WO2018020568A1 - ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム - Google Patents

ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム Download PDF

Info

Publication number
WO2018020568A1
WO2018020568A1 PCT/JP2016/071824 JP2016071824W WO2018020568A1 WO 2018020568 A1 WO2018020568 A1 WO 2018020568A1 JP 2016071824 W JP2016071824 W JP 2016071824W WO 2018020568 A1 WO2018020568 A1 WO 2018020568A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
real space
range
information
image
Prior art date
Application number
PCT/JP2016/071824
Other languages
English (en)
French (fr)
Inventor
賢人 山▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680087569.3A priority Critical patent/CN109478769A/zh
Priority to JP2018530227A priority patent/JP6440909B2/ja
Priority to US16/315,971 priority patent/US20190243461A1/en
Priority to PCT/JP2016/071824 priority patent/WO2018020568A1/ja
Publication of WO2018020568A1 publication Critical patent/WO2018020568A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04845Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range for image manipulation, e.g. dragging, rotation, expansion or change of colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/16Cables, cable trees or wire harnesses

Definitions

  • the present invention relates to a cable movable range display device, a cable movable range display method, and a cable movable range display program for displaying a movable range of a cable over a real space.
  • Additional information based on the position and orientation of the user estimated based on real space information for example, image data or distance information to a subject
  • real space information for example, image data or distance information to a subject
  • a camera imaging device
  • a sensor for example, a depth sensor
  • AR augmented reality
  • CG Computer Graphics
  • Proposed based on the two-dimensional image data acquired by the camera, the position and posture of the camera in an arbitrary three-dimensional coordinate system are obtained, and on the computer based on the obtained position and posture of the camera,
  • a technique has also been proposed in which a CG is generated and the generated CG is overlaid on a real space. When these techniques are applied to a work support system in the work of a user (worker), the worker can see the situation as if there is an object displayed in CG in the real space. It is possible to receive work instructions that can be understood intuitively and easily.
  • Patent Document 1 discloses an information display device that generates image information on which drawing information that emphasizes a corresponding equipment device portion in image information of a photographed plant is superimposed, and displays the generated image information on a display unit. is suggesting.
  • the cable routing in cable routing is determined according to the characteristics of the cable used and the routing and surrounding conditions (position of obstacles, etc.). Is acceptable.
  • the above-described conventional apparatus displays the ideal wiring route of the cable, but the allowable range of the cable wiring route (hereinafter also referred to as “cable movable range”) cannot be displayed in the real space. There is.
  • the present invention has been made in order to solve the above-described problem, and allows a cable movable range display apparatus, a cable movable range display method, and a cable movable range display method capable of displaying the movable range of the cable in a cable wiring operation in an overlapping manner in a real space. And it aims at providing a cable movable range display program.
  • a cable movable range display device is a device that displays a cable movable range indicating an allowable range of a wiring route of a cable superimposed on a real space, and acquires real space information regarding the real space.
  • a simulation unit that receives cable information indicating a cable length and calculates the cable movable range from the wiring path information and the cable information; and the cable movable range and the user position / posture estimation calculated by the simulation unit
  • the range of motion of the cable in the real space is shown from the position and posture determined by the unit.
  • An image generator for generating a cable excursion image of the virtual reality characterized by comprising an image display unit for displaying a cable movable range image of the virtual reality.
  • a cable movable range display method is a cable movable range display method in which an image display unit displays a cable movable range indicating an allowable range of a cable routing route in a real space.
  • Real space information acquisition step for acquiring real space information about the space
  • user position / posture estimation step for obtaining the position and posture of the user from the real space information
  • wiring route information indicating a start point, a passing point, and an end point of the wiring route
  • cable information indicating an allowable bending radius of the cable and the length of the cable
  • the cable range of motion and the user position / posture estimation step determined in the step
  • a computer program for displaying a moving range of information about a real space on a computer that displays on the image display unit a moving range of the cable indicating an allowable range of a cable routing route on the real space.
  • Real space information acquisition processing to be acquired user position / posture estimation processing for obtaining the position and posture of the user from the real space information, wiring route information indicating the start point, passing point, and end point of the wiring route, and allowable bending of the cable Cable information indicating a radius and the length of the cable is acquired, a simulation process for calculating the cable movable range from the wiring route information and the cable information, the cable movable range calculated in the simulation process, and the cable From the position and orientation obtained in the user position and orientation estimation process, the real sky
  • the image generation processing for generating a cable excursion image of the virtual reality of the cable range of motion is intended to execute a display process of displaying the cable excursion image of the virtual reality to the image display unit in.
  • the cable movable range of the cable to be wired can be displayed superimposed on the real space.
  • FIG. 6 is a flowchart illustrating an example of information display processing in the cable movable range display device according to the first embodiment.
  • 4 is a flowchart illustrating an example of a simulation process of a cable movable range in the cable movable range display device according to the first embodiment. It is a figure which shows the method of calculating
  • FIG. 10 is a flowchart illustrating an example of hand position detection processing in the cable movable range display device according to the second embodiment.
  • 6 is a flowchart illustrating an example of simulation processing of a cable movable range in the cable movable range display device according to the second embodiment.
  • 10 is a flowchart illustrating an example of a process for limiting a cable movable range in a cable movable range display device according to Embodiment 3.
  • FIG. 10 is a diagram illustrating a display example of a cable movable range displayed by a cable movable range display device according to Embodiment 4.
  • FIG. 10 is a diagram illustrating a display example of a cable movable range displayed by a cable movable range display device according to Embodiment 4.
  • FIG. 1 is a diagram showing a configuration and functions of a cable movable range display device 10 according to Embodiment 1 of the present invention.
  • the cable movable range display device 10 is an information display device that can display a cable movable range indicating an allowable range of a wiring path of a cable (string-like object) superimposed on a real space in front of a user (worker).
  • the cable movable range display apparatus 10 is an apparatus which can implement the cable movable range display method according to the first embodiment.
  • the cable movable range display device 10 includes a real space information acquisition unit (camera, sensor) 11, a user position / posture estimation unit 12, a simulation unit 13, an image generation unit 14, and an image display.
  • the cable movable range display device 10 includes information (cable information) related to the cable such as the cable length (L) 19a and the allowable bending radius (R) 19d of the cable, and a planned wiring position (start and end) 19b of the cable.
  • a storage unit 19 that stores information (wiring path information) related to the cable wiring path such as the cable passing point 19c.
  • the cable movable range display device 10 is, for example, a wearable computer that is worn on the user's body.
  • the cable movable range display device 10 may be a PC such as a desktop PC (Personal Computer) or a notebook PC.
  • a camera mounted on the user's head can be used as the real space information acquisition unit 11, and, for example, a see-through type equipped in front of the user's eyes as the image display unit 15.
  • a display (a head-mounted display having a head-mounted structure attached to the user's head) can be used.
  • the image generation unit 14 can display the real space on the image display unit 15 with the image information acquired by the real space information acquisition unit 11 and can also display the additional information image superimposed on the image display unit 15. .
  • the cable movable range display device 10 may be a portable information terminal such as a tablet terminal or a smartphone.
  • a camera built in the portable information terminal can be used as the real space information acquisition unit 11, and a display panel of the portable information terminal can be used as the image display unit 15.
  • a camera mounted on the user's head is used as the real space information acquisition unit 11, and the see-through display equipped in front of the user's eyes is used as the image display unit 15, for example. Can be used.
  • the real space information acquisition unit 11 acquires real space information regarding the real space.
  • the real space information acquisition unit 11 is, for example, a camera that generates image data corresponding to the real space by photographing the real space.
  • the real space information acquisition unit 11 may include a sensor that acquires information corresponding to the real space (for example, a depth sensor that acquires distance information to the subject) instead of or in addition to the camera.
  • the image display unit 15 is an information display unit such as a display or a projector that displays a CG of a cable movable range as a virtual reality (AR) image.
  • the image display unit 15 may be a see-through display having a transparent or translucent screen, for example. While viewing the real space through the see-through display, the user can view the AR image (CG of the cable movable range) displayed as the additional information image on the screen while being superimposed on the real space. Furthermore, when the image display unit 15 is a projector, the projector can directly project the AR image into the real space without passing through the screen.
  • a projector as the image display unit 15 displays (projects) a projected image (an image showing a cable movable range) as an AR image on a floor, wall, cable tray, facility (equipment), or the like that actually exists. May be.
  • the real space information acquisition unit 11 and the image display unit 15 may be integrated, or may be separate devices connected to each other by a connection cable.
  • the user position / orientation estimation unit 12 obtains the position and orientation of the user in an arbitrary three-dimensional coordinate system from the real space information (for example, image data or distance data to the subject) acquired by the real space information acquisition unit 11. (User position and orientation estimation processing) is performed.
  • the storage unit 19 includes cable information such as a cable length (L) 19a and an allowable bending radius (R) 19d of the cable, a cable wiring planned position (start and end) 19b, and a cable passing point 19c and the like. Wiring route information is stored.
  • the storage unit 19 is a part of the cable movable range display device 10, but the cable information and the cable routing information may be provided from an external device of the cable movable range display device 10. In some cases, the cable movable range display device 10 does not need to include the storage unit 19.
  • the simulation unit 13 stores, from the storage unit 19, wiring route information indicating a planned wiring position (starting end and terminating end) 19 b of the cable and a passing point 19 c of the cable between the starting end and the terminating end, and an allowable bending radius (R ) 19d and cable information indicating the cable length (L) 19a are received, and the three-dimensional image data of the cable movable range is calculated (simulated) from the wiring route information and the cable information.
  • the image generation unit 14 includes an AR image indicating the cable movable range in the real space from the cable movable range (three-dimensional image) calculated by the simulation unit 13 and the user position and posture calculated by the user position / posture estimation unit 12.
  • a cable movable range image (two-dimensional image) is generated.
  • the image generation unit 14 generates a three-dimensional CG in a three-dimensional coordinate system on the computer based on the cable movable range calculated by the simulation unit 13, and the real space based on the real space information acquisition unit 11.
  • An AR image to be drawn (displayed) is generated. At this time, the AR image to be generated is generated in accordance with the image display unit (display characteristics).
  • FIG. 2 is a hardware configuration diagram showing the cable movable range display device 10 according to the first embodiment.
  • the hardware configuration of the cable movable range display device 10 is not limited to the example illustrated in FIG. 2, and various changes can be made.
  • reference numerals 20, 30, and 40 are referred to in the second to fourth embodiments described later.
  • the cable movable range display device 10 is, for example, a computer.
  • the cable movable range display device 10 includes a CPU (Central Processing Unit) 51, a GPU (Graphics Processing Unit) 52, a main memory 53, a storage 54 (that is, the storage unit 19), and a bus 58.
  • the cable movable range display device 10 includes a camera 55, a sensor 56, and a display device 57 (that is, the image display unit 15).
  • the camera 55 and the sensor 56 are examples of the real space information acquisition unit 11.
  • the bus 58 is a data transfer path used for exchanging data by the hardware components of the cable movable range display device 10.
  • the CPU 51 is an arithmetic device for the cable movable range display device 10 to execute various types of processing (for example, information display processing).
  • the GPU 52 is an arithmetic device that executes processing related to screen generation or drawing.
  • the main memory 53 is a storage device (for example, a semiconductor storage device) that can erase and rewrite data.
  • the main memory 53 is a volatile memory, but has a higher writing and reading speed than the storage 54. For this reason, the main memory 53 is used to store data in use or data that is scheduled to be used immediately.
  • a program that performs the processing shown in FIGS. 3 and 4 is stored in the main memory 53 when the program is executed.
  • the program stored in the main memory 53 is executed by the CPU 51.
  • the storage 54 is a storage device (for example, a hard disk device, a semiconductor storage device, etc.) capable of erasing and rewriting data.
  • the storage 54 can be used for storing data in the storage unit 19. Information stored in the storage 54 is expanded in the main memory 53 when the program is executed.
  • the camera 55 is a device that captures an image necessary to acquire real space information.
  • the sensor 56 is a device that acquires a value necessary for acquiring information on the real space.
  • the sensor 56 is, for example, a GPS (Global Positioning System) that measures a position, an acceleration sensor that measures acceleration, a geomagnetic sensor that measures azimuth, or a depth sensor that measures the distance to a subject.
  • GPS Global Positioning System
  • the display device 57 is the image display unit 15 that displays the AR image of the cable movable range.
  • the display device 57 is, for example, a tablet terminal or a smartphone display.
  • the display device 57 can be a head mounted display, a computer monitor, a projector, or a head-up display.
  • FIG. 3 is a flowchart showing an example of information display processing of the cable movable range display device 10 according to the first embodiment.
  • the information display process of the cable movable range display device 10 is not limited to the process shown in FIG. 3 and can be changed.
  • the information display process shown in FIG. 3 is executed each time a camera or sensor used in the real space information acquisition unit 11 of the cable movable range display device 10 acquires real space information.
  • step S110 the real space information acquisition unit 11 acquires real space information.
  • the real space information acquisition unit 11 is a camera
  • the real space information is a captured image (image data).
  • the real space information acquisition unit 11 is a sensor that detects real space information
  • the real space information is a detection value of the sensor.
  • the user position / orientation estimation unit 12 calculates (estimates) the position and orientation of the user based on the real space information acquired in step S110.
  • the position and orientation of the user are represented with reference to an arbitrary three-dimensional coordinate system determined by the cable movable range display device 10.
  • the simulation unit 13 acquires from the storage unit 19 the cable length 19a, the planned wiring position (start and end) 19b, the cable passing point 19c, and the allowable bending radius 19d of the cable.
  • the simulation unit 13 calculates (simulates) the cable movable range based on the cable information and the wiring route information acquired in step S130.
  • An example of the simulation method is shown in FIG.
  • the image generation unit 14 In the next step S150, the image generation unit 14 generates a three-dimensional CG from the cable movable range that is the simulation result obtained in step S140. In the next step S160, the image generation unit 14 geometrically converts the three-dimensional CG generated in step S150 in consideration of the position and orientation of the user, and the arbitrary three-dimensional determined by the cable movable range display device 10 is obtained. Place in the coordinate system.
  • the image generation unit 14 converts the three-dimensional CG arranged in the three-dimensional coordinate system in step S160 into a two-dimensional image in accordance with the characteristics of the image display unit 15 (display device 57).
  • a method for converting the three-dimensional CG into a two-dimensional image when the real space information acquisition unit 11 is a camera will be described.
  • synthesizing a 3D CG with an image photographed by a camera such as a tablet, it can be converted using internal parameters of the camera (such as the focal length of the camera).
  • the image display unit 15 is a see-through type display (see-through type head mounted display)
  • the optical axis of the camera and the optical axis of the eyes are different, so that both optical axes are obtained by applying translation and rotation processing to the three-dimensional CG.
  • the conversion process is performed using the internal parameters (such as the focal length) of the eye as in the camera.
  • the image display unit 15 is a device that projects as AR image light on a real space, such as a projector
  • the internal parameters of the projector are set for an image converted using the internal parameters of the camera on the computer. The conversion process is performed using the back projection method.
  • step S180 the image display unit 15 displays the AR image obtained by the conversion process in step S170.
  • FIG. 4 is a flowchart showing an example of a process (step S140 in FIG. 3) for simulating the cable movable range from the cable information in FIG.
  • the process of simulating the cable movable range from the cable information is not limited to the example of FIG. 4 and can be changed.
  • step S210 the simulation unit 13 sets a position (starting end and end) 19b and a passing point 19c of the cable on a three-dimensional coordinate.
  • the simulation unit 13 sets the starting point set in step S210 as the elliptical focal point A and sets the next passing point at the starting point as the elliptical focal point B.
  • step S240 the simulation unit 13 generates the ellipsoid ⁇ by rotating the major axis of the ellipse ⁇ generated in step S230 around the central axis.
  • This ellipsoid ⁇ is a cable movable range in which only the length of the cable is considered.
  • the cable cannot be bent at an acute angle and has an allowable bending radius R as the minimum bending radius that can be used. Therefore, in step S250, the simulation unit 13 extracts only a region where the cable bending radius is larger than the allowable bending radius R in the ellipsoid ⁇ generated in step S240.
  • the simulation unit 13 moves the focal point A and the focal point B to the next passing point. Specifically, the simulation unit 13 sets the focus B in the previous process as the focus A in the previous process and the pass point next to the previous pass point as the focus B in the previous process.
  • step S270 the simulation unit 13 determines whether or not the focal point A has reached the end, and if it has reached (determination is YES), the process proceeds to step S280, and if it has not reached ( If the determination is NO), the process returns to step S230.
  • the simulation unit 13 sets the extracted region as the cable movable range, and provides the cable movable region information to the image generation unit 14.
  • the image generation unit 14 represents an AR image indicating the cable movable range in the real space from the cable movable range (three-dimensional CG) calculated by the simulation unit 13 and the user position and posture calculated by the user position / posture estimation unit 12.
  • a cable movable range image (two-dimensional image) is generated and displayed on the image display unit 15.
  • the cable movable range display device 10 or the cable movable range display method according to the first embodiment the cable movable range is simulated, and the simulated cable movable range and the user An AR image is generated from the position and orientation of the image, and the AR image of the cable movable range is displayed so as to be superimposed on the real space or on the real space image. For this reason, it is possible for the operator to display the cable movable range that matches the characteristics of the cable intuitively and easily.
  • the simulation unit 13 includes the cable information (the cable length 19a, the allowable bending radius 19d of the cable) and the wiring path information (the start and end points indicating the planned wiring position 19b).
  • the cable moving range is calculated from the passing point 19c)
  • the image generation unit 14 generates an AR image from the cable moving range calculated by the simulation unit 13, and the cable moving range from the start end to the end is displayed on the image display unit 15.
  • the three-dimensional CG image is displayed, or the AR image of the cable movable range is projected on the real space by the projector as the image display unit 15.
  • the hand position detector 21 detects the position of the hand of the worker (user) during the wiring work, and the image generator 14 The process of displaying the movable range of the cable from the hand position to the end as a three-dimensional CG image on the image display unit 15, or the projector as the image display unit 15 is movable from the position of the hand to the end in the real space. A process of displaying the area as an AR image is executed.
  • FIG. 7 is a diagram illustrating the configuration and functions of the cable movable range display device 20 according to the second embodiment.
  • the cable movable range display device 20 according to the second embodiment includes a hand position detection unit 21 that detects the position of the worker's hand based on information on the real space acquired by the real space information acquisition unit 11 and a simulation unit. 23 is different from the cable movable range display device 10 according to the first embodiment in terms of processing contents. Except for these points, the cable movable range display device 20 and the cable movable range display method according to the second embodiment are the same as the cable movable range display device 10 and the cable movable range display method according to the first embodiment.
  • FIG. 8 is a flowchart showing an example of processing of the hand position detection unit 21 in the cable movable range display device 20 according to the second embodiment.
  • the hand position detection process is not limited to the method shown in FIG. 8, and may be a different process.
  • the hand position detection process illustrated in FIG. 8 is performed every time the camera captures an image (for example, at regular time intervals).
  • the real space information acquisition unit 11 includes a depth sensor
  • the hand position detection process illustrated in FIG. 8 is performed every time the distance information to the subject is updated (for example, at regular time intervals).
  • FIG. 8 illustrates a case where the real space information acquisition unit 11 includes a camera and a depth sensor.
  • the hand position detection unit 21 detects pixels having a color close to the hand color (color determined in advance based on hand characteristics) from the camera image acquired by the real space information acquisition unit 11. To do. Further, the hand position detection unit 21 may detect pixels close to the body temperature of the hand from the thermal image instead of detecting pixels having a color close to the hand color. In addition, the hand position detection unit 21 may use both a pixel having a color close to the color of the hand and a pixel close to the body temperature of the hand for detecting the hand position. In the next step S320, the hand position detection unit 21 labels the image detected in step S310.
  • the hand position detecting unit 21 recognizes a hand through which the cable (string-like object) passes among the areas labeled in step S320.
  • the hand position detection unit 21 calculates (estimates) the hand position recognized in step S330 from the distance information acquired by the depth sensor of the real space information acquisition unit 11.
  • FIG. 9 is a flowchart showing an example of the simulation process of the cable movable range in the cable movable range display device 20 according to the second embodiment.
  • the same step symbol as the step symbol shown in FIG. 4 is attached to the same or corresponding processing step as that shown in FIG. 4 (Embodiment 1).
  • the simulation process shown in FIG. 9 is different from the simulation process shown in FIG. 4 (Embodiment 1) in that it includes steps S221 and S222.
  • step S221 the hand position detection unit 21 detects the hand position by the hand position detection process shown in FIG. If the hand position is successfully detected (YES in step S221), the simulation unit 23 changes the ellipse focus A to the hand position in step S222, and performs the process of step S230. When the detection of the hand position has failed (NO in step S221), the simulation unit 23 performs the process of step S230. Except for the above, the simulation process of FIG. 9 is the same as the simulation process of FIG. 4 (Embodiment 1).
  • the cable movable range display device 20 or the cable movable range display method according to the second embodiment the cable movable range is simulated, and the simulated cable movable range and the position and orientation of the user are calculated.
  • An AR image is generated, and the AR image of the cable movable range is displayed so as to be superimposed on the real space.
  • the cable movable range matched with the characteristic of the cable can be displayed intuitively and easily for the operator.
  • the cable movable range can be displayed in real time, so that a display corresponding to the situation can be appropriately displayed, and the display can be intuitive and easy to understand for the worker.
  • Embodiment 3 the cable movable range display device 20 and the cable movable range display method for updating the movable range of the cable in real time even when the worker is working on the cable wiring have been described.
  • the simulation unit 33 recognizes a three-dimensional shape location in the cable movable range as an obstacle region where an obstacle exists.
  • the simulation unit 33 performs processing for excluding the obstacle region from the cable movable region.
  • FIG. 10 is a diagram illustrating the configuration and functions of the cable movable range display device 30 according to the third embodiment.
  • the simulation unit 33 acquires real space information from the real space information acquisition unit 11, and an obstacle region where an obstacle exists in a three-dimensional shape portion in the cable movable range.
  • the cable movable range display device 30 and the cable movable range display method according to the third embodiment are the same as the cable movable range display device 20 and the cable movable range display method according to the second embodiment.
  • FIG. 11 is a flowchart illustrating an example of the process of limiting the cable movable range in the cable movable range display device 30 according to the third embodiment.
  • the process for limiting the cable movable range in the third embodiment is a process performed between steps S270 and S280 in FIG. 4 or FIG.
  • step S410 the simulation unit 33 acquires a three-dimensional shape around the cable movable range from the distance image acquired by the real space information acquisition unit 11.
  • the simulation unit 33 removes a common portion between the extracted region and the three-dimensional shape region acquired in step S410 from the region extracted in step S250, and determines the limited range of cable movement.
  • the hand position detection process may be a process different from FIG.
  • the cable movable range display device 30 and the cable movable range display method according to the third embodiment are characterized in that data is provided from the real space information acquisition unit 11 to the simulation unit 13. Due to this feature, when there is an obstacle in the wiring route, the movable range of the cable can be limited. Therefore, the display according to the situation is possible, and the display can be intuitive and easy for the worker to understand.
  • Embodiment 4 The image generation unit 14 in the cable movable range display devices 10, 20, and 30 according to Embodiments 1 to 3 described above displays the two-dimensional image converted from the three-dimensional CG of the cable movable range as the image display unit 15 (display device 57). Or the AR image of the movable range of the cable is projected on the real space by the projector as the image display unit 15.
  • a two-dimensional image generated by projecting a three-dimensional CG may display depth information and the like in a sufficiently easy-to-understand manner. There are cases where it is not possible.
  • the image generation unit 44 of the cable movable range display device 40 displays color information (display with a plurality of different colors from each other) according to the thickness information of the three-dimensional CG of the cable movable range. Or a display with a plurality of levels of density differences).
  • FIG. 12 is a diagram illustrating the configuration and functions of the cable movable range display device 40 according to the fourth embodiment.
  • components that are the same as or correspond to those shown in FIG. 1 (Embodiment 1) are assigned the same reference numerals as those shown in FIG.
  • the image generation unit 44 displays color information (display with a plurality of different colors or a plurality of levels of density) in a two-dimensional image according to the thickness information of the three-dimensional CG of the cable movable range.
  • the cable movable range display device 40 according to the fourth embodiment is different from the cable movable range display device 10 according to the first embodiment in that it has a function of adding a display according to a difference. Except for this point, the cable movable range display device 40 and the movable range display method according to the fourth embodiment are the same as the cable movable range display device 10 and the movable range display method according to the first embodiment.
  • FIG. 13 is a diagram illustrating a display example of the cable movable range displayed on the image display unit 15 by the image generation unit 44 of the cable movable range display device 40 according to the fourth embodiment.
  • the image generation unit 44 employs a display method in which a portion having the greatest thickness in the three-dimensional CG is displayed in red, and gradually changes from red to blue as the thickness in the three-dimensional CG decreases (multiple colors are displayed). Method of highlighting the thickness).
  • the image generation unit 44 displays the thickest portion in the three-dimensional CG in a dark color, and gradually changes the dark color to a light color as the thickness in the three-dimensional CG becomes thin (gradation is displayed). And a method for highlighting the thickness).
  • the image generation unit 44 displays the thickest portion in the AR image projected on the real space in a dark color, and the darker as the thickness becomes thinner.
  • a display method of gradually changing the color to a light color (a method of highlighting the thickness using gradation) can be employed.
  • the image display unit 15 converts the three-dimensional CG of the cable movable range into a two-dimensional image. 57), the thickness information of the cable movable range is added by a plurality of different colors or by shading of colors.
  • the worker can know not only the two-dimensional image converted from the three-dimensional CG but also color information or thickness information regarding the thickness. For this reason, according to the cable movable range display device 40 and the movable range display method according to the fourth embodiment, it is possible to provide a display of the cable movable range that is easy to understand intuitively for an operator.
  • processing of the image generation unit 44 in the fourth embodiment can also be applied to the second or third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Architecture (AREA)
  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)
  • Electric Cable Installation (AREA)

Abstract

ケーブル可動域表示装置(10)は、現実空間に関する現実空間情報を取得する現実空間情報取得部(11)と、現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定部(12)と、配線経路の始端、通過点、及び終端を示す配線経路情報(19b,19c)とケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報(19d,19a)とを受け取り、配線経路情報(19b,19c)とケーブル情報(19d,19a)とからケーブル可動域を計算するシミュレーション部(13)と、シミュレーション部(13)によって計算されたケーブル可動域とユーザ位置姿勢推定部(12)によって求められた位置及び姿勢とから、現実空間におけるケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成部(14)と、仮想現実感のケーブル可動域画像を表示する画像表示部(15)とを備える。

Description

ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
 本発明は、現実空間に重ねてケーブル可動域を表示するためのケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラムに関する。
 カメラ(撮像装置)又はセンサ(例えば、深度センサ)などによって取得された現実空間情報(例えば、画像データ又は被写体までの距離情報)を元に推定されたユーザの位置及び姿勢に基づいて、付加情報画像としてのCG(Computer Graphics)を生成し、生成されたCGがあたかも現実空間に存在するかのように、現実空間に重ねてCGを描画する拡張現実感(Augmented Reality:AR)を用いる技術が提案されている。また、カメラによって取得された2次元画像データを元に、任意の3次元座標系におけるカメラの位置及び姿勢を求め、求められたカメラの位置及び姿勢に基づいて、計算機上で3次元座標系におけるCGを生成し、生成されたCGを現実空間に重ねて描画する技術も提案されている。これらの技術をユーザ(作業員)の作業における作業支援システムに適用した場合には、作業員は、現実空間にあたかもCGで表示された物が存在するかのような状況を見ることができるため、直観的に且つ容易に理解することができる作業指示を受けることができる。
 例えば、特許文献1は、撮影されたプラントの画像情報内の該当する設備装置部分を強調する描画情報を重畳した画像情報を生成し、生成された画像情報を表示部に表示させる情報表示装置を提案している。
特開2013-117812号公報(要約、段落0009、図2)
 一般に、ケーブルの配線作業におけるケーブルの配線経路は、使用されるケーブルの特性と、配線経路及びその周辺状況(障害物の位置など)とに応じて決められるが、ある程度の許容範囲内でのずれが許容される。しかし、上記従来の装置は、ケーブルの理想的な配線経路を表示するが、ケーブルの配線経路の許容範囲(以下「ケーブル可動域」とも言う)を現実空間に重ねて表示することはできないという課題がある。
 本発明は、上記課題を解決するためになされたものであり、ケーブルの配線作業におけるケーブル可動域を現実空間に重ねて表示することを可能にするケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラムを提供することを目的とする。
 本発明の一態様に係るケーブル可動域表示装置は、現実空間に重ねてケーブルの配線経路の許容範囲を示すケーブル可動域を表示する装置であって、前記現実空間に関する現実空間情報を取得する現実空間情報取得部と、前記現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定部と、前記配線経路の始端、通過点、及び終端を示す配線経路情報と前記ケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報とを受け取り、前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算するシミュレーション部と、前記シミュレーション部によって計算された前記ケーブル可動域と前記ユーザ位置姿勢推定部によって求められた前記位置及び姿勢とから、前記現実空間における前記ケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成部と、前記仮想現実感のケーブル可動域画像を表示する画像表示部とを備えたことを特徴とする。
 本発明の他の態様に係るケーブル可動域表示方法は、現実空間に重ねてケーブルの配線経路の許容範囲を示すケーブル可動域を画像表示部に表示させるケーブル可動域表示方法であって、前記現実空間に関する現実空間情報を取得する現実空間情報取得ステップと、前記現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定ステップと、前記配線経路の始端、通過点、及び終端を示す配線経路情報と前記ケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報とを取得し、前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算するシミュレーションステップと、前記シミュレーションステップにおいて計算された前記ケーブル可動域と前記ユーザ位置姿勢推定ステップにおいて求められた前記位置及び姿勢とから、前記現実空間における前記ケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成ステップと、前記仮想現実感のケーブル可動域画像を画像表示部に表示させる表示ステップとを有することを特徴とする。
 本発明の他の態様に係るケーブル可動域表示プログラムは、現実空間に重ねてケーブルの配線経路の許容範囲を示すケーブル可動域を画像表示部に表示させるコンピュータに、前記現実空間に関する現実空間情報を取得する現実空間情報取得処理と、前記現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定処理と、前記配線経路の始端、通過点、及び終端を示す配線経路情報と前記ケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報とを取得し、前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算するシミュレーション処理と、前記シミュレーション処理において計算された前記ケーブル可動域と前記ユーザ位置姿勢推定処理において求められた前記位置及び姿勢とから、前記現実空間における前記ケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成処理と、前記仮想現実感のケーブル可動域画像を画像表示部に表示させる表示処理とを実行させるものである。
 本発明によれば、配線されるケーブルのケーブル可動域を現実空間に重ねて表示することができる。
本発明の実施の形態1に係るケーブル可動域表示装置の構成及び機能を示す図である。 実施の形態1に係るケーブル可動域表示装置を示すハードウェア構成図である。 実施の形態1に係るケーブル可動域表示装置における情報表示処理の一例を示すフローチャートである。 実施の形態1に係るケーブル可動域表示装置におけるケーブル可動域のシミュレーション処理の一例を示すフローチャートである。 ケーブルの長さを考慮してケーブル可動域を求める方法を示す図である。 ケーブルの使用可能な許容曲げ半径を示す図である。 本発明の実施の形態2に係るケーブル可動域表示装置の構成及び機能を示す図である。 実施の形態2に係るケーブル可動域表示装置における手の位置検出処理の一例を示すフローチャートである。 実施の形態2に係るケーブル可動域表示装置におけるケーブル可動域のシミュレーション処理の一例を示すフローチャートである。 本発明の実施の形態3に係るケーブル可動域表示装置の構成及び機能を示す図である。 実施の形態3に係るケーブル可動域表示装置におけるケーブル可動域の限定処理の一例を示すフローチャートである。 本発明の実施の形態4に係るケーブル可動域表示装置の構成及び機能を示す図である。 実施の形態4に係るケーブル可動域表示装置により表示されるケーブル可動域の表示例を示す図である。
《1》実施の形態1.
《1-1》構成
 図1は、本発明の実施の形態1に係るケーブル可動域表示装置10の構成及び機能を示す図である。ケーブル可動域表示装置10は、ユーザ(作業員)の前の現実空間に重ねてケーブル(紐状物体)の配線経路の許容範囲を示すケーブル可動域を表示することができる情報表示装置である。また、ケーブル可動域表示装置10は、実施の形態1に係るケーブル可動域表示方法を実施することができる装置である。
 図1に示されるように、ケーブル可動域表示装置10は、現実空間情報取得部(カメラ、センサ)11と、ユーザ位置姿勢推定部12と、シミュレーション部13と、画像生成部14と、画像表示部(表示デバイス)15とを備える。また、ケーブル可動域表示装置10は、ケーブルの長さ(L)19a及びケーブルの許容曲げ半径(R)19dなどのケーブルに関する情報(ケーブル情報)と、ケーブルの配線予定位置(始端及び終端)19b及びケーブルの通過点19cなどのケーブルの配線経路に関する情報(配線経路情報)とを記憶する記憶部19を備えてもよい。
 ケーブル可動域表示装置10は、例えば、ユーザの身体に装着されるウエアラブル型コンピュータである。また、ケーブル可動域表示装置10は、デスクトップPC(Personal Computer)又はノートPCなどのようなPCであってもよい。これらの場合には、現実空間情報取得部11として、例えば、ユーザの頭部に装着されるカメラを用いることができ、画像表示部15として、例えば、ユーザの目の前に装備されるシースルー型ディスプレイ(ユーザの頭部に装着されるヘッドマウント型の構造を有するヘッドマウントディスプレイ)を用いることができる。シースルー型ディスプレイを用いる場合には、ユーザは、シースルー型ディスプレイを通して現実空間を見ながら、シースルー型ディスプレイに表示された付加情報画像を見る。ただし、画像生成部14は、現実空間情報取得部11で取得された画像情報で現実空間を画像表示部15に表示すると共に、付加情報画像を画像表示部15に重畳して表示することもできる。
 また、ケーブル可動域表示装置10は、例えば、タブレット端末又はスマートフォンなどのような携帯情報端末であってもよい。この場合には、現実空間情報取得部11として携帯情報端末に内蔵されているカメラを用いることができ、画像表示部15として携帯情報端末の表示パネルを用いることができる。ただし、これらの場合にも、現実空間情報取得部11として、例えば、ユーザの頭部に装着されるカメラを用い、画像表示部15として、例えば、ユーザの目の前に装備されたシースルー型ディスプレイを用いることができる。
 現実空間情報取得部11は、現実空間に関する現実空間情報を取得する。現実空間情報取得部11は、例えば、現実空間を撮影することによって現実空間に対応する画像データを生成するカメラである。また、現実空間情報取得部11は、カメラに代えて又はカメラに加えて、現実空間に対応する情報を取得するセンサ(例えば、被写体までの距離情報を取得する深度センサなど)を含んでもよい。
 画像表示部15は、仮想現実感(AR)画像としてケーブル可動域のCGを表示するディスプレイ又はプロジェクタなどのような情報表示部である。画像表示部15は、例えば、透明又は半透明のスクリーンを有するシースルー型ディスプレイであってもよい。ユーザは、シースルー型ディスプレイを通して現実空間を見ながら、スクリーン上に付加情報画像として表示されたAR画像(ケーブル可動域のCG)を、現実空間に重ねて見ることができる。さらに、画像表示部15がプロジェクタである場合には、プロジェクタは、スクリーンを通さずに、AR画像を現実空間に直接投影することもできる。例えば、画像表示部15としてのプロジェクタは、現実に存在する床、壁、ケーブルトレイ、設備(機器)などの上にAR画像としての投射画像(ケーブル可動域を示す画像)を表示(投影)してもよい。なお、現実空間情報取得部11と画像表示部15とは、一体型であっても良く、又は、接続ケーブルによって互いに接続される別個の装置であってもよい。
 ユーザ位置姿勢推定部12は、現実空間情報取得部11によって取得された現実空間情報(例えば、画像データ又は被写体までの距離データなど)から任意の3次元座標系におけるユーザの位置及び姿勢を求める処理(ユーザ位置姿勢推定処理)を行う。
 記憶部19には、ケーブルの長さ(L)19a及びケーブルの許容曲げ半径(R)19dなどのケーブル情報と、ケーブルの配線予定位置(始端及び終端)19b及びケーブルの通過点19cなどのケーブルの配線経路情報とが記憶されている。図1では、記憶部19は、ケーブル可動域表示装置10の一部であるが、ケーブル情報とケーブルの配線経路情報とは、ケーブル可動域表示装置10の外部装置から提供されてもよく、この場合にはケーブル可動域表示装置10は記憶部19を備える必要がない。
 シミュレーション部13は、記憶部19からケーブルの配線予定位置(始端及び終端)19bと、始端と終端との間にあるケーブルの通過点19cとを示す配線経路情報と、ケーブルの許容曲げ半径(R)19d及びケーブルの長さ(L)19aを示すケーブル情報とを受け取り、配線経路情報とケーブル情報とからケーブル可動域の3次元画像データを算出(シミュレーション)する。
 画像生成部14は、シミュレーション部13によって算出されたケーブル可動域(3次元画像)とユーザ位置姿勢推定部12によって求められたユーザの位置及び姿勢とから、現実空間におけるケーブル可動域を示すAR画像としてのケーブル可動域画像(2次元画像)を生成する。言い換えれば、画像生成部14は、シミュレーション部13で算出されたケーブル可動域に基づいて、計算機上での3次元座標系において3次元CGを生成し、現実空間情報取得部11を基に現実空間に重ねて描画(表示)するAR画像を生成する。このとき、生成するAR画像は、画像表示部(ディスプレイの特徴)に合わせて生成される。
 図2は、実施の形態1に係るケーブル可動域表示装置10を示すハードウェア構成図である。ただし、ケーブル可動域表示装置10のハードウェア構成は、図2に示す例に限定されず、種々の変更が可能である。なお、図2において、符号20,30,40は、後述の実施の形態2から4において参照される。
 ケーブル可動域表示装置10は、例えば、コンピュータである。ケーブル可動域表示装置10は、CPU(Central Processing Unit)51と、GPU(Graphics Processing Unit)52と、メインメモリ53と、ストレージ54(すなわち、記憶部19)と、バス58とを備える。さらに、ケーブル可動域表示装置10は、カメラ55と、センサ56と、表示デバイス57(すなわち、画像表示部15)とを備える。カメラ55とセンサ56とは、現実空間情報取得部11の例示である。
 バス58は、ケーブル可動域表示装置10のハードウェア構成部分がデータを交換するために用いられるデータ転送路である。CPU51は、ケーブル可動域表示装置10が各種の処理(例えば、情報表示処理)を実行するための演算装置である。GPU52は、画面の生成又は描画に関する処理を実行する演算装置である。
 メインメモリ53は、データの消去及び書き換えが可能な記憶装置(例えば、半導体記憶装置など)である。メインメモリ53は、揮発性メモリであるが、ストレージ54よりも書き込み及び読み出し速度が高速である。このため、メインメモリ53は、使用中のデータ又は直ぐに使用される予定のあるデータを保存するために使用される。例えば、図3及び図4に示される処理を行うプログラムが、プログラム実行時にメインメモリ53に格納される。メインメモリ53に格納されたプログラムは、CPU51によって実行される。
 ストレージ54は、データの消去及び書き換えが可能な記憶装置(例えば、ハードディスク装置、半導体記憶装置など)である。ストレージ54は、記憶部19のデータを記憶しておくために使用されることができる。ストレージ54に記憶されている情報は、プログラム実行時に、メインメモリ53において展開される。
 カメラ55は、現実空間の情報を取得するために必要な画像を撮影する装置である。センサ56は、現実空間の情報を取得するために必要な値を取得する装置である。センサ56は、例えば、位置を計測するGPS(Global Positioning System)、加速度を計測する加速度センサ、方位を計測する地磁気センサ、被写体までの距離を計測する深度センサである。
 表示デバイス57は、ケーブル可動域のAR画像を表示する画像表示部15である。表示デバイス57は、例えば、タブレット端末又はスマートフォンのディスプレイである。また、表示デバイス57は、ヘッドマウントディスプレイ、コンピュータのモニタ、プロジェクタ、ヘッドアップディスプレイであることができる。
《1-2》動作
 図3は、実施の形態1に係るケーブル可動域表示装置10の情報表示処理の一例を示すフローチャートである。ただし、ケーブル可動域表示装置10の情報表示処理は、図3に示される処理に限定されず、変更が可能である。なお、図3に示される情報表示処理は、ケーブル可動域表示装置10の現実空間情報取得部11に使用するカメラ又はセンサが現実空間の情報を取得するごとに実行される。
 ステップS110では、現実空間情報取得部11は、現実空間情報を取得する。現実空間情報取得部11がカメラである場合には、現実空間情報は撮影画像(画像データ)である。現実空間情報取得部11が現実空間情報を検出するセンサである場合には、現実空間情報はセンサの検出値である。
 次のステップS120では、ユーザ位置姿勢推定部12は、ステップS110で取得された現実空間情報を基に、ユーザの位置及び姿勢を計算(推定)する。このときの、ユーザの位置及び姿勢は、ケーブル可動域表示装置10が決めた任意の3次元座標系を基準として表される。
 次のステップS130では、シミュレーション部13は、記憶部19からケーブルの長さ19a、ケーブルの配線予定位置(始端と終端)19bとケーブルの通過点19c、ケーブルの許容曲げ半径19dを取得する。
 次のステップS140では、シミュレーション部13は、ステップS130で取得されたケーブル情報及び配線経路情報を基に、ケーブル可動域を算出(シミュレーション)する。シミュレーション方法の一例は、後述の図4に示される。
 次のステップS150では、画像生成部14は、ステップS140で得られたシミュレーション結果であるケーブル可動域から、3次元CGを生成する。次のステップS160では、画像生成部14は、ステップS150で生成した3次元CGをユーザの位置及び姿勢を考慮して幾何学的に変換し、ケーブル可動域表示装置10が決めた任意の3次元座標系に配置する。
 次のステップS170では、画像生成部14は、画像表示部15(表示デバイス57)の特徴に応じて、ステップS160で3次元座標系に配置された3次元CGを、2次元画像に変換する。現実空間情報取得部11がカメラである場合、この3次元CGを2次元画像に変換する方法を説明する。タブレットなどのようにカメラで撮影した画像に3次元CGを合成する場合は、カメラの内部パラメータ(カメラの焦点距離など)を用いて変換することができる。画像表示部15がシースルー型ディスプレイ(シースルー型ヘッドマウントディスプレイ)である場合には、カメラの光軸と目の光軸とが異なるので、3次元CGに並進及び回転処理を加えて両方の光軸を一致させてから、カメラと同様に目の内部パラメータ(焦点距離など)を用いて変換処理を行う。画像表示部15がプロジェクタのように、現実空間上にAR画像光として投影する装置である場合には、計算機上でカメラの内部パラメータを使用して変換した画像に対して、プロジェクタの内部パラメータを用いて逆投影する方法を用いて、変換処理を行う。
 次のステップS180では、画像表示部15で、ステップS170の変換処理で得られたAR画像を表示する。
 図4は、図3におけるケーブル情報からケーブル可動域をシミュレーションする処理(図3におけるステップS140)の一例を示すフローチャートである。ただし、ケーブル情報からケーブル可動域をシミュレーションする処理は、図4の例に限定されず、変更が可能である。
 ステップS210では、シミュレーション部13は、ケーブルを配線する予定の位置(始端と終端)19bとケーブルの通過点19cを3次元座標上に設定する。
 次のステップS220では、シミュレーション部13は、図5に示されるように、ステップS210で設定した始端を楕円の焦点Aとし、始端の次の通過点を楕円の焦点Bと設定する。
 次のステップS230では、シミュレーション部13は、図5に示されるように、ステップS220で設定した焦点A、焦点Bを持ち、長軸が使用可能なケーブルの長さ[=(ケーブルの長さ19a)-((使用したケーブルの長さ)+(残り経路の最短距離))]となる楕円αを生成する。ここで、楕円αを生成するのは、楕円の焦点Aと焦点Bと楕円の周上の点Cは、
(線分AC)+(線分BC)=一定
という特徴を持つからである。
 ステップS240では、シミュレーション部13は、ステップS230で生成した楕円αの長軸を中心軸に回転させることで楕円体βを生成する。この楕円体βは、ケーブルの長さのみ考慮されたケーブル可動域となる。しかし、図6に示されるように、ケーブルは、鋭角に折り曲げることはできず、使用可能な最小曲げ半径としての許容曲げ半径Rを持つ。そこで、ステップS250では、シミュレーション部13は、ステップS240で生成された楕円体β内で、ケーブルの曲げ半径が許容曲げ半径Rより大きい領域のみを抽出する。
 次のステップS260では、シミュレーション部13は、焦点A、焦点Bを次の通過点に移動する。具体的には、シミュレーション部13は、前回の処理における焦点Bを,前回の次の処理における焦点Aとし、前回の通過点の次の通過点を前回の次の処理における焦点Bとする。
 次のステップS270では、シミュレーション部13は、焦点Aが終端に到達したかどうかを判断し、もしも到達していれば(判断がYES)、処理をステップS280に進め、もしも到達していなければ(判断がNO)、処理をステップS230に戻す。
 次のステップS280では、シミュレーション部13は、抽出した領域をケーブル可動域とし、画像生成部14にケーブル可動域情報を提供する。
 画像生成部14は、シミュレーション部13によって算出されたケーブル可動域(3次元CG)とユーザ位置姿勢推定部12によって求められたユーザの位置及び姿勢とから、現実空間におけるケーブル可動域を示すAR画像としてのケーブル可動域画像(2次元画像)を生成し、画像表示部15に表示させる。
《1-3》効果
 以上に説明したように、実施の形態1に係るケーブル可動域表示装置10又はケーブル可動域表示方法によれば、ケーブル可動域をシミュレーションし、シミュレーションされたケーブル可動域とユーザの位置及び姿勢とからAR画像を生成し、現実空間に重ねて又は現実空間画像に重ねて、ケーブル可動域のAR画像を表示する。このため、ケーブルの特徴に合わせたケーブル可動域を作業員にとって直観的でわかり易く表示することができる。
《2》実施の形態2.
 上記実施の形態1に係るケーブル可動域表示装置10では、シミュレーション部13が、ケーブル情報(ケーブルの長さ19a、ケーブルの許容曲げ半径19d)と配線経路情報(配線予定位置19bを示す始端及び終端、通過点19c)とからケーブル可動域を計算し、画像生成部14が、シミュレーション部13によって計算されたケーブル可動域からAR画像を生成し、画像表示部15に始端から終端までのケーブル可動域の3次元CG画像を表示させている、又は、画像表示部15としてのプロジェクタによってケーブル可動域のAR画像を現実空間上に投影している。
 これに対し、本発明の実施の形態2に係るケーブル可動域表示装置20では、手位置検出部21が配線作業の途中における作業員(ユーザ)の手の位置を検出し、画像生成部14が、手の位置から終端までのケーブル可動域を画像表示部15上に3次元CG画像として表示する処理、又は、画像表示部15としてのプロジェクタが現実空間上に手の位置から終端までのケーブル可動域をAR画像として表示する処理を実行する。
 図7は、実施の形態2に係るケーブル可動域表示装置20の構成及び機能を示す図である。図7において、図1(実施の形態1)に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態2に係るケーブル可動域表示装置20は、現実空間情報取得部11で取得した現実空間の情報を基に作業員の手の位置を検出する手位置検出部21を備える点及びシミュレーション部23の処理内容の点において、実施の形態1に係るケーブル可動域表示装置10と異なる。これらの点を除いて、実施の形態2に係るケーブル可動域表示装置20及びケーブル可動域表示方法は、実施の形態1に係るケーブル可動域表示装置10及びケーブル可動域表示方法と同じである。
 図8は、実施の形態2に係るケーブル可動域表示装置20における手位置検出部21の処理の一例を示すフローチャートである。ただし、手の位置検出処理は、図8に示される方法に限定されず、異なる処理であってもよい。図8に示される手の位置検出処理は、現実空間情報取得部11がカメラを含む場合には、カメラが画像を撮影する毎に(例えば、一定時間間隔で)行われる。また、図8に示される手の位置検出処理は、現実空間情報取得部11が深度センサを含む場合には、被写体までの距離情報が更新される毎に(例えば、一定時間間隔で)行われる。なお、図8では、現実空間情報取得部11がカメラ及び深度センサを含む場合を説明する。
 図8のステップS310では、手位置検出部21は、現実空間情報取得部11によって取得されたカメラ画像から手の色(手の特徴に基づいて予め決められた色)に近い色の画素を検出する。また、手位置検出部21は、手の色に近い色の画素を検出する代わりに、熱画像から手の体温に近い画素を検出してもよい。また、手位置検出部21は、手の色に近い色の画素と手の体温に近い画素との両方を手の位置の検出に用いてもよい。次のステップS320では、手位置検出部21は、ステップS310で検出した画像をラベリングする。次のステップS330では、手位置検出部21は、ステップS320でラベリングされた領域の内、ケーブル(紐状物体)が通過しているものを手と認識する。次のステップS340では、手位置検出部21は、ステップS330で認識された手の位置を、現実空間情報取得部11の深度センサが取得した距離情報から算出(推定)する。
 図9は、実施の形態2に係るケーブル可動域表示装置20におけるケーブル可動域のシミュレーション処理の一例を示すフローチャートである。図9において、図4(実施の形態1)に示される処理ステップと同一又は対応する処理ステップには、図4に示されるステップ記号と同じステップ記号が付される。図9に示されるシミュレーション処理は、ステップS221とS222を有する点において、図4(実施の形態1)に示されるシミュレーション処理と異なる。
 ステップS221では、手位置検出部21は、図8に示される手の位置検出処理によって手の位置を検出する。手の位置の検出に成功した場合は(ステップS221においてYES)、シミュレーション部23は、ステップS222で楕円の焦点Aを手の位置に変更して、ステップS230の処理を行う。手の位置の検出に失敗した場合は(ステップS221においてNO)、シミュレーション部23は、ステップS230の処理を行う。上記以外の点において、図9のシミュレーション処理は、図4(実施の形態1)のシミュレーション処理と同じである。
 以上に説明したように、実施の形態2に係るケーブル可動域表示装置20又はケーブル可動域表示方法によれば、ケーブル可動域をシミュレーションし、シミュレーションされたケーブル可動域とユーザの位置及び姿勢とからAR画像を生成し、現実空間に重ねてケーブル可動域のAR画像を表示する。このため、実施の形態2においては、ケーブルの特徴に合わせたケーブル可動域を、作業員にとって直観的でわかり易く表示することができる。また、作業員が作業中であっても、実時間でケーブル可動域を表示することができるため、状況により適切に対応した表示が可能となり、作業員にとって直観的でわかり易く表示することができる。
《3》実施の形態3.
 上記実施の形態2では、作業員がケーブル配線の作業中であっても、ケーブル可動域を実時間で更新するケーブル可動域表示装置20及びケーブル可動域表示方法を説明した。しかし、ケーブルの配線経路の許容範囲を示すケーブル可動域内にケーブルの配線(設置)の障害になる障害物が存在することがあり得る。また、ケーブル可動域を更新(変更)しながら作業を進める場合には、更新後のケーブル可動域内に、当初は予定されていなかった障害物が存在することもあり得る。そこで、本発明の実施の形態3に係るケーブル可動域表示装置30及びケーブル可動域表示方法では、シミュレーション部33がケーブル可動域における3次元形状の箇所を障害物が存在する障害物領域として認識し、シミュレーション部33が障害物領域をケーブル可動域から除外する処理を行う。
 図10は、実施の形態3に係るケーブル可動域表示装置30の構成及び機能を示す図である。図10において、図7(実施の形態2)に示される構成要素と同一又は対応する構成要素には、図7に示される符号と同じ符号が付される。実施の形態3に係るケーブル可動域表示装置30は、シミュレーション部33が現実空間情報取得部11から現実空間情報を取得し、ケーブル可動域における3次元形状の箇所を障害物が存在する障害物領域として検出する点及びケーブル可動域から障害物領域を除いて新たなケーブル可動域を生成する点において、実施の形態2に係るケーブル可動域表示装置20と異なる。これらの点を除いて、実施の形態3に係るケーブル可動域表示装置30及びケーブル可動域表示方法は、実施の形態2に係るケーブル可動域表示装置20及びケーブル可動域表示方法と同じである。
 図11は、実施の形態3に係るケーブル可動域表示装置30におけるケーブル可動域の限定処理の一例を示すフローチャートである。実施の形態3におけるケーブル可動域を限定する処理は、図4又は図9におけるステップS270とS280との間で行われる処理である。ステップS410では、シミュレーション部33は、現実空間情報取得部11で取得した距離画像から、ケーブル可動域の周辺の3次元形状を取得する。次のステップS420では、シミュレーション部33は、ステップS250で抽出した領域から、当該抽出した領域とステップS410で取得した3次元形状の領域との共通部分を除去して、限定後のケーブル可動域を生成する。ただし、手の位置検出処理は、図11と異なる処理であってもよい。
 以上に説明したように、実施の形態3に係るケーブル可動域表示装置30及びケーブル可動域表示方法は、現実空間情報取得部11からシミュレーション部13にデータを提供することを特徴とする。この特徴によって、配線経路内に障害物が存在する場合、ケーブル可動域を限定することができるため、より状況に応じた表示が可能となり、作業員にとって直観的でわかり易く表示することができる。
《4》実施の形態4.
 上記実施の形態1から3に係るケーブル可動域表示装置10,20,30における画像生成部14は、ケーブル可動域の3次元CGから変換された2次元画像を画像表示部15(表示デバイス57)に表示させている、又は、画像表示部15としてのプロジェクタによってケーブル可動域のAR画像を現実空間上に投影している。しかし、表示デバイスの特徴(例えば、種類、画素数、解像度、画面サイズなど)によっては、3次元CGを投影変換して生成された2次元画像が、奥行情報などを十分にわかり易く表示することができない場合がある。そこで、実施の形態4に係るケーブル可動域表示装置40の画像生成部44は、ケーブル可動域の3次元CGの厚み情報に応じて、2次元画像に色情報(互いに異なる複数の色による表示、又は、複数段階の濃度の違いによる表示)を付加する機能を備えている。
 図12は、実施の形態4に係るケーブル可動域表示装置40の構成及び機能を示す図である。図12において、図1(実施の形態1)に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。図13に示されるように、画像生成部44が、ケーブル可動域の3次元CGの厚み情報に応じて、2次元画像に色情報(互いに異なる複数の色による表示、又は、複数段階の濃度の違いによる表示)を付加する機能を備えている点において、実施の形態4に係るケーブル可動域表示装置40は、実施の形態1に係るケーブル可動域表示装置10と異なる。この点を除いて、実施の形態4に係るケーブル可動域表示装置40及び可動域表示方法は、実施の形態1に係るケーブル可動域表示装置10及び可動域表示方法と同じである。
 図13は、実施の形態4に係るケーブル可動域表示装置40の画像生成部44により画像表示部15に表示されるケーブル可動域の表示例を示す図である。例えば、画像生成部44は、3次元CGにおいて最も厚みがある箇所を赤色で表示し、3次元CGにおける厚みが薄くなるに伴って赤色から青色に徐々に変化させる表示方法を採用(複数色を用いて厚みを強調表示する方法)することができる。また、画像生成部44は、3次元CGにおいて最も厚みがある箇所を濃い色で表示し、3次元CGにおける厚みが薄くなるに伴って濃い色を薄色に徐々に変化させる表示方法(グラデーションを用いて厚みを強調表示する方法)を採用することができる。また、画像表示部15がプロジェクタである場合には、画像生成部44は、現実空間上に投影されるAR画像において最も厚みがある箇所を濃い色で表示し、厚みが薄くなるに伴って濃い色を薄色に徐々に変化させる表示方法(グラデーションを用いて厚みを強調表示する方法)を採用することができる。
 以上に説明したように、実施の形態4に係るケーブル可動域表示装置40及び可動域表示方法によれば、ケーブル可動域の3次元CGを2次元画像に変換して画像表示部15(表示デバイス57)に表示する際に、異なる複数の色によって又は色の濃淡によって、ケーブル可動域の厚み情報を付加している。このような表示を採用することによって、作業員は、3次元CGから変換された2次元画像だけでなく、厚みに関する色情報又は濃淡情報を知ることができる。このため、実施の形態4に係るケーブル可動域表示装置40及び可動域表示方法によれば、作業員に直観的にわかり易いケーブル可動域の表示を提供することができる。
 なお、実施の形態4における画像生成部44の処理を、実施の形態2又は3に適用することも可能である。
 10,20,30,40 ケーブル可動域表示装置(情報表示装置)、 11 現実空間情報取得部(カメラ、センサ)、 12 ユーザ位置姿勢推定部、 13,23,33 シミュレーション部、 14,44 画像生成部、 15 画像表示部、 19 記憶部、 19a ケーブルの長さ、 19b ケーブルの配線予定位置(始端及び終端)、 19c ケーブルの通過点、 19d ケーブルの許容曲げ半径、 21 手位置検出部、 51 CPU、 52 GPU、 53 メインメモリ、 54 ストレージ、 55 カメラ、 56 センサ、 57 表示デバイス、 58 バス。

Claims (13)

  1.  現実空間に重ねてケーブルの配線経路の許容範囲を示すケーブル可動域を表示するケーブル可動域表示装置であって、
     前記現実空間に関する現実空間情報を取得する現実空間情報取得部と、
     前記現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定部と、
     前記配線経路の始端、通過点、及び終端を示す配線経路情報と前記ケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報とを受け取り、前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算するシミュレーション部と、
     前記シミュレーション部によって計算された前記ケーブル可動域と前記ユーザ位置姿勢推定部によって求められた前記位置及び姿勢とから、前記現実空間における前記ケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成部と、
     前記仮想現実感のケーブル可動域画像を表示する画像表示部と
     を備えたことを特徴とするケーブル可動域表示装置。
  2.  前記現実空間情報から前記ユーザの手の位置を検出する手位置検出部をさらに備え、
     前記シミュレーション部は、前記手の位置が、前記配線経路情報に含まれる前記通過点であるとみなして、前記ケーブル可動域を計算する
     ことを特徴とする請求項1に記載のケーブル可動域表示装置。
  3.  前記シミュレーション部は、前記現実空間情報から前記ケーブル可動域内に存在する3次元形状の箇所を障害物が存在する障害物領域として検出し、
     前記ケーブル可動域から前記障害物領域を除いた領域を、新たなケーブル可動域として出力する
     ことを特徴とする請求項1又は2に記載のケーブル可動域表示装置。
  4.  前記画像生成部は、前記仮想現実感のケーブル可動域画像に、前記ケーブル可動域の3次元形状に応じた付加情報を付加することを特徴とする請求項1から3のいずれか1項に記載のケーブル可動域表示装置。
  5.  前記付加情報は、色の違い及び濃度の違いの少なくとも一方を含むことを特徴とする請求項4に記載のケーブル可動域表示装置。
  6.  前記画像表示部は、光を透過させ、前記仮想現実感のケーブル可動域画像を表示するシースルー型ディスプレイを有することを特徴とする請求項1から5のいずれか1項に記載のケーブル可動域表示装置。
  7.  前記画像表示部は、前記仮想現実感のケーブル可動域画像を現実空間上に投影するプロジェクタを有することを特徴とする請求項1から5のいずれか1項に記載のケーブル可動域表示装置。
  8.  前記画像生成部は、前記現実空間情報取得部で取得された画像情報に基づいて前記現実空間を前記画像表示部に表示すると共に、前記仮想現実感のケーブル可動域を画像表示部に表示することを特徴とする請求項1から5のいずれか1項に記載のケーブル可動域表示装置。
  9.  前記配線経路情報と前記ケーブル情報とを記憶する記憶部をさらに備え、
     前記シミュレーション部は、前記記憶部に記憶されている前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算する
     ことを特徴とする請求項1から8のいずれか1項に記載のケーブル可動域表示装置。
  10.  前記現実空間情報取得部は、前記現実空間情報としての画像データを取得するカメラ及び前記現実空間情報としての検出値を取得するセンサの内の少なくとも一方を含むことを特徴とする請求項1から9のいずれか1項に記載のケーブル可動域表示装置。
  11.  前記現実空間情報取得部と前記画像表示部とは、前記ユーザの頭部に装着されるヘッドマウント型の構造を有することを特徴とする請求項1から10のいずれか1項に記載のケーブル可動域表示装置。
  12.  現実空間に重ねてケーブルの配線経路の許容範囲を示すケーブル可動域を画像表示部に表示させるケーブル可動域表示方法であって、
     前記現実空間に関する現実空間情報を取得する現実空間情報取得ステップと、
     前記現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定ステップと、
     前記配線経路の始端、通過点、及び終端を示す配線経路情報と前記ケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報とを取得し、前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算するシミュレーションステップと、
     前記シミュレーションステップにおいて計算された前記ケーブル可動域と前記ユーザ位置姿勢推定ステップにおいて求められた前記位置及び姿勢とから、前記現実空間における前記ケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成ステップと、
     前記仮想現実感のケーブル可動域画像を画像表示部に表示させる表示ステップと
     を有することを特徴とするケーブル可動域表示方法。
  13.  現実空間に重ねてケーブルの配線経路の許容範囲を示すケーブル可動域を画像表示部に表示させるコンピュータに、
     前記現実空間に関する現実空間情報を取得する現実空間情報取得処理と、
     前記現実空間情報からユーザの位置及び姿勢を求めるユーザ位置姿勢推定処理と、
     前記配線経路の始端、通過点、及び終端を示す配線経路情報と前記ケーブルの許容曲げ半径及び前記ケーブルの長さを示すケーブル情報とを取得し、前記配線経路情報と前記ケーブル情報とから前記ケーブル可動域を計算するシミュレーション処理と、
     前記シミュレーション処理において計算された前記ケーブル可動域と前記ユーザ位置姿勢推定処理において求められた前記位置及び姿勢とから、前記現実空間における前記ケーブル可動域を示す仮想現実感のケーブル可動域画像を生成する画像生成処理と、
     前記仮想現実感のケーブル可動域画像を画像表示部に表示させる表示処理と
     を実行させるためのケーブル可動域表示プログラム。
PCT/JP2016/071824 2016-07-26 2016-07-26 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム WO2018020568A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680087569.3A CN109478769A (zh) 2016-07-26 2016-07-26 缆线可动区域显示装置、缆线可动区域显示方法和缆线可动区域显示程序
JP2018530227A JP6440909B2 (ja) 2016-07-26 2016-07-26 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
US16/315,971 US20190243461A1 (en) 2016-07-26 2016-07-26 Cable movable region display device, cable movable region display method, and cable movable region display program
PCT/JP2016/071824 WO2018020568A1 (ja) 2016-07-26 2016-07-26 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071824 WO2018020568A1 (ja) 2016-07-26 2016-07-26 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム

Publications (1)

Publication Number Publication Date
WO2018020568A1 true WO2018020568A1 (ja) 2018-02-01

Family

ID=61016906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071824 WO2018020568A1 (ja) 2016-07-26 2016-07-26 ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム

Country Status (4)

Country Link
US (1) US20190243461A1 (ja)
JP (1) JP6440909B2 (ja)
CN (1) CN109478769A (ja)
WO (1) WO2018020568A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119178A (ja) * 2019-01-23 2020-08-06 日本電気株式会社 配線作業検査システム、情報処理装置、配線作業検査方法、及びプログラム
WO2021023364A1 (en) * 2019-08-03 2021-02-11 Selfsun S.A. Virtual reality system and related method
JP2021156634A (ja) * 2020-03-25 2021-10-07 東芝インフォメーションシステムズ株式会社 測距システム、測距方法及び情報処理装置
CN113935958A (zh) * 2021-09-28 2022-01-14 清华大学 线缆弯曲半径检测方法与装置
CN117688706A (zh) * 2024-01-31 2024-03-12 湘潭大学 一种基于视觉引导的布线设计方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022046340A1 (en) * 2020-08-31 2022-03-03 Sterling Labs Llc Object engagement based on finger manipulation data and untethered inputs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059325A (ja) * 2007-09-04 2009-03-19 Kanto Auto Works Ltd ワイヤハーネスの可動範囲解析方法及び装置
WO2011080882A1 (ja) * 2009-12-28 2011-07-07 パナソニック株式会社 動作空間提示装置、動作空間提示方法およびプログラム
JP2015225504A (ja) * 2014-05-28 2015-12-14 株式会社ランドマークテクノロジー 干渉チェックシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082389B2 (ja) * 1993-02-22 1996-01-17 株式会社電通プロックス 映像利用のシミュレーション装置
CN1304958C (zh) * 2002-04-15 2007-03-14 Kaj株式会社 显示虚拟现实空间的方法和显示虚拟现实空间的装置
JP4082599B2 (ja) * 2002-09-09 2008-04-30 矢崎総業株式会社 ワイヤーハーネスのバラツキ予測方法、その装置及びそのプログラム
JP2004184095A (ja) * 2002-11-29 2004-07-02 Mitsubishi Heavy Ind Ltd 検査支援装置
JP4393169B2 (ja) * 2003-12-04 2010-01-06 キヤノン株式会社 複合現実感提示方法および装置
NL1035303C2 (nl) * 2008-04-16 2009-10-19 Virtual Proteins B V Interactieve virtuele reality eenheid.
JP5402293B2 (ja) * 2009-06-22 2014-01-29 ソニー株式会社 頭部装着型ディスプレイ、及び、頭部装着型ディスプレイにおける画像表示方法
JP2013117812A (ja) * 2011-12-02 2013-06-13 Toshiba Corp プラント監視情報表示システム、およびプラント監視情報表示装置、プラント監視情報表示方法
WO2014106823A2 (en) * 2013-01-03 2014-07-10 Meta Company Extramissive spatial imaging digital eye glass apparatuses, methods and systems for virtual or augmediated vision, manipulation, creation, or interaction with objects, materials, or other entities
US20160147408A1 (en) * 2014-11-25 2016-05-26 Johnathan Bevis Virtual measurement tool for a wearable visualization device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059325A (ja) * 2007-09-04 2009-03-19 Kanto Auto Works Ltd ワイヤハーネスの可動範囲解析方法及び装置
WO2011080882A1 (ja) * 2009-12-28 2011-07-07 パナソニック株式会社 動作空間提示装置、動作空間提示方法およびプログラム
JP2015225504A (ja) * 2014-05-28 2015-12-14 株式会社ランドマークテクノロジー 干渉チェックシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119178A (ja) * 2019-01-23 2020-08-06 日本電気株式会社 配線作業検査システム、情報処理装置、配線作業検査方法、及びプログラム
JP7196631B2 (ja) 2019-01-23 2022-12-27 日本電気株式会社 配線作業検査システム、情報処理装置、配線作業検査方法、及びプログラム
WO2021023364A1 (en) * 2019-08-03 2021-02-11 Selfsun S.A. Virtual reality system and related method
JP2021156634A (ja) * 2020-03-25 2021-10-07 東芝インフォメーションシステムズ株式会社 測距システム、測距方法及び情報処理装置
JP6994529B2 (ja) 2020-03-25 2022-01-14 東芝インフォメーションシステムズ株式会社 測距システム、測距方法及び情報処理装置
CN113935958A (zh) * 2021-09-28 2022-01-14 清华大学 线缆弯曲半径检测方法与装置
CN117688706A (zh) * 2024-01-31 2024-03-12 湘潭大学 一种基于视觉引导的布线设计方法及系统
CN117688706B (zh) * 2024-01-31 2024-05-10 湘潭大学 一种基于视觉引导的布线设计方法及系统

Also Published As

Publication number Publication date
US20190243461A1 (en) 2019-08-08
CN109478769A (zh) 2019-03-15
JP6440909B2 (ja) 2018-12-19
JPWO2018020568A1 (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6440909B2 (ja) ケーブル可動域表示装置、ケーブル可動域表示方法、及びケーブル可動域表示プログラム
JP4137078B2 (ja) 複合現実感情報生成装置および方法
JP4227561B2 (ja) 画像処理方法、画像処理装置
US9740282B1 (en) Gaze direction tracking
US11436742B2 (en) Systems and methods for reducing a search area for identifying correspondences between images
KR102539427B1 (ko) 화상 처리장치, 화상 처리방법, 및 기억매체
US12020448B2 (en) Systems and methods for updating continuous image alignment of separate cameras
JP6708444B2 (ja) 画像処理装置および画像処理方法
JP5762015B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US11450014B2 (en) Systems and methods for continuous image alignment of separate cameras
US20210358084A1 (en) Upsampling low temporal resolution depth maps
US11275434B2 (en) Information processing apparatus, information processing method, and storage medium
JP2005147894A (ja) 計測方法、計測装置
JP6456551B1 (ja) 光学機器制御装置、光学機器制御方法、及び光学機器制御プログラム
WO2015141214A1 (ja) 多視点画像に対するラベル情報の処理装置及びそのラベル情報の処理方法
JP2017068468A (ja) 情報処理装置、情報処理方法及びプログラム
JP2005251118A (ja) 画像処理方法、画像処理装置
US20180278902A1 (en) Projection device, content determination device and projection method
JP7175715B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP7465133B2 (ja) 情報処理装置、情報処理方法
WO2023162504A1 (ja) 情報処理装置、情報処理方法およびプログラム
JP7479978B2 (ja) 内視映像表示システム、内視映像表示装置及び内視映像表示方法
JPWO2018173183A1 (ja) 光学機器制御装置、光学機器制御方法、及び光学機器制御プログラム
JP5683402B2 (ja) 画像合成装置及び画像合成方法
JP2024072574A (ja) 撮影装置、撮影作業支援方法、および撮影作業支援プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018530227

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910471

Country of ref document: EP

Kind code of ref document: A1