WO2011078378A1 - 多接合型化合物半導体太陽電池 - Google Patents

多接合型化合物半導体太陽電池 Download PDF

Info

Publication number
WO2011078378A1
WO2011078378A1 PCT/JP2010/073572 JP2010073572W WO2011078378A1 WO 2011078378 A1 WO2011078378 A1 WO 2011078378A1 JP 2010073572 W JP2010073572 W JP 2010073572W WO 2011078378 A1 WO2011078378 A1 WO 2011078378A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cell
lattice constant
type
layers
Prior art date
Application number
PCT/JP2010/073572
Other languages
English (en)
French (fr)
Inventor
和明 佐々木
高明 安居院
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080064809.0A priority Critical patent/CN102782864B/zh
Priority to EP10839606.0A priority patent/EP2518776A4/en
Priority to US13/518,563 priority patent/US8933326B2/en
Publication of WO2011078378A1 publication Critical patent/WO2011078378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Definitions

  • the present invention relates to a multi-junction compound semiconductor solar cell.
  • Silicon crystal solar cells that use a silicon substrate and have a pn junction formed on the silicon substrate are currently the mainstream, but are directly transitional as a solar cell that can achieve higher photoelectric conversion efficiency than silicon crystal solar cells.
  • Many of the compound semiconductor solar cells currently being developed are multi-junction compound semiconductor solar cells having a multi-junction (tandem) structure having a plurality of photoelectric conversion layers (pn junction layers) having different forbidden band widths. Since the optical spectrum can be effectively used, it is possible to obtain higher photoelectric conversion efficiency than a single-junction compound semiconductor solar cell having one photoelectric conversion layer.
  • a system considering lattice matching by epitaxial growth (lattice matching system) is mainly studied.
  • lattice matching system as a multi-junction compound semiconductor solar battery having three photoelectric conversion layers, it has an InGaP photoelectric conversion layer / GaAs photoelectric conversion layer / Ge photoelectric conversion layer from the sunlight incident side (light receiving surface side). Multijunction compound semiconductor solar cells have been developed.
  • the forbidden band width of the InGaP photoelectric conversion layer is about 1.87 eV
  • the forbidden band width of the GaAs photoelectric conversion layer is about 1.42 eV
  • the forbidden band width of the Ge photoelectric conversion layer is about 0.67 eV. .
  • FIG. 16A and 16B are schematic cross-sectional views of a conventional multi-junction compound semiconductor solar cell.
  • the multi-junction compound semiconductor solar battery shown in FIG. 16A is arranged in the order of a top cell 501, a middle cell 502, and a bottom cell 504 from the sunlight incident side.
  • An electrode 505 is formed, and a second electrode 506 is formed on the back surface of the bottom cell 504 opposite to the light receiving surface side (back surface side).
  • the forbidden band width of the photoelectric conversion layer of the top cell 501 is the largest
  • the forbidden band width of the photoelectric conversion layer of the middle cell 502 is the next largest
  • the photoelectric conversion layer of the bottom cell 504 is the smallest.
  • each of the top cell 501, the middle cell 502, and the bottom cell 504 includes a plurality of semiconductor layers including one photoelectric conversion layer.
  • the material of the bottom cell 504 is a material in which the forbidden band width of the photoelectric conversion layer of the bottom cell 504 is about 0.9 to 1.1 eV. Is being studied.
  • InGaAs has been proposed as one of materials whose forbidden bandwidth is about 1 eV.
  • a multi-junction compound semiconductor solar battery is manufactured using InGaAs as the material of the bottom cell 504, InGaP as the top cell 501, and GaAs as the material of the middle cell 502, the GaAs constituting the middle cell 502 and the bottom cell 504
  • the lattice constant is different from that of InGaAs, and the difference in lattice constant is as large as about 2%. Therefore, as shown in FIG. 16B, a multi-junction compound semiconductor solar cell in which a buffer layer 503 having a changed lattice constant is formed between the middle cell 502 and the bottom cell 504 has been developed.
  • Non-Patent Document 1 JFGeisz et al., “Inverted GaInP / (In) GaAs / InGaAs triple-junction solar cells with low-stress metamorphic bottom junction”, 33rd IEEE Photovoltaic Specialists Conference San Diego, California 11, May 16, 2008
  • the top cell 501 (InGaP) and the middle cell 502 (GaAs) are lattice-matched in a multi-junction compound semiconductor solar cell of InGaP (top cell) / GaAs (middle cell) / InGaAs (bottom cell).
  • a multi-junction compound semiconductor solar cell in which a buffer layer 503 in which the lattice constant of InGaP is changed is formed between a middle cell 502 (GaAs) and a bottom cell 504 (InGaAs) having different lattice constants.
  • FIG. 17A shows a conventional lattice constant when a multi-junction compound semiconductor solar cell is formed on a semiconductor substrate 507 (GaAs substrate) shown in the schematic cross-sectional view of FIG. The relationship with the film thickness is shown.
  • a multi-junction compound semiconductor solar cell is formed on the semiconductor substrate 507 (GaAs substrate) shown in the schematic cross-sectional view of FIG. The relationship between the conventional lattice constant and the film thickness is shown.
  • the multi-junction compound semiconductor solar cell on the semiconductor substrate 507 (GaAs substrate) shown in FIGS. 17B and 18B is manufactured as follows. In FIG. 17 and FIG. 18, the description about the tunnel junction is omitted.
  • an InGaP crystal lattice-matched with a GaAs crystal constituting the semiconductor substrate 507 is epitaxially grown on a semiconductor substrate 507 (GaAs substrate) to form a top cell 501, and subsequently, an InGaP crystal and a lattice constituting the top cell 501 are formed.
  • Middle cells 502 are formed by epitaxially growing matched GaAs crystals.
  • the buffer layer 503A is formed by epitaxially growing the InGaP crystal so that the lattice constant increases at regular intervals (the lattice constant increases at a constant increase amount), and then the bottom cell 504 is formed by epitaxially growing the InGaAs crystal.
  • the buffer layer 503A is formed by epitaxially growing the InGaP crystal so that the lattice constant increases at regular intervals (the lattice constant increases at a constant increase amount)
  • the bottom cell 504 is formed by epitaxially growing the InGaAs crystal.
  • the lattice constant of the InGaP crystal adjacent to the bottom cell 504 of the buffer layer 503A is the lattice of the bottom cell 504. It is larger than a constant.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-324563 also has a similar description.
  • the cells on the semiconductor substrate 507 are arranged in order from the cell positioned on the light receiving surface side of the multi-junction compound semiconductor solar battery (that is, the top cell 501 and the middle cell).
  • the method of stacking in the order of 502 and bottom cell 504) is called reverse stacking, and such a stacked structure is called reverse stacking 3 junction.
  • the buffer layer 503 in which the lattice constant of InGaP is changed between the middle cell 502 (GaAs) and the bottom cell 504 (InGaAs) having different lattice constants could not be sufficiently increased, and as a result, a multijunction compound semiconductor solar cell having excellent characteristics could not be obtained.
  • an object of the present invention is to provide a multi-junction compound semiconductor solar cell that is superior in characteristics to conventional ones.
  • the present invention includes a first electrode, a first cell, a buffer layer, a second cell, and a second electrode, wherein the first electrode is disposed on a sunlight incident side, and the first cell is a first cell A photoelectric conversion layer, the second cell includes a second photoelectric conversion layer, and the forbidden band width of the first photoelectric conversion layer and the forbidden band width of the second photoelectric conversion layer are different from each other;
  • the constant is larger than the lattice constant of the first cell
  • the buffer layer is composed of a plurality of semiconductor layers, and each of the plurality of semiconductor layers has an increasing lattice constant in order from the first cell side to the second cell side.
  • the lattice constant of the semiconductor layer closest to the second cell is larger than the lattice constant of the second cell, and two adjacent layers of the plurality of semiconductor layers are latticed.
  • the two layers with the largest constant difference are the first cell from the center in the thickness direction of the buffer layer. It is a multi-junction compound semiconductor solar cell which is located closer to.
  • the two layers having the largest lattice constant difference between two adjacent semiconductor layers are the two layers closest to the first cell.
  • the lattice constant of the semiconductor layer on the second cell side of the two layers having the largest lattice constant difference between the adjacent two semiconductor layers is defined as a1, and the first cell.
  • the difference in lattice constant between the lattice constant a1 and the lattice constant a2 is preferably 0.0015 nm or more and 0.0026 nm or less.
  • the lattice constant of the second photoelectric conversion layer of the second cell is a4
  • the lattice constant of the semiconductor layer closest to the second cell is a3
  • Second lattice constant difference ratio (%) (100 ⁇ (a3 ⁇ a4)) / (a3)
  • the second lattice constant difference ratio is preferably 0.12% or more and 0.8% or less.
  • the present invention provides a second cell having a first photoelectric conversion layer having a first forbidden band width and a second photoelectric conversion layer having a second forbidden band width smaller than the first forbidden band width.
  • the lattice constant of the cell is larger than the lattice constant of the first cell
  • the buffer layer is composed of a plurality of semiconductor layers, and each of the plurality of semiconductor layers has a lattice constant from the first cell side to the second cell side.
  • the lattice constant of the semiconductor layer closest to the second cell is larger than the lattice constant of the second cell, and the adjacent two of the plurality of semiconductor layers are adjacent to each other.
  • the two layers where the lattice constant difference between the layers is the largest are from the center in the thickness direction of the buffer layer. Is a multi-junction compound semiconductor solar cells are located closer to one cell.
  • the two layers having the largest lattice constant difference between two adjacent semiconductor layers are the two layers closest to the first cell.
  • the lattice constant of the semiconductor layer on the second cell side of the two layers in which the lattice constant difference between two adjacent semiconductor layers is the largest is a1
  • the difference in lattice constant between the lattice constant a1 and the lattice constant a2 is preferably 0.0015 nm or more and 0.0026 nm or less.
  • the lattice constant of the second photoelectric conversion layer of the second cell is a4
  • the lattice constant of the semiconductor layer closest to the second cell is a3
  • Second lattice constant difference ratio (%) (100 ⁇ (a3 ⁇ a4)) / (a3)
  • the second lattice constant difference ratio is preferably 0.12% or more and 0.8% or less.
  • FIG. 1 is a diagram showing an example of a specific cross-sectional structure of a multi-junction compound semiconductor solar battery of Example 1.
  • FIG. 4 is a diagram showing another example of a specific cross-sectional structure of the multi-junction compound semiconductor solar battery of Example 1.
  • FIG. 5 is a schematic cross-sectional view illustrating a part of an example of the method for manufacturing the multi-junction compound semiconductor solar battery having the configuration shown in FIG. 4.
  • FIG. 5 is a schematic cross-sectional view illustrating another part of the process of the example of the method for manufacturing the multi-junction compound semiconductor solar battery having the configuration shown in FIG. 4.
  • 1 is a conceptual diagram of a method for manufacturing a multi-junction compound semiconductor solar cell of Example 1.
  • FIG. 6 is a conceptual diagram of another example of the method for producing a multi-junction compound semiconductor solar battery of Example 1.
  • FIG. 4 is a diagram showing a specific cross-sectional structure of a multi-junction compound semiconductor solar battery of Example 2.
  • FIG. 4 is a diagram showing a specific cross-sectional structure of a multi-junction compound semiconductor solar battery of Example 3.
  • FIG. 6 is a diagram showing a specific cross-sectional structure of a multi-junction compound semiconductor solar battery of Example 4.
  • FIG. 6 is a view showing a specific cross-sectional structure of a multi-junction compound semiconductor solar battery of Example 5.
  • FIG. It is a schematic sectional drawing of the sample for evaluation with respect to a multijunction type compound semiconductor solar cell. Evaluation sample No. 1 corresponding to the multi-junction compound semiconductor solar cell of Example 1 was used.
  • 1 is a specific cross-sectional structure. It is a figure which shows the relationship between Eg of the photoelectric converting layer of a bottom cell, and Voc of a bottom cell.
  • FIG. 1 is a figure which shows the relationship between the lattice constant and film thickness of the conventional multijunction type compound semiconductor solar cell wafer shown to (b), (b) is a model of the conventional multijunction type compound semiconductor solar cell wafer.
  • FIG. (A) is a figure which shows the relationship between the lattice constant and film thickness of the conventional multijunction type compound semiconductor solar cell wafer shown to (b), (b) is a model of the conventional multijunction type compound semiconductor solar cell wafer.
  • FIG. 1 (a) shows an example of a basic structure of a multi-junction compound semiconductor solar cell which is one embodiment of the present invention.
  • the multi-junction compound semiconductor solar battery shown in FIG. 1A includes a multi-junction cell 306, a support substrate 307, a metal layer 321 that joins the multi-junction cell 306 and the support substrate 307, and light reception by the multi-junction cell 306.
  • a first electrode 304 formed on the surface side and a second electrode 305 formed on the back surface side of the support substrate 307 are provided.
  • the multi-junction cell 306 includes a first cell 301, a second cell 302 having a lattice constant different from that of the first cell 301, and a buffer layer 303 formed between the first cell 301 and the second cell 302. , Including.
  • the multi-junction cell 306 may include one or more cells other than the first cell 301 and the second cell 302.
  • the support substrate 307 for example, a semiconductor substrate can be used.
  • FIG. 1 (b) shows another example of the basic structure of a multi-junction compound semiconductor solar cell that is one embodiment of the present invention.
  • the multi-junction compound semiconductor solar battery shown in FIG. 1B is characterized in that the second electrode 305 is formed between the multi-junction cell 306 and the support substrate 307.
  • the first cell 301 is formed on the light receiving surface side of the second cell 302, and the first photoelectric conversion layer of the first cell 301 is formed.
  • the forbidden band width (first forbidden band width) is larger than the forbidden band width (second forbidden band width) of the second photoelectric conversion layer of the second cell 302.
  • the lattice constant of the second photoelectric conversion layer of the second cell 302 is larger than the lattice constant of the first photoelectric conversion layer of the first cell 301.
  • the forbidden bandwidth (third forbidden bandwidth) of the buffer layer 303 is larger than the second forbidden bandwidth.
  • the buffer layer 303 is composed of a plurality of semiconductor layers having different lattice constants between two cells having different lattice constants of the photoelectric conversion layer.
  • the lattice constant of each semiconductor layer of the buffer layer 303 changes so as to increase in order from the first cell 301 side to the second cell 302 side.
  • the buffer layer 303 is formed after forming the first cell 301 on the light-receiving surface side of the multi-junction compound semiconductor solar battery, and then The second cell 302 is formed.
  • each of the plurality of semiconductor layers constituting the buffer layer 303 changes the composition ratio of the group III element of the compound semiconductor so that the lattice constant increases in order from the first cell 301 side to the second cell 302 side. It is formed by epitaxial growth.
  • a plurality of semiconductor layers lattice-matched with the first cell 301 may be formed between the first cell 301 and the buffer layer 303 by epitaxial growth, and the second cell is interposed between the second cell 302 and the buffer layer 303.
  • a plurality of semiconductor layers lattice-matched with 302 may be formed by epitaxial growth.
  • the lattice constant of the semiconductor layer closest to the second cell 302 is larger than the lattice constant of the second photoelectric conversion layer of the second cell 302, and the thickness of the buffer layer 303
  • the lattice constant difference between two adjacent layers located closer to the first cell 301 than the center in the vertical direction is larger than the lattice constant difference between other two adjacent layers
  • the second cell 302 with few crystal defects is formed. It was found that the crystallinity of the second cell 302 can be improved. It has been found that the improved crystallinity of the second cell 302 improves the characteristics of the second cell 302 and improves the solar cell characteristics of the multi-junction compound semiconductor solar cell.
  • the two-dimensional growth changes to the three-dimensional growth.
  • the transferred crystal growth slightly occurs in the semiconductor layer on the second cell 302 side of the two adjacent layers, and the slight three-dimensional growth relaxes the distortion of the semiconductor layer on the second cell 302 side, thereby improving the crystallinity. Is considered to be favorable.
  • the crystallinity of the second cell 302 can be improved by stacking the semiconductor layer over the semiconductor layer.
  • FIG. 2A shows the relationship between the lattice constant and the film thickness of an example of a multi-junction compound semiconductor solar cell which is an embodiment of the present invention shown in the schematic cross-sectional view of FIG.
  • the two layers having the largest lattice constant difference between two adjacent semiconductor layers are the two layers closest to the first cell 301.
  • the lattice constant of the second photoelectric conversion layer of the second cell 302 is larger than the lattice constant of the first photoelectric conversion layer of the first cell 301.
  • the lattice constant difference A between the two adjacent layers located at the location closest to the first cell 301 is larger than the lattice constant difference B between the other two adjacent layers. It is getting bigger.
  • a stacked body of the second cell 302 and the buffer layer 303 is a semiconductor layer 314.
  • a strain relaxation is caused at the location closest to the first cell 301 in the buffer layer 303, thereby forming a semiconductor layer with good crystallinity from the location closest to the first cell 301 side.
  • a semiconductor layer is stacked on the substrate.
  • the buffer layer 303 is located closer to the first cell 301 than the center of the buffer layer 303 in the thickness direction, and is preferably located closest to the first cell 301.
  • the tunnel junction layer is a heavily doped pn junction for electrically connecting two semiconductor layers, and is a layer including at least a pair of p + layer and n + layer.
  • the cells such as the first cell 301 and the second cell 302 are provided with, for example, a window layer on the light receiving surface side and a BSF layer (back surface electric field layer) on the back surface side to collect carriers. You may give the device for improving efficiency. Further, a contact layer for reducing the resistance between the semiconductor layer and the electrode may be formed in the cell located closest to the electrode.
  • the window layer is formed on the light receiving surface side of the photoelectric conversion layer, and is formed of a material having a larger forbidden band width than the photoelectric conversion layer.
  • FIG. 3 shows an example of a specific cross-sectional structure of the multi-junction compound semiconductor solar cell of Example 1.
  • the multi-junction compound semiconductor solar battery shown in FIG. 3 includes a top cell 40A (InGaP), a middle cell 40B (GaAs), and a bottom cell 40C (InGaAs) from the light-receiving surface side.
  • the photoelectric conversion layer 60B of the middle cell 40B (GaAs) and the photoelectric conversion layer 60C of the bottom cell 40C (InGaAs) have different lattice constants, and the difference in lattice constant is about 2%.
  • the middle cell 40B corresponds to the first cell
  • the bottom cell 40C corresponds to the second cell.
  • the multi-junction compound semiconductor solar cell shown in FIG. 3 includes a first electrode 128, a top cell 40A, a tunnel junction layer on a support substrate 101 (for example, having a thickness of 400 ⁇ m) from the side that becomes a light receiving surface.
  • (First tunnel junction layer) 50A, middle cell 40B, tunnel junction layer (second tunnel junction layer) 50B, buffer layer 41A, and bottom cell 40C are included in this order. Is formed.
  • a metal layer 151 is formed between the bottom cell 40 ⁇ / b> C and the support substrate 101.
  • the metal layer 151 can be formed of, for example, an alloy of gold and tin, and can be formed using a resistance heating vapor deposition apparatus or an EB (Electron Beam) vapor deposition apparatus.
  • the support substrate 101 is a semiconductor such as silicon.
  • the bottom cell 40C includes, in order from the support substrate 101 side, a contact layer 35 (eg, thickness 0.4 ⁇ m) made of p-type InGaAs, a BSF layer 34 (eg, thickness 0.1 ⁇ m) made of p-type In 0.745 Ga 0.255 P, p Base layer 33 made of type InGaAs (for example, 3 ⁇ m thick), emitter layer 32 made of n type InGaAs (for example, 0.1 ⁇ m thick), and window layer 31 made of n type In 0.745 Ga 0.255 P (for example, 0.1 ⁇ m thick) ).
  • a contact layer 35 eg, thickness 0.4 ⁇ m
  • a BSF layer 34 eg, thickness 0.1 ⁇ m
  • p Base layer 33 made of type InGaAs (for example, 3 ⁇ m thick)
  • emitter layer 32 made of n type InGaAs (for example, 0.1 ⁇ m thick)
  • window layer 31 made of n type In 0.7
  • the bottom cell 40C has a photoelectric conversion layer 60C made of a joined body of a base layer 33 made of p-type InGaAs and an emitter layer 32 made of n-type InGaAs. Note that the inside of the bottom cell 40C is lattice-matched.
  • the buffer layer 41A includes, in order from the bottom cell 40C side, an n-type In 0.799 Ga 0.201 P layer 30a (for example, 1 ⁇ m thick), an n-type In 0.766 Ga 0.234 P layer 29a (for example, 0.25 ⁇ m thick), and an n-type In 0.733 Ga.
  • 0.267 P layer 28a for example, thickness 0.25 ⁇ m
  • n-type In 0.700 Ga 0.300 P layer 27a for example, thickness 0.25 ⁇ m
  • n-type In 0.667 Ga 0.333 P layer 26a for example, thickness 0.25 ⁇ m
  • n Type In 0.634 Ga 0.366 P layer 25a for example, thickness 0.25 ⁇ m
  • n type In 0.601 Ga 0.399 P layer 24a for example, thickness 0.25 ⁇ m
  • n type In 0.568 Ga 0.432 P layer 23a for example, thickness 0.
  • each of the semiconductor layers constituting the buffer layer 41A has a lattice constant stepwise from the middle cell 40B to the bottom cell 40C. Arranged to increase.
  • n + -type In 0.490 Ga 0.510 P layer 21a and an n + -type AlInP layer 110 described later are lattice-matched, and the n-type In 0.535 Ga 0.465 P layer 22a of the buffer layer 41A is changed to the n-type In 0.799 Ga 0.201 P layer.
  • the lattice constant increases gradually over 30a.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a is 0.045, and the difference in Ga composition x between the two layers of the other InGaP layers is 0. It is larger than 033. Therefore, the lattice constant difference between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a is larger than the lattice constant difference between the other two adjacent layers constituting the buffer layer 41A. There is one location on the middle cell 40B side from the center in the thickness direction of the buffer layer 41A. At this time, the lattice constant difference between the other two adjacent layers is the same lattice constant difference.
  • the tunnel junction layer (second tunnel junction layer) 50B includes, in order from the buffer layer 41A side, an n + -type AlInP layer 110 (for example, a thickness of 0.05 ⁇ m) and an n ++ type In 0.490 Ga 0.510 P layer 111 (for example, a thickness). 0.02 ⁇ m), a p ++ type AlGaAs layer 112 (for example, thickness 0.02 ⁇ m) and a p + type AlInP layer 113 (for example, 0.05 ⁇ m thickness), and a tunnel junction layer (second tunnel)
  • the inside of the bonding layer 50B is lattice-matched.
  • the middle cell 40B includes, in order from the second tunnel junction layer 50B side, a BSF layer 114 (eg, thickness 0.1 ⁇ m) made of p-type In 0.490 Ga 0.510 P and a base layer 115 (eg, thickness 3 ⁇ m) made of p-type GaAs. , An emitter layer 116 made of n-type GaAs (for example, thickness 0.1 ⁇ m) and a window layer 117 made of n-type In 0.490 Ga 0.510 P (for example, thickness 0.1 ⁇ m).
  • the middle cell 40B has a photoelectric conversion layer 60B made of a joined body of a base layer 115 made of p-type GaAs and an emitter layer 116 made of n-type GaAs. The inside of the middle cell 40B is lattice matched.
  • the tunnel junction layer (first tunnel junction layer) 50A includes, in order from the middle cell 40B side, an n + type AlInP layer 118 (for example, a thickness of 0.05 ⁇ m) and an n ++ type In 0.490 Ga 0.510 P layer 119 (for example, a thickness). 0.02 ⁇ m), a p ++ type AlGaAs layer 120 (for example, thickness 0.02 ⁇ m) and a p + type AlInP layer 121 (for example, thickness 0.05 ⁇ m), and a tunnel junction layer (first tunnel junction) Layer)
  • the inside of 50A is lattice-matched.
  • the top cell 40A includes a BSF layer 122 (eg, thickness 0.05 ⁇ m) made of p-type AlInP and a base layer 123 (eg, thickness 0) made of p-type In 0.490 Ga 0.510 P in this order from the first tunnel junction layer 50A side. .70 ⁇ m), an emitter layer 124 (for example, thickness 0.05 ⁇ m) made of n-type In 0.490 Ga 0.510 P, a window layer 125 (for example, thickness 0.05 ⁇ m) made of n-type AlInP, and a first electrode 128 are formed.
  • a BSF layer 122 eg, thickness 0.05 ⁇ m
  • base layer 123 eg, thickness 0
  • an emitter layer 124 for example, thickness 0.05 ⁇ m
  • a window layer 125 for example, thickness 0.05 ⁇ m
  • a first electrode 128 are formed.
  • the contact layer 126 (for example, 0.4 ⁇ m thick) made of n-type GaAs is formed on the window layer 125 made of n-type AlInP in the region to be formed.
  • the top cell 40A includes a photoelectric conversion layer 60A made of a joined body of the emitter layer 124 made of p-type an In 0.490 Ga 0.510 consists P base layer 123 and the n-type In 0.490 Ga 0.510 P. Note that the inside of the top cell 40A is lattice-matched.
  • an antireflection film 127 made of ZnS / MgF 2 is formed on the window layer 125 made of n-type AlInP other than the region where the first electrode 128 is formed.
  • tunnel junction layer (second tunnel junction layer) 50B, the middle cell 40B, the tunnel junction layer (first tunnel junction layer) 50A, and the top cell 40A are lattice-matched.
  • the forbidden band width of the photoelectric conversion layer 60A in the top cell 40A is the first forbidden band width
  • the forbidden band width of the photoelectric conversion layer 60B in the middle cell 40B is in the second forbidden band width
  • the forbidden bandwidth of the photoelectric conversion layer 60C is the fourth forbidden bandwidth
  • the first forbidden bandwidth, the second forbidden bandwidth, and the fourth forbidden bandwidth are in descending order of the size of the forbidden bandwidth of the photoelectric conversion layer. It is a band width.
  • the forbidden bandwidth of the buffer layer is the third forbidden bandwidth
  • the third forbidden bandwidth is larger than the fourth forbidden bandwidth.
  • FIG. 4 shows another example of a specific cross-sectional structure of the multi-junction compound semiconductor solar cell of Example 1.
  • the multi-junction compound semiconductor solar battery shown in FIG. 4 is characterized in that the second electrode 102 is formed between the bottom cell 40 ⁇ / b> C and the support substrate 101.
  • the other structure is the same as that of the multi-junction compound semiconductor solar cell shown in FIG.
  • the support substrate 101 shown in FIG. 4 may be a semiconductor such as silicon or an insulator.
  • the manufacturing method shown below is characterized in that it is formed by epitaxial growth in order from a semiconductor layer on the light receiving surface side of a multi-junction compound semiconductor solar cell on a semiconductor substrate.
  • a GaAs substrate 130 is placed in a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and an etching stop capable of selective etching with GaAs on the GaAs substrate 130.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • N-type In 0.490 Ga 0.510 P etching stop layer 131, n-type GaAs contact layer 126, n-type AlInP window layer 125, n-type In 0.490 Ga 0.510 P emitter layer 124, p-type A base layer 123 made of In 0.490 Ga 0.510 P and a BSF layer 122 made of p-type AlInP are epitaxially grown in this order by the MOCVD method.
  • a window layer 117 made of n-type In 0.490 Ga 0.510 P, an emitter layer 116 made of n-type GaAs, a base layer 115 made of p-type GaAs, and a p-type In 0.490 Ga 0.510 The BSF layer 114 made of P is epitaxially grown in this order by the MOCVD method.
  • n + -type AlInP layer 110 is grown epitaxially by MOCVD in this order.
  • n + type AlInP layer 110 an n + type In 0.490 Ga 0.510 P layer 21a, an n type In 0.535 Ga 0.465 P layer 22a, an n type In 0.568 Ga 0.432 P layer 23a, an n type In 0.601 Ga 0.399 P Layer 24a, n-type In 0.634 Ga 0.366 P layer 25a, n-type In 0.667 Ga 0.333 P layer 26a, n-type In 0.700 Ga 0.300 P layer 27a, n-type In 0.733 Ga 0.267 P layer 28a, n-type In 0.766 Ga 0.234 P
  • the layer 29a and the n-type In 0.799 Ga 0.201 P layer 30a are epitaxially grown by MOCVD. Since the lattice constant of the InGaP layer changes depending on the composition ratio of In and Ga, which are group III elements of the InGaP layer, each layer of the buffer layer 41A is epitaxially grown with the lattice constant changing stepwise.
  • the n-type In 0.799 Ga 0.201 P layer 30a has a thickness of 1 ⁇ m, while the other layers (21a to 29a) each have a thickness of 0.25 ⁇ m.
  • the n + -type In 0.490 Ga 0.510 P layer 21 a is epitaxially grown in lattice matching with the layer below the n + -type AlInP layer 110.
  • the lattice matching from the GaAs substrate 130 to the n + -type AlInP layer 110 is performed. Therefore, the lattice constant is changed stepwise from the n-type In 0.535 Ga 0.465 P layer 22a and is epitaxially grown.
  • an n + type is formed in order to form the buffer layer of the InGaP layer without changing the lattice constant.
  • An n + -type In 0.490 Ga 0.510 P layer 21 a lattice-matched to the AlInP layer 110 was formed.
  • the lattice constant difference between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a is larger than the lattice constant difference between the two adjacent InGaP layers. Therefore, in the buffer layer 41A, the lattice constant difference between two layers of adjacent semiconductor layers is larger than the lattice constant difference between two layers of other adjacent semiconductor layers, and there is one location on the middle cell 40B side.
  • the lattice constant difference between two adjacent semiconductor layers other than the lattice constant difference between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a is the same lattice constant difference. It has become.
  • a window layer 31 made of n-type In 0.745 Ga 0.255 P, an emitter layer 32 made of n-type InGaAs, a base layer 33 made of p-type InGaAs, and a p-type In 0.745 The BSF layer 34 made of Ga 0.255 P and the contact layer 35 made of p-type InGaAs are epitaxially grown in this order by the MOCVD method.
  • composition of the group III elements In and Ga was selected for the window layer 31 so as to lattice match with InGaAs constituting the photoelectric conversion layer of the bottom cell 40C.
  • AsH 3 arsine and TMG (trimethylgallium) can be used for forming GaAs
  • TMI trimethylindium
  • TMG and PH 3 phosphine
  • TMI, TMG, and AsH 3 can be used to form InGaAs
  • TMA trimethylaluminum
  • TMI, and PH 3 can be used to form AlInP
  • TMA, TMG, and AsH 3 can be used for forming AlGaAs
  • TMA, TMI, TMG, and AsH 3 can be used for forming AlInGaAs.
  • a second electrode 102 made of a laminate of, for example, Au (for example, thickness 0.1 ⁇ m) / Ag (for example, thickness 3 ⁇ m) is formed on the surface of the contact layer 35 made of p-type InGaAs. After that, the support substrate 101 is attached to the second electrode 102.
  • the GaAs substrate 130 is removed.
  • the removal of the GaAs substrate 130 is performed, for example, as shown in the schematic cross-sectional view of FIG. 6, after the GaAs substrate 130 is etched with an alkaline aqueous solution, the etching stop layer 131 made of n-type In 0.490 Ga 0.510 P is acidified. This can be done by etching with an aqueous solution.
  • the contact layer 126 corresponding to the resist pattern is removed by etching with an alkaline aqueous solution. Then, a resist pattern is formed again on the surface of the remaining contact layer 126 by photolithography, and, for example, AuGe (12%) (for example, thickness 0.1 ⁇ m) /
  • a first electrode 128 made of a laminate of Ni (for example, thickness 0.02 ⁇ m) / Au (for example, thickness 0.1 ⁇ m) / Ag (for example, thickness 5 ⁇ m) is formed.
  • mesa etching is performed using an alkaline aqueous solution and an acid solution. Then, an antireflection film 127 made of ZnS / MgF 2 is formed by sputtering, electron beam vapor deposition, resistance heating vapor deposition, or the like. Thereby, the multijunction type compound semiconductor solar cell of the structure shown in FIG. 4 in which the light-receiving surface of a multijunction type compound semiconductor solar cell is located on the opposite side to the growth direction of the compound semiconductor can be obtained.
  • the characteristics of the multi-junction compound semiconductor solar cell described above were obtained because the n-type In 0.799 Ga 0.201 P layer 30a closest to the bottom cell 40C in the buffer layer 41A was more than the lattice constant of the photoelectric conversion layer 60c in the bottom cell 40C.
  • the lattice constant difference between two layers of adjacent semiconductor layers is larger than the lattice constant difference between two layers of other adjacent semiconductor layers, This is considered to be because the crystallinity of the bottom cell 40C is improved by the presence of the portion closest to the middle cell 40B.
  • the crystallinity of the bottom cell 40C is improved, the characteristics of the bottom cell 40C are improved, and the solar cell characteristics of the multi-junction compound semiconductor solar cell are also improved.
  • the crystallinity of the bottom cell 40C is improved except for the phenomenon in which dislocation occurs when the difference in lattice constant between two adjacent layers in the buffer layer 41A in which a plurality of semiconductor layers are present exceeds a certain value. Furthermore , crystal growth that has shifted from two-dimensional growth to three-dimensional growth occurs slightly in the n-type In 0.535 Ga 0.465 P layer 22a, and this slight three-dimensional growth causes the n-type In 0.535 Ga 0.465 P layer 22a to It is considered that the strain is relaxed and the crystallinity of the n-type In 0.535 Ga 0.465 P layer 22a is improved.
  • Example 1 the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a of the buffer layer 41A is 0.045, and two layers of other InGaP layers The difference in the Ga composition x is 0.033.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a of the buffer layer 41A becomes too large, the n-type In 0.535 Ga 0.465 P layer 22a The dislocation density increases, and the n-type In 0.568 Ga 0.432 P layer 23a to the n-type In 0.799 Ga 0.201 P layer 30a and the bottom cell 40C of the buffer layer 41A maintain their dislocation densities, so that the crystallinity deteriorates.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21a and the n-type In 0.535 Ga 0.465 P layer 22a of the buffer layer 41A becomes too small, the crystal of the n-type In 0.535 Ga 0.465 P layer 22a It is considered that the nucleus of three-dimensional growth for improving the property hardly occurs in the n-type In 0.535 Ga 0.465 P layer 22a.
  • FIG. 7 shows a conceptual diagram of a method for manufacturing the multi-junction compound semiconductor solar cell of Example 1 described above. That is, after the etching stop layer 309, the top cell 40A, the first tunnel junction layer 50A, the middle cell 40B, the second tunnel junction layer 50B, the buffer layer 41A, and the bottom cell 40C are formed in this order on the semiconductor substrate 308, the semiconductor In this manufacturing method, the substrate 308 is removed by etching.
  • FIG. 8 shows a conceptual diagram of another example of the method for producing the multi-junction compound semiconductor solar cell of Example 1 described above.
  • the example shown in FIG. 8 is characterized by considering the reuse of the semiconductor substrate.
  • An etching stop layer 310, an etching layer 311 and an etching stop layer 312 are stacked on the semiconductor substrate 308, and then the etching layer 311 is etched to separate the semiconductor substrate 308 side and the multi-junction cell 313 side.
  • the semiconductor substrate 308 can be reused.
  • a Ga 0.510 P layer is epitaxially grown in this order by the MOCVD method.
  • a multi-junction cell 313 is formed on the etching stop layer 312. In the multi-junction cell 313, the above-described layers are formed.
  • the multi-junction cell 313 is not limited to each layer described above.
  • the AlAs layer can be etched with hydrofluoric acid to separate the multi-junction cell 313 side and the GaAs substrate side.
  • N-type In 0.490 Ga 0.510 P layer and the GaAs substrate side is etching stop layer 310
  • n-type In 0.490 Ga 0.510 P layer is an etch stop layer 312 of the separated multi-junction cell 313 side, respectively, acids other than hydrofluoric acid It can be removed by etching with an aqueous solution. For this reason, the solar cell on the multijunction cell 313 side is manufactured, and the GaAs substrate can be reused.
  • a multi-junction compound semiconductor solar cell in which the composition of the group III element in the buffer layer was changed to change the lattice constant of the buffer layer was produced.
  • the multi-junction compound semiconductor solar cells of Examples 2 to 3 and Comparative Examples 1 to 2 were produced in the same manner as Example 1 except for the structure of the buffer layer and the method for producing the buffer layer.
  • the buffer layer was produced by epitaxial growth by the MOCVD method similar to that in Example 1.
  • the buffer layer is composed of a plurality of semiconductor layers whose lattice constants are changed by changing the composition of the group III element, as in the first embodiment.
  • FIG. 9 shows a specific cross-sectional structure of the multi-junction compound semiconductor solar cell of Example 2.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21b and the n-type In 0.535 Ga 0.465 P layer 22b of the buffer layer 41B is 0. 0.045
  • the difference in Ga composition x between two layers of other InGaP layers is 0.029.
  • the buffer layer 41B has an n-type In 0.767 Ga 0.233 P layer 30b (for example, thickness 1 ⁇ m), an n-type In 0.738 Ga 0.262 P layer 29b (for example, thickness 0.25 ⁇ m), and an n-type In 0.709 Ga 0.291 on the bottom cell 40C.
  • P layer 28b (for example, thickness 0.25 ⁇ m), n-type In 0.680 Ga 0.320 P layer 27b (for example, thickness 0.25 ⁇ m), n-type In 0.651 Ga 0.349 P layer 26b (for example, thickness 0.25 ⁇ m), n-type In 0.622 Ga 0.378 P layer 25b (for example, thickness 0.25 ⁇ m), n-type In 0.593 Ga 0.407 P layer 24b (for example, thickness 0.25 ⁇ m), n-type In 0.564 Ga 0.436 P layer 23b (for example, thickness 0.25 ⁇ m) ), n-type in 0.535 Ga 0.465 P layer 22b (thickness, for example 0.25 [mu] m) and the n + -type in 0.490 Ga 0.510 P layer 21b (thickness, for example 0.25 [mu] m) are stacked in this order It has a structure.
  • buffer layer 41B Although only the buffer layer 41B is shown above, the structure is the same as that of Example 1 except for the structure of the buffer layer 41B.
  • FIG. 10 shows a specific cross-sectional structure of the multi-junction compound semiconductor solar cell of Example 3.
  • the multi-junction compound semiconductor solar battery of Example 3 has the same structure as that of Example 2 except for the buffer layer 41C, and was produced by the same method.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21c and the n-type In 0.535 Ga 0.465 P layer 22c in the buffer layer 41C is 0.045, and the Ga composition x between the two layers of the other InGaP layers is The difference is 0.039.
  • Buffer layer 41C has, on the bottom cell 40C, n-type In 0.847 Ga 0.153 P layer 30c (thickness, for example, 1 [mu] m), n-type In 0.808 Ga 0.192 P layer 29c (thickness, for example 0.25 [mu] m), n-type an In 0.769 Ga 0.231 P layer 28c (for example, thickness 0.25 ⁇ m), n-type In 0.730 Ga 0.270 P layer 27c (for example, thickness 0.25 ⁇ m), n-type In 0.691 Ga 0.309 P layer 26c (for example, thickness 0.25 ⁇ m), n-type In 0.652 Ga 0.348 P layer 25c (for example, thickness 0.25 ⁇ m), n-type In 0.613 Ga 0.387 P layer 24c (for example, thickness 0.25 ⁇ m), n-type In 0.574 Ga 0.426 P layer 23c (for example, thickness 0.25 ⁇ m) ), n-type in 0.535 Ga 0.465 P layer
  • the multi-junction compound semiconductor solar battery of Comparative Example 1 has the same structure as that of Example 1 except for the buffer layer, and was produced by the same method. Note that the thickness of the buffer layer of the multi-junction compound semiconductor solar battery of Comparative Example 1 is the same as the thickness of the buffer layer 41A of Example 1.
  • the multi-junction compound semiconductor solar battery of Comparative Example 2 also has the same structure as that of Example 1 except for the buffer layer, and was produced by the same method. Note that the thickness of the buffer layer of the multi-junction compound semiconductor solar battery of Comparative Example 1 is the same as the thickness of the buffer layer 41A of Example 1.
  • the n + -type In 0.490 Ga 0.510 P layer and the n-type In 0.535 Ga 0.465 P layer which are adjacent two layers arranged at positions closest to the middle cell, are provided.
  • the difference in Ga composition x between the two layers was 0.045, and the difference in Ga composition x between two adjacent layers of the other InGaP layers was 0.041.
  • Examples 4 to 5 and Comparative Examples 3 to 4> Next, the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer and the n-type InGaP layer that are adjacent to each other on the side closest to the middle cell of the buffer layer is changed, and two layers of other InGaP layers are changed.
  • the difference of Ga composition x was set to 0.033. Examples 4 and 5 showing good solar cell characteristics, and other Comparative Examples 3 and 4 will be described below.
  • Example 2 and Example 3 a multi-junction compound semiconductor solar cell in which the composition of the group III element in the buffer layer was changed and the lattice constant of the buffer layer was changed was produced.
  • the multi-junction compound semiconductor solar cells of Examples 4 to 5 and Comparative Examples 3 to 4 were produced in the same manner as Example 1 except for the structure of the buffer layer and the method for producing the buffer layer.
  • the buffer layer was produced by epitaxial growth by the MOCVD method similar to that in Example 1.
  • the buffer layer is composed of a plurality of semiconductor layers whose lattice constants are changed by changing the composition of the group III element, as in the first embodiment.
  • FIG. 11 shows a specific cross-sectional structure of the multi-junction compound semiconductor solar cell of Example 4.
  • the multi-junction compound semiconductor solar battery of Example 4 has the same structure as that of Example 1 except for the buffer layer 41D, and was produced by the same method.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21d and the n-type In 0.550 Ga 0.450 P layer 22d of the buffer layer 41D is 0.060, and the Ga composition between the two adjacent InGaP layers is two layers.
  • the difference of x is 0.033.
  • the buffer layer 41D has an n-type In 0.814 Ga 0.186 P layer 30d (eg, 1 ⁇ m thick), an n-type In 0.781 Ga 0.219 P layer 29d (eg, 0.25 ⁇ m thick), and an n-type In 0.748 Ga 0.252 on the bottom cell 40C.
  • P layer 28d for example, thickness 0.25 ⁇ m
  • n-type In 0.715 Ga 0.285 P layer 27d for example, thickness 0.25 ⁇ m
  • n-type In 0.682 Ga 0.318 P layer 26d for example, thickness 0.25 ⁇ m
  • n-type In 0.649 Ga 0.351 P layer 25d for example, thickness 0.25 ⁇ m
  • n-type In 0.616 Ga 0.384 P layer 24d for example, thickness 0.25 ⁇ m
  • n-type In 0.583 Ga 0.417 P layer 23d for example, thickness 0.25 ⁇ m
  • n-type in 0.550 Ga 0.450 P layer 22 d thickness, for example, 0.25 [mu] m
  • the n + -type in 0.490 Ga 0.510 P layer 21d stacked in this order It has a structure.
  • FIG. 12 shows a specific cross-sectional structure of the multi-junction compound semiconductor solar cell of Example 5.
  • the multi-junction compound semiconductor solar battery of Example 5 has the same structure as that of Example 1 except for the buffer layer 41E, and was produced by the same method.
  • the difference in Ga composition x between the n + -type In 0.490 Ga 0.510 P layer 21e and the n-type In 0.530 Ga 0.470 P layer 22e of the buffer layer 41E is 0.040, and the Ga composition between the two adjacent InGaP layers is two layers.
  • the difference of x is 0.033.
  • the buffer layer 41E has an n-type In 0.794 Ga 0.206 P layer 30e (eg, 1 ⁇ m thick), an n-type In 0.761 Ga 0.239 P layer 29e (eg, 0.25 ⁇ m thick), and an n-type In 0.728 Ga 0.272 on the bottom cell 40C.
  • P layer 28e for example, thickness 0.25 ⁇ m
  • n-type In 0.695 Ga 0.305 P layer 27e for example, thickness 0.25 ⁇ m
  • n-type In 0.662 Ga 0.338 P layer 26e for example, thickness 0.25 ⁇ m
  • n-type In 0.629 Ga 0.371 P layer 25e for example, thickness 0.25 ⁇ m
  • n-type In 0.596 Ga 0.404 P layer 24e for example, thickness 0.25 ⁇ m
  • n-type In 0.563 Ga 0.437 P layer 23e for example, thickness 0.25 ⁇ m
  • n-type in 0.530 Ga 0.470 P layer 22e e.g. thickness 0.25 [mu] m
  • the n + -type in 0.490 Ga 0.510 P layer 21e e.g. thickness 0.25 [mu] m
  • It has a structure.
  • the multi-junction compound semiconductor solar battery of Comparative Example 3 has the same structure as that of Example 1 except for the buffer layer, and was produced by the same method. Note that the thickness of the buffer layer of the multi-junction compound semiconductor solar battery of Comparative Example 3 is the same as the thickness of the buffer layer 41A of Example 1.
  • two adjacent layers arranged in the position closest to the middle cell are an n + -type In 0.490 Ga 0.510 P layer and an n-type In 0.523 Ga 0.477 P layer.
  • the difference in Ga composition x between the two InGaP layers was 0.033, and the difference in Ga composition x between two adjacent layers of the other InGaP layers was 0.033.
  • the multi-junction compound semiconductor solar battery of Comparative Example 4 also has the same structure as that of Example 1 except for the buffer layer, and was produced by the same method. Note that the thickness of the buffer layer of the multi-junction compound semiconductor solar battery of Comparative Example 4 is the same as the thickness of the buffer layer 41A of Example 1.
  • the n + -type In 0.490 Ga 0.510 P layer and the n-type In 0.535 Ga 0.465 P layer which are adjacent two layers arranged at positions closest to the middle cell, are provided.
  • the difference in Ga composition x between the two layers was 0.065, and the difference in Ga composition x between two adjacent layers of the other InGaP layers was 0.033.
  • the metal layer 151 is formed between the bottom cell 40C and the support substrate 101, and the second electrode is formed on the back surface side of the support substrate 101, as in FIG. 102 may be formed.
  • the multijunction compound semiconductor solar cells of Examples 1 to 5 and Comparative Examples 1 to 4 were evaluated.
  • the multi-junction compound semiconductor solar cells of Examples 1 to 5 and Comparative Examples 1 to 4 are all fabricated by reverse stacking. Referring to FIG. 2, the lattice matching from the GaAs substrate to the first cell 301 is performed. .
  • a semiconductor layer 314 including a second cell 302 having a lattice constant different from that of the first cell 301 and a buffer layer 303 having a changed lattice constant greatly affects the characteristics of the multijunction compound semiconductor solar cell. Therefore, characteristics of the semiconductor layer 314 including the second cell 302 and the buffer layer 303 were evaluated.
  • cross-sectional observation of the semiconductor layer 314 using a cross-sectional TEM (Transmission Electron Microscope) image, in particular, cross-section observation of the second cell 302 was performed.
  • TEM Transmission Electron Microscope
  • FIG. 13 shows a schematic cross-sectional view of an evaluation sample for a multi-junction compound semiconductor solar cell.
  • the evaluation sample was prepared by removing part of the top cell 40A to the second tunnel junction layer 50B by etching and forming an electrode layer 315 for characteristic evaluation.
  • the semiconductor layer 30 in FIG. 13 is an n-type InGaP layer closest to the bottom cell 40 ⁇ / b> C of the buffer layer 41.
  • an evaluation sample No. corresponding to the multi-junction compound semiconductor solar cells of Examples 1 to 5 was used.
  • Sample No. 1 for evaluation corresponding to the multi-junction compound semiconductor solar cells of 1 to 5 and Comparative Examples 1 to 4 were used. 6 to 9 were prepared.
  • FIG. 14 shows, as an example, an evaluation sample No. corresponding to the multi-junction compound semiconductor solar cell of Example 1 shown in FIG. 1 shows a specific cross-sectional structure of 1 (316A).
  • evaluation sample No. Characteristic evaluations 1 to 9 were performed by measuring Voc (open voltage: unit V) of the semiconductor layer 314 using the second electrode 102 and the electrode layer 315 of the evaluation sample shown in FIG. The results are shown in Table 1.
  • FIG. 15 shows a relationship between Eg (band gap energy; unit eV) of the photoelectric conversion layer of the bottom cell 40C and Voc of the bottom cell 40C.
  • the horizontal axis in FIG. 15 indicates Eg (eV), and the vertical axis indicates Voc.
  • a straight line a having a slope in FIG. 15: Voc Eg ⁇ 0.4 shows the relationship between Eg and Voc when the crystallinity is assumed to be the best.
  • Table 1 shows sample numbers for evaluation. 1 to 9 buffer layers adjacent to the middle cell 40B, the two layers adjacent to each other, and the other two adjacent layers between the two layers adjacent to each other, the difference in Ga composition x, the difference in lattice constant converted from the difference in Ga composition x [nm ],
  • the first lattice constant difference ratio [%] represented by the following formula (i) the evaluation of the sectional state by the sectional TEM image of the bottom cell 40C, the second lattice constant difference ratio [%] represented by the following formula (ii),
  • Voc of the semiconductor layer 314 in which the characteristics of the bottom cell 40C are shown.
  • First lattice constant difference ratio (%) (100 ⁇ (a1 ⁇ a2)) / (a1) (i)
  • a2 is a semiconductor layer disposed in the position closest to the middle cell 40B among the semiconductor layers constituting the buffer layer (in the example shown in FIG. 14, n + -type In 0.490 Ga).
  • 0.510 P layer 21a) indicates the lattice constant
  • a1 is a semiconductor layer adjacent to the semiconductor layer disposed closest to the middle cell 40B (in the example shown in FIG. 14, n + -type In 0.535 Ga 0.465 P
  • the lattice constant of the layer 22a) is shown.
  • the lattice constant a1 and the lattice constant a2 were obtained by conversion from the composition ratio of the InGaP elements.
  • the second lattice constant difference ratio [%] is represented by the following formula (ii).
  • Second lattice constant difference ratio [%] (100 ⁇ (a3-a4)) / (a3) (ii)
  • a3 is a semiconductor layer disposed in the position closest to the bottom cell 40C among the semiconductor layers constituting the buffer layer (in the example shown in FIG. 14, n-type In 0.799 Ga 0.201
  • the lattice constant of the P layer 30a) is shown, and a4 shows the lattice constant (InGaAs lattice constant) of the photoelectric conversion layer of the bottom cell 40C.
  • the lattice constant a3 and the lattice constant a4 are the values of the bottom cell 40C side (in the example shown in FIG. 14) in the state immediately after the epitaxial growth and before the support substrate 101 is attached and before the second electrode 102 is formed.
  • it was obtained by an X-ray diffraction method in which X-rays were irradiated from the p-type InGaAs layer 35 side in the vertical direction of FIG.
  • the cross-sectional state is the best
  • B The cross-sectional state is good
  • C The cross-sectional state is poor
  • the second lattice constant difference ratio [%] is 0.12% or more and 0.80% or less
  • Table 1 Sample No. for evaluation shown in FIG. From the evaluation results of 2 to 3, the cross-sectional state of the bottom cell 40C is best when the second lattice constant difference ratio [%] is preferably 0.15% or more and 0.74% or less.
  • the evaluation sample nos when the difference in lattice constant between two adjacent layers on the side closest to the middle cell 40B among the semiconductor layers constituting the buffer layer 41 is 0.0015 nm or more and 0.0026 nm or less, the evaluation sample nos. As shown in the evaluation results of 4 to 5, when the thickness is preferably 0.00167 nm or more and 0.00251 nm or less, the cross-sectional state of the bottom cell 40C is considered to be the best.
  • the buffer layer having a plurality of semiconductor layers there is a slight crystal growth that has shifted from two-dimensional growth to three-dimensional growth in addition to the phenomenon that dislocation occurs when the lattice constant difference between two adjacent layers exceeds a certain value. It is considered that this slight three-dimensional growth occurs in most of the two-dimensional growth, so that the strain is relaxed and the crystallinity is improved.
  • the lattice constant difference between two adjacent layers is too large, the dislocation density increases, and the crystallinity deteriorates because each layer maintains the dislocation density. If it is too much, the nucleus of three-dimensional growth will not easily occur.
  • the difference in lattice constant between two adjacent layers on the side closest to the middle cell 40B among the semiconductor layers constituting the buffer layer is 0.0015 nm to 0.0026 nm (preferably 0.00167 nm to 0
  • the range of .00251 nm or less) is considered to be a range in which the above-described three-dimensional growth occurs, the strain is relaxed, and the crystallinity is improved.
  • the crystallinity of the bottom cell 40C can be improved by forming a semiconductor layer with good crystallinity by laminating the above-described strain and stacking the semiconductor layer on the semiconductor layer.
  • the position of two adjacent layers causing strain relaxation is closer to the middle cell 40B than the center in the thickness direction of the buffer layer.
  • the position closest to the middle cell 40B is more preferable.
  • One embodiment of the present invention can be widely applied to all multi-junction compound semiconductor solar cells.
  • 21a n + type In 0.490 Ga 0.510 P layer 22a n type In 0.535 Ga 0.465 P layer, 23a n type In 0.568 Ga 0.432 P layer, 24a n type In 0.601 Ga 0.399 P layer, 25a n type In 0.634 Ga 0.366 P layer 26a n type In 0.667 Ga 0.333 P layer, 27a n type In 0.700 Ga 0.300 P layer, 28a n type In 0.733 Ga 0.267 P layer, 29a n type In 0.766 Ga 0.234 P layer, 30a n type In 0.799 Ga 0.201 P layer 21b n + type In 0.490 Ga 0.510 P layer, 22b n type In 0.535 Ga 0.465 P layer, 23b n type In 0.564 Ga 0.436 P layer, 24b n type In 0.593 Ga 0.407 P layer, 25b n type In 0.622 Ga 0.378 P Layer, 26b n-type In 0.651 Ga 0.349 P layer, 27b n

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 前記第1セル(40A,40B)と前記第2セル(40C)との間のバッファ層(41)においては、複数の半導体層が第1セル(40A,40B)側から第2セル(40C)側にかけて格子定数が順に大きくなるように配置されており、複数の半導体層のうち、隣接する2層の格子定数差が最も大きくなる2層(21a,22a)は、バッファ層(41)の厚さ方向の中央より第1セル(40A,40B)に近い側に位置している、多接合型化合物半導体太陽電池である。

Description

多接合型化合物半導体太陽電池
 本発明は、多接合型化合物半導体太陽電池に関する。
 シリコン基板を用い、シリコン基板にpn接合を形成したシリコン結晶系太陽電池が現在主流となっているが、シリコン結晶系太陽電池よりも高い光電変換効率が得られる太陽電池として直接遷移型で光吸収係数が大きい化合物半導体を用いる化合物半導体太陽電池がある。現在開発されている化合物半導体太陽電池の多くは、互いに異なる禁制帯幅の光電変換層(pn接合層)を複数有した多接合(タンデム)構造を有する多接合型化合物半導体太陽電池であり、太陽光スペクトルを有効活用できることから、光電変換層が1つである単一接合の化合物半導体太陽電池よりもさらに高い光電変換効率を得ることが可能である。
 互いに異なる禁制帯幅の光電変換層を複数有する多接合型化合物半導体太陽電池では、エピタキシャル成長による格子整合を考慮した系(格子整合系)が主に検討されている。格子整合系では3つの光電変換層を有する多接合型化合物半導体太陽電池として太陽光の入射側(受光面側)から、InGaPの光電変換層/GaAsの光電変換層/Geの光電変換層を有する多接合型化合物半導体太陽電池が開発されている。InGaPの光電変換層の禁制帯幅は約1.87eVであり、GaAsの光電変換層の禁制帯幅は約1.42eVであり、Geの光電変換層の禁制帯幅は約0.67eVである。
 図16(a)および図16(b)に、従来の多接合型化合物半導体太陽電池の模式的な断面図を示す。図16(a)に示す多接合型化合物半導体太陽電池は、太陽光の入射側からトップセル501、ミドルセル502およびボトムセル504の順に配置されており、受光面側のトップセル501の表面に第1電極505が形成され、受光面側と反対側(裏面側)のボトムセル504の裏面に第2電極506が形成されている。トップセル501の光電変換層の禁制帯幅が最も大きく、ミドルセル502の光電変換層の禁制帯幅が次に大きく、ボトムセル504の光電変換層が最も小さくなっている。
 図16(a)に示すように、太陽光はトップセル501側から入射してボトムセル504に向かって進むことになるため、その間にトップセル501、ミドルセル502、およびボトムセル504のそれぞれの光電変換層の禁制帯幅に基づく波長の太陽光が吸収されて、電気エネルギに変換(光電変換)される。ここで、トップセル501、ミドルセル502およびボトムセル504は、それぞれ、1つの光電変換層を含む複数の半導体層から構成される。
 図16(a)に示すようなトップセル501/ミドルセル502/ボトムセル504の3接合の多接合型化合物半導体太陽電池において、太陽光のスペクトルを有効に活用するためには、それぞれのセルの光電変換層の禁制帯幅が、受光面側から、1.93eV/1.42eV/1.05eVとなる材料の組み合わせがよいとされている。そして、より高い光電変換効率を有する多接合型化合物半導体太陽電池を得るために、ボトムセル504の材料としては、ボトムセル504の光電変換層の禁制帯幅が0.9~1.1eV程度である材料の検討がなされている。
 禁制帯幅が1eV程度である材料の1つとしてInGaAsが提案されている。そして、ボトムセル504の材料としてInGaAsを用い、トップセル501としてInGaPを用い、ミドルセル502の材料としてGaAsを用いて多接合型化合物半導体太陽電池を作製した場合、ミドルセル502を構成するGaAsと、ボトムセル504を構成するInGaAsとは格子定数が異なり、その格子定数差は約2%と大きくなっている。そこで、図16(b)に示されるように、ミドルセル502とボトムセル504との間に、格子定数を変化させたバッファ層503を形成した多接合型化合物半導体太陽電池の開発が行われている。
 非特許文献1(J.F.Geisz et al., “Inverted GaInP/(In)GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junction”, 33rd IEEE Photovoltaic Specialists Conference San Diego, California, May 11-16, 2008)には、InGaP(トップセル)/GaAs(ミドルセル)/InGaAs(ボトムセル)の多接合型化合物半導体太陽電池において、トップセル501(InGaP)とミドルセル502(GaAs)とは格子整合しているが、格子定数が異なるミドルセル502(GaAs)とボトムセル504(InGaAs)との間に、InGaPの格子定数を変化させたバッファ層503を形成した多接合型化合物半導体太陽電池が開示されている。
 また、図17(a)には、図17(b)の模式的断面図に示す、半導体基板507(GaAs基板)上に多接合型化合物半導体太陽電池を形成した際の、従来の格子定数と膜厚との関係が示されており、図18(a)には、図18(b)の模式的断面図に示す、半導体基板507(GaAs基板)上に多接合型化合物半導体太陽電池を形成した際の、従来の格子定数と膜厚との関係が示されている。図17(b)および図18(b)に示す、半導体基板507(GaAs基板)上の多接合型化合物半導体太陽電池は、以下のようにして作製されている。なお、図17および図18においてはトンネル接合についての記載は省略されている。
 まず、半導体基板507(GaAs基板)上に、半導体基板507を構成するGaAs結晶と格子整合したInGaP結晶をエピタキシャル成長させてトップセル501を形成し、引き続いて、トップセル501を構成するInGaP結晶と格子整合したGaAs結晶をエピタキシャル成長させてミドルセル502を形成する。
 次に、格子定数が等間隔で大きくなる(一定の増加量で格子定数が増加する)ようにInGaP結晶をエピタキシャル成長させてバッファ層503Aを形成し、その後、InGaAs結晶をエピタキシャル成長させてボトムセル504を形成して、多接合型化合物半導体太陽電池ウエハが作製される。
 なお、図17(a)に示すように、図17(b)に示す多接合型化合物半導体太陽電池ウエハにおいては、バッファ層503Aのボトムセル504に隣接するInGaP結晶の格子定数が、ボトムセル504の格子定数よりも大きくなっている。
 また、図18(a)に示すように、図18(b)に示す、半導体基板507(GaAs基板)上の多接合型化合物半導体太陽電池の形成においては、バッファ層503Bのボトムセル504に隣接するInGaP結晶の格子定数が、ボトムセル504の格子定数よりも小さくなっている。特許文献1(特開2007-324563号公報)にも、同様の記載がある。
 図17(b)および図18(b)に示されているように、半導体基板507上に、多接合型化合物半導体太陽電池の受光面側に位置するセルから順(すなわち、トップセル501、ミドルセル502およびボトムセル504の順)に積層していく方法は逆積みと呼ばれ、このような積層構造は逆積み3接合と呼ばれる。
特開2007-324563号公報
J.F.Geisz et al., "Inverted GaInP/(In)GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junction.", 33rd IEEE Photovoltaic Specialists Conference San Diego, California, May 11-16, 2008
 しかしながら、非特許文献1に示される多接合型化合物半導体太陽電池においては、格子定数が異なるミドルセル502(GaAs)とボトムセル504(InGaAs)との間に、InGaPの格子定数を変化させたバッファ層503を形成しているものの、バッファ層503およびボトムセル504を構成する結晶の結晶性を十分に高めることができず、ひいては特性に優れた多接合型化合物半導体太陽電池にすることができなかった。
 上記の事情に鑑みて、本発明の目的は、従来よりも特性に優れた多接合型化合物半導体太陽電池を提供することにある。
 本発明は、第1電極と、第1セルと、バッファ層と、第2セルと、第2電極と、を含み、第1電極は太陽光入射側に配置され、第1セルは、第1光電変換層を含み、第2セルは、第2光電変換層を含み、第1光電変換層の禁制帯幅と第2光電変換層の禁制帯幅とはそれぞれ異なっており、第2セルの格子定数は、第1セルの格子定数よりも大きく、バッファ層は、複数の半導体層から構成されており、複数の半導体層は、それぞれ、第1セル側から第2セル側にかけて格子定数が順に大きくなるように配置されており、複数の半導体層のうち、第2セルに最も近い半導体層の格子定数は、第2セルの格子定数より大きく、複数の半導体層のうち、隣接する2層の格子定数差が最も大きくなる2層は、バッファ層の厚さ方向の中央より第1セルに近い側に位置している多接合型化合物半導体太陽電池である。
 ここで、本発明の多接合型化合物半導体太陽電池において、隣接する2層の半導体層の格子定数差が最も大きくなる2層は、第1セルに最も近い2層であることが好ましい。
 また、本発明の多接合型化合物半導体太陽電池において、隣接する2層の半導体層の格子定数差が最も大きくなる2層の、第2セル側の半導体層の格子定数をa1とし、第1セル側の半導体層の格子定数をa2としたとき、格子定数a1と、格子定数a2との格子定数差が、0.0015nm以上0.0026nm以下であることが好ましい。
 また、本発明の多接合型化合物半導体太陽電池において、第2セルの第2光電変換層の格子定数をa4とし、第2セルに最も近い半導体層の格子定数をa3とし、
 第2格子定数差比(%)=(100×(a3-a4))/(a3)
としたとき、第2格子定数差比が、0.12%以上0.8%以下であることが好ましい。
 さらに、本発明は、第1の禁制帯幅の第1光電変換層を有する第1セルと、第1の禁制帯幅よりも小さい第2の禁制帯幅の第2光電変換層を有する第2セルと、第1セルと第2セルとの間にあるバッファ層と、第1セル側に配置された第1電極と、第2セル側に配置された第2電極と、を含み、第2セルの格子定数は、第1セルの格子定数よりも大きく、バッファ層は、複数の半導体層から構成されており、複数の半導体層は、それぞれ、第1セル側から第2セル側にかけて格子定数が順に大きくなるように配置されており、複数の半導体層のうち、第2セルに最も近い半導体層の格子定数は、第2セルの格子定数より大きく、複数の半導体層のうち、隣接する2層の格子定数差が最も大きくなる2層は、バッファ層の厚さ方向の中央より第1セルに近い側に位置している多接合型化合物半導体太陽電池である。
 ここで、本発明の多接合型化合物半導体太陽電池において、隣接する2層の半導体層の格子定数差が最も大きくなる2層は、第1セルに最も近い2層であることが好ましい。
 また、本発明の多接合型化合物半導体太陽電池においては、隣接する2層の半導体層の格子定数差が最も大きくなる2層の、第2セル側の半導体層の格子定数をa1とし、第1セル側の半導体層の格子定数をa2としたとき、格子定数a1と、格子定数a2との格子定数差が、0.0015nm以上0.0026nm以下であることが好ましい。
 また、本発明の多接合型化合物半導体太陽電池において、第2セルの第2光電変換層の格子定数をa4とし、第2セルに最も近い半導体層の格子定数をa3とし、
 第2格子定数差比(%)=(100×(a3-a4))/(a3)
としたとき、第2格子定数差比が、0.12%以上0.8%以下であることが好ましい。
 本発明によれば、従来よりも特性に優れた多接合型化合物半導体太陽電池を提供することができる。
(a)および(b)は、本発明の多接合型化合物半導体太陽電池の基本的な構造の一例を示す図である。 (a)は(b)に示す本発明の多接合型化合物半導体太陽電池の一例の格子定数と膜厚との関係を示す図であり、(b)は本発明の多接合型化合物半導体太陽電池の一例の模式的な断面図である。 実施例1の多接合型化合物半導体太陽電池の具体的な断面構造の一例を示す図である。 実施例1の多接合型化合物半導体太陽電池の具体的な断面構造の他の一例を示す図である。 図4に示す構成の多接合型化合物半導体太陽電池の製造方法の一例の工程の一部について図解する模式的な断面図である。 図4に示す構成の多接合型化合物半導体太陽電池の製造方法の一例の工程の他の一部について図解する模式的な断面図である。 実施例1の多接合型化合物半導体太陽電池の製造方法の概念図である。 実施例1の多接合型化合物半導体太陽電池の製造方法の他の例の概念図である。 実施例2の多接合型化合物半導体太陽電池の具体的な断面構造を示す図である。 実施例3の多接合型化合物半導体太陽電池の具体的な断面構造を示す図である。 実施例4の多接合型化合物半導体太陽電池の具体的な断面構造を示す図である。 実施例5の多接合型化合物半導体太陽電池の具体的な断面構造を示す図である。 多接合型化合物半導体太陽電池に対する評価用サンプルの概略断面図である。 実施例1の多接合型化合物半導体太陽電池に対応する評価サンプルNo.1の具体的な断面構造である。 ボトムセルの光電変換層のEgとボトムセルのVocとの関係を示す図である。 (a)および(b)は、従来の多接合型化合物半導体太陽電池の模式的な断面図である。 (a)は(b)に示す従来の多接合型化合物半導体太陽電池ウエハの格子定数と膜厚との関係を示す図であり、(b)は従来の多接合型化合物半導体太陽電池ウエハの模式的な断面図である。 (a)は(b)に示す従来の多接合型化合物半導体太陽電池ウエハの格子定数と膜厚との関係を示す図であり、(b)は従来の多接合型化合物半導体太陽電池ウエハの模式的な断面図である。
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 図1(a)に、本発明の一実施態様である多接合型化合物半導体太陽電池の基本的な構造の一例を示す。図1(a)に示す多接合型化合物半導体太陽電池は、多接合セル306と、支持基板307と、多接合セル306と支持基板307とを接合する金属層321と、多接合セル306の受光面側に形成された第1電極304と、支持基板307の裏面側に形成された第2電極305と、を備えている。ここで、多接合セル306は、第1セル301と、第1セル301と格子定数が異なる第2セル302と、第1セル301と第2セル302との間に形成されたバッファ層303と、を含んでいる。なお、多接合セル306は、第1セル301および第2セル302以外の他のセルを単数または複数含んでいてもよい。支持基板307としては、例えば、半導体基板を用いることができる。
 図1(b)に、本発明の一実施態様である多接合型化合物半導体太陽電池の基本的な構造の他の一例を示す。図1(b)に示す多接合型化合物半導体太陽電池は、多接合セル306と支持基板307との間に第2電極305が形成されていることを特徴としている。
 図1(a)および図1(b)に示す多接合型化合物半導体太陽電池において、第1セル301は第2セル302よりも受光面側に形成され、第1セル301の第1光電変換層の禁制帯幅(第1の禁制帯幅)は第2セル302の第2光電変換層の禁制帯幅(第2の禁制帯幅)よりも大きい。また、第2セル302の第2光電変換層の格子定数は、第1セル301の第1光電変換層の格子定数よりも大きい。また、バッファ層303の禁制帯幅(第3の禁制帯幅)は第2の禁制帯幅よりも大きい。
 バッファ層303は、光電変換層の格子定数が異なる2つのセル間において、格子定数が互いに異なる複数の半導体層からなる。バッファ層303の各半導体層の格子定数は、それぞれ第1セル301側から第2セル302側にかけて順に大きくなるように変化している。
 図1(a)および図1(b)に示す多接合型化合物半導体太陽電池は、多接合型化合物半導体太陽電池の受光面側の第1セル301を形成した後にバッファ層303を形成し、その後、第2セル302を形成することによって作製される。ここで、バッファ層303を構成する複数の半導体層は、それぞれ、第1セル301側から第2セル302側にかけて格子定数が順に大きくなるように、化合物半導体のIII族元素の組成比を変化させたエピタキシャル成長により形成されている。
 なお、第1セル301とバッファ層303との間に第1セル301と格子整合する複数の半導体層をエピタキシャル成長により形成してもよく、第2セル302とバッファ層303との間に第2セル302と格子整合する複数の半導体層をエピタキシャル成長により形成してもよい。
 バッファ層303を構成する複数の半導体層のうち、第2セル302に最も近い半導体層の格子定数が第2セル302の第2光電変換層の格子定数よりも大きく、かつ、バッファ層303の厚さ方向の中央より第1セル301に近い側に位置する隣接する2層の格子定数差が他の隣接する2層の格子定数差よりも大きい場合、結晶欠陥の少ない第2セル302を形成することができ、第2セル302の結晶性を良好なものとすることができることがわかった。第2セル302の結晶性が良くなることで、第2セル302の特性が良くなり、多接合型化合物半導体太陽電池の太陽電池特性も良くなることがわかった。
 これは、複数の半導体層が存在するバッファ層303のうち、隣接する2層の格子定数差をある値以上にした場合には、転位が発生する現象以外に、2次元成長から3次元成長に移行した結晶成長が隣接する2層のうちの第2セル302側の半導体層にわずかに起こり、このわずかに起こった3次元成長によって第2セル302側の半導体層の歪が緩和され、結晶性が良好になると考えられる。
 よって、この歪緩和をバッファ層303内の厚さ方向の中央に位置する半導体層よりも第1セル301側で起こすことで、より結晶性の良好な半導体層を第1セル301側に形成し、その半導体層上に半導体層を積層することによって、第2セル302の結晶性を良くすることができる。
 図2(a)に、図2(b)の模式的断面図に示す本発明の一実施態様である多接合型化合物半導体太陽電池の一例の格子定数と膜厚との関係を示す。ここで、バッファ層303を構成する複数の半導体層のうち、隣接する2層の半導体層の格子定数差が最も大きくなる2層が、第1セル301に最も近い2層となっている。ここで、第2セル302の第2光電変換層の格子定数は、第1セル301の第1光電変換層の格子定数よりも大きくなっている。また、バッファ層303を構成する複数の半導体層のうち、第1セル301に最も近い箇所に位置する隣接する2層の格子定数差Aは、他の隣接する2層の格子定数差Bよりも大きくなっている。なお、図2(b)において、第2セル302とバッファ層303との積層体を半導体層314とする。
 この場合には、バッファ層303内の最も第1セル301に近い箇所で歪緩和を起こすことによって、第1セル301側に最も近い箇所から結晶性の良い半導体層を形成し、その半導体層上に半導体層を積層することになる。これにより、第2セル302の結晶性をさらに良好なものとすることができるため、第2セル302の特性をさらに向上することができると考えられる。
 バッファ層303の内部で結晶性が良好になる領域が広い方が第2セル302の結晶性をより良好なものとすることができるため、格子定数差が最も大きくなる隣接する2層の位置は、バッファ層303の厚さ方向の中央より第1セル301に近い側にあるものとし、特に第1セル301に最も近い位置であることが好ましい。
 なお、多接合セル306内には、トンネル接合層が形成されていてもよい。トンネル接合層は2つの半導体層を電気的に接続するための高濃度ドープpn接合であり、少なくとも一対のp+層とn+層とを含む層である。
 また、第1セル301および第2セル302等のセルには、光電変換層の他に、例えば受光面側に窓層や裏面側にBSF層(裏面電界層)等を設けることによって、キャリア収集効率を高めるための工夫を施してもよい。また、最も電極に近い側に位置するセルに、半導体層と電極との抵抗を低減させるためのコンタクト層を形成してもよい。
 窓層は光電変換層よりも受光面側に形成し、光電変換層よりも禁制帯幅が大きい材料で形成されている。窓層を形成することにより窓層と光電変換層との界面の結晶性が良好になり、表面再結合準位を減少させることができるため、光電変換層に発生したキャリアを失わせないようにすることができる傾向にある。
 <実施例1>
 図3に、実施例1の多接合型化合物半導体太陽電池の具体的な断面構造の一例を示す。図3に示す多接合型化合物半導体太陽電池は、受光面となる側から、トップセル40A(InGaP)と、ミドルセル40B(GaAs)と、ボトムセル40C(InGaAs)と、を含んでいる。ミドルセル40B(GaAs)の光電変換層60Bと、ボトムセル40C(InGaAs)の光電変換層60Cとは格子定数が異なっており、その格子定数差は約2%である。なお、ミドルセル40Bは第1セルに対応し、ボトムセル40Cは第2セルに対応する。
 より具体的には、図3に示す多接合型化合物半導体太陽電池は、支持基板101(たとえば厚さ400μm)上に、受光面となる側から、第1電極128、トップセル40A、トンネル接合層(第1のトンネル接合層)50A、ミドルセル40B、トンネル接合層(第2のトンネル接合層)50B、バッファ層41Aおよびボトムセル40Cをこの順に含んでおり、支持基板101の裏面側に第2電極102が形成されている。ここで、ボトムセル40Cと支持基板101との間には金属層151が形成されている。金属層151は、例えば、金と錫の合金で形成することができ、抵抗加熱蒸着装置またはEB(Electron Beam)蒸着装置等を用いて形成することができる。また、この場合の支持基板101は、例えばシリコン等の半導体である。
 ボトムセル40Cは、支持基板101側から順に、p型InGaAsからなるコンタクト層35(たとえば厚さ0.4μm)、p型In0.745Ga0.255PからなるBSF層34(たとえば厚さ0.1μm)、p型InGaAsからなるベース層33(たとえば厚さ3μm)、n型InGaAsからなるエミッタ層32(たとえば厚さ0.1μm)、n型In0.745Ga0.255Pからなる窓層31(たとえば厚さ0.1μm)から構成されている。そして、ボトムセル40Cは、p型InGaAsからなるベース層33とn型InGaAsからなるエミッタ層32との接合体からなる光電変換層60Cを有している。なお、ボトムセル40Cの内部は格子整合している。
 バッファ層41Aは、ボトムセル40C側から順に、n型In0.799Ga0.201P層30a(たとえば厚さ1μm)、n型In0.766Ga0.234P層29a(たとえば厚さ0.25μm)、n型In0.733Ga0.267P層28a(たとえば厚さ0.25μm)、n型In0.700Ga0.300P層27a(たとえば厚さ0.25μm)、n型In0.667Ga0.333P層26a(たとえば厚さ0.25μm)、n型In0.634Ga0.366P層25a(たとえば厚さ0.25μm)、n型In0.601Ga0.399P層24a(たとえば厚さ0.25μm)、n型In0.568Ga0.432P層23a(たとえば厚さ0.25μm)、n型In0.535Ga0.465P層22a(たとえば厚さ0.25μm)およびn+型In0.490Ga0.510P層21a(たとえば厚さ0.25μm)から構成されている。InGaP層のIII族元素であるInとGaとの組成比によりInGaP層の格子定数は変わるため、バッファ層41Aを構成する上記の各半導体層は、ミドルセル40Bからボトムセル40Cにかけて段階的に格子定数が増加するように配置されている。
 n+型In0.490Ga0.510P層21aと、後述するn+型AlInP層110とは格子整合しており、バッファ層41Aのn型In0.535Ga0.465P層22aからn型In0.799Ga0.201P層30aにかけて段階的に格子定数が増加している。
 n+型In0.490Ga0.510P層21aとn型In0.535Ga0.465P層22aとのGa組成xの差は0.045であり、他のInGaP層の2層間のGa組成xの差の0.033よりも大きくなっている。したがって、n+型In0.490Ga0.510P層21aとn型In0.535Ga0.465P層22aとの格子定数差は、バッファ層41Aを構成する他の隣接する2層間の格子定数差よりも大きくなっており、その箇所が、バッファ層41Aの厚さ方向の中央からミドルセル40B側に1箇所存在する。そして、この時、他の隣接する2層間の格子定数差はいずれも同じ格子定数差となっている。
 トンネル接合層(第2のトンネル接合層)50Bは、バッファ層41A側から順に、n+型AlInP層110(たとえば厚さ0.05μm)、n++型In0.490Ga0.510P層111(たとえば厚さ0.02μm)、p++型AlGaAs層112(たとえば厚さ0.02μm)およびp+型AlInP層113(たとえば厚さ0.05μm)から構成されており、トンネル接合層(第2のトンネル接合層)50Bの内部は格子整合している。
 ミドルセル40Bは、第2のトンネル接合層50B側から順に、p型In0.490Ga0.510PからなるBSF層114(たとえば厚さ0.1μm)、p型GaAsからなるベース層115(たとえば厚さ3μm)、n型GaAsからなるエミッタ層116(たとえば厚さ0.1μm)およびn型In0.490Ga0.510Pからなる窓層117(たとえば厚さ0.1μm)から構成されている。そして、ミドルセル40Bは、p型GaAsからなるベース層115とn型GaAsからなるエミッタ層116との接合体からなる光電変換層60Bを有している。なお、ミドルセル40Bの内部は格子整合している。
 トンネル接合層(第1のトンネル接合層)50Aは、ミドルセル40B側から順に、n+型AlInP層118(たとえば厚さ0.05μm)、n++型In0.490Ga0.510P層119(たとえば厚さ0.02μm)、p++型AlGaAs層120(たとえば厚さ0.02μm)およびp+型AlInP層121(たとえば厚さ0.05μm)から構成されており、トンネル接合層(第1のトンネル接合層)50Aの内部は格子整合している。
 トップセル40Aは、第1のトンネル接合層50A側から順に、p型AlInPからなるBSF層122(たとえば厚さ0.05μm)、p型In0.490Ga0.510Pからなるベース層123(たとえば厚さ0.70μm)、n型In0.490Ga0.510Pからなるエミッタ層124(たとえば厚さ0.05μm)、n型AlInPからなる窓層125(たとえば厚さ0.05μm)、および、第1電極128が形成される領域のn型AlInPからなる窓層125上に形成されたn型GaAsからなるコンタクト層126(たとえば厚さ0.4μm)から構成されている。そして、トップセル40Aは、p型In0.490Ga0.510Pからなるベース層123とn型In0.490Ga0.510Pからなるエミッタ層124との接合体からなる光電変換層60Aを有している。なお、トップセル40Aの内部は格子整合している。
 また、第1電極128が形成される領域以外のn型AlInPからなる窓層125上にはZnS/MgF2からなる反射防止膜127が形成されている。
 また、トンネル接合層(第2のトンネル接合層)50Bと、ミドルセル40Bと、トンネル接合層(第1のトンネル接合層)50Aと、トップセル40Aと、は格子整合している。
 なお、トップセル40A内にある光電変換層60Aの禁制帯幅を第1の禁制帯幅、ミドルセル40B内にある光電変換層60Bの禁制帯幅を第2の禁制帯幅、ボトムセル40C内にある光電変換層60Cの禁制帯幅を第4の禁制帯幅とすると、光電変換層の禁制帯幅の大きさは大きい順に、第1の禁制帯幅、第2の禁制帯幅、第4の禁制帯幅となっている。また、バッファ層の禁制帯幅を第3の禁制帯幅とすると、第3の禁制帯幅は、第4の禁制帯幅よりも大きい。
 図4に、実施例1の多接合型化合物半導体太陽電池の具体的な断面構造の他の一例を示す。図4に示す多接合型化合物半導体太陽電池は、ボトムセル40Cと支持基板101との間に第2電極102が形成されていることを特徴としている。それ以外の構造は図3に示す多接合型化合物半導体太陽電池と同様である。図4に示す支持基板101は、例えばシリコン等の半導体であってもよく、絶縁体であってもよい。
 以下、図5および図6の断面構成図を参照して、図4に示す構成の多接合型化合物半導体太陽電池の製造方法の一例について説明する。以下に示す製造方法は、半導体基板上に多接合型化合物半導体太陽電池の受光面側になる半導体層から順にエピタキシャル成長により形成することを特徴としている。
 まず、図5に示すように、例えば、GaAs基板130をMOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)装置内に設置し、GaAs基板130上に、GaAsと選択エッチングが可能なエッチングストップ層となるn型In0.490Ga0.510Pからなるエッチングストップ層131、n型GaAsからなるコンタクト層126、n型AlInPからなる窓層125、n型In0.490Ga0.510Pからなるエミッタ層124、p型In0.490Ga0.510Pからなるベース層123およびp型AlInPからなるBSF層122をこの順にMOCVD法によりエピタキシャル成長させる。
 次に、p型AlInPからなるBSF層122上に、p+型AlInP層121、p++型AlGaAs層120、n++型In0.490Ga0.510P層119およびn+型AlInP層118をこの順にMOCVD法によりエピタキシャル成長させる。
 次に、n+型AlInP層118上に、n型In0.490Ga0.510Pからなる窓層117、n型GaAsからなるエミッタ層116、p型GaAsからなるベース層115、およびp型In0.490Ga0.510PからなるBSF層114をこの順にMOCVD法によりエピタキシャル成長させる。
 次に、p型In0.490Ga0.510PからなるBSF層114上に、p+型AlInP層113、p++型AlGaAs層112、n++型In0.490Ga0.510P層111およびn+型AlInP層110をこの順にMOCVD法によりエピタキシャル成長させる。
 次に、n+型AlInP層110上に、n+型In0.490Ga0.510P層21a、n型In0.535Ga0.465P層22a、n型In0.568Ga0.432P層23a、n型In0.601Ga0.399P層24a、n型In0.634Ga0.366P層25a、n型In0.667Ga0.333P層26a、n型In0.700Ga0.300P層27a、n型In0.733Ga0.267P層28a、n型In0.766Ga0.234P層29aおよびn型In0.799Ga0.201P層30aをMOCVD法によりエピタキシャル成長させる。InGaP層のIII族元素であるInとGaとの組成比によりInGaP層の格子定数が変わるので、バッファ層41Aの各層は段階状に格子定数が変化してエピタキシャル成長している。
 ここで、n型In0.799Ga0.201P層30aは厚さ1μmであるが、他の層(21a~29a)は、それぞれ厚さ0.25μmである。
 n+型In0.490Ga0.510P層21aはn+型AlInP層110より下の層に格子整合してエピタキシャル成長している。ここで、GaAs基板130からn+型AlInP層110までは格子整合している。よって、n型In0.535Ga0.465P層22aから格子定数が段階状に変化してエピタキシャル成長している。ここで、n+型AlInP層110上に格子定数を変化させたInGaP層のバッファ層を形成するのではなく、格子定数を変化させないInGaP層のバッファ層を形成するために、まず、n+型AlInP層110に格子整合したn+型In0.490Ga0.510P層21aを形成した。
 バッファ層41A内で、n+型In0.490Ga0.510P層21aと、n型In0.535Ga0.465P層22aとの格子定数差は他の隣接するInGaP層の2層間の格子定数差よりも大きい。したがって、バッファ層41A内で、隣接する半導体層の2層間の格子定数差が他の隣接する半導体層の2層間の格子定数差よりも大きく、その箇所がミドルセル40B側に1箇所存在する。また、n+型In0.490Ga0.510P層21aとn型In0.535Ga0.465P層22aとの格子定数差以外の他の隣接する半導体層の2層間の格子定数差はいずれも同じ格子定数差となっている。
 次に、n型In0.799Ga0.201P層30a上に、n型In0.745Ga0.255Pからなる窓層31、n型InGaAsからなるエミッタ層32、p型InGaAsからなるベース層33、p型In0.745Ga0.255PからなるBSF層34およびp型InGaAsからなるコンタクト層35をこの順にMOCVD法によりエピタキシャル成長させる。
 ここで、窓層31は、ボトムセル40Cの光電変換層を構成するInGaAsと格子整合するようにIII族元素であるInとGaとの組成を選んだ。
 なお、GaAsの形成にはAsH3(アルシン)およびTMG(トリメチルガリウム)を用い、InGaPの形成にはTMI(トリメチルインジウム)、TMGおよびPH3(ホスフィン)を用いることができる。また、InGaAsの形成には、TMI、TMGおよびAsH3を用い、AlInPの形成にはTMA(トリメチルアルミニウム)、TMIおよびPH3を用いることができる。また、AlGaAsの形成には、TMA、TMGおよびAsH3を用い、AlInGaAsの形成には、TMA、TMI、TMGおよびAsH3を用いることができる。
 その後、図5に示すように、p型InGaAsからなるコンタクト層35の表面上に、たとえばAu(たとえば厚さ0.1μm)/Ag(たとえば厚さ3μm)の積層体からなる第2電極102を形成し、その後、第2電極102上に支持基板101を貼り付ける。
 次に、GaAs基板130を取り除く。ここで、GaAs基板130の除去は、たとえば図6の模式的断面図に示すように、GaAs基板130をアルカリ水溶液にてエッチングした後に、n型In0.490Ga0.510Pからなるエッチングストップ層131を酸水溶液にてエッチングすることにより行なうことができる。
 次に、n型GaAsからなるコンタクト層126上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応したコンタクト層126をアルカリ水溶液によりエッチング除去する。そして、残されたコンタクト層126の表面上に再度フォトリソグラフィによりレジストパターンを形成し、抵抗加熱蒸着装置、EB蒸着装置等を用いて、たとえばAuGe(12%)(たとえば厚さ0.1μm)/Ni(たとえば厚さ0.02μm)/Au(たとえば厚さ0.1μm)/Ag(たとえば厚さ5μm)の積層体からなる第1電極128を形成する。
 次に、メサエッチングパターンを形成した後、アルカリ水溶液および酸溶液を用いてメサエッチングを行なう。そして、ZnS/MgF2からなる反射防止膜127をスパッタリング法、電子ビーム蒸着法、抵抗加熱蒸着法等で形成する。これにより多接合型化合物半導体太陽電池の受光面が化合物半導体の成長方向と反対側に位置する図4に示す構成の多接合型化合物半導体太陽電池を得ることができる。
 図4に示す構成の多接合型化合物半導体太陽電池の太陽電池特性を測定したところ、Eff=35.5%、Voc=2.98V、Jsc=14.0mA/cm2、FF=0.850の特性値が得られ、また再現性のある特性が得られた。さらに、作製された膜厚において各セル(トップセル40A、ミドルセル40B、ボトムセル40C)の電流マッチングがとれていた。
 上記の多接合型化合物半導体太陽電池の特性が得られたのは、バッファ層41Aの、最もボトムセル40C側のn型In0.799Ga0.201P層30aがボトムセル40Cの光電変換層60cの格子定数よりも大きく、さらに、バッファ層41Aの段階状に格子定数が変化する半導体層のうち、隣接する半導体層の2層間の格子定数差が他の隣接する半導体層の2層間の格子定数差よりも大きく、その箇所が最もミドルセル40Bに近接する位置に存在することで、ボトムセル40Cの結晶性が良好になったことによるものと考えられる。
 ボトムセル40Cの結晶性が良好となることによって、ボトムセル40Cの特性も良くなり、多接合型化合物半導体太陽電池の太陽電池特性も良くなったと考えられる。
 ボトムセル40Cの結晶性が良好となったのは、複数の半導体層が存在するバッファ層41Aのうち、隣接する2層の格子定数差をある値以上にした場合には、転位が発生する現象以外に、2次元成長から3次元成長に移行した結晶成長が、n型In0.535Ga0.465P層22aにわずかに起こり、このわずかに起こった3次元成長により、n型In0.535Ga0.465P層22aの歪が緩和され、n型In0.535Ga0.465P層22aの結晶性が良好になると考えられる。
 よって、この歪緩和をバッファ層41A内の最もミドルセル40B側で起こすことによって、より結晶性の良好な半導体層を形成し、より結晶性の良好な半導体層上に半導体層を積層していくことにより、ボトムセル40Cの結晶性を良くすることができる。
 なお、非特許文献1で示されるバッファ層(図16(b)の参照符号503、図17(b)の参照符号503A、図18(b)の参照符号503Bに対応)内にある半導体層の格子定数を一定幅で変化させた構造での特性値は、Eff=33.78%、Voc=2.96V、Jsc=13.14mA/cm2、FF=0.850である。
 実施例1では、バッファ層41Aのn+型In0.490Ga0.510P層21aとn型In0.535Ga0.465P層22aとのGa組成xの差は0.045であり、他のInGaP層の2層間のGa組成xの差は、いずれも0.033である。
 ここで、バッファ層41Aのn+型In0.490Ga0.510P層21aとn型In0.535Ga0.465P層22aとのGa組成xの差が大きくなりすぎると、n型In0.535Ga0.465P層22aの転位密度が大きくなり、バッファ層41Aのn型In0.568Ga0.432P層23a~n型In0.799Ga0.201P層30aおよびボトムセル40Cの各層がその転位密度を維持するため結晶性が悪化する。また、バッファ層41Aのn+型In0.490Ga0.510P層21aとn型In0.535Ga0.465P層22aとのGa組成xの差が小さくなりすぎると、n型In0.535Ga0.465P層22aの結晶性を良好にするための3次元成長の核がn型In0.535Ga0.465P層22aに起こりにくくなると考えられる。
 図7に、上記の実施例1の多接合型化合物半導体太陽電池の製造方法の概念図を示す。すなわち、半導体基板308上に、エッチングストップ層309、トップセル40A、第1のトンネル接合層50A、ミドルセル40B、第2のトンネル接合層50B、バッファ層41Aおよびボトムセル40Cをこの順に形成した後、半導体基板308をエッチングによって取り除く製造方法である。
 図8に、上記の実施例1の多接合型化合物半導体太陽電池の製造方法の他の例の概念図を示す。図8に示す例は、半導体基板の再利用を考慮することを特徴としている。半導体基板308上に、エッチングストップ層310、エッチング層311およびエッチングストップ層312を積層し、その後、エッチング層311をエッチングすることによって、半導体基板308側と多接合セル313側とを分離することができ、半導体基板308を再利用することが可能である。
 具体的には半導体基板308としてGaAs基板を再利用する場合、GaAs基板上にエッチングストップ層310としてn型In0.490Ga0.510P層、エッチング層311としてAlAs層、エッチングストップ層312としてn型In0.490Ga0.510P層をこの順にMOCVD法によりエピタキシャル成長させる。エッチングストップ層312上には多接合セル313が形成される。多接合セル313は上述した各層が形成される。なお、多接合セル313は上述した各層に限定されるものではない。AlAs層はフッ酸によりエッチングされ、多接合セル313側とGaAs基板側とを分離することができる。
 分離した多接合セル313側のエッチングストップ層312であるn型In0.490Ga0.510P層およびGaAs基板側のエッチングストップ層310であるn型In0.490Ga0.510P層は、それぞれ、フッ酸以外の酸水溶液でエッチングすることによって取り除くことができる。そのため、多接合セル313側の太陽電池製造が行われ、GaAs基板の再利用が可能となる。
 <実施例2~3および比較例1~2>
 次に、バッファ層のミドルセルに最も近い側で隣接する2層であるn+型In0.490Ga0.510P層とn型In0.535Ga0.465P層とのGa組成xの差を0.045とした状態で、他のInGaP層の2層間のGa組成xの差を変更した検討を行った。良好な太陽電池特性を示した実施例2および実施例3と、それ以外の比較例1および比較例2と、について、以下に説明する。
 さらに、バッファ層のIII族元素の組成を変化させ、バッファ層の格子定数を変化させた多接合型化合物半導体太陽電池を作製した。実施例2~3および比較例1~2の多接合型化合物半導体太陽電池は、バッファ層の構造およびバッファ層の製造方法以外は実施例1と同様にして作製した。バッファ層は実施例1と同様のMOCVD法によるエピタキシャル成長により作製された。また、バッファ層は、実施例1と同様に、III族元素の組成を変えることで格子定数を変化させた複数の半導体層からなる。
 <実施例2>
 図9に、実施例2の多接合型化合物半導体太陽電池の具体的な断面構造を示す。図9に示す実施例2の多接合型化合物半導体太陽電池は、バッファ層41Bのn+型In0.490Ga0.510P層21bとn型In0.535Ga0.465P層22bとのGa組成xの差は0.045であり、他のInGaP層の2層間のGa組成xの差は0.029であることを特徴としている。
 バッファ層41Bは、ボトムセル40C上に、n型In0.767Ga0.233P層30b(たとえば厚さ1μm)、n型In0.738Ga0.262P層29b(たとえば厚さ0.25μm)、n型In0.709Ga0.291P層28b(たとえば厚さ0.25μm)、n型In0.680Ga0.320P層27b(たとえば厚さ0.25μm)、n型In0.651Ga0.349P層26b(たとえば厚さ0.25μm)、n型In0.622Ga0.378P層25b(たとえば厚さ0.25μm)、n型In0.593Ga0.407P層24b(たとえば厚さ0.25μm)、n型In0.564Ga0.436P層23b(たとえば厚さ0.25μm)、n型In0.535Ga0.465P層22b(たとえば厚さ0.25μm)およびn+型In0.490Ga0.510P層21b(たとえば厚さ0.25μm)がこの順序で積層された構造を有している。
 上記に、バッファ層41Bのみを示したが、バッファ層41Bの構造以外は実施例1と同様である。
 <実施例3>
 図10に、実施例3の多接合型化合物半導体太陽電池の具体的な断面構造を示す。実施例3の多接合型化合物半導体太陽電池は、バッファ層41C以外は、実施例2と同様の構造であり、同様の方法で作製した。
 バッファ層41Cのn+型In0.490Ga0.510P層21cとn型In0.535Ga0.465P層22cとのGa組成xの差は0.045であり、他のInGaP層の2層間のGa組成xの差は0.039である。
 バッファ層41Cは、ボトムセル40C上に、n型In0.847Ga0.153P層30c(たとえば厚さ1μm)、n型In0.808Ga0.192P層29c(たとえば厚さ0.25μm)、n型In0.769Ga0.231P層28c(たとえば厚さ0.25μm)、n型In0.730Ga0.270P層27c(たとえば厚さ0.25μm)、n型In0.691Ga0.309P層26c(たとえば厚さ0.25μm)、n型In0.652Ga0.348P層25c(たとえば厚さ0.25μm)、n型In0.613Ga0.387P層24c(たとえば厚さ0.25μm)、n型In0.574Ga0.426P層23c(たとえば厚さ0.25μm)、n型In0.535Ga0.465P層22c(たとえば厚さ0.25μm)およびn+型In0.490Ga0.510P層21c(たとえば厚さ0.25μm)がこの順序で積層された構造を有している。
 <比較例1>
 比較例1の多接合型化合物半導体太陽電池は、バッファ層以外は、実施例1と同様の構造であり、同様の方法で作製した。なお、比較例1の多接合型化合物半導体太陽電池のバッファ層の厚みは実施例1のバッファ層41Aの厚みと同一である。
 比較例1の多接合型化合物半導体太陽電池のバッファ層においては、ミドルセルに最も近い位置に配置された隣接する2層であるn+型In0.490Ga0.510P層とn型In0.535Ga0.465P層とのGa組成xの差は0.045とされ、他のInGaP層の隣接する2層間のGa組成xの差はいずれも0.028とされた。
 <比較例2>
 比較例2の多接合型化合物半導体太陽電池も、バッファ層以外は、実施例1と同様の構造であり、同様の方法で作製した。なお、比較例1の多接合型化合物半導体太陽電池のバッファ層の厚みは実施例1のバッファ層41Aの厚みと同一である。
 比較例2の多接合型化合物半導体太陽電池のバッファ層においては、ミドルセルに最も近い位置に配置された隣接する2層であるn+型In0.490Ga0.510P層とn型In0.535Ga0.465P層とのGa組成xの差は0.045とされ、他のInGaP層の隣接する2層間のGa組成xの差はいずれも0.041とされた。
 <実施例4~5および比較例3~4>
 次に、バッファ層のミドルセルに最も近い側で隣接する2層であるn+型In0.490Ga0.510P層とn型InGaP層とのGa組成xの差を変更し、他のInGaP層の2層間のGa組成xの差を0.033とした検討を行った。良好な太陽電池特性を示した実施例4および実施例5と、それ以外の比較例3および比較例4と、について、以下に説明する。
 さらに、実施例2および実施例3と同様にして、バッファ層のIII族元素の組成を変化させ、バッファ層の格子定数を変化させた多接合型化合物半導体太陽電池を作製した。実施例4~5および比較例3~4の多接合型化合物半導体太陽電池は、バッファ層の構造およびバッファ層の製造方法以外は実施例1と同様にして作製した。バッファ層は実施例1と同様のMOCVD法によるエピタキシャル成長により作製された。また、バッファ層は、実施例1と同様に、III族元素の組成を変えることで格子定数を変化させた複数の半導体層からなる。
 <実施例4>
 図11に、実施例4の多接合型化合物半導体太陽電池の具体的な断面構造を示す。実施例4の多接合型化合物半導体太陽電池は、バッファ層41D以外は、実施例1と同様の構造であり、同様の方法で作製した。
 バッファ層41Dのn+型In0.490Ga0.510P層21dとn型In0.550Ga0.450P層22dとのGa組成xの差は0.060であり、他の隣接するInGaP層の2層間のGa組成xの差は0.033である。
 バッファ層41Dは、ボトムセル40C上に、n型In0.814Ga0.186P層30d(たとえば厚さ1μm)、n型In0.781Ga0.219P層29d(たとえば厚さ0.25μm)、n型In0.748Ga0.252P層28d(たとえば厚さ0.25μm)、n型In0.715Ga0.285P層27d(たとえば厚さ0.25μm)、n型In0.682Ga0.318P層26d(たとえば厚さ0.25μm)、n型In0.649Ga0.351P層25d(たとえば厚さ0.25μm)、n型In0.616Ga0.384P層24d(たとえば厚さ0.25μm)、n型In0.583Ga0.417P層23d(たとえば厚さ0.25μm)、n型In0.550Ga0.450P層22d(たとえば厚さ0.25μm)およびn+型In0.490Ga0.510P層21d(たとえば厚さ0.25μm)がこの順序で積層された構造を有している。
 <実施例5>
 図12に、実施例5の多接合型化合物半導体太陽電池の具体的な断面構造を示す。実施例5の多接合型化合物半導体太陽電池は、バッファ層41E以外は、実施例1と同様の構造であり、同様の方法で作製した。
 バッファ層41Eのn+型In0.490Ga0.510P層21eとn型In0.530Ga0.470P層22eとのGa組成xの差は0.040であり、他の隣接するInGaP層の2層間のGa組成xの差は0.033である。
 バッファ層41Eは、ボトムセル40C上に、n型In0.794Ga0.206P層30e(たとえば厚さ1μm)、n型In0.761Ga0.239P層29e(たとえば厚さ0.25μm)、n型In0.728Ga0.272P層28e(たとえば厚さ0.25μm)、n型In0.695Ga0.305P層27e(たとえば厚さ0.25μm)、n型In0.662Ga0.338P層26e(たとえば厚さ0.25μm)、n型In0.629Ga0.371P層25e(たとえば厚さ0.25μm)、n型In0.596Ga0.404P層24e(たとえば厚さ0.25μm)、n型In0.563Ga0.437P層23e(たとえば厚さ0.25μm)、n型In0.530Ga0.470P層22e(たとえば厚さ0.25μm)およびn+型In0.490Ga0.510P層21e(たとえば厚さ0.25μm)がこの順序で積層された構造を有している。
 <比較例3>
 比較例3の多接合型化合物半導体太陽電池は、バッファ層以外は、実施例1と同様の構造であり、同様の方法で作製した。なお、比較例3の多接合型化合物半導体太陽電池のバッファ層の厚みは実施例1のバッファ層41Aの厚みと同一である。
 比較例3の多接合型化合物半導体太陽電池のバッファ層においては、ミドルセルに最も近い位置に配置された隣接する2層であるn+型In0.490Ga0.510P層とn型In0.523Ga0.477P層とのGa組成xの差は0.033とされ、他のInGaP層の隣接する2層間のGa組成xの差はいずれも0.033とされた。
 <比較例4>
 比較例4の多接合型化合物半導体太陽電池も、バッファ層以外は、実施例1と同様の構造であり、同様の方法で作製した。なお、比較例4の多接合型化合物半導体太陽電池のバッファ層の厚みは実施例1のバッファ層41Aの厚みと同一である。
 比較例4の多接合型化合物半導体太陽電池のバッファ層においては、ミドルセルに最も近い位置に配置された隣接する2層であるn+型In0.490Ga0.510P層とn型In0.535Ga0.465P層とのGa組成xの差は0.065とされ、他のInGaP層の隣接する2層間のGa組成xの差はいずれも0.033とされた。
 実施例2~5の多接合型化合物半導体太陽電池はいずれも、図3と同様に、ボトムセル40Cと支持基板101との間に金属層151を形成し、支持基板101の裏面側に第2電極102を形成する構成としてもよい。
 <評価>
 次に、実施例1~5および比較例1~4の多接合型化合物半導体太陽電池の評価を行った。実施例1~5および比較例1~4の多接合型化合物半導体太陽電池はいずれも逆積みで作製されており、図2を参照すると、GaAs基板から第1セル301までは格子整合している。第1セル301とは格子定数が異なる第2セル302と、格子定数を変化させたバッファ層303と、からなる半導体層314が、多接合型化合物半導体太陽電池の特性に大きく影響する。そのため、第2セル302とバッファ層303とからなる半導体層314の特性評価を行なった。また、断面TEM(Transmission Electron Microscope)像による半導体層314の断面観察、特に、第2セル302の断面観察を行なった。
 図13は、多接合型化合物半導体太陽電池に対する評価用サンプルの概略断面図を示す。評価用サンプルは、図13に示すように、エッチングにてトップセル40A~第2のトンネル接合層50Bの一部を取り除き、特性評価のための電極層315を形成することにより作製した。図13の半導体層30は、バッファ層41の最もボトムセル40C側のn型InGaP層である。評価用サンプルとしては、実施例1~5の多接合型化合物半導体太陽電池に対応する評価用サンプルNo.1~5、および比較例1~4の多接合型化合物半導体太陽電池に対応する評価用サンプルNo.6~9をそれぞれ作製した。図14に、一例として、図4に示す実施例1の多接合型化合物半導体太陽電池に対応する評価用サンプルNo.1(316A)の具体的な断面構造を示す。
 また、評価用サンプルNo.1~9の特性評価は、それぞれ、図13に示す評価用サンプルの第2電極102と電極層315とを用いて半導体層314のVoc(開放電圧;単位V)を測定することにより行なった。その結果を表1に示す。
 なお、図15に、ボトムセル40Cの光電変換層のEg(バンドギャップエネルギ;単位eV)とボトムセル40CのVocとの関係を示す。図15の横軸がEg(eV)を示し、縦軸がVocを示す。図15中の傾きを有する直線a:Voc=Eg-0.4は結晶性が最も良好であると仮定したときのEgとVocとの関係を示している。
 ボトムセル40Cの光電変換層のバンドギャップエネルギEgをEg=1.0eVとしたときに多接合型化合物半導体太陽電池の光電変換効率が最も高くなることから、結晶性が最も良好であると仮定したときのボトムセル40CのVocは、図15に示すように、0.6Vであることがわかる。
Figure JPOXMLDOC01-appb-T000001
 表1には、評価用サンプルNo.1~9のバッファ層のミドルセル40Bに最も近い側で隣接する2層間、およびそれ以外の箇所で隣接する2層間のGa組成xの差、Ga組成xの差から換算される格子定数差[nm]、下記式(i)で示される第1格子定数差比[%]、ボトムセル40Cの断面TEM像による断面状態の評価、下記式(ii)で示される第2格子定数差比[%]、およびボトムセル40Cの特性が表われる半導体層314のVocが示されている。
 ここで、第1格子定数差比[%]は、下記の式(i)により示される。
 第1格子定数差比(%)=(100×(a1-a2))/(a1) …(i)
 上記の式(i)において、a2は、バッファ層を構成する半導体層のうち、ミドルセル40Bに最も近い位置に配置されている半導体層(図14に示す例であれば、n+型In0.490Ga0.510P層21a)の格子定数を示し、a1は、ミドルセル40Bに最も近い位置に配置されている半導体層に隣接する半導体層(図14に示す例であれば、n+型In0.535Ga0.465P層22a)の格子定数を示している。
 なお、格子定数a1と、格子定数a2とは、InGaPの元素の組成比から換算により求めた。
 また、第2格子定数差比[%]は、下記の式(ii)により示される。
 第2格子定数差比[%]=(100×(a3-a4))/(a3) …(ii)
 上記の式(ii)において、a3は、バッファ層を構成する半導体層のうち、ボトムセル40Cに最も近い位置に配置されている半導体層(図14に示す例であれば、n型In0.799Ga0.201P層30a)の格子定数を示し、a4はボトムセル40Cの光電変換層の格子定数(InGaAsの格子定数)を示す。
 なお、格子定数a3および格子定数a4は、それぞれ、エピタキシャル成長直後で支持基板101を取り付ける前であって、かつ第2電極102を形成する前の状態において、ボトムセル40C側(図14に示す例であれば、図14の上下方向でp型InGaAs層35側)からX線を照射するX線回折法によって求めた。
 また、ボトムセル40Cの断面TEM像も、また、エピタキシャル成長直後で支持基板101を取り付ける前であって、かつ第2電極102を形成する前の状態において、観察した。なお、表1に示すボトムセル40Cの断面状態の表記は、以下の内容を表わしている。
 A・・・断面状態が最良
 B・・・断面状態が良好
 C・・・断面状態が不良
 第2格子定数差比[%]が0.12%以上0.80%以下である場合、表1に示す評価用サンプルNo.2~3の評価結果から、望ましくは第2格子定数差比[%]が0.15%以上0.74%以下である場合に、ボトムセル40Cの断面状態が最良になる。
 ただし、表1に示す評価用サンプルNo.8~9の評価結果に示されるように、第2格子定数差比[%]が0.15%以上0.74%以下である場合であっても、ボトムセル40Cの断面状態は最良ではない。
 しかしながら、バッファ層41を構成する半導体層のうち、ミドルセル40Bに最も近い側で隣接する2層の格子定数差が0.0015nm以上0.0026nm以下である場合、表1に示す評価用サンプルNo.4~5の評価結果に示されるように、望ましくは0.00167nm以上0.00251nm以下である場合には、ボトムセル40Cの断面状態が最良になると考えられる。
 以上の検討結果から、ボトムセル40CのVocが最良となるEg=1.0eVにするためには、第2格子定数差比[%]だけではなく、ミドルセル40Bに最も近い側で隣接する2層の格子定数差の範囲が必要となる。
 また、複数の半導体層が存在するバッファ層では、隣接する2層の格子定数差をある値以上にすると転位が発生する現象以外に、2次元成長から3次元成長に移行した結晶成長がわずかに起こり、このわずかに起こった3次元成長が大半の2次元成長の中で起こることで歪が緩和され結晶性が良好になると考えられる。ただ、隣接する2層の格子定数差を大きくしすぎると、転位密度が大きくなり、各層がその転位密度を維持するため結晶性が悪化することになり、隣接する2層の格子定数差を小さくしすぎると、3次元成長の核が起こりにくくなる。
 また、以上の検討結果から、バッファ層を構成する半導体層のうち、ミドルセル40Bに最も近い側で隣接する2層の格子定数差が0.0015nm以上0.0026nm以下(望ましくは0.00167nm以上0.00251nm以下)の範囲が、上記の3次元成長が起こることで歪が緩和され、結晶性が良好になる現象が起こる範囲であると考えられる。
 上記の歪緩和を起こすことで、結晶性の良好な半導体層を形成し、その半導体層上に半導体層を積層することにより、ボトムセル40Cの結晶性をより良くすることができると考えられる。
 以上により、バッファ層の内部で結晶性が良好になる領域が広い方が好ましいため、歪緩和を起こす隣接する2層の位置はバッファ層の厚さ方向の中央よりもミドルセル40Bに近い側にあることが好ましく、特にミドルセル40Bに最も近い位置であることがより好ましい。
 今回開示された実施の形態および実施例はすべての点で例示であって、格子定数が異なる2つのセル間を本発明の一実施態様として示したバッファ層を介して作製し、2接合、3接合または4接合等の多接合型化合物半導体太陽電池に用いた場合にも特性を向上させることができると考えられる。
 また、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の一実施態様の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の一実施態様は、多接合型化合物半導体太陽電池全般に広く適用することができる。
 21a n+型In0.490Ga0.510P層、22a n型In0.535Ga0.465P層、23a n型In0.568Ga0.432P層、24a n型In0.601Ga0.399P層、25a n型In0.634Ga0.366P層、26a n型In0.667Ga0.333P層、27a n型In0.700Ga0.300P層、28a n型In0.733Ga0.267P層、29a n型In0.766Ga0.234P層、30a n型In0.799Ga0.201P層、21b n+型In0.490Ga0.510P層、22b n型In0.535Ga0.465P層、23b n型In0.564Ga0.436P層、24b n型In0.593Ga0.407P層、25b n型In0.622Ga0.378P層、26b n型In0.651Ga0.349P層、27b n型In0.680Ga0.320P層、28b n型In0.709Ga0.291P層、29b n型In0.738Ga0.262P層、30b n型In0.767Ga0.233P層、21c n+型In0.490Ga0.510P層、22c n型In0.535Ga0.465P層、23c n型In0.574Ga0.426P層、24c n型In0.613Ga0.387P層、25c n型In0.652Ga0.348P層、26c n型In0.691Ga0.309P層、27c n型In0.730Ga0.270P層、28c n型In0.769Ga0.231P層、29c n型In0.808Ga0.192P層、30c n型In0.847Ga0.153P層、21d n+型In0.490Ga0.510P層、22d n型In0.550Ga0.450P層、23d n型In0.583Ga0.417P層、24d n型In0.616Ga0.384P層、25d n型In0.649Ga0.351P層、26d n型In0.682Ga0.318P層、27d n型In0.715Ga0.285P層、28d n型In0.748Ga0.252P層、29d n型In0.781Ga0.219P層、30d n型In0.814Ga0.186P層、21e n+型In0.490Ga0.510P層、22e n型In0.530Ga0.470P層、23e n型In0.563Ga0.437P層、24e n型In0.596Ga0.404P層、25e n型In0.629Ga0.371P層、26e n型In0.662Ga0.338P層、27e n型In0.695Ga0.305P層、28e n型In0.728Ga0.272P層、29e n型In0.761Ga0.239P層、30e n型In0.794Ga0.206P層、30 半導体層、31 窓層、32 エミッタ層、33 ベース層、34 BSF層、35 コンタクト層、40A トップセル、40B ミドルセル、40C ボトムセル、41A バッファ層、41B バッファ層、41C バッファ層、41D バッファ層、41E バッファ層、50A トンネル接合層(第1のトンネル接合層)、50B トンネル接合層(第2のトンネル接合層)、60A,60B,60C 光電変換層、101 支持基板、102 第2電極、110 n+型AlInP層、111 n++型In0.490Ga0.510P層、112 p++型AlGaAs層、113 p+型AlInP層、114 BSF層、115 ベース層、116 エミッタ層、117 窓層、118 n+型AlInP層、119 n++型In0.490Ga0.510P層、120 p++型AlGaAs層、121 p+型AlInP層、122 BSF層、123 ベース層、124 エミッタ層、125 窓層、126 コンタクト層、127 反射防止膜、128 第1電極、131 エッチングストップ層、151 金属層、301 第1セル、302 第2セル、303 バッファ層、304 第1電極、305 第2電極、306 多接合セル、307 支持基板、308 半導体基板、309 エッチングストップ層、310 エッチングストップ層、311 エッチング層、312 エッチングストップ層、313 多接合セル、314 半導体層、315 電極層、316A 評価用サンプルNo.1、321 金属層、501 トップセル、502 ミドルセル、503 バッファ層、503A バッファ層、503B バッファ層、504 ボトムセル、505 第1電極、506 第2電極、507 半導体基板。

Claims (8)

  1.  第1電極(128)と、第1セル(40A、40B)と、バッファ層(41)と、第2セル(40C)と、第2電極(102)と、を含み、
     前記第1電極(128)は太陽光入射側に配置され、
     前記第1セル(40A、40B)は、第1光電変換層(60A、60B)を含み、前記第2セル(40C)は、第2光電変換層(60C)を含み、前記第1光電変換層(60A、60B)の禁制帯幅と前記第2光電変換層(60C)の禁制帯幅とはそれぞれ異なっており、
     前記第2セル(40C)の格子定数は、前記第1セル(40A、40B)の格子定数よりも大きく、
     前記バッファ層(41)は、複数の半導体層から構成されており、
     前記複数の半導体層は、それぞれ、前記第1セル(40A、40B)側から前記第2セル(40C)側にかけて格子定数が順に大きくなるように配置されており、
     前記複数の半導体層のうち、前記第2セル(40C)に最も近い半導体層(30a)の格子定数は、前記第2セル(40C)の格子定数より大きく、
     前記複数の半導体層のうち、隣接する2層の格子定数差が最も大きくなる2層(21a、22a)は、前記バッファ層(41)の厚さ方向の中央より前記第1セル(40A、40B)に近い側に位置している、多接合型化合物半導体太陽電池。
  2.  前記隣接する2層の半導体層の格子定数差が最も大きくなる2層(21a,22a)は、前記第1セル(40A,40B)に最も近い2層である、請求項1に記載の多接合型化合物半導体太陽電池。
  3.  前記隣接する2層の半導体層の格子定数差が最も大きくなる2層(21a,22a)の、前記第2セル(40C)側の半導体層(22a)の格子定数をa1とし、前記第1セル(40A,40B)側の半導体層(21a)の格子定数をa2としたとき、
     前記格子定数a1と、前記格子定数a2との格子定数差が、0.0015nm以上0.0026nm以下である、請求項1または2に記載の多接合型化合物半導体太陽電池。
  4.  前記第2セル(40C)の第2光電変換層(60C)の格子定数をa4とし、前記第2セル(40C)に最も近い半導体層(30a)の格子定数をa3とし、
     第2格子定数差比(%)=(100×(a3-a4))/(a3)
    としたとき、
     第2格子定数差比が、0.12%以上0.8%以下である、請求項1から3のいずれかに記載の多接合型化合物半導体太陽電池。
  5.  第1の禁制帯幅の第1光電変換層(60A、60B)を有する第1セル(40A、40B)と、
     前記第1の禁制帯幅よりも小さい第2の禁制帯幅の第2光電変換層(60C)を有する第2セル(40C)と、
     前記第1セル(40A、40B)と前記第2セル(40C)との間にあるバッファ層(41)と、
     前記第1セル(40A、40B)側に配置された第1電極(128)と、
     前記第2セル(40C)側に配置された第2電極(102)と、を含み、
     前記第2セル(40C)の格子定数は、前記第1セル(40A、40B)の格子定数よりも大きく、
     前記バッファ層(41)は、複数の半導体層から構成されており、
     前記複数の半導体層は、それぞれ、前記第1セル(40A、40B)側から前記第2セル(41C)側にかけて格子定数が順に大きくなるように配置されており、
     前記複数の半導体層のうち、前記第2セル(40C)に最も近い半導体層(30a)の格子定数は、前記第2セル(40C)の格子定数より大きく、
     前記複数の半導体層のうち、隣接する2層の格子定数差が最も大きくなる2層(21a、22a)は、前記バッファ層(41)の厚さ方向の中央より前記第1セル(40A、40B)に近い側に位置している、多接合型化合物半導体太陽電池。
  6.  前記隣接する2層の半導体層の格子定数差が最も大きくなる2層(21a,22a)は、前記第1セル(40A,40B)に最も近い2層である、請求項5に記載の多接合型化合物半導体太陽電池。
  7.  前記隣接する2層の半導体層の格子定数差が最も大きくなる2層(21a,22a)の、前記第2セル(40C)側の半導体層(22a)の格子定数をa1とし、前記第1セル(40A,40B)側の半導体層(21a)の格子定数をa2としたとき、
     前記格子定数a1と、前記格子定数a2との格子定数差が、0.0015nm以上0.0026nm以下である、請求項5または6に記載の多接合型化合物半導体太陽電池。
  8.  前記第2セル(40C)の第2光電変換層(60C)の格子定数をa4とし、前記第2セル(40C)に最も近い半導体層(30a)の格子定数をa3とし、
     第2格子定数差比(%)=(100×(a3-a4))/(a3)
    としたとき、
     第2格子定数差比が、0.12%以上0.8%以下である、請求項5から7のいずれかに記載の多接合型化合物半導体太陽電池。
PCT/JP2010/073572 2009-12-25 2010-12-27 多接合型化合物半導体太陽電池 WO2011078378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080064809.0A CN102782864B (zh) 2009-12-25 2010-12-27 多结化合物半导体太阳能电池
EP10839606.0A EP2518776A4 (en) 2009-12-25 2010-12-27 SOLAR CELL WITH COMPOUND MULTI-FUNCTION SEMICONDUCTORS
US13/518,563 US8933326B2 (en) 2009-12-25 2010-12-27 Multijunction compound semiconductor solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-294377 2009-12-25
JP2009294377A JP5215284B2 (ja) 2009-12-25 2009-12-25 多接合型化合物半導体太陽電池

Publications (1)

Publication Number Publication Date
WO2011078378A1 true WO2011078378A1 (ja) 2011-06-30

Family

ID=44195901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073572 WO2011078378A1 (ja) 2009-12-25 2010-12-27 多接合型化合物半導体太陽電池

Country Status (5)

Country Link
US (1) US8933326B2 (ja)
EP (1) EP2518776A4 (ja)
JP (1) JP5215284B2 (ja)
CN (1) CN102782864B (ja)
WO (1) WO2011078378A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047059A1 (ja) * 2011-09-30 2013-04-04 シャープ株式会社 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
US20130081681A1 (en) * 2011-10-03 2013-04-04 Epistar Corporation Photovoltaic device
WO2013073275A1 (ja) * 2011-11-14 2013-05-23 シャープ株式会社 光電変換素子の製造方法、光電変換素子および光電変換素子モジュール
JP2014523132A (ja) * 2011-07-06 2014-09-08 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン エピタキシャルリフトオフを使用した組み込まれた太陽光集光と冷間圧接接合された半導体太陽電池
WO2017057029A1 (ja) * 2015-09-28 2017-04-06 シャープ株式会社 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536445B2 (en) 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
JP2013115414A (ja) * 2011-12-01 2013-06-10 Sharp Corp 化合物半導体太陽電池セル
US20150083204A1 (en) * 2012-04-23 2015-03-26 Nanyang Technological University Cell arrangement
JP2014123712A (ja) 2012-11-26 2014-07-03 Ricoh Co Ltd 太陽電池の製造方法
CN103000740B (zh) * 2012-11-28 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 GaAs/GaInP双结太阳能电池及其制作方法
ITMI20131297A1 (it) * 2013-08-01 2015-02-02 Cesi Ct Elettrotecnico Sperim Entale Italian Cella fotovoltaica con banda proibita variabile
EP2947702B1 (de) * 2014-05-21 2019-03-20 AZUR SPACE Solar Power GmbH Solarzellenstapel
JP6582591B2 (ja) 2014-07-11 2019-10-02 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
EP3018718A1 (de) * 2014-11-10 2016-05-11 AZUR SPACE Solar Power GmbH Solarzellenstapel
DE102015006379B4 (de) * 2015-05-18 2022-03-17 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
JP6702673B2 (ja) * 2015-09-11 2020-06-03 ソレアロ テクノロジーズ コーポレイション 複数の変成層を備える反転変成多接合型ソーラーセル
JPWO2017119235A1 (ja) * 2016-01-06 2018-11-08 シャープ株式会社 Iii−v族化合物半導体太陽電池、iii−v族化合物半導体太陽電池の製造方法、および人工衛星
TWI780167B (zh) * 2018-06-26 2022-10-11 晶元光電股份有限公司 半導體基底以及半導體元件
CN108963019B (zh) * 2018-07-27 2020-04-17 扬州乾照光电有限公司 一种多结太阳能电池及其制作方法
DE102019000588A1 (de) * 2019-01-28 2020-07-30 Azur Space Solar Power Gmbh Stapelförmige Mehrfachsolarzelle
CN113314622A (zh) * 2021-06-11 2021-08-27 晶澳(扬州)太阳能科技有限公司 太阳能电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324563A (ja) 2006-06-02 2007-12-13 Emcore Corp 多接合太陽電池における変成層
JP2009141135A (ja) * 2007-12-06 2009-06-25 Sharp Corp 積層型化合物半導体太陽電池
WO2010090170A1 (ja) * 2009-02-06 2010-08-12 シャープ株式会社 化合物半導体太陽電池および化合物半導体太陽電池の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193546A (ja) 1987-02-06 1988-08-10 Nippon Telegr & Teleph Corp <Ntt> 複合半導体装置
JP3657143B2 (ja) 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6864414B2 (en) 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
JP2003218374A (ja) 2002-01-23 2003-07-31 Sharp Corp Iii−v族太陽電池
WO2003073517A1 (en) 2002-02-27 2003-09-04 Midwest Research Institute Monolithic photovoltaic energy conversion device
US8173891B2 (en) 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US20060048700A1 (en) * 2002-09-05 2006-03-09 Wanlass Mark W Method for achieving device-quality, lattice-mismatched, heteroepitaxial active layers
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
JP2004296658A (ja) 2003-03-26 2004-10-21 Sharp Corp 多接合太陽電池およびその電流整合方法
US7488890B2 (en) 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
US8227689B2 (en) * 2004-06-15 2012-07-24 The Boeing Company Solar cells having a transparent composition-graded buffer layer
JP4518886B2 (ja) 2004-09-09 2010-08-04 シャープ株式会社 半導体素子の製造方法
JP2006080448A (ja) * 2004-09-13 2006-03-23 Sumitomo Electric Ind Ltd エピタキシャルウェハおよび素子
US20060180198A1 (en) 2005-02-16 2006-08-17 Sharp Kabushiki Kaisha Solar cell, solar cell string and method of manufacturing solar cell string
JP4974545B2 (ja) 2006-02-24 2012-07-11 シャープ株式会社 太陽電池ストリングの製造方法
US20090078309A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20090078308A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support
US20090078310A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
TWI349371B (en) 2007-02-13 2011-09-21 Epistar Corp An optoelectronical semiconductor device having a bonding structure
US20090078311A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324563A (ja) 2006-06-02 2007-12-13 Emcore Corp 多接合太陽電池における変成層
JP2009141135A (ja) * 2007-12-06 2009-06-25 Sharp Corp 積層型化合物半導体太陽電池
WO2010090170A1 (ja) * 2009-02-06 2010-08-12 シャープ株式会社 化合物半導体太陽電池および化合物半導体太陽電池の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. F. GEISZ ET AL.: "Inverted GaInP/(In)GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junction", 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE SAN DIEGO, CALIFORNIA, 11 May 2008 (2008-05-11)
J.F.GEISZ ET AL.: "High-efficiency GaInP/GaAs/ InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction", APPLIED PHYSICS LETTERS, vol. 91, no. 2, 2007, pages 023502, XP012100103 *
J.F.GEISZ ET AL.: "Inverted GaInP/(In)GaAs/ InGaAs triple-junction solar cells with low- stress metamorphic bottom junction", 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 11 May 2008 (2008-05-11) - 16 May 2008 (2008-05-16) *
M.W.WANLASS ET AL.: "LATTICE-MISMATCHED APPROACHES FOR HIGH-PERFORMANCE, III-V PHOTOVOLTAIC ENERGY CONVERTERS", CONF. REC. IEEE PHOTOVOLTAIC SPEC. CONF., 2005, vol. 31, 2005, pages 530 - 535, XP010822764 *
See also references of EP2518776A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523132A (ja) * 2011-07-06 2014-09-08 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン エピタキシャルリフトオフを使用した組み込まれた太陽光集光と冷間圧接接合された半導体太陽電池
WO2013047059A1 (ja) * 2011-09-30 2013-04-04 シャープ株式会社 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
JP2013077724A (ja) * 2011-09-30 2013-04-25 Sharp Corp 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
US20140246082A1 (en) * 2011-09-30 2014-09-04 Sharp Kabushiki Kaisha Stacked body for manufacturing compound semiconductor solar battery, compound semiconductor solar battery, and method for manufacturing compound semiconductor solar battery
US20130081681A1 (en) * 2011-10-03 2013-04-04 Epistar Corporation Photovoltaic device
WO2013073275A1 (ja) * 2011-11-14 2013-05-23 シャープ株式会社 光電変換素子の製造方法、光電変換素子および光電変換素子モジュール
WO2017057029A1 (ja) * 2015-09-28 2017-04-06 シャープ株式会社 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
JPWO2017057029A1 (ja) * 2015-09-28 2018-07-19 シャープ株式会社 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法

Also Published As

Publication number Publication date
EP2518776A1 (en) 2012-10-31
EP2518776A4 (en) 2013-10-09
US20120247547A1 (en) 2012-10-04
JP5215284B2 (ja) 2013-06-19
CN102782864A (zh) 2012-11-14
CN102782864B (zh) 2015-05-13
JP2011134952A (ja) 2011-07-07
US8933326B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
WO2011078378A1 (ja) 多接合型化合物半導体太陽電池
US10680126B2 (en) Photovoltaics on silicon
JP5425480B2 (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
JP5570736B2 (ja) 化合物半導体太陽電池の製造方法
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
JP3657143B2 (ja) 太陽電池及びその製造方法
TWI594449B (zh) 具有二變質層的四接點反向變質多接點太陽能電池
US20130133730A1 (en) Thin film inp-based solar cells using epitaxial lift-off
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
US9035367B2 (en) Method for manufacturing inverted metamorphic multijunction solar cells
JP2019515510A (ja) 金属ディスク・アレイを備えた積層型太陽電池
CN108878550B (zh) 多结太阳能电池及其制备方法
TWI496314B (zh) Compound semiconductor solar cell manufacturing laminated body, compound semiconductor solar cell and manufacturing method thereof
CN110707172B (zh) 一种具有布拉格反射层的多结太阳电池及制作方法
JP5634955B2 (ja) Iii−v族化合物半導体膜の製造方法および化合物半導体太陽電池の製造方法
JP2005347402A (ja) 裏面反射型化合物半導体太陽電池およびその製造方法
JPWO2017119235A1 (ja) Iii−v族化合物半導体太陽電池、iii−v族化合物半導体太陽電池の製造方法、および人工衛星
US20150040972A1 (en) Inverted metamorphic multijunction solar cell with surface passivation of the contact layer
JP5980826B2 (ja) 化合物半導体太陽電池および化合物半導体太陽電池の製造方法
JP2013115415A (ja) 化合物半導体太陽電池
JP2014086654A (ja) 化合物半導体太陽電池および化合物半導体太陽電池の製造方法
US20150034151A1 (en) Inverted metamorphic multijunction solar cell with passivation in the window layer
JP2013093358A (ja) 化合物半導体太陽電池
JP2013175632A (ja) 化合物半導体太陽電池
JP2013197353A (ja) 化合物半導体太陽電池および化合物半導体太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064809.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010839606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010839606

Country of ref document: EP