WO2022059134A1 - 太陽電池、および太陽電池システム - Google Patents

太陽電池、および太陽電池システム Download PDF

Info

Publication number
WO2022059134A1
WO2022059134A1 PCT/JP2020/035259 JP2020035259W WO2022059134A1 WO 2022059134 A1 WO2022059134 A1 WO 2022059134A1 JP 2020035259 W JP2020035259 W JP 2020035259W WO 2022059134 A1 WO2022059134 A1 WO 2022059134A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
solar cell
cell module
cell
cells
Prior art date
Application number
PCT/JP2020/035259
Other languages
English (en)
French (fr)
Inventor
美雪 塩川
勝也 山下
智博 戸張
武志 五反田
穣 齊田
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2020/035259 priority Critical patent/WO2022059134A1/ja
Priority to JP2022550401A priority patent/JPWO2022059366A1/ja
Priority to EP21869053.5A priority patent/EP4216284A1/en
Priority to PCT/JP2021/028595 priority patent/WO2022059366A1/ja
Publication of WO2022059134A1 publication Critical patent/WO2022059134A1/ja
Priority to US18/178,672 priority patent/US20230207716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Embodiments of the present invention relate to solar cells and solar cell systems.
  • tandem solar cells including a top cell module and a bottom cell module are known.
  • a tandem solar cell by combining a top cell module and a bottom cell module made of materials having different light absorption bands, it is possible to efficiently generate electricity in a small area.
  • the current of the electric power generated by each of the top cell module and the bottom cell module is generated.
  • no consideration is given to this, so that the merit of being able to efficiently generate power in a small area of a tandem solar cell has not been fully utilized.
  • An object to be solved by the present invention is to provide a solar cell and a solar cell system capable of efficiently utilizing the electric power generated by the top cell module and the bottom cell module.
  • the solar cell of the embodiment has a top cell module and a bottom cell module.
  • the top cell module generates electricity by photoelectrically converting the incident light, and at the same time, passes a part of the incident light.
  • the bottom cell module is laminated with the top cell module and generates electricity by photoelectrically converting the light passing through the top cell module.
  • the top cell module includes a plurality of top cells connected to each other in series, parallel, or a combination of series and parallel.
  • the bottom cell module includes a plurality of bottom cells connected to each other in series, parallel, or a combination of series and parallel.
  • the connection form of the plurality of top cells and the connection form of the plurality of bottom cells are set so as to match the current ratio between the top cell and the bottom cell.
  • the block diagram of the solar cell 1 in the 1st Embodiment The figure which looked at the structure of the top cell module 100 from the Z direction.
  • the perspective view which shows an example of the laminated structure of the top cell 110.
  • the side view which shows an example of the laminated structure of the top cell 110.
  • Equivalent circuit diagram of the top cell module 100 The figure which looked at the structure of the bottom cell module 200 from the Z direction (the 1).
  • the figure which looked at the structure of the bottom cell module 200 from the Y direction (the 1).
  • the figure which looked at the structure of the bottom cell module 200 from the Z direction the 2).
  • the figure which looked at the structure of the bottom cell module 200 from the Y direction the 2).
  • Equivalent circuit diagram of the bottom cell module 200 The block diagram of the solar cell system which concerns on 1st Embodiment.
  • the block diagram of the solar cell 2 of the 2nd Embodiment The block diagram of the solar cell system which concerns on 2nd Embodiment.
  • FIG. 1 is a configuration diagram of a solar cell 1 according to the first embodiment.
  • the solar cell 1 has a top cell module 100 and a bottom cell module 200.
  • Each of the top cell module 100 and the bottom cell module 200 has, for example, a flat plate shape having a rectangular surface, and the top cell module 100 and the bottom cell module 200 are laminated in the respective thickness directions. ..
  • the direction of one side of the rectangular surface of the top cell module 100 and the bottom cell module 200 will be defined as the X direction
  • the direction of the other side will be defined as the Y direction
  • the thickness direction will be defined as the Z direction.
  • the arrow D in the figure indicates the incident direction of light (sunlight). The same applies to FIGS. 3, 4, 7, 9, and 11 described later.
  • the solar cell 1 is installed so that light is incident on a rectangular surface of the top cell module 100 opposite to the side of the bottom cell module 200.
  • the top cell module 100 generates electricity by photoelectrically converting the incident light and allows a part of the incident light to pass through.
  • the bottom cell module 200 generates electricity by photoelectrically converting the light that has passed through the top cell module 100.
  • the positive electrode terminal 100P of the top cell module 100 also serves as the positive electrode terminal 1P of the solar cell 1.
  • the negative electrode terminal 100N of the top cell module 100 is connected to the positive electrode terminal 200P of the bottom cell module 200.
  • the negative electrode terminal 200N of the bottom cell module 200 also serves as the negative electrode terminal 1N of the solar cell 1.
  • the top cell module 100 and the bottom cell module 200 are connected in series between the positive electrode terminal 1P and the negative electrode terminal 1N of the solar cell 1.
  • the top cell module 100 includes a plurality of top cells 110 (shown below) connected to each other in series, parallel, or a series-to-parallel combination
  • the bottom cell module 200 is a series, parallel, or series-to-parallel combination.
  • the connection form of the plurality of top cells 110 and the connection form of the plurality of bottom cells 210 are set to match the current ratio of the top cell 110 and the bottom cell 210.
  • the current ratio is the ratio of the electric power generated by each of the top cell 110 and the bottom cell 210 when the light of the expected component is incident.
  • the current ratio output current of the top cell: output current of the bottom cell
  • the current ratio output current of the top cell: output current of the bottom cell
  • FIG. 2 is a view of the configuration of the top cell module 100 as viewed from the Z direction.
  • the top cell module 100 has, for example, a plurality of top cells 110-1 to m, a positive cell interconnector 120P, a negative cell interconnector 120N, a string connector 130, and a diode 140.
  • the negative cell interconnector 120N is a conductor that commonly connects the n electrodes 111 (shown later) of the top cells 110 arranged in the X direction.
  • the positive cell interconnector 120P is a conductor that commonly connects the p electrodes 114 (shown later) of the top cells 110 arranged in the X direction. Therefore, in the configuration of FIG. 2, four top cells 110 are connected in parallel.
  • the diode 140 is a bypass diode provided for each of the four top cells 110 connected in parallel. The diode 140 bypasses the current flowing through the four top cells 110 if the corresponding four top cells 110 are shaded or failed.
  • the top cell module 100 is joined to the bottom cell module 200 via a resin containing a sealing material, an adhesive film, or the like.
  • FIG. 3 is a perspective view showing an example of the laminated structure of the top cells 110.
  • FIG. 4 is a side view showing an example of the laminated structure of the top cell 110.
  • the top cell 110 is, for example, a cuprous oxide solar cell, and is, for example, an n electrode 111, an n-compound layer 112, a p-Cu 2 O layer 113, and a p electrode 114 in order from the side with the negative cell interconnector 120N.
  • the substrate 115 is laminated.
  • the configurations shown in FIGS. 3 and 4 are merely examples, and any configuration can be adopted as long as it can generate electricity by photoelectrically converting the incident light and allow a part of the incident light to pass through. May be done.
  • the top cell 110 for example, a cuprous oxide (Cu2O) solar cell, a dye-sensitized solar cell, an organic thin-film solar cell, a perovskite solar cell, or the like is adopted. Further, in addition to the configurations shown in FIGS. 3 and 4, a protective film, a sealing material, and the like may be added as appropriate. An antireflection film may be formed on the n-compound layer 112 for the purpose of facilitating the introduction of light into the power generation layer.
  • the n-electrode 111 and the p-electrode 114 are, for example, transparent conductive films or electrodes formed in a mesh shape, and allow light to pass through the gaps of the mesh.
  • the substrate 115 is, for example, a transparent film such as glass or PET, and the higher the light transmittance, the better.
  • the top cell 110 generates a voltage between the n-compound layer 112 and the p-Cu 2 O layer 113. The generated voltage becomes a voltage between the n electrode 111 and the p electrode 114, and the voltage is taken out by the negative side cell interconnector connector 120N and the positive side cell interconnector connector 120P.
  • FIG. 5 is an equivalent circuit diagram of the top cell module 100. As shown in the figure, the top cell module 100 has a circuit configuration in which top cells 110 are connected in 4 parallels and 5 series.
  • the bottom cell 210 is, for example, a back contact type solar cell. A configuration example in this case is shown in FIGS. 6 and 7.
  • FIG. 6 is a view (No. 1) of the configuration of the bottom cell module 200 as viewed from the Z direction.
  • the bottom cell module 200 has, for example, a plurality of bottom cells 210-1 to m, a cell interconnector 230, and a diode 240. When it is not distinguished which bottom cell it is, it is simply referred to as a bottom cell 210.
  • the cell interconnector 230 is a conductor provided between the bottom cells 210 adjacent to each other and connecting m bottom cells 210 in series.
  • the diode 240 is a bypass diode provided for each of the four bottom cells 210 connected in series. The diode 240 bypasses the current flowing through the bottom cell 210 if the corresponding four bottom cells 210 are shaded or failed.
  • FIG. 7 is a view of the configuration of the bottom cell module 200 from the Y direction (No. 1).
  • the antireflection film 211, the n-type semiconductor 212, the p + diffusion layer 213, and the n + diffusion layer 214 are laminated in this order from the side of the top cell module 100.
  • the p + diffusion layer 213 and the n + diffusion layer 214 are arranged alternately with respect to the Y direction of each bottom cell 210.
  • a protective film, a sealing material, and the like may be added as appropriate.
  • the bottom cell 210 generates a voltage between the p + diffusion layer 213 and the n + diffusion layer 214.
  • the generated voltage becomes the voltage between the p electrode 215 and the n electrode 216.
  • the p-electrode 215 and the n-electrode 216 are also arranged alternately in the Y direction.
  • the plurality of p electrodes 215 in one bottom cell 210 are bundled together, and the plurality of n electrodes 216 in one bottom cell 210 are also bundled together.
  • the bottom cells 210 are connected in series with each other by connecting the pns of the other adjacent bottom cells 210 with the opposite electrodes by the cell interconnector 230.
  • the bottom cell 210 may be a solar cell of another embodiment such as a crystalline Si solar cell.
  • FIG. 8 is a view (No. 2) of the configuration of the bottom cell module 200 as viewed from the Z direction.
  • the cell interconnector 235 in this example is a conductor that connects m bottom cells 210 in series by connecting the front side (front side in the drawing) and the back side (back side in the drawing) of the bottom cells 210 adjacent to each other. Is.
  • FIG. 9 is a view of the configuration of the bottom cell module 200 as viewed from the Y direction (No. 2).
  • an n electrode 221, an antireflection film 220, an n-type semiconductor 222, a p-type semiconductor 223, and a p-electrode 224 are laminated in this order from the side of the top cell module 100.
  • the bottom cell 210 generates a voltage between the p-type semiconductor 223p and the n-type semiconductor 222.
  • the generated voltage becomes the voltage between the p electrode 224 and the n electrode 221.
  • This voltage is boosted and taken out by connecting the bottom cells 210 in series by the cell interconnector 235.
  • silicon-based solar cells such as single crystal, polycrystal, and amorphous, CIS-based, and CIGS-based compound solar cells are adopted.
  • FIG. 10 is an equivalent circuit diagram of the bottom cell module 200. As shown in the figure, the bottom cell module 200 has a circuit configuration in which bottom cells are connected in parallel and 20 in series.
  • the top cell module 100 has a larger number of parallels than the bottom cell module 200, and the output current of the top cell module 100 is larger than the output current of one top cell 110.
  • the output current of the top cell module 100 is 1 / ⁇ of the output current of the bottom cell module 200 due to the above-mentioned current ratio. Since the currents of the top cell module 100 and the bottom cell module 200 do not match, it becomes difficult to connect them in series.
  • the output current of the top cell module 100 can eliminate the difference in the output current of the bottom cell module 200, and the current is matched. You can get closer to the state.
  • the top cell module 100 and the bottom cell module 200 can be connected in series, and the electric power generated by the top cell module 100 and the bottom cell module 200 can be efficiently used.
  • each of the positive electrode terminal 1P and the negative electrode terminal 1N of the solar cell 1 can be narrowed down to one, the weight of the solar cell 1 can be reduced.
  • connection form of the plurality of top cells 110 and the connection form of the plurality of bottom cells 210 are matched with the current ratio ⁇ of the top cell 110 and the bottom cell 210. Since it is set to, the electric power generated by the top cell module and the bottom cell module can be efficiently used.
  • FIG. 11 is a block diagram of the solar cell system according to the first embodiment.
  • the solar cell 1 has a positive electrode terminal 100P of the top cell module 100 (that is, a positive electrode terminal 1P of the solar cell 1) and a negative electrode terminal 200N of the bottom cell module 200 (that is, a negative electrode terminal 1N of the solar cell 1) in one corner. ) Is placed.
  • the upper solar cell 1 is rotated 180 degrees around the Z axis, it matches the lower solar cell 1, so that they are equivalent.
  • the solar cells 1 are arranged so as to be adjacent to each other, and the positive electrode terminal 1P and the negative electrode terminal 1N of the solar cells 1 adjacent to each other in the X direction are connected to each other.
  • a solar cell system in which a plurality of solar cells 1 are connected in series is generated.
  • the power generated by the solar cell system is input to the input terminal 310 of the PCS (Power Conditioning System) 300 and output from the output terminal 320.
  • PCS Power Conditioning System
  • a plurality of solar cells 1 can be efficiently arranged in series by reducing the wiring length as compared with the conventional solar cell system connecting the 4-terminal module.
  • FIG. 12 is a block diagram of the solar cell 2 of the second embodiment.
  • the negative electrode terminal 100N of the top cell module 100 is not connected to the positive electrode terminal 200P of the bottom cell module 200, and the positive electrode terminal of the top cell module 100 is not connected.
  • 100P is the first positive electrode terminal 2P # 1 of the solar cell 2
  • the negative electrode terminal 100N of the top cell module 100 is the first negative electrode terminal 2N # 1 of the solar cell 2
  • the positive electrode terminal 200P of the bottom cell module 200 is the second of the solar cell 2.
  • the positive electrode terminal 2P # 1 and the negative electrode terminal 200N of the bottom cell module 200 also serve as the second negative electrode terminal 2N # 1 of the solar cell 2. That is, in the solar cell 2 of the second embodiment, the top cell module 100 and the bottom cell module 200 function as independent solar cells.
  • the internal configurations of the top cell module 100 and the bottom cell module 200 are the same as those in the first embodiment, and the description thereof will be omitted again.
  • FIG. 13 is a block diagram of the solar cell system according to the second embodiment.
  • the solar cell 2 can be formed as one of two types, type A and type B, as a geometrical configuration.
  • the positive electrode terminal 100P of the top cell module 100 that is, the first positive electrode terminal 2P # 1 of the solar cell 2
  • the first corner is the upper right or the lower left, and when the solar cell 2 is rotated 180 degrees around the Z axis, there is no distinction between the upper right and the lower left, so these are equivalent.
  • the positive electrode terminal 100P of the top cell module 100 (that is, the first positive electrode terminal 2P # 1 of the solar cell 2) is present in the second corner when viewed from the light incident side (plus Z side). It is something to do.
  • the second corner is a corner adjacent to the first corner and is a lower right or upper left corner.
  • the solar cell 2 (type A) is an example of a "first type solar cell”
  • the solar cell 2 (type B) is an example of a "second type solar cell”.
  • the solar cells 2 (type A) and the solar cells 2 (type B) are arranged alternately in the arrangement direction (X direction), and the solar cells 2 (type A) and the solar cells 2 adjacent to each other are arranged alternately.
  • the first positive electrode terminal 2P # 1 of the solar cell 2 (type A) and 2N # 1 of the solar cell 2 (type B) are connected and the solar cell 2 (type A) is connected.
  • 2P # 2 and 2N # 2 of the solar cell 2 (type B) are connected ((1) in the figure), or 2N # 1 of the solar cell 2 (type A) and the solar cell 2 (type B).
  • 2P # 1 is connected and 2N # 2 of the solar cell 2 (type A) and the second positive electrode terminal 2P # 2 of the solar cell 2 (type B) are connected ((2) in the figure).
  • a front cell solar cell system in which the top cell modules 100 of the plurality of solar cells 2 are connected in series and a bottom cell solar cell system in which the bottom cell modules 200 of the plurality of solar cells 2 are connected in series are generated.
  • Ru The power generated by the front cell solar cell system and the power generated by the bottom cell solar cell system are input to the first input terminal 310 # 1 and the second input terminal 310 # 2 of the PCS (Power Conditioning System) 300, respectively.
  • PCS300 Power Conditioning System
  • the same effect as that of the first embodiment can be obtained, and as illustrated in FIG. 13, by using two types of solar cells, one type of sun can be obtained.
  • the wiring length can be reduced and the plurality of solar cells 2 can be efficiently arranged in series.
  • a top cell module 100 that generates power by photoelectrically converting incident light and allows a part of the incident light to pass through, and a top cell module that is laminated with the top cell module 100. It comprises a bottom cell module 200 that generates light by photoelectric conversion of light that has passed through 100, and the top cell module 100 includes a plurality of top cells 110 connected to each other in series, parallel, or a combination of series and parallel.
  • the bottom cell module 200 includes a plurality of bottom cells 210 connected to each other in series, parallel, or a combination of series and parallel, and the connection form of the plurality of top cells 110 and the connection form of the plurality of bottom cells 210 are the top cell 110. Since it is set to match the current ratio between the top cell module and the bottom cell 210, the power generated by the top cell module and the bottom cell module can be efficiently used.
  • the solar cell or the solar cell system of the first embodiment or the second embodiment can generate electricity efficiently in a small space, it is suitable to be mounted on various restricted places such as the wing surface of an aircraft. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

入射した光を光電変換することで発電すると共に、前記入射した光の一部を通過させるトップセルモジュールと、前記トップセルモジュールと積層され、前記トップセルモジュールを通過した光を光電変換することで発電するボトムセルモジュールと、を備え、前記トップセルモジュールは、直列、並列、または直列と並列の組み合わせで互いに接続された複数のトップセルを含み、前記ボトムセルモジュールは、直列、並列、または直列と並列の組み合わせで互いに接続された複数のボトムセルを含み、前記複数のトップセルの接続形態と前記複数のボトムセルの接続形態は、前記トップセルと前記ボトムセルの電流比率に整合するように設定されている。

Description

太陽電池、および太陽電池システム
 本発明の実施形態は、太陽電池、および太陽電池システムに関する。
 従来、トップセルモジュールとボトムセルモジュールを含むタンデム太陽電池が知られている。タンデム太陽電池では、互いに異なる光の吸収帯を持つ材料で生成されたトップセルモジュールとボトムセルモジュールを組み合わせることで、小面積で効率的に発電を行うことができる。ところが、トップセルモジュールとボトムセルモジュールで材料を異ならせることと、トップセルモジュールに光透過性を持たせる必要があることに起因し、トップセルモジュールとボトムセルモジュールのそれぞれが発電する電力の電流は等しくならないことが多い。従来の技術では、これについて配慮がなされていないため、タンデム太陽電池の小面積で効率的に発電を行うことができるというメリットが活かし切れていなかった。
特開2020-53669号公報
 本発明が解決しようとする課題は、トップセルモジュールとボトムセルモジュールの発電する電力を効率的に利用させることができる太陽電池、および太陽電池システムを提供することである。
 実施形態の太陽電池は、トップセルモジュールと、ボトムセルモジュールとを持つ。トップセルモジュールは、入射した光を光電変換することで発電すると共に、前記入射した光の一部を通過させる。ボトムセルモジュールは、前記トップセルモジュールと積層され、前記トップセルモジュールを通過した光を光電変換することで発電する。前記トップセルモジュールは、直列、並列、または直列と並列の組み合わせで互いに接続された複数のトップセルを含む。前記ボトムセルモジュールは、直列、並列、または直列と並列の組み合わせで互いに接続された複数のボトムセルを含む。前記複数のトップセルの接続形態と前記複数のボトムセルの接続形態は、前記トップセルと前記ボトムセルの電流比率に整合するように設定されている。
第1の実施形態に太陽電池1の構成図。 トップセルモジュール100の構成をZ方向から見た図。 トップセル110の積層構造の一例を示す斜視図。 トップセル110の積層構造の一例を示す側面図。 トップセルモジュール100の等価回路図。 ボトムセルモジュール200の構成をZ方向から見た図(その1)。 ボトムセルモジュール200の構成をY方向から見た図(その1)。 ボトムセルモジュール200の構成をZ方向から見た図(その2)。 ボトムセルモジュール200の構成をY方向から見た図(その2)。 ボトムセルモジュール200の等価回路図。 第1の実施形態に係る太陽電池システムの構成図。 第2の実施形態の太陽電池2の構成図。 第2の実施形態に係る太陽電池システムの構成図。
 以下、実施形態の太陽電池、および太陽電池システムを、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態に太陽電池1の構成図である。太陽電池1は、トップセルモジュール100と、ボトムセルモジュール200とを有する。トップセルモジュール100と、ボトムセルモジュール200のそれぞれは、例えば、矩形面を有する平板状の形状をしており、トップセルモジュール100とボトムセルモジュール200は、それぞれの厚さ方向に積層されている。以下、トップセルモジュール100と、ボトムセルモジュール200の矩形面における一辺の方向をX方向、他の一辺の方向をY方向、厚さ方向をZ方向と定義して説明を行う。図中の矢印Dは、光(太陽光)の入射方向を示している。後述する図3、4、7、9、11においても同様である。太陽電池1は、トップセルモジュール100におけるボトムセルモジュール200の側と反対側の矩形面に光が入射するように設置される。
 トップセルモジュール100は、入射した光を光電変換することで発電すると共に、入射した光の一部を通過させる。ボトムセルモジュール200は、トップセルモジュール100を通過した光を光電変換することで発電する。トップセルモジュール100の正極端子100Pは、太陽電池1の正極端子1Pを兼ねる。トップセルモジュール100の負極端子100Nは、ボトムセルモジュール200の正極端子200Pと接続されている。ボトムセルモジュール200の負極端子200Nは、太陽電池1の負極端子1Nを兼ねる。このように、第1実施形態において、トップセルモジュール100と、ボトムセルモジュール200は、太陽電池1の正極端子1Pと負極端子1Nの間に直列に接続されている。
 トップセルモジュール100は、直列、並列、または直列と並列の組み合わせで互いに接続された複数のトップセル110(後に図示)を含み、ボトムセルモジュール200は、直列、並列、または直列と並列の組み合わせで互いに接続された複数のボトムセル210(後に図示)を含む。後に説明するが、複数のトップセル110の接続形態と複数のボトムセル210の接続形態は、トップセル110とボトムセル210の電流比率に整合するように設定されている。電流比率とは、想定される成分の光が入射したときに、トップセル110とボトムセル210のそれぞれが発電する電力の比率である。以下、電流比率(トップセルの出力電流:ボトムセルの出力電流)を1:αで表す。通常、ボトムセル210の方が多くの電流を出力するため、α>1となる。
 図2は、トップセルモジュール100の構成をZ方向から見た図である。トップセルモジュール100は、例えば、複数のトップセル110-1~mと、正側セルインターコネクタ120Pと、負側セルインターコネクタ120Nと、ストリングコネクタ130と、ダイオード140とを有する。mは2以上の任意の自然数であり、図ではm=20である。いずれのトップセルであるか区別しないときは、単にトップセル110と称する。負側セルインターコネクタ120Nは、X方向に並ぶトップセル110のn電極111(後に図示)を共通して接続する導電体である。正側セルインターコネクタ120Pは、X方向に並ぶトップセル110のp電極114(後に図示)を共通して接続する導電体である。従って、図2の構成では、4つのトップセル110が並列に接続されている。ダイオード140は、並列に接続された4つのトップセル110ごとに設けられるバイパスダイオードである。ダイオード140は、対応する4つのトップセル110が日陰に入ったり故障した場合に、4つのトップセル110に流れる電流をバイパスさせる。トップセルモジュール100は、封止材を含む樹脂、密着フィルム等を介してボトムセルモジュール200と接合されている。
 図3は、トップセル110の積層構造の一例を示す斜視図である。図4は、トップセル110の積層構造の一例を示す側面図である。トップセル110は、例えば、亜酸化銅太陽電池であり、負側セルインターコネクタ120Nのある側から順に、例えば、n電極111、n-化合物層112、p-CuO層113、p電極114、基板115が積層された構成となっている。図3および図4に示す構成は、あくまで一例であり、入射した光を光電変換することで発電すると共に、入射した光の一部を通過させることが可能な構成であれば、如何なる構成が採用されてもよい。トップセル110としては、例えば、亜酸化銅(Cu2O)太陽電池、色素増感太陽電池、有機薄膜系太陽電池、ペロブスカイト太陽電池などが採用される。また、図3および図4に示す構成に加えて、保護フィルム、封止材などが適宜追加されてよい。発電層へ光を導入しやすくする目的で、n-化合物層112の上に反射防止膜が形成されてもよい。n電極111およびp電極114は、例えば透明導電膜やメッシュ状に形成された電極であり、メッシュの間隙に光を透過させる。基板115は、例えばガラスやPET等の透明フィルムであり、光透過率が高いほどよい。トップセル110は、n-化合物層112とp-CuO層113の間に電圧を発生させる。発生した電圧は、n電極111とのp電極114との間の電圧となり、その電圧が負側セルインターコネクタ120Nおよび正側セルインターコネクタ120Pによって取り出される。図5は、トップセルモジュール100の等価回路図である。図示するように、トップセルモジュール100は、トップセル110が4並列5直列で接続された回路構成となっている。
 ボトムセル210は、例えばバックコンタクト型太陽電池セルである。この場合における構成例を図6および図7に示す。図6は、ボトムセルモジュール200の構成をZ方向から見た図(その1)である。ボトムセルモジュール200は、例えば、複数のボトムセル210-1~mと、セルインターコネクタ230と、ダイオード240とを有する。いずれのボトムセルであるか区別しないときは、単にボトムセル210と称する。セルインターコネクタ230は、互いに隣接するボトムセル210の間に設けられ、m個のボトムセル210を直列に接続する導電体である。ダイオード240は、直列に接続された4つのボトムセル210ごとに設けられるバイパスダイオードである。ダイオード240は、対応する4つのボトムセル210が日陰に入ったり故障したりした場合に、ボトムセル210に流れる電流をバイパスさせる。
 図7は、ボトムセルモジュール200の構成をY方向から見た図である(その1)。図示するように、ボトムセル210は、例えば、トップセルモジュール100の側から順に、反射防止膜211、n型半導体212、p+拡散層213およびn+拡散層214が積層されている。p+拡散層213及びn+拡散層214は、各ボトムセル210のY方向に関して、交互に配置されている。また、図7に示す構成に加えて、保護フィルム、封止材などが適宜追加されてよい。ボトムセル210は、p+拡散層213とn+拡散層214との間に電圧を発生させる。発生した電圧は、p電極215とn電極216との電圧となる。p電極215とn電極216もY方向に関して、交互に配置されている。一つのボトムセル210における複数のp電極215は一つに束ねられており、一つのボトムセル210における複数のn電極216もまた一つに束ねられている。両者の電圧は、セルインターコネクタ230によって隣接する他のボトムセル210におけるpnが逆の電極と接続されることで、ボトムセル210が互いに直列に接続される。
 ボトムセル210は、結晶系Si太陽電池セルなど、他の態様の太陽電池セルであってもよい。この場合における構成例を図8および図9に示す。図8は、ボトムセルモジュール200の構成をZ方向から見た図(その2)である。この例におけるセルインターコネクタ235は、互いに隣接するボトムセル210の表面側(図面における手前側)と裏面側(図面における奥側)を接続することで、m個のボトムセル210を直列に接続する導電体である。
 図9は、ボトムセルモジュール200の構成をY方向から見た図である(その2)。図示するように、ボトムセル210は、例えば、トップセルモジュール100の側から順に、n電極221、反射防止膜220、n型半導体222、p型半導体223、およびp電極224が積層されている。ボトムセル210は、p型半導体223pとn型半導体222との間に電圧を発生させる。発生した電圧は、p電極224とn電極221との間の電圧となる。この電圧は、セルインターコネクタ235によってボトムセル210が直列に接続されることで昇圧されて取り出される。ボトムセルモジュール200としては、他にも例えば、単結晶、多結晶、アモルファス等のシリコン系太陽電池や、CIS系、CIGS系の化合物太陽電池などが採用される。
 図10は、ボトムセルモジュール200の等価回路図である。図示するように、ボトムセルモジュール200は、ボトムセルが1並列20直列で接続された回路構成となっている。
 このように構成された太陽電池1は、トップセルモジュール100の方がボトムセルモジュール200よりも並列数が大きく、トップセルモジュール100の出力電流は一つのトップセル110の出力電流よりも大きくなる。ここで、仮にトップセルモジュール100とボトムセルモジュール200の並列数を同じにした場合は、前述した電流比率に起因してトップセルモジュール100の出力電流がボトムセルモジュール200の出力電流の1/αとなり、トップセルモジュール100とボトムセルモジュール200の電流が整合しないため、これらを直列に接続するのが難しくなってしまう。この点、実施形態の太陽電池1ではトップセルモジュール100の並列数を大きくすることでトップセルモジュール100の出力電流がボトムセルモジュール200の出力電流の差を解消することができ、電流整合された状態に近付けることができる。この結果、トップセルモジュール100とボトムセルモジュール200を直列に接続することができ、トップセルモジュール100とボトムセルモジュール200の発電する電力を効率的に利用させることができる。また、太陽電池1の正極端子1Pと負極端子1Nのそれぞれを一つに絞ることができるため、太陽電池1の軽量化を図ることができる。
 トップセルモジュール100の並列数をボトムセルモジュール200の並列数で除算した値βは、特性値であるαと一致することが望ましいが、βが1よりもαに近く(すなわち電流整合するように並列数が作用し)、且つ上限値(例えば1.5×α程度)を超えない限り、αと多少異なってもよい。上記例示した実施形態ではβ=4であるため、α=4となるようにトップセル110とボトムセル210の材料が選択されるとよい。
 以上説明した第1の実施形態によれば、複数のトップセル110の接続形態と複数のボトムセル210の接続形態(すなわち除算値β)は、トップセル110とボトムセル210の電流比率αに整合するように設定されているため、トップセルモジュールとボトムセルモジュールの発電する電力を効率的に利用させることができる。
 このような構成の太陽電池1は、例えば、以下のような態様で使用される。図11は、第1の実施形態に係る太陽電池システムの構成図である。太陽電池1は、幾何的構成として、1つの隅にトップセルモジュール100の正極端子100P(すなわち太陽電池1の正極端子1P)及びボトムセルモジュール200の負極端子200N(すなわち太陽電池1の負極端子1N)が配置されている。図11において、上側の太陽電池1をZ軸回りに180度回転させると下側の太陽電池1に一致するため、これらは等価である。
 図11に示すように、太陽電池1は、互いに隣接するように配置され、X方向に関して互いに隣接する太陽電池1の正極端子1Pと負極端子1Nとが接続されている。
 係る構成によって、複数の太陽電池1を直列に接続した太陽電池系統が生成される。太陽電池系統による発電電力は、PCS(Power Conditioning System)300の入力端子310に入力され、出力端子320から出力される。
 以上説明した第1の実施形態によれば、4端子モジュールを接続する従来の太陽電池システムと比較して、配線長を低減させて効率的に複数の太陽電池1を直列配置することができる。
 (第2の実施形態)
 以下、第2の実施形態について説明する。図12は、第2の実施形態の太陽電池2の構成図である。太陽電池2は、第1の実施形態の太陽電池1と比較すると、トップセルモジュール100の負極端子100Nが、ボトムセルモジュール200の正極端子200Pと接続されておらず、トップセルモジュール100の正極端子100Pが太陽電池2の第1正極端子2P#1、トップセルモジュール100の負極端子100Nが太陽電池2の第1負極端子2N#1、ボトムセルモジュール200の正極端子200Pが太陽電池2の第2正極端子2P#1、ボトムセルモジュール200の負極端子200Nが太陽電池2の第2負極端子2N#1を兼ねる点で相違する。すなわち、第2の実施形態の太陽電池2は、トップセルモジュール100とボトムセルモジュール200をそれぞれ独立した太陽電池として機能させる。トップセルモジュール100とボトムセルモジュール200の内部構成については第1の実施形態と同様であり、再度の説明を省略する。
 このような構成の太陽電池2は、例えば、以下のような態様で使用される。図13は、第2の実施形態に係る太陽電池システムの構成図である。太陽電池2は、幾何的構成としてタイプAとタイプBの2つのタイプのいずれかとして形成され得る。太陽電池2(タイプA)は、光の入射する側(プラスZ側)から見てトップセルモジュール100の正極端子100P(すなわち太陽電池2の第1正極端子2P#1)が第1隅に存在するものである。第1隅とは、右上または左下であり、太陽電池2をZ軸回りに180度回転させると右上と左下に区別は無いため、これらは等価である。太陽電池2(タイプB)は、光の入射する側(プラスZ側)から見てトップセルモジュール100の正極端子100P(すなわち太陽電池2の第1正極端子2P#1)が第2隅に存在するものである。第2隅とは、第1隅に隣接する隅であり、右下または左上である。なお太陽電池2が正方形の形状を有している場合、タイプAとタイプBの間に違いは無くなるが、そうでは無いものとする。太陽電池2(タイプA)は「第1種類の太陽電池」の一例であり、太陽電池2(タイプB)は「第2種類の太陽電池」の一例である。
 図13に示すように、太陽電池2(タイプA)と太陽電池2(タイプB)は、配列方向(X方向)に関して交互に配置され、互いに隣接する太陽電池2(タイプA)と太陽電池2(タイプB)の接続箇所において、太陽電池2(タイプA)の第1正極端子2P#1と太陽電池2(タイプB)の2N#1が接続されていると共に太陽電池2(タイプA)の2P#2と太陽電池2(タイプB)の2N#2が接続されており(図中(1))、或いは、太陽電池2(タイプA)の2N#1と太陽電池2(タイプB)の2P#1が接続されると共に太陽電池2(タイプA)の2N#2と太陽電池2(タイプB)の第2正極端子2P#2が接続されている(図中(2))。
 係る構成によって、複数の太陽電池2のトップセルモジュール100を直列に接続したフロントセル太陽電池系統と、複数の太陽電池2のボトムセルモジュール200を直列に接続したボトムセル太陽電池系統と、が生成される。フロントセル太陽電池系統による発電電力と、ボトムセル太陽電池系統による発電電力のそれぞれは、PCS(Power Conditioning System)300の第1入力端子310#1と第2入力端子310#2のそれぞれに入力され、PCS300において電流整合などの処理が行われて一本化された電力が出力端子320から出力される。
 以上説明した第2の実施形態によれば、第1の実施形態と同様の効果を奏することができる他、図13に例示したように、2タイプの太陽電池を用いることで、1タイプの太陽電池のみ用いる場合に比して、配線長を低減させて効率的に複数の太陽電池2を直列配置することができる。
 以上説明した少なくとも一つの実施形態によれば、入射した光を光電変換することで発電すると共に、入射した光の一部を通過させるトップセルモジュール100と、トップセルモジュール100と積層されトップセルモジュール100を通過した光を光電変換することで発電するボトムセルモジュール200と、を備え、トップセルモジュール100は、直列、並列、または直列と並列の組み合わせで互いに接続された複数のトップセル110を含み、ボトムセルモジュール200は、直列、並列、または直列と並列の組み合わせで互いに接続された複数のボトムセル210を含み、複数のトップセル110の接続形態と複数のボトムセル210の接続形態は、トップセル110とボトムセル210の電流比率に整合するように設定されているため、トップセルモジュールとボトムセルモジュールの発電する電力を効率的に利用させることができる。
 第1実施形態または第2実施形態の太陽電池、または太陽電池システムは、省スペースで効率的に発電をすることができるため、航空機の翼面などの種々の制約が多い箇所に好適に取り付けることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (5)

  1.  入射した光を光電変換することで発電すると共に、前記入射した光の一部を通過させるトップセルモジュールと、
     前記トップセルモジュールと積層され、前記トップセルモジュールを通過した光を光電変換することで発電するボトムセルモジュールと、を備え、
     前記トップセルモジュールは、直列、並列、または直列と並列の組み合わせで互いに接続された複数のトップセルを含み、
     前記ボトムセルモジュールは、直列、並列、または直列と並列の組み合わせで互いに接続された複数のボトムセルを含み、
     前記複数のトップセルの接続形態と前記複数のボトムセルの接続形態は、前記トップセルと前記ボトムセルの電流比率に整合するように設定されている、
     太陽電池。
  2.  前記トップセルモジュールの正極端子が前記太陽電池の正極端子であり、
     前記ボトムセルモジュールの負極端子が前記太陽電池の負極端子であり、
     前記トップセルモジュールの負極端子が前記ボトムセルモジュールの正極端子に接続されている、
     請求項1記載の太陽電池。
  3.  請求項2記載の複数の太陽電池を備え、
     前記複数の太陽電池は少なくとも一方向に関して互いに隣接するように配置され、互いに隣接する前記複数の太陽電池の接続箇所において、
     前記一方向に関して互いに隣接する前記複数の太陽電池のうちの一方の前記正極端子と、互いに隣接する前記複数の太陽電池のうちの他方の前記負極端子とが接続されている、
     太陽電池システム。
  4.  前記トップセルモジュールの正極端子が前記太陽電池の第1正極端子であり、
     前記トップセルモジュールの負極端子が前記太陽電池の第1負極端子であり、
     前記ボトムセルモジュールの正極端子が前記太陽電池の第2正極端子であり、
     前記ボトムセルモジュールの負極端子が前記太陽電池の第2負極端子である、
     請求項1記載の太陽電池。
  5.  請求項4記載の複数の太陽電池であって、光の入射する側から見て前記トップセルモジュールの正極端子が第1隅に存在する一以上の第1種類の太陽電池と、光の入射する側から見て前記トップセルモジュールの正極端子が前記第1隅に隣接する第2隅に存在する一以上の第2種類の太陽電池と、を備え、
     前記第1種類の太陽電池と前記第2種類の太陽電池が配列方向に関して交互に配置され、互いに隣接する前記第1種類の太陽電池と前記第2種類の太陽電池の接続箇所において、
     前記第1種類の太陽電池の前記第1正極端子と前記第2種類の太陽電池の前記第1負極端子が接続されていると共に前記第1種類の太陽電池の前記第2正極端子と前記第2種類の太陽電池の前記第2負極端子が接続されており、或いは、
     前記第1種類の太陽電池の前記第1負極端子と前記第2種類の太陽電池の前記第1正極端子が接続されると共に前記第1種類の太陽電池の前記第2負極端子と前記第2種類の太陽電池の前記第2正極端子が接続されている、
     太陽電池システム。
PCT/JP2020/035259 2020-09-17 2020-09-17 太陽電池、および太陽電池システム WO2022059134A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/035259 WO2022059134A1 (ja) 2020-09-17 2020-09-17 太陽電池、および太陽電池システム
JP2022550401A JPWO2022059366A1 (ja) 2020-09-17 2021-08-02
EP21869053.5A EP4216284A1 (en) 2020-09-17 2021-08-02 Solar cell and solar cell system
PCT/JP2021/028595 WO2022059366A1 (ja) 2020-09-17 2021-08-02 太陽電池、および太陽電池システム
US18/178,672 US20230207716A1 (en) 2020-09-17 2023-03-06 Solar cell and solar cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035259 WO2022059134A1 (ja) 2020-09-17 2020-09-17 太陽電池、および太陽電池システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/178,672 Continuation-In-Part US20230207716A1 (en) 2020-09-17 2023-03-06 Solar cell and solar cell system

Publications (1)

Publication Number Publication Date
WO2022059134A1 true WO2022059134A1 (ja) 2022-03-24

Family

ID=80776563

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/035259 WO2022059134A1 (ja) 2020-09-17 2020-09-17 太陽電池、および太陽電池システム
PCT/JP2021/028595 WO2022059366A1 (ja) 2020-09-17 2021-08-02 太陽電池、および太陽電池システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028595 WO2022059366A1 (ja) 2020-09-17 2021-08-02 太陽電池、および太陽電池システム

Country Status (4)

Country Link
US (1) US20230207716A1 (ja)
EP (1) EP4216284A1 (ja)
JP (1) JPWO2022059366A1 (ja)
WO (2) WO2022059134A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226210A (ja) * 1995-02-21 1996-09-03 Fuji Electric Corp Res & Dev Ltd 太陽光発電用屋根材およびその施工方法
US20110017257A1 (en) * 2008-08-27 2011-01-27 Stion Corporation Multi-junction solar module and method for current matching between a plurality of first photovoltaic devices and second photovoltaic devices
US8569613B1 (en) * 2008-09-29 2013-10-29 Stion Corporation Multi-terminal photovoltaic module including independent cells and related system
JP2017534184A (ja) * 2014-10-28 2017-11-16 ソル ヴォルタイクス アーベー 2層光発電デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083450A1 (en) * 2006-11-17 2009-07-29 Kyosemi Corporation Stacked solar cell device
JP7273537B2 (ja) 2018-09-19 2023-05-15 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226210A (ja) * 1995-02-21 1996-09-03 Fuji Electric Corp Res & Dev Ltd 太陽光発電用屋根材およびその施工方法
US20110017257A1 (en) * 2008-08-27 2011-01-27 Stion Corporation Multi-junction solar module and method for current matching between a plurality of first photovoltaic devices and second photovoltaic devices
US8569613B1 (en) * 2008-09-29 2013-10-29 Stion Corporation Multi-terminal photovoltaic module including independent cells and related system
JP2017534184A (ja) * 2014-10-28 2017-11-16 ソル ヴォルタイクス アーベー 2層光発電デバイス

Also Published As

Publication number Publication date
JPWO2022059366A1 (ja) 2022-03-24
US20230207716A1 (en) 2023-06-29
WO2022059366A1 (ja) 2022-03-24
EP4216284A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US20210043788A1 (en) Solar cell assembly
US10043929B1 (en) Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
KR20100026291A (ko) 박막 태양 전지 모듈 및 그 제조 방법
EP3089356B1 (en) Solar cell module
US20030213974A1 (en) Monolithically integrated diodes in thin-film photovoltaic devices
US11769847B2 (en) Solar panel with four terminal tandem solar cell arrangement
JPS62221167A (ja) 多層型薄膜太陽電池
US20120152325A1 (en) Junction box attachment to solar module laminate
JP2021132233A5 (ja)
WO2020196288A1 (ja) 太陽電池モジュール
US8569613B1 (en) Multi-terminal photovoltaic module including independent cells and related system
US20230411546A1 (en) Solar cell module
WO2022059134A1 (ja) 太陽電池、および太陽電池システム
CN115136325A (zh) 光伏设施的架构
US20120247544A1 (en) Solar cell
EP4354519A1 (en) Tandem solar cell
US20220158014A1 (en) Photovoltaic modules
US20230187568A1 (en) Photovoltaic module with integrated printed bypass diode
WO2023248256A1 (en) Three-dimensional photovoltaic supercell and a three-dimensional photovoltaic supercell module and method of manufacture of the same
JP2018037481A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
US20150075586A1 (en) Solar cell module
JPH07202233A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP