualisieren eines Schutzfeldes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162904A (ja) * 1987-05-27 1989-06-27 Mitsubishi Electric Corp 自動プログラミング装置
JPH044306U (ja) * 1990-04-21 1992-01-16
JPH11237902A (ja) * 1998-02-23 1999-08-31 Agency Of Ind Science & Technol マニピュレータ作業教示装置
JP2004160588A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd 複数ロボットの干渉領域検出方法およびそのプログラム
JP2004209641A (ja) * 2002-12-30 2004-07-29 Abb Res Ltd 工業ロボットをプログラミングするための方法およびシステム
JP2004213673A (ja) * 2002-12-30 2004-07-29 Abb Res Ltd 強化現実システム及び方法
JP2004243516A (ja) * 2003-02-11 2004-09-02 Kuka Roboter Gmbh コンピュータによって生成された情報を現実環境の画像へとフェードインするための方法、およびコンピュータによって生成された情報を現実環境の画像に視覚化するための装置
JP2005081445A (ja) * 2003-09-04 2005-03-31 Fanuc Ltd ロボットの干渉領域確認装置
JP2009098982A (ja) * 2007-10-18 2009-05-07 Sodick Co Ltd 加工シミュレーション装置およびそのプログラム
JP2009123045A (ja) 2007-11-16 2009-06-04 Toyota Motor Corp 移動ロボット及び移動ロボットの危険範囲の表示方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627811B2 (ja) * 1990-04-18 1997-07-09 日本スピンドル製造 株式会社 油圧方向制御弁
US5706195A (en) * 1995-09-05 1998-01-06 General Electric Company Augmented reality maintenance system for multiple rovs
US5745387A (en) * 1995-09-28 1998-04-28 General Electric Company Augmented reality maintenance system employing manipulator arm with archive and comparison device
JPH11254360A (ja) 1998-03-13 1999-09-21 Yaskawa Electric Corp ロボットのシミュレーション装置
US20030012410A1 (en) * 2001-07-10 2003-01-16 Nassir Navab Tracking and pose estimation for augmented reality using real features
JP4066168B2 (ja) 2003-03-13 2008-03-26 オムロン株式会社 侵入物監視装置
JPWO2005015466A1 (ja) * 2003-08-07 2006-10-05 松下電器産業株式会社 生活支援システム及びその制御用プログラム
JP4304133B2 (ja) 2004-07-30 2009-07-29 東芝機械株式会社 産業用ロボットの移動時間表示装置
JP2006113858A (ja) * 2004-10-15 2006-04-27 Mitsubishi Heavy Ind Ltd 移動体の遠隔操作支援方法及びシステム
DE102006048163B4 (de) 2006-07-31 2013-06-06 Pilz Gmbh & Co. Kg Kamerabasierte Überwachung bewegter Maschinen und/oder beweglicher Maschinenelemente zur Kollisionsverhinderung
FR2917598B1 (fr) * 2007-06-19 2010-04-02 Medtech Plateforme robotisee multi-applicative pour la neurochirurgie et procede de recalage
DE602007003849D1 (de) * 2007-10-11 2010-01-28 Mvtec Software Gmbh System und Verfahren zur 3D-Objekterkennung
WO2012063397A1 (ja) * 2010-11-12 2012-05-18 パナソニック株式会社 移動経路探索装置および移動経路探索方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162904A (ja) * 1987-05-27 1989-06-27 Mitsubishi Electric Corp 自動プログラミング装置
JPH044306U (ja) * 1990-04-21 1992-01-16
JPH11237902A (ja) * 1998-02-23 1999-08-31 Agency Of Ind Science & Technol マニピュレータ作業教示装置
JP2004160588A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd 複数ロボットの干渉領域検出方法およびそのプログラム
JP2004209641A (ja) * 2002-12-30 2004-07-29 Abb Res Ltd 工業ロボットをプログラミングするための方法およびシステム
JP2004213673A (ja) * 2002-12-30 2004-07-29 Abb Res Ltd 強化現実システム及び方法
JP2004243516A (ja) * 2003-02-11 2004-09-02 Kuka Roboter Gmbh コンピュータによって生成された情報を現実環境の画像へとフェードインするための方法、およびコンピュータによって生成された情報を現実環境の画像に視覚化するための装置
JP2005081445A (ja) * 2003-09-04 2005-03-31 Fanuc Ltd ロボットの干渉領域確認装置
JP2009098982A (ja) * 2007-10-18 2009-05-07 Sodick Co Ltd 加工シミュレーション装置およびそのプログラム
JP2009123045A (ja) 2007-11-16 2009-06-04 Toyota Motor Corp 移動ロボット及び移動ロボットの危険範囲の表示方法

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227879A (ja) * 2010-03-30 2011-11-10 Ns Solutions Corp 情報提供装置、情報提供方法、及びプログラム
US9001152B2 (en) 2010-03-30 2015-04-07 Ns Solutions Corporation Information processing apparatus, information processing method, and program
US9030494B2 (en) 2010-03-30 2015-05-12 Ns Solutions Corporation Information processing apparatus, information processing method, and program
JP2013094961A (ja) * 2011-11-04 2013-05-20 Fanuc Robotics America Corp 3次元表示部を備えたロボット教示装置
US9418394B2 (en) 2012-05-18 2016-08-16 Fanuc Corporation Operation simulation system of robot system
JP2013240849A (ja) * 2012-05-18 2013-12-05 Fanuc Ltd ロボットシステムの動作シミュレーション装置
EP2783812A2 (en) 2013-03-18 2014-10-01 Kabushiki Kaisha Yaskawa Denki Robot device and method for manufacturing an object
JP2017520419A (ja) * 2014-07-02 2017-07-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 警報方法およびロボットシステム
JP2017523054A (ja) * 2014-07-16 2017-08-17 エックス デベロップメント エルエルシー ロボット装置用仮想セーフティケージ
JP2018086724A (ja) * 2014-07-16 2018-06-07 エックス デベロップメント エルエルシー ロボット装置用仮想セーフティケージ
US11223948B2 (en) 2015-04-15 2022-01-11 Payfone, Inc. Anonymous authentication and remote wireless token access
US11218480B2 (en) 2015-09-21 2022-01-04 Payfone, Inc. Authenticator centralization and protection based on authenticator type and authentication policy
US11991175B2 (en) 2015-09-21 2024-05-21 Payfone, Inc. User authentication based on device identifier further identifying software agent
JP2017094466A (ja) * 2015-11-26 2017-06-01 株式会社デンソーウェーブ ロボットモニタシステム
JP2017100207A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ ロボット安全システム
JP2017100206A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ ロボット安全システム
JP2017100204A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ ロボット操作システム
JP2017100205A (ja) * 2015-11-30 2017-06-08 株式会社デンソーウェーブ バーチャルフェンス表示システム
JP2017102242A (ja) * 2015-12-01 2017-06-08 株式会社デンソーウェーブ 情報表示システム
US10406689B2 (en) 2016-02-17 2019-09-10 Fanuc Corporation Robot simulation apparatus that calculates swept space
JP2017148905A (ja) * 2016-02-25 2017-08-31 ファナック株式会社 ロボットシステムおよびロボット制御装置
JPWO2017199619A1 (ja) * 2016-05-16 2018-08-09 三菱電機株式会社 ロボット動作評価装置、ロボット動作評価方法及びロボットシステム
JP2018008347A (ja) * 2016-07-13 2018-01-18 東芝機械株式会社 ロボットシステムおよび動作領域表示方法
JPWO2018020568A1 (ja) * 2016-07-26 2019-01-31 三菱電機株式会社 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
WO2018020568A1 (ja) * 2016-07-26 2018-02-01 三菱電機株式会社 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
JP6440909B2 (ja) * 2016-07-26 2018-12-19 三菱電機株式会社 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
JP2019008473A (ja) * 2017-06-22 2019-01-17 ファナック株式会社 複合現実シミュレーション装置及び複合現実シミュレーションプログラム
JP2019084615A (ja) * 2017-11-06 2019-06-06 トヨタ自動車株式会社 マスタ操縦装置
JP2019188531A (ja) * 2018-04-25 2019-10-31 ファナック株式会社 ロボットのシミュレーション装置
JP7187820B2 (ja) 2018-05-29 2022-12-13 セイコーエプソン株式会社 制御装置、ヘッドマウントディスプレイ、及びロボットシステム
JP2019206050A (ja) * 2018-05-29 2019-12-05 セイコーエプソン株式会社 制御装置、ヘッドマウントディスプレイ、及びロボットシステム
JP7167518B2 (ja) 2018-07-20 2022-11-09 セイコーエプソン株式会社 制御装置、ヘッドマウントディスプレイおよびロボットシステム
JP2020011357A (ja) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 制御装置、ヘッドマウントディスプレイおよびロボットシステム
JP2020051092A (ja) * 2018-09-26 2020-04-02 コベルコ建機株式会社 作業機械情報表示システム
WO2020066475A1 (ja) * 2018-09-26 2020-04-02 コベルコ建機株式会社 作業機械情報表示システム
JP2021074827A (ja) * 2019-11-11 2021-05-20 株式会社日立製作所 ロボットシステム
WO2021095316A1 (ja) * 2019-11-11 2021-05-20 株式会社日立製作所 ロボットシステム
JP7282016B2 (ja) 2019-11-11 2023-05-26 株式会社日立製作所 ロボットシステム
WO2021220915A1 (ja) * 2020-04-27 2021-11-04 ファナック株式会社 産業機械の表示装置
JP7381729B2 (ja) 2020-04-27 2023-11-15 ファナック株式会社 産業機械の表示装置
US11978168B2 (en) 2020-04-27 2024-05-07 Fanuc Corporation Display device for industrial machine
JPWO2021220915A1 (ja) * 2020-04-27 2021-11-04
JPWO2022131068A1 (ja) * 2020-12-14 2022-06-23
WO2022131068A1 (ja) * 2020-12-14 2022-06-23 ファナック株式会社 拡張現実表示装置、及び拡張現実表示システム
WO2023037456A1 (ja) * 2021-09-08 2023-03-16 ファナック株式会社 シミュレーション装置

Also Published As

Publication number Publication date
JP4850984B2 (ja) 2012-01-11
JPWO2011080882A1 (ja) 2013-05-09
CN102448681A (zh) 2012-05-09
US8731276B2 (en) 2014-05-20
CN102448681B (zh) 2014-09-10
US20110311127A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP4850984B2 (ja) 動作空間提示装置、動作空間提示方法およびプログラム
CA3016539C (en) Image processing method, display device, and inspection system
JP5936155B2 (ja) 3次元ユーザインタフェース装置及び3次元操作方法
CN106313049B (zh) 一种仿人机械臂体感控制系统及控制方法
US11498216B2 (en) Remote control manipulator system and control device
CN104897091B (zh) 关节臂坐标测量机
JP5871345B2 (ja) 3次元ユーザインタフェース装置及び3次元操作方法
JP6570742B2 (ja) ロボット動作評価装置、ロボット動作評価方法及びロボットシステム
US10888998B2 (en) Method and device for verifying one or more safety volumes for a movable mechanical unit
KR101768958B1 (ko) 고품질 콘텐츠 제작을 위한 하이브리드 모션캡쳐 시스템
CN112313046A (zh) 使用增强现实可视化和修改操作界定区域
US9008442B2 (en) Information processing apparatus, information processing method, and computer program
JP2012218120A (ja) マニピュレーター動作予告装置、ロボットシステム及びマニピュレーター動作予告方法
JP2010271536A (ja) 作業訓練システム及び作業訓練方法並びに該作業訓練方法を記録した記録媒体
JP7000253B2 (ja) 力覚視覚化装置、ロボットおよび力覚視覚化プログラム
JP2018202514A (ja) ロボットの教示のための情報を表示するロボットシステム
US11422625B2 (en) Proxy controller suit with optional dual range kinematics
JP2009258884A (ja) ユーザインタフェイス
WO2017155005A1 (en) Image processing method, display device, and inspection system
WO2020235539A1 (ja) オブジェクトの位置及び姿勢を特定する方法及び装置
WO2024190414A1 (ja) 画像処理装置、画像処理システム及び画像処理プログラム
Zhu et al. Fusing multiple sensors information into mixed reality-based user interface for robot teleoperation
JP2015152338A (ja) 距離情報取得方法、距離情報取得装置及びロボット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023195.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011532405

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010840742

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840742

Country of ref document: EP

Kind code of ref document: A1