WO2011078321A1 - 電気化学デバイス用の包装材および電気化学デバイス - Google Patents

電気化学デバイス用の包装材および電気化学デバイス Download PDF

Info

Publication number
WO2011078321A1
WO2011078321A1 PCT/JP2010/073337 JP2010073337W WO2011078321A1 WO 2011078321 A1 WO2011078321 A1 WO 2011078321A1 JP 2010073337 W JP2010073337 W JP 2010073337W WO 2011078321 A1 WO2011078321 A1 WO 2011078321A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermocompression bonding
layer
polyimide
packaging material
thermocompression
Prior art date
Application number
PCT/JP2010/073337
Other languages
English (en)
French (fr)
Inventor
茂康 山口
中山 修
崇 奥野
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US13/518,622 priority Critical patent/US20120258354A1/en
Priority to CN2010800646324A priority patent/CN102804446A/zh
Publication of WO2011078321A1 publication Critical patent/WO2011078321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a packaging material for an electrochemical device such as a battery and an electrochemical device having a simple configuration and excellent durability and heat resistance.
  • lithium ion secondary batteries are frequently used in terms of energy density and output density.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are packaged with metal cans or laminate films.
  • the metal can is excellent in terms of strength, since the outer wall of the container is hard, the degree of freedom of shape is small, and the shape and dimensions on the hardware side where the battery is used are determined by the shape of the battery.
  • metal cans are disadvantageous in terms of weight.
  • a laminate film is lighter than a metal can and is advantageous in terms of price.
  • Patent Document 1 describes a battery packaged with an aluminum laminate film. As shown in FIG. 17, this battery 1 is formed by laminating and winding a positive electrode and a negative electrode through a separator to form a flat type, and a battery element to which an electrolytic solution is added is packaged with an aluminum laminate film. It was produced by sealing the periphery.
  • the positive electrode lead electrode 2a and the negative electrode lead electrode 2b connected to the positive electrode and the negative electrode are, for example, drawn from one side of the battery 1 to the outside of the battery.
  • the battery element is inserted from an unsealed opening, and finally the lead-out sides of the positive electrode lead electrode 2a and the negative electrode lead electrode 2b are sealed.
  • a battery can be obtained.
  • the aluminum laminate film used generally has a structure of exterior layer / adhesive layer / aluminum foil (metal layer) / adhesive layer / heat seal layer from the outside.
  • the aluminum foil plays a role of protecting the battery contents by preventing the ingress of moisture, oxygen and light in addition to improving the strength of the exterior material.
  • the exterior layer is made of polyolefin, polyamide, polyimide and polyester, specifically nylon (Ny), polyethylene terephthalate (PET), polyethylene (PE), polyethylene because of its beautiful appearance, toughness, heat resistance and flexibility. Naphthalate (PEN) is used.
  • the inner heat seal layer has heat-sealing properties to enclose the battery element, and is made of polyethylene (PE), unstretched polyethylene (CPE), unstretched polypropylene (CPP), polyethylene terephthalate (PET), nylon Resins having a relatively low melting point such as (Ny), low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE) are used.
  • PE polyethylene
  • CPE unstretched polyethylene
  • CPP unstretched polypropylene
  • PET polyethylene terephthalate
  • nylon Resins having a relatively low melting point such as (Ny), low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE) are used.
  • the adhesive layer may not be used, acid-modified polyolefin, ionomer, ethylene vinyl acetate copolymer (EVA), ethylene acrylic acid copolymer, or the like having good adhesion to metal is used.
  • the adhesive layer generally has a lower melting point than the heat seal layer, and these layers may themselves be used as the heat seal layer.
  • the inner heat seal layer is in contact with the electrolytic solution, it is necessary to have durability against acids generated by hydrolysis of the electrolytic solution and the electrolyte over a long period of time. This is because when the heat seal layer is deteriorated, the electrolyte solution invades the aluminum foil, and further moisture permeation proceeds, and the deterioration of the electrolyte solution proceeds rapidly.
  • JP 2008-262803 A JP 2001-30407 A JP 2001-52748 A
  • non-aqueous electrolyte secondary batteries are increasingly used in various fields, and their use under harsh conditions that could not be considered in the past has begun to be studied.
  • the laminate film exteriors proposed to date have limitations in terms of durability and heat resistance, and there is a problem that the application of secondary batteries such as lithium ion secondary batteries cannot be sufficiently expanded. Furthermore, since the film itself is flammable, there is a problem in terms of safety.
  • the present invention provides a packaging material for an electrochemical device such as a battery, which can be used even under severe conditions such as high temperature and / or low temperature, and an electrochemical device using the packaging material. Objective.
  • the present invention relates to the following matters.
  • thermocompression bonding polyimide layer A packaging material for an electrochemical device, Formed using a laminate having a metal layer and a thermocompression bonding polyimide layer, A packaging material, wherein a hermetic packaging structure is formed by thermocompression bonding of the thermocompression bonding polyimide layer around the laminate.
  • the packaging material is such that the laminate is overlaid so that the thermocompression bonding polyimide layer is on the inside, and the thermocompression bonding polyimide layer is thermocompression bonded around the laminate to form a sealed structure. 2.
  • thermocompression bonding polyimide layer is formed of a material that can be thermocompression bonded in the range of 150 to 400 ° C.
  • thermocompression bonding polyimide layer has a multilayer structure of thermocompression bonding polyimide and heat resistant polyimide.
  • thermoplastic polyimide is a polyimide obtained from a combination comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine.
  • the packaging material according to any one of 1 to 6 above; An electrochemical device having an electrochemical device element sealed and accommodated inside the packaging material.
  • a method for producing an electrochemical device comprising an electrochemical device element and a packaging material encapsulating the electrochemical device element, Preparing a laminate having a metal layer and a thermocompression bonding polyimide layer; Forming the packaging material by forming the hermetic packaging structure by fusing the thermocompression bonding polyimide layer of the laminate at the outer periphery so as to accommodate the electrochemical device element therein.
  • a method for producing an electrochemical device comprising an electrochemical device element and a packaging material encapsulating the electrochemical device element, Preparing a laminate having a metal layer and a thermocompression bonding polyimide layer; Forming the packaging material by forming the hermetic packaging structure by fusing the thermocompression bonding polyimide layer of the laminate at the outer periphery so as to accommodate the electrochemical device element therein.
  • the laminated body is overlaid so that the thermocompression bonding polyimide layer is inside, and the thermocompression bonding polyimide layer is thermocompression bonded around the laminated body to form a sealed packaging structure. 10.
  • thermocompression bonding polyimide layer is subjected to thermocompression bonding by heating and pressing in a range of 150 to 400 ° C.
  • a packaging material for electrochemical devices such as batteries that can be used under severe conditions such as high temperature and / or low temperature.
  • a packaging material for an electrochemical device that is extremely excellent in heat resistance and durability can be obtained.
  • the packaging material of this invention is formed from the laminated body 10 provided with the metal layer 11 and the thermocompression bonding polyimide layer 12 at least as shown in FIG.
  • the material of the metal layer 11 is not particularly limited, and examples thereof include aluminum, stainless steel, and iron with Ni plating.
  • Aluminum is preferable.
  • the metal layer can be formed by vapor deposition or the like, but usually a metal foil is used.
  • the thickness of the metal layer is not particularly limited, but is, for example, 1 to 1000 ⁇ m, preferably 8 to 100 ⁇ m, and more preferably 20 to 100 ⁇ m. For the purpose of shape retention, a thicker is preferable, for example, 200 to 500 ⁇ m.
  • thermocompression bonding polyimide layer 12 is formed of polyimide as a whole, and at least the surface 15 which is the inner surface of the packaging material has thermocompression bonding. Therefore, the entire layer 12 may be formed of a single layer of thermocompression bonding polyimide, or has a laminated structure of two or more layers of thermocompression bonding polyimide and heat resistant polyimide (that is, polyimide that does not soften at the bonding temperature). Also good.
  • FIG. 2 shows an example in which the thermocompression bonding polyimide layer 12 has a three-layer structure, in which the thermocompression bonding polyimide 12a is formed on both sides of the heat resistant polyimide 12b.
  • the boundary between the layers may be clear, or the layer may be an inclined layer in which the composition is mixed.
  • the thickness of the thermocompression bonding polyimide layer 12 is not particularly limited, but is, for example, 5 to 100 ⁇ m, preferably 12.5 to 50 ⁇ m.
  • an exterior layer 13 may be provided outside the metal layer 11.
  • a known material such as nylon described in the background art can be used, but a polyimide layer may be used.
  • the exterior layer 13 may be formed of the same material as the thermocompression bonding polyimide layer 12.
  • the exterior layer when the exterior layer is formed of a multi-layer polyimide, it may have a three-layer structure of thermocompression bonding polyimide / heat resistant polyimide / thermocompression bonding polyimide as in the layer 12 of FIG. 2, or thermocompression bonding from the metal layer side. It is also possible to have a two-layer structure of conductive polyimide / heat-resistant polyimide.
  • thermocompression bonding polyimide layer 12 and / or the outer layer 13 and polyimide having excellent flame retardancy it is preferable to use polyimide as the material of the thermocompression bonding polyimide layer 12 and / or the outer layer 13 and polyimide having excellent flame retardancy.
  • conventional exterior layer materials such as nylon also have a problem of melting due to heat applied when the inner layers (thermocompression-bonding polyimide layers) are joined together.
  • thermocompression bonding polyimide layer 12 has a three-layer structure of thermocompression bonding polyimide / heat resistant polyimide / thermocompression bonding polyimide as shown in FIG. 2 and is laminated on both surfaces of the metal layer
  • thermocompression bonding polyimide a layer
  • thermocompression bonding polyimide a layer
  • heat-resistant polyimide a layer composed of heat-resistant polyimide
  • the heat-resistant polyimide (b layer) has a heat-resistant polyimide having at least one of the following characteristics, and having at least two of the following characteristics [1) and 2), 1) and 3), 2) and 3 ))], Particularly those having all of the following characteristics can be used.
  • MD coefficient of linear expansion
  • a combination comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), p-phenylenediamine (PPD), and optionally 4,4-diaminodiphenyl ether (DADE).
  • s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • PPD p-phenylenediamine
  • DADE 4,4-diaminodiphenyl ether
  • the PPD / DADE (molar ratio) is preferably 100/0 to 85/15.
  • a combination comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride (PMDA), p-phenylenediamine and optionally 4,4-diaminodiphenyl ether.
  • PMDA pyromellitic dianhydride
  • BPDA / PMDA is preferably 0/100 to 90/10.
  • PPD and DADE are used in combination, PPD / (DADE is preferably 90/10 to 10/90, for example.
  • DADE / PPD is preferably 90/10 to 10/90.
  • the combination of 1) above is preferable because it is particularly excellent in heat resistance.
  • DADE 4,4-diaminodiphenyl ether
  • diamine component capable of obtaining a heat-resistant polyimide
  • m-phenylenediamine, 2,4-toluenediamine, 3,3′-diaminodiphenyl sulfide in addition to the diamine component shown above, as long as the target properties are not impaired.
  • thermocompression bonding polyimide or thermocompression bonding polyimide (a layer)
  • a known polyimide having a property capable of being thermocompression bonded under pressure to a metal foil such as a copper foil or an aluminum foil can be used.
  • thermocompression bonding polyimide is preferably at or above the glass transition temperature of the thermocompression bonding polyimide, preferably 20 ° C. higher than the glass transition temperature, more preferably 30 ° C. higher than the glass transition temperature, particularly preferably 50 ° C. higher than the glass transition temperature. It is a polyimide having a thermocompression bonding property that can be bonded to a metal foil at a high temperature to 400 ° C. or lower.
  • thermocompression bonding polyimide further has at least one of the following characteristics, and at least two of the following characteristics [a combination of 1) and 2), 1) and 3), 2) and 3)], [1), 2), 3), 1), 3), 4), 2), 3), 4), 1), 2), 4), etc.], especially What has all the following characteristics can be used.
  • the thermocompression bonding polyimide (a layer) has a peel strength of 0.7 N / mm or more with a metal foil, and a peel strength retention rate of 90% or more, even 95% or more even after heat treatment at 150 ° C. for 168 hours. In particular, the polyimide should be 100% or more.
  • thermocompression bonding between thermocompression polyimides or between thermocompression polyimide and metal at 150 to 400 ° C, preferably 250 to 370 ° C.
  • the tensile elastic modulus is 100 to 700 kg / mm 2 .
  • the linear expansion coefficient (50 to 200 ° C.) (MD) is 13 to 30 ⁇ 10 ⁇ 6 cm / cm / ° C.
  • thermocompression bonding polyimide preferably has a thermocompression bonding between thermocompression bonding polyimides (a layer) and adhesion between the thermocompression bonding polyimide (a layer) and the lead electrode of the electrochemical device at 250 ° C. or higher.
  • Thermocompression bonding polyimide (1) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′ , 4,4′-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4- Dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride and 1,4-hydroquinone dibenzoate -An acid component containing at least one component selected from acid dianhydrides such as 3,3 ', 4,4'-tetrac
  • the diamine component examples include 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,3 '-Diaminobenzophenone, 4,4'-bis (3-aminophenoxy) biphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4 -(4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] Sulfone, bis [4- (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4
  • An acid component containing seeds preferably an acid component containing at least 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more of these acid components
  • Examples of the diamine component include 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene 4,4′-bis (3-aminophenoxy) biphenyl, bis [4 -(3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-amin
  • thermocompression bonding polyimide As a diamine component capable of obtaining a thermocompression bonding polyimide, in addition to the diamine component shown above, p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, 3, as long as the characteristics of the present invention are not impaired.
  • the synthesis of the polyimide precursor can be performed by a known method.
  • an acid component such as an aromatic tetracarboxylic dianhydride and an diamine component are randomly polymerized or block polymerized in an organic solvent. Is achieved. May also be mixed with the reaction conditions was keep two or more polyimide precursors in which either of these two components is excessive, the respective polyimide precursor solution together.
  • the polyimide precursor solution thus obtained can be used for the production of a self-supporting film as it is or after removing or adding a solvent if necessary.
  • the polyimide precursor solution is heated to 150 to 250 ° C., or an imidizing agent is added and reacted at a temperature of 150 ° C. or less, particularly 15 to 50 ° C. to imide cyclization. Thereafter, the solvent is evaporated or precipitated in a poor solvent to obtain a powder. Thereafter, the powder can be dissolved in an organic solution to obtain an organic solvent solution of polyimide.
  • organic solvent for the polyimide precursor solution examples include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and the like. These organic solvents may be used alone or in combination of two or more.
  • the polyimide precursor solution may contain an imidization catalyst, an organic phosphorus-containing compound, fine particles such as inorganic fine particles and organic fine particles, if necessary.
  • the imidization catalyst examples include a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of the nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxyl group, or an aromatic heterocyclic compound.
  • Cyclic compounds such as 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, etc.
  • Benzimidazoles such as alkylimidazole and N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n- Substituted pyridines such as propylpyridine It can be used to apply.
  • the amount of the imidization catalyst used is preferably about 0.01 to 2 times equivalent, particularly about 0.02 to 1 time equivalent to the amic acid unit of the polyamic acid.
  • a chemical imidizing agent in which a dehydrating ring-closing agent and an organic amine are combined is usually contained in the polyimide precursor solution.
  • the dehydrating ring-closing agent include dicyclohexylcarbodiimide, and acid anhydrides such as acetic anhydride, propionic anhydride, valeric anhydride, benzoic anhydride, trifluoroacetic acid dianhydride, and the organic amines include picoline, quinoline, and the like. , Isoquinoline, pyridine and the like, but are not limited thereto.
  • Any polyimide precursor solution can be cast on the support, and the self-supporting film can be peeled from the support, and then a self-supporting film that can be stretched in at least one direction in the second step can be formed.
  • the viscosity of the polyimide precursor solution such as the type and concentration of various additives added to the solution as required, such as the type of polymer, the degree of polymerization, and the concentration, can be appropriately set.
  • the concentration of the polyimide precursor in the polyimide precursor solution is preferably 5 to 30% by mass, more preferably 10 to 25% by mass, and still more preferably 15 to 20% by mass.
  • the solution viscosity of the polyimide precursor solution is preferably 100 to 10,000 poise, preferably 400 to 5000 poise, and more preferably 1000 to 3000 poise.
  • thermocompression bonding film for forming the thermocompression bonding polyimide layer 12 is preferably formed by (i) a heat-resistant polyimide layer (b layer) by a coextrusion-casting film forming method (also simply referred to as a multilayer extrusion method).
  • thermocompression bonding polyimide layer (a layer) dope solution are laminated, dried and imidized to obtain a multilayer polyimide film, (ii) or the heat resistant polyimide layer (b layer) dope solution is supported
  • a method of obtaining a multilayer polyimide film by applying a dope solution of a thermocompression bonding polyimide layer (a layer) on one side or both sides of a self-supporting film (gel film) that has been cast applied onto a body and dried, and then dried and imidized.
  • a dope solution of a thermocompression bonding polyimide layer (a layer) on one side or both sides of a self-supporting film (gel film) that has been cast applied onto a body and dried, and then dried and imidized can be obtained by:
  • the coextrusion method can be carried out by a known method, and for example, the method described in JP-A-3-180343 (JP-B-7-102661) can be used.
  • thermocompression bonding polyimide film having thermocompression bonding on both surfaces is shown.
  • a polyamic acid solution for heat-resistant polyimide (b layer) and a polyamic acid solution for thermocompression bonding polyimide (a layer) are formed by a three-layer coextrusion method, and the thickness of the heat-resistant polyimide (b layer) is 4 to 45 ⁇ m on both sides. Is supplied to a three-layer extrusion die so that the total thickness of the thermocompression bonding polyimide (layer a) is 3 to 10 ⁇ m, cast on a support, and this is on a support surface such as a stainless steel mirror surface or a belt surface. A self-supporting film that is semi-cured or dried at 100 to 200 ° C. can be obtained.
  • the self-supporting film tends to cause defects such as a decrease in adhesiveness in the production of a polyimide film having thermocompression bonding.
  • This semi-cured state or an earlier state means that it is in a self-supporting state by heating and / or chemical imidization.
  • the obtained self-supporting film was measured at a temperature not higher than the temperature at which deterioration occurs at a temperature higher than the glass transition temperature (Tg) of the thermocompression bonding polyimide (a layer), preferably 250 to 420 ° C. (measured with a surface thermometer).
  • Tg glass transition temperature
  • thermocompression bonding polyimide a layer
  • thermocompression bondable polyimide a layer
  • the obtained self-supporting film preferably has about 20 to 60% by mass, particularly preferably 30 to 50% by mass of the solvent and water produced (particularly preferably, the loss on heating is preferably about 20 to 60% by mass. 30-50 mass%), when raising the temperature of the self-supporting film to the drying temperature, it is preferable to raise the temperature within a relatively short time, for example, a temperature rising rate of 10 ° C./min or more. Is preferred.
  • a relatively short time for example, a temperature rising rate of 10 ° C./min or more. Is preferred.
  • At least a pair of both end edges of the self-supporting film is continuously or intermittently fixed with a fixing device or the like that can be moved together with the self-supporting film.
  • a fixing device or the like that can be moved together with the self-supporting film.
  • the support film is dried and heat-treated, and the solvent is preferably removed from the self-support film so that the content of volatile substances composed of an organic solvent and product water in the finally obtained polyimide film is 1% by weight or less.
  • the polyimide film having the thermocompression bonding on both sides is sufficiently removed by sufficiently imidizing the polymer constituting the film. It is possible to form a beam.
  • the fixing device for the self-supporting film examples include, for example, a belt-like or chain-like one provided with a large number of pins or gripping tools at equal intervals, and the length of the solidified film supplied continuously or intermittently.
  • a device that can be installed in a pair along both side edges in the direction and can fix the film while moving the film continuously or intermittently with the movement of the film is suitable.
  • the solidified film fixing device can expand and contract the film being heat-treated in the width direction or the longitudinal direction at an appropriate elongation or contraction rate (particularly preferably an expansion ratio of about 0.5 to 5%). It may be a device.
  • the polyimide film having thermocompression bonding on both sides produced in the above step is preferably at a temperature of 100 to 400 ° C. under low tension or no tension of preferably 4N or less, particularly preferably 3N or less.
  • a polyimide film having thermocompression bonding on both sides having particularly excellent dimensional stability can be obtained.
  • the manufactured polyimide film which has thermocompression bonding on both surfaces can be wound up in a roll shape by an appropriate known method.
  • the loss on heating of the self-supporting film is a value obtained by drying the film to be measured at 420 ° C. for 20 minutes and calculating from the weight W1 before drying and the weight W2 after drying by the following formula.
  • Loss on heating (mass%) ⁇ (W1-W2) / W1 ⁇ ⁇ 100
  • the imidization ratio of the self-supporting film can be obtained by a technique using a Karl Fischer moisture meter described in JP-A-9-316199.
  • inorganic additives include particulate or flat inorganic fillers.
  • organic additive include polyimide particles and thermosetting resin particles. The usage amount and shape (size, aspect ratio) are preferably selected according to the purpose of use.
  • the heat treatment can be performed using various known devices such as a hot stove and an infrared heating furnace.
  • thermocompression bonding polyimide film having a structure of thermocompression bonding polyimide (a layer) / heat resistant polyimide (b layer) / thermocompression bonding polyimide (a layer) is obtained.
  • this double-sided thermocompression bonding polyimide film (hereinafter simply referred to as double-sided thermocompression bonding film) is laminated on both sides of a metal foil such as an aluminum foil.
  • a heating device When laminating a metal foil and a thermocompression-bondable polyimide film, a heating device, a pressurizing device, or a heating and pressurizing device can be used, and the heating conditions and pressurizing conditions can be appropriately selected depending on the materials used. Although it will not specifically limit if it can laminate continuously or batchwise, it is preferable to carry out continuously using roll lamination, a double belt press, etc.
  • thermocompression bonding film a long (200 to 2000 m long) metal foil, and a long double-sided thermocompression bonding film are stacked in this order, preferably introduced.
  • Preheating is performed using a preheater such as a hot air supply device or an infrared heater so that preheating can be performed for about 2 to 120 seconds at a temperature of about 150 to 250 ° C., particularly higher than 150 ° C. and lower than 250 ° C.
  • a pair of crimping rolls or a double belt press the temperature of the thermocompression bonding zone of the pair of crimping rolls or double belt press is 20 ° C.
  • thermocompression bonding is performed under pressure in a temperature range of 30 ° C. or higher than the temperature, and further in a temperature range of 400 ° C., particularly in a temperature range of 50 ° C. or higher to the glass transition temperature to 400 ° C.
  • it is subsequently cooled under pressure in a cooling zone.
  • it is cooled to a temperature lower than the glass transition temperature of polyimide by 20 ° C. or more, further from 30 ° C.
  • thermocompression bonding films are laminated on both sides of the metal foil, and as a result, a laminate having thermocompression-bonding polyimide layers on both sides of the metal layer is obtained.
  • Preheating the polyimide film before thermocompression can prevent appearance defects due to foaming of the laminate after thermocompression due to moisture contained in the polyimide.
  • the double belt press can perform high temperature heating and cooling under pressure, and is preferably a hydraulic type using a heat medium.
  • the laminated body can be made to have a take-up speed of 1 m / min or more preferably by thermocompression-cooling under pressure using a double belt press, and the laminated body is long and has a width of about 400 mm.
  • wide adhesive strength of about 500 mm or more and high adhesion strength peel strength between metal foil and polyimide film is 0.7 N / mm or more, and peel strength retention is 90% even after heat treatment at 150 ° C. for 168 hours.
  • peel strength retention is 90% even after heat treatment at 150 ° C. for 168 hours.
  • a protective material that is, two protective materials
  • a protective material may be interposed between both sides of the outermost layer and the belt, and may be laminated by bonding under pressure and thermocompression-cooling.
  • any material can be used as long as it is non-thermocompressible and has good surface smoothness with respect to the thermocompression bonding polyimide layer 12 and the metal layer 11 during the production of the laminate.
  • copper foils, stainless steel foils, aluminum foils, high heat-resistant polyimide films (for example, Ube Industries, Upilex S, Toray DuPont Kapton H) and the like having a thickness of about 5 to 125 ⁇ m are preferable.
  • Upilex S manufactured by Ube Industries, Ltd. is preferable.
  • thermocompression bonding polyimide film of ⁇ thermocompression bonding PI (a layer) / heat resistance PI (b layer) / thermocompression bonding PI (a layer) ⁇ is formed, and ⁇ thermocompression bonding PI (a Layer) / heat resistance PI (b layer) / thermocompression bonding PI (a layer) ⁇ / metal layer / ⁇ thermocompression bonding PI (a layer) / heat resistance PI (b layer) / thermocompression bonding PI (a layer) ⁇
  • the production of the laminate having the structure was described.
  • thermocompression-bonding PI (a layer) / heat-resistant PI (b-layer) ⁇ two-layer structure film (one-side thermocompression bonding polyimide film), ⁇ thermocompression-bonding PI (a layer) single layer ⁇ structure film Therefore, a laminate having the following structure can also be manufactured by combining them.
  • thermocompression bonding polyimide film one-side thermocompression bonding polyimide film
  • thermocompression-bonding PI a layer
  • thermocompression bonding polyimide layer can be directly formed on a metal foil that becomes a metal layer in the laminate. That is, imidization can be carried out by casting or applying the polyimide precursor solution prepared as described above on a metal foil, followed by heat treatment.
  • the heat treatment conditions for imidization the same heat treatment conditions as those for producing the aforementioned film may be employed.
  • thermocompression bonding polyimide layer can be composed of a single layer of thermocompression bonding polyimide or can be composed of multiple layers.
  • the manufacturing method in the case of constituting with multiple layers can be prepared by, for example, applying the polyimide precursor solution on the metal foil instead of casting the polyimide precursor solution on the support.
  • ⁇ thermocompression bonding PI (a layer) / heat resistance PI (b layer) / thermocompression bonding PI (a layer) ⁇ / metal layer structure by casting and applying the same by multilayer extrusion method Can be produced.
  • the polyimide precursor solution can be cast on both surfaces of the metal foil.
  • the form of the packaging material of the present invention (the shape in which the electrochemical device element is encapsulated) is not particularly limited as long as the thermocompression bonding polyimide layer is fused at the outer peripheral portion to form a hermetic packaging structure. Are possible.
  • the packaging material has a bag shape
  • a lithium ion secondary battery will be described as an example.
  • the laminate 10 is prepared first, and as shown in FIG. 4 (b), it is folded back so that the thermocompression bonding polyimide layer 12 is inside.
  • the folded state is shown in (b-1) plan view and (b-2) sectional view.
  • thermocompression bonding the surface of the thermocompression bonding polyimide layer may be pressed while being heated to a temperature at which thermocompression bonding can be performed.
  • pressing is performed using a thermocompression bonding jig having a suitable shape. Can be implemented.
  • FIG. 5 shows that three sides around the folded laminate 10 are thermocompression bonded to form thermocompression bonding portions 21 on the three sides, and a bag shape is formed from the laminate.
  • the surface of the thermocompression bonding polyimide layer may be pressed while being heated to a temperature at which thermocompression bonding can be performed.
  • pressing is performed using a thermocompression bonding jig having a suitable shape. Can be implemented.
  • a spacer 22 having a non-thermocompression bonding property to the thermocompression bonding polyimide layer 12 such as a protective material is used so that the laminates overlap each other on the three peripheral sides, and the rest By pressing and heating the whole while sandwiching the spacer 22 in the center including one side (left side in the figure), the three surrounding sides where the laminate is overlapped are heat-sealed. Thereafter, by removing the spacer 22, a bag with three sides sealed as shown in (b) is formed.
  • the battery element 31 is connected to the lead electrodes 32a and 32b from the opening 34, as shown in FIG.
  • the opening 34 is thermocompression-bonded as shown in FIG. 7C
  • the thermocompression-bonding polyimide layer is thermocompression-bonded and the battery element 31 is enclosed. Sealed.
  • the lithium ion secondary battery 35 provided with the battery element 31 and the packaging material 33 is completed.
  • the packaging material has a hermetic bag structure formed by thermocompression bonding of a thermocompression bonding polyimide layer around the laminate. In the portion where the thermocompression bonding portion and the lead electrode intersect, the thermocompression bonding polyimide layer is in close contact with the lead electrode, and in the other thermocompression bonding portion, the thermocompression bonding polyimide layers are bonded (in close contact).
  • the battery element includes known battery components such as a positive electrode, a negative electrode, an electrolytic solution or a solid electrolyte, and a separator.
  • the folded side is also thermocompression bonded, but the folded side 37 does not have to be thermocompression bonded as shown in FIG.
  • the folded side 37 instead of folding a single laminate as shown in FIG. 4, prepare two laminates and stack them so that the thermocompression-bonding polyimide layers face each other, and then thermocompression bond the surroundings. May be.
  • a pillow shape as shown in FIG.
  • a pair of opposite sides of one rectangular laminate 10 are combined to form a thermocompression bonding portion 23 to form a cylindrical shape, and then the upper and lower openings 34a in the drawing. , 34b are sequentially thermocompression bonded to form the thermocompression bonding portions 24 and 25, respectively, so that a sealed bag structure can be produced.
  • the lead electrode 32a and the lead electrode 32b can be taken out from different sides.
  • the packaging material of the present invention may have a tray-type structure.
  • a lower tray 41 formed by pressing the laminated body 10 with a press or the like and an upper tray 42 (a laminated body not formed in this example) are prepared.
  • a flange portion 43 is provided around the lower tray 41 so as to facilitate thermocompression bonding, and a thermocompression bonding polyimide layer is provided on the side where the upper tray and the lower tray overlap.
  • the upper tray is overlapped and the periphery is thermocompression bonded, so that the periphery as shown in FIG.
  • the battery 35 is completed.
  • a tray-like molded body such as the lower tray 41 may be used for the upper tray.
  • the tray-structured packaging material can be formed without using a press molding method.
  • a thermocompression bonding polyimide film 51 is prepared.
  • the polyimide film may be formed of a single layer of thermocompression-bonding polyimide.
  • the film is cut to create a large number of frame-like sheets 52 as shown in FIG.
  • a sheet 53 that is substantially the same as or larger than the outer shape of the frame-shaped sheet 52 is produced from a laminate having a metal layer and a thermocompression bonding polyimide layer.
  • a plurality of frame-like sheets 52 are stacked on the thermocompression bonding polyimide layer surface of the sheet 53 and thermocompression bonded, whereby the tray 54 shown in FIG. 13B is manufactured. be able to.
  • the battery element is housed in the tray, and the sheet 53b made from the laminate having the metal layer and the thermocompression-bonding polyimide layer is replaced with the thermocompression-bonding polyimide layer.
  • a lithium ion secondary battery housed in a packaging material whose end is sealed with a thermocompression bonding portion of thermocompression bonding polyimide is completed by overlapping and thermocompression bonding.
  • the sheet 53b is used as the upper lid, but a battery element can be accommodated by using a tray equivalent to the tray 54 as the upper lid.
  • the tray 54 may be formed with a metal frame between the frame-like sheets 52.
  • the width of the metal frame 55 is preferably the same as or smaller than the frame-shaped sheet 52 (the inner opening is large).
  • a plurality of the frame-like sheets 56 having only three sides shown in FIG. 15 and the two sheets 53 are used to form a box-like container whose one side surface is opened in advance to store the battery elements. Then, the open surface can be sealed by thermocompression.
  • FIG. 16 shows an example of a multi-tray type packaging material. 12 to 15, one tray is formed.
  • the multi-frame sheet 58 having a plurality of openings 59 corresponding to one tray is used.
  • a film having a structure of ⁇ thermocompression bonding PI (a layer) / heat resistant PI (b layer) / thermocompression bonding PI (a layer) ⁇ is cut and formed.
  • a multi-tray 60 shown in FIG. 16B can be manufactured by stacking a plurality of multi-frame sheets 58 on a sheet 53 (same as described above) and thermocompression bonding.
  • a battery element is put in each battery storage portion 61 of the multi-tray 60 and another sheet 53 is thermocompression bonded as an upper lid to complete a lithium ion secondary battery in which a plurality of batteries are stored. .
  • the lead electrodes are pulled out to the front side for the batteries stored in the tray in the front row, and the back electrodes are set in the rear side for the batteries stored in the tray in the rear row. It can be pulled out. Further, the lead electrode can be pulled out in any direction by changing the shape of the sheet serving as the upper lid. For example, in the sheet 62 and the sheet 63 shown in FIGS. 16C and 16D, the lead electrode can be pulled out to the near side even with the batteries stored in the trays in the back row.
  • a sheet serving as the upper lid may be thermocompression bonded after the batteries stored in the multi-tray are connected in series and / or in parallel.
  • thermocompression bonding between the thermocompression bonding polyimide and the thermocompression bonding polyimide can be performed at a temperature excellent in adhesion under pressure, for example, a temperature range in which the thermocompression bonding polyimide and the metal foil are bonded together, preferably a glass transition.
  • the temperature is 20 ° C. higher than the temperature, more preferably 30 ° C. higher than the glass transition temperature, particularly preferably 50 ° C. to 400 ° C. or lower.
  • thermocompression bonding polyimide and the lead electrode for example, the lead electrode 32a and / or the lead electrode 32b
  • other heat melting polyimides are used.
  • An adhesive resin, a thermocompression bonding resin, a thermosetting resin, or the like may be used.
  • the packaging material of the present invention is applicable not only to lithium ion secondary batteries (including lithium polymer ion secondary batteries) but also to various electrochemical devices.
  • Electrochemical devices to which the present invention is applied include, in addition to lithium ion secondary batteries, manganese dry batteries, alkaline manganese dry batteries, nickel-based primary batteries, oxyride batteries, silver oxide batteries, mercury batteries, air zinc batteries, lithium batteries, Alternatively, a primary battery such as a seawater battery, a secondary battery such as a lead storage battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, or a sodium-sulfur battery, an electric double layer capacitor, a dye-sensitized solar cell, and the like can be given.
  • lithium ion secondary batteries including lithium polymer ion secondary batteries
  • electricity A double layer capacitor is preferred.
  • the electrochemical device element means a portion obtained by removing the packaging material and the extraction electrode from the electrochemical device.
  • a battery or a capacitor it means a power generation element or a power storage element involved in an electrochemical reaction such as discharge and / or power storage.
  • a battery a known battery such as at least a positive electrode, a negative electrode, an electrolyte or a solid electrolyte, a separator, etc. Constituent elements are included.
  • the packaging material structure of the present invention can be applied not only to electrochemical devices but also to other electronic and electrical components.
  • thermocompression multilayer polyimide film Using a film-forming device equipped with a three-layer extrusion die (multimanifold die), the polyamic acid solution for heat-resistant polyimide and the polyamic acid solution for thermocompression bonding polyimide produced above are made of metal from the three-layer extrusion die.
  • the film was cast on a support, dried continuously with hot air at 140 ° C., and then peeled to form a self-supporting film. After peeling this self-supporting film from the support, the temperature is gradually raised from 150 ° C. to 450 ° C. in a heating furnace to remove the solvent and imidize, and wind the long three-layer polyimide film on a roll. It was.
  • the properties of the obtained three-layer polyimide film (layer structure: thermocompression bonding polyimide (a layer) / heat resistant polyimide (b layer) / thermocompression bonding polyimide (a layer)) were evaluated.
  • thermocompression multilayer polyimide film Thickness configuration: 4 ⁇ m / 17 ⁇ m / 4 ⁇ m (total 25 ⁇ m) -Glass transition temperature of thermocompression bonding polyimide (a layer): 240 ° C -Glass transition temperature of heat-resistant polyimide (b layer): A clear temperature could not be confirmed at 300 ° C or higher.
  • thermocompression-bonding multilayer polyimide film / metal (aluminum foil) / thermocompression-bonding multilayer polyimide film
  • Three layers of the thermocompression-bonding multilayer polyimide film, aluminum foil, and the thermocompression-bonding multilayer polyimide film are stacked in this order, preheated without applying pressure at 230 ° C. for 30 seconds immediately before hot pressing, and then hot pressed (heating temperature: 330). C., pressure: 2.3 MPa, pressure bonding time 5 minutes), cooled and taken out to produce a laminate.
  • a laminate having a metal layer and a thermocompression bonding polyimide layer has excellent mechanical strength even at high and low temperatures, and, as is well known, has excellent heat resistance, flame retardancy, and durability. Therefore, it is suitable as a packaging material for electrochemical devices such as batteries used under harsh conditions.
  • the laminate is bent using the laminate, and the product name Upilex S (manufactured by Ube Industries, thickness 25 ⁇ m) is used as a spacer at the non-joined portion. (Heating temperature: 330 ° C., pressure: 2.3 MPa, pressure bonding time 5 minutes). After the hot pressing, the spacer was taken out, and a bag was produced in which one piece was opened and three pieces were joined by thermocompression bonding. The bag body is excellent in heat resistance and flame retardancy.
  • Upilex S manufactured by Ube Industries, thickness 25 ⁇ m
  • Glass transition temperature (Tg) of polyimide film determined from a peak value of tan ⁇ by a dynamic viscoelasticity method (tensile method, frequency 6.28 rad / sec, temperature rising rate 10 ° C./min).
  • Linear expansion coefficient of polyimide film (50 to 200 ° C.) An average linear expansion coefficient of 20 to 200 ° C. was measured by a TMA method (tensile method, heating rate 5 ° C./min).
  • Mechanical properties and tensile strength of polyimide film Measured according to ASTM D882 (crosshead speed 50 mm / min).
  • Elongation rate Measured according to ASTM D882 (crosshead speed 50 mm / min).
  • -Tensile elastic modulus Measured according to ASTM D882 (crosshead speed 5 mm / min).
  • the packaging material of the present invention is useful for electrochemical devices such as batteries.

Abstract

 電池等の電気化学デバイスの包装材であって、高温または低温等の過酷な条件下でも使用可能な包装材、およびそれを使用した電気化学デバイスが開示される。金属層と熱圧着性ポリイミド層を有する積層体を用いて、積層体の周囲において、前記熱圧着性ポリイミド層が融着されることで密閉包装構造が形成されるようにして、包装材33の内部に電気化学デバイス要素31を密閉収納して電気化学デバイスを製造できる。

Description

電気化学デバイス用の包装材および電気化学デバイス
 本発明は、電池等の電気化学デバイスの包装材および簡単な構成で耐久性、耐熱性に優れた電気化学デバイスに関する。
 従来、ポータブル電子機器の電源として、種々の一次電池および二次電池が提案されているが、その中でも、エネルギー密度及び出力密度の点で、リチウムイオン二次電池が多用されている。
 リチウムイオン二次電池のような非水電解質二次電池は、金属缶やラミネートフィルムにより外装されている。金属缶は強度の点で優れているが、容器外壁が固いために形状の自由度が小さく、電池を使用するハード側の形状および寸法が電池の形状により決定されてしまう。また、金属缶は、重量の点で不利である。これに対して、ラミネートフィルムは金属缶に比べて軽量であり、価格の点で有利である。ラミネートフィルムを使用する電池は、従来より数多くの提案がある(例えば、特許文献1~3)。
 例えば特許文献1に、アルミラミネートフィルムで外装した電池が記載されている。図17に示すように、この電池1は、正極と負極とをセパレーターを介して積層し巻回して扁平型に形成し、電解液を加えた電池要素を、アルミラミネートフィルムで外装し、電池要素の周囲を封止して作製されたものである。正極及び負極と接続された正極リード電極2a及び負極リード電極2bは、例えば電池1の一辺から電池外部に引き出されている。通常、電池素子周囲の一辺を残して封止して袋を形成した後、封止していない開口から電池要素を入れ、最後に正極リード電極2a及び負極リード電極2bの導出辺を封止することにより、電池を得ることができる。
 使用されるアルミラミネートフィルムは、一般に外側から、外装層/接着層/アルミ箔(金属層)/接着層/ヒートシール層の構造を有している。ここで、アルミ箔は、外装材の強度向上の他、水分、酸素、光の進入を防ぎ、電池内容物を守る役割を担っている。外装層は、外観の美しさや強靱さ、耐熱性、柔軟性などから、ポリオレフィン、ポリアミド、ポリイミド及びポリエステル、具体的には、ナイロン(Ny)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)が用いられる。
 内層のヒートシール層は、電池要素を封入するために熱融着性を有しており、ポリエチレン(PE)、無延伸ポリエチレン(CPE)、無延伸ポリプロピレン(CPP)、ポリエチレンテレフタレート(PET)、ナイロン(Ny)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等の比較的融点の低い樹脂が使用されている。
 接着層は、使用されないこともあるが、金属との接着性のよい酸変性ポリオレフィン、アイオノマー、エチレン酢酸ビニルコポリマー(EVA)、エチレンアクリル酸コポリマー等が使用される。接着層は、一般にヒートシール層よりさらに低い融点を有しており、これら自身がヒートシール層として使用されることもある。
 また、内層のヒートシール層は電解液と接触するため、長期間にわたり電解液および電解質が加水分解して発生する酸に対する耐久性が必要である。ヒートシール層が劣化すると、電解質液がアルミ箔を侵し、さらに外部からの水分の透過が進み、電解液の劣化が急速に進行することになるからである。
特開2008-262803号公報 特開2001-30407号公報 特開2001-52748号公報
 近年、非水電解質二次電池は、さらにさまざまな分野において利用が進み、また、従来使用が考えられなかった過酷な条件下での利用も検討され始めている。
 しかし、現在まで提案されているラミネートフィルム外装では、耐久性および耐熱性の点で限界があり、リチウムイオン二次電池等の二次電池の用途を充分に拡大することができない問題がある。さらには、フィルム自体が可燃性であるために安全性の点でも問題がある。
 即ち、本発明は、電池等の電気化学デバイスの包装材であって、高温および/または低温等の過酷な条件下でも使用可能な包装材、およびそれを使用した電気化学デバイスを提供することを目的とする。
 本発明は以下の事項に関する。
 1. 電気化学デバイス用の包装材であって、
 金属層と熱圧着性ポリイミド層を有する積層体を用いて形成され、
 前記積層体の周囲において、前記熱圧着性ポリイミド層が熱圧着されることで密閉包装構造が形成されていることを特徴とする包装材。
 2. 前記包装材は、前記熱圧着性ポリイミド層が内側になるように前記積層体が重ね合わされ、前記積層体の周囲において前記熱圧着性ポリイミド層が熱圧着されて密閉構造が形成されていることを特徴とする上記1記載の包装材。
 3. 前記密閉構造が、密閉袋構造または密閉トレー構造であることを特徴とする上記2記載の包装材。
 4. 前記熱圧着性ポリイミド層は、150~400℃の範囲で熱圧着可能な材料で形成されていることを特徴とする上記1~3のいずれかに記載の包装材。
 5. 前記熱圧着性ポリイミド層は、熱圧着性ポリイミドと耐熱性ポリイミドの多層構造を有することを特徴とする上記1~4のいずれかに記載の包装材。
 6. 前記耐熱性ポリイミドが、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、p-フェニレンジアミンとを含む組み合わせから得られるポリイミドであることを特徴とする上記5記載の包装材。
 7. 上記1~6のいずれかに記載の包装材と、
 前記包装材の内部に密封されて収納された電気化学デバイス要素と
を有する電気化学デバイス。
 8. リチウムイオン二次電池である上記7記載の電気化学デバイス。
 9. 電気化学デバイス要素、および前記電気化学デバイス要素を封入している包装材を備える電気化学デバイスの製造方法であって、
 金属層と熱圧着性ポリイミド層を有する積層体を用意する工程と、
 電気化学デバイス要素を内部に収納するように、前記積層体の前記熱圧着性ポリイミド層を外周部で融着して密閉包装構造を形成することで、前記包装材を形成する工程と
を有することを特徴とする電気化学デバイスの製造方法。
 10. 前記包装材は、前記熱圧着性ポリイミド層が内側になるように前記積層体が重ね合わされ、前記積層体の周囲において前記熱圧着性ポリイミド層が熱圧着されて密閉包装構造が形成されることを特徴とする上記9記載の電気化学デバイスの製造方法。
 11. 前記密閉包装構造が、密閉袋構造または密閉トレー構造となるように、前記包装材を形成することを特徴とする上記10記載の電気化学デバイスの製造方法。
 12. 前記熱圧着性ポリイミド層を、150~400℃の範囲で加熱加圧して熱圧着することを特徴とする上記9~11のいずれかに記載の電気化学デバイスの製造方法。
 本発明によれば、高温および/または低温等の過酷な条件下でも使用可能な電池等の電気化学デバイスの包装材を提供することができる。特に、金属層より内層部分をオールポリイミドで形成することで、耐熱性および耐久性に極めて優れる電気化学デバイスの包装材を得ることができる。
包装材を構成する積層体の構造の1例を説明するための図である。 包装材を構成する積層体の構造の1例を説明するための図である。 包装材を構成する積層体の構造の1例を説明するための図である。 積層体から包装材を形成する方法の1例の工程を説明するための図である。 積層体から包装材を形成する方法の1例の工程を説明するための図である。 積層体から包装材を形成する方法の1例の工程を説明するための図である。 積層体から包装材を形成する方法の1例の工程および包装材(袋形)の例を説明するための図である。 包装材の1例を説明するための図である。 包装材の1例を説明するための図である。 包装材の1例を説明するための図である。 トレー形構造の包装材の1例を説明するための図である。 トレー形構造の包装材を形成する方法の1例の工程を説明するための図である。 トレー形構造の包装材を形成する方法の1例の工程および包装材(トレー形)を説明するための図である。 包装材の1例を説明するための図である。 包装材の1例を説明するための図である。 マルチトレー形の包装材の1例およびその製造方法を説明するための図である。 従来の電池構造を示す図である。
 <<包装材を構成する積層体の構造>>
 本発明の包装材は、図1に示すように少なくとも金属層11と熱圧着性ポリイミド層12とを備える積層体10から形成されている。
 金属層11の材料は、特に限定はなく、アルミニウム、ステンレス、Niメッキ等を施した鉄等が挙げられる。好ましくはアルミニウムである。金属層は、蒸着等で形成することもできるが、通常、金属箔を用いる。金属層の厚さは、特に制限はないが、例えば1~1000μm、好ましくは8~100μm、より好ましくは20~100μmである。形状保持性を目的とするときは、厚めの方が好ましく、例えば200~500μmである。
 熱圧着性ポリイミド層12は、層12全体はポリイミドで形成され、少なくとも包装材の内面となる面15が、熱圧着性を有している。従って、層12全体が熱圧着性ポリイミドの単層で形成されていてもよいし、熱圧着性ポリイミドと耐熱性ポリイミド(即ち、圧着温度で軟化しないポリイミド)の2層以上積層構造となっていてもよい。図2は、熱圧着性ポリイミド層12が、3層構造となっている例であり、熱圧着性ポリイミド12aが耐熱性ポリイミド12bの両側に形成された構造である。層12が多層で構成される場合、各層の境界は明確になっていても、組成が混じり合う傾斜層となっていてもどちらでもよい。
 熱圧着性ポリイミド層12の厚さは、特に限定はされないが、例えば、5~100μm、好ましくは12.5~50μmである。
 また、図3に示すように、金属層11の外側に外装層13を有していてもよい。外装層としては、背景技術で説明したナイロン等の公知の材料を使用することができるが、ポリイミド層としてもよい。例えば、熱圧着性ポリイミド層12と同じ材料で外装層13を形成してもよい。例えば、外装層を多層のポリイミドで形成する場合、図2の層12のように熱圧着性ポリイミド/耐熱性ポリイミド/熱圧着性ポリイミドの3層構造としてもよいし、金属層側から、熱圧着性ポリイミド/耐熱性ポリイミドの2層構造とすることもできる。
 包装材に難燃性を求める場合は、熱圧着性ポリイミド層12および/または外装層13の材料としてもポリイミド、さらに難燃性に優れるポリイミドを使用することが好ましい。また、後述するように、ナイロン等の従来の外装層材料は、内層(熱圧着性ポリイミド層)同士を接合するときにかける熱により溶融する問題もある。
 <<積層体の製造方法>>
 次に、本発明の包装材に使用される積層体の製造方法を説明する。
 最初に熱圧着性ポリイミド層12が、図2のように熱圧着性ポリイミド/耐熱性ポリイミド/熱圧着性ポリイミドの3層構造で、かつ金属層の両面に積層された例の製造方法を説明する。尚、多層構造の中において、熱圧着性ポリイミドにより構成される層に言及する場合、熱圧着性ポリイミド(a層)と表記し、全体の熱圧着性ポリイミド層12と区別する。また、多層構造中において、耐熱性ポリイミドにより構成される層を耐熱性ポリイミド(b層)と表記する。
 耐熱性ポリイミド(b層)の耐熱性ポリイミドとしては、下記の特徴を少なくとも1つ有するもの、下記の特徴を少なくとも2つ有するもの[ 1)と2)、1)と3)、2)と3)の組合せ]、特に下記の特徴を全て有するものを用いることができる。
1)単独のポリイミドフィルムとして、ガラス転移温度が300℃以上、好ましくはガラス転移温度が330℃以上、さらに好ましくは確認不可能であるもの。
2)単独のポリイミドフィルムとして、線膨張係数(50~200℃)(MD)が、耐熱性樹脂基板に積層する金属箔の熱膨張係数に近いこと。
3)単独のポリイミドフィルムとして、引張弾性率(MD、ASTM-D882)は300kg/mm以上、好ましくは500kg/mm以上、さらに700kg/mm以上であるもの。
 耐熱性ポリイミドとしては、
(1)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物及び1,4-ヒドロキノンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物より選ばれる成分を少なくとも1種含む酸成分、好ましくはこれらの酸成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸成分と、
(2)ジアミン成分としてp-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、m-トリジン及び4,4’-ジアミノベンズアニリドより選ばれる成分を少なくとも1種含むジアミン、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分とから得られるポリイミドなどを用いることができる。
 耐熱性ポリイミドを構成する酸成分とジアミン成分との組み合わせの例として、次のものが挙げられる。
1)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)と、p-フェニレンジアミン(PPD)と、必要により4,4-ジアミノジフェニルエーテル(DADE)を含む組み合わせ。この場合、PPD/DADE(モル比)は100/0~85/15であることが好ましい。
2)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物(PMDA)と、p-フェニレンジアミンと必要により4,4-ジアミノジフェニルエーテルを含む組み合わせ。この場合、BPDA/PMDAは0/100~90/10であることが好ましい。PPDとDADEを併用する場合、PPD/(DADEは、例えば90/10~10/90が好ましい。
3)ピロメリット酸二無水物と、p-フェニレンジアミン及び4,4-ジアミノジフェニルエーテルの組み合わせ。この場合、DADE/PPDは90/10~10/90であることが好ましい。
4)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンとを主成分(合計100モル%中の50モル%以上)として得られるものを挙げることができる。
 上記1)の組み合わせは、特に耐熱性に優れるために好ましい。
 上記1)~4)において、4,4-ジアミノジフェニルエーテル(DADE)の一部又は全部を、目的に応じて3,4’-ジアミノジフェニルエーテル、又は下記に示す他のジアミンに置き換えても良い。
 これらのものは、プリント配線板、フレキシブルプリント回路基板、TABテープ等の電子部品の素材として用いられ、広い温度範囲にわたって優れた機械的特性を有し、長期耐熱性を有し、耐加水分解性に優れ、熱分解開始温度が高く、加熱収縮率と線膨張係数が小さい、難燃性に優れるために好ましい。
 耐熱性ポリイミドを得ることができる酸成分として、上記に示す酸成分の他に目的の特性を損なわない範囲で、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス[(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、などの酸二無水物成分を用いることができる。
 耐熱性ポリイミドを得ることができるジアミン成分として、上記に示すジアミン成分の他に目的の特性を損なわない範囲で、m-フェニレンジアミン、2,4-トルエンジアミン、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼンなどのビス(アミノフェノキシ)ベンゼン類、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニルなどのジアミン成分を用いることができる。
 一方、熱圧着性ポリイミドや熱圧着性ポリイミド(a層)は、銅箔、アルミ箔等の金属箔に、加圧下熱圧着できる性質を有する公知のポリイミドを用いることができる。
 熱圧着性ポリイミドは、好ましくは熱圧着性ポリイミドのガラス転移温度以上、好ましくはガラス転移温度より20℃高い温度、さらに好ましくはガラス転移温度より30℃高い温度、特に好ましくはガラス転移温度より50℃高い温度から400℃以下の温度で金属箔とはり合せることができる熱圧着性を有するポリイミドである。
 熱圧着性ポリイミドは、さらに、以下の特徴を少なくとも1つ有するもの、下記の特徴を少なくとも2つ有するもの[ 1)と2)、1)と3)、2)と3)の組合せ]、下記の特徴を少なくとも3つ有するもの[ 1)と2)と3)、1)と3)と4)、2)と3)と4)、1)と2)と4)などの組合せ]、特に下記の特徴を全て有するものを用いることができる。
1)熱圧着性ポリイミド(a層)は、金属箔とのピール強度が0.7N/mm以上で、150℃で168時間加熱処理後でもピール強度の保持率が90%以上、さらに95%以上、特に100%以上であるポリイミドであること。
2)ガラス転移温度が130~330℃であること、または熱圧着ポリイミド同士或いは熱圧着ポリイミドと金属とが150~400℃、好ましくは250~370℃で熱圧着が可能な物。
3)引張弾性率が100~700Kg/mmであること。
4)線膨張係数(50~200℃)(MD)が13~30×10-6cm/cm/℃であること。
 熱圧着性ポリイミド(a層)は、好ましくは、熱圧着性ポリイミド(a層)同士の熱圧着、および熱圧着性ポリイミド(a層)と電気化学デバイスのリード電極との密着が、250℃以上から400℃以下、好ましくは270~370℃の範囲で可能なものを選択することにより、高温下でも使用可能な優れた耐熱性を有する包装材として使用することが出来る。
 熱圧着性ポリイミドは、
(1)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物及び1,4-ヒドロキノンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物などの酸二無水物より選ばれる成分を少なくとも1種含む酸成分、好ましくはこれらの酸成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸成分と、
(2)ジアミン成分としては、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどのジアミンより選ばれる成分を少なくとも1種含むジアミン、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分とから得られるポリイミドなどを用いることができる。
 熱圧着性ポリイミドを得ることができる酸成分とジアミン成分との組合せの一例としては、
(1)3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及び2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の酸二無水物より選ばれる成分を少なくとも1種含む酸成分、好ましくはこれらの酸成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸成分と、
(2)ジアミン成分としては、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどのジアミンより選ばれる成分を少なくとも1種含むジアミン、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分とから得られるポリイミドなどを用いることができる。
 熱圧着性ポリイミドを得ることができるジアミン成分として、上記に示すジアミン成分の他に本発明の特性を損なわない範囲で、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、などのジアミン成分を用いることができる。
 ポリイミド前駆体の合成は、公知の方法で行うことができ、例えば、有機溶媒中で、略等モルの芳香族テトラカルボン酸二無水物などの酸成分とジアミン成分とをランダム重合またはブロック重合することによって達成される。また、予めどちらかの成分が過剰である2種類以上のポリイミド前駆体を合成しておき、各ポリイミド前駆体溶液を一緒にした後反応条件下で混合してもよい。このようにして得られたポリイミド前駆体溶液はそのまま、あるいは必要であれば溶媒を除去または加えて、自己支持性フィルムの製造に使用することができる。
 また溶解性に優れるポリイミドでは、ポリイミド前駆体溶液を150~250℃に加熱するか、またはイミド化剤を添加して150℃以下、特に15~50℃の温度で反応させて、イミド環化した後溶媒を蒸発させる、もしくは貧溶媒中に析出させて粉末とする。その後、該粉末を有機溶液に溶解してポリイミドの有機溶媒溶液を得ることができる。
 ポリイミド前駆体溶液の有機溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミドなどが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
 ポリイミド前駆体溶液には、必要に応じてイミド化触媒、有機リン含有化合物、無機微粒子や有機微粒子などの微粒子などを加えてもよい。
 イミド化触媒としては、置換もしくは非置換の含窒素複素環化合物、該含窒素複素環化合物のN-オキシド化合物、置換もしくは非置換のアミノ酸化合物、ヒドロキシル基を有する芳香族炭化水素化合物または芳香族複素環状化合物が挙げられ、特に1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、5-メチルベンズイミダゾールなどの低級アルキルイミダゾール、N-ベンジル-2-メチルイミダゾールなどのベンズイミダゾール、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジンなどの置換ピリジンなどを好適に使用することができる。イミド化触媒の使用量は、ポリアミド酸のアミド酸単位に対して0.01~2倍当量、特に0.02~1倍当量程度であることが好ましい。イミド化触媒を使用することによって、得られるポリイミドフィルムの物性、特に伸びや端裂抵抗が向上することがある。
 また、化学イミド化を意図する場合には、通常、脱水閉環剤と有機アミンを組み合わせた化学イミド化剤をポリイミド前駆体溶液中に含有させる。脱水閉環剤としては、例えば、ジシクロヘキシルカルボジイミド、および無水酢酸、無水プロピオン酸、無水吉草酸、無水安息香酸、トリフルオロ酢酸二無水物等の酸無水物が挙げられ、有機アミンとしては、ピコリン、キノリン、イソキノリン、ピリジン等が挙げられるが、これらに限定されない。
 ポリイミド前駆体溶液としては、支持体上にキャストすることができ、自己支持性フィルムを支持体より剥離でき、その後第二工程で少なくとも一方向に延伸できる自己支持性フィルムが形成できるものであれば、ポリマーの種類、重合度、濃度など、溶液に必要に応じて配合する各種の添加剤の種類、濃度など、ポリイミド前駆体溶液の粘度などは適宜設定することができる。
 ポリイミド前駆体溶液中のポリイミド前駆体の濃度は、好ましくは5~30質量%、より好ましくは10~25質量%、さらに好ましくは15~20質量%である。ポリイミド前駆体溶液の溶液粘度は、100~10000ポイズ、好ましくは400~5000ポイズ、さらに好ましくは1000~3000ポイズが好ましい。
 熱圧着性ポリイミド層12を形成するための熱圧着性フィルムは、好適には(i)共押出し-流延製膜法(単に、多層押出法ともいう。)によって、耐熱性ポリイミド層(b層)のドープ液と熱圧着性ポリイミド層(a層)のドープ液とを積層、乾燥、イミド化して多層ポリイミドフィルムを得る方法、(ii)或いは耐熱性ポリイミド層(b層)のドープ液を支持体上に流延塗布し、乾燥した自己支持性フィルム(ゲルフィルム)の片面或いは両面に熱圧着性ポリイミド層(a層)のドープ液を塗布し、乾燥、イミド化して多層ポリイミドフィルムを得る方法によって得ることができる。
 共押出法は、公知の方法で行なうことが出来、例えば特開平3-180343号公報(特公平7-102661号公報)に記載されている方法などを用いることができる。
 両面に熱圧着性を有する3層の熱圧着性ポリイミドフィルムの製造の一例を示す。
 耐熱性ポリイミド(b層)用のポリアミック酸溶液と熱圧着性ポリイミド(a層)用のポリアミック酸溶液とを三層共押出法によって、耐熱性ポリイミド(b層)の厚みが4~45μmで両側の熱圧着性ポリイミド(a層)の厚みの合計が3~10μmとなるように三層押出し成形用ダイスに供給し、支持体上にキャストしてこれをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100~200℃で半硬化状態またはそれ以前の乾燥状態とする自己支持性フィルムを得ることができる。
 自己支持性フィルムは、200℃を越えた高い温度で流延フィルムを処理すると、熱圧着性を有するポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。
 得られた自己支持性フィルムは、熱圧着性ポリイミド(a層)のガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には250~420℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で0.1~60分間加熱して)、乾燥及びイミド化して、耐熱性ポリイミド(b層)の両面に熱圧着性ポリイミド(a層)を有するポリイミドフィルムを製造することができる。
 得られた自己支持性フィルムは、溶媒及び生成水分が好ましくは約20~60質量%、特に好ましくは30~50質量%残存しており(加熱減量が好ましくは約20~60質量%、特に好ましくは30~50質量%)、この自己支持性フィルムを乾燥温度に昇温する際には、比較的短時間内に昇温することが好ましく、例えば、10℃/分以上の昇温速度であることが好適である。乾燥する際に自己支持性フィルムに対して加えられる張力を増大することによって、最終的に得られるポリイミドフィルムの線膨張係数を小さくすることができる。
 そして、前述の乾燥工程に続いて、連続的または断続的に前記自己支持性フィルムの少なくとも一対の両端縁を連続的または断続的に前記自己支持性フィルムと共に移動可能な固定装置などで固定した状態で、前記の乾燥温度より高く、しかも好ましくは200~550℃の範囲内、特に好ましくは300~500℃の範囲内の高温度で、好ましくは1~100分間、特に1~10分間、前記自己支持性フィルムを乾燥および熱処理して、好ましくは最終的に得られるポリイミドフィルム中の有機溶媒および生成水等からなる揮発物の含有量が1重量%以下になるように、自己支持性フィルムから溶媒などを充分に除去するとともに前記フィルムを構成しているポリマーのイミド化を充分に行って、両面に熱圧着性を有するポリイミドフィルムを形成することができる。
 前記の自己支持性フィルムの固定装置としては、例えば、多数のピンまたは把持具などを等間隔で備えたベルト状またはチェーン状のものを、連続的または断続的に供給される前記固化フィルムの長手方向の両側縁に沿って一対設置し、そのフィルムの移動と共に連続的または断続的に移動させながら前記フィルムを固定できる装置が好適である。また、前記の固化フィルムの固定装置は、熱処理中のフィルムを幅方向または長手方向に適当な伸び率または収縮率(特に好ましくは0.5~5%程度の伸縮倍率)で伸縮することができる装置であってもよい。
 なお、前記の工程において製造された両面に熱圧着性を有するポリイミドフィルムを、再び好ましくは4N以下、特に好ましくは3N以下の低張力下あるいは無張力下に、100~400℃の温度で、好ましくは0.1~30分間熱処理すると、特に寸法安定性が優れた両面に熱圧着性を有するポリイミドフィルムとすることができる。また、製造された長尺の両面に熱圧着性を有するポリイミドフィルムは、適当な公知の方法でロール状に巻き取ることができる。
 なお、上記の自己支持性フィルムの加熱減量とは、測定対象のフィルムを420℃で20分間乾燥し、乾燥前の重量W1と乾燥後の重量W2とから次式によって求めた値である。
 加熱減量(質量%)={(W1-W2)/W1}×100
 また、上記の自己支持性フィルムのイミド化率は、特開平9-316199記載のカールフィッシャー水分計を用いる手法で求めることができる。
 自己支持性フィルムには、必要であれば、内部または表面層に微細な無機あるいは有機の添加剤を配合することができる。無機の添加剤としては,粒子状あるいは偏平状の無機フィラーを挙げることができる。有機の添加剤としてはポリイミド粒子、熱硬化性樹脂の粒子などを挙げる事ができる。使用量および形状(大きさ,アスペクト比)については、使用目的に応じて選択することが好ましい。
 加熱処理は、熱風炉、赤外線加熱炉などの公知の種々の装置を使用して行うことができる。
 以上のようにして、熱圧着性ポリイミド(a層)/耐熱性ポリイミド(b層)/熱圧着性ポリイミド(a層)の構造を有する両面熱圧着性のポリイミドフィルムが得られる。次に、この両面熱圧着性のポリイミドフィルム(以下、単に両面熱圧着性フィルム)を、アルミ箔等の金属箔の両面に貼り合わせて積層する。
 金属箔と、熱圧着性のポリイミドフィルムとを積層する場合、加熱装置、加圧装置又は加熱加圧装置を用いることができ、加熱条件、加圧条件は用いる材料により適宜選択して行うことが好ましく、連続又はバッチでラミネートできれば特に限定されないが、ロールラミネートまたはダブルベルトプレス等を用いて連続して行うことが好ましい。
 積層体の製造方法の一例として、次の方法を挙げることができる。即ち、長尺状の両面熱圧着性フィルムと、長尺状(長さ200~2000m)の金属箔と、長尺状の両面熱圧着性フィルムとを、この順に3枚重ねて、好ましくは導入する直前のインラインで150~250℃程度、特に150℃より高く250℃以下の温度で2~120秒間程度予熱できるように熱風供給装置や赤外線加熱機などの予熱器を用いて予熱する。一対の圧着ロール又はダブルベルトプレスを用いて、一対の圧着ロール又はダブルベルトプレスの加熱圧着ゾーンの温度が熱圧着性ポリイミドのガラス転移温度より20℃以上高い温度、さらに熱圧着性ポリイミドのガラス転移温度より30℃以上高い温度、さらにから400℃の温度範囲で、特にガラス転移温度より50℃以上高い温度から400℃の温度範囲で、加圧下に熱圧着する。特にダブルベルトプレスの場合には引き続いて冷却ゾーンで加圧下に冷却する。好適にはポリイミドのガラス転移温度より20℃以上低い温度、さらに30℃以上低い温度から110℃、好ましくは115℃、さらに好ましくは120℃まで冷却して、積層させ、ロール状に巻き取る。金属箔の両面に両面熱圧着性フィルムが積層され、その結果、金属層の両面に熱圧着性ポリイミド層を有する積層体が得られる。
 熱圧着前にポリイミドフィルムを予熱することにより、ポリイミドに含有されている水分等による、熱圧着後の積層体の発泡による外観不良の発生を防止することができる。
 ダブルベルトプレスは、加圧下に高温加熱-冷却を行なうことができるものであって、熱媒を用いた液圧式のものが好ましい。
 積層体は、ダブルベルトプレスを用いて加圧下に熱圧着-冷却して積層することによって、好適には引き取り速度1m/分以上とすることができ、積層体は、長尺で幅が約400mm以上、特に約500mm以上の幅広の、接着強度が大きく(金属箔とポリイミドフィルムとのピール強度が0.7N/mm以上で、150℃で168時間加熱処理後でもピール強度の保持率が90%以上である)、金属表面に皺が実質的に認められないほど外観が良好な積層体を得ることができる。
 積層体の製造にあたり、最外層の両側とベルトとの間に保護材(つまり保護材2枚)を介在させ、加圧下に熱圧着-冷却して張り合わせて積層してもよい。
 保護材としては、積層体の製造時に、熱圧着性ポリイミド層12や金属層11に対して非熱圧着性で表面平滑性が良いものであれば、特に材質を問わず使用でき、例えば金属箔、特に銅箔、ステンレス箔、アルミニウム箔や、高耐熱性ポリイミドフィルム(例えば、宇部興産社製、ユーピレックスS、東レ・デュポン社製のカプトンH)などの厚み5~125μm程度のものが好適に挙げられ、特に宇部興産社製、ユーピレックスSが好ましい。
 以上の説明では、{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}の両面熱圧着性ポリイミドフィルムを形成し、{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}/金属層/{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}の構成を有する積層体の製造を説明した。同様にして、{熱圧着性PI(a層)/耐熱性PI(b層)}の2層構造フィルム(片面熱圧着性ポリイミドフィルム)、{熱圧着性PI(a層)単層}構造フィルムも形成することができるので、これらを組み合わせることで、次の構造の積層体も製造することができる。尚、これらは例示であって、これに限定されるものではない。
-{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}/金属層/{熱圧着性PI(a層)/耐熱性PI(b層)}、
-{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}/金属層、
-{熱圧着性PI(a層)単層}/金属層/{熱圧着性PI(a層)/耐熱性PI(b層)}、
-{熱圧着性PI(a層)単層}/金属層
-{熱圧着性PI(a層)単層}/金属層/{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}。
 また、熱圧着ポリイミド層を、積層体の中で金属層となる金属箔上に直接形成することもできる。即ち、金属箔上に、前述のようにして調製したポリイミド前駆体溶液を流延または塗布し、熱処理することでイミド化することができる。イミド化のための熱処理条件としては、前述のフィルムを作成する時の条件と同様の熱処理条件を採用してもよい。
 熱圧着ポリイミド層を金属箔上に直接形成する場合においても、熱圧着ポリイミド層を、熱圧着ポリイミドの単層で構成することもできるし、多層で構成することもできる。多層で構成する場合の製造方法も、熱圧着ポリイミド層をフィルムで形成する場合と同様に、ポリイミド前駆体溶液を支持体上に流延塗布する代わりに、ポリイミド前駆体溶液を金属箔上に例えば多層押出法により流延塗布し、同等の処理をすることで、例えば{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}/金属層の構成を有する積層体を製造することができる。また、金属箔の両面にポリイミド前駆体溶液を流延塗布することもできる。これらを組み合わせることで、上に例示したフィルム貼り合わせによって得られる積層体と同じ構造を有する積層体を製造することができる。
 <<積層体による電気化学デバイスの封入および包装材形態>>
 本発明の包装材の形態(電気化学デバイス要素を封入した状態の形状)は、外周部で熱圧着性ポリイミド層が融着されて密閉包装構造が形成されていれば、特に限定はなく、種々の形状が可能である。
 まず、最初に包装材が袋形状となっている例を図面を参照して説明する。また、電気化学デバイスとして、リチウムイオン二次電池を例にとって説明する。
 図4(a)に示すように、最初に積層体10を用意し、(b)に示すように、熱圧着性ポリイミド層12が内側にくるようにして折り返す。折り返した様子を(b-1)平面図、(b-2)断面図に示す。
 次に、図5に示すように、折り返した積層体10の周囲3辺を熱圧着して、3辺に熱圧着部21を形成し、積層体から袋形状を形成する。熱圧着は、接合箇所を、熱圧着性ポリイミド層の表面が軟化して熱圧着可能な温度に加熱しながら加圧すればよく、例えば、適した形状を有する加熱圧着治具を用いてプレスすることで実施できる。あるいは、図6(a)に示すように、保護材などの熱圧着性ポリイミド層12に対して非熱圧着性を有するスペーサー22を利用し、周辺3辺では積層体同士が重なり合うようにし、残りの1辺(図中左側)を含む中央部にスペーサー22を挟みながら、全体を加圧・加熱することで、積層体が重なりあっている周囲3辺を熱融着する。その後、スペーサー22を抜き取ることで、(b)に示すような3辺がシールされた袋が形成される。
 図7(a)に示すように、1辺が開口した袋状に形成された積層体に、開口部34から、図7(b)に示すように、電池要素31を、リード電極32aおよび32bを袋の外側に引き出した状態で入れ、図7(c)に示すように開口部34を熱圧着すると、熱圧着性ポリイミド層が熱圧着して接合し、電池要素31を内包した状態にて封口される。このようにして、電池要素31と包装材33を備えるリチウムイオン二次電池35が完成する。
 包装材は、積層体の周囲において熱圧着性ポリイミド層が熱圧着されて密閉袋構造が形成されている。熱圧着部とリード電極が交差する部分では、熱圧着性ポリイミド層はリード電極と密着しており、その他の熱圧着部においては、熱圧着性ポリイミド層同士が接合(密着)している。
 尚、電池要素には、正極、負極、電解液または固体電解質、セパレータ等の公知の電池構成要素が含まれる。
 電池要素を内包する密閉袋構造は、種々の構造が可能である。まず、上記の例では、折り返した辺も熱圧着させたが、図8に示すように折り返した辺37は、熱圧着させなくてもよい。また図4のように1枚の積層体を折り返すのではなく、2枚の積層体を用意して、熱圧着性ポリイミド層同士が互いに向きあうように重ね合わせてから周囲を熱圧着して接合してもよい。
 また、例えば図9(a)に示すようなピロー形でもよい。ピロー形は、図9(b)に示すように、1枚の四角形の積層体10の一対の対辺を合わせて熱圧着部23を形成して筒形状とした後、図面で上下の開口部34a、34bを順次熱圧着して、熱圧着部24,25をそれぞれ形成することで、密閉袋構造を作製することができる。
 さらに、リード電極の取り出しも任意に定めることが可能であり、例えば図10に示すように、リード電極32aと、リード電極32bを異なる辺から取り出すこともできる。
 また、本発明の包装材は、トレー形構造でもよい。例えば、図11(a)に示すように、積層体10をプレス等により成形した下側トレー41と、上側トレー42(この例では成形加工していない積層体)を用意する。下側トレー41の周囲には、熱圧着しやすいように、フランジ部分43を設け、上側トレーおよび下側トレーの重ね合う側には、熱圧着性ポリイミド層が設けられている。下側トレー41に電池要素31を入れた後、上側トレーを重ねて、周囲を熱圧着することで、図11(b)に示すような周囲が熱圧着部21で密閉されたリチウムイオン二次電池35が完成する。尚、上側トレーにも、下側トレー41のようなトレー状の成形体を使用してもよい。
 本発明において、トレー構造の包装材は、プレス成形法によらなくても形成することができる。まず、図12(a)に示すように、熱圧着性ポリイミドフィルム51を用意する。このポリイミドフィルムは、熱圧着性ポリイミドの単層で形成されていてもよいが、好ましくは、前述の{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}の構造を有するフィルムである。フィルムをカットして、図12(b)に示すような枠状シート52を多数枚作成する。
 次に、金属層と熱圧着性ポリイミド層を有する積層体から、枠状シート52の外形とほぼ同じか、またはそれより大きめのシート53を作製する。そして、図13(a)に示すように、シート53の熱圧着性ポリイミド層面の上に、複数枚の枠状シート52を積み重ねて熱圧着すると、図13(b)に示すトレー54を製造することができる。そして、前述のトレーを使用した場合と同様にして、電池要素をトレーの中に収納し、金属層と熱圧着性ポリイミド層を有する積層体から作製されたシート53bを、熱圧着性ポリイミド層が下になるようにして、重ね合わせて熱圧着することで、端部が熱圧着性ポリイミドの熱圧着部で密閉された包装材に収納されたリチウムイオン二次電池が完成する。
 尚、上の例では、シート53bを上側のフタとして使用したが、上側フタとして、トレー54と同等のトレーを使用して、電池要素を収納することもできる。
 また、枠状シート52同士の間に、金属枠を挟んでトレー54を形成してもよい。金属枠55の幅は、図14に示すように、枠状シート52と同一か、小さいこと(内側の開口が大きいこと)が好ましい。
 さらに、図15に示す3辺のみを有する枠状シート56の複数枚と、2枚のシート53を使用して、予め1つの側面が開放された箱状容器を形成し、電池要素を収納してから開放面を熱圧着して封端することもできる。
 さらに、図16にマルチトレー形の包装材の例を示す。図12~図15の例においては、1つのトレーを形成したが、この例では、図16(a)に示すように1つのトレーに対応する開口59を複数個有するマルチ枠シート58を、前述のシングルトレーの例と同様に、例えば{熱圧着性PI(a層)/耐熱性PI(b層)/熱圧着性PI(a層)}の構造を有するフィルムをカットして形成する。複数枚のマルチ枠シート58を、シート53(前述と同じ)上に重ね合わせて熱圧着することで、図16(b)に示すマルチトレー60を製造することができる。このマルチトレー60の各電池収納部61にそれぞれ電池要素をいれて、上側フタとして、もう一枚のシート53を熱圧着することで、複数の電池が収納されたリチウムイオン二次電池が完成する。
 尚、この図では2×5個の配列であるので、リード電極を手前側の列のトレーに収納された電池では手前側に引き出し、奥側の列のトレーに収納された電池では奥側に引き出すことができる。また、上側フタとなるシートの形状を変更することで、リード電極をどのような方向にも引き出すことができる。例えば、図16(c)および(d)に示すシート62およびシート63では、奥側の列のトレーに収納された電池でも、手前側にリード電極を引き出すことができる。
 さらには、マルチトレーに収納された電池を直列および/または並列に接続してから上側フタとなるシートを熱圧着してもよい。
 熱圧着性ポリイミドと熱圧着性ポリイミドとの熱圧着可能な温度としては、加圧下で密着性に優れる温度で行えば良く、例えば熱圧着性ポリイミドと金属箔とをはりあわせる温度範囲、好ましくはガラス転移温度より20℃高い温度、さらに好ましくはガラス転移温度より30℃高い温度、特に好ましくはガラス転移温度より50℃高い温度から400℃以下の温度である。
 熱圧着性ポリイミドとリード電極(例えばリード電極32aおよび/またはリード電極32b)とを密着させる場合には、熱圧着性ポリイミドとリード電極の間に、密着性を向上させる目的で、他の熱融着性樹脂、熱圧着性樹脂、熱硬化性樹脂などを用いても良い。
 以上のように、本発明の包装材は、リチウムイオン二次電池(リチウムポリマーイオン二次電池も含む)に限らず、種々の電気化学デバイスに適用することができる。本発明が適用される電気化学デバイスとしては、リチウムイオン二次電池に加えて、マンガン乾電池、アルカリマンガン乾電池、ニッケル系一次電池、オキシライド乾電池、酸化銀電池、水銀電池、空気亜鉛電池、リチウム電池、もしくは海水電池などの一次電池、鉛蓄電池、ニッケル-水素蓄電池、ニッケル-カドミウム蓄電池、もしくはナトリウム-硫黄電池などの二次電池、電気二重層キャパシタや色素増感型太陽電池等が挙げられる。
 中でも、特に水分の混入が問題になる非水系の電解液を使用する電気化学デバイスに適用することが好ましく、代表的には、リチウムイオン二次電池(リチウムポリマーイオン二次電池も含む)および電気二重層キャパシタが好ましい。
 また、電気化学デバイス要素とは、電気化学デバイスから包装材および引き出し電極を除いた部分を意味する。電池またはキャパシタの場合、放電および/または蓄電等の電気化学反応に関与する発電要素または蓄電要素を意味し、電池の場合は、少なくとも正極、負極、電解液または固体電解質、セパレータ等の公知の電池構成要素等が含まれる。
 本発明の包装材構造は、電気化学デバイスばかりではなく、その他の電子電気部品に適用することもできる。
 <積層体の代表的性質>
 最後に、積層体の代表的製造例とその特性を示す。
 (参考例1)熱圧着性多層ポリイミドフィルムの製造例
 (耐熱性ポリイミド用ドープの製造)
 N,N-ジメチルアセトアミド中でパラフェニレンジアミン(PPD)と3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)とを1000:998のモル比でモノマー濃度が18%(重量%、以下同じ)になるように加え、50℃で3時間反応させた。得られたポリアミック酸溶液の25℃における溶液粘度は、約1680ポイズであった。
 (熱圧着性ポリイミド用ドープの製造)
 N,N-ジメチルアセトアミド中で1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)および3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)とを1000:200:800のモル比で加え、モノマー濃度が18%になるように、またトリフェニルホスフェートをモノマー重量に対して0.5重量%加え、40℃で3時間反応させた。得られたポリアミック酸溶液の25℃における溶液粘度は、約1680ポイズであった。
 (熱圧着性多層ポリイミドフィルムの製造)
 三層押出し成形用ダイス(マルチマニホールド型ダイス)を設けた製膜装置を使用し、上記で製造した耐熱性ポリイミド用ポリアミック酸溶液および熱圧着性ポリイミド用ポリアミック酸溶液を三層押出ダイスから金属製支持体上に流延し、140℃の熱風で連続的に乾燥した後、剥離して自己支持性フィルムを形成した。この自己支持性フィルムを支持体から剥離した後加熱炉で150℃から450℃まで徐々に昇温して溶媒の除去、イミド化を行って、長尺状の三層ポリイミドフィルムをロールに巻き取った。得られた三層ポリイミドフィルム(層構成:熱圧着性ポリイミド(a層)/耐熱性ポリイミド(b層)/熱圧着性ポリイミド(a層))の特性を評価した。
 (熱圧着性多層ポリイミドフィルムの特性)
・厚み構成:4μm/17μm/4μm(合計25μm)
・熱圧着性ポリイミド(a層)のガラス転移温度:240℃
・耐熱性ポリイミド(b層)のガラス転移温度:300℃以上で明確な温度は確認できなかった。
・線膨張係数(50~200℃):MD19ppm/℃,TD17ppm/℃
・機械的特性(試験方法:ASTM・D882)
1)引張強度:MD,TD 520MPa
2)伸び率:MD,TD 100%
3)引張弾性率:MD,TD 7100MPa
・電気的特性(試験方法:ASTM・D149)
1)絶縁破壊電圧:7.2kV
 (熱圧着性多層ポリイミドフィルム/金属(アルミ箔)/熱圧着性多層ポリイミドフィルムからなる積層体の製造)
 上記熱圧着性多層ポリイミドフィルム、アルミ箔、上記熱圧着性多層ポリイミドフィルムの順に3枚重ね合わせて熱プレス直前に230℃ 30秒間圧力をかけない状態で予熱し、その後熱プレス(加熱温度:330℃、圧力:2.3MPa、圧着時間5分)を行い、冷却して取り出して、積層体を製造した。
 以上のように、金属層と熱圧着性ポリイミド層を有する積層体は、高温および低温においても機械的強度にすぐれ、さらに良く知られているように耐熱性、難燃性、耐久性にも優れているため、過酷な条件で使用される電池等の電気化学デバイスの包装材として好適である。
 (袋体の製造)
 図4~図6に示す説明と同様にして、上記積層体を用いて積層体を折り曲げて、非接合部分にスペーサとして商品名ユーピレックスS(宇部興産社製、厚み25μm)を用いて、熱プレス(加熱温度:330℃、圧力:2.3MPa、圧着時間5分)を行った。熱プレス後は、スペーサーを取り出し、1片が開口し、3片が熱圧着により接合した袋体を製造した。袋体は耐熱性と、難燃性に優れている。
 物性評価は以下の方法に従って行った。
1)ポリイミドフィルムのガラス転移温度(Tg):動的粘弾性法により、tanδのピーク値から求めた(引張り法、周波数6.28rad/秒、昇温速度10℃/分)。
2)ポリイミドフィルムの線膨張係数(50~200℃):TMA法により、20~200℃平均線膨張係数を測定した(引張り法、昇温速度5℃/分)。
3)ポリイミドフィルムの機械的特性
・引張強度:ASTM・D882に準拠して測定した(クロスヘッド速度50mm/分)。
・伸び率:ASTM・D882に準拠して測定した(クロスヘッド速度50mm/分)。
・引張弾性率:ASTM・D882に準拠して測定した(クロスヘッド速度5mm/分)。
 本発明の包装材は、電池等の電気化学デバイス用として有用である。
10 積層体
11 金属層
12 熱圧着性ポリイミド層
12a 熱圧着性ポリイミド
12b 耐熱性ポリイミド
13 外装層
15 包装材の内面となる面
21 熱融着部
22 スペーサー
23、24、25 熱融着部
31 電池要素
32a、32b リード電極
33 包装材
34、34a、34b 開口部
35 リチウムイオン二次電池
41 下側トレー
42 上側トレー
43 フランジ部分
51 熱圧着性ポリイミドフィルム
52 枠状シート
53、53b シート
54 トレー
55 金属枠
56 枠状シート
58 マルチ枠シート
59 開口
60 マルチトレー
61 電池収納部
62 シート(上側フタ)
63 シート(上側フタ)

Claims (12)

  1.  電気化学デバイス用の包装材であって、
     金属層と熱圧着性ポリイミド層を有する積層体を用いて形成され、
     前記積層体の周囲において、前記熱圧着性ポリイミド層が熱圧着されることで密閉包装構造が形成されていることを特徴とする包装材。
  2.  前記包装材は、前記熱圧着性ポリイミド層が内側になるように前記積層体が重ね合わされ、前記積層体の周囲において前記熱圧着性ポリイミド層が熱圧着されて密閉構造が形成されていることを特徴とする請求項1記載の包装材。
  3.  前記密閉構造が、密閉袋構造または密閉トレー構造であることを特徴とする請求項2記載の包装材。
  4.  前記熱圧着性ポリイミド層は、150~400℃の範囲で熱圧着可能な材料で形成されていることを特徴とする請求項1~3のいずれかに記載の包装材。
  5.  前記熱圧着性ポリイミド層は、熱圧着性ポリイミドと耐熱性ポリイミドの多層構造を有することを特徴とする請求項1~4のいずれかに記載の包装材。
  6.  前記耐熱性ポリイミドが、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、p-フェニレンジアミンとを含む組み合わせから得られるポリイミドであることを特徴とする請求項5記載の包装材。
  7.  請求項1~6のいずれかに記載の包装材と、
     前記包装材の内部に密封されて収納された電気化学デバイス要素と
    を有する電気化学デバイス。
  8.  リチウムイオン二次電池である請求項7記載の電気化学デバイス。
  9.  電気化学デバイス要素、および前記電気化学デバイス要素を封入している包装材を備える電気化学デバイスの製造方法であって、
     金属層と熱圧着性ポリイミド層を有する積層体を用意する工程と、
     電気化学デバイス要素を内部に収納するように、前記積層体の前記熱圧着性ポリイミド層を外周部で融着して密閉包装構造を形成することで、前記包装材を形成する工程と
    を有することを特徴とする電気化学デバイスの製造方法。
  10.  前記包装材は、前記熱圧着性ポリイミド層が内側になるように前記積層体が重ね合わされ、前記積層体の周囲において前記熱圧着性ポリイミド層が熱圧着されて密閉包装構造が形成されることを特徴とする請求項9記載の電気化学デバイスの製造方法。
  11.  前記密閉包装構造が、密閉袋構造または密閉トレー構造となるように、前記包装材を形成することを特徴とする請求項10記載の電気化学デバイスの製造方法。
  12.  前記熱圧着性ポリイミド層を、150~400℃の範囲で加熱加圧して熱圧着することを特徴とする請求項9~11のいずれかに記載の電気化学デバイスの製造方法。
PCT/JP2010/073337 2009-12-25 2010-12-24 電気化学デバイス用の包装材および電気化学デバイス WO2011078321A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/518,622 US20120258354A1 (en) 2009-12-25 2010-12-24 Packaging for electrochemical device, and electrochemical device
CN2010800646324A CN102804446A (zh) 2009-12-25 2010-12-24 用于电化学器件的包装材料和电化学器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-296253 2009-12-25
JP2009296253A JP5573151B2 (ja) 2009-12-25 2009-12-25 電気化学デバイス用の包装材および電気化学デバイス

Publications (1)

Publication Number Publication Date
WO2011078321A1 true WO2011078321A1 (ja) 2011-06-30

Family

ID=44195846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073337 WO2011078321A1 (ja) 2009-12-25 2010-12-24 電気化学デバイス用の包装材および電気化学デバイス

Country Status (5)

Country Link
US (1) US20120258354A1 (ja)
JP (1) JP5573151B2 (ja)
KR (1) KR20120110133A (ja)
CN (1) CN102804446A (ja)
WO (1) WO2011078321A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2016111182A1 (ja) * 2015-01-06 2016-07-14 凸版印刷株式会社 蓄電デバイス用外装材

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101062752B1 (ko) * 2011-03-16 2011-09-06 (주) 래트론 초박형 센서소자 및 그 제조방법
JP5834483B2 (ja) * 2011-05-12 2015-12-24 凸版印刷株式会社 蓄電デバイス用外装材
JP5786842B2 (ja) * 2012-12-11 2015-09-30 ウシオ電機株式会社 キャパシタ
KR101678941B1 (ko) * 2013-02-04 2016-11-23 주식회사 엘지화학 이차전지 수납용 트레이 및 이를 포함하는 트레이 어셈블리
KR102276288B1 (ko) * 2013-11-25 2021-07-12 삼성전자주식회사 폴리이미드 제조용 조성물, 폴리이미드, 상기 폴리이미드를 포함하는 성형품, 및 상기 성형품을 포함하는 디스플레이 장치
WO2016052394A1 (ja) * 2014-09-30 2016-04-07 大日本印刷株式会社 電池用包装材料
KR102504793B1 (ko) * 2015-11-23 2023-02-27 삼성에스디아이 주식회사 이차전지
KR102555973B1 (ko) * 2015-11-30 2023-07-13 삼성에스디아이 주식회사 가요성 이차 전지
JP2019036565A (ja) * 2015-12-25 2019-03-07 Tdk株式会社 電気化学デバイスおよびその製造方法
CN107154472B (zh) * 2016-03-04 2021-12-14 谢彦君 软包电池用包装材料及其热控制装置
JP6826370B2 (ja) * 2016-03-18 2021-02-03 藤森工業株式会社 樹脂被覆金属積層体の製造方法及び電池外装体の製造方法
CN108963117A (zh) * 2017-08-31 2018-12-07 江阴苏达汇诚复合材料股份有限公司 一种锂电池用多层金属复合带铝塑膜及其生产方法
KR102347901B1 (ko) * 2017-10-17 2022-01-06 주식회사 엘지에너지솔루션 균열 방지 구조를 포함하는 파우치형 전지케이스 및 이의 제조방법
JP7187780B2 (ja) * 2018-02-16 2022-12-13 住友ベークライト株式会社 光学シートおよび光学部品
CN109817852A (zh) * 2018-12-29 2019-05-28 武汉依麦德新材料科技有限责任公司 一种锂离子电池外包装材料及其制备方法
EP3951976A4 (en) * 2019-03-29 2023-09-20 Mitsui Chemicals, Inc. LITHIUM-ION BATTERY OUTER FILM, LITHIUM-ION BATTERY AND LITHIUM-ION BATTERY STACK
DE102020128576B3 (de) 2020-10-30 2022-01-05 Bayerische Motoren Werke Aktiengesellschaft Gegen thermisches Durchgehen resistente Batterieeinrichtung und Kraftfahrzeug
KR102601728B1 (ko) * 2022-12-29 2023-11-16 율촌화학 주식회사 필름 스트레스 지수가 조절된 치수 안정성이 우수한 이차전지용 파우치 필름, 이를 이용한 이차전지 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093489A (ja) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd 扁平電池
JP2001301090A (ja) * 2000-04-24 2001-10-30 Yuasa Corp 金属樹脂複合フイルム及びそれを用いた電池
JP2009032451A (ja) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd ラミネート外装電池
JP2009185101A (ja) * 2008-02-01 2009-08-20 Ube Ind Ltd ポリイミドフィルムおよびポリイミドフィルムの製造方法
JP2009266392A (ja) * 2008-04-22 2009-11-12 Hitachi Maxell Ltd リチウム一次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040634A1 (fr) * 1998-02-05 1999-08-12 Dai Nippon Printing Co., Ltd. Feuille pour boitier de cellule et dispositif a cellule
JP3580405B2 (ja) * 1998-08-21 2004-10-20 日本製箔株式会社 二次電池用外装材料の製造方法
JP4045143B2 (ja) * 2002-02-18 2008-02-13 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド 配線膜間接続用部材の製造方法及び多層配線基板の製造方法
JP4930724B2 (ja) * 2005-04-04 2012-05-16 宇部興産株式会社 銅張り積層基板
JP4692139B2 (ja) * 2005-08-10 2011-06-01 宇部興産株式会社 片面或いは両面金属箔積層ポリイミドフィルム及びこれらの製造方法
JP4901170B2 (ja) * 2005-09-30 2012-03-21 株式会社カネカ 熱融着性ポリイミドフィルム及び該熱融着性ポリイミドフィルムを用いた金属積層板
US8828591B2 (en) * 2006-03-02 2014-09-09 Sony Corporation External packaging material for battery device, nonaqueous electrolyte secondary battery using the same, and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093489A (ja) * 1999-01-20 2001-04-06 Matsushita Electric Ind Co Ltd 扁平電池
JP2001301090A (ja) * 2000-04-24 2001-10-30 Yuasa Corp 金属樹脂複合フイルム及びそれを用いた電池
JP2009032451A (ja) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd ラミネート外装電池
JP2009185101A (ja) * 2008-02-01 2009-08-20 Ube Ind Ltd ポリイミドフィルムおよびポリイミドフィルムの製造方法
JP2009266392A (ja) * 2008-04-22 2009-11-12 Hitachi Maxell Ltd リチウム一次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2016111182A1 (ja) * 2015-01-06 2016-07-14 凸版印刷株式会社 蓄電デバイス用外装材
US10290837B2 (en) 2015-01-06 2019-05-14 Toppan Printing Co., Ltd. Packaging material for power storage device

Also Published As

Publication number Publication date
JP2011138636A (ja) 2011-07-14
US20120258354A1 (en) 2012-10-11
KR20120110133A (ko) 2012-10-09
JP5573151B2 (ja) 2014-08-20
CN102804446A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5573151B2 (ja) 電気化学デバイス用の包装材および電気化学デバイス
EP1498909B1 (en) Dielectric substrate comprising a polyimide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
TWI593550B (zh) 聚醯亞胺膜及使用此聚醯亞胺膜之金屬疊層板
KR101884585B1 (ko) 폴리이미드 필름, 이를 포함하는 폴리이미드 적층체, 및 이를 포함하는 폴리이미드/금속 적층체
TWI564145B (zh) 金屬被覆積層板及其製造方法
US20150251397A1 (en) Metal substrate and method of manufacturing the same
WO2016013627A1 (ja) 多層ポリイミドフィルム、多層ポリイミドフィルムの製造方法、それを用いたポリイミド積層体、及びそれらに用いられる共重合ポリイミド
JP5880561B2 (ja) ポリイミド金属積層体の製造方法
TW201205906A (en) Heat dissipation substrate for LED
JP5023667B2 (ja) フレキシブルヒーター
JP5382274B2 (ja) 熱融着性ポリイミドフィルム及びその製造方法、熱融着性ポリイミドフィルムを用いたポリイミド金属積層体
WO2013157565A1 (ja) 熱融着性ポリイミドフィルム、熱融着性ポリイミドフィルムの製造方法及び熱融着性ポリイミドフィルムを用いたポリイミド金属積層体
WO2016111182A1 (ja) 蓄電デバイス用外装材
JP4389338B2 (ja) フレキシブル金属箔積層体の製造法
JP2008302569A (ja) 離型材と片面金属箔積層樹脂フィルムとの積層体の製造方法、片面金属箔積層フィルム
JP2002343313A (ja) 電池用包装材料
JP2015129200A (ja) 熱融着性ポリイミドフィルム、及びそれを用いたポリイミド金属積層体
JP4821411B2 (ja) 片面のみに熱融着性を有するポリイミドフィルム、片面銅張り積層板
JP4389337B2 (ja) フレキシブル金属箔積層体及びその製造法
JP4345187B2 (ja) フレキシブル金属箔積層体の製造方法
JP5998576B2 (ja) 熱融着性ポリイミドフィルム、及びそれを用いたポリイミド金属積層体
JP2016213141A (ja) 蓄電デバイス用外装材及び蓄電デバイス
JP4433936B2 (ja) 接着シート、銅張積層板およびそれぞれの製造方法
JP2017091768A (ja) 蓄電デバイス用外装材
JPH01118436A (ja) 熱融着性ポリイミド複合フイルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064632.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518622

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019691

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10839551

Country of ref document: EP

Kind code of ref document: A1