WO2017057029A1 - 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 - Google Patents

薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 Download PDF

Info

Publication number
WO2017057029A1
WO2017057029A1 PCT/JP2016/077309 JP2016077309W WO2017057029A1 WO 2017057029 A1 WO2017057029 A1 WO 2017057029A1 JP 2016077309 W JP2016077309 W JP 2016077309W WO 2017057029 A1 WO2017057029 A1 WO 2017057029A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
film compound
thin film
compound solar
Prior art date
Application number
PCT/JP2016/077309
Other languages
English (en)
French (fr)
Inventor
達也 高本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017543127A priority Critical patent/JPWO2017057029A1/ja
Priority to CN201680056708.6A priority patent/CN108140679A/zh
Priority to DE112016004374.0T priority patent/DE112016004374T5/de
Priority to US15/761,903 priority patent/US20180233612A1/en
Publication of WO2017057029A1 publication Critical patent/WO2017057029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film compound solar cell, a method for manufacturing a thin film compound solar cell, a thin film compound solar cell array, and a method for manufacturing a thin film compound solar cell array.
  • the substrate is removed by etching or epitaxial lift-off.
  • Patent Document 1 The process of removing the substrate by etching is disclosed in, for example, Japanese Patent No. 5554772 (Patent Document 1).
  • Patent Document 1 a cell body composed of a plurality of compound semiconductor layers is formed on a substrate, a back electrode is formed on the cell body, a back film as a base material is formed on the back electrode, and a reinforcing material is formed on the back film. Is attached and the substrate is separated from the cell body.
  • the epitaxial lift-off means that a sacrificial layer is produced between the substrate and the compound semiconductor layer, and the sacrificial layer is removed by an etchant to separate the substrate and the compound semiconductor layer.
  • JP-T-2014-523132 Patent Document 2
  • Patent No. 5576243 Patent Document 3 disclose an epitaxial lift-off process.
  • Patent Document 2 discloses that one or more first protective layers are grown on a first substrate, an AlAs layer is grown, and one or more second protective layers are grown. Depositing at least one active photovoltaic cell layer on the second protective layer, coating the top of the active photovoltaic cell layer with metal, and coating the second substrate with metal. And a method of performing an epitaxial lift-off process that includes pressing two metal surfaces together for cold pressure bonding and removing the AlAs layer by selective chemical etching. Further, Patent Document 3 discloses that the active layer is formed on the active layer and in direct contact with the active layer to form a metal backing layer and separate the III-V compound thin film solar cell from the substrate. A method for processing a III-V compound thin film solar cell is described which includes the step of removing the sacrificial layer from between the layer and the substrate.
  • Patent Document 1 The back electrode of Patent Document 1 is formed entirely on the cell body.
  • the metal layer that has been cold-welded in Patent Document 2 is formed entirely on the active photovoltaic cell layer.
  • the metal backing layer of Patent Document 3 is formed entirely on the active layer. Therefore, the solar cell manufactured by these methods is not configured to transmit light to the side opposite to the light receiving surface.
  • Patent Document 1 Patent Document 2
  • Patent Document 3 cannot be applied to the manufacture of a double-sided solar cell or an upper solar cell of a mechanical stack.
  • This invention is made
  • the place made into the objective is providing the thin film compound solar cell and thin film compound solar cell array which light permeate
  • the present invention provides a solar cell laminate including a plurality of compound semiconductor layers, and a first polarity formed on a part of the first surface on the light receiving side of the solar cell laminate and having a first polarity.
  • the thin-film compound solar battery includes a cell layer and a contact layer formed on a part of the surface opposite to the light-receiving surface of the cell layer, and the third electrode is formed on the contact layer.
  • a thin film compound solar cell string including a plurality of the thin film compound solar cells, the thin film compound solar cells being electrically connected, a surface protection member disposed on the light receiving side of the thin film compound solar cell string, and the thin film compound It is set as a thin film compound solar cell array provided with the back surface protection member arrange
  • the present invention provides a thin-film compound solar cell and a thin-film solar cell array that transmit light to the side opposite to the light-receiving surface by having the above-described configuration.
  • FIG. 1 is a schematic cross-sectional view of a compound solar cell according to Embodiment 1, wherein (a) is a cross-sectional view taken along line AA shown in FIG. 1 (a), and (b) is FIG.
  • FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
  • FIGS. 3A and 3B are schematic cross-sectional views of the compound solar battery of Embodiment 2, in which FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A, and FIG. FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
  • FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A
  • FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
  • FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A
  • FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
  • FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A
  • FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
  • FIG. 3A is a typical top view seen from the surface side
  • FIG. 6 is a typical plan view seen from the back surface side is there.
  • FIG. 5 is a schematic cross-sectional view of a compound solar cell according to Embodiment 3, wherein (a) is a cross-sectional view along the line AA shown in FIG. 5 (a), and (b) is FIG. 5 (a).
  • FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
  • FIG. 10 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the thin film compound solar battery according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
  • 6 is a schematic cross-sectional view of a thin film compound solar cell array according to Embodiment 5.
  • FIG. FIG. 10 is a schematic cross-sectional view of a thin film compound solar cell array according to a sixth embodiment.
  • FIG. 10 is a schematic cross-sectional view of another configuration of the thin film compound solar cell array according to Embodiment 6.
  • the same reference numerals represent the same or corresponding parts.
  • dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
  • the light receiving side may be referred to as the front side, and the side opposite to the light receiving side may be referred to as the back side.
  • FIG. 1A is a schematic plan view seen from the front surface side
  • FIG. 1B is a schematic plan view seen from the back surface side
  • FIG. 2A is shown in FIG.
  • FIG. 2B is a cross-sectional view taken along the line BB shown in FIG. 1A.
  • the thin film compound solar battery of Embodiment 1 includes a cell body 10 and a resin film 15 formed on the side opposite to the light receiving side of the cell body 10.
  • the cell body 10 includes a solar cell stack 50, a first electrode 11 having a first polarity, a second electrode 12 having a second polarity, and a third electrode 13 having a second polarity.
  • the first electrode 11 is formed on a part of the first surface 100 on the light receiving side of the solar cell stack 50.
  • the second electrode 12 is formed on a second surface 200 different from the first surface 100 on the light receiving side of the solar cell stack 50.
  • the third electrode 13 is formed on a part of the surface of the solar cell stack 50 opposite to the light receiving side.
  • the solar cell stack 50 includes a cell layer having a PN junction layer and a contact layer 14 formed on a part of the surface opposite to the light receiving surface of the cell layer, and is composed of a plurality of compound semiconductor layers.
  • Solar cell stacked body 50 of the first embodiment includes top cell 30 and bottom cell 40 as cell layers.
  • the top cell 30 is formed on the light receiving surface side with respect to the bottom cell 40.
  • the forbidden band width (first forbidden band width) of the photoelectric conversion layer formed in the top cell 30 is larger than the forbidden band width (second forbidden band width) of the photoelectric conversion layer formed in the bottom cell 40.
  • the top cell 30 and the bottom cell 40 each have a window layer, a base layer, an emitter layer, and a back surface field layer (BSF layer).
  • a PN junction is formed by joining the base layer and the emitter layer.
  • the top cell 30 and the bottom cell 40 are preferably made of a GaAs compound, and the base layer and the emitter layer, which are PN junction layers, are made of a GaAs compound semiconductor.
  • the PN junction layer of the top cell 30 is InGaP
  • the PN junction layer of the bottom cell 40 is GaAs.
  • the bottom cell 40 includes a BSF layer 41 made of p-type InGaP, a base layer made of p-type GaAs, an emitter layer made of n-type GaAs, and a window layer made of n-type InGaP in this order from the back side.
  • a tunnel junction layer may be provided between the top cell 30 and the bottom cell 40.
  • the tunnel junction layer includes an n + -type InGaP layer and a p + -type AlGaAs layer in order from the bottom cell 40 side.
  • the top cell 30 includes, in order from the bottom cell 40 side, a BSF layer made of p-type AlInP, a base layer made of p-type InGaP, an emitter layer made of n-type InGaP, and a window layer made of n-type AlInP.
  • a contact layer may be formed on the window layer in the region where the first electrode 11 on the light receiving side of the top cell 30 is formed, and is, for example, n-type GaAs.
  • an antireflection film may be formed on the window layer other than the region where the first electrode 11 is formed, for example, Al 2 O 3 / TiO 2 .
  • the solar cell stack 50 has a second surface 200 different from the first surface 100 and the first surface 100 on the light receiving side, and the first surface 100 and the second surface 200 are composed of surfaces of different layers.
  • the first surface 100 is composed of the surface of the top cell 30, and the second surface 200 is composed of the surface of the BSF layer 41 of the bottom cell 40.
  • the first electrode 11 is formed on a part of the first surface, and the second electrode 12 is formed on the second surface.
  • the first electrode 11 and the second electrode 12 have different polarities.
  • the first electrode 11 is formed on the light receiving side of the top cell 30 and is formed in a comb shape as shown in FIG.
  • the first electrode 11 and the second electrode 12 are extraction electrodes to which wiring is connected.
  • the first electrode 11 contains a metal and is made of, for example, a laminate of AuGe / Ni / Au / Ag.
  • the second electrode 12 includes a metal, and is made of, for example, an Au / Ag laminate.
  • the third electrode 13 has the same polarity as the second electrode, and is formed on the contact layer 14 formed on a part of the back surface side surface of the cell layer 40.
  • the third electrode 13 is formed in a comb shape as shown in FIG.
  • the third electrode 13 is an electrode for collecting a current generated in the cell layer, and can suppress electric resistance to a low level.
  • the third electrode 13 includes a metal and is made of, for example, a laminate of Au / Ag.
  • the third electrode 13 may be disposed at a position corresponding to the first electrode 11.
  • the contact layer 14 is formed on a part of the back side surface of the cell layer 40. In other words, a region where the contact layer 14 is not disposed is formed on the back surface of the cell layer 40. In the region where the contact layer 14 is not disposed, it is not affected by light absorption by the contact layer 14. Therefore, not only the third electrode 13 is formed on a part of the back surface side surface of the solar cell stack 50, but also the contact layer 14 is formed on a part of the back surface side surface of the solar cell stack 50, thereby Light is easily transmitted.
  • the contact layer 14 is formed in a comb shape on the BSF layer 41 of the bottom cell.
  • the contact layer 14 is, for example, GaAs.
  • the cell body 10 includes a solar cell stack 50, a first electrode 11, a second electrode 12, and a third electrode 13.
  • a resin film 15 is formed on the back side of the cell body 10.
  • the resin film 15 is a support member formed on the back side of the cell body 10.
  • the resin film 15 makes it difficult for the solar cell layer 50 to break, and the mechanical strength of the compound solar cell is improved.
  • the resin film 15 is preferably flexible.
  • polyimide (PI) can be used as the material.
  • the thickness of the resin film 15 can be about 5 to 20 ⁇ m, for example.
  • the resin film 15 is light transmissive and transmits at least light having a wavelength that contributes to power generation of the cell body 10 or other solar battery. If another solar cell is disposed on the back surface side of the thin film compound solar cell of the first embodiment, the resin film 15 may transmit at least light having the absorption wavelength of the solar cell disposed on the back surface side. .
  • the resin film 15 in the first embodiment is made of flexible polyimide (PI).
  • the third electrode 13 is formed on a part of the back side of the cell layer 40, and the insulating film 15 provided on the back side of the cell body 10 is light transmissive. For this reason, light can be transmitted to the side opposite to the light receiving surface.
  • the contact layer 14 is formed only on a part of the back surface side of the cell layer 40, the light transmittance is improved. Therefore, the thin film compound solar cell of Embodiment 1 can be used as a solar cell on the light incident side of the mechanical stack type solar cell.
  • the thin film compound solar cell of Embodiment 1 can also be used as a double-sided daylighting cell.
  • the second surface 200 may be the surface of the contact layer 14.
  • the second electrode 12 is formed on the light receiving side surface of the contact layer 14.
  • the laminated structure of the solar cell laminate is not limited to the above-described structure, and any structure having at least one cell layer having a PN junction layer may be used.
  • FIG. 3 and 4 are schematic views of the compound solar battery of Embodiment 1 which is an example of the thin film compound solar battery of the present invention.
  • 3A is a schematic plan view seen from the front side
  • FIG. 3B is a schematic plan view seen from the back side
  • FIG. 4A is shown in FIG.
  • FIG. 4B is a cross-sectional view taken along the line BB shown in FIG. 3A.
  • the thin film compound solar cell of Embodiment 2 is different from the thin film compound solar cell of Embodiment 1 in the shapes of the contact layer 14 and the third electrode 13. Other configurations are the same as those of the thin film compound solar cell of the first embodiment.
  • the contact layer 14 and the third electrode 13 of the second embodiment have a lattice shape.
  • the contact layer 14 and the third electrode 13 are formed on a part of the back side surface of the cell layer 40, and there is a region where the contact layer 14 is not disposed on the back side surface of the cell layer 40. Therefore, since light is transmitted to the back surface side, the thin film compound solar cell of Embodiment 2 can be used as a solar cell on the light incident side of the mechanical stack type solar cell. In addition, since power generation by light reception from the back surface is possible, it can be used as a double-sided solar cell.
  • FIG. 5A is a schematic plan view seen from the front side
  • FIG. 5B is a schematic plan view seen from the back side
  • FIG. 6A is shown in FIG.
  • FIG. 6B is a cross-sectional view taken along the line BB shown in FIG. 5A.
  • the thin film compound solar cell of Embodiment 3 is different from the thin film compound solar cell of Embodiment 1 in the shapes of the contact layer 14 and the third electrode 13. Other configurations are the same as those of the thin film compound solar cell of the first embodiment.
  • the contact layer 14 and the third electrode 13 of the third embodiment are formed in a mesh shape with the contact layer 14 and the third electrode 13 formed on a part of the back surface side surface of the cell layer 40. It is. A region where the contact layer 14 and the third electrode 13 are not disposed is dotted on the back surface of the cell layer 40. Therefore, since light is transmitted to the back surface side, the thin film compound solar cell of Embodiment 2 can be used as a solar cell on the light incident side of the mechanical stack type solar cell. In addition, since power generation by light reception from the back surface is possible, it can be used as a double-sided solar cell.
  • Embodiment 4 is an example of a method for manufacturing a thin film compound solar cell of the present invention, and the thin film compound solar cell of Embodiments 1 to 3 can be manufactured.
  • a method for manufacturing the thin film compound solar cell of Embodiment 4 will be described with reference to FIGS.
  • a solar cell stack 50 is formed by stacking a plurality of compound semiconductor layers on a semiconductor substrate 20.
  • the solar cell stack 50 includes a cell layer (top cell 30 and bottom cell 40) having a PN junction layer and a contact layer 14 stacked on the cell layer.
  • the material of the semiconductor substrate 20 examples include germanium (Ge) and gallium arsenide (GaAs).
  • the semiconductor substrate 20 (GaAs substrate) is placed in a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a GaAs layer serving as a buffer layer for optimizing the growth surface
  • an etching stop layer composed of n-type InGaP serving as an etching stop layer capable of selective etching with GaAs
  • an n-type GaAs serving as a contact layer.
  • n-type AlInP serving as a window layer of the top cell 30 n-type InGaP serving as an emitter layer, p-type InGaP serving as a base layer, and p-type AlInP serving as a BSF layer are epitaxially grown in this order by MOCVD.
  • a p + type AlGaAs layer, a p + type AlGaAs layer serving as a tunnel junction layer, and an n + type InGaP are epitaxially grown in this order on the top cell 30 by the MOCVD method.
  • the n-type InGaP serving as the window layer of the bottom cell 40, the n-type GaAs serving as the emitter layer, the p-type GaAs serving as the base layer, and the p-type InGaP serving as the BSF layer 41 are formed in this order on the tunnel junction layer. To grow epitaxially.
  • AsH 3 arsine
  • TMG trimethylgallium
  • TMI trimethylindium
  • TMG and PH 3 phosphine
  • p-type GaAs 14 serving as a contact layer is epitaxially grown on the bottom cell 40 by MOCVD.
  • AsH 3 arsine
  • TMG trimethylgallium
  • TMI trimethylindium
  • TMG and PH 3 phosphine
  • Step of patterning the contact layer Thereafter, as shown in FIG. 8, the contact layer 14 is patterned to form a region where the contact layer 14 is not disposed on the bottom cell 40. After forming a resist pattern on the contact layer 14 by photolithography, the contact layer 14 can be patterned by etching away the contact layer corresponding to the resist pattern.
  • a third electrode 13 is formed on the contact layer 14 as shown in FIG.
  • the third electrode 13 can be formed on the contact layer 14 by forming a resist pattern on the contact layer 14 again by photolithography, evaporating the Au / Ag laminate using a vapor deposition apparatus, and lifting off. it can. Furthermore, the contact resistance between the third electrode and the contact layer can be reduced by heat-treating the third electrode.
  • the third electrode 13 is patterned similarly to the contact layer 14, and a region where the third electrode 13 is not disposed is formed on the bottom cell 40.
  • the resin film 15 is formed on the bottom cell 40 and the third electrode 13.
  • the resin film 15 is, for example, flexible polyimide (PI), and is formed by applying a polyimide solution by a method such as a spin coating method and imidizing by a heat treatment.
  • a support substrate 60 (process support substrate) is attached on the resin film 15, and the GaAs substrate is removed by etching.
  • the support substrate 60 for example, a PET film to which an adhesive material whose adhesive strength is reduced by irradiating ultraviolet light is attached, or a thermally foamed film to which an adhesive material whose adhesive strength is reduced by applying heat is attached is used. be able to.
  • Step of forming the first electrode Next, after etching the buffer layer GaAs with an alkaline aqueous solution, the etching stop layer made of n-type InGaP is etched with an acid aqueous solution. Then, after forming a resist pattern on the contact layer n-type GaAs on the top cell 30 by photolithography, the contact layer n-type GaAs corresponding to the resist pattern is removed by etching with an alkaline aqueous solution. Then, a resist pattern is formed again by photolithography on the surface of the remaining contact layer n-type GaAs, and the first electrode 11 made of a laminate of AuGe / Ni / Au / Ag is formed using a vapor deposition apparatus.
  • the heat resistance of the first electrode can reduce the contact resistance between the first electrode and the compound semiconductor layer in contact with the first electrode.
  • the 1st electrode 11 is formed in a part of 1st surface 100 comprised from the light-receiving side surface of the top cell 30.
  • Step of forming the second surface Next, as shown in FIG. 12, after forming a resist pattern on the window layer of the top cell 30 made of n-type AlGaP by photolithography, the portion below the window layer corresponding to the resist pattern is etched away, and the BSF layer of the bottom cell The p-type InGaP surface 41 is exposed. Thus, the 2nd surface 200 comprised from the light-receiving side surface of the back surface electric field layer 41 of a bottom cell is formed.
  • Step of forming the second electrode Then, as shown in FIG. 13, a resist pattern is formed again on the surface of the p-type InGaP, which is the BSF layer 41 of the remaining bottom cell, by photolithography, and a first layer composed of an Au / Ag laminate is formed using a vapor deposition apparatus. Two electrodes 12 are formed. In this way, the second electrode 12 is formed on the second surface 200.
  • an antireflection film made of Al 2 O 3 / TiO 2 is formed on the top cell 30 by a sputtering method.
  • the process support substrate 60 is removed.
  • the process support substrate 60 is peeled from the resin film 15 by reducing the adhesive force of the adhesive material adhering to the process support substrate 60.
  • the process support substrate 60 is peeled from the resin film 15 by irradiating the process support substrate 60 with ultraviolet light to reduce the adhesive force of the adhesive material adhering to the process support substrate 60.
  • the compound solar cell 1 having the configuration shown in FIG. 14 is obtained.
  • the compound solar cell 1 is a solar cell having flexibility since the semiconductor substrate 20 is removed and the resin film 15 is flexible.
  • a sacrificial layer may be formed between the semiconductor substrate 20 and the solar cell stack 50.
  • a buffer layer, a sacrificial layer, an etching stop layer, and a first contact layer are grown on the semiconductor substrate to form a sacrificial layer between the semiconductor substrate 20 and the top cell 30.
  • any sacrificial layer can be used as long as it is a semiconductor that is easily etched.
  • the “sacrificial layer” is provided between the semiconductor substrate 20 and the solar cell stack 50, and the semiconductor substrate and the solar cell stack are separated by removing the layer by etching or the like. It is provided to do.
  • An example of a semiconductor used for such a sacrificial layer is AlAs.
  • the etching stop layer protects the solar cell stack 50 and the contact layer from being exposed to the etchant when the sacrificial layer is etched.
  • a material constituting such an etching stop layer for example, InGaP can be mentioned.
  • a method of separating a semiconductor substrate and a solar cell layer by producing a sacrificial layer between the semiconductor substrate and the solar cell layer and removing the sacrificial layer with an etchant is called epitaxial lift-off. Since the semiconductor substrate is not removed by etching but separated, the semiconductor substrate can be reused.
  • the contact layer 14 may be exposed by etching away the window layer and the like corresponding to the resist pattern. In this way, the second surface 200 constituted by the light receiving side surface of the contact layer 14 may be formed. In this case, in the step of forming the second electrode, the second electrode is formed on the second surface 200 constituted by the light receiving side surface of the contact layer 14.
  • a thin film compound solar cell having a region where the contact layer and the electrode are not disposed on the back surface side can be manufactured.
  • a thin film compound solar cell that transmits light to the back surface side can be manufactured.
  • the double-sided daylight-emitting thin film compound solar cell capable of generating power by receiving light from the back side can be manufactured.
  • the stacked structure on the semiconductor substrate 20 is not limited to the above structure, and any structure having at least one cell layer having a PN junction layer may be used.
  • FIG. 15 is a schematic cross-sectional view of the compound solar cell array of Embodiment 5 which is an example of the thin film compound solar cell array of the present invention.
  • the thin film compound solar cell array 2 includes a thin film compound solar cell string in which a plurality of thin film compound solar cells 1 are electrically connected to each other, a surface protection member 111 disposed on the light receiving side, and a back surface side.
  • the back surface protection member 112 is provided.
  • the thin film compound solar cell and the manufacturing method thereof will be described.
  • the thin film compound solar cell 1 is a thin film compound solar cell having a region where the contact layer and the electrode are not disposed on the back side of the cell layer, and the thin film compound solar cell of each of the above-described embodiments can be used.
  • the plurality of thin film compound solar cells 1 are electrically connected to each other by the wiring member 110 to form a thin film compound solar cell string.
  • the first electrode and the second electrode of adjacent thin film compound solar cells 1 are electrically connected by a wiring member 110 such as a metal ribbon, and a plurality of thin film compound solar cells 1. Are connected in series.
  • the thin film compound solar cell 1 since the thin film compound solar cell 1 includes the first electrode 11 and the second electrode 12 on the surface side, the thin film compound solar cell 1 can be wired to the electrode on the surface side, and wiring is easy.
  • the surface protection member 111 is disposed on the light receiving side of the thin film compound solar cell string, the back surface protection member 113 is disposed on the side opposite to the light receiving side, and the transparent resin 112 is laminated as an adhesive.
  • a transparent film or glass can be used, and it is preferably flexible. Silicone can be used as the transparent resin 112.
  • the thin-film compound solar cell array 2 uses the thin-film compound solar cell 1 that transmits light to the back surface side. Therefore, since the thin-film compound solar cell array 2 transmits light to the back surface side, another solar cell module can be used by being stacked on the back surface side. Moreover, since the thin film compound solar cell array 2 can generate power by receiving light from the back surface, it can also be used as a double-sided daylighting thin film compound solar cell array.
  • FIG. 16 shows a schematic cross-sectional view of the compound solar cell array of Embodiment 6 which is an example of the thin film compound solar cell array of the present invention.
  • the thin-film compound solar cell array 3 of Embodiment 6 includes another solar cell module 120 on the opposite side of the light-receiving side of the thin-film compound solar cell array 2 as shown in FIG.
  • the thin film compound solar cell array 2 and the solar cell module 120 are electrically connected.
  • the thin film compound solar cell array 2 and another solar cell module 120 are connected in parallel. In the case of parallel connection, it is preferable to align the voltages of the thin film compound solar cell array 2 and the solar cell module 120. Since the thin film compound solar cell array 2 and the solar cell module 120 have a plurality of solar cells connected in series, the voltage can be adjusted by adjusting the number of these solar cells.
  • the solar cell module 120 is a crystalline Si solar cell module, a Ge solar cell module, a CIGS solar cell module, or the like. These may be used in combination. For example, a crystalline Si solar cell module and a Ge solar cell module may be stacked.
  • a CIGS solar cell module is arranged as another solar cell module 120 on the back surface side of the solar cell array 2.
  • the solar cell module 120 includes a base material 121, a solar cell layer 122, an adhesive 123, and a surface member 124.
  • the solar cell layer 122 is formed by sequentially laminating a lower electrode layer 125, a light absorption layer 126, a high resistance buffer layer 127, and an upper electrode layer 128 on a substrate 121.
  • the substrate 121 and the surface member 124 a transparent film or glass can be used, and it is preferable that the substrate 121 and the surface member 124 be flexible.
  • the adhesive 123 may be a transparent resin, and silicone can be used. In Embodiment 6, since the base material 121 and the surface member 124 are flexible, the solar cell module 120 has flexibility.
  • the lower electrode layer 125 is Mo
  • the light absorption layer 126 is CIGS containing copper, indium, gallium, and selenium
  • the high resistance buffer layer 127 is InS, ZnS, CdS, etc.
  • the upper electrode layer 128 is ITO It can be.
  • the lower electrode layer 125 is Mo
  • the light absorption layer 126 is a laminate of p-CuInGaSe and p-CuInGaSeS
  • the high resistance buffer layer 127 is ZnOSOH
  • the upper electrode layer 128 is ZnO.
  • the thin-film compound solar cell array 3 has flexibility and is suitable as a solar cell array for space use. Moreover, since the solar cell module 120 is a CIGS system, it hardly deteriorates due to the electron beam, and the thin-film compound solar cell array 2 arranged on the light receiving side prevents the proton beam, so that it has radiation resistance that is important in the space environment. .
  • the thin film compound solar cell array 2 when aligning the voltage of the thin film compound solar cell array 2 and the solar cell module 120, for example, if the thin film compound solar cell array 2 has a configuration in which five 2.45V thin film compound solar cells are connected in series, The voltage of the thin film compound solar cell array 2 is 12.25V. At this time, if the voltage per cell of the solar cell module 120 is 0.65 V, 20 series may be used. If it is a thin film solar cell such as a CIGS solar cell, the number of series is easy to adjust.
  • FIG. 17 is a schematic cross-sectional view of another configuration of the compound solar battery array according to Embodiment 6, which is an example of the thin film compound solar battery array of the present invention.
  • the thin film compound solar cell array 2 is disposed on the solar cell layer 122 via an adhesive 123.
  • the thin film compound solar cell array 4 is formed by disposing and laminating the adhesive 123 and the thin film compound solar cell array 2 on the solar cell layer 122 formed on the substrate 121. By doing in this way, the surface member 124 of Embodiment 6 can be omitted. Moreover, the thin film compound solar cell array 2 and the solar cell module 120 can be easily integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

複数の化合物半導体層からなる太陽電池積層体と、太陽電池積層体の受光側の第1表面の一部に形成され、第1の極性を有する第1電極と、太陽電池積層体の受光側の第1表面とは異なる第2表面に形成され、第2の極性を有する第2電極と、太陽電池積層体の受光側と反対側の表面の一部に形成され、第2の極性を有する第3電極と、を含むセル本体と、セル本体の受光側と反対側に形成された樹脂膜とを備え、太陽電池積層体は、PN接合層を有するセル層と該セル層の受光面と反対側の表面の一部に形成されたコンタクト層とを含み、第3電極はコンタクト層上に形成される、薄膜化合物太陽電池薄膜化合物太陽電池とする。

Description

薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
 本出願は、2015年9月28日に出願された特願2015-189365号に対して、優先権の利益を主張するものであり、それを参照することにより、その内容のすべてを本書に含める。
 本発明は、薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法に関する。
 従来の薄膜化合物太陽電池の製造方法は、基板をエッチングやエピタキシャルリフトオフにより除去していた。
 基板をエッチングで除去するプロセスは、たとえば特許第5554772号(特許文献1)に開示されている。特許文献1では、基板上に複数の化合物半導体層からなるセル本体を形成し、セル本体に裏面電極を形成し、裏面電極上に基材としての裏面フィルムを形成し、裏面フィルム上に補強材が取り付けられ、セル本体から基板が分離される方法が記載されている。
 エピタキシャルリフトオフとは、基板と化合物半導体層との間に犠牲層を作製し、かかる犠牲層をエッチャントによって除去することにより、基板と化合物半導体層とを分離するというものである。たとえば特表2014-523132号(特許文献2)および特許第5576243号(特許文献3)には、エピタキシャルリフトオフプロセスが開示されている。
 特許文献2には、第1の基板上に、1つ以上の第1の保護層を成長させることと、AlAs層を成長させることと、1つ以上の第2の保護層を成長させることと、第2の保護層上に少なくとも1つの活性光起電性セル層を堆積することと、活性光起電性セル層の上部を金属でコートすることと、第2の基板を金属でコートすることと、2つの金属表面を互いに押し付けて冷間圧接接合させることと、AlAs層を選択的化学エッチングで除去すること、を含むエピタキシャルリフトオフ処理を実行する方法が記載されている。また、特許文献3には、活性層上に、かつ該活性層に直接的に接触させて、金属バッキング層を形成し、III-V化合物薄膜太陽電池を該基板から分離するために、該活性層と該基板との間から該犠牲層を除去する工程を含むIII-V化合物薄膜太陽電池の加工方法が記載されている。
特許第5554772号 特表2014-523132号 特許第5576243号
 特許文献1の裏面電極はセル本体上に全面的に形成される。特許文献2の冷間圧接接合させた金属層は活性光起電性セル層の上部に全面的に形成される。特許文献3の金属バッキング層は活性層上に全面的に形成される。そのため、これらの方法で製造した太陽電池は受光面と反対側に光が透過する構成にはなっていない。
 したがって、特許文献1、特許文献2および特許文献3に記載の方法を両面採光型太陽電池やメカニカルスタックの上部太陽電池の製造に適用することができないという問題がある。
 本発明は、上記のような現状に鑑みてなされたものであり、その目的とするところは、受光面と反対側に光が透過する薄膜化合物太陽電池および薄膜化合物太陽電池アレイを提供することである。
 上記課題を解決するため、本発明は、複数の化合物半導体層からなる太陽電池積層体と、太陽電池積層体の受光側の第1表面の一部に形成され、第1の極性を有する第1電極と、太陽電池積層体の受光側の第1表面とは異なる第2表面に形成され、第2の極性を有する第2電極と、太陽電池積層体の受光側と反対側の表面の一部に形成され、第2の極性を有する第3電極と、を含むセル本体と、セル本体の受光側と反対側に形成された樹脂膜とを備え、太陽電池積層体は、PN接合層を有するセル層と該セル層の受光面と反対側の表面の一部に形成されたコンタクト層とを含み、第3電極はコンタクト層上に形成される、薄膜化合物太陽電池薄膜化合物太陽電池とする。
 また、上記薄膜化合物太陽電池を複数備え、これらの薄膜化合物太陽電池が電気的に接続された薄膜化合物太陽電池ストリングと、薄膜化合物太陽電池ストリングの受光側に配置された表面保護部材と、薄膜化合物太陽電池ストリングの受光側と反対側に配置された裏面保護部材とを備える、薄膜化合物太陽電池アレイとする。
 本発明は、上記のような構成を有することにより、受光面と反対側に光が透過する薄膜化合物太陽電池および薄膜太陽電池アレイを提供する。
実施の形態1の化合物太陽電池の模式的な断面図であって、(a)は表面側から見た模式的な平面図であり、(b)は裏面側から見た模式的な平面図である。 実施の形態1の化合物太陽電池の模式的な断面図であって、(a)は図1(a)に示すA-A線に沿った断面図であり、(b)は図1(a)に示すB-B線に沿った断面図である。 実施の形態2の化合物太陽電池の模式的な断面図であって、(a)は表面側から見た模式的な平面図であり、(b)は裏面側から見た模式的な平面図である。 実施の形態2の化合物太陽電池の模式的な断面図であって、(a)は図3(a)に示すA-A線に沿った断面図であり、(b)は図3(a)に示すB-B線に沿った断面図である。 実施の形態3の化合物太陽電池の模式的な断面図であって、(a)は表面側から見た模式的な平面図であり、(b)は裏面側から見た模式的な平面図である。 実施の形態3の化合物太陽電池の模式的な断面図であって、(a)は図5(a)に示すA-A線に沿った断面図であり、(b)は図5(a)に示すB-B線に沿った断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態4の薄膜化合物太陽電池の製造方法の一例の製造工程の他の一部を図解する模式的な断面図である。 実施の形態5の薄膜化合物太陽電池アレイの模式的な断面図である。 実施の形態6の薄膜化合物太陽電池アレイの模式的な断面図である。 実施の形態6の薄膜化合物太陽電池アレイの他の構成の模式的な断面図である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、実施の形態の図面において、同一の参照符号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わすものではない。また、受光側のことを表面側といい、受光側と反対側のことを裏面側ということもある。
  (実施の形態1)
 図1および図2に、本発明の薄膜化合物太陽電池の一例である実施の形態1の化合物太陽電池の模式的な図を示す。図1(a)は表面側から見た模式的な平面図であり、図1(b)は裏面側から見た模式的な平面図であり、図2(a)は図1(a)に示すA-A線に沿った断面図であり、図2(b)は図1(a)に示すB-B線に沿った断面図である。
 図1および図2に示すように、実施の形態1の薄膜化合物太陽電池は、セル本体10とセル本体10の受光側と反対側に形成された樹脂膜15とを備える。セル本体10は、太陽電池積層体50と、第1の極性を有する第1電極11と、第2の極性を有する第2電極12と、第2の極性を有する第3電極13を備える。第1電極11は、太陽電池積層体50の受光側の第1表面100の一部に形成される。第2電極12は、太陽電池積層体50の受光側の第1表面100とは異なる第2表面200に形成される。第3電極13は、太陽電池積層体50の受光側と反対側の表面の一部に形成される。太陽電池積層体50は、PN接合層を有するセル層とセル層の受光面と反対側の表面の一部に形成されたコンタクト層14とを含み、複数の化合物半導体層からなる。
 実施の形態1の太陽電池積層体50は、セル層として、トップセル30およびボトムセル40を含む。トップセル30はボトムセル40に対して受光面側に形成されている。トップセル30に形成されている光電変換層の禁制帯幅(第1の禁制帯幅)は、ボトムセル40に形成されている光電変換層の禁制帯幅(第2の禁制帯幅)よりも大きい。トップセル30およびボトムセル40は、それぞれ、窓層、ベース層、エミッタ層および裏面電界層(BSF層)を有する。ベース層およびエミッタ層の接合によって、PN接合が形成される。トップセル30およびボトムセル40は、GaAs系化合物からなることが好ましく、PN接合層であるベース層およびエミッタ層はGaAs系化合物半導体からなる。たとえば、トップセル30のPN接合層はInGaPであり、ボトムセル40のPN接合層はGaAsである。ボトムセル40は、裏面側から順にp型InGaPからなるBSF層41、p型GaAsからなるベース層、n型GaAsからなるエミッタ層およびn型InGaPからなる窓層から構成されている。トップセル30とボトムセル40の間にトンネル接合層を備えていてもよく、たとえば、トンネル接合層は、ボトムセル40側から順に、n+型InGaP層、p+型AlGaAs層から構成されている。トップセル30は、ボトムセル40側から順に、p型AlInPからなるBSF層、p型InGaPからなるベース層、n型InGaPからなるエミッタ層、n型AlInPからなる窓層から構成されている。トップセル30の受光側の第1電極11が形成される領域の窓層上にコンタクト層を形成してもよく、たとえば、n型GaAsである。また、第1電極11が形成される領域以外の窓層上に反射防止膜を形成してもよく、たとえば、Al/TiOである。
 太陽電池積層体50は、受光側に、第1表面100と第1表面100とは異なる第2表面200を有し、第1表面100と第2表面200は互いに異なる層の表面からなる。たとえば、第1表面100はトップセル30の表面から構成され、第2表面200はボトムセル40のBSF層41の表面から構成される。
 第1電極11は第1表面の一部に形成され、第2電極12は第2表面に形成される。第1電極11と第2電極12は、極性が異なる。実施の形態1では、第1電極11は、トップセル30の受光側に形成され、図1(a)に示すように櫛形形状に形成されている。第1電極11と第2電極12は、配線が接続される取り出し電極である。第1電極11は、金属を含み、たとえば、AuGe/Ni/Au/Agの積層体からなる。第2電極12は、金属を含み、たとえば、Au/Agの積層体からなる。
 第3電極13は、第2電極と同じ極性であり、セル層40の裏面側表面の一部に形成されたコンタクト層14上に形成される。実施の形態1では、第3電極13は、図1(b)に示すように櫛形形状に形成されている。第3電極13は、セル層で発生した電流を収集するための電極であり、電気抵抗を低く抑えることができる。第3電極13は、金属を含み、たとえば、Au/Agの積層体からなる。第3電極13は、第1電極11に対応した位置に配置してもよい。第3電極13と第1電極の位置を合わせることで、太陽電池積層体50の受光領域と、太陽電池積層体50から透過光が射出される領域を合わせることができる。
 コンタクト層14は、セル層40の裏面側表面の一部に形成される。言い換えれば、セル層40の裏面側表面には、コンタクト層14が配置されない領域が形成される。コンタクト層14が配置されない領域では、コンタクト層14による光吸収の影響を受けない。そのため、第3電極13を太陽電池積層体50の裏面側表面の一部に形成するだけでなく、コンタクト層14も太陽電池積層体50の裏面側表面の一部に形成することで、裏面に光が透過しやすくなる。実施の形態1では、コンタクト層14は、ボトムセルのBSF層41上に櫛形形状に形成されている。コンタクト層14は、たとえば、GaAsである。
 セル本体10は、太陽電池積層体50、第1電極11、第2電極12および第3電極13を備える。セル本体10の裏面側には、樹脂膜15が形成される。
 樹脂膜15は、セル本体10の裏面側に形成される支持部材である。樹脂膜15により、太陽電池層50が割れにくくなり、化合物太陽電池の機械的強度は向上する。樹脂膜15は、可とう性であることが好ましい。材料は、たとえば、ポリイミド(PI)を用いることができる。樹脂膜15の厚みは、たとえば、5~20μm程度とすることができる。樹脂膜15は、光透過性であり、少なくとも、セル本体10または他の太陽電池の発電に寄与する波長の光を透過する。実施の形態1の薄膜化合物太陽電池の裏面側に他の太陽電池が配置される場合であれば、樹脂膜15は、少なくとも裏面側に配置される太陽電池の吸収波長の光を透過すればよい。実施の形態1の樹脂膜15は、可とう性ポリイミド(PI)である。
 このように、実施の形態1の薄膜化合物太陽電池は、第3電極13がセル層40の裏面側の一部に形成され、セル本体10の裏面側に設けられる絶縁膜15が光透過性であることから、受光面と反対側に光が透過させることができる。また、コンタクト層14もセル層40の裏面側の一部にしか形成されないため、光透過性が向上する。したがって、実施の形態1の薄膜化合物太陽電池をメカニカルスタック型太陽電池の光入射側の太陽電池として使用することができる。また、裏面側からも太陽電池積層体50に光が入射するので、実施の形態1の薄膜化合物太陽電池を両面採光型セルとして使用することもできる。
 (その他の構成)
 第2表面200をコンタクト層14の表面としてもよい。この場合、第2電極12は、コンタクト層14の受光側表面に形成される。
 なお、上述の実施の形態における材質は、それぞれ一例であって、上記の材質に限定されないことは言うまでもない。
 また、太陽電池積層体の積層構造も上記の構造に限定されるものではなく、PN接合層を有するセル層を少なくとも1つ備えるものであればよい。
  (実施の形態2)
 図3および図4に、本発明の薄膜化合物太陽電池の一例である実施の形態1の化合物太陽電池の模式的な図を示す。図3(a)は表面側から見た模式的な平面図であり、図3(b)は裏面側から見た模式的な平面図であり、図4(a)は図3(a)に示すA-A線に沿った断面図であり、図4(b)は図3(a)に示すB-B線に沿った断面図である。
 実施の形態2の薄膜化合物太陽電池は、コンタクト層14および第3電極13の形状が実施の形態1の薄膜化合物太陽電池と異なる。その他の構成は、実施の形態1の薄膜化合物太陽電池と同様である。
 実施の形態2のコンタクト層14および第3電極13は、図3(b)に示すように、格子形状である。コンタクト層14および第3電極13がセル層40の裏面側表面の一部に形成され、セル層40の裏面側表面には、コンタクト層14が配置されない領域がある。そのため、裏面側に光が透過するので、実施の形態2の薄膜化合物太陽電池をメカニカルスタック型太陽電池の光入射側の太陽電池として使用することができる。また、裏面からの受光による発電も可能となるので、両面採光型太陽電池として使用することもできる。
  (実施の形態3)
 図5および図6に、本発明の薄膜化合物太陽電池の一例である実施の形態3の化合物太陽電池の模式的な図を示す。図5(a)は表面側から見た模式的な平面図であり、図5(b)は裏面側から見た模式的な平面図であり、図6(a)は図5(a)に示すA-A線に沿った断面図であり、図6(b)は図5(a)に示すB-B線に沿った断面図である。
 実施の形態3の薄膜化合物太陽電池は、コンタクト層14および第3電極13の形状が実施の形態1の薄膜化合物太陽電池と異なる。その他の構成は、実施の形態1の薄膜化合物太陽電池と同様である。
 実施の形態3のコンタクト層14および第3電極13は、図5(b)に示すように、コンタクト層14および第3電極13がセル層40の裏面側表面の一部に形成され、メッシュ形状である。セル層40の裏面側表面には、コンタクト層14および第3電極13が配置されない領域が点在する。そのため、裏面側に光が透過するので、実施の形態2の薄膜化合物太陽電池をメカニカルスタック型太陽電池の光入射側の太陽電池として使用することができる。また、裏面からの受光による発電も可能となるので、両面採光型太陽電池として使用することもできる。
  (実施の形態4)
 実施の形態4は、本発明の薄膜化合物太陽電池の製造方法の一例であり、実施の形態1~3の薄膜化合物太陽電池を製造することができる。以下、図7~図14を参照して、実施の形態4の薄膜化合物太陽電池の製造方法について説明する。
 (太陽電池積層体を形成する工程)
 まず、図7に示すように、半導体基板20上に複数の化合物半導体層を積層することにより太陽電池積層体50を形成する。太陽電池積層体50は、PN接合層を有するセル層(トップセル30、ボトムセル40)とセル層上に積層されたコンタクト層14を含む。
 半導体基板20の材料としては、たとえばゲルマニウム(Ge)や、ガリウム砒素(GaAs)等を挙げることができる。実施の形態4では、半導体基板20(GaAs基板)をMOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)装置内に設置する。このGaAs基板上に、成長面表面を最適化するためのバッファ層となるGaAs層、GaAsと選択エッチングが可能なエッチングストップ層となるn型InGaPからなるエッチングストップ層、コンタクト層となるn型GaAsをこの順にMOCVD法によりエピタキシャル成長させる。
 次に、トップセル30の窓層となるn型AlInP、エミッタ層となるn型InGaP、ベース層となるp型InGaPおよびBSF層となるp型AlInPをこの順にMOCVD法によりエピタキシャル成長させる。
 次に、トップセル30上にp+型AlGaAs層、トンネル接合層となるp+型AlGaAs層およびn+型InGaPをこの順にMOCVD法によりエピタキシャル成長させる。
 次に、トンネル接合層上に、ボトムセル40の窓層となるn型InGaP、エミッタ層となるn型GaAs、ベース層となるp型GaAs、およびBSF層41となるp型InGaPをこの順にMOCVD法によりエピタキシャル成長させる。
 なお、GaAsの形成にはAsH(アルシン)およびTMG(トリメチルガリウム)を用い、InGaPの形成にはTMI(トリメチルインジウム)、TMGおよびPH3(ホスフィン)を用いることができる。
 次に、ボトムセル40上にコンタクト層となるp型GaAs14をMOCVD法によりエピタキシャル成長させる。
 なお、GaAsの形成にはAsH(アルシン)およびTMG(トリメチルガリウム)を用い、InGaPの形成にはTMI(トリメチルインジウム)、TMGおよびPH3(ホスフィン)を用いることができる。
 (コンタクト層をパターニングする工程)
 その後、図8に示すようにコンタクト層14をパターニングし、ボトムセル40上にコンタクト層14が配置されない領域を形成する。コンタクト層14上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応したコンタクト層をエッチング除去することにより、コンタクト層14をパターニングすることができる。
 (第3電極を形成する工程)
 さらにその後、図9に示すようにコンタクト層14上に、第3電極13を形成する。コンタクト層14上に再度フォトリソグラフィによりレジストパターンを形成し、蒸着装置を用いて、Au/Agの積層体を蒸着し、リフトオフすることで、コンタクト層14上に第3電極13を形成することができる。さらに、第3電極を熱処理することで、第3電極とコンタクト層との間の接触抵抗を低下させることができる。第3電極13もコンタクト層14と同様にパターニングされており、ボトムセル40上に第3電極13が配置されない領域が形成される。
 (樹脂膜を形成する工程)
 次に、図10示すように、ボトムセル40および第3電極13上に樹脂膜15を形成する。樹脂膜15は、たとえば、可とう性ポリイミド(PI)であり、ポリイミド溶液をスピンコート法などの方法により塗布し、熱処理によりイミド化することにより形成する。
 (半導体基板を除去する工程)
 次に、図11に示すように、樹脂膜15上に支持基板60(プロセス支持基板)を貼り付け、GaAs基板をエッチング除去する。支持基板60としては、たとえば、紫外光を照射することにより粘着力が低下する粘着材が付着したPETフィルム、または熱を加えることにより粘着力が低下する粘着材が付着した熱発泡フィルムなどを用いることができる。
 (第1電極を形成する工程)
 次に、バッファ層GaAsをアルカリ水溶液にてエッチングした後に、n型InGaPからなるエッチングストップ層を酸水溶液にてエッチングする。(図示せず)そして、トップセル30上のコンタクト層n型GaAs上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応したコンタクト層n型GaAsをアルカリ水溶液によりエッチング除去する。そして、残されたコンタクト層n型GaAsの表面上に再度フォトリソグラフィによりレジストパターンを形成し、蒸着装置を用いて、AuGe/Ni/Au/Agの積層体からなる第1電極11を形成する。さらに、第1電極を熱処理することで、第1電極と第1電極と接する化合物半導体層との間の接触抵抗を低下させることができる。このようにして、トップセル30の受光側面から構成される第1表面100の一部に第1電極11が形成される。
 (第2表面を形成する工程)
 次に、図12に示すように、n型AlGaPからなるトップセル30の窓層上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応した窓層以下をエッチング除去し、ボトムセルのBSF層41であるp型InGaP表面を露出させる。このようにして、ボトムセルの裏面電界層41の受光側面から構成される第2表面200を形成する。
 (第2電極を形成する工程)
 そして、図13に示すように、残されたボトムセルのBSF層41であるp型InGaPの表面上に再度フォトリソグラフィによりレジストパターンを形成し蒸着装置を用いて、Au/Agの積層体からなる第2電極12を形成する。このようにして、第2表面200に第2電極12を形成する。
 次に、トップセル30上にAl/TiOからなる反射防止膜をスパッタリング法で形成する。(図示せず)
 次に、プロセス支持基板60を外す。プロセス支持基板60は、プロセス支持基板60に付着している粘着材の粘着力を低下させて樹脂膜15から剥離する。たとえば、プロセス支持基板60に紫外光を照射することによって、プロセス支持基板60に付着している粘着材の粘着力を低下させて、樹脂膜15からプロセス支持基板60を剥離する。これにより図14に示す構成の化合物太陽電池1が得られる。化合物太陽電池1は、半導体基板20が除去され、樹脂膜15が可とう性であることから、可とう性を有する太陽電池となる。
 (その他の構成)
 半導体基板20と太陽電池積層体50との間に犠牲層を形成してもよい。たとえば、半導体基板上にバッファ層、犠牲層、エッチングストップ層および第1コンタクト層を結晶成長させ、半導体基板20とトップセル30との間に犠牲層を形成する。
 犠牲層は、エッチングされやすい半導体であればいかなるものをも用いることができる。ここで、「犠牲層」は、半導体基板20と太陽電池積層体50との間に設けられるものであって、その層をエッチングなどで除去することにより、半導体基板と太陽電池積層体とを分離するために設けられるものである。このような犠牲層に用いる半導体としては、たとえばAlAsを挙げることができる。AlAsからなる犠牲層を用いる場合、犠牲層をエッチングするためのエッチャントとしては、たとえばフッ酸と水とを1対10の比率で混合したフッ酸水溶液または塩酸を用いることが好ましい。犠牲層をエッチングして除去することにより、半導体基板20と太陽電池積層体50とを分離する。
 エッチングストップ層は、犠牲層がエッチングされるときに太陽電池積層体50およびコンタクト層がエッチャントに曝されないようにするために保護するものである。このようなエッチングストップ層を構成する材料としては、たとえばInGaPを挙げることができる。
 このように、半導体基板と太陽電池層との間に犠牲層を作製し、かかる犠牲層をエッチャントによって除去することにより、半導体基板と太陽電池層とを分離する方法は、エピタキシャルリフトオフと呼ばれる。半導体基板をエッチングにより除去するのではなく、分離するため、半導体基板の再利用も可能となる。
 また、第2表面を形成する工程において、レジストパターンに対応した窓層以下をエッチング除去し、コンタクト層14を露出させてもよい。このようにして、コンタクト層14の受光側面から構成される第2表面200を形成してもよい。この場合、第2電極を形成する工程において、第2電極は、コンタクト層14の受光側面から構成される第2表面200上に形成する。
 以上のように、本実施の形態においては、裏面側にコンタクト層および電極が配置されない領域を有する薄膜化合物太陽電池を製造することができる。
 そのため、本実施の形態においては、裏面側に光が透過する薄膜化合物太陽電池を製造することができる。また、裏面側からの受光により発電可能な両面採光型薄膜化合物太陽電池を製造することができる。
 なお、上述の実施の形態における材質は、それぞれ一例であって、上記の材質に限定されないことは言うまでもない。
 また、半導体基板20上の積層構造も上記の構造に限定されるものではなく、PN接合層を有するセル層を少なくとも1つ備えるものであればよい。
  (実施の形態5)
 図15に、本発明の薄膜化合物太陽電池アレイの一例である実施の形態5の化合物太陽電池アレイの模式的な断面図を示す。
 実施の形態5の薄膜化合物太陽電池アレイ2は、複数の薄膜化合物太陽電池1が互いに電気的に接続された薄膜化合物太陽電池ストリングと、受光側に配置された表面保護部材111と裏面側に配置された裏面保護部材112を備える。以下、薄膜化合物太陽電池およびその製造方法について説明する。
 (薄膜化合物太陽電池ストリングを形成する工程)
 薄膜化合物太陽電池1は、セル層の裏面側にコンタクト層および電極が配置されない領域を有する薄膜化合物太陽電池であり、上述の各実施の形態の薄膜化合物太陽電池を用いることができる。
 複数の薄膜化合物太陽電池1は、配線部材110によって、互いに電気的に接続され、薄膜化合物太陽電池ストリングを形成している。実施の形態5では、図15に示すように隣接する薄膜化合物太陽電池1の第1電極と第2電極が金属リボンなどの配線部材110によって、電気的に接続され、複数の薄膜化合物太陽電池1が直列接続されている。
 ここで、薄膜化合物太陽電池1は、図14に示すように、表面側に第1電極11と第2電極12を備えるため、表面側で電極に配線することができ、配線が容易である。
 (表面保護部材と裏面保護部材を配置する工程)
 薄膜化合物太陽電池ストリングの受光側に表面保護部材111を配置し、受光側と反対側に裏面保護部材113を配置し、透明樹脂112を接着剤としてラミネートする。表面保護部材111および裏面保護部材113としては、透明フィルムやガラスを用いることができ、可とう性であることが好ましい。透明樹脂112としては、シリコーンを用いることができる。表面保護部材と裏面保護部材を可とう性とすることにより、薄膜化合物太陽電池アレイ2は可とう性を有する。
 このように、薄膜化合物太陽電池アレイ2は、裏面側に光が透過する薄膜化合物太陽電池1を用いている。そのため、薄膜化合物太陽電池アレイ2は裏面側に光が透過するので、裏面側に別の太陽電池モジュールを重ねて使用することができる。また、薄膜化合物太陽電池アレイ2は、裏面からの受光による発電も可能となるので、両面採光型薄膜化合物太陽電池アレイとして使用することもできる。
  (実施の形態6)
 図16に、本発明の薄膜化合物太陽電池アレイの一例である実施の形態6の化合物太陽電池アレイの模式的な断面図を示す。
 実施の形態6の薄膜化合物太陽電池アレイ3は、図16に示すように、薄膜化合物太陽電池アレイ2の受光側と反対側に別の太陽電池モジュール120を備える。薄膜化合物太陽電池アレイ2と太陽電池モジュール120とは、電気的に接続される。図16では、薄膜化合物太陽電池アレイ2と別の太陽電池モジュール120は並列接続されている。並列接続する場合は、薄膜化合物太陽電池アレイ2と太陽電池モジュール120の電圧を揃えることが好ましい。薄膜化合物太陽電池アレイ2および太陽電池モジュール120は、それぞれ複数の太陽電池セルが直列接続されているので、これらの太陽電池セルの数を調整することで、電圧を揃えることができる。
 太陽電池モジュール120は、結晶Si太陽電池モジュール、Ge太陽電池モジュール、CIGS系太陽電池モジュールなどである。これらを組み合わせて用いてもよく、たとえば、結晶Si太陽電池モジュールとGe太陽電池モジュールを重ねてもよい。
 実施の形態6では、太陽電池アレイ2の裏面側に別の太陽電池モジュール120としてCIGS系太陽電池モジュールが配置されている。
 太陽電池モジュール120は、図16に示すように、基材121と、太陽電池層122、接着剤123、表面部材124を有している。太陽電池層122は、基板121上に下部電極層125、光吸収層126、高抵抗バッファ層127および上部電極層128が順次積層されてなる。
 基材121および表面部材124としては、透明フィルムやガラスを用いることができ、可とう性であることが好ましい。接着剤123は、透明樹脂であればよく、シリコーンを用いることができる。実施の形態6では、基材121および表面部材124が可とう性であることにより、太陽電池モジュール120は可とう性を有する。
 太陽電池層122について、たとえば、下部電極層125はMo、光吸収層126は銅・インジウム・ガリウム・セレンを含むCIGS、高抵抗バッファ層127はInS、ZnS、CdS等、上部電極層128はITOとすることができる。実施の形態6では、下部電極層125はMo、光吸収層126はp-CuInGaSeおよびp-CuInGaSeSとの積層、高抵抗バッファ層127はZnOSOH、上部電極層128はZnOである。
 このように、太陽電池モジュール120が可とう性であるため、薄膜化合物太陽電池アレイ3は可とう性を有し、宇宙用太陽電池アレイとして適している。また、太陽電池モジュール120は、CIGS系であるため電子線による劣化はほとんど起こらず、受光側に配置された薄膜化合物太陽電池アレイ2が陽子線を防ぐため、宇宙環境で重要な耐放射性を備える。
 また、薄膜化合物太陽電池アレイ2と太陽電池モジュール120の電圧を揃えるとき、たとえば、薄膜化合物太陽電池アレイ2が、2.45Vの薄膜化合物太陽電池が5個直列接続されている構成であれば、薄膜化合物太陽電池アレイ2の電圧は、12.25Vとなる。このとき、太陽電池モジュール120のセル1つあたりの電圧が0.65Vであるとすると、20直列にすればよい。CIGS系太陽電池のような薄膜太陽電池であれば、直列数を調整しやすい。
 (その他の構成)
 図17に、本発明の薄膜化合物太陽電池アレイの一例である実施の形態6の化合物太陽電池アレイの他の構成の模式的な断面図を示す。
 図17に示すように、薄膜化合物太陽電池アレイ4の太陽電池モジュール120は、太陽電池層122上に接着剤123を介して、薄膜化合物太陽電池アレイ2が配置されている。
 薄膜化合物太陽電池アレイ4は、基材121上に形成された太陽電池層122上に接着剤123と薄膜化合物太陽電池アレイ2とを配置して、ラミネートすることで形成される。このようにすることで、実施の形態6の表面部材124を省略することができる。また、薄膜化合物太陽電池アレイ2と太陽電池モジュール120を容易に一体化できる。
 なお、上述の実施の形態における材質は、それぞれ一例であって、上記の材質に限定されないことは言うまでもない。
 以上のように本発明の実施の形態について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 薄膜化合物太陽電池
 2 薄膜化合物太陽電池アレイ
 10 セル本体
 11 第1電極
 12 第2電極
 13 第3電極
 14 コンタクト層
 15 樹脂膜
 20 半導体基板
 30 トップセル
 40 ボトムセル
 41 ボトムセルBSF層
 50 太陽電池積層体
 60 プロセス支持基板
 100 第1表面
 120 太陽電池モジュール
 200 第2表面

Claims (9)

  1.  複数の化合物半導体層からなる太陽電池積層体と、
     前記太陽電池積層体の受光側の第1表面の一部に形成され、第1の極性を有する第1電極と、
     前記太陽電池積層体の受光側の前記第1表面とは異なる第2表面に形成され、第2の極性を有する第2電極と、
     前記太陽電池積層体の受光側と反対側の表面の一部に形成され、第2の極性を有する第3電極と、を含むセル本体と、
     前記セル本体の受光側と反対側に形成された樹脂膜とを備え、
     前記太陽電池積層体は、PN接合層を有するセル層と該セル層の受光面と反対側の表面の一部に形成されたコンタクト層とを含み、
     前記第3電極は前記コンタクト層上に形成される、薄膜化合物太陽電池。
  2.  前記セル層は、窓層、ベース層、エミッタ層および裏面電界層を有し、
     前記第2表面は、前記裏面電界層の表面である、請求項1に記載の薄膜化合物太陽電池。
  3.  前記第2表面は、前記コンタクト層の表面である、請求項1に記載の薄膜化合物太陽電池。
  4.  前記PN接合層はGaAs系化合物半導体からなる、請求項1~3のいずれかに記載の薄膜化合物太陽電池。
  5.  請求項1~4のいずれかに記載の薄膜化合物太陽電池を複数備え、これらの薄膜化合物太陽電池が互いに電気的に接続された薄膜化合物太陽電池ストリングと、
     前記薄膜化合物太陽電池ストリングの受光側に配置された表面保護部材と、
     前記薄膜化合物太陽電池ストリングの受光側と反対側に配置された裏面保護部材とを備える、薄膜化合物太陽電池アレイ。
  6.  前記裏面保護部材の受光側と反対側に太陽電池モジュールをさらに備える、請求項5に記載の薄膜化合物太陽電池アレイ。
  7.  前記太陽電池モジュールはCIGS系太陽電池モジュールである、請求項6に記載の薄膜化合物太陽電池アレイ。
  8.  半導体基板上に複数の化合物半導体層を積層することにより、PN接合層を有するセル層と該セル層上に積層されたコンタクト層を含む太陽電池積層体を形成する工程と、
     前記コンタクト層をパターニングする工程と、
     前記コンタクト層上に第3電極を形成する工程と、
     前記太陽電池積層体および前記第3電極上に樹脂膜を形成する工程と、
     前記半導体基板を除去する工程と、
     前記半導体基板を除去する工程により形成された前記太陽電池積層体の第1表面の一部に第1電極を形成する工程と、
     前記太陽電池積層体の一部を除去することにより前記太陽電池積層体に第2表面を形成する工程と、
     前記第2表面上に第2電極を形成する工程を含む、薄膜化合物太陽電池の製造方法。
  9.  請求項5に記載の薄膜化合物太陽電池アレイの受光側と反対側にCIGS系太陽電池モジュールを配置する工程と、
     前記薄膜化合物太陽電池アレイと前記CIGS系太陽電池モジュールとを電気的に接続する工程を備える、薄膜化合物太陽電池アレイの製造方法。
PCT/JP2016/077309 2015-09-28 2016-09-15 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 WO2017057029A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017543127A JPWO2017057029A1 (ja) 2015-09-28 2016-09-15 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
CN201680056708.6A CN108140679A (zh) 2015-09-28 2016-09-15 薄膜化合物太阳电池、薄膜化合物太阳电池的制造方法、薄膜化合物太阳电池阵列及薄膜化合物太阳电池阵列的制造方法
DE112016004374.0T DE112016004374T5 (de) 2015-09-28 2016-09-15 Dünnschicht-Verbindungshalbleiter-Photovoltaikzelle, Verfahren zum Herstellen einer Dünnschicht-Verbindungshalbleiter-Photovoltaikzelle, Dünnschicht-Verbindungshalbleiter-Photovoltaikzellenanordnung und Herstellungsverfahren hierfür
US15/761,903 US20180233612A1 (en) 2015-09-28 2016-09-15 Thin-film compound photovoltaic cell, method for manufacturing thin-film compound photovoltaic cell, thin-film compound photovoltaic cell array, and method for manufacturing thin-film compound photovoltaic cell array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-189365 2015-09-28
JP2015189365 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017057029A1 true WO2017057029A1 (ja) 2017-04-06

Family

ID=58427551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077309 WO2017057029A1 (ja) 2015-09-28 2016-09-15 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法

Country Status (5)

Country Link
US (1) US20180233612A1 (ja)
JP (1) JPWO2017057029A1 (ja)
CN (1) CN108140679A (ja)
DE (1) DE112016004374T5 (ja)
WO (1) WO2017057029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537815A (ja) * 2018-08-09 2020-12-24 中国科学院蘇州納米技術与納米▲ファン▼生研究所 フレキシブル太陽電池及びその製造方法
WO2022259461A1 (ja) * 2021-06-10 2022-12-15 株式会社東芝 タンデム太陽電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474197B2 (ja) * 2018-10-03 2024-04-24 株式会社カネカ 太陽電池セル、太陽電池ストリング、太陽電池モジュール
WO2022059134A1 (ja) * 2020-09-17 2022-03-24 株式会社東芝 太陽電池、および太陽電池システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344724A (ja) * 2005-06-08 2006-12-21 Sharp Corp 太陽電池および太陽電池の製造方法
JP2008153429A (ja) * 2006-12-18 2008-07-03 Sharp Corp 太陽電池およびその製造方法
WO2011078378A1 (ja) * 2009-12-25 2011-06-30 シャープ株式会社 多接合型化合物半導体太陽電池
US20150236182A1 (en) * 2011-11-20 2015-08-20 Solexel, Inc. Smart photovoltaic cells and modules

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554772A (en) 1978-10-16 1980-04-22 Hitachi Ltd Water seal construction of spherical valve
JPS5576243A (en) 1978-11-30 1980-06-09 Nissan Motor Co Ltd Band servo of automatic change gear
US20060180198A1 (en) * 2005-02-16 2006-08-17 Sharp Kabushiki Kaisha Solar cell, solar cell string and method of manufacturing solar cell string
US8138410B2 (en) * 2008-10-01 2012-03-20 International Business Machines Corporation Optical tandem photovoltaic cell panels
US8835748B2 (en) * 2009-01-06 2014-09-16 Sunlight Photonics Inc. Multi-junction PV module
EP2403003B1 (en) * 2009-02-26 2018-10-03 Sharp Kabushiki Kaisha Method for manufacturing thin film compound solar cell
AU2012280933A1 (en) 2011-07-06 2014-01-23 The Regents Of The University Of Michigan Integrated solar collectors using epitaxial lift off and cold weld bonded semiconductor solar cells
JP5851872B2 (ja) * 2012-02-10 2016-02-03 シャープ株式会社 化合物半導体太陽電池の製造方法
JP2014103305A (ja) * 2012-11-21 2014-06-05 Sharp Corp 太陽電池素子およびその製造方法
US20160365466A1 (en) * 2013-04-29 2016-12-15 Solaero Technologies Corp. Inverted metamorphic multijunction solar subcells coupled with germanium bottom subcell
JP6269246B2 (ja) 2014-03-28 2018-01-31 トヨタ自動車株式会社 前部車体構造
CN104505406B (zh) * 2014-12-29 2017-08-25 苏州强明光电有限公司 一种GaAs双面薄膜太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344724A (ja) * 2005-06-08 2006-12-21 Sharp Corp 太陽電池および太陽電池の製造方法
JP2008153429A (ja) * 2006-12-18 2008-07-03 Sharp Corp 太陽電池およびその製造方法
WO2011078378A1 (ja) * 2009-12-25 2011-06-30 シャープ株式会社 多接合型化合物半導体太陽電池
US20150236182A1 (en) * 2011-11-20 2015-08-20 Solexel, Inc. Smart photovoltaic cells and modules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537815A (ja) * 2018-08-09 2020-12-24 中国科学院蘇州納米技術与納米▲ファン▼生研究所 フレキシブル太陽電池及びその製造方法
WO2022259461A1 (ja) * 2021-06-10 2022-12-15 株式会社東芝 タンデム太陽電池
JP7521121B2 (ja) 2021-06-10 2024-07-23 株式会社東芝 タンデム太陽電池

Also Published As

Publication number Publication date
DE112016004374T5 (de) 2018-06-14
CN108140679A (zh) 2018-06-08
JPWO2017057029A1 (ja) 2018-07-19
US20180233612A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP5203397B2 (ja) 太陽電池の製造方法
US10069033B2 (en) Integration of epitaxial lift-off solar cells with mini-parabolic concentrator arrays via printing method
JP5414010B2 (ja) 多接合型化合物太陽電池セル、多接合型化合物太陽電池およびその製造方法
JP4974545B2 (ja) 太陽電池ストリングの製造方法
WO2017057029A1 (ja) 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
JP2010245176A (ja) 太陽電池シートアレイの製造方法および太陽電池シートアレイ
CN103022058A (zh) 多结太阳能电池、化合物半导体器件、光电转换元件和化合物半导体层叠层结构体
WO2018192199A1 (zh) 多结叠层激光光伏电池及其制作方法
JP5548878B2 (ja) 多接合型光学素子
TW201318189A (zh) 化合物半導體太陽能電池製造用積層體、化合物半導體太陽能電池及其製造方法
JP2002289884A (ja) 太陽電池、太陽電池装置
TWI685124B (zh) 整合非追蹤小型混合拋物線集中器之磊晶剝離加工GaAs薄膜太陽能電池
JP5360818B2 (ja) タンデム太陽電池及びその生産方法
KR20180067620A (ko) 태양전지 셀과 그 제조 방법 및 이로 구성된 태양전지 모듈
Ding et al. Thin-film iii–v single junction and multijunction solar cells and their integration onto heterogeneous substrates
JP5341297B2 (ja) 化合物単結晶太陽電池および化合物単結晶太陽電池の製造方法
JP6616632B2 (ja) 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
KR102244274B1 (ko) GaAs 기반 양면 태양전지 제조 방법
JP2013004886A (ja) 太陽電池
JP2012256711A (ja) 集光型太陽電池およびその製造方法
JP2013175632A (ja) 化合物半導体太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761903

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004374

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851203

Country of ref document: EP

Kind code of ref document: A1