WO2017057029A1 - 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 - Google Patents
薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 Download PDFInfo
- Publication number
- WO2017057029A1 WO2017057029A1 PCT/JP2016/077309 JP2016077309W WO2017057029A1 WO 2017057029 A1 WO2017057029 A1 WO 2017057029A1 JP 2016077309 W JP2016077309 W JP 2016077309W WO 2017057029 A1 WO2017057029 A1 WO 2017057029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- layer
- film compound
- thin film
- compound solar
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 139
- 239000010409 thin film Substances 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 210000004027 cell Anatomy 0.000 claims abstract description 289
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 210000005056 cell body Anatomy 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims description 47
- 239000010408 film Substances 0.000 claims description 28
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 23
- -1 GaAs compound Chemical class 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims description 2
- 239000002985 plastic film Substances 0.000 abstract 1
- 229920006255 plastic film Polymers 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 190
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 21
- 238000005530 etching Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000004642 Polyimide Substances 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 6
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
- H01L31/0468—PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0322—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/043—Mechanically stacked PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0687—Multiple junction or tandem solar cells
- H01L31/06875—Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a thin film compound solar cell, a method for manufacturing a thin film compound solar cell, a thin film compound solar cell array, and a method for manufacturing a thin film compound solar cell array.
- the substrate is removed by etching or epitaxial lift-off.
- Patent Document 1 The process of removing the substrate by etching is disclosed in, for example, Japanese Patent No. 5554772 (Patent Document 1).
- Patent Document 1 a cell body composed of a plurality of compound semiconductor layers is formed on a substrate, a back electrode is formed on the cell body, a back film as a base material is formed on the back electrode, and a reinforcing material is formed on the back film. Is attached and the substrate is separated from the cell body.
- the epitaxial lift-off means that a sacrificial layer is produced between the substrate and the compound semiconductor layer, and the sacrificial layer is removed by an etchant to separate the substrate and the compound semiconductor layer.
- JP-T-2014-523132 Patent Document 2
- Patent No. 5576243 Patent Document 3 disclose an epitaxial lift-off process.
- Patent Document 2 discloses that one or more first protective layers are grown on a first substrate, an AlAs layer is grown, and one or more second protective layers are grown. Depositing at least one active photovoltaic cell layer on the second protective layer, coating the top of the active photovoltaic cell layer with metal, and coating the second substrate with metal. And a method of performing an epitaxial lift-off process that includes pressing two metal surfaces together for cold pressure bonding and removing the AlAs layer by selective chemical etching. Further, Patent Document 3 discloses that the active layer is formed on the active layer and in direct contact with the active layer to form a metal backing layer and separate the III-V compound thin film solar cell from the substrate. A method for processing a III-V compound thin film solar cell is described which includes the step of removing the sacrificial layer from between the layer and the substrate.
- Patent Document 1 The back electrode of Patent Document 1 is formed entirely on the cell body.
- the metal layer that has been cold-welded in Patent Document 2 is formed entirely on the active photovoltaic cell layer.
- the metal backing layer of Patent Document 3 is formed entirely on the active layer. Therefore, the solar cell manufactured by these methods is not configured to transmit light to the side opposite to the light receiving surface.
- Patent Document 1 Patent Document 2
- Patent Document 3 cannot be applied to the manufacture of a double-sided solar cell or an upper solar cell of a mechanical stack.
- This invention is made
- the place made into the objective is providing the thin film compound solar cell and thin film compound solar cell array which light permeate
- the present invention provides a solar cell laminate including a plurality of compound semiconductor layers, and a first polarity formed on a part of the first surface on the light receiving side of the solar cell laminate and having a first polarity.
- the thin-film compound solar battery includes a cell layer and a contact layer formed on a part of the surface opposite to the light-receiving surface of the cell layer, and the third electrode is formed on the contact layer.
- a thin film compound solar cell string including a plurality of the thin film compound solar cells, the thin film compound solar cells being electrically connected, a surface protection member disposed on the light receiving side of the thin film compound solar cell string, and the thin film compound It is set as a thin film compound solar cell array provided with the back surface protection member arrange
- the present invention provides a thin-film compound solar cell and a thin-film solar cell array that transmit light to the side opposite to the light-receiving surface by having the above-described configuration.
- FIG. 1 is a schematic cross-sectional view of a compound solar cell according to Embodiment 1, wherein (a) is a cross-sectional view taken along line AA shown in FIG. 1 (a), and (b) is FIG.
- FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIGS. 3A and 3B are schematic cross-sectional views of the compound solar battery of Embodiment 2, in which FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A, and FIG. FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A
- FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A
- FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIG. 3A is a cross-sectional view taken along line AA shown in FIG. 3A
- FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIG. 3A is a typical top view seen from the surface side
- FIG. 6 is a typical plan view seen from the back surface side is there.
- FIG. 5 is a schematic cross-sectional view of a compound solar cell according to Embodiment 3, wherein (a) is a cross-sectional view along the line AA shown in FIG. 5 (a), and (b) is FIG. 5 (a).
- FIG. 6 is a cross-sectional view taken along line BB shown in FIG.
- FIG. 10 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the thin film compound solar battery according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- FIG. 10 is a schematic cross-sectional view illustrating another part of the manufacturing process of the example of the method for manufacturing the thin film compound solar cell according to the fourth embodiment.
- 6 is a schematic cross-sectional view of a thin film compound solar cell array according to Embodiment 5.
- FIG. FIG. 10 is a schematic cross-sectional view of a thin film compound solar cell array according to a sixth embodiment.
- FIG. 10 is a schematic cross-sectional view of another configuration of the thin film compound solar cell array according to Embodiment 6.
- the same reference numerals represent the same or corresponding parts.
- dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
- the light receiving side may be referred to as the front side, and the side opposite to the light receiving side may be referred to as the back side.
- FIG. 1A is a schematic plan view seen from the front surface side
- FIG. 1B is a schematic plan view seen from the back surface side
- FIG. 2A is shown in FIG.
- FIG. 2B is a cross-sectional view taken along the line BB shown in FIG. 1A.
- the thin film compound solar battery of Embodiment 1 includes a cell body 10 and a resin film 15 formed on the side opposite to the light receiving side of the cell body 10.
- the cell body 10 includes a solar cell stack 50, a first electrode 11 having a first polarity, a second electrode 12 having a second polarity, and a third electrode 13 having a second polarity.
- the first electrode 11 is formed on a part of the first surface 100 on the light receiving side of the solar cell stack 50.
- the second electrode 12 is formed on a second surface 200 different from the first surface 100 on the light receiving side of the solar cell stack 50.
- the third electrode 13 is formed on a part of the surface of the solar cell stack 50 opposite to the light receiving side.
- the solar cell stack 50 includes a cell layer having a PN junction layer and a contact layer 14 formed on a part of the surface opposite to the light receiving surface of the cell layer, and is composed of a plurality of compound semiconductor layers.
- Solar cell stacked body 50 of the first embodiment includes top cell 30 and bottom cell 40 as cell layers.
- the top cell 30 is formed on the light receiving surface side with respect to the bottom cell 40.
- the forbidden band width (first forbidden band width) of the photoelectric conversion layer formed in the top cell 30 is larger than the forbidden band width (second forbidden band width) of the photoelectric conversion layer formed in the bottom cell 40.
- the top cell 30 and the bottom cell 40 each have a window layer, a base layer, an emitter layer, and a back surface field layer (BSF layer).
- a PN junction is formed by joining the base layer and the emitter layer.
- the top cell 30 and the bottom cell 40 are preferably made of a GaAs compound, and the base layer and the emitter layer, which are PN junction layers, are made of a GaAs compound semiconductor.
- the PN junction layer of the top cell 30 is InGaP
- the PN junction layer of the bottom cell 40 is GaAs.
- the bottom cell 40 includes a BSF layer 41 made of p-type InGaP, a base layer made of p-type GaAs, an emitter layer made of n-type GaAs, and a window layer made of n-type InGaP in this order from the back side.
- a tunnel junction layer may be provided between the top cell 30 and the bottom cell 40.
- the tunnel junction layer includes an n + -type InGaP layer and a p + -type AlGaAs layer in order from the bottom cell 40 side.
- the top cell 30 includes, in order from the bottom cell 40 side, a BSF layer made of p-type AlInP, a base layer made of p-type InGaP, an emitter layer made of n-type InGaP, and a window layer made of n-type AlInP.
- a contact layer may be formed on the window layer in the region where the first electrode 11 on the light receiving side of the top cell 30 is formed, and is, for example, n-type GaAs.
- an antireflection film may be formed on the window layer other than the region where the first electrode 11 is formed, for example, Al 2 O 3 / TiO 2 .
- the solar cell stack 50 has a second surface 200 different from the first surface 100 and the first surface 100 on the light receiving side, and the first surface 100 and the second surface 200 are composed of surfaces of different layers.
- the first surface 100 is composed of the surface of the top cell 30, and the second surface 200 is composed of the surface of the BSF layer 41 of the bottom cell 40.
- the first electrode 11 is formed on a part of the first surface, and the second electrode 12 is formed on the second surface.
- the first electrode 11 and the second electrode 12 have different polarities.
- the first electrode 11 is formed on the light receiving side of the top cell 30 and is formed in a comb shape as shown in FIG.
- the first electrode 11 and the second electrode 12 are extraction electrodes to which wiring is connected.
- the first electrode 11 contains a metal and is made of, for example, a laminate of AuGe / Ni / Au / Ag.
- the second electrode 12 includes a metal, and is made of, for example, an Au / Ag laminate.
- the third electrode 13 has the same polarity as the second electrode, and is formed on the contact layer 14 formed on a part of the back surface side surface of the cell layer 40.
- the third electrode 13 is formed in a comb shape as shown in FIG.
- the third electrode 13 is an electrode for collecting a current generated in the cell layer, and can suppress electric resistance to a low level.
- the third electrode 13 includes a metal and is made of, for example, a laminate of Au / Ag.
- the third electrode 13 may be disposed at a position corresponding to the first electrode 11.
- the contact layer 14 is formed on a part of the back side surface of the cell layer 40. In other words, a region where the contact layer 14 is not disposed is formed on the back surface of the cell layer 40. In the region where the contact layer 14 is not disposed, it is not affected by light absorption by the contact layer 14. Therefore, not only the third electrode 13 is formed on a part of the back surface side surface of the solar cell stack 50, but also the contact layer 14 is formed on a part of the back surface side surface of the solar cell stack 50, thereby Light is easily transmitted.
- the contact layer 14 is formed in a comb shape on the BSF layer 41 of the bottom cell.
- the contact layer 14 is, for example, GaAs.
- the cell body 10 includes a solar cell stack 50, a first electrode 11, a second electrode 12, and a third electrode 13.
- a resin film 15 is formed on the back side of the cell body 10.
- the resin film 15 is a support member formed on the back side of the cell body 10.
- the resin film 15 makes it difficult for the solar cell layer 50 to break, and the mechanical strength of the compound solar cell is improved.
- the resin film 15 is preferably flexible.
- polyimide (PI) can be used as the material.
- the thickness of the resin film 15 can be about 5 to 20 ⁇ m, for example.
- the resin film 15 is light transmissive and transmits at least light having a wavelength that contributes to power generation of the cell body 10 or other solar battery. If another solar cell is disposed on the back surface side of the thin film compound solar cell of the first embodiment, the resin film 15 may transmit at least light having the absorption wavelength of the solar cell disposed on the back surface side. .
- the resin film 15 in the first embodiment is made of flexible polyimide (PI).
- the third electrode 13 is formed on a part of the back side of the cell layer 40, and the insulating film 15 provided on the back side of the cell body 10 is light transmissive. For this reason, light can be transmitted to the side opposite to the light receiving surface.
- the contact layer 14 is formed only on a part of the back surface side of the cell layer 40, the light transmittance is improved. Therefore, the thin film compound solar cell of Embodiment 1 can be used as a solar cell on the light incident side of the mechanical stack type solar cell.
- the thin film compound solar cell of Embodiment 1 can also be used as a double-sided daylighting cell.
- the second surface 200 may be the surface of the contact layer 14.
- the second electrode 12 is formed on the light receiving side surface of the contact layer 14.
- the laminated structure of the solar cell laminate is not limited to the above-described structure, and any structure having at least one cell layer having a PN junction layer may be used.
- FIG. 3 and 4 are schematic views of the compound solar battery of Embodiment 1 which is an example of the thin film compound solar battery of the present invention.
- 3A is a schematic plan view seen from the front side
- FIG. 3B is a schematic plan view seen from the back side
- FIG. 4A is shown in FIG.
- FIG. 4B is a cross-sectional view taken along the line BB shown in FIG. 3A.
- the thin film compound solar cell of Embodiment 2 is different from the thin film compound solar cell of Embodiment 1 in the shapes of the contact layer 14 and the third electrode 13. Other configurations are the same as those of the thin film compound solar cell of the first embodiment.
- the contact layer 14 and the third electrode 13 of the second embodiment have a lattice shape.
- the contact layer 14 and the third electrode 13 are formed on a part of the back side surface of the cell layer 40, and there is a region where the contact layer 14 is not disposed on the back side surface of the cell layer 40. Therefore, since light is transmitted to the back surface side, the thin film compound solar cell of Embodiment 2 can be used as a solar cell on the light incident side of the mechanical stack type solar cell. In addition, since power generation by light reception from the back surface is possible, it can be used as a double-sided solar cell.
- FIG. 5A is a schematic plan view seen from the front side
- FIG. 5B is a schematic plan view seen from the back side
- FIG. 6A is shown in FIG.
- FIG. 6B is a cross-sectional view taken along the line BB shown in FIG. 5A.
- the thin film compound solar cell of Embodiment 3 is different from the thin film compound solar cell of Embodiment 1 in the shapes of the contact layer 14 and the third electrode 13. Other configurations are the same as those of the thin film compound solar cell of the first embodiment.
- the contact layer 14 and the third electrode 13 of the third embodiment are formed in a mesh shape with the contact layer 14 and the third electrode 13 formed on a part of the back surface side surface of the cell layer 40. It is. A region where the contact layer 14 and the third electrode 13 are not disposed is dotted on the back surface of the cell layer 40. Therefore, since light is transmitted to the back surface side, the thin film compound solar cell of Embodiment 2 can be used as a solar cell on the light incident side of the mechanical stack type solar cell. In addition, since power generation by light reception from the back surface is possible, it can be used as a double-sided solar cell.
- Embodiment 4 is an example of a method for manufacturing a thin film compound solar cell of the present invention, and the thin film compound solar cell of Embodiments 1 to 3 can be manufactured.
- a method for manufacturing the thin film compound solar cell of Embodiment 4 will be described with reference to FIGS.
- a solar cell stack 50 is formed by stacking a plurality of compound semiconductor layers on a semiconductor substrate 20.
- the solar cell stack 50 includes a cell layer (top cell 30 and bottom cell 40) having a PN junction layer and a contact layer 14 stacked on the cell layer.
- the material of the semiconductor substrate 20 examples include germanium (Ge) and gallium arsenide (GaAs).
- the semiconductor substrate 20 (GaAs substrate) is placed in a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus.
- MOCVD Metal Organic Chemical Vapor Deposition
- a GaAs layer serving as a buffer layer for optimizing the growth surface
- an etching stop layer composed of n-type InGaP serving as an etching stop layer capable of selective etching with GaAs
- an n-type GaAs serving as a contact layer.
- n-type AlInP serving as a window layer of the top cell 30 n-type InGaP serving as an emitter layer, p-type InGaP serving as a base layer, and p-type AlInP serving as a BSF layer are epitaxially grown in this order by MOCVD.
- a p + type AlGaAs layer, a p + type AlGaAs layer serving as a tunnel junction layer, and an n + type InGaP are epitaxially grown in this order on the top cell 30 by the MOCVD method.
- the n-type InGaP serving as the window layer of the bottom cell 40, the n-type GaAs serving as the emitter layer, the p-type GaAs serving as the base layer, and the p-type InGaP serving as the BSF layer 41 are formed in this order on the tunnel junction layer. To grow epitaxially.
- AsH 3 arsine
- TMG trimethylgallium
- TMI trimethylindium
- TMG and PH 3 phosphine
- p-type GaAs 14 serving as a contact layer is epitaxially grown on the bottom cell 40 by MOCVD.
- AsH 3 arsine
- TMG trimethylgallium
- TMI trimethylindium
- TMG and PH 3 phosphine
- Step of patterning the contact layer Thereafter, as shown in FIG. 8, the contact layer 14 is patterned to form a region where the contact layer 14 is not disposed on the bottom cell 40. After forming a resist pattern on the contact layer 14 by photolithography, the contact layer 14 can be patterned by etching away the contact layer corresponding to the resist pattern.
- a third electrode 13 is formed on the contact layer 14 as shown in FIG.
- the third electrode 13 can be formed on the contact layer 14 by forming a resist pattern on the contact layer 14 again by photolithography, evaporating the Au / Ag laminate using a vapor deposition apparatus, and lifting off. it can. Furthermore, the contact resistance between the third electrode and the contact layer can be reduced by heat-treating the third electrode.
- the third electrode 13 is patterned similarly to the contact layer 14, and a region where the third electrode 13 is not disposed is formed on the bottom cell 40.
- the resin film 15 is formed on the bottom cell 40 and the third electrode 13.
- the resin film 15 is, for example, flexible polyimide (PI), and is formed by applying a polyimide solution by a method such as a spin coating method and imidizing by a heat treatment.
- a support substrate 60 (process support substrate) is attached on the resin film 15, and the GaAs substrate is removed by etching.
- the support substrate 60 for example, a PET film to which an adhesive material whose adhesive strength is reduced by irradiating ultraviolet light is attached, or a thermally foamed film to which an adhesive material whose adhesive strength is reduced by applying heat is attached is used. be able to.
- Step of forming the first electrode Next, after etching the buffer layer GaAs with an alkaline aqueous solution, the etching stop layer made of n-type InGaP is etched with an acid aqueous solution. Then, after forming a resist pattern on the contact layer n-type GaAs on the top cell 30 by photolithography, the contact layer n-type GaAs corresponding to the resist pattern is removed by etching with an alkaline aqueous solution. Then, a resist pattern is formed again by photolithography on the surface of the remaining contact layer n-type GaAs, and the first electrode 11 made of a laminate of AuGe / Ni / Au / Ag is formed using a vapor deposition apparatus.
- the heat resistance of the first electrode can reduce the contact resistance between the first electrode and the compound semiconductor layer in contact with the first electrode.
- the 1st electrode 11 is formed in a part of 1st surface 100 comprised from the light-receiving side surface of the top cell 30.
- Step of forming the second surface Next, as shown in FIG. 12, after forming a resist pattern on the window layer of the top cell 30 made of n-type AlGaP by photolithography, the portion below the window layer corresponding to the resist pattern is etched away, and the BSF layer of the bottom cell The p-type InGaP surface 41 is exposed. Thus, the 2nd surface 200 comprised from the light-receiving side surface of the back surface electric field layer 41 of a bottom cell is formed.
- Step of forming the second electrode Then, as shown in FIG. 13, a resist pattern is formed again on the surface of the p-type InGaP, which is the BSF layer 41 of the remaining bottom cell, by photolithography, and a first layer composed of an Au / Ag laminate is formed using a vapor deposition apparatus. Two electrodes 12 are formed. In this way, the second electrode 12 is formed on the second surface 200.
- an antireflection film made of Al 2 O 3 / TiO 2 is formed on the top cell 30 by a sputtering method.
- the process support substrate 60 is removed.
- the process support substrate 60 is peeled from the resin film 15 by reducing the adhesive force of the adhesive material adhering to the process support substrate 60.
- the process support substrate 60 is peeled from the resin film 15 by irradiating the process support substrate 60 with ultraviolet light to reduce the adhesive force of the adhesive material adhering to the process support substrate 60.
- the compound solar cell 1 having the configuration shown in FIG. 14 is obtained.
- the compound solar cell 1 is a solar cell having flexibility since the semiconductor substrate 20 is removed and the resin film 15 is flexible.
- a sacrificial layer may be formed between the semiconductor substrate 20 and the solar cell stack 50.
- a buffer layer, a sacrificial layer, an etching stop layer, and a first contact layer are grown on the semiconductor substrate to form a sacrificial layer between the semiconductor substrate 20 and the top cell 30.
- any sacrificial layer can be used as long as it is a semiconductor that is easily etched.
- the “sacrificial layer” is provided between the semiconductor substrate 20 and the solar cell stack 50, and the semiconductor substrate and the solar cell stack are separated by removing the layer by etching or the like. It is provided to do.
- An example of a semiconductor used for such a sacrificial layer is AlAs.
- the etching stop layer protects the solar cell stack 50 and the contact layer from being exposed to the etchant when the sacrificial layer is etched.
- a material constituting such an etching stop layer for example, InGaP can be mentioned.
- a method of separating a semiconductor substrate and a solar cell layer by producing a sacrificial layer between the semiconductor substrate and the solar cell layer and removing the sacrificial layer with an etchant is called epitaxial lift-off. Since the semiconductor substrate is not removed by etching but separated, the semiconductor substrate can be reused.
- the contact layer 14 may be exposed by etching away the window layer and the like corresponding to the resist pattern. In this way, the second surface 200 constituted by the light receiving side surface of the contact layer 14 may be formed. In this case, in the step of forming the second electrode, the second electrode is formed on the second surface 200 constituted by the light receiving side surface of the contact layer 14.
- a thin film compound solar cell having a region where the contact layer and the electrode are not disposed on the back surface side can be manufactured.
- a thin film compound solar cell that transmits light to the back surface side can be manufactured.
- the double-sided daylight-emitting thin film compound solar cell capable of generating power by receiving light from the back side can be manufactured.
- the stacked structure on the semiconductor substrate 20 is not limited to the above structure, and any structure having at least one cell layer having a PN junction layer may be used.
- FIG. 15 is a schematic cross-sectional view of the compound solar cell array of Embodiment 5 which is an example of the thin film compound solar cell array of the present invention.
- the thin film compound solar cell array 2 includes a thin film compound solar cell string in which a plurality of thin film compound solar cells 1 are electrically connected to each other, a surface protection member 111 disposed on the light receiving side, and a back surface side.
- the back surface protection member 112 is provided.
- the thin film compound solar cell and the manufacturing method thereof will be described.
- the thin film compound solar cell 1 is a thin film compound solar cell having a region where the contact layer and the electrode are not disposed on the back side of the cell layer, and the thin film compound solar cell of each of the above-described embodiments can be used.
- the plurality of thin film compound solar cells 1 are electrically connected to each other by the wiring member 110 to form a thin film compound solar cell string.
- the first electrode and the second electrode of adjacent thin film compound solar cells 1 are electrically connected by a wiring member 110 such as a metal ribbon, and a plurality of thin film compound solar cells 1. Are connected in series.
- the thin film compound solar cell 1 since the thin film compound solar cell 1 includes the first electrode 11 and the second electrode 12 on the surface side, the thin film compound solar cell 1 can be wired to the electrode on the surface side, and wiring is easy.
- the surface protection member 111 is disposed on the light receiving side of the thin film compound solar cell string, the back surface protection member 113 is disposed on the side opposite to the light receiving side, and the transparent resin 112 is laminated as an adhesive.
- a transparent film or glass can be used, and it is preferably flexible. Silicone can be used as the transparent resin 112.
- the thin-film compound solar cell array 2 uses the thin-film compound solar cell 1 that transmits light to the back surface side. Therefore, since the thin-film compound solar cell array 2 transmits light to the back surface side, another solar cell module can be used by being stacked on the back surface side. Moreover, since the thin film compound solar cell array 2 can generate power by receiving light from the back surface, it can also be used as a double-sided daylighting thin film compound solar cell array.
- FIG. 16 shows a schematic cross-sectional view of the compound solar cell array of Embodiment 6 which is an example of the thin film compound solar cell array of the present invention.
- the thin-film compound solar cell array 3 of Embodiment 6 includes another solar cell module 120 on the opposite side of the light-receiving side of the thin-film compound solar cell array 2 as shown in FIG.
- the thin film compound solar cell array 2 and the solar cell module 120 are electrically connected.
- the thin film compound solar cell array 2 and another solar cell module 120 are connected in parallel. In the case of parallel connection, it is preferable to align the voltages of the thin film compound solar cell array 2 and the solar cell module 120. Since the thin film compound solar cell array 2 and the solar cell module 120 have a plurality of solar cells connected in series, the voltage can be adjusted by adjusting the number of these solar cells.
- the solar cell module 120 is a crystalline Si solar cell module, a Ge solar cell module, a CIGS solar cell module, or the like. These may be used in combination. For example, a crystalline Si solar cell module and a Ge solar cell module may be stacked.
- a CIGS solar cell module is arranged as another solar cell module 120 on the back surface side of the solar cell array 2.
- the solar cell module 120 includes a base material 121, a solar cell layer 122, an adhesive 123, and a surface member 124.
- the solar cell layer 122 is formed by sequentially laminating a lower electrode layer 125, a light absorption layer 126, a high resistance buffer layer 127, and an upper electrode layer 128 on a substrate 121.
- the substrate 121 and the surface member 124 a transparent film or glass can be used, and it is preferable that the substrate 121 and the surface member 124 be flexible.
- the adhesive 123 may be a transparent resin, and silicone can be used. In Embodiment 6, since the base material 121 and the surface member 124 are flexible, the solar cell module 120 has flexibility.
- the lower electrode layer 125 is Mo
- the light absorption layer 126 is CIGS containing copper, indium, gallium, and selenium
- the high resistance buffer layer 127 is InS, ZnS, CdS, etc.
- the upper electrode layer 128 is ITO It can be.
- the lower electrode layer 125 is Mo
- the light absorption layer 126 is a laminate of p-CuInGaSe and p-CuInGaSeS
- the high resistance buffer layer 127 is ZnOSOH
- the upper electrode layer 128 is ZnO.
- the thin-film compound solar cell array 3 has flexibility and is suitable as a solar cell array for space use. Moreover, since the solar cell module 120 is a CIGS system, it hardly deteriorates due to the electron beam, and the thin-film compound solar cell array 2 arranged on the light receiving side prevents the proton beam, so that it has radiation resistance that is important in the space environment. .
- the thin film compound solar cell array 2 when aligning the voltage of the thin film compound solar cell array 2 and the solar cell module 120, for example, if the thin film compound solar cell array 2 has a configuration in which five 2.45V thin film compound solar cells are connected in series, The voltage of the thin film compound solar cell array 2 is 12.25V. At this time, if the voltage per cell of the solar cell module 120 is 0.65 V, 20 series may be used. If it is a thin film solar cell such as a CIGS solar cell, the number of series is easy to adjust.
- FIG. 17 is a schematic cross-sectional view of another configuration of the compound solar battery array according to Embodiment 6, which is an example of the thin film compound solar battery array of the present invention.
- the thin film compound solar cell array 2 is disposed on the solar cell layer 122 via an adhesive 123.
- the thin film compound solar cell array 4 is formed by disposing and laminating the adhesive 123 and the thin film compound solar cell array 2 on the solar cell layer 122 formed on the substrate 121. By doing in this way, the surface member 124 of Embodiment 6 can be omitted. Moreover, the thin film compound solar cell array 2 and the solar cell module 120 can be easily integrated.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
図1および図2に、本発明の薄膜化合物太陽電池の一例である実施の形態1の化合物太陽電池の模式的な図を示す。図1(a)は表面側から見た模式的な平面図であり、図1(b)は裏面側から見た模式的な平面図であり、図2(a)は図1(a)に示すA-A線に沿った断面図であり、図2(b)は図1(a)に示すB-B線に沿った断面図である。
第2表面200をコンタクト層14の表面としてもよい。この場合、第2電極12は、コンタクト層14の受光側表面に形成される。
図3および図4に、本発明の薄膜化合物太陽電池の一例である実施の形態1の化合物太陽電池の模式的な図を示す。図3(a)は表面側から見た模式的な平面図であり、図3(b)は裏面側から見た模式的な平面図であり、図4(a)は図3(a)に示すA-A線に沿った断面図であり、図4(b)は図3(a)に示すB-B線に沿った断面図である。
図5および図6に、本発明の薄膜化合物太陽電池の一例である実施の形態3の化合物太陽電池の模式的な図を示す。図5(a)は表面側から見た模式的な平面図であり、図5(b)は裏面側から見た模式的な平面図であり、図6(a)は図5(a)に示すA-A線に沿った断面図であり、図6(b)は図5(a)に示すB-B線に沿った断面図である。
実施の形態4は、本発明の薄膜化合物太陽電池の製造方法の一例であり、実施の形態1~3の薄膜化合物太陽電池を製造することができる。以下、図7~図14を参照して、実施の形態4の薄膜化合物太陽電池の製造方法について説明する。
まず、図7に示すように、半導体基板20上に複数の化合物半導体層を積層することにより太陽電池積層体50を形成する。太陽電池積層体50は、PN接合層を有するセル層(トップセル30、ボトムセル40)とセル層上に積層されたコンタクト層14を含む。
その後、図8に示すようにコンタクト層14をパターニングし、ボトムセル40上にコンタクト層14が配置されない領域を形成する。コンタクト層14上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応したコンタクト層をエッチング除去することにより、コンタクト層14をパターニングすることができる。
さらにその後、図9に示すようにコンタクト層14上に、第3電極13を形成する。コンタクト層14上に再度フォトリソグラフィによりレジストパターンを形成し、蒸着装置を用いて、Au/Agの積層体を蒸着し、リフトオフすることで、コンタクト層14上に第3電極13を形成することができる。さらに、第3電極を熱処理することで、第3電極とコンタクト層との間の接触抵抗を低下させることができる。第3電極13もコンタクト層14と同様にパターニングされており、ボトムセル40上に第3電極13が配置されない領域が形成される。
次に、図10示すように、ボトムセル40および第3電極13上に樹脂膜15を形成する。樹脂膜15は、たとえば、可とう性ポリイミド(PI)であり、ポリイミド溶液をスピンコート法などの方法により塗布し、熱処理によりイミド化することにより形成する。
次に、図11に示すように、樹脂膜15上に支持基板60(プロセス支持基板)を貼り付け、GaAs基板をエッチング除去する。支持基板60としては、たとえば、紫外光を照射することにより粘着力が低下する粘着材が付着したPETフィルム、または熱を加えることにより粘着力が低下する粘着材が付着した熱発泡フィルムなどを用いることができる。
次に、バッファ層GaAsをアルカリ水溶液にてエッチングした後に、n型InGaPからなるエッチングストップ層を酸水溶液にてエッチングする。(図示せず)そして、トップセル30上のコンタクト層n型GaAs上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応したコンタクト層n型GaAsをアルカリ水溶液によりエッチング除去する。そして、残されたコンタクト層n型GaAsの表面上に再度フォトリソグラフィによりレジストパターンを形成し、蒸着装置を用いて、AuGe/Ni/Au/Agの積層体からなる第1電極11を形成する。さらに、第1電極を熱処理することで、第1電極と第1電極と接する化合物半導体層との間の接触抵抗を低下させることができる。このようにして、トップセル30の受光側面から構成される第1表面100の一部に第1電極11が形成される。
次に、図12に示すように、n型AlGaPからなるトップセル30の窓層上にフォトリソグラフィによりレジストパターンを形成した後、レジストパターンに対応した窓層以下をエッチング除去し、ボトムセルのBSF層41であるp型InGaP表面を露出させる。このようにして、ボトムセルの裏面電界層41の受光側面から構成される第2表面200を形成する。
そして、図13に示すように、残されたボトムセルのBSF層41であるp型InGaPの表面上に再度フォトリソグラフィによりレジストパターンを形成し蒸着装置を用いて、Au/Agの積層体からなる第2電極12を形成する。このようにして、第2表面200に第2電極12を形成する。
次に、プロセス支持基板60を外す。プロセス支持基板60は、プロセス支持基板60に付着している粘着材の粘着力を低下させて樹脂膜15から剥離する。たとえば、プロセス支持基板60に紫外光を照射することによって、プロセス支持基板60に付着している粘着材の粘着力を低下させて、樹脂膜15からプロセス支持基板60を剥離する。これにより図14に示す構成の化合物太陽電池1が得られる。化合物太陽電池1は、半導体基板20が除去され、樹脂膜15が可とう性であることから、可とう性を有する太陽電池となる。
半導体基板20と太陽電池積層体50との間に犠牲層を形成してもよい。たとえば、半導体基板上にバッファ層、犠牲層、エッチングストップ層および第1コンタクト層を結晶成長させ、半導体基板20とトップセル30との間に犠牲層を形成する。
図15に、本発明の薄膜化合物太陽電池アレイの一例である実施の形態5の化合物太陽電池アレイの模式的な断面図を示す。
薄膜化合物太陽電池1は、セル層の裏面側にコンタクト層および電極が配置されない領域を有する薄膜化合物太陽電池であり、上述の各実施の形態の薄膜化合物太陽電池を用いることができる。
薄膜化合物太陽電池ストリングの受光側に表面保護部材111を配置し、受光側と反対側に裏面保護部材113を配置し、透明樹脂112を接着剤としてラミネートする。表面保護部材111および裏面保護部材113としては、透明フィルムやガラスを用いることができ、可とう性であることが好ましい。透明樹脂112としては、シリコーンを用いることができる。表面保護部材と裏面保護部材を可とう性とすることにより、薄膜化合物太陽電池アレイ2は可とう性を有する。
図16に、本発明の薄膜化合物太陽電池アレイの一例である実施の形態6の化合物太陽電池アレイの模式的な断面図を示す。
図17に、本発明の薄膜化合物太陽電池アレイの一例である実施の形態6の化合物太陽電池アレイの他の構成の模式的な断面図を示す。
2 薄膜化合物太陽電池アレイ
10 セル本体
11 第1電極
12 第2電極
13 第3電極
14 コンタクト層
15 樹脂膜
20 半導体基板
30 トップセル
40 ボトムセル
41 ボトムセルBSF層
50 太陽電池積層体
60 プロセス支持基板
100 第1表面
120 太陽電池モジュール
200 第2表面
Claims (9)
- 複数の化合物半導体層からなる太陽電池積層体と、
前記太陽電池積層体の受光側の第1表面の一部に形成され、第1の極性を有する第1電極と、
前記太陽電池積層体の受光側の前記第1表面とは異なる第2表面に形成され、第2の極性を有する第2電極と、
前記太陽電池積層体の受光側と反対側の表面の一部に形成され、第2の極性を有する第3電極と、を含むセル本体と、
前記セル本体の受光側と反対側に形成された樹脂膜とを備え、
前記太陽電池積層体は、PN接合層を有するセル層と該セル層の受光面と反対側の表面の一部に形成されたコンタクト層とを含み、
前記第3電極は前記コンタクト層上に形成される、薄膜化合物太陽電池。 - 前記セル層は、窓層、ベース層、エミッタ層および裏面電界層を有し、
前記第2表面は、前記裏面電界層の表面である、請求項1に記載の薄膜化合物太陽電池。 - 前記第2表面は、前記コンタクト層の表面である、請求項1に記載の薄膜化合物太陽電池。
- 前記PN接合層はGaAs系化合物半導体からなる、請求項1~3のいずれかに記載の薄膜化合物太陽電池。
- 請求項1~4のいずれかに記載の薄膜化合物太陽電池を複数備え、これらの薄膜化合物太陽電池が互いに電気的に接続された薄膜化合物太陽電池ストリングと、
前記薄膜化合物太陽電池ストリングの受光側に配置された表面保護部材と、
前記薄膜化合物太陽電池ストリングの受光側と反対側に配置された裏面保護部材とを備える、薄膜化合物太陽電池アレイ。 - 前記裏面保護部材の受光側と反対側に太陽電池モジュールをさらに備える、請求項5に記載の薄膜化合物太陽電池アレイ。
- 前記太陽電池モジュールはCIGS系太陽電池モジュールである、請求項6に記載の薄膜化合物太陽電池アレイ。
- 半導体基板上に複数の化合物半導体層を積層することにより、PN接合層を有するセル層と該セル層上に積層されたコンタクト層を含む太陽電池積層体を形成する工程と、
前記コンタクト層をパターニングする工程と、
前記コンタクト層上に第3電極を形成する工程と、
前記太陽電池積層体および前記第3電極上に樹脂膜を形成する工程と、
前記半導体基板を除去する工程と、
前記半導体基板を除去する工程により形成された前記太陽電池積層体の第1表面の一部に第1電極を形成する工程と、
前記太陽電池積層体の一部を除去することにより前記太陽電池積層体に第2表面を形成する工程と、
前記第2表面上に第2電極を形成する工程を含む、薄膜化合物太陽電池の製造方法。 - 請求項5に記載の薄膜化合物太陽電池アレイの受光側と反対側にCIGS系太陽電池モジュールを配置する工程と、
前記薄膜化合物太陽電池アレイと前記CIGS系太陽電池モジュールとを電気的に接続する工程を備える、薄膜化合物太陽電池アレイの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017543127A JPWO2017057029A1 (ja) | 2015-09-28 | 2016-09-15 | 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 |
CN201680056708.6A CN108140679A (zh) | 2015-09-28 | 2016-09-15 | 薄膜化合物太阳电池、薄膜化合物太阳电池的制造方法、薄膜化合物太阳电池阵列及薄膜化合物太阳电池阵列的制造方法 |
DE112016004374.0T DE112016004374T5 (de) | 2015-09-28 | 2016-09-15 | Dünnschicht-Verbindungshalbleiter-Photovoltaikzelle, Verfahren zum Herstellen einer Dünnschicht-Verbindungshalbleiter-Photovoltaikzelle, Dünnschicht-Verbindungshalbleiter-Photovoltaikzellenanordnung und Herstellungsverfahren hierfür |
US15/761,903 US20180233612A1 (en) | 2015-09-28 | 2016-09-15 | Thin-film compound photovoltaic cell, method for manufacturing thin-film compound photovoltaic cell, thin-film compound photovoltaic cell array, and method for manufacturing thin-film compound photovoltaic cell array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-189365 | 2015-09-28 | ||
JP2015189365 | 2015-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057029A1 true WO2017057029A1 (ja) | 2017-04-06 |
Family
ID=58427551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077309 WO2017057029A1 (ja) | 2015-09-28 | 2016-09-15 | 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180233612A1 (ja) |
JP (1) | JPWO2017057029A1 (ja) |
CN (1) | CN108140679A (ja) |
DE (1) | DE112016004374T5 (ja) |
WO (1) | WO2017057029A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537815A (ja) * | 2018-08-09 | 2020-12-24 | 中国科学院蘇州納米技術与納米▲ファン▼生研究所 | フレキシブル太陽電池及びその製造方法 |
WO2022259461A1 (ja) * | 2021-06-10 | 2022-12-15 | 株式会社東芝 | タンデム太陽電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7474197B2 (ja) * | 2018-10-03 | 2024-04-24 | 株式会社カネカ | 太陽電池セル、太陽電池ストリング、太陽電池モジュール |
WO2022059134A1 (ja) * | 2020-09-17 | 2022-03-24 | 株式会社東芝 | 太陽電池、および太陽電池システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344724A (ja) * | 2005-06-08 | 2006-12-21 | Sharp Corp | 太陽電池および太陽電池の製造方法 |
JP2008153429A (ja) * | 2006-12-18 | 2008-07-03 | Sharp Corp | 太陽電池およびその製造方法 |
WO2011078378A1 (ja) * | 2009-12-25 | 2011-06-30 | シャープ株式会社 | 多接合型化合物半導体太陽電池 |
US20150236182A1 (en) * | 2011-11-20 | 2015-08-20 | Solexel, Inc. | Smart photovoltaic cells and modules |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5554772A (en) | 1978-10-16 | 1980-04-22 | Hitachi Ltd | Water seal construction of spherical valve |
JPS5576243A (en) | 1978-11-30 | 1980-06-09 | Nissan Motor Co Ltd | Band servo of automatic change gear |
US20060180198A1 (en) * | 2005-02-16 | 2006-08-17 | Sharp Kabushiki Kaisha | Solar cell, solar cell string and method of manufacturing solar cell string |
US8138410B2 (en) * | 2008-10-01 | 2012-03-20 | International Business Machines Corporation | Optical tandem photovoltaic cell panels |
US8835748B2 (en) * | 2009-01-06 | 2014-09-16 | Sunlight Photonics Inc. | Multi-junction PV module |
EP2403003B1 (en) * | 2009-02-26 | 2018-10-03 | Sharp Kabushiki Kaisha | Method for manufacturing thin film compound solar cell |
AU2012280933A1 (en) | 2011-07-06 | 2014-01-23 | The Regents Of The University Of Michigan | Integrated solar collectors using epitaxial lift off and cold weld bonded semiconductor solar cells |
JP5851872B2 (ja) * | 2012-02-10 | 2016-02-03 | シャープ株式会社 | 化合物半導体太陽電池の製造方法 |
JP2014103305A (ja) * | 2012-11-21 | 2014-06-05 | Sharp Corp | 太陽電池素子およびその製造方法 |
US20160365466A1 (en) * | 2013-04-29 | 2016-12-15 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar subcells coupled with germanium bottom subcell |
JP6269246B2 (ja) | 2014-03-28 | 2018-01-31 | トヨタ自動車株式会社 | 前部車体構造 |
CN104505406B (zh) * | 2014-12-29 | 2017-08-25 | 苏州强明光电有限公司 | 一种GaAs双面薄膜太阳能电池 |
-
2016
- 2016-09-15 CN CN201680056708.6A patent/CN108140679A/zh active Pending
- 2016-09-15 DE DE112016004374.0T patent/DE112016004374T5/de not_active Withdrawn
- 2016-09-15 WO PCT/JP2016/077309 patent/WO2017057029A1/ja active Application Filing
- 2016-09-15 US US15/761,903 patent/US20180233612A1/en not_active Abandoned
- 2016-09-15 JP JP2017543127A patent/JPWO2017057029A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344724A (ja) * | 2005-06-08 | 2006-12-21 | Sharp Corp | 太陽電池および太陽電池の製造方法 |
JP2008153429A (ja) * | 2006-12-18 | 2008-07-03 | Sharp Corp | 太陽電池およびその製造方法 |
WO2011078378A1 (ja) * | 2009-12-25 | 2011-06-30 | シャープ株式会社 | 多接合型化合物半導体太陽電池 |
US20150236182A1 (en) * | 2011-11-20 | 2015-08-20 | Solexel, Inc. | Smart photovoltaic cells and modules |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537815A (ja) * | 2018-08-09 | 2020-12-24 | 中国科学院蘇州納米技術与納米▲ファン▼生研究所 | フレキシブル太陽電池及びその製造方法 |
WO2022259461A1 (ja) * | 2021-06-10 | 2022-12-15 | 株式会社東芝 | タンデム太陽電池 |
JP7521121B2 (ja) | 2021-06-10 | 2024-07-23 | 株式会社東芝 | タンデム太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
DE112016004374T5 (de) | 2018-06-14 |
CN108140679A (zh) | 2018-06-08 |
JPWO2017057029A1 (ja) | 2018-07-19 |
US20180233612A1 (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5203397B2 (ja) | 太陽電池の製造方法 | |
US10069033B2 (en) | Integration of epitaxial lift-off solar cells with mini-parabolic concentrator arrays via printing method | |
JP5414010B2 (ja) | 多接合型化合物太陽電池セル、多接合型化合物太陽電池およびその製造方法 | |
JP4974545B2 (ja) | 太陽電池ストリングの製造方法 | |
WO2017057029A1 (ja) | 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 | |
JP2010245176A (ja) | 太陽電池シートアレイの製造方法および太陽電池シートアレイ | |
CN103022058A (zh) | 多结太阳能电池、化合物半导体器件、光电转换元件和化合物半导体层叠层结构体 | |
WO2018192199A1 (zh) | 多结叠层激光光伏电池及其制作方法 | |
JP5548878B2 (ja) | 多接合型光学素子 | |
TW201318189A (zh) | 化合物半導體太陽能電池製造用積層體、化合物半導體太陽能電池及其製造方法 | |
JP2002289884A (ja) | 太陽電池、太陽電池装置 | |
TWI685124B (zh) | 整合非追蹤小型混合拋物線集中器之磊晶剝離加工GaAs薄膜太陽能電池 | |
JP5360818B2 (ja) | タンデム太陽電池及びその生産方法 | |
KR20180067620A (ko) | 태양전지 셀과 그 제조 방법 및 이로 구성된 태양전지 모듈 | |
Ding et al. | Thin-film iii–v single junction and multijunction solar cells and their integration onto heterogeneous substrates | |
JP5341297B2 (ja) | 化合物単結晶太陽電池および化合物単結晶太陽電池の製造方法 | |
JP6616632B2 (ja) | 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法 | |
KR102244274B1 (ko) | GaAs 기반 양면 태양전지 제조 방법 | |
JP2013004886A (ja) | 太陽電池 | |
JP2012256711A (ja) | 集光型太陽電池およびその製造方法 | |
JP2013175632A (ja) | 化合物半導体太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851203 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017543127 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15761903 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016004374 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851203 Country of ref document: EP Kind code of ref document: A1 |