WO2011078382A1 - 構造物設置架台、構造物設置用支持具、及び太陽光発電システム - Google Patents

構造物設置架台、構造物設置用支持具、及び太陽光発電システム Download PDF

Info

Publication number
WO2011078382A1
WO2011078382A1 PCT/JP2010/073611 JP2010073611W WO2011078382A1 WO 2011078382 A1 WO2011078382 A1 WO 2011078382A1 JP 2010073611 W JP2010073611 W JP 2010073611W WO 2011078382 A1 WO2011078382 A1 WO 2011078382A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforations
crosspiece
fixture
structure installation
plate
Prior art date
Application number
PCT/JP2010/073611
Other languages
English (en)
French (fr)
Inventor
健一 嵯峨山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/519,014 priority Critical patent/US20120285515A1/en
Publication of WO2011078382A1 publication Critical patent/WO2011078382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/24Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures specially adapted for flat roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/63Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing modules or their peripheral frames to supporting elements
    • F24S25/634Clamps; Clips
    • F24S25/636Clamps; Clips clamping by screw-threaded elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/65Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for coupling adjacent supporting elements, e.g. for connecting profiles together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/80Special profiles
    • F24S2025/807Special profiles having undercut grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a structure installation frame for installing a structure on the ground or a flat roof, a structure installation support, and a solar power generation system using the frame.
  • This type of conventional gantry includes a plurality of piers, and a structure is mounted on these piers. In such a configuration, it is necessary to adjust and set the positions and intervals of the crosspieces, and a technique for facilitating the adjustment of the crosspiece position has been proposed.
  • Patent Document 1 a long hole is formed on the upper surface of a vertical frame (crosspiece), a bolt projecting on the roof is passed through the elongated hole on the upper surface of the frame, and the frame is A technique is disclosed that enables adjustment of the position of the eaves by making it movable by the length of the long hole of the material.
  • the grooves are formed on both sides of the crosspieces, and the bolts are inserted into these grooves so that the crosspieces can move along the grooves on both sides of the crosspieces, thereby adjusting the position of the crosspieces. Techniques that enable it are disclosed.
  • JP 2003-239482 A Japanese Patent Laid-Open No. 11-324259
  • the present invention has been made in view of the above-described conventional problems, and has a simple structure, a wide position adjustment range of the crosspiece, and a structure installation stand and structure capable of reducing costs.
  • An object is to provide a support for installation and a photovoltaic power generation system.
  • a structure installation stand includes a crosspiece on which the structure is mounted and a fixture for fixing the crosspiece to a base, and the fixture is attached to the crosspiece.
  • the support formed with at least two perforations spaced apart along the crosspiece and the peripheries of the perforations that are farthest apart from each other in the perforations that are farthest apart from each other
  • a base formed with a long hole having a long diameter equal to or greater than a distance, and the crosspiece formed in the support portion of the fixture and each of the perforations overlapping each of the perforations in the crosspiece.
  • a plurality of sets of perforations are formed along the longitudinal direction of the crosspiece, and the support portion of the fixture and the crosspiece are passed through the perforations of the support portion of the fixture and the perforations of the crosspiece, which are overlapped with each other. Fastened and the base of the fixture passes through the elongated hole of the fixture. It is characterized by being fastened to the foundation Te.
  • the support portion of the fixture can be fastened to the crosspiece at a position where each of the perforations of the support portion of the fixture overlaps each set of perforations in the crosspiece. Since the perforations are formed, it is possible to adjust the fastening position of the fixing tool with respect to the crosspiece with a gap in accordance with the position of each set of perforations.
  • an elongated hole having a long diameter equal to or greater than the distance between the peripheral portions of each of the perforations forming the farthest distance from each other of the set of perforations is formed in the base of the fixture.
  • the base of the fixture Since it is fastened to the base through the long hole of the fixture, the base of the fixture can be moved by the length of the long hole, that is, at least by the separation distance of each set of perforations, In this range of distance, the mounting position of the fixture can be adjusted continuously. Therefore, the position of the fixture can be continuously adjusted by the distance of each set of perforations when the arbitrary position of the base is used as a reference, and the position of the crosspiece can be spaced when the position of the fixture is used as a reference.
  • the position of the crosspiece with respect to an arbitrary position of the base can be freely adjusted over a wide range by combining both adjustments.
  • the crosspiece has a standing plate standing upright with respect to the base, and a plurality of sets of perforations are formed in the standing plate along the longitudinal direction of the crosspiece. Preferably it is formed.
  • Such a standing plate is excellent in load resistance against a structure mounted on the standing plate.
  • the crosspiece is formed by connecting a plurality of crosspiece members, and the two crosspiece members adjacent at the connection place sandwich the connection place between the two pieces. It is preferable that perforations that overlap each of the perforations in the support portion of the fixture are formed.
  • the structure installation stand of the present invention includes a connecting tool in which perforations are formed so as to overlap each perforation of the support portion of the fixing tool, and the two crosspiece members and the connecting tool are overlapped with each other. It may be fastened through the perforations of the crosspieces and the perforations of the connector, and the two crosspieces may be connected via the connector.
  • a long crosspiece can be formed by connecting a plurality of crosspiece members with this connector.
  • connection portion of the two crosspiece members is sandwiched between the support portion of the fixture and the connector, and the two crosspiece members and the fixture
  • the support part and the connecting tool are fastened through the perforations of the crosspieces that are overlapped with each other, the perforations of the support part of the fixing tool, and the perforations of the connection tool, and the two crosspieces are
  • the structure connected via the fixing tool and the said connecting tool may be sufficient.
  • the crosspiece includes a bottom plate, a standing plate that is bent at one side of the bottom plate, and a top plate that is bent at the top side of the standing plate.
  • the crosspieces are arranged in parallel to each other, the standing plate of each crosspiece is fixed to the base by the fixing tool, and the structure is mounted on the top plate of each crosspiece. There may be.
  • Such a crosspiece has a simple cross-sectional shape, but is excellent in load resistance and mass productivity.
  • the heights of the crosspieces fixed to the base are different from each other, the top plates of the crosspieces exist on substantially the same inclined plane, and the top plates of the crosspiece members It is preferable that the structure is mounted on the top with an inclination.
  • the structure can be supported while being inclined.
  • the structure includes a beam member that is bridged and fixed between the crosspieces, and a stopper on one end side of the beam member is placed on the top plate of each crosspiece. And is provided so as to receive one side of the structure.
  • the base is a base rail extending in a direction orthogonal to the rail, and a base portion of the fixture is fastened to the base rail through a long hole of the base portion. May be.
  • the position of the fixture can be continuously adjusted by the distance of each set of perforations based on an arbitrary position of the base, and the position of the fixture can be adjusted based on the position of the fixture.
  • the position of the crosspiece can be adjusted by shifting it at intervals, so that the position of the crosspiece relative to the arbitrary position of the base can be adjusted and set freely in a wide range. For this reason, the position of the crosspiece can be adjusted and set as much as the length of the crosspiece with respect to the base crosspiece.
  • the structure installation support tool of the present invention includes a crosspiece and a fixing tool, and the fixing tool is formed with at least two perforations spaced apart along the crosspiece when attached to the crosspiece.
  • a support portion and a base portion formed with a long hole having a major axis equal to or greater than the distance between the peripheral portions of the perforations that form the farthest distance along the crosspiece in the perforations that are farthest apart from each other;
  • a plurality of sets of perforations are formed along the longitudinal direction of the crosspiece, where each of the perforations formed in the support portion of the fixing tool and each perforation overlapping the perforation are set as one set. It is characterized by
  • a solar cell module as a structure is mounted on the structure installation stand of the present invention.
  • Such a structure installation support and solar cell module of the present invention also have the same effects as the structure installation stand of the present invention.
  • the support portion of the fixing tool can be fastened to the crosspiece at a position where each of the perforations of the support portion of the fixing device overlaps each set of perforations in the crosspiece. Since it is formed, it is possible to adjust the fastening position of the fixing tool with respect to the crosspiece with a gap in accordance with the position of each set of perforations.
  • a long hole having a major diameter equal to or greater than the distance between the peripheral portions of the perforations forming a distance along the furthest distant bars of each set of the perforations is formed in the base of the fixture.
  • the base of the fixture Since the base of the fixture is fastened to the base through the elongated hole of the fixture, the base of the fixture is moved by the length of the long-diameter hole, that is, by the separation distance of at least one set of the perforations. In this range of distance, the mounting position of the fixture can be continuously adjusted. Therefore, the position of the fixture can be continuously adjusted by the distance of each set of perforations when the arbitrary position of the base is used as a reference, and the position of the crosspiece can be spaced when the position of the fixture is used as a reference.
  • the position of the crosspiece with respect to an arbitrary position of the base can be freely adjusted over a wide range by combining both adjustments.
  • FIG. (A), (b), (c) is the top view, back view, and side view which show the crosspiece member used as the lower horizontal crosspiece of FIG. (A), (b), (c) is the top view, back view, and side view which show the crosspiece member used as the high horizontal crosspiece of FIG.
  • FIG. 7 is a perspective view showing a connector for connecting the higher beam member shown in FIG. 6.
  • A) is a perspective view which shows the fixing tool shown in FIG. 2, (b) is the top view, (c) is the front view.
  • A) is a top view which shows the beam member shown in FIG. 2, (b) is the side view, (c) is the front view.
  • FIG. 4 is an enlarged cross-sectional view showing the vicinity of a lower horizontal rail in FIG. 3.
  • FIG. 4 is an enlarged cross-sectional view showing the vicinity of a higher horizontal rail in FIG. 3.
  • FIG. 17 It is a perspective view which shows the connection state of each crosspiece member by the connection tool of FIG. It is a perspective view which shows the connection state of each crosspiece member by a connection tool and a fixing tool. It is sectional drawing which expands and shows the frame member of the solar cell module shown in FIG. It is a perspective view which shows the state which the edge part of the mutually adjacent solar cell module was fixed by the mounting bracket unit attached to the crosspiece shown in FIG. It is a perspective view which shows the state of FIG. 17 seeing from back diagonally upward. It is a perspective view which shows the state of FIG. 17 seeing from back diagonally downward. It is sectional drawing which shows the state of FIG. It is a perspective view which shows the press metal fitting shown in FIG.
  • FIG. 22 It is a perspective view which shows the load receiving metal fitting shown in FIG. It is a top view which shows the state which the load receiving metal fitting shown in FIG. 22 bent. It is a perspective view which shows the state which bent the load receiving metal fitting shown in FIG. 22 from the front side. It is a perspective view which shows the state which folded the load receiving metal fitting of FIG. 22 seeing from the back side. It is a perspective view which shows the state where the edge part of one solar cell module was fixed by the attachment bracket unit attached to the crosspiece member shown in FIG. It is a perspective view which shows the state of FIG. 26 seeing from back diagonally upward. It is sectional drawing which shows the state of FIG. It is a perspective view which shows the press metal fitting shown in FIG.
  • FIG. 32 is a diagram illustrating a procedure subsequent to FIG. 31.
  • (A) is a figure which shows the procedure following FIG.
  • (b) is a figure which shows the procedure following FIG.
  • It is a perspective view which shows the modification of the photovoltaic power generation system of FIG.
  • It is a perspective view which shows the modification of the structure installation stand of FIG.
  • FIG. 1 is a perspective view showing a photovoltaic power generation system to which an embodiment of a structure installation stand of the present invention is applied.
  • FIG. 2 is a perspective view showing the structure installation stand of the present embodiment.
  • FIG. 3 is a side view showing the structure installation stand of the present embodiment.
  • a plurality of solar cell modules 2 are arranged and tilted and supported using the structure installation stand 10 of the present embodiment.
  • the solar cell module 2 is obtained by holding the periphery of the solar cell panel 20 with a frame member 21.
  • a plurality of vertical beams (base beams) 14 are fixed in parallel with each other on a foundation surface such as a flat roof.
  • 11 and 12 are arranged so as to be orthogonal to the vertical rails 14, the horizontal rails 11 and 12 are mounted on the vertical rails 14 and fixed, and a beam is provided between the top plates 11 a and 12 a of the horizontal rails 11 and 12.
  • the member 13 is bridged, and the vicinity of the one end 13a of the beam member 13 is fixed so as to cross the top plate 11a of one of the horizontal beams 11, and the one end 13a of the beam member 13 is protruded from the horizontal beam 11.
  • the plurality of solar cell modules 2 are stacked on the respective beam members 13 and are mounted so as to be bridged between the horizontal rails 11 and 12.
  • the longitudinal direction of the horizontal rails 11 and 12 is defined as the X direction (left and right direction), and the direction orthogonal to the X direction is defined as the Y direction (front and rear direction).
  • the vertical bars 14 are arranged in parallel to each other, but their positions are indefinite.
  • a flat roof it is possible to provide a plurality of anchor bolts for fixing each vertical rail 14 during construction of the building.
  • the structure of the building the mounting strength of the anchor bolt, etc. Because the installation location of the anchor bolts varies depending on the reason, it is impossible to instruct or predict the installation location of each anchor bolt. Therefore, the installation position of each vertical rail 14 becomes indefinite.
  • the horizontal rails 11 and 12 are mounted on the vertical rails 14 and fixed. Since the installation positions of the solar cell modules 2 are determined by the positions of the horizontal bars 11 and 12, it is necessary to adjust and set the positions of the horizontal bars 11 and 12 as appropriate. However, since the installation position of each vertical beam 14 is indefinite, in order to adjust and set the position of each horizontal beam 11, 12, each horizontal beam 11, 12 is fixed to an arbitrary position on each vertical beam 14. You must be able to do it.
  • the horizontal bars 11 and 12 have the same length in the arrangement direction of the solar cell modules 2 in the photovoltaic power generation system 1 of FIG. 1 and are appropriately lengthened by connecting a plurality of short bars. .
  • a dedicated connector described later may be used, and a fixture 15 may be used in combination.
  • the heights of the horizontal rails 11 and 12 are different from each other, with one horizontal rail 11 being low and the other horizontal rail 12 being high.
  • the solar cell module 2 is mounted on each of the horizontal bars 11 and 12 having different heights, and the solar cell module 2 is inclined so as to face the incident direction of sunlight. Therefore, the inclination angle of the solar cell module 2 increases as the height difference between the horizontal rails 11 and 12 increases.
  • the mounting bracket units 26 or 27 for fixing and supporting both sides of the frame member 21 of the solar cell module 2 are mounted on the top plates 11a and 12a of the horizontal rails 11 and 12, respectively.
  • Each mounting bracket unit 26 is for simultaneously fixing the frame members 21 of two solar cell modules 2 adjacent to each other in the solar power generation system 1, and each mounting bracket unit 27 is a solar power generation system. 1 for fixing the frame member 21 of the solar cell module 2 located on both outer sides.
  • FIG. 4 is an enlarged perspective view showing the vertical beam 14, the fixture 15, and the horizontal beam 11.
  • the vertical rail 14 is a hollow one formed by, for example, extrusion processing of an aluminum material, and a fitting groove 14b is formed at the center of the upper surface 14a, and a groove is formed on each side surface 14c. 14d is formed.
  • the fitting groove 14b of the upper surface 14a is a wide guide near the bottom, and a narrow slit near the upper surface 14a.
  • the bolt head is movably supported by the wide guide, and the narrow groove The shaft part of the bolt protrudes from the slit.
  • an engagement fitting (not shown) is hooked in each groove 14d of both side surfaces 14c, and this engagement fitting is fixed to a foundation surface such as a flat roof with an anchor bolt, whereby the vertical rail 14 is attached to the foundation surface. Fixedly supported.
  • FIGS. 5A, 5B, and 5C are a plan view, a rear view, and a side view showing a crosspiece member 11P that becomes the horizontal crosspiece 11, respectively.
  • the crosspiece member 11P includes a standing plate 11c, and a bottom plate 11b and a top plate 11a bent to the same side at the bottom and top sides of the standing plate 11c. It has a substantially U-shaped cross-sectional shape.
  • the bottom plate 11b is bridged and placed on each vertical beam 14, and the standing plate 11c is erected on each vertical beam 14.
  • the standing plate 11c and the top plate 11a are formed with a T-shaped hole 11e, a positioning slit 11f, and an oval hole 11g for mounting each mounting bracket unit 26 or 27 for each mounting position.
  • a large number of perforations 11h are formed in the standing plate 11c at regular intervals s.
  • the constant interval s means that the distance between the centers of the perforations 11h is a constant value s.
  • a plurality of perforations 11h are formed in the vicinity of the end portion of the standing plate 11c at an interval less than the predetermined interval s from the end portion.
  • the plurality of crosspiece members 11P are connected in a state where the end portions of the adjacent crosspiece members 11P are in contact with each other, thereby forming one horizontal crosspiece 11.
  • the perforations 11 h formed near the end portions of the adjacent crosspiece members 11 ⁇ / b> P are spaced apart at a constant interval s across the connecting portions of the crosspiece members 11 ⁇ / b> P. That is, when the end portions of the crosspiece members 11P are connected in contact with each other, the positions of the perforations 11h are set so that the perforations 11h in the vicinity of the end portions of the crosspiece members 11P are separated at a constant interval s. It is set.
  • FIGS. 6A, 6B, and 6C are a plan view, a rear view, and a side view showing a crosspiece member 12P that becomes the horizontal crosspiece 12, respectively.
  • the crosspiece member 12P also includes a standing plate 12c, a bottom plate 12b bent to the same side at the bottom and top sides of the standing plate 12c, and the crosspiece member 11P. It has a top plate 12a and has a substantially U-shaped cross-sectional shape.
  • the bottom plate 12b is bridged and placed on each vertical beam 14, and the standing plate 12c is erected on each vertical beam 14.
  • the standing plate 12c and the top plate 12a are formed with a T-shaped hole 12e, a positioning slit 12f, and an oval hole 12g for mounting each mounting bracket unit 26 or 27.
  • the standing plate 12c is formed with a plurality of perforations 12h at regular intervals s (same as the regular intervals s of the perforations 11h in the standing plate 11c of the horizontal rail 11). Further, a plurality of perforations 12h are formed in the vicinity of the end portion of the standing plate 12c at intervals less than the predetermined interval s from the end portion.
  • the cross members 12P are connected in a state where the ends of the adjacent cross members 12P are in contact with each other, thereby forming a single horizontal cross member 12. Then, the respective perforations 12h formed in the vicinity of the end portions of the adjacent crosspiece members 12P are separated at a constant interval s across the connecting portions of the crosspiece members 12P.
  • each of the crosspiece members 11P and 12P has a plurality of types of lengths.
  • the crosspiece members 11P and 12P having these lengths are appropriately combined and connected in accordance with the total length of the required horizontal crosspieces 11 and 12.
  • the standing plates 11c and 12c of the horizontal rails 11 and 12 stand vertically with respect to the bottom plates 11b and 12b, respectively. It is installed. Accordingly, when the bottom plates 11b and 12b are placed on the vertical rails 14, the standing plates 11c and 12c stand perpendicular to the upper surface (base upper surface) of the vertical rails 14, respectively. For this reason, each horizontal rail 11 and 12 is excellent in the load resistance from the perpendicular
  • the top plates 11a and 12a of the horizontal rails 11 and 12 are bent so that the angles with respect to the surfaces perpendicular to the standing plates 11c and 12c are the same acute angle. Moreover, one horizontal rail 11 is low and the other horizontal rail 12 is high. Therefore, in the state where the bottom plates 11b and 12b of the horizontal rails 11 and 12 are placed on the base surface and the horizontal rails 11 and 12 are arranged in parallel at a predetermined interval, the respective top plates 11a and 12a are arranged. Are positioned on substantially the same inclined plane, and the solar cell modules 2 placed on these top plates 11a and 12a are arranged and inclined along the inclined plane.
  • the T-shaped holes 11e and 12e of the upright plates 11c and 12c of the horizontal bars 11 and 12 are respectively connected to the upright plates 11c and 12c and the top plates 11a and 12a. It is formed apart from the bent portion (corner) between them. Therefore, the strength of the bent portions between the standing plates 11c and 12c and the top plates 11a and 12a is not lowered by the T-shaped holes 11e and 12e, and the strength of the horizontal rails 11 and 12 is maintained. be able to.
  • FIG. 8 is a perspective view showing a connector for connecting a plurality of crosspiece members 11P.
  • the connector 28 includes a standing plate 28a, a bottom plate 28b and a top plate 28c bent at the upper and lower sides of the standing plate 28a, and has a substantially U-shaped cross-sectional shape.
  • a plurality of oval holes 28d and the like are formed in the standing plate 28a, and these oval holes 28d are positioned so as to overlap each hole 11h in the standing plate 11c of the crosspiece member 11P.
  • a pair of perforations 28e are formed in the top plate 28c.
  • the connector 28 is housed inside the U-shaped cross-sectional shape of the crosspiece member 11P, and the upright plate 28a, the bottom plate 28b, and the top plate 28c are provided as the upright plate 11c, the bottom plate 11b, and the crosspiece 11P. It is overlaid on the top plate 11a.
  • FIG. 9 is a perspective view showing a connector for connecting a plurality of crosspiece members 12P.
  • the connector 29 has a standing plate 29a, a bottom plate 29b and a top plate 29c bent at the upper and lower sides of the standing plate 29a, and has a substantially U-shaped cross-sectional shape.
  • a plurality of oval holes 29d and the like are formed in the standing plate 29a, and these oval holes 29d are positioned so as to overlap with the respective perforations 12h in the standing plate 12c of the crosspiece member 12P.
  • the top plate 29c has a pair of perforations 29e.
  • the coupling tool 29 is housed inside the U-shaped cross-sectional shape of the crosspiece member 12P, and the standing plate 29a, the bottom plate 29b, and the top plate 29c are the standing plate 12c, the bottom plate 12b, and the top plate 29c. It is overlaid on the top plate 12a.
  • FIGS. 10A, 10B, and 10C are a perspective view, a plan view, and a front view showing a fixture 15 for fixing the horizontal rails 11 and 12 to the vertical rail 14, respectively.
  • the fixture 15 includes a substrate (base portion) 15a and a support plate (support portion) 15c that is erected by bending one side of the substrate 15a.
  • On the other three sides of the substrate 15a there are provided respective ribs 15d that are erected by bending the other three sides, and the substrate 15a is reinforced by these ribs 15d.
  • Two screw holes 15f are formed in the support plate 15c of the fixture 15.
  • the interval between the screw holes 15f is the same as the fixed interval s between the perforations 11h and 12h in the standing plates 11c and 12c of the horizontal rails 11 and 12.
  • the height from the bottom surface of the substrate 15a to each screw hole 15f is the same as the height from the bottom surface of the bottom plates 11b and 12b of the horizontal rails 11 and 12 to the perforations 11h and 12h.
  • an elongated hole 15e is formed in the substrate 15a.
  • FIGS. 11A, 11B, and 11C are a plan view, a side view, and a front view showing the beam member 13, respectively.
  • the beam member 13 has a substantially U-shaped cross-sectional shape including a main plate 13b and side plates 13c on both sides of the main plate 13b.
  • Each side plate 13c of the beam member 13 is formed with cutouts 13d at four locations, and the main plate 13b is bent and bent at these locations.
  • a notch 13e is formed in each side plate 13c, and a stopper 13g bent upward is provided at the one end 13a.
  • FIG. 12 is an enlarged cross-sectional view showing the vicinity of the horizontal rail 11 in the structure installation stand of the present embodiment.
  • FIG. 13 is sectional drawing which expands and shows the horizontal rail 12 vicinity in the structure installation stand of this embodiment.
  • the vertical beam 14 is fixed to a foundation surface such as a flat roof using an engagement fitting or an anchor bolt (not shown).
  • the head of the bolt 16a is inserted into the wide guide of the fitting groove 14b of the vertical rail 14, and the bolt 16a is vertically moved with the shaft portion of the bolt 16a protruding from the narrow slit of the fitting groove 14b.
  • the position is adjusted by appropriately moving along the fitting groove 14b of the crosspiece 14.
  • the horizontal beam 11 is placed on the vertical beam 14 with the horizontal beam 11 oriented in the direction (X direction) orthogonal to the vertical beam 14, and the horizontal beam is measured in both the X direction and the Y direction. 11 is moved and positioned. Thereafter, the base plate 15a of each fixture 15 is placed on the upper surface 14a of the vertical rail 14 through the shaft portion of each bolt 16a through the elongated hole 15e of the base plate 15a of the two fixtures 15, and each fixture 15 is The support plate 15c of the fixture 15 is brought into contact with the standing plate 11c of the horizontal beam 11, and the support plate 15c of the fixture 15 is moved in the X direction on the vertical beam 14, so that 2 of the support plate 15c of the fixture 15 is moved.
  • the screw holes 15f are superposed on the two perforations 11h of the standing plate 11c of the horizontal beam 11, and the bolts 17a are screwed into the screw holes 15f of the fixture 15 through the perforations 11h of the horizontal beam 11.
  • the support plate 15c of the tool 15 is fixed to the standing plate 11c of the horizontal rail 11 (see FIG. 4). Further, the shaft portion of the bolt 16a is passed through the hole of the U-shaped reinforcing metal fitting 25, the reinforcing metal fitting 25 is overlaid on the substrate 15a of the fixing tool 15, and the nut 16b is screwed into the shaft portion of the bolt 16a to be tightened and fixed.
  • the tool 15 is fastened to the vertical beam 14. Thereby, the horizontal beam 11 is fixed to the vertical beam 14.
  • the horizontal beam 12 is placed on the vertical beam 14 with the horizontal beam 12 oriented in the direction (X direction) orthogonal to the vertical beam 14, and the horizontal beam is measured in both the X and Y directions. 12 is moved and positioned. Thereafter, the base plate 15a of each fixture 15 is placed on the upper surface 14a of the vertical rail 14 through the shaft portion of each bolt 16a through the elongated hole 15e of the base plate 15a of the two fixtures 15, and each fixture 15 is The support plate 15c of the fixture 15 is moved in the X direction on the vertical beam 14, and the two screw holes 15f of the support plate 15c of the fixture 15 are made into the two perforations 12h of the standing plate 12c of the horizontal beam 12.
  • the bolts 17a are superposed and screwed into the screw holes 15f of the fixture 15 through the perforations 12h of the horizontal beam 12, and the support plate 15c of the fixture 15 is fixed to the standing plate 12c of the horizontal beam 12.
  • the reinforcing bracket 25 is overlaid on the substrate 15a of the fixture 15, and the nut 16b is screwed into the shaft portion of the bolt 16a and tightened, and the fixture 15 is fastened to the vertical beam 14. Thereby, the horizontal beam 12 is fixed to the vertical beam 14.
  • a large number of perforations 11h are formed in the standing plate 11c of the horizontal rail 11 at regular intervals s, and two screw holes 15f are formed in the support plate 15c of the fixture 15 at regular intervals s. If each screw hole 15f of the support plate 15c of the fixture 15 overlaps with the two perforations 11h of the standing plate 11c of the horizontal beam 11, the support plate 15c of the fixture 15 is attached to the horizontal beam 11 at this overlapping position. It can be fastened to the standing plate 11c, and the fastening position of the fixture 15 with respect to the horizontal rail 11 can be adjusted by shifting by a predetermined interval s.
  • the position of the fixing tool 15 can be continuously adjusted at least within a distance of a predetermined interval s, and when the position of the fixing tool 15 is used as a reference, the position of the horizontal beam 11 is determined. Can be adjusted by a fixed interval s, and by combining both adjustments, the position of the horizontal beam 11 with respect to the vertical beam 14 can be freely adjusted by the length of the horizontal beam 11.
  • the length a of the elongated hole 15e of the substrate 15a of the fixture 15 is sufficiently longer than the distance b (a> b).
  • each vertical beam 14 on the flat roof is indefinite. However, since the position of the horizontal beam 11 with respect to the vertical beam 14 can be freely adjusted as described above, any position on each vertical beam 14 can be adjusted.
  • the crosspiece 11 can be fixed at the position.
  • the beam member 11P is fixed to the vertical beam 14 by using the fixture 15 for each beam member 11P. Since a number of perforations 11h are formed in the crosspiece member 11P at regular intervals s, the position of the crosspiece member 11P with respect to the vertical crosspiece 14 can be freely set by the length of the crosspiece member 11P in any crosspiece member 11P. The crosspieces 11P can be brought into contact with each other on the vertical crosspiece 14 to form one horizontal crosspiece 11.
  • the connecting members 28 are overlapped on the inside of the U-shaped cross-sectional shape of each of the crosspiece members 11 ⁇ / b> P, and the oblong holes 28 d of the connecting tools 28 are connected to the crosspieces 11 ⁇ / b> P.
  • a plurality of bolts 18a are passed through the oblong holes 28d and the perforations 11h and overlapped with the perforations 11h and the like spaced apart at a fixed interval s across the connecting portion of the member 11P. Screw in (shown in FIG. 15) and tighten.
  • each cross member 11 ⁇ / b> P may be fixed to the vertical cross 14.
  • both the connecting tool 28 and the fixing tool 15 are arranged at this connecting portion, and the standing plate 11c of each crosspiece member 11P is disposed between the standing plate 28a of the connecting tool 28 and the support plate 15c of the fixing tool 15.
  • the oval holes 28d of the coupling tool 28, the perforations 11h of the crosspieces 11P, and the screw holes 15f of the fixing tool 15 are overlapped with each other, and two bolts 18a are attached to the oval holes 28d.
  • each screw hole 15f is screwed and tightened through each hole 11h, and the other two bolts 18a are screwed into each nut 18b through each oblong hole 28d and each hole 11h and tightened. If each crosspiece member 11P is connected using the connecting tool 28 and the fixing tool 15 in combination, the strength of this connecting portion is improved.
  • a number of perforations 12h are formed in the standing plate 12c at regular intervals s, and two screw holes 15f are formed in the support plate 15c of the fixture 15 at regular intervals s. Therefore, the fastening position of the fixing tool 15 with respect to the horizontal rail 12 can be adjusted by shifting by a predetermined interval s.
  • the substrate 15a of the fixture 15 is fastened to the vertical beam 1 through the elongated hole 15e of the substrate 15a, it can be continuously moved at least by a distance of a fixed interval s.
  • the position of the fixing tool 15 can be continuously adjusted within a range of a distance of a predetermined interval s, and when the position of the fixing tool 15 is used as a reference, the position of the horizontal beam 12 is determined. It is possible to adjust by a predetermined interval s. By combining both adjustments, the position of the horizontal beam 12 with respect to the vertical beam 14 can be freely adjusted by the length of the horizontal beam 12.
  • the length a of the elongated hole 15e of the substrate 15a of the fixture 15 should be sufficiently longer than the distance b. (A> b).
  • the horizontal beam 12 can be fixed at an arbitrary position on each vertical beam 14.
  • the horizontal beam 12 is formed by connecting a plurality of beam members 12P. Since each beam member 12P is formed with a large number of perforations 12h at regular intervals s, any beam member 12P is a vertical beam.
  • the position of the crosspiece member 12P with respect to 14 can be freely adjusted by the length of the crosspiece member 12P, and the crosspiece members 12P can be brought into contact with each other on the vertical crosspiece 14.
  • each crosspiece member 12P similarly to the connection place of each crosspiece member 11P, the connector 29 is overlapped inside the U-shaped cross-sectional shape of each crosspiece member 12P, and each oblong hole of the connection tool 29 is overlapped. 29d is superposed on each of the perforations 12h and the like spaced apart at a fixed interval s across the connecting portion of each crosspiece member 12P, and a plurality of bolts 18a are passed through each of the oval holes 29d and each of the perforations 12h, and these bolts 18a Each nut 18b is screwed into and tightened.
  • each cross member 12P when fixing the connecting part of each cross member 12P to the vertical cross 14, the connecting tool 29 and the fixing tool 15 are arranged at the connecting part, and the standing plate 12c of each cross member 12P is set up to stand the connecting tool 29.
  • the oval holes 29d of the coupling tool 29, the perforations 12h of the crosspiece members 12P, and the screw holes 15f of the fixing tool 15 are overlapped with each other by being sandwiched between the installation plate 29a and the support plate 15c of the fixing tool 15.
  • Two bolts 18a are screwed into the respective screw holes 15f through the respective ellipse holes 29d and the respective perforations 12h and tightened, and the other two bolts 18a are passed through the respective ellipse holes 29d and the respective perforations 12 to each. Screw onto the nut and tighten. Thereby, the intensity
  • a pair of perforations 13i is formed at the end 13h of the beam member 13, and a pair of perforations 13j is also formed at a portion of the beam member 13 that is separated from each of the perforations 13i by a specified distance. ing.
  • the beam member 13 is laid over the horizontal rails 11 and 12, and the beam member 13 is bent downward. And each perforation 13i of the end 13h of the beam member 13 overlaps each perforation 12i of the top plate 12a of the horizontal beam 12, and each perforation 13j of the beam member 13 overlaps each perforation 11i of the top plate 11a of the horizontal beam 11.
  • the horizontal rails 11 and 12 are moved in the Y direction on the vertical rails 14. Thereby, the space
  • the two bolts 19a are passed through the perforations 13i of the end portion 13h of the beam member 13 and the perforations 12i of the top plate 12a of the cross beam 12, and the respective nuts are screwed into the bolts 19a.
  • the two bolts 19a are passed through the perforations 13j of the beam member 13 and the perforations 11i of the top plate 11a of the horizontal beam 11, and the nuts are screwed into the bolts 19a and fastened. Set the interval.
  • the beam member 13 may be bridged between the connecting portion of each crosspiece member 11P and the connecting portion of each crosspiece member 12P.
  • the perforations 28e and 29e of the top plates 28c and 29c of the connecting tools 28 and 29 are connected to the horizontal crosspiece 11. , 12 are overlapped with the perforations 11i, 12i of the top plates 11a, 12a, so that the perforations 11i, 12i for attaching the beam member 13 are not blocked (see FIGS. 14 and 15).
  • the fixtures 15 After positioning the horizontal rails 11 and 12 in the X direction and setting the interval between the horizontal rails 11 and 12 in the Y direction, the fixtures 15 are used to fix the horizontal rails 11 and 12 on the vertical rails 14 as described above.
  • the horizontal rails 11 and 12 are fixed to each other.
  • the solar cell module 2 is arranged so that the substantially center of the solar cell module 2 overlaps the beam member 13, and the solar cell module 2 is bridged on the top plates 11 a and 12 a of the horizontal rails 11 and 12. Put it on.
  • the inner frame (not shown) of the solar cell module 2 does not come into contact with the beam member 13 to float, and the solar cell module. 2 can be reliably mounted on the top plates 11a and 12a of the horizontal rails 11 and 12, respectively.
  • the solar cell module 2 is inclined on the top plates 11a and 12a of the horizontal rails 11 and 12, the frame member 21 of the solar cell module 2 hits the stopper 13g of the beam member 13 below the inclination.
  • the solar cell module 2 is positioned on 11a and 12a, and the solar cell module 2 is prevented from sliding off.
  • the solar cell module 2 is fixedly supported on the horizontal rails 11 and 12 by using the mounting bracket units 26 or 27. Details of the support structure by each mounting bracket unit 26 or 27 will be described later.
  • the two screw holes 15f are formed in the support plate 15c of the fixture 15 at regular intervals s, and the standing plates 11c and 12c of the horizontal rails 11 and 12 are formed. Since a large number of perforations 11h and 12h are formed at a constant interval s, the fastening position of the fixture 15 with respect to each horizontal rail 11 can be adjusted by shifting by a constant interval s. Further, since the substrate 15a of the fixture 15 is fastened to the vertical beam 14 through the long hole 15e having the length a (a ⁇ b) of the substrate 15a, the substrate 15a of the fixture 15 is at least spaced by a predetermined interval s.
  • the mounting position of the fixture 15 can be continuously adjusted within this distance range. Therefore, if the position of the vertical beam 14 is used as a reference, the position of the fixture 15 can be continuously adjusted within a distance range of at least a fixed interval s.
  • the position of 12 can be adjusted by a fixed interval s. Therefore, the position of each horizontal beam 11, 12 with respect to the vertical beam 14 can be freely adjusted by the length of the horizontal beam 11, 12.
  • each horizontal beam 11, 12 can be fixed at an arbitrary position on each vertical beam 14.
  • each of the horizontal rails 11 and 12 has a U-shaped cross-sectional shape and the fixture 15 has an L-shaped cross-sectional shape
  • the horizontal rails 11 and 12 and the fixture 15 are inexpensive and strong, such as plated steel plates. Excellent material can be applied.
  • the stopper 13 g of the beam member 13 protrudes from the horizontal beam 11
  • the lower end of the solar cell module 2 also protrudes from the horizontal beam 11. For this reason, even if rainwater flows to the lower end of the solar cell module 2 and drips from the end, rainwater does not fall on the horizontal rail 11 and prevents the horizontal rail 11 from corroding. Can do.
  • each mounting bracket unit 26 is for fixing the frame members 21 of two solar cell modules 2 adjacent to each other in the solar power generation system 1 at the same time.
  • each mounting bracket unit 27 is for fixing the frame member 21 of the solar cell module 2 located at both side ends in the photovoltaic power generation system 1. Therefore, the mounting bracket unit 26 and the mounting bracket unit 27 are slightly different in structure. For this reason, each attachment structure by the attachment metal fitting unit 26 and the attachment metal fitting unit 27 is demonstrated separately.
  • the frame member 21 of the solar cell module 2 includes a wall portion 23, a holding portion 22 on the upper side of the wall portion 23, and a bottom piece 24 extending inward in the lateral direction from the lower end of the wall portion 23. is doing.
  • the holding part 22 has a pair of holding pieces 22b and 22c, and the end of the solar cell panel 20 is sandwiched between the holding pieces 22b and 22c.
  • FIG. 17 and 18 are perspective views showing a state in which the end portions of the solar cell modules 2 adjacent to each other are fixed by the mounting bracket unit 26 attached to the horizontal rail 11 (or 12), as viewed from above.
  • FIG. 19 is a perspective view showing the same state as viewed from below.
  • FIG. 20 is a cross-sectional view showing the same state.
  • the mounting bracket unit 26 includes a pressing bracket 3a, a load receiving bracket 4, and a bolt 8 for fastening the respective brackets 3a and 4 to each other.
  • the load bracket 4 is attached to the horizontal rail 11 (or 12) and receives the bottom side of the frame member 21 of the left and right solar cell modules 2.
  • the pressing metal fitting 3 a is in contact with the front side of the frame member 21 of the left and right solar cell modules 2.
  • the bolt 8 penetrates from the pressing fitting 3a to the back surface side of the top plate 11a (or 12a) of the cross rail 11 (or 12), and is screwed and fastened to the load receiving metal fitting 4 on this back surface side.
  • the frame member 21 of the left and right solar cell modules 2 is sandwiched and supported between the metal fittings 3a and 4.
  • FIG. 21 is a perspective view showing the pressing metal fitting 3a.
  • the pressing fitting 3 a is formed by forming protruding pieces 32 protruding downward at both front and rear ends of a flat pressing plate 31 and forming a perforation 33 at the center of the pressing plate 31. .
  • the pressing plate 31 is used to press the frame members 21 of the two solar cell modules 2 arranged adjacent to each other on the top plate 11a (or 12a) of the horizontal rail 11 (or 12). Further, the perforation 33 of the pressing plate 31 is a hole into which the bolt 8 is inserted. The protruding piece 32 of the pressing metal 3 a is inserted between the left and right solar cell modules 2 to set the arrangement interval between the left and right solar cell modules 2.
  • FIG. 22 is a perspective view showing the load receiving bracket 4.
  • the load receiving bracket 4 includes a load receiving plate 40, a back plate 50, and a joint portion 60 that couples the load receiving plate 40 and the back plate 50.
  • a constricted portion 61 is provided in the middle of the joint portion 60 so as to be easily bent.
  • the back plate 50 is formed with a rear wall 50b that is bent vertically from the rear edge thereof, and a front wall 50a that is bent vertically from the front edge thereof. Further, an engagement piece 50c bent vertically from the end side of the front wall 50a is formed, and a long hole 50d is formed in the engagement piece 50c.
  • Claw pieces 41, 41 bent upward are formed at both ends of the load receiving plate 40.
  • a positioning piece 43 bent downward is formed on the rear end edge of the load receiving plate 40, and an engaging groove 43 a is formed in the positioning piece 43.
  • a perforation 42 is formed through the center of the load receiving plate 40, and a screw hole 51 is formed in the back plate 50.
  • Bolts 8 are passed through the perforations 42 of the load receiving plate 40, and the bolts 8 are screwed into the screw holes 51 of the back plate 50.
  • the joint portion 60 of the load receiving metal fitting 4 is bent at the tie portion 61 so that the load receiving plate 40 and the back plate 50 are arranged to face each other with a gap therebetween.
  • the positioning piece 43 of the load receiving plate 40 is inserted into the long hole 50d of the joint piece 50c, the convex portion 50e of the engaging piece 50c is inserted into the long hole 43a of the positioning piece 43, and the load receiving plate 40 and the back plate 50 are connected. Locked together.
  • the mounting plate unit 26 (or 12c) is attached to the standing plate 11c (or 12c) of the cross rail 11 (or 12). Or a T-shaped hole 11e (or 12e) for mounting 27), and a positioning slit 11f (or 12f) for mounting the mounting bracket unit 26 (or 27) on the top plate 11a (12a), And the ellipse hole 11g (or 12g) is formed.
  • the oblong hole 11g (or 12g) of the top plate 11a (12a) is for inserting the bolt 8, and is an elongated slot for finely adjusting the insertion position of the bolt 8.
  • the positioning slit 11f (or 12f) is for inserting the positioning piece 43 of the load receiving bracket 4 and is an elongated slot for fine adjustment of the insertion position of the positioning piece 43 of the load receiving bracket 4. It has become.
  • the back plate 50 of the load receiving bracket 4 before being bent is erected on the horizontal rail 11 (or 12) as shown in FIG.
  • the portion up to the joint portion 60 of the load bracket 4 is inserted into the T-shaped hole 11e (or 12e).
  • the constricted portion 61 of the joint portion 60 of the load receiving bracket 4 is bent 90 degrees, and the back plate 50 and the load receiving plate 40 are arranged to face each other via the top plate 11a (or 12a), and the back plate 50 and the load
  • the top plate 11a (or 12a) is sandwiched between the receiving plates 40, and the load receiving bracket 4 is attached to the top plate 11a (or 12a).
  • the load receiving bracket 4 is positioned by inserting the positioning piece 43 of the load receiving bracket 4 into the positioning slit 11f (or 12f) of the top plate 11a (or 12a).
  • the positioning piece 43 of the load receiving plate 40 is fitted into the long hole 50d of the engaging piece 50c of the back plate 50, and the convex portion 50e of the engaging piece 50c is fitted into the long hole 43a of the positioning piece 43, thereby receiving the load.
  • the plate 40 and the back plate 50 are locked to each other.
  • the left solar cell is located in the space from the vicinity of the center of the load receiving plate 40 of the load receiving bracket 4 to the left claw piece 41 as shown in FIG.
  • the bottom piece 24 of the frame member 21 of the module 2 is inserted and arranged, and the bottom piece 24 of the frame member 21 of the right solar cell module 2 is inserted into the space from the vicinity of the center of the load receiving plate 40 to the right claw piece 41.
  • the press fitting 3a is placed on the holding portion 22 of the frame member 21 of each solar cell module 2, the protruding piece 32 of the press fitting 3a is inserted between the left and right solar cell modules 2, and the bolt 8 is inserted into the press fitting 3a.
  • the bolt 8 is screwed into the screw hole 51 of the back plate 50 through the oblong hole 11g (or 12g) of the top plate 11a (or 12a). Tighten the door 8. Thereby, the frame member 21 of the left and right solar cell modules 2 is sandwiched between the load receiving metal fitting 4 and the pressing metal fitting 3a and fixedly supported.
  • FIG. 26 and 27 are perspective views showing a state in which the ends of the left and right solar cell modules 2 are fixed by the mounting bracket unit 27 attached to the horizontal rail 11 (or 12) as viewed from above.
  • FIG. 28 is a cross-sectional view showing the same state.
  • the mounting bracket unit 27 includes a pressing bracket 3b, a load receiving bracket 4, and a bolt 8 for fastening the respective brackets 3b and 4 to each other.
  • the load receiving bracket 4 has the same configuration as the load receiving bracket 4 of the mounting bracket unit 26, and the mounting structure or procedure to the horizontal rail 11 (or 12) is the same.
  • the pressing metal fitting 3 b is in contact with the front side of the frame member 21 of one solar cell module 2.
  • the bolt 8 penetrates from the pressing metal fitting 3b to the back side surface of the top plate 11a (or 12a) of the cross rail 11 (or 12), and is screwed and fastened to the load receiving metal fitting 4 on the back surface side. .
  • the frame member 21 of one solar cell module 2 is sandwiched and supported between the metal fittings 3b and 4.
  • FIG. 29 is a perspective view showing the pressing metal fitting 3b.
  • the press fitting 3b is formed with protruding pieces 32 projecting downward at both front and rear end portions of a flat plate-like pressing plate 31, and a perforation 33 is formed at the central portion of the pressing plate 31.
  • a standing wall 34 bent vertically from one end edge of 31 is formed, and a bottom piece 35 bent sideways from a lower end edge of the standing wall 34 is formed.
  • the bottom piece 24 of the frame member 21 of the left or right solar cell module 2 is inserted and arranged in the space from the vicinity of the center of the load receiving plate 40 of the load receiving metal fitting 4 to the inner claw piece 41, Further, the bottom piece 35 of the press fitting 3b is arranged in the space from the vicinity of the center of the load receiving plate 40 to the outer claw piece 41, and the press plate 31 of the press fitting 3b is placed on the holding portion 22 of the frame member 21 of the solar cell module 2.
  • the projecting piece 32 of the pressing fitting 3b is pressed against the holding portion 22 of the solar cell module 2, the solar cell module 2 is positioned, and the bolt 8 is inserted into the perforation 33 of the pressing fitting 3b and the load receiving bracket 4 receiving the load.
  • the bolt 8 is inserted into the hole 42 of the plate 40, and the bolt 8 is screwed into the screw hole 51 of the back plate 50 through the oblong hole 13 of the top plate 12, and the bolt 8 is tightened. Thereby, the frame member 21 of the solar cell module 2 is sandwiched between the load receiving metal fitting 4 and the pressing metal fitting 3b and fixedly supported.
  • the longitudinal direction of the plurality of vertical bars 14 is directed in the Y direction, and these vertical bars 14 are arranged parallel to each other on a basic surface such as a flat roof.
  • the intervals and positions of these vertical bars 14 are indefinite.
  • the horizontal rails 11 and 12 are placed on the vertical rails 14 so that the horizontal rails 11 and 12 are directed in the direction orthogonal to the vertical rails 14 (X direction), and the horizontal rails 11 and 12 are moved in the X direction. Position.
  • the beam members 13 are spanned over a plurality of positions of the horizontal rails 11 and 12, and the interval between the horizontal rails 11 and 12 is adjusted.
  • each fixing tool 15 is placed on the upper surface 14 a of the vertical rail 14 through the shaft 15 of each bolt 16 a through the elongated hole 15 e of the base plate 15 a of each fixing tool 15.
  • the support plate 15c of the fixture 15 is brought into contact with the standing plate 11c (or 12c) of the horizontal beam 11 (or 12), and the screw holes 15f of the support plate 15c of the fixture 15 are set to the horizontal beam 11 (or 12).
  • the vertical plate 11c (or 12c) of the cross rail 11 (or 12) is fastened to the support plate 15c of the fixture 15 using bolts and nuts.
  • the reinforcing bracket 25 is overlapped on the substrate 15 a of the fixture 15, the nut 16 b is screwed into the shaft portion of the bolt 16 a and tightened, and the fixture 15 is fastened to the vertical beam 14.
  • the horizontal rails 11 and 12 are arranged and fixed in parallel on the vertical rails 14 at predetermined intervals, and the top plates 11a and 12a are positioned on substantially the same inclined plane.
  • the back plate 50 of the load receiving bracket 4 is passed through the T-shaped hole 11e (or 12e) of the horizontal rail 11 (or 12), and the joint portion 60 of the load receiving bracket 4 is connected to the T-shaped hole 11e (or 12e). ), And the positioning piece 43 of the load receiving bracket 4 is inserted into the positioning slit 11f (or 12f) of the top plate 11a (or 12a), and the load receiving bracket 4 is positioned. Then, the constricted portion 61 of the joint portion 60 of the load receiving bracket 4 is bent by 90 degrees, the back plate 50 and the load receiving plate 40 are arranged to face each other via the top plate 11a (or 12a), and the load receiving bracket 4 is It attaches to the top plate 11a (or 12a).
  • the load bracket 4 is attached to each of the crosspieces 11 and 12 in order to fix the four places on both sides of the frame member 21 of the solar cell module 2 for each solar cell module 2.
  • a plurality of solar cell modules 2 are arranged on each horizontal beam 11, 12, and for each solar cell module 2, four sides on both sides of the frame member 21 of the solar cell module 2 are arranged on each horizontal beam.
  • the solar cell module 2 is positioned by placing it on the four load receiving brackets 4 on 11 and 12 and bringing the end of the solar cell module 2 below the slope into contact with the stopper 13g of the beam member 13. Thereby, the solar cell module 2 is supported by being inclined along the top plates 11a and 12a of the horizontal rails 11 and 12.
  • the press plate 31 of the press metal fitting 3b is set on the frame member 21 of the solar cell module 2.
  • the bolt 8 is passed through the pressing fitting 3b from the side plate 11a (or 12) to the back side of the top plate 11a (or 12a) and screwed into the backing plate 50 of the load receiving fitting 4 to be tightened.
  • the frame member 21 of the solar cell module 2 is sandwiched between 4 and the press fitting 3b and fixedly supported.
  • the pressing plate 31 of the pressing metal fitting 3a is placed on the frame member 21 of each solar cell module 2 as shown in FIG.
  • the bolt 8 is penetrated from the pressing bracket 3a to the back side surface of the top plate 11a (or 12a) of the cross rail 11 (or 12) and screwed into the back plate 50 of the load receiving bracket 4 to be tightened.
  • the frame members 21 of the left and right solar cell modules 2 are sandwiched between the metal fittings 3a and fixedly supported.
  • FIG. 1 a photovoltaic power generation system 1 as shown in FIG. 1 is constructed.
  • this invention is not limited to the said embodiment, It can deform
  • the solar cell modules 2 are provided in a plurality of rows, and the slopes of the solar cell modules 2 in each row are reversed in the adjacent rows so that the solar cell modules 2 in each row are mountain-shaped. You may arrange. For this mountain-shaped arrangement, the upper horizontal bars 12 are arranged in two rows close to each other, and the lower horizontal bars 11 are arranged outside the two rows. A plurality of solar cell modules 2 are mounted on 12.
  • the perforations 11h and 12h may be formed in the cross rail 11 or 12 at intervals as shown in FIG.
  • a plurality of sets of perforations are provided along the longitudinal direction of the cross rail 11 or 12.
  • 11h or 12h is formed.
  • the two perforations 11h or 12h are spaced apart at a constant interval s, but the interval q between the adjacent perforations 11h is less than the constant interval s and narrows.
  • each screw hole 15f in the support plate 15c of the fixture 15 is overlapped with each set of perforations 11h or 12h in the horizontal beam 11 or 12, and the support plate 15c of the fixture 15 is overlapped with the horizontal beam 11 or 12.
  • the length a of the elongated hole 15e of the base plate 15a of the fixture 15 is sufficiently longer than the distance b between the peripheral portions of the screw holes 15f that form the farthest distances of the screw holes 15f in the support plate 15.
  • the structure installation stand of the present invention can freely adjust and set the position of the crosspiece relative to the arbitrary position of the base. Moreover, it is not necessary for the structure installation support used for this structure installation frame to have a complicated structure for both the crosspiece and the fixture, and an inexpensive and strong material such as steel is applied. be able to. From the above, the photovoltaic power generation system in which the solar cell module is mounted on the structure installation stand of the present invention can directly reflect the benefits of the structure installation stand and the structure installation support of the present invention. Is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

 本発明の構造物設置架台は、構造物が搭載される桟11と、桟11を土台に固定するための固定具15とを備える。固定具15は、桟11に取付けられたときに桟11に沿って離間する少なくとも2個の穿孔15fが形成された支持板15cと、最も離れた穿孔において桟11に沿って最も離れた距離をなす各穿孔の周縁部間の距離s以上の長径を有する長形孔15eが形成された基板15aとを有する。桟11は、支持板15cに形成された各穿孔15fに重なり合うそれぞれの穿孔を一組とすると、桟11の長手方向に沿って複数組の穿孔11hが形成され、支持板15cと桟11は、相互に重ね合わされた支持板15cの各穿孔15fと桟11の各穿孔11hを通じて締結されており、基板15aは、固定具15の長形孔15eを通じて土台に締結されている。

Description

構造物設置架台、構造物設置用支持具、及び太陽光発電システム
 本発明は、構造物を地面や陸屋根上に設置するための構造物設置架台、構造物設置用支持具、及びその架台を用いた太陽光発電システムに関する。
 この種の従来の架台としては、複数の桟を架設し、これらの桟上に構造物を掛け渡して搭載するというものがある。このような構成では、各桟の位置や間隔を調節設定する必要があり、桟の位置調節を容易にするための技術が提案されている。
 例えば、特許文献1では、縦方向の杆材(桟)の上面に長形孔を形成し、屋根上に突設されたボルトを杆材上面の長形孔に通して、杆材を該杆材の長形孔の長さの分だけ移動可能とすることにより、杆材の位置調節を可能とする技術が開示されている。
 また、特許文献2では、桟の両側にそれぞれの溝を形成し、これらの溝にボルト先端を差し込んで、桟を該桟両側の溝に沿って移動可能とすることにより、桟の位置調節を可能とする技術が開示されている。
特開2003-239482号公報 特開平11-324259号公報
 しかしながら、特許文献1の技術では、杆材上面の長形孔が長くなり過ぎると、杆材の強度が低下するため、長形孔の長さに限界がある。その結果、特許文献1の技術では、杆材の位置調節範囲が狭いという問題があった。
 また、特許文献2の技術では、桟両側の溝が該桟と同じ長さであるため、桟の位置調節範囲が広いものの、桟の断面形状が複雑である。このため、特許文献2の技術では、コストが高くなるという問題があった。例えば、アルミ材の押出し加工により複雑な断面形状の桟を作製することが可能であるが、アルミ材を用いることからコストが高くなった。
 本発明は、上記従来の問題点に鑑みてなされたものであり、簡単な形状でありながらも、桟の位置調節範囲が広く、コストの低減を図ることが可能な構造物設置架台、構造物設置用支持具、及び太陽光発電システムを提供することを目的とする。
 上記課題を解決するために、本発明の構造物設置架台は、構造物が搭載される桟と、この桟を土台に固定するための固定具とを備え、前記固定具は、前記桟に取付けられたときに該桟に沿って離間する少なくとも2個の穿孔が形成された支持部と、互いに最も離れた前記穿孔において該桟に沿って最も離れた距離をなす該各穿孔の周縁部間の距離以上の長径を有する長形孔が形成された基部とを有し、前記桟には、前記固定具の支持部に形成された前記各穿孔とその各穿孔に重なり合うそれぞれの穿孔を一組とすると、該桟の長手方向に沿って複数組の穿孔が形成され、前記固定具の支持部と前記桟は、相互に重ね合わされた該固定具の支持部の各穿孔と該桟の各穿孔を通じて締結されており、前記固定具の基部は、該固定具の長形孔を通じて前記土台に締結されていることによって特徴付けられている。
 このような構造物設置架台では、固定具の支持部の各穿孔が桟における一組の各穿孔に重なり合った位置で固定具の支持部を桟に締結することができ、桟には複数組の穿孔が形成されていることから、各組の穿孔の位置に応じて、桟に対する固定具の締結位置を間隔を置いてずらして調節することが可能である。また、固定具の基部に、一組の各穿孔の互いに最も離れた距離をなす該各穿孔の周縁部間の距離以上の長径を有する長形孔が形成されており、固定具の基部が該固定具の長形孔を通じて土台に締結されることから、固定具の基部を、その長径孔の長さの分だけ、つまり少なくとも一組の各穿孔の離間距離の分だけ移動させることができ、この距離の範囲では固定具の取付け位置を連続的に調節することができる。従って、土台の任意の位置を基準にすると固定具の位置を一組の各穿孔の離間距離の分だけ連続的に調節することができ、かつ固定具の位置を基準にすると桟の位置を間隔を置いてずらして調節することができ、両者の調節を組み合わせることにより土台の任意の位置に対する桟の位置を広範囲で自在に調節設定することができる。
 また、桟及び固定具のいずれも複雑な形状をなす構造とする必要もなく、鋼材等の安価で強度に優れた素材を適用することができる。
 また、本発明の構造物設置架台では、前記桟は、前記土台に対して立設される立設板を有し、前記立設板に前記桟の長手方向に沿って複数組の各穿孔が形成されていることが好ましい。
 このような立設板は、立設板上に搭載された構造物に対する耐荷重性に優れる。
 更に、本発明の構造物設置架台では、前記桟は、複数の桟部材を連結して形成されており、その連結箇所で隣り合う2本の前記桟部材には、前記連結箇所を挟んで前記固定具の支持部の各穿孔にそれぞれ重なり合う穿孔が形成されていることが好ましい。
 この場合は、2本の桟部材の連結箇所にも固定具の支持部を締結することが可能になる。
 また、本発明の構造物設置架台では、前記固定具の支持部の各穿孔にそれぞれ重なり合う穿孔が形成された連結具を備え、前記2本の桟部材と前記連結具は、相互に重ね合わされた該各桟部材の穿孔及び該連結具の各穿孔を通じて締結されており、前記2本の桟部材は前記連結具を介して連結されている構成であってもよい。
 この連結具により複数の桟部材を連結して、長い桟を形成することができる。
 更に、本発明の構造物設置架台では、前記2本の桟部材の連結箇所は、前記固定具の支持部と前記連結具間に挟み込まれており、前記2本の桟部材、前記固定具の支持部、及び前記連結具が、相互に重ね合わされた該各桟部材の穿孔、該固定具の支持部の各穿孔、及び該連結具の各穿孔を通じて締結され、前記2本の桟部材は前記固定具及び前記連結具を介して連結されている構成であってもよい。
 このように固定具と連結具の間に2本の桟部材を挟み込んで連結すれば、各桟部材の連結強度が高くなる。
 また、本発明の構造物設置架台では、前記桟は、底板、この底板の一辺で屈曲され立設する立設板、及び立設板の上辺で屈曲する天板を有しており、2本の前記桟は相互に平行に配置され、前記固定具により、前記各桟の立設板を前記土台にそれぞれ固定し、構造物が前記各桟の天板上に架け渡して搭載される構成であってもよい。
 このような桟は、簡単な断面形状でありながらも、耐荷重性及び量産性に優れる。
 更に、本発明の構造物設置架台では、土台に固定された前記各桟の高さが相互に異なり
、前記各桟の天板がほぼ同一傾斜平面上に存在し、前記各桟部材の天板上に構造物が傾斜して搭載されていることが好ましい。
 このような構成により、構造物を傾斜させて支持することができる。
 また、本発明の構造物設置架台では、前記各桟間に架け渡され固定された梁部材を備え、前記梁部材の一端側のストッパーは、前記各桟の天板上に載せられた構造物の傾斜下方にあって、前記構造物の一辺を受け止めるように設けられている。
 これにより構造物が傾斜下方向にずれ落ちることが防止される。
 更に、本発明の構造物設置架台では、前記土台は、前記桟と直交する方向に延びる土台用桟であり、前記固定具の基部は該基部の長形孔を通じて前記土台用桟に締結されていてもよい。
 先に述べたように土台の任意の位置を基準にすると固定具の位置を一組の各穿孔の離間距離の分だけ連続的に調節することができ、かつ固定具の位置を基準にすると桟の位置を間隔を置いてずらして調節することができ、よって土台の任意の位置に対する桟の位置を広範囲で自在に調節設定することができる。このため、その土台用桟に対しても桟の位置を該桟の長さの分だけ自在に調節設定することができる。
 次に、本発明の構造物設置用支持具は、桟と固定具を備え、前記固定具は、前記桟に取付けられたときに該桟に沿って離間する少なくとも2個の穿孔が形成された支持部と、互いに最も離れた前記穿孔において該桟に沿って最も離れた距離をなす該各穿孔の周縁部間の距離以上の長径を有する長形孔が形成された基部とを有しており、前記桟には、前記固定具の支持部に形成された前記各穿孔とその各穿孔に重なり合うそれぞれの穿孔を一組とすると、該桟の長手方向に沿って複数組の穿孔が形成されていることによって特徴付けられている。
 また、本発明の太陽光発電システムは、上記本発明の構造物設置架台に構造物である太陽電池モジュールを搭載している。
 このような本発明の構造物設置用支持具及び太陽電池モジュールにおいても、上記本発明の構造物設置架台と同様の作用効果を奏する。
 このような本発明では、固定具の支持部の各穿孔が桟における一組の各穿孔に重なり合った位置で固定具の支持部を桟に締結することができ、桟には複数組みの穿孔が形成されていることから、各組の穿孔の位置に応じて、桟に対する固定具の締結位置を間隔を置いてずらして調節することが可能である。また、固定具の基部に、一組の各穿孔の互いに最も離れた最も離れた桟に沿った距離をなす各穿孔の周縁部間の距離以上の長径を有する長形孔が形成されており、固定具の基部が該固定具の長形孔を通じて土台に締結されることから、固定具の基部を、その長径孔の長さの分だけ、つまり少なくとも一組の各穿孔の離間距離の分だけ移動させることができ、この距離の範囲では固定具の取付け位置を連続的に調節することができる。従って、土台の任意の位置を基準にすると固定具の位置を一組の各穿孔の離間距離の分だけ連続的に調節することができ、かつ固定具の位置を基準にすると桟の位置を間隔を置いてずらして調節することができ、両者の調節を組み合わせることにより土台の任意の位置に対する桟の位置を広範囲で自在に調節設定することができる。
 また、桟及び固定具のいずれも複雑な形状をなす構造とする必要もなく、鋼材等の安価で強度に優れた素材を適用することができる。
本発明の構造物設置架台の一実施形態を適用した太陽光発電システムを示す斜視図である。 本実施形態の構造物設置架台を示す斜視図である。 本実施形態の構造物設置架台を示す側面図である。 図2の縦桟、固定具、及び横桟等を拡大して示す斜視図である。 (a)、(b)、(c)は、図2の低い方の横桟となる桟部材を示す平面図、背面図、及び側面図である。 (a)、(b)、(c)は、図2の高い方の横桟となる桟部材を示す平面図、背面図、及び側面図である。 図2の横桟の立設板に形成されたT字型孔周辺を示す平面図である。 図5に示す低い方の桟部材を連結するための連結具を示す斜視図である。 図6に示す高い方の桟部材を連結するための連結具を示す斜視図である。 (a)は、図2に示す固定具を示す斜視図、(b)はその平面図、(c)は、その正面図である。 (a)は図2に示す梁部材を示す平面図、(b)はその側面図、(c)はその正面図である。 図3の低い方の横桟近傍を拡大して示す断面図である。 図3の高い方の横桟近傍を拡大して示す断面図である。 図8の連結具による各桟部材の連結状態を示す斜視図である。 連結具及び固定具による各桟部材の連結状態を示す斜視図である。 図1に示す太陽電池モジュールの枠部材を拡大して示す断面図である。 図2に示す横桟に取付けられた取付け金具ユニットにより相互に隣り合う太陽電池モジュールの端部が固定された状態を前方斜め上から見て示す斜視図である。 図17の状態を後方斜め上から見て示す斜視図である。 図17の状態を後方斜め下から見て示す斜視図である。 図17の状態を示す断面図である。 図17に示す押圧金具を示す斜視図である。 図17に示す荷重受け金具を示す斜視図である。 図22に示す荷重受け金具の折り曲げた状態を示す平面図である。 図22に示す荷重受け金具の折り曲げた状態を表側から見て示す斜視図である。 図22の荷重受け金具の折り曲げた状態を裏側から見て示す斜視図である。 図2に示す桟部材に取付けられた取付け金具ユニットにより1枚の太陽電池モジュールの端部が固定された状態を前方斜め上から見て示す斜視図である。 図26の状態を後方斜め上から見て示す斜視図である。 図26の状態を示す断面図である。 図26に示す押圧金具を示す斜視図である。 図1の太陽光発電システムを構築するための施工手順を示す図である。 図30に引き続く手順を示す図である。 図31に引き続く手順を示す図である。 (a)、(b)は、図32に引き続く手順を示す図である。 図1の太陽光発電システムの変形例を示す斜視図である。 図2の構造物設置架台の変形例を示す斜視図である。
 以下、本発明の実施形態を図面を参照しながら詳細に説明する。
 図1は、本発明の構造物設置架台の一実施形態を適用した太陽光発電システムを示す斜視図である。また、図2は、本実施形態の構造物設置架台を示す斜視図である。更に、図3は、本実施形態の構造物設置架台を示す側面図である。
 図1の太陽光発電システム1では、本実施形態の構造物設置架台10を用いて、複数の太陽電池モジュール2を配列し傾斜させて支持している。太陽電池モジュール2は、太陽電池パネル20の周縁を枠部材21により保持したものである。
 本実施形態の構造物設置架台10では、図2及び図3に示すように複数の縦桟(土台用桟)14を陸屋根等の基礎面に相互に平行に並べて固定し、2本の横桟11、12を各縦桟14と直交するように配して、各横桟11、12を各縦桟14上に載せて固定し、各横桟11、12の天板11a、12a間に梁部材13を架け渡し、梁部材13の一端13aの近傍を一方の横桟11の天板11aに交差させて固定し、この梁部材13の一端13aを横桟11より突出させている。複数の太陽電池モジュール2は、それぞれの梁部材13に重ねられ、各横桟11、12間に架け渡されて搭載される。
 尚、以降は、横桟11、12の長手方向をX方向(左右方向)とし、このX方向と直交する方向をY方向(前後方向)とする。
 各縦桟14は、相互に平行に配置されているが、それらの位置が不定である。例えば、陸屋根では、その建築物の建築のときに各縦桟14を固定するための複数のアンカーボルトを設けておくことが可能であるが、その建築物の構造やアンカーボルトの取付け強度等の理由によりアンカーボルトの設置箇所が様々に変わるので、各アンカーボルトの設置箇所を指示したり予測することができない。従って、各縦桟14の設置位置が不定となる。
 各横桟11、12は、各縦桟14上に載せられて固定される。各横桟11、12の位置により各太陽電池モジュール2の設置位置が決定されるため、各横桟11、12の位置を適宜に調節設定する必要がある。ところが、各縦桟14の設置位置が不定であるため、各横桟11、12の位置を適宜に調節設定するには、各横桟11、12を各縦桟14上の任意の位置に固定することができねばならない。
 このため、各横桟11、12に固定具15を組み合わせて、各横桟11、12を各縦桟14上の任意の位置に固定し得るような構造を実現している。
 各横桟11、12は、図1の太陽光発電システム1における各太陽電池モジュール2の配列方向の長さと同一であり、複数の短い桟部材を連結することにより適宜の長さにされている。各桟部材を連結するために、後で述べる専用の連結具を用い、更に固定具15を併用することもある。
 各横桟11、12の高さは相互に異なり、一方の横桟11が低く、他方の横桟12が高くされている。このような相互に異なる高さの各横桟11、12上に太陽電池モジュール2を搭載して、太陽電池モジュール2を太陽光の入射方向に向くように傾斜させている。従って、各横桟11、12の高低差が大きくなるほど、太陽電池モジュール2の傾斜角が大きくなる。
 各横桟11、12の天板11a、12a上には、太陽電池モジュール2の枠部材21の両側を固定支持するための各取付け金具ユニット26又は27が取付けられている。各取付け金具ユニット26は、太陽光発電システム1における相互に隣り合う2枚の太陽電池モジュール2の枠部材21を同時に固定するためのものであり、また各取付け金具ユニット27は、太陽光発電システム1における両外側に位置する太陽電池モジュール2の枠部材21を固定するためのものである。
 次に、縦桟14、各横桟11、12、固定具15、及び梁部材13等を個別に説明する。
 図4は、縦桟14、固定具15、及び横桟11を拡大して示す斜視図である。図4に示すように縦桟14は、例えばアルミ材の押出し加工により形成された中空のものであって、その上面14aの中央に嵌合溝14bが形成され、両側面14cにはそれぞれ、溝14dが形成されている。上面14aの嵌合溝14bは、その底付近が広い幅のガイドとなり、上面14a近くが狭い幅のスリットとなっており、広い幅のガイドでボルトの頭が移動自在に支持され、狭い幅のスリットからボルトの軸部が突出する。また、両側面14cの各溝14dには、係合金具(図示せず)が引っ掛けられ、この係合金具がアンカーボルトで陸屋根等の基礎面に固定され、これにより縦桟14が基礎面に固定支持される。
 図5(a)、(b)、(c)は、それぞれ横桟11となる桟部材11Pを示す平面図、その背面図、及びその側面図である。図5(a)~(c)に示すように、桟部材11Pは、立設板11cと、立設板11cの底辺及び上辺で同じ側に折り曲げられた底板11b及び天板11aとを有し、ほぼコの字型の断面形状である。底板11bが各縦桟14に架け渡されて載せられ、立設板11cが各縦桟14上に立設される。立設板11c及び天板11aには、各取付け金具ユニット26又は27の取付け位置毎に、これらの取付け金具ユニットを取付けるためのT字型孔11e、位置決めスリット11f、及び長円孔11gが形成されている。また、立設板11cには、一定間隔sで多数の穿孔11hが形成されている。なお、一定間隔sとは、穿孔11hの中心間の距離が一定の値sであることをいう。更に、立設板11cの端部近傍には、該端部から一定間隔s未満の間隔で、複数の穿孔11hが形成されている。
 複数の桟部材11Pは、隣り合う各桟部材11Pの端部が相互に当接した状態で連結されることにより、1本の横桟11となる。横桟11においては、隣り合う各桟部材11Pの端部近傍に形成されたそれぞれの穿孔11hが、該各桟部材11Pの連結箇所を挟んで一定間隔sで離間する。すなわち、各桟部材11Pの端部を相互に当接させた状態で連結したときに、各桟部材11Pの端部近傍の穿孔11hが一定間隔sで離間するように該各穿孔11hの位置を設定している。
 図6(a)、(b)、(c)は、それぞれ横桟12となる桟部材12Pを示す平面図、背面図、及び側面図である。図6(a)~(c)に示すように、桟部材12Pも、桟部材11Pと同様に、立設板12cと、立設板12cの底辺及び上辺で同じ側に折り曲げられた底板12b及び天板12aとを有し、ほぼコの字型の断面形状である。底板12bが各縦桟14に架け渡されて載せられ、立設板12cが各縦桟14上に立設される。立設板12c及び天板12aには、各取付け金具ユニット26又は27を取付けるためのT字型孔12e、位置決めスリット12f、及び長円孔12gが形成されている。また、立設板12cには、一定間隔s(横桟11の立設板11cにおける各穿孔11hの一定間隔sと同一)で複数の穿孔12hが形成されている。更に、立設板12cの端部近傍で、該端部から一定間隔s未満の間隔で、複数の穿孔12hが形成されている。
 複数の桟部材12Pも、桟部材11Pと同様に、隣り合う各桟部材12Pの端部が相互に当接した状態で連結されることにより、1本の横桟12となる。そして、隣り合う各桟部材12Pの端部近傍に形成されたそれぞれの穿孔12hが、該各桟部材12Pの連結箇所を挟んで一定間隔sで離間する。
 尚、各桟部材11P、12Pには、複数種類の長さのものがある。これらの長さの桟部材11P、12Pは、必要とされる各横桟11、12の全長に応じて適宜に組み合わされて連結される。
 図5(c)及び図6(c)から明らかなように各横桟11、12(桟部材11P、12P)の立設板11c、12cは、それぞれの底板11b、12bに対して垂直に立設されている。従って、各底板11b、12bが各縦桟14に載置されたときには、各立設板11c、12cが各縦桟14の上面(土台上面)に対して垂直に立つ。このため、各横桟11、12は、垂直上方向からの耐荷重性に優れ、それぞれの天板11a、12a上にかかる荷重を強固に支持することができる。
 各横桟11、12の天板11a、12aは、それぞれの立設板11c、12cに垂直な面に対する角度が同一鋭角となるように屈曲されている。また、一方の横桟11が低く、他方の横桟12が高くされている。このため、各横桟11、12の底板11b、12bが土台面に載置され、各横桟11、12が規定の間隔を開けて平行に配置された状態では、それぞれの天板11a、12aがほぼ同一傾斜平面上に位置決めされ、これらの天板11a、12aに載置された太陽電池モジュール2がその傾斜平面に沿って配置されて傾斜する。
 図7に示すように各横桟11、12(桟部材11P、12P)の立設板11c、12cのT字型孔11e、12eは、各立設板11c、12cと各天板11a、12a間の屈曲部(角)から離間して形成されている。このため、各T字型孔11e、12eにより各立設板11c、12cと各天板11a、12a間の屈曲部の強度が低下することはなく、各横桟11、12の強度を維持することができる。
 図8は、複数の桟部材11Pを連結するための連結具を示す斜視図である。図8に示すように連結具28は、立設板28aと、立設板28aの上下辺で折り曲げられた底板28b及び天板28cとを有し、ほぼコの字型の断面形状である。立設板28aには、複数の長円孔28d等が形成されており、これらの長円孔28dが桟部材11Pの立設板11cにおける各穿孔11hと重なるように位置決めされている。また、天板28cには、一対の穿孔28eが形成されている。この連結具28は、桟部材11Pのコの字型の断面形状の内側に収められ、その立設板28a、底板28b、及び天板28cが桟部材11Pの立設板11c、底板11b、及び天板11aに重ねられる。
 図9は、複数の桟部材12Pを連結するための連結具を示す斜視図である。図9に示すように連結具29は、立設板29aと、立設板29aの上下辺で折り曲げられた底板29b及び天板29cとを有し、ほぼコの字型の断面形状である。立設板29aには、複数の長円孔29d等が形成されており、これらの長円孔29dが桟部材12Pの立設板12cにおける各穿孔12hと重なるように位置決めされている。また、天板29cには、一対の穿孔29eが形成されている。この連結具29は、桟部材12Pのコの字型の断面形状の内側に収められ、その立設板29a、底板29b、及び天板29cが桟部材12Pの立設板12c、底板12b、及び天板12aに重ねられる。
 図10(a)、(b)、(c)は、各横桟11、12を縦桟14に固定するための固定具15を示す斜視図、平面図、及び正面図である。図10に示すように固定具15は、基板(基部)15aと、基板15aの一辺を折り曲げて立設した支持板(支持部)15cとを有する。基板15aの他の3辺には、これらの他の3辺を折り曲げて立設したそれぞれのリブ15dが設けられ、これらのリブ15dにより基板15aが補強されている。また、固定具15の支持板15cには、2個のネジ孔15fが形成されている。これらのネジ孔15fの間隔は、各横桟11、12の立設板11c、12cにおける各穿孔11h、12hの一定間隔sと同一である。基板15aの底面から各ネジ孔15fまでの高さは、各横桟11、12の底板11b、12bの底面から各穿孔11h、12hまでの高さと同一である。
 更に、基板15aには、長形孔15eが形成されている。この長形孔15eの長さaは、支持板15cにおける2個のネジ孔15fの互いに最も離れた距離をなす各ネジ孔15fの周縁部間の距離b(距離b=一定間隔s+(ネジ孔15fの直径))以上に設定されている(a≧b)。
 図11(a)、(b)、(c)は、梁部材13を示す平面図、側面図、及び正面図である。図11に示すように梁部材13は、主板13b、及び主板13b両側の側板13cからなるほぼコの字型の断面形状を有している。梁部材13の各側板13cは、それらの4箇所で切り欠き13dが形成され、これらの箇所で主板13bが折り曲げられて撓んでいる。
 また、梁部材13の一端13aの近傍でも、各側板13cに切り欠き13eが形成され、この一端13aに上方向に屈曲したストッパー13gが設けられている。
 次に、本実施形態の構造物設置架台の構造を詳しく説明する。図12は、本実施形態の構造物設置架台における横桟11近傍を拡大して示す断面図である。また、図13は、本実施形態の構造物設置架台における横桟12近傍を拡大して示す断面図である。
 図3、図12、及び図13において、縦桟14は、係合金具やアンカーボルト(図示せず)を用いて、陸屋根等の基礎面に固定される。この縦桟14の嵌合溝14bの広い幅のガイドにボルト16aの頭を挿入して、ボルト16aの軸部を嵌合溝14bの狭い幅のスリットから突出させた状態で、ボルト16aを縦桟14の嵌合溝14bに沿って適宜に移動させて位置調節する。
 各横桟11、12を縦桟14上に固定するには2個の固定具15を必要とするため、2本のボルト16aを縦桟14の嵌合溝14bに沿ってX方向に移動させて位置調節し、これらのボルト16aを各横桟11、12の間隔で配置する。
 また、図12に示すように横桟11を縦桟14と直交する方向(X方向)に向けて、横桟11を縦桟14上に載せ、X方向及びY方向のいずれについても、横桟11を移動させて位置決めする。この後、2個の固定具15の基板15aの長形孔15eにそれぞれのボルト16aの軸部を通して、各固定具15の基板15aを縦桟14の上面14aに載せ、固定具15毎に、固定具15の支持板15cを横桟11の立設板11cに当接させ、固定具15の支持板15cを縦桟14上でX方向に移動させて、固定具15の支持板15cの2個のネジ孔15fを横桟11の立設板11cの2個の穿孔11hに重ね合わせ、各ボルト17aを横桟11の各穿孔11hを介して固定具15の各ネジ孔15fにねじ込み、固定具15の支持板15cを横桟11の立設板11cに固定する(図4を参照)。更に、断面形状がコの字型の補強金具25の孔にボルト16aの軸部を通して、補強金具25を固定具15の基板15aに重ね、ボルト16aの軸部にナット16bをねじ込んで締め付け、固定具15を縦桟14に締結する。これにより、横桟11が縦桟14に固定される。
 同じく、図13に示すように横桟12を縦桟14と直交する方向(X方向)に向けて、横桟12を縦桟14上に載せ、X方向及びY方向のいずれについても、横桟12を移動させて位置決めする。この後、2個の固定具15の基板15aの長形孔15eにそれぞれのボルト16aの軸部を通して、各固定具15の基板15aを縦桟14の上面14aに載せ、固定具15毎に、固定具15の支持板15cを縦桟14上でX方向に移動させて、固定具15の支持板15cの2個のネジ孔15fを横桟12の立設板12cの2個の穿孔12hに重ね合わせ、各ボルト17aを横桟12の各穿孔12hを介して固定具15の各ネジ孔15fにねじ込み、固定具15の支持板15cを横桟12の立設板12cに固定する。更に、補強金具25を固定具15の基板15aに重ね、ボルト16aの軸部にナット16bをねじ込んで締め付け、固定具15を縦桟14に締結する。これにより、横桟12が縦桟14に固定される。
 ここで、X方向における横桟11及び固定具15の位置調節について説明する。横桟11の立設板11cには一定間隔sで多数の穿孔11hが形成されており、固定具15の支持板15cには一定間隔sで2個のネジ孔15fが形成されていることから、固定具15の支持板15cの各ネジ孔15fが横桟11の立設板11cの2個の穿孔11hに重なり合えば、この重なり合った位置で固定具15の支持板15cを横桟11の立設板11cに締結することができ、横桟11に対する固定具15の締結位置を一定間隔sずつずらして調節することが可能である。
 また、固定具15の基板15aに、長さa(a≧b(距離b=一定間隔s+(ネジ孔15fの直径))の長い長形孔15eが形成されており、固定具15の基板15aが該固定具15の基板15aの長形孔15eを通じて縦桟14に締結されることから、固定具15の基板15aを、少なくとも一定間隔sの距離の分だけ移動させることができ、この距離の範囲では固定具15の取付け位置を連続的に調節することができる。
 従って、縦桟14の位置を基準にすると固定具15の位置を少なくとも一定間隔sの距離の範囲で連続的に調節することができ、かつ固定具15の位置を基準にすると横桟11の位置を一定間隔sずつ調節することができ、両者の調節を組み合わせることにより縦桟14に対する横桟11の位置を該横桟11の長さの分だけ自在に調節設定することができる。
 縦桟14に対する横桟11の位置調節を容易にするには、固定具15の基板15aの長形孔15eの長さaを距離bよりも十分に長くするのが好ましい(a>b)。これにより、縦桟14に対する固定具15cの連続的な位置調節範囲が広がって、縦桟14に対する横桟11の連続的な位置調節範囲も広がる。
 先に述べたように陸屋根上の各縦桟14の位置が不定であるが、そのように縦桟14に対する横桟11の位置を自在に調節することができるため、各縦桟14上の任意の位置に横桟11を固定することができる。
 実際には、横桟11が複数の桟部材11Pを連結したものであるから、桟部材11P別に、固定具15を用いて、桟部材11Pを縦桟14に固定することになるが、それぞれの桟部材11Pに一定間隔sで多数の穿孔11hが形成されているため、いずれの桟部材11Pであっても、縦桟14に対する桟部材11Pの位置を該桟部材11Pの長さの分だけ自在に調節設定することができ、縦桟14上で各桟部材11Pを相互に当接させて、1本の横桟11を形成することができる。
 各桟部材11Pの連結箇所では、図14に示すように連結具28を各桟部材11Pのコの字型の断面形状の内側に重ねて、連結具28の各長円孔28dを、各桟部材11Pの連結箇所を挟んで一定間隔sで離間するそれぞれの穿孔11h等に重ね合わせ、複数のボルト18aを各長円孔28d及び各穿孔11hに通して、これらのボルト18aにそれぞれのナット18b(図15に示す)をねじ込んで締め付ける。
 また、図15に示すように各桟部材11Pの連結箇所を縦桟14に固定することがある。この場合は、この連結箇所に連結具28と固定具15を共に配置することになり、各桟部材11Pの立設板11cを連結具28の立設板28aと固定具15の支持板15c間に挟みこんで、連結具28の各長円孔28d、各桟部材11Pの各穿孔11h、及び固定具15の各ネジ孔15fを相互に重ね合わせ、2本のボルト18aを各長円孔28d、各穿孔11hを介して各ネジ孔15fにねじ込んで締め付け、また他の2本のボルト18aを各長円孔28d、各穿孔11hに通して各ナット18bにねじ込んで締め付ける。連結具28と固定具15を併用して、各桟部材11Pを連結すると、この連結箇所の強度が向上する。
 同じく、横桟12についても、その立設板12cに一定間隔sで多数の穿孔12hを形成し、固定具15の支持板15cに一定間隔sで2個のネジ孔15fを形成していることから、横桟12に対する固定具15の締結位置を一定間隔sずつずらして調節することが可能である。
 また、固定具15の基板15aを、該基板15aの長形孔15eを通じて縦桟1に締結していることから、少なくとも一定間隔sの距離の分だけ連続的に移動させることができる。
 従って、縦桟14の位置を基準にすると固定具15の位置を一定間隔sの距離の範囲で連続的に調節することができ、かつ固定具15の位置を基準にすると横桟12の位置を一定間隔sずつ調節することができ、両者の調節を組み合わせることにより縦桟14に対する横桟12の位置を該横桟12の長さの分だけ自在に調節設定することができる。
 先に述べたように縦桟14に対する横桟12の位置調節を容易にするには、固定具15の基板15aの長形孔15eの長さaを距離bよりも十分に長くするのが良い(a>b)。
 そのように縦桟14に対する横桟12の位置を自在に調節することができるため、各縦桟14上の任意の位置に横桟12を固定することができる。
 横桟12が複数の桟部材12Pを連結したものであるが、それぞれの桟部材12Pに一定間隔sで多数の穿孔12hが形成されているため、いずれの桟部材12Pであっても、縦桟14に対する桟部材12Pの位置を該桟部材12Pの長さの分だけ自在に調節設定することができ、縦桟14上で各桟部材12Pを相互に当接させることができる。
 各桟部材12Pの連結箇所では、各桟部材11Pの連結箇所と同様に、連結具29を各桟部材12Pのコの字型の断面形状の内側に重ねて、連結具29の各長円孔29dを、各桟部材12Pの連結箇所を挟んで一定間隔sで離間するそれぞれの穿孔12h等に重ね合わせ、複数のボルト18aを各長円孔29d及び各穿孔12hに通して、これらのボルト18aにそれぞれのナット18bをねじ込んで締め付ける。
 また、各桟部材12Pの連結箇所を縦桟14に固定する場合は、この連結箇所に連結具29と固定具15を共に配置し、各桟部材12Pの立設板12cを連結具29の立設板29aと固定具15の支持板15c間に挟みこんで、連結具29の各長円孔29d、各桟部材12Pの各穿孔12h、及び固定具15の各ネジ孔15fを相互に重ね合わせ、2本のボルト18aを各長円孔29d、各穿孔12hを介して各ネジ孔15fにねじ込んで締め付け、また他の2本のボルト18aを各長円孔29d、各穿孔12に通して各ナットにねじ込んで締め付ける。これにより、各桟部材12Pの連結箇所の強度が向上する。
 一方、各横桟11、12のいずれについても、X方向の位置調節を行って、各横桟11、12の間隔を調節する。この間隔の調節は、各横桟11、12の複数箇所に、それぞれの梁部材13を掛け渡すことによりなされる。
 図13に示すように梁部材13の端部13hには、一対の穿孔13iが形成されており、各穿孔13iから規定距離だけ離間した梁部材13の部位にも、一対の穿孔13jが形成されている。
 図2に示すように梁部材13を各横桟11、12に架け渡して載せ、梁部材13を下方に撓ませる。そして、梁部材13の端部13hの各穿孔13iが横桟12の天板12aの各穿孔12iに重なり合い、かつ梁部材13の各穿孔13jが横桟11の天板11aの各穿孔11iに重なり合うように、各横桟11、12を各縦桟14上でY方向に移動させる。これにより、各横桟11、12の間隔が調節される。この後、2本のボルト19aを梁部材13の端部13hの各穿孔13i及び横桟12の天板12aの各穿孔12iに通して、各ボルト19aにそれぞれのナットをねじ込んで締結し、同様に2本のボルト19aを梁部材13の各穿孔13j及び横桟11の天板11aの各穿孔11iに通して、各ボルト19aにそれぞれのナットをねじ込んで締結し、各横桟11、12の間隔を設定する。
 尚、梁部材13を各桟部材11Pの連結箇所と各桟部材12Pの連結箇所に架け渡すことがあるが、連結具28、29の天板28c、29cの各穿孔28e、29eが横桟11、12の天板11a、12aの各穿孔11i、12iに重なるので、梁部材13を取付けるための各穿孔11i、12iが塞がれることはない(図14、図15を参照)。
 こうしてX方向における各横桟11、12の位置決めを行い、かつY方向における各横桟11、12の間隔を設定した後、先に述べたように固定具15を用いて、各縦桟14上に各横桟11、12を固定する。
 この後、太陽電池モジュール2の略中央が梁部材13に重なるように該太陽電池モジュール2を配置して、太陽電池モジュール2を各横桟11、12の天板11a、12a上に架け渡して載せる。先に述べたように梁部材13を下方に撓ませていることから、太陽電池モジュール2の内側のフレーム(図示せず)が梁部材13に接触して浮くようなことはなく、太陽電池モジュール2を各横桟11、12の天板11a、12a上に確実に搭載することができる。各横桟11、12の天板11a、12a上では、太陽電池モジュール2が傾斜するが、太陽電池モジュール2の枠部材21がその傾斜下方の梁部材13のストッパー13gに突き当たるので、各天板11a、12a上で太陽電池モジュール2が位置決めされ、かつ太陽電池モジュール2の滑落が防止される。
 更に、各取付け金具ユニット26又は27を用いて、各横桟11、12上に太陽電池モジュール2を固定支持する。各取付け金具ユニット26又は27による支持構造の詳細は後で述べる。
 このように本実施形態の構造物設置架台10では、固定具15の支持板15cに一定間隔sで2個のネジ孔15fを形成し、各横桟11、12の立設板11c、12cに一定間隔sで多数の穿孔11h、12hを形成していることから、各横桟11に対する固定具15の締結位置を一定間隔sずつずらして調節することが可能である。また、固定具15の基板15aが該基板15aの長さa(a≧b)の長形孔15eを通じて縦桟14に締結されることから、固定具15の基板15aを、少なくとも一定間隔sの距離の分だけ移動させることができ、この距離の範囲では固定具15の取付け位置を連続的に調節することができる。従って、縦桟14の位置を基準にすると固定具15の位置を少なくとも一定間隔sの距離の範囲で連続的に調節することができ、かつ固定具15の位置を基準にすると各横桟11、12の位置を一定間隔sずつ調節することができ、よって縦桟14に対する各横桟11、12の位置を該横桟11、12の長さの分だけ自在に調節設定することができる。
 このため、陸屋根上の各縦桟14の位置が不定であっても、各縦桟14上の任意の位置に各横桟11、12を固定することができる。
 また、各横桟11、12がコの字型断面形状であり、固定具15がL字形の断面形状であるため、各横桟11、12及び固定具15にメッキ鋼板等の安価で強度に優れた素材を適用することができる。
 更に、梁部材13のストッパー13gが横桟11より突出しているので、太陽電池モジュール2の傾斜下方の端部も横桟11より突出する。このため、雨水が太陽電池モジュール2の傾斜下方の端部へと流れて、この端部から滴り落ちたとしても、雨水が横桟11に降りかかることがなく、横桟11の腐食を防止することができる。
 次に、構造物設置架台10の各横桟11、12に対する太陽電池モジュール2の枠部材21の取付け構造を説明する。
 図1及び図2において、先に述べたように各取付け金具ユニット26は、太陽光発電システム1における相互に隣り合う2枚の太陽電池モジュール2の枠部材21を同時に固定するためのものであり、また各取付け金具ユニット27は、太陽光発電システム1における両側端に位置する太陽電池モジュール2の枠部材21を固定するためのものである。従って、取付け金具ユニット26と取付け金具ユニット27とでは若干構造が異なる。このため、取付け金具ユニット26と取付け金具ユニット27によるそれぞれの取付け構造を別々に説明する。
 まず、太陽光発電システム1における相互に隣り合う2枚の太陽電池モジュール2の枠部材21を同時に固定するための取付け金具ユニット26を説明する。
 図16に示すように太陽電池モジュール2の枠部材21は、壁部23と、壁部23上側の保持部22と、壁部23の下端から横方向内側に延在する底部片24とを有している。
 保持部22は、一対の保持片22b、22cを有しており、これらの保持片22b、22cの内側に太陽電池パネル20の端部が挟持されている。
 図17及び図18は、横桟11(又は12)に取付けられた取付け金具ユニット26により相互に隣り合う太陽電池モジュール2の端部が固定された状態を上方向から見て示す斜視図である。また、図19は、同状態を下方から見て示す斜視図である。また、図20は、同状態を示す断面図である。
 図17~図20に示すように取付け金具ユニット26は、押圧金具3a、荷重受け金具4、及び該各金具3a、4を相互に締結するボルト8を備えている。荷重受け金具4は、横桟11(又は12)に取付けられて、左右の太陽電池モジュール2の枠部材21の底側を受けている。また、押圧金具3aは、左右の太陽電池モジュール2の枠部材21の表側に当接されている。更に、ボルト8は、押圧金具3aから横桟11(又は12)の天板11a(又は12a)の裏面側まで貫通して、この裏面側で荷重受け金具4にねじ込まれて締結されている。これにより、各金具3a、4間に左右の太陽電池モジュール2の枠部材21が挟み込まれて支持されている。
 図21は、押圧金具3aを示す斜視図である。図21に示すように押圧金具3aは、平板状の押圧板31の前後の両端部に下方へと突出する突起片32を形成し、押圧板31の中央部に穿孔33を形成したものである。
 押圧板31は、横桟11(又は12)の天板11a(又は12a)上に隣り合って配置された2枚の太陽電池モジュール2の枠部材21を上から押圧するのに用いられる。又、押圧板31の穿孔33は、ボルト8が挿入される孔である。押圧金具3aの突起片32は、左右の太陽電池モジュール2間に挿入され、左右の太陽電池モジュール2間の配置間隔を設定する。
 図22は、荷重受け金具4を示す斜視図である。図22に示すように荷重受け金具4は、荷重受板40、裏板50、及び荷重受板40と裏板50を結合するジョイント部60を有している。ジョイント部60の途中には、容易に屈曲可能なように括部61が設けられている。
 裏板50には、その後端縁から垂直に屈曲した後壁50bが形成され、またその前端縁から垂直に屈曲した前壁50aが形成されている。更に、前壁50aの端辺から垂直に屈曲した係合片50cが形成され、この係合片50cに長孔50dが形成されている。
 荷重受板40の両端縁には、上方に屈曲した爪片41、41が形成されている。また、荷重受板40の後端縁には、下方に屈曲した位置決め片43が形成され、この位置決め片43に係合溝43aが形成されている。
 また、荷重受板40の中央部に穿孔42が貫通形成され、裏板50にはネジ孔51が形成されている。荷重受板40の穿孔42には、ボルト8が通され、裏板50のネジ孔51にボルト8がねじ込まれる。
 図23~図25に示すように荷重受け金具4のジョイント部60が括部61で折り曲げられて、荷重受板40と裏板50が相互に間隙を開けて対向配置され、裏板50の係合片50cの長孔50dに荷重受板40の位置決め片43が嵌入され、位置決め片43の長孔43aに係合片50cの凸部50eが嵌入されて、荷重受板40と裏板50が相互に係止される。
 一方、図5(a)~(c)及び図6(a)~(c)に示したように横桟11(又は12)の立設板11c(又は12c)には、取付け金具ユニット26(又は27)を取付けるためのT字型孔11e(又は12e)が形成され、また天板11a(12a)には、取付け金具ユニット26(又は27)を取付けるための位置決めスリット11f(又は12f)、及び長円孔11g(又は12g)が形成されている。
 天板11a(12a)の長円孔11g(又は12g)は、ボルト8を挿入するためのものであり、このボルト8の挿入位置を微調整するために細長い長孔となっている。又、位置決めスリット11f(又は12f)は、荷重受け金具4の位置決め片43を挿入するためのものであり、この荷重受け金具4の位置決め片43の挿入位置を微調整するために細長い長孔となっている。
 このような横桟11(又は12)に荷重受け金具4を取付けるには、まず図22に示すような折り曲げられる前の荷重受け金具4の裏板50を横桟11(又は12)の立設板11c(又は12c)のT字型孔11e(又は12e)に通して、荷重受け金具4のジョイント部60までをT字型孔11e(又は12e)に挿入する。
 そして、荷重受け金具4のジョイント部60の括部61を90度折り曲げて、裏板50と荷重受板40を天板11a(又は12a)を介して相互に対向配置し、裏板50と荷重受板40間に天板11a(又は12a)を挟持し、荷重受け金具4を天板11a(又は12a)に取付ける。このとき、荷重受け金具4の位置決め片43を天板11a(又は12a)の位置決めスリット11f(又は12f)に挿入して、荷重受け金具4を位置決めする。また、裏板50の係合片50cの長孔50dに荷重受板40の位置決め片43を嵌入し、位置決め片43の長孔43aに係合片50cの凸部50eを嵌入して、荷重受板40と裏板50を相互に係止させる。
 こうして荷重受け金具4を天板11a(又は12a)に取付けた状態で、図20に示すように荷重受け金具4の荷重受板40の中央付近から左側の爪片41までのスペースに左側太陽電池モジュール2の枠部材21の底部片24を差し入れて配置し、また荷重受板40の中央付近から右側の爪片41までのスペースに右側太陽電池モジュール2の枠部材21の底部片24を差し入れて配置し、各太陽電池モジュール2の枠部材21の保持部22上に押圧金具3aを載せて、押圧金具3aの突起片32を左右の太陽電池モジュール2間に挿入し、ボルト8を押圧金具3aの穿孔33及び荷重受板40の穿孔42に挿入して、ボルト8を天板11a(又は12a)の長円孔11g(又は12g)を通じて裏板50のネジ孔51へとネジ込み、ボルト8を締め付ける。これにより、荷重受け金具4と押圧金具3a間に左右の太陽電池モジュール2の枠部材21が挟み込まれて固定支持される。
 次に、太陽光発電システム1における両側端に位置する太陽電池モジュール2の枠部材21を固定するための取付け金具ユニット27を説明する。
 図26及び図27は、横桟11(又は12)に取付けられた取付け金具ユニット27により左右の太陽電池モジュール2の端部が固定された状態を上方向から見て示す斜視図である。また、図28は、同状態を示す断面図である。
 図26~図28に示すように取付け金具ユニット27は、押圧金具3b、荷重受け金具4、及び各金具3b、4を相互に締結するボルト8を備えている。荷重受け金具4は、取付け金具ユニット26の荷重受け金具4と同様の構成であり、横桟11(又は12)への取付け構造もしくは手順も同様である。また、押圧金具3bは、1枚の太陽電池モジュール2の枠部材21の表側に当接している。更に、ボルト8は、押圧金具3bから横桟11(又は12)の天板11a(又は12a)の裏側面へと貫通して、この裏面側で荷重受け金具4にねじ込まれて締結されている。これにより、各金具3b、4間に1枚の太陽電池モジュール2の枠部材21が挟み込まれて支持されている。
 図29は、押圧金具3bを示す斜視図である。図29に示すように押圧金具3bは、平板状の押圧板31の前後の両端部に下方へと突出する突起片32を形成し、押圧板31の中央部に穿孔33を形成し、押圧板31の一端縁から垂直に屈曲した立壁34を形成し、立壁34の下端縁から横向きに屈曲した底部片35を形成したものである。
 図28に示すように荷重受け金具4の荷重受板40の中央付近から内側の爪片41までのスペースに左側又は右側の太陽電池モジュール2の枠部材21の底部片24を差し入れて配置し、また荷重受板40の中央付近から外側の爪片41までのスペースに押圧金具3bの底部片35を配置し、太陽電池モジュール2の枠部材21の保持部22上に押圧金具3bの押圧板31を載せて、押圧金具3bの突起片32を太陽電池モジュール2の保持部22に押し当てて、太陽電池モジュール2を位置決めし、ボルト8を押圧金具3bの穿孔33及び荷重受け金具4の荷重受板40の穿孔42に挿入して、ボルト8を天板12の長円孔13を通じて裏板50のネジ孔51へとネジ込み、ボルト8を締め付ける。これにより、荷重受け金具4と押圧金具3b間に太陽電池モジュール2の枠部材21が挟み込まれて固定支持される。
 次に、図1の太陽光発電システム1の施工手順を説明する。図30~図32を参照しつつ説明する。
 まず、図30に示すように複数の縦桟14の長手方向をY方向に向けて、これらの縦桟14を陸屋根等の基礎面上に相互に平行に配置して固定する。これらの縦桟14の間隔及び位置は不定である。
 縦桟14毎に、その嵌合溝14bに2本のボルト16aの頭を挿通して、ボルト16aの軸部を嵌合溝14bの狭い幅のスリットから突出させた状態で、ボルト16aを各横桟11、12の間隔で配置する。
 各横桟11、12を各縦桟14と直交する方向(X方向)に向けて、各横桟11、12を各縦桟14上に載せ、各横桟11、12をX方向に移動させて位置決めする。
 また、各横桟11、12の複数箇所に、それぞれの梁部材13を掛け渡して、各横桟11、12の間隔を調節する。
 図31に示すように各固定具15の基板15aの長形孔15eにそれぞれのボルト16aの軸部を通して、各固定具15の基板15aを縦桟14の上面14aに載せ、固定具15毎に、固定具15の支持板15cを横桟11(又は12)の立設板11c(又は12c)に当接させ、固定具15の支持板15cの各ネジ孔15fを横桟11(又は12)の各穿孔11h(又は12h)に重ね合わせ、ボルト及びナットを用いて、横桟11(又は12)の立設板11c(又は12c)を固定具15の支持板15cに締結する。また、固定具15毎に、補強金具25を固定具15の基板15aに重ね、ボルト16aの軸部にナット16bをねじ込んで締め付け、固定具15を縦桟14に締結する。
 これにより、各横桟11、12が各縦桟14上で規定の間隔を開けて平行に配置されて固定され、それぞれの天板11a、12aがほぼ同一傾斜平面上に位置決めされる。
 また、荷重受け金具4の裏板50を横桟11(又は12)のT字型孔11e(又は12e)に通して、荷重受け金具4のジョイント部60までをT字型孔11e(又は12e)に挿入し、荷重受け金具4の位置決め片43を天板11a(又は12a)の位置決めスリット11f(又は12f)に挿入して、荷重受け金具4の位置決めを行う。そして、荷重受け金具4のジョイント部60の括部61を90度折り曲げて、裏板50と荷重受板40を天板11a(又は12a)を介して相互に対向配置し、荷重受け金具4を天板11a(又は12a)に取付ける。
 この荷重受け金具4は、太陽電池モジュール2毎に、太陽電池モジュール2の枠部材21の両側4箇所を固定するべく、各横桟11、12のそれぞれの箇所に取付けられる。
 次に、図32に示すように複数の太陽電池モジュール2を各横桟11、12上に配置し、太陽電池モジュール2毎に、太陽電池モジュール2の枠部材21の両側4箇所を各横桟11、12上の4個の荷重受け金具4に載せ、太陽電池モジュール2の傾斜下方の端部を梁部材13のストッパー13gに当接させて、太陽電池モジュール2を位置決めする。これにより、太陽電池モジュール2が各横桟11、12の天板11a、12aに沿って傾斜して支持される。
 そして、太陽光発電システム1における両側端に位置する太陽電池モジュール2の枠部材21については、図33(a)に示すように押圧金具3bの押圧板31を太陽電池モジュール2の枠部材21上に載せて、ボルト8を押圧金具3bから横桟11(又は12)の天板11a(又は12a)の裏側面へと貫通させて荷重受け金具4の裏板50にねじ込んで締め付け、荷重受け金具4と押圧金具3b間に太陽電池モジュール2の枠部材21を挟み込んで固定支持する。
 また、相互に隣り合う2枚の太陽電池モジュール2の枠部材21については、図33(b)に示すように押圧金具3aの押圧板31を各太陽電池モジュール2の枠部材21上に載せて、ボルト8を押圧金具3aから横桟11(又は12)の天板11a(又は12a)の裏側面へと貫通させて荷重受け金具4の裏板50にねじ込んで締め付け、荷重受け金具4と押圧金具3a間に左右の太陽電池モジュール2の枠部材21を挟み込んで固定支持する。
 この結果、図1に示すような太陽光発電システム1が構築される。
 尚、本発明は、上記実施形態に限定されるものではなく、多様に変形することができる。例えば、図34に示すように太陽電池モジュール2を複数列で設け、各列の太陽電池モジュール2の傾きを隣同士の列で相互に逆にして、各列の太陽電池モジュール2を山型に配置してもよい。この山型の配置のために、高い方の各横桟12を相互に近づけて2列で配置し、この2列の外側に低い方のそれぞれの横桟11を配置し、各横桟11、12上に複数の太陽電池モジュール2を搭載する。
 このような太陽電池モジュール2の配置により、多数の太陽電池モジュール2を近接配置しても、太陽電池モジュール2の影に他の太陽電池モジュール2が入ることが無く、発電効率を高くすることができる。
 また、横桟11又は12に、図35に示すような間隔で各穿孔11h、12hを形成しても構わない。ここでは、固定具15の支持板15の各ネジ孔15fに重なり合う一定間隔sの2個の穿孔11h又は12hを一組とすると、横桟11又は12の長手方向に沿って、複数組の穿孔11h又は12hを形成している。いずれの組においても2個の穿孔11h又は12hが一定間隔sで離間しているが、相互に隣り合う各組の穿孔11hの間隔qが一定間隔s未満であって狭くなっている。この場合は、固定具15の支持板15cにおける各ネジ孔15fを横桟11又は12におけるいずれかの組の各穿孔11h又は12hに重ねて、固定具15の支持板15cを横桟11又は12に締結することができる。また、固定具15の基板15aの長形孔15eの長さaを支持板15における各ネジ孔15fの互いに最も離れた距離をなす各ネジ孔15fの周縁部間の距離bよりも十分に長くすれば(a=b+q)、縦桟14に対する横桟11又は12の位置を該横桟11又は12の長さの分だけ自在に調節設定することができる。
 また、本実施形態の構造物設置架台では、太陽電池モジュールを支持しいているが、この代わりに、太陽熱発電に用いられる反射鏡パネルを支持してもよい。これにより、太陽熱発電システムを構築することができる。
 本発明の構造物設置架台は、土台の任意の位置に対する桟の位置を広範囲で自在に調節設定することができる。しかもこの構造物設置架台に使用される構造物設置用支持具は、桟及び固定具のいずれも複雑な形状をなす構造とする必要もなく、鋼材等の安価で強度に優れた素材を適用することができる。以上のことから、本発明の構造物設置架台に太陽電池モジュールが搭載された太陽光発電システムは、本発明の構造物設置架台及び構造物設置用支持具の有益性をそのまま反映させることができ、有用である。
1 太陽光発電システム
2 太陽電池モジュール
3a、3b 押圧金具
4 荷重受け金具
10 構造物設置架台
11、12 横桟(桟)
13 梁部材
14 縦桟(土台用桟)
15 固定具
15a 基板(基部)
15c 支持板(支持部)
28、29 連結板
20 太陽電池パネル
21 枠部材
26、27 取付け金具ユニット

Claims (11)

  1.  構造物が搭載される桟と、この桟を土台に固定するための固定具とを備え、
     前記固定具は、前記桟に取付けられたときに該桟に沿って離間する少なくとも2個の穿孔が形成された支持部と、互いに最も離れた前記穿孔において該桟に沿って最も離れた距離をなす該各穿孔の周縁部間の距離以上の長径を有する長形孔が形成された基部とを有しており、
     前記桟には、前記固定具の支持部に形成された前記各穿孔とその各穿孔に重なり合うそれぞれの穿孔を一組とすると、該桟の長手方向に沿って複数組の穿孔が形成され、
     前記固定具の支持部と前記桟は、相互に重ね合わされた該固定具の支持部の各穿孔と該桟の各穿孔を通じて締結されており、
     前記固定具の基部は、該固定具の長形孔を通じて前記土台に締結されていることを特徴とする構造物設置架台。
  2.  請求項1に記載の構造物設置架台であって、
     前記桟は、前記土台に対して立設される立設板を有し、前記立設板に前記桟の長手方向に沿って複数組の各穿孔が形成されていることを特徴とする構造物設置架台。
  3.  請求項1に記載の構造物設置架台であって、
     前記桟は、複数の桟部材を連結して形成されており、
     その連結箇所で隣り合う2本の前記桟部材には、前記連結箇所を挟んで前記固定具の支持部の各穿孔にそれぞれ重なり合う穿孔が形成されていることを特徴とする構造物設置架台。
  4.  請求項3に記載の構造物設置架台であって、
     前記固定具の支持部の各穿孔にそれぞれ重なり合う穿孔が形成された連結具を備え、
     前記2本の桟部材と前記連結具は、相互に重ね合わされた該各桟部材の穿孔及び該連結具の各穿孔を通じて締結されており、前記2本の桟部材は前記連結具を介して連結されていることを特徴とする構造物設置架台。
  5.  請求項4に記載の構造物設置架台であって、
     前記2本の桟部材の連結箇所は、前記固定具の支持部と前記連結具間に挟み込まれており、前記2本の桟部材、前記固定具の支持部、及び前記連結具が、相互に重ね合わされた該各桟部材の穿孔、該固定具の支持部の各穿孔、及び該連結具の各穿孔を通じて締結され、前記2本の桟部材は前記固定具及び前記連結具を介して連結されていることを特徴とする構造物設置架台。
  6.  請求項1~5のいずれか1つに記載の構造物設置架台であって、
     前記桟は、底板、この底板の一辺で屈曲され立設する立設板、及び立設板の上辺で屈曲する天板を有しており、
     2本の前記桟は相互に平行に配置され、前記固定具により、前記各桟の立設板を前記土台にそれぞれ固定し、構造物が前記各桟の天板上に架け渡して搭載されることを特徴とする構造物設置架台。
  7.  請求項6に記載の構造物設置架台であって、
     前記土台に固定された前記各桟の高さが相互に異なり、前記各桟の天板がほぼ同一傾斜平面上に存在し、前記各桟部材の天板上に構造物が傾斜して搭載されることを特徴とする構造物設置架台。
  8.  請求項7に記載の構造物設置架台であって、
     前記各桟間に架け渡され固定された梁部材を備え、
     前記梁部材の一端側のストッパーは、前記各桟の天板上に載せられた構造物の傾斜下方に配置され、前記構造物の一辺を受け止めるように設けられたことを特徴とする構造物設置架台。
  9.  請求項1~8のいずれか1つに記載の構造物設置架台であって、
     前記土台は、前記桟と直交する方向に延びる土台用桟であり、
     前記固定具の基部は該基部の長形孔を通じて前記土台用桟に締結されていることを特徴とする構造物設置架台。
  10.  桟と固定具を備え、
     前記固定具は、前記桟に取付けられたときに該桟に沿って離間する少なくとも2個の穿孔が形成された支持部と、互いに最も離れた前記穿孔において該桟に沿って最も離れた距離をなす該各穿孔の周縁部間の距離以上の長径を有する長形孔が形成された基部とを有しており、
     前記桟には、前記固定具の支持部に形成された前記各穿孔とその各穿孔に重なり合うそれぞれの穿孔を一組とすると、該桟の長手方向に沿って複数組の穿孔が形成されていることを特徴とする構造物設置用支持具。
  11.  請求項1乃至9のいずれか1つに記載の構造物設置架台に、構造物である太陽電池モジュールが搭載されたことを特徴とする太陽光発電システム。
PCT/JP2010/073611 2009-12-25 2010-12-27 構造物設置架台、構造物設置用支持具、及び太陽光発電システム WO2011078382A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/519,014 US20120285515A1 (en) 2009-12-25 2010-12-27 Structure installation mount, support device for structure installation, and solar photovoltaic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295136 2009-12-25
JP2009295136A JP4688951B1 (ja) 2009-12-25 2009-12-25 構造物設置架台、構造物設置用支持具、及び太陽光発電システム

Publications (1)

Publication Number Publication Date
WO2011078382A1 true WO2011078382A1 (ja) 2011-06-30

Family

ID=44193900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073611 WO2011078382A1 (ja) 2009-12-25 2010-12-27 構造物設置架台、構造物設置用支持具、及び太陽光発電システム

Country Status (3)

Country Link
US (1) US20120285515A1 (ja)
JP (1) JP4688951B1 (ja)
WO (1) WO2011078382A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVI20120008A1 (it) * 2012-01-12 2013-07-13 Js Srl Dispositivo di fissaggio per pannelli, in particolare per pannelli solari termici o fotovoltaici.
US20140338732A1 (en) * 2011-12-06 2014-11-20 Itogumi Construction Co., Ltd. Solar power system and solar panel installation method
EP2865014A4 (en) * 2012-06-25 2015-07-29 Sunpower Corp REINFORCEMENT FOR NETWORK OF SOLAR MODULES
CN105227066A (zh) * 2015-10-29 2016-01-06 苏州爱康金属科技有限公司 水上光伏发电系统
JP2018197442A (ja) * 2017-05-24 2018-12-13 日栄インテック株式会社 折板屋根用架台

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116121A1 (en) * 2011-02-22 2012-08-30 Zep Solar, Inc. Pivot-fit frame, system and method for photovoltaic modules
US8870139B1 (en) * 2011-03-01 2014-10-28 Jonathan Port Strap mount for solar panels
US20150377521A1 (en) * 2011-03-01 2015-12-31 Jonathan Port Strap mount for solar panels
JP5159925B2 (ja) * 2011-07-21 2013-03-13 シャープ株式会社 太陽電池モジュールの設置構造、太陽電池モジュールの設置方法、及び太陽光発電システム
JP2013029005A (ja) * 2011-07-29 2013-02-07 Daimaru Sogo Kikaku Kk ソーラパネルの設置方法および設置構造
US9038329B2 (en) * 2011-10-11 2015-05-26 Sunlink Corporation Structure following roof mounted photovoltaic system
JP5930695B2 (ja) * 2011-12-16 2016-06-08 旭化成ホームズ株式会社 機能パネル固定具
JP5912797B2 (ja) * 2012-04-16 2016-04-27 三甲株式会社 ソーラーパネル装置及びその製造方法
US9010041B2 (en) * 2012-06-25 2015-04-21 Sunpower Corporation Leveler for solar module array
US8683761B2 (en) * 2012-06-25 2014-04-01 Sunpower Corporation Mounting system for solar module array
US9498854B2 (en) 2012-06-25 2016-11-22 Sunpower Corporation Anchor for solar module
US9193014B2 (en) 2012-06-25 2015-11-24 Sunpower Corporation Anchor for solar module
US9316417B2 (en) * 2012-06-29 2016-04-19 Sunpower Corporation Framing system for mounting solar collecting devices
US8936164B2 (en) 2012-07-06 2015-01-20 Industrial Origami, Inc. Solar panel rack
JP2014047570A (ja) * 2012-08-31 2014-03-17 Yasuhiro Nomura ソーラーパネル用固定具
JP5405631B2 (ja) * 2012-09-06 2014-02-05 シャープ株式会社 太陽電池モジュールの設置構造、太陽電池モジュールの設置方法、及び太陽光発電システム
US9742347B2 (en) 2013-02-11 2017-08-22 Jonathan Port Modular strap mount for solar panels
US9166526B2 (en) 2013-07-03 2015-10-20 Industrial Origami, Inc. Solar panel rack
CA2830914C (en) * 2013-10-11 2018-06-26 Polar Racking Inc. Support racking for solar panel
WO2015066595A1 (en) * 2013-11-01 2015-05-07 Handy & Harman Rail-based roof attachment and load distribution system
US20150372635A1 (en) * 2014-06-23 2015-12-24 Miguel M.L. Praca Modular roof mounting system for photovoltaic panels
USD739346S1 (en) * 2014-12-09 2015-09-22 Bentek Corporation Inverter power rack and power skid
USD739819S1 (en) * 2014-12-09 2015-09-29 Bentek Corporation Inverter power rack and power skid
CN105227070B (zh) * 2015-10-29 2018-06-05 苏州爱康金属科技有限公司 水上光伏发电装置的基础
CN105207582A (zh) * 2015-10-29 2015-12-30 苏州爱康金属科技有限公司 水上光伏发电系统的光伏支架
US10720877B2 (en) * 2016-02-25 2020-07-21 Solarcity Corporation Photovoltaic mounting system for solar tracker array
US9628019B1 (en) 2016-09-09 2017-04-18 Polar Racking Inc. Photovoltaic panel racking system
JP6396976B2 (ja) * 2016-12-08 2018-09-26 東光電気工事株式会社 太陽光発電装置および太陽光発電装置の製造方法
CN106542023B (zh) * 2016-12-11 2022-04-15 河北工业大学 以太阳能为动力源的小型交通工具锁桩
DE102017102827B3 (de) * 2017-02-13 2018-06-21 Mounting Systems Gmbh Trägervorrichtung mit C-Profil-Modulträger für Solarmodule
CN107477053B (zh) * 2017-09-19 2023-07-07 中广核研究院有限公司 高低支撑梁用辅助件
AU2019240757B2 (en) * 2018-03-26 2023-09-14 Solpod Pty Ltd A system for mounting a service component to a building structure
US10797635B2 (en) 2018-08-29 2020-10-06 Nextracker Inc. Solar module mounting bracket assemblies
CN109882710A (zh) * 2019-03-08 2019-06-14 广西梧州制药(集团)股份有限公司 一种四通道风速测试装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124971A (ja) * 1997-10-23 1999-05-11 Eishin:Kk 屋根上部材の支持金具
JP2002021242A (ja) * 2000-07-10 2002-01-23 Sekisui Chem Co Ltd 架台の取付構造
JP2004204535A (ja) * 2002-12-25 2004-07-22 Okinawa Electric Power Co Ltd 太陽電池モジュールの設置構造

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044517A (en) * 1976-07-12 1977-08-30 Kaiser Aluminum & Chemical Corporation Insulated tank jacketing system
GB8507191D0 (en) * 1985-03-20 1985-04-24 Cladcolor Profiling Ltd Support system
US4733986A (en) * 1985-08-08 1988-03-29 Square D Company Splice plate for cable tray
WO1996007803A1 (en) * 1994-09-08 1996-03-14 Non-Compact, Inc. System for mounting building panels
US5715634A (en) * 1995-06-07 1998-02-10 Sps Corporation Skylight construction
US6065255A (en) * 1998-12-07 2000-05-23 Kyocera Solar, Inc. Roof mounting for photovoltaic modules
US6227330B1 (en) * 1999-07-15 2001-05-08 Mark A. Preusser Support structure for suspending a work surface below a girder
JP4661021B2 (ja) * 2000-07-12 2011-03-30 株式会社カネカ 太陽電池モジュール、太陽電池モジュールの設置構造、及びその設置構造を有した発電機能付き屋根
US6414237B1 (en) * 2000-07-14 2002-07-02 Astropower, Inc. Solar collectors, articles for mounting solar modules, and methods of mounting solar modules
WO2002041407A1 (fr) * 2000-11-16 2002-05-23 Kaneka Corporation Module de batterie solaire, systeme de production d'energie photovoltaique, bloc de support supportant ce module de batterie solaire, et procede d'installation d'un systeme de production d'energie photovoltaique
US7574842B2 (en) * 2002-04-11 2009-08-18 Schott Solar, Inc. Apparatus for mounting photovoltaic power generating systems on buildings
JP3907668B2 (ja) * 2005-04-07 2007-04-18 シャープ株式会社 太陽電池モジュールの取付け構造
WO2007079382A2 (en) * 2005-12-28 2007-07-12 Sunpower Corporation, Systems Supported pv module assembly
US7836639B2 (en) * 2006-04-20 2010-11-23 Sharp Kabushiki Kaisha Structure mounting and supporting device and method
DE202006016382U1 (de) * 2006-10-20 2007-02-15 Hoeft, Duhay, Kempkensteffen GbR (vertretungsberechtigter Gesellschafter: Herr Klaus-Dieter Hoeft, 33332 Gütersloh) Flachdachaufsatz mit Solarmodulen
JP4290750B2 (ja) * 2007-06-11 2009-07-08 株式会社屋根技術研究所 太陽電池モジュールの固定構造、太陽電池モジュール用のフレーム及び固定部材
US20110198304A1 (en) * 2008-05-01 2011-08-18 Linus Eric Wallgren Rack Assembly for Solar Energy Collecting Module
US8585000B2 (en) * 2008-05-22 2013-11-19 Mainstream Energy Corporation Universal end clamp
US20100089390A1 (en) * 2008-10-13 2010-04-15 Sunlink, Corp Solar array mounting system
US8276330B2 (en) * 2008-12-12 2012-10-02 Applied Energy Technologies Modular solar panel racking system
JP4637231B2 (ja) * 2008-12-15 2011-02-23 シャープ株式会社 太陽電池モジュールの設置架台
US9057542B2 (en) * 2009-04-27 2015-06-16 Unirac, Inc. Snap-on structural connector
US8413944B2 (en) * 2009-05-01 2013-04-09 Applied Energy Technologies Mounting systems for solar panels
JP4365450B1 (ja) * 2009-05-01 2009-11-18 株式会社屋根技術研究所 太陽電池モジュールの固定構造、太陽電池モジュール用のフレーム及び固定部材
US8336277B1 (en) * 2011-07-07 2012-12-25 Solon Corporation Integrated photovoltaic rooftop modules
US8387319B1 (en) * 2011-09-02 2013-03-05 Opsun Systems Inc. Solar panel securing assembly for sheet metal sloping roofs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124971A (ja) * 1997-10-23 1999-05-11 Eishin:Kk 屋根上部材の支持金具
JP2002021242A (ja) * 2000-07-10 2002-01-23 Sekisui Chem Co Ltd 架台の取付構造
JP2004204535A (ja) * 2002-12-25 2004-07-22 Okinawa Electric Power Co Ltd 太陽電池モジュールの設置構造

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140338732A1 (en) * 2011-12-06 2014-11-20 Itogumi Construction Co., Ltd. Solar power system and solar panel installation method
US9722128B2 (en) * 2011-12-06 2017-08-01 Itogumi Construction Co., Ltd. Solar power system and solar panel installation method
ITVI20120008A1 (it) * 2012-01-12 2013-07-13 Js Srl Dispositivo di fissaggio per pannelli, in particolare per pannelli solari termici o fotovoltaici.
EP2865014A4 (en) * 2012-06-25 2015-07-29 Sunpower Corp REINFORCEMENT FOR NETWORK OF SOLAR MODULES
CN105227066A (zh) * 2015-10-29 2016-01-06 苏州爱康金属科技有限公司 水上光伏发电系统
JP2018197442A (ja) * 2017-05-24 2018-12-13 日栄インテック株式会社 折板屋根用架台
JP7011404B2 (ja) 2017-05-24 2022-01-26 日栄インテック株式会社 折板屋根用架台

Also Published As

Publication number Publication date
JP2011132780A (ja) 2011-07-07
US20120285515A1 (en) 2012-11-15
JP4688951B1 (ja) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2011078382A1 (ja) 構造物設置架台、構造物設置用支持具、及び太陽光発電システム
JP4637231B2 (ja) 太陽電池モジュールの設置架台
JP5680242B2 (ja) 太陽電池モジュール取付構造、太陽電池装置および太陽電池モジュール取付方法
US8935893B2 (en) Direct rooftop mounting apparatus for solar panels
JP2008214875A (ja) 太陽電池モジュールの取付け構造
JP5202430B2 (ja) 太陽電池モジュールの固定構造
JP4979760B2 (ja) 太陽電池モジュール用架台、及び太陽電池モジュール用架台を用いた太陽光発電システム
CN102892962B (zh) 太阳能电池组件支承结构、利用该支承结构的太阳能电池组件的设置方法、以及使用该支承结构的太阳光发电系统
WO2011099564A1 (ja) 構造物支持構造、構造物用架台、その架台を用いた構造物の施工方法、及び太陽光発電システム
JP4202401B1 (ja) 構造物設置架台、その組立方法、太陽電池モジュール、及び構造物設置架台を用いた施工構造
WO2011118559A1 (ja) 太陽電池モジュール
JP5388880B2 (ja) 太陽電池モジュールの固定構造、太陽電池モジュール用架台、太陽電池モジュールの施工方法、及び太陽電池発電システム
WO2012121147A1 (ja) 太陽電池モジュールの架台、その施工方法、及びそれを備えた太陽光発電システム
JP5463331B2 (ja) 太陽電池モジュール支持構造、その支持構造の施工方法、及びその支持構造を用いた太陽光発電システム
JP5388311B2 (ja) 太陽電池モジュール支持構造、その支持構造を用いた太陽光発電システム及び太陽電池モジュールの設置方法
JP2013007192A (ja) 太陽電池等の屋根への取付構造
JP2017066806A (ja) 太陽電池モジュールの設置構造、設置方法、及びその設置構造を用いた太陽光発電システム
JP3934453B2 (ja) 太陽電池パネルを有する屋根構造
JP5430544B2 (ja) 補助垂木固定金具及び設備固定装置
JP6021579B2 (ja) 太陽電池モジュール支持構造、及び太陽電池モジュールの設置方法
JP2003082823A (ja) 太陽熱集熱器の固定方法と固定構造
JP6029317B2 (ja) 太陽電池モジュール
JP5965376B2 (ja) 太陽電池モジュール支持構造、その支持構造を用いた太陽光発電システム
KR101124440B1 (ko) 경사지붕용 태양전지 결속형 지지프레임의 설치방법
JP2023115648A (ja) 太陽光パネルの固定構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13519014

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6468/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10839610

Country of ref document: EP

Kind code of ref document: A1