WO2011078207A1 - 二連型真空ポンプ装置、およびそれを備えるガス精製システム、 ならびに二連型真空ポンプ装置における排ガス振動抑制装置 - Google Patents

二連型真空ポンプ装置、およびそれを備えるガス精製システム、 ならびに二連型真空ポンプ装置における排ガス振動抑制装置 Download PDF

Info

Publication number
WO2011078207A1
WO2011078207A1 PCT/JP2010/073091 JP2010073091W WO2011078207A1 WO 2011078207 A1 WO2011078207 A1 WO 2011078207A1 JP 2010073091 W JP2010073091 W JP 2010073091W WO 2011078207 A1 WO2011078207 A1 WO 2011078207A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
gas
exhaust
pressure
valve
Prior art date
Application number
PCT/JP2010/073091
Other languages
English (en)
French (fr)
Inventor
春名 一生
清和 丸田
英典 桑田
康一 志摩
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009291796A external-priority patent/JP4677041B1/ja
Priority claimed from JP2010223841A external-priority patent/JP4664444B1/ja
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to BR112012018803-8A priority Critical patent/BR112012018803B1/pt
Priority to KR1020127019512A priority patent/KR101506026B1/ko
Priority to EP10839437.0A priority patent/EP2518317B1/en
Priority to US13/518,257 priority patent/US8715400B2/en
Priority to EP19156439.2A priority patent/EP3502472B1/en
Priority to ES10839437T priority patent/ES2731202T3/es
Publication of WO2011078207A1 publication Critical patent/WO2011078207A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure

Definitions

  • two positive displacement vacuum pumps are connected in parallel to the adsorption tower according to fluctuations in the load (pressure of the adsorption tower) when the adsorption tower is depressurized. Or connected in series. For this reason, control for switching between parallel connection and series connection is required, and setting of switching timing is not easy. Further, in these publications, no consideration is given to what kind of control should be performed when operating the two vacuum pumps to minimize the combined power consumption of the two vacuum pumps. In addition, although there are airflow vibrations caused by the pulsation of exhaust gas from positive displacement vacuum pumps, these publications also consider how to avoid the adverse effects of the vibrations on the on-off valves arranged downstream of the vacuum pumps. Not.
  • an object of the present invention is to provide a dual-type vacuum pump device that can minimize the required power of two vacuum pumps.
  • Another object of the present invention is to provide a gas purification system including a dual vacuum pump device that can minimize the required power as described above.
  • a dual vacuum pump device has a positive displacement first vacuum pump having an intake port and an exhaust port, a first vacuum pump having an intake port and an exhaust port, and having an exhaust capacity smaller than the exhaust capacity of the first vacuum pump.
  • 2 vacuum pumps, a connection line connecting between the exhaust port of the first vacuum pump and the intake port of the second vacuum pump, and a first end connected to the connection line and gas are led out to the outside
  • a bypass line having a second end, an on-off valve disposed between the first end and the second end of the bypass line, and exhaust from the exhaust port of the first vacuum pump
  • the on-off valve is configured to switch from the open state to the closed state when the amount decreases to match the exhaust capacity of the second vacuum pump.
  • the second vacuum pump is overloaded, and the power consumption of the dual vacuum pump device as a whole increases. Therefore, according to the first aspect of the present invention, when the exhaust amount of the first vacuum pump exceeds the exhaust capacity of the second vacuum pump (that is, when there is excess gas), the on-off valve of the bypass line When the gas flow of the apparatus is controlled so that excess gas flows into the bypass line from the connection line, and the exhaust amount of the first vacuum pump does not exceed the exhaust amount of the second vacuum pump ( When there is no excess gas), the on-off valve of the bypass line is closed and both vacuum pumps are in complete series. As a result, the second vacuum pump is not overloaded and power consumption can be suppressed.
  • the excess gas flows into the bypass line from the connection line, passes through the on-off valve in the bypass line, and is then led out from the second end.
  • the second end of the bypass line is indirectly connected to the silencer, for example, through a pipe extending from the exhaust port of the second vacuum pump.
  • the first and second vacuum pumps in a completely in-line state cooperate to depressurize the inside of the object to be depressurized, and a predetermined amount of gas is discharged from the second vacuum pump. Derived.
  • the on-off valve of the bypass line is in a closed state, there is no gas passing through the bypass line.
  • the dual-type vacuum pump device further includes a pressure detector that detects a pressure in the vicinity of the intake port of the first vacuum pump, and the on-off valve is connected to the exhaust port of the first vacuum pump.
  • the open / close valve is configured to be switched from an open state to a closed state when the pressure detector detects that the exhaust amount has decreased to a pressure value indicating that the exhaust amount matches the exhaust capacity of the second vacuum pump. ing. Or when the said pressure detector detects the pressure value which shows that the pressure in the said connection line fell to atmospheric pressure, you may comprise so that the said on-off valve may be switched from an open state to a closed state.
  • the inventors of the present invention indicate that the corresponding pressure of the first vacuum pump inlet does not vary depending on the gas temperature. Discovered that even if the gas adsorption amount changes due to the change in gas temperature, for example, when the pressure at the intake port is -42 kPaG, the pressure in the connecting line is atmospheric pressure and does not change with the gas temperature.
  • the pressure detector detects a pressure value indicating that the exhaust amount from the exhaust port of the first vacuum pump matches the exhaust amount of the second vacuum pump.
  • the on-off valve is configured to switch from the open state to the closed state. Such a configuration contributes to the efficient operation of the dual vacuum pump device. If this on-off valve is closed before the pressure in the connecting line drops to atmospheric pressure, the required power of the second vacuum pump increases as shown in FIG. 14, and it remains open until the pressure is reduced below atmospheric pressure. If it is left alone, the required power of the first vacuum pump increases as shown in FIG. Therefore, when the point where the pressure of the connection line drops to atmospheric pressure is predicted, the pressure value on the inlet side of the first vacuum pump is detected by the detector, and the on-off valve of the bypass line is closed by the signal, the accurate switching Timing can be captured.
  • each of the first and second vacuum pumps is a Roots pump having a casing and a rotor in the casing, and the rotor of the first vacuum pump and the rotor of the second vacuum pump are interlocked by a single motor. And is configured to be rotationally driven. Such a configuration is suitable for reducing the required power of the dual vacuum pump device.
  • the buffer pipe when the on-off valve is in an open state, has a buffer pipe when an exhaust amount from the exhaust port of the first vacuum pump exceeds an exhaust capacity of the second vacuum pump.
  • the minimum residence time of the gas passing through the buffer tube is 0.15 seconds or longer.
  • the buffer pipe has a throttle part for locally narrowing a gas flow path passing through the buffer pipe, and the aperture ratio of the throttle part is 20 to 46%.
  • the buffer pipe has a plurality of throttle portions for locally narrowing a flow path of gas passing through the buffer pipe, and the plurality of throttle sections are located on the most upstream side in the flow path.
  • a first throttle part and a second throttle part located on the most downstream side.
  • the throttle portion is an orifice plate having an opening or a baffle plate.
  • the throttle portion is an orifice plate having an opening, and a part of the edge of the opening is flush with the inner wall surface of the buffer tube.
  • the buffer pipe is configured such that the amount of exhaust gas from the exhaust port of the first vacuum pump exceeds the intake capacity of the second vacuum pump.
  • the maximum flow velocity of the gas passing through the tube in the buffer tube is 6 to 12 m / second.
  • the buffer pipe includes a first end wall on the first end side in the bypass line, a second end wall on the second end side, the first and first end walls. And a bypass wall connected to the buffer pipe at a location on the first end wall side of the peripheral wall, for introducing gas into the buffer pipe. It has a pipe part, and the connection pipe part extends in a direction crossing the extending direction of the peripheral wall.
  • the buffer pipe includes a first end wall on the first end side in the bypass line, a second end wall on the second end side, and the first end wall. And the peripheral wall extending between the second end walls, the bypass line having a connecting pipe portion connected to the buffer pipe at the first end wall for introducing gas into the buffer pipe.
  • the connecting pipe portion has a bent structure for bending the gas flow before being introduced into the buffer pipe.
  • a gas purification system includes an adsorption tower for purifying a gas by using a pressure fluctuation adsorption method (PSA method), an adsorption tower filled with an adsorbent inside, and the present invention for depressurizing the inside of the adsorption tower.
  • PSA method pressure fluctuation adsorption method
  • a double vacuum pump device according to the first aspect of the present invention.
  • a positive displacement first vacuum pump having an intake port and an exhaust port, an intake port and an exhaust port, and an exhaust capacity smaller than the exhaust capacity of the first vacuum pump.
  • a dual vacuum pump device comprising: a bypass line having a second end for leading out; and an on-off valve disposed between the first end and the second end in the bypass line.
  • An exhaust gas vibration suppression device for providing in a bypass line.
  • the exhaust gas vibration suppression device includes a buffer pipe between the first end portion and the on-off valve for suppressing airflow vibration of gas flowing into the bypass line.
  • FIG. 1 is a schematic configuration diagram of a gas purification system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the Roots pump taken along line II-II in FIG.
  • FIG. 2 is an enlarged partial cross-sectional view of the buffer tube shown in FIG. 1 and the vicinity thereof.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • It is a schematic block diagram of the modification of the gas purification system shown in FIG. 2 is a process chart showing one cycle (steps 1 to 4) in a gas purification method that can be executed by the gas purification system of FIG. It is a graph of the relationship between the decompression regeneration time and the inlet pressure when the gas temperature changes.
  • FIG. 12 is a sectional view taken along line XII-XII in FIG. It is a partial cross section schematic diagram of the 3rd modification of a buffer pipe, and its neighborhood.
  • FIG. 1 shows a schematic configuration of a gas purification system X1 according to an embodiment of the present invention.
  • the gas purification system X1 includes a PSA device Y1, a dual vacuum pump device Y2, and a silencer Y3.
  • the PSA apparatus Y1 includes adsorption towers 10A and 10B, a raw material blower 21, a tank 22, and pipes 31 to 34, and adsorbs impurities from a raw material gas, which is a mixed gas, using a pressure fluctuation adsorption method (PSA method). It is configured to remove and concentrate the target gas component.
  • the target gas component to be purified is oxygen in the air.
  • the main impurity is nitrogen.
  • Each of the adsorption towers 10A and 10B has gas passage ports 11 and 12 at both ends, and is filled with an adsorbent for selectively adsorbing impurities in the raw material gas between the gas passage ports 11 and 12. Yes.
  • a zeolitic adsorbent for selectively adsorbing nitrogen as a main impurity is employed as the adsorbent.
  • molecular sieve carbon when molecular sieve carbon is used as an adsorbent, oxygen in the air can be adsorbed as an impurity and nitrogen can be recovered as a target gas component.
  • carbon dioxide, carbon monoxide, hydrogen, methane, and the like can be recovered as target gas components by selecting a combination of the composition of the raw material gas and the adsorbent.
  • the raw material blower 21 is an air blower in the present embodiment, and is used to supply or send air sucked as a raw material gas toward the adsorption towers 10A and 10B.
  • the tank 22 is for temporarily storing the purified gas (oxygen in this embodiment).
  • the pipe 31 has a main road 31 'and branch paths 31A and 31B.
  • the main trunk road 31 ' has an end E1.
  • the end E1 is connected to the gas delivery port of the raw material blower 21.
  • the branch paths 31A and 31B are connected to the gas passage port 11 side of the adsorption towers 10A and 10B, respectively.
  • automatic valves 31a and 31b capable of switching between an open state and a closed state are attached to the branch paths 31A and 31B.
  • the pipe 32 has a main road 32 'and branch paths 32A and 32B.
  • the main trunk path 32 ' has an end E2.
  • the end E2 is connected to the tank 22.
  • the branch paths 32A and 32B are connected to the gas passage 12 side of the adsorption towers 10A and 10B, respectively.
  • the branch paths 32A and 32B are provided with automatic valves 32a and 32b capable of switching between an open state and a closed state.
  • the pipe 33 has a main trunk path 33 'and branch paths 33A and 33B.
  • the main trunk path 33 ' has an end E3.
  • the end E3 is connected to the double vacuum pump device Y2.
  • the branch paths 33A and 33B are connected to the gas passage 11 side of the adsorption towers 10A and 10B, respectively. Further, the branch paths 33A and 33B are provided with automatic valves 33a and 33b capable of switching between an open state and a closed state.
  • a pressure detector 80 is installed in the vicinity of the end E3 of the main trunk path 33 ', and the pressure detector 80 constantly detects the pressure of the intake port 41 of the vacuum pump 40A.
  • the pressure (outlet pressure value) in the connection line 52 connected to the exhaust port 42 of the vacuum pump 40A is indirectly predicted.
  • a signal is transmitted so that the on-off valve 61 opens and closes.
  • the predetermined threshold value of the inlet pressure value is set to a value at which the outlet pressure value (pressure in the connection line 52) becomes atmospheric pressure, for example.
  • the pipe 34 is provided so as to bridge the branch paths 32A and 32B of the pipe 32. Specifically, the pipe 34 is connected between the automatic valve 32a and the adsorption tower 10A in the branch path 32A, and is connected between the automatic valve 32b and the adsorption tower 10B in the branch path 32B. .
  • the pipe 34 is provided with an automatic valve 34a that can switch between an open state and a closed state.
  • the double vacuum pump device Y2 includes two vacuum pumps 40A and 40B, a motor 51, a connecting line 52, a pipe 53, and a bypass line 60.
  • the above-described PSA device is operated by operating the vacuum pumps 40A and 40B.
  • the inside of the Y1 adsorption towers 10A and 10B can be decompressed.
  • the vacuum pump 40A is a positive displacement vacuum pump, and is a roots pump in this embodiment.
  • the vacuum pump 40B is also a roots pump in this embodiment.
  • the exhaust capacity of the vacuum pump 40B (which means the maximum amount of gas that can be exhausted per unit time, the same as “intake capacity”) is smaller than the exhaust capacity of the vacuum pump 40A.
  • the vacuum pumps 40A and 40B have an intake port 41 and an exhaust port 42, respectively.
  • the end E3 of the pipe 33 in the above-described PSA device Y1 is connected to the intake port 41 of the vacuum pump 40A.
  • the roots pump has a casing 40a and two, for example, mayu-shaped rotors 40b in the casing 40a.
  • the two rotors 40b are configured to rotate synchronously in opposite directions.
  • the gas that has entered the casing 40a from the intake port 41 is confined in the space between the casing 40a and the rotor 40b, and is discharged to the exhaust port 42 side by the rotation of the rotor 40b.
  • the double vacuum pump apparatus Y2 is provided with sealing water supply means (not shown) for supplying so-called sealing water into the casings 40a of the vacuum pumps 40A and 40B. With the sealing water, high airtightness can be realized in the space formed between the casing 40a and the rotor 40b.
  • the motor 51 is for operating the vacuum pumps 40A and 40B.
  • the double vacuum pump device Y2 is configured so that the rotor of the vacuum pump 40A and the rotor of the vacuum pump 40B are rotated and driven by a single motor 51.
  • shaft parts and gears are provided between the motor 51 and the vacuum pumps 40A and 40B so that the rotor of the vacuum pump 40A and the rotor of the vacuum pump 40B are rotationally driven in conjunction with each other by a single motor 51. It is mechanically connected through parts and the like.
  • connection line 52 connects the exhaust port 42 of the vacuum pump 40A and the intake port 41 of the vacuum pump 40B.
  • the pipe 53 has end portions E4 and E5. An end E4 of the pipe 53 is connected to the exhaust port 42 of the vacuum pump 40B. The other end E5 of the pipe 53 is connected to the silencer Y3.
  • the bypass line 60 has an end E6 that is a line inlet and an end E7 that is a line outlet, and has an on-off valve 61 and a buffer pipe Z1 in the line.
  • the end E6 is connected to a connecting line 52 between the vacuum pumps 40A and 40B.
  • the end E7 is connected to the pipe 53.
  • the on-off valve 61 is located between the buffer pipe Z1 and the end E5 in the bypass line 60, and is opened and closed when the pressure set value of the pressure detector 80 is reached in this embodiment.
  • the on-off valve 61 is opened and gas can flow through the bypass line 60.
  • the on-off valve 61 is configured to reduce the pressure of the intake port 41 when the exhaust amount from the exhaust port 42 of the vacuum pump 40A (the amount of gas actually exhausted per unit time) gradually decreases to match the exhaust capacity of the vacuum pump 40B ( The pressure is specified by a test performed in advance) and is switched from the open state to the closed state. As described above, since the exhaust capacity of the vacuum pump 40B is designed to be smaller than the exhaust capacity of the vacuum pump 40A, such control is necessary.
  • the buffer pipe Z1 constitutes a part of the bypass line 60, and includes an end wall 71 on the end E6 side, an end wall 72 on the end E7 side, and an end of the bypass line 60.
  • a peripheral wall 73 extending between the walls 71 and 72 and an orifice plate 74 are provided.
  • the peripheral wall 73 has a cylindrical shape.
  • a gas inlet 73 a is provided at the end wall 71 side of the peripheral wall 73, and a gas outlet 72 a is provided at the end wall 72.
  • the peripheral wall 73 extends in the horizontal direction H.
  • the length in the extending direction of the peripheral wall 73 (that is, the buffer tube Z1) is, for example, 1 m or more.
  • the bypass line 60 includes a connecting pipe portion 62 connected to the buffer pipe Z1 at a gas inlet 73a provided in the peripheral wall 73.
  • the connecting pipe portion 62 constitutes a part of the bypass line 60, and the buffer pipe Z1 is located immediately before the upstream side and defines a gas flow path immediately before being introduced into the buffer pipe Z1.
  • the connecting pipe portion 62 extends in a direction that intersects the extending direction of the peripheral wall 73 (horizontal direction H).
  • the connecting pipe portion 62 extends in a direction orthogonal to the extending direction of the peripheral wall 73. More preferably, the connecting pipe portion 62 extends in the vertical direction V and is connected to the peripheral wall 73 of the buffer pipe Z1 from the lower side in the vertical direction V.
  • the orifice plate 74 is a throttle portion for locally narrowing the flow path of the gas passing through the inside of the buffer tube Z1, and has an opening 74a as shown in FIGS.
  • the aperture ratio of the orifice plate 74 (throttle portion) is preferably 20 to 46%, more preferably 29 to 39%.
  • the opening 74a has an edge 74a 'that is flush with the inner surface 73' of the peripheral wall 73 of the buffer tube Z1. That is, the rotationally symmetrical axis of the cylindrical buffer tube Z1 and the center of the opening 74a are displaced from each other, and the inner surface 73 ′ of the peripheral wall 73 and the lowermost end 74a ′ of the edge of the opening 74a are flush with each other. Yes.
  • the buffer pipe Z1 is used when the exhaust amount from the exhaust port 42 of the vacuum pump 40A exceeds the exhaust capacity (same as the intake capacity) of the vacuum pump 40B when the on-off valve 61 of the bypass line 60 is open.
  • the minimum residence time of the gas passing through the buffer pipe Z1 in the buffer pipe is 0.15 seconds or longer. As described above, this state occurs because the exhaust capacity of the vacuum pump 40B is smaller than the exhaust capacity of the vacuum pump 40A.
  • the buffer pipe Z1 has an exhaust amount from the exhaust port 42 of the vacuum pump 40A when the on-off valve 61 of the bypass line 60 is open when the dual vacuum pump device Y2 is in operation.
  • the maximum flow velocity in the buffer pipe of the gas passing through the buffer pipe Z1 is 6 to 12 m / second when the exhaust capacity of the pipe is exceeded.
  • the silencer Y3 is a device for reducing the noise radiated when the gas exhausted from the gas purification system X1 is exhausted. Therefore, if noise is not a problem, the silencer Y3 may be omitted and the pipe 53 and the bypass line 60 may be directly opened to the atmosphere.
  • the bypass line 60 is joined to the pipe 53 and then connected to the same silencer Y3. However, as shown in FIG. 5, the pipe 53 and the bypass line 60 are separated from each other.
  • the silencers Y3 and Y3 ′ may be connected.
  • the target gas oxygen in the present embodiment
  • the source gas air in the present embodiment
  • the target gas oxygen in the present embodiment
  • the purified oxygen gas can be obtained by repeating one cycle consisting of the following steps 1 to 4 in the adsorption towers 10A and 10B of the PSA apparatus Y1. .
  • steps 1 to 4 as shown in FIG. 6, the adsorption step, the decompression regeneration step, and the return pressure step are performed in each of the adsorption towers 10A and 10B.
  • Step 1 an adsorption process is performed in the adsorption tower 10A, and a reduced pressure regeneration process is performed in the adsorption tower 10B.
  • the adsorption tower 10A in which the adsorption process is performed in Step 1 is relatively high in the tower (for example, about 40 kPaG, which is slightly higher than the atmospheric pressure) after Step 4 (described later, the return pressure process is performed in the adsorption tower 10A): G indicates a gauge pressure, and the same applies to the following.
  • air is continuously introduced from the raw material blower 21 to the gas passage port 11 side of the adsorption tower 10A through the main passage 31 ′ and the branch passage 31A in the pipe 31.
  • Nitrogen is mainly adsorbed by the adsorbent in the adsorption tower 10A, and purified oxygen gas enriched in oxygen continues to be led out from the gas passage 12 side of the adsorption tower 10A.
  • the purified oxygen gas is guided to the tank 22 via the branch path 32 ⁇ / b> A and the main trunk path 32 ′ of the pipe 32 and stored in the tank 22.
  • the purified oxygen gas may be continuously supplied from the tank 22 to a predetermined device or plant.
  • Step 1 the inside of the adsorption tower 10B that has undergone Steps 3 to 4 (the adsorption process is performed in the adsorption tower 10B) described below is decompressed by the double vacuum pump device Y2. Specifically, after the gas passage port 11 side of the adsorption tower 10B and the suction port 41 side of the vacuum pump 40A of the dual-type vacuum pump device Y2 are in communication with each other via the pipe 33, the double-type type is used. The inside of the adsorption tower 10B is depressurized by the vacuum pump device Y2.
  • nitrogen is mainly desorbed from the adsorbent in the adsorption tower 10B and led out of the tower, and the nitrogen (off gas) is branched from the gas passage 11 side of the adsorption tower 10B to the branch path 33B and the trunk in the pipe 33. It is led to the double vacuum pump device Y2 through the path 33 ′.
  • the adsorbent is regenerated.
  • the internal pressure of the adsorption tower 10B at the start of such a decompression regeneration process is, for example, about 40 kPaG.
  • the final internal pressure of the adsorption tower 10B at the end of the decompression regeneration step varies depending on the gas temperature, but is, for example, ⁇ 66 to ⁇ 72 kPaG.
  • Step 2 the adsorption process is continued from Step 1 in the adsorption tower 10A, and the return pressure process is performed in the adsorption tower 10B.
  • Step 2 specifically, continuing from Step 1, air continues to be supplied from the raw material blower 21 to the gas passage 11 side of the adsorption tower 10A, and purified oxygen gas is led out from the gas passage 12 side of the adsorption tower 10A. to continue. A part of the purified oxygen gas is introduced into the tank 22 and stored. The other part of the purified gas is guided to the gas passage 12 side of the adsorption tower 10B through the pipe 34.
  • Step 2 the purified oxygen gas is introduced from the gas passage 12 side of the adsorption tower 10B, whereby the internal pressure of the adsorption tower 10B is recovered. That is, the inside of the adsorption tower 10B is returned to a relatively high pressure state (for example, a pressure of atmospheric pressure to about 40 kPaG).
  • a relatively high pressure state for example, a pressure of atmospheric pressure to about 40 kPaG.
  • steps 3 to 4 the adsorption process is performed in the adsorption tower 10B in the same manner as in the adsorption tower 10A in steps 1 and 2. Therefore, in steps 1 and 2, the purified oxygen gas continues to be led out from the gas passage 12 side of the adsorption tower 10B, and this purified oxygen gas is introduced into the tank 22 and stored.
  • the decompression regeneration step (Step 3) and the decompression step (Step 4) are performed in the adsorption tower 10A in the same manner as in the adsorption tower 10B in Steps 1 and 2.
  • the gas passage port 11 side of the adsorption tower 10A and the suction port 41 side of the vacuum pump 40A of the double vacuum pump device Y2 are in communication with each other via the pipe 33.
  • the inside of the adsorption tower 10A is depressurized by the double vacuum pump device Y2, whereby mainly nitrogen is desorbed from the adsorbent in the adsorption tower 10A and led out of the tower, and the nitrogen (off-gas) Is led from the gas passage 11 side of the adsorption tower 10A to the double vacuum pump device Y2 via the branch path 33A and the main path 33 'in the pipe 33.
  • the adsorbent is regenerated.
  • the purified oxygen gas can be continuously acquired from the gas purification system X1 using air as a raw material.
  • the dual vacuum pump device Y2 is specifically operated as follows.
  • step 1 the decompression regeneration process is performed in the adsorption tower 10B
  • the gas passage 11 side of the adsorption tower 10B of the PSA apparatus Y1 and the intake port of the vacuum pump 40A of the dual vacuum pump apparatus Y2 41 side is in communication with the piping 33, and the vacuum pumps 40A and 40B (connected in series via the connecting line 52) are driven by the motor 51, and the interior of the adsorption tower 10B. Is depressurized.
  • the open / close valve 61 of the bypass line 60 in the double vacuum pump device Y2 the internal pressure of the pipe 33 in the vicinity of the intake port 41 is slightly higher than the atmospheric pressure at the start of step 1 (decompression regeneration step).
  • the inside of the connection line 52 (the side subjected to pressurization by the vacuum pump 40A) is also at atmospheric pressure or higher. Therefore, immediately after the start of the decompression regeneration process in the adsorption tower 10B of the PSA apparatus Y1, the off-gas from the adsorption tower 10B passes through the vacuum pump 40A in the double vacuum pump apparatus Y2, and then partially passes through the vacuum pump 40B. Pass through, part of it passes through the bypass line 60 and is discharged to the outside through the silencer Y3.
  • the exhaust amount from the vacuum pump 40A that continues to suck off-gas from the adsorption tower 10B in step 1 is the intake 41 of the vacuum pump 40A connected to the adsorption tower 10B. It changes in accordance with the pressure on the side (that is, the inlet pressure of the double vacuum pump device Y2). Specifically, as the decompression regeneration process proceeds, the internal pressure of the adsorption tower 10B becomes smaller (therefore, the pressure on the intake port 41 side of the vacuum pump 40A also becomes smaller), and the exhaust amount from the vacuum pump 40A accordingly. Will decrease.
  • the gas having a flow rate exceeding the exhaust amount of the vacuum pump 40B is an excess gas for the vacuum pump 40B ( As described above, the exhaust capacity of the vacuum pump 40B is smaller than the exhaust capacity of the vacuum pump 40A). Excess gas for the vacuum pump 40B exists for a certain period from the start of the decompression regeneration process (step 1) of the adsorption tower 10B. When the internal pressure of the adsorption tower 10B is reduced in the decompression regeneration step, the pressure on the intake port 41 side of the vacuum pump 40A is similarly reduced.
  • the exhaust amount from the vacuum pump 40A decreases until it matches the exhaust capacity of the vacuum pump 40B (same as the intake capacity). After this match, the on-off valve 61 is closed, so that the vacuum pump 40B The exhaust amount continues to decrease while being consistent with the exhaust amount of the vacuum pump 40B.
  • the pressure change on the inlet 41 side of the vacuum pump 40A in the decompression regeneration process is as shown in FIG. 7 depending on the gas temperature. That is, since the gas adsorption amount of the adsorbent decreases as the gas temperature increases, the pressure at the intake port 41 (inlet of the dual vacuum pump device Y2) of the first vacuum pump 40A quickly decreases during the decompression regeneration time. As the gas temperature decreases, the amount of gas adsorbed by the adsorbent increases, so this pressure drop slows down.
  • FIG. 8 shows the inlet pressure and the apparent displacement (the displacement that is not converted into the standard state is referred to, and the displacement that is converted into the standard state is referred to as standard. "N" indicating the state is added), and the optimum relationship of required power is shown. This relationship is not affected by the gas temperature, and the point where the pressure in the connection line 52 of the first vacuum pump 40A and the second vacuum pump 40B becomes atmospheric pressure is that the pressure at the intake port 41 moves around -42 kPaG. Without changing, even if the temperature of the exhaust gas changes and the amount of adsorbed gas of the adsorbent changes.
  • the pressure detector 80 is installed in the vicinity of the intake port 41 side where there is no airflow vibration, and the pressure in the connection line 52 of the first vacuum pump 40A and the second vacuum pump 40B is set to be higher than atmospheric pressure or lower than atmospheric pressure in advance. If the inlet pressure value (for example, -42 kPaG) when the change point when reaching the point of change is set is set is set, the first vacuum pump 40A and the second vacuum pump 40B are always operated in a lean combination, and the dual type The minimum required power operation can be performed as the vacuum pump device Y2.
  • the inlet pressure value for example, -42 kPaG
  • the double vacuum pump device Y2 In the double vacuum pump device Y2, during the period in which excess gas exists from the start of the decompression regeneration process of the adsorption tower 10B (that is, when the exhaust amount from the vacuum pump 40A exceeds the exhaust capacity of the vacuum pump 40B). ) Detects that the pressure on the inlet 41 side is higher than the pressure set value (for example, ⁇ 42 kPaG) of the pressure detector 80, opens the on-off valve 61 of the bypass line 60, and the excess gas is connected to the connection line. The gas flow is controlled to flow into the bypass line 60 from 52.
  • the pressure set value for example, ⁇ 42 kPaG
  • the excess gas flows into the bypass line 60 from the connection line 52, and then in the bypass line 60, the buffer tube Z1. And then through the on-off valve 61 and then introduced into the silencer Y3 (or a separate silencer Y3 ′ in FIG. 5) via the ends E7 and E5, the excess gas passing through the silencer Y3. Through the gas purification system X1. At the same time, when excess gas is generated, the gas is also discharged from the exhaust port 42 of the vacuum pump 40B connected to the vacuum pump 40A via the connection line 52.
  • the work of substantial pressure reduction is performed only by the preceding vacuum pump 40A, and the latter vacuum pump 40B is not substantially involved in the pressure reduction. Since the exhaust port 42 of the vacuum pump 40B is connected to the silencer Y3 via the pipe 53, the gas that has passed through the vacuum pump 40B is exhausted outside the gas purification system X1 via the silencer Y3.
  • the vacuum pumps 40A and 40B in a completely in-line state cooperate to decompress the inside of the adsorption tower 10B as a decompression target container, A predetermined amount of gas is discharged from the vacuum pump 40B.
  • This exhaust gas is introduced into the silencer Y3 via the pipe 53 and exhausted outside the gas purification system X1.
  • the on-off valve 61 of the bypass line 60 is in a closed state, no gas passes through the bypass line 60.
  • the depressurization regeneration process for the adsorption tower 10B in Step 1 described above is executed by operating the dual vacuum pump device Y2 under reduced pressure as described above.
  • the decompression regeneration process for the adsorption tower 10A in the above-described step 3 is also performed by operating the dual vacuum pump device Y2 under reduced pressure in the same manner as described above for the decompression regeneration process of the adsorption tower 10B.
  • the on-off valve 61 that is open at the start of pressure reduction gradually decreases the exhaust amount from the vacuum pump 40A and matches the exhaust capacity of the vacuum pump 40B. From the open state to the closed state, the pressure on the inlet 41 side is detected by the pressure detector 80 and switched.
  • Such a configuration contributes to the efficient operation of the double vacuum pump device Y2 by operating the vacuum pump 40A and the vacuum pump 40B in series in the latter half of the decompression regeneration process.
  • the set value of the pressure detector 80 that can minimize the required power of the double vacuum pump device Y2 is hardly affected by the temperature change, the elapsed time from the start of the pressure reduction is set in advance, and the on-off valve 61 Compared to the case where the opening / closing control is performed, the problem of an increase in required power due to a temperature change does not occur.
  • the rotor 40b of the vacuum pump 40A and the rotor 40b of the vacuum pump 40B are rotationally driven by a single motor 51 in conjunction with each other. Yes.
  • Such a configuration is suitable for reducing the required power of the dual vacuum pump device Y2.
  • the exhaust amount from the vacuum pump 40A changes according to the pressure on the inlet 41 side of the vacuum pump 40A connected to the adsorption tower 10A or the adsorption tower 10B.
  • the smaller the pressure on the inlet 41 side the smaller the displacement. Therefore, the exhaust amount reaches the maximum value at the start of the decompression regeneration process, and there is an excess gas (a portion of the exhaust amount from the vacuum pump 40A that exceeds the exhaust capacity of the vacuum pump 40B).
  • the excess gas amount (flow rate) takes the maximum value at the start of pressure reduction. Further, the speed at which excess gas flows into the bypass line 60 from the connection line 52 is also maximized at the start of this decompression.
  • the excess gas is buffered at the start of pressure reduction at which the speed at which the gas flows from the connecting line 52 into the bypass line 60 becomes maximum. The shortest when going through. The time required for excess gas to pass through the buffer tube Z1 at the start of decompression is defined as the minimum residence time in the buffer tube. In the double vacuum pump device Y2, the buffer tube Z1 is configured so that the minimum residence time in the buffer tube is 0.15 seconds or more.
  • a relatively large air flow vibration occurs in the gas discharged from the vacuum pump 40A during the decompression operation.
  • a relatively large airflow vibration is also generated in the excess gas flowing into the bypass line 60 from the connection line 52.
  • the buffer pipe Z1 is removed from the bypass line 60 of the double vacuum pump device Y2
  • mechanical deterioration of the shaft 61a of the on-off valve 61 of the bypass line 60 is promoted due to such an excessive gas flow vibration. Is done. This is because the shaft 61a that continues to be exposed to the gas flowing in the bypass line 60 with airflow vibration continues to be improperly vibrated while continuously receiving vibration energy from the gas.
  • Such vibration of the shaft 61a induces local destruction of the material structure constituting the shaft 61a, and thus promotes deterioration of the mechanical strength of the shaft 61a.
  • the related pump device is operated while supplying seal water into the pump mechanism of the vacuum pump 40A, the deterioration of the mechanical strength of the shaft 61a becomes more remarkable.
  • the degree of vibration of the shaft 61a due to vibration of excess gas flow may reach about 13G or more in vibration acceleration.
  • the buffer pipe Z1 is provided in the bypass line 60, and the minimum residence time in the buffer pipe is 0.15 seconds or more for the buffer pipe Z1.
  • the bypass line 60 may include an on-off valve 61 'having a check valve function instead of the on-off valve 61, as shown in FIG.
  • the on-off valve 61 ′ is open when the pressure on the buffer pipe Z 1 side is higher than the pressure on the end E 7 side than the on-off valve 61 ′ in the bypass line 60, and the pressure on the buffer pipe Z 1 side.
  • the on-off valve 61 ′ having such a check valve function is in an open state immediately after the start of pressure reduction during the pressure reduction operation of the dual vacuum pump device Y2, and the exhaust amount from the vacuum pump 40A is gradually reduced to vacuum.
  • the buffer tube Z1 has the orifice plate 74 as a throttle portion for locally narrowing the gas flow path passing through the inside thereof, and the opening ratio of the orifice plate 74 is preferably 20. It is ⁇ 46%, more preferably 29 to 39%. Such a configuration is useful for efficiently dampening the air flow vibration of the excess gas passing through the buffer tube Z1.
  • the orifice plate 74 is suitable as a constriction part for adjusting the aperture ratio with high accuracy.
  • the lowermost end 74a 'at the edge of the opening 74a is flush with the inner wall surface 73' of the buffer tube Z1.
  • the minimum residence time in the buffer tube is set to 0.15 seconds or more by appropriately setting the length and / or the inner diameter of the buffer tube Z1 without providing the orifice plate 74. May be.
  • the buffer tube Z1 is connected to the exhaust port 42 of the vacuum pump 40A when the open / close valve 61 (or 61 ') of the bypass line 60 is open during the decompression operation of the dual vacuum pump device Y2.
  • the maximum flow velocity in the buffer pipe of the gas passing through the buffer pipe Z1 is 6 to 12 m / sec.
  • the flow rate when excess gas passes through the buffer pipe Z1 in the bypass line 60 is the largest at the start of pressure reduction at which the speed at which the excess gas flows into the bypass line 60 from the connection line 52 becomes maximum.
  • the flow rate when excess gas passes through the buffer tube Z1 at the start of pressure reduction is defined as the maximum flow rate in the buffer tube.
  • the maximum flow speed in the buffer pipe is set to 6 to 12 m / sec. It is preferable to construct the buffer tube Z1.
  • the bypass line 60 is used to introduce gas into the buffer pipe Z1 connected to the buffer pipe Z1 at the gas inlet 73a provided at the end wall 71 side of the peripheral wall 73 of the buffer pipe Z1.
  • a connecting pipe part 62 is provided.
  • the connecting pipe portion 62 extends in a direction intersecting with the extending direction of the peripheral wall 73 (horizontal direction H in FIG. 3), preferably in the orthogonal direction (vertical direction V), and more preferably in the vertical direction V. It extends and is connected to the peripheral wall 73 from below the vertical direction V.
  • Such a configuration is suitable for reducing the size of the buffer tube Z1 while realizing the minimum residence time in the buffer tube of 0.15 seconds or more.
  • FIG. 10 is a partial cross-sectional schematic view of the buffer tube Z1 'according to the first modification and the vicinity thereof.
  • the buffer pipe Z1 ′ includes an end wall 71 on the end E6 side in the bypass line 60, an end wall 72 on the end E7 side, a peripheral wall 73 extending between the end walls 71 and 72, and a plurality of orifice plates 74.
  • the end wall 71 has a cylindrical shape.
  • Each orifice plate 74 is a throttle portion for locally narrowing the flow path of gas passing through the inside of the buffer tube Z1 'and has an opening 74a.
  • the plurality of orifice plates 74 are arranged along the gas flow path in the buffer tube Z1 ′, and the orifice plate 74 ′ located on the most upstream side in the gas flow path, and the orifice plate 74 ′′ located on the most downstream side, Since the buffer tube Z1 ′ having such a configuration attenuates the airflow vibration of excess gas stepwise by the plurality of orifice plates 74, the effect of damping the airflow vibration is enhanced.
  • the buffer pipe Z1 ′′ has an end wall 71 on the end E6 side and an end wall 72 on the end E7 side of the bypass line 60.
  • a peripheral wall 73 extending between the end walls 71 and 72 and a baffle plate 75 are provided, and the peripheral wall 73 has a cylindrical shape.
  • the baffle plate 75 is a throttle portion for locally narrowing the flow path of the gas passing through the inside of the buffer tube Z1 ′′.
  • the aperture ratio in the baffle plate 75 is preferably 20 to 46%, more preferably
  • the opening ratio of the baffle plate 75 refers to the ratio of the cross-sectional area of the gas flow path not occupied by the baffle plate 75 to the cross-sectional area of the buffer tube Z1 ′′.
  • the baffle plate 75 functions as a throttle portion and efficiently attenuates the air flow vibration of excess gas.
  • the baffle plate 75 adjusts the aperture ratio of the orifice plate. Easier than.
  • the buffer tube Z1 ′′ may include a plurality of baffle plates 75.
  • the plurality of baffle plates 75 are arranged at appropriate intervals along the gas flow path, and the most in the gas flow path.
  • the first baffle plate located on the upstream side and the second baffle plate located on the most downstream side include a plurality of baffle plates 75, and the buffer tube having such a configuration causes stepwise vibrations of excess gas flow. As a result, the air flow vibration damping effect is enhanced.
  • FIGS. 13 and 14 show a buffer tube Z2 as a third modification.
  • the buffer pipe Z2 includes an end wall 71 on the end portion E6 side in the bypass line 60 ′, an end wall 72 on the end portion E7 side, a peripheral wall 73 extending between the end walls 71 and 72, and an orifice plate 74.
  • the peripheral wall 73 has a cylindrical shape.
  • a gas inlet 71 a is provided in the end wall 71, and a gas outlet 72 a is provided in the end wall 72.
  • the buffer tube Z2 is different from the buffer tube Z1 shown in FIG. 3 in that the gas inlet is provided not on the peripheral wall 73 but on the end wall 71, but the other configuration is the buffer tube Z1 shown in FIG. It is the same as that of the structure.
  • the connecting pipe portion 62 ′ of the bypass line 60 ′ is connected to the buffer pipe Z ⁇ b> 2 through a gas inlet 71 a provided in the end wall 71.
  • the connecting pipe portion 62 ' is located immediately upstream of the buffer pipe Z2 in the bypass line 60' and defines a gas flow path immediately before being introduced into the buffer pipe Z2.
  • the connecting pipe portion 62 ' has a bent structure for bending the gas flow immediately before being introduced into the buffer pipe Z2.
  • the connecting pipe portion 62 ' has a bent structure for bending the gas flow immediately before being introduced into the buffer pipe Z2 by 90 degrees.
  • the connecting pipe portion 62 ′ is disposed so as to guide gas from the lower side in the vertical direction V and introduce it into the buffer pipe Z ⁇ b> 2.
  • the buffer pipe Z2 shown in FIG. 13 may be combined with the on-off valve 61 'having the check valve function shown in FIG.
  • a plurality of orifice plates 74 may be provided as shown in FIG. 10, or one baffle plate 75 (or a plurality of baffle plates 75) shown in FIG. May be provided.
  • the orifice plate 74 shown in FIG. 3 and the baffle plate 75 shown in FIG. 11 may be combined.
  • Example 1 The exhaust vacuum capacity of the first vacuum pump 40A of the dual vacuum pump device Y2 is 14,800 m 3 / h, the exhaust capacity of the second vacuum pump 40B is connected in series as a root pump of 14,100 m 3 / h, and the gas temperature At 30 ° C., the gas purification system X1 shown in FIG. 1 is used to perform one cycle (steps 1 to 4) consisting of the adsorption step, the decompression regeneration step, and the return pressure step shown in FIG. The oxygen was obtained from the air as the raw material gas by repeating each of the above.
  • the amount of air supplied by the raw material blower 21 of the PSA apparatus Y1 was 8,300 Nm 3 / h (N: represents a standard state, and the same applies hereinafter).
  • the internal pressure of the adsorption towers 10A and 10B in the adsorption process was set to a maximum of 40 kPaG.
  • the final pressure in the decompression regeneration process in the adsorption towers 10A and 10B in the decompression regeneration process was ⁇ 69 kPaG, and the internal pressure of the adsorption towers 10A and 10B in the return pressure process was returned to atmospheric pressure.
  • the on-off valve 61 is opened when the pressure on the intake port 41 side reaches the pressure value of ⁇ 42 kPaG as shown in FIG. It was set to be in the closed state.
  • the double vacuum pump device Y2 was operated under reduced pressure as follows.
  • the indicated value of the pressure detector 80 is approximately between atmospheric pressure and ⁇ 42 kPaG from the start of the decompression regeneration process, that is, when the exhaust amount from the vacuum pump 40A exceeds the exhaust capacity of the vacuum pump 40B
  • the bypass line 60 is opened and closed.
  • a signal was sent to the valve 61 to open it, and the gas flow was controlled so that the excess gas flowed into the bypass line 60 from the connection line 52.
  • the exhaust amount from the vacuum pump 40A gradually decreases to coincide with the exhaust capacity of the vacuum pump 40B, that is, when the pressure detector 80 indicates -42 kPaG
  • the on-off valve 61 is switched from the open state to the closed state.
  • the pressure reduction operation of the double vacuum pump device Y2 was continued. As a result, the integrated average required power of the vacuum pump was 206 kw.
  • Example 2 The exhaust vacuum capacity of the first vacuum pump 40A of the double vacuum pump device Y2 is 14,800 m 3 / h, and the second vacuum pump 40 B is connected in series as a root pump of 14,100 m 3 / h
  • the gas purification system X1 shown in FIG. 1 is used to perform one cycle (steps 1 to 4) consisting of the adsorption step, the decompression regeneration step, and the return pressure step shown in FIG.
  • Oxygen was acquired from the air as the raw material gas by repeating for each of 10B.
  • the supply amount of air from the raw material blower 21 of the PSA apparatus Y1 was 8,300 Nm 3 / h, and the internal pressure of the adsorption towers 10A and 10B in the adsorption process was set to 40 kPaG at maximum.
  • the final pressure in the decompression regeneration process inside the adsorption towers 10A and 10B in the decompression regeneration process dropped to -72 kPaG.
  • the internal pressure was returned to atmospheric pressure.
  • the on-off valve 61 is opened when the pressure on the inlet 41 side reaches the pressure value of ⁇ 42 kPaG as a characteristic as shown in FIG. It was set to be in the closed state.
  • the same operation as in Example 1 was performed, and when the pressure detector 80 showed -42 kPaG, the on-off valve 61 was switched from the open state to the closed state, and both vacuum pumps 40A, 40B Were kept in series, and the vacuum operation of the double vacuum pump device Y2 was continued. As a result, the integrated average required power of the vacuum pump was 213 kW.
  • the first vacuum pump 40A of the double vacuum pump device Y2 has an exhaust capacity of 14,800 m 3 / h
  • the second vacuum pump 40B has an exhaust capacity of 14,100 m 3 / h.
  • the gas temperature is 30 ° C.
  • one cycle (step 1) comprising the adsorption process, the decompression regeneration process, and the decompression process shown in FIG.
  • oxygen was obtained from the air as the raw material gas.
  • the amount of air supplied by the raw material blower 21 of the PSA apparatus Y1 was 8,300 Nm 3 / h, as in Example 1, and the internal pressure of the adsorption towers 10A, 10B in the adsorption process was set to 40 kPaG at maximum.
  • the final pressure was -69 kPaG.
  • the switching from the open state to the closed state of the on-off valve 61 is set so that the on-off valve 61 is changed from the open state to the closed state when the decompression regeneration time is 7.5 seconds as shown in FIG. At that time, the pressure of the inlet 41 was -35 kPaG.
  • the internal pressure was returned to atmospheric pressure.
  • the dual vacuum pump device Y2 was operated under reduced pressure as follows.
  • the on-off valve 61 of the bypass line 60 is opened while the pressure at the intake port 41 reaches approximately -35 kPaG for approximately 7.5 seconds from the start of the decompression regeneration process, and then the on-off valve 61 is forcibly opened.
  • the vacuum pumps 40A and 40B were brought into a completely in-line state, and the vacuum operation of the double vacuum pump device Y2 was continued.
  • the average required power of the vacuum pumps 40A and 40B was 216 kW, which was increased by 10 kW compared with the case where the pressure detector 80 on the intake port 41 side was not controlled.
  • the graph of FIG. 14 shows the relationship between the inlet pressure, the apparent exhaust amount, and the required power corresponding to Comparative Example 1.
  • the first vacuum pump 40A of the double vacuum pump device Y2 has an exhaust capacity of 14,800 m 3 / h
  • the second vacuum pump 40B has an exhaust capacity of 14,100 m 3 / h.
  • the gas temperature is 40 ° C.
  • one cycle (step 1) comprising the adsorption process, the decompression regeneration process, and the decompression process shown in FIG.
  • oxygen was obtained from the air as the raw material gas.
  • the amount of air supplied from the raw material blower 21 of the PSA apparatus Y1 was 8,300 Nm 3 / h as in Example 2, and the internal pressure of the adsorption towers 10A, 10B in the adsorption process was set to 40 kPaG at maximum.
  • the final pressure was -72 kPaG.
  • the switching from the open state to the closed state of the on-off valve 61 is set so that the on-off valve 61 is changed from the open state to the closed state when a decompression regeneration time of 15 seconds elapses as shown in FIG. At that time, the pressure of the inlet 41 was -50 kPaG.
  • the internal pressure was returned to atmospheric pressure.
  • the dual vacuum pump device Y2 was operated under reduced pressure as follows.
  • the on-off valve 61 of the bypass line 60 is opened for about 15 seconds from the start of the decompression regeneration process until the pressure of the intake port 41 reaches -50 kPaG, and then the on-off valve 61 is forced from the open state.
  • the pressure reduction operation of the double vacuum pump device Y2 was continued.
  • the average required power of the vacuum pumps 40A and 40B was 224 kW, which was 11 kW higher than the case where the pressure detector 80 on the intake port 41 side was not controlled.
  • the graph of FIG. 15 shows the relationship between the inlet pressure, the apparent exhaust amount, and the required power corresponding to the comparative example 2.
  • the pressure at the intake port 41 of the upstream side vacuum pump 40A at the time when the pressure decreases until it matches the exhaust capacity of the exhaust gas becomes substantially constant ( ⁇ 42 kPaG in the first and second embodiments). Therefore, if the pressure in the vicinity of the intake port 41 of the upstream side vacuum pump 40A is measured and the on-off valve 61 is controlled to open and close, the influence of temperature change can be avoided.
  • the internal pressure of the adsorption towers 10A and 10B in the adsorption process is atmospheric pressure
  • the final pressure in the decompression regeneration process in the adsorption towers 10A and 10B in the decompression regeneration process is ⁇ 530 mmHg (gauge pressure: about ⁇ 70 kPaG)
  • the return pressure For the adsorption towers 10A and 10B in the process the internal pressure was returned to atmospheric pressure.
  • the decompression regeneration process for the adsorption towers 10A and 10B is performed by depressurizing the dual vacuum pump device Y2 having the same configuration as described above except that the buffer tube Z1 does not have the orifice plate 74. Executed.
  • the vacuum pump 40A a Roots pump having an exhaust capacity of 10,000 m 3 / h was adopted.
  • the vacuum pump 40B a roots pump with an exhaust capacity of 6,053 m 3 / h was adopted.
  • the buffer pipe Z1 (without the orifice plate 74), an inner dimension (length) in the extending direction is 4.4 m and an inner diameter is 400 mm.
  • the dual vacuum pump device Y2 was operated under reduced pressure as follows. When there is excess gas for a predetermined period from the start of the decompression regeneration process (that is, when the exhaust amount from the vacuum pump 40A exceeds the exhaust capacity of the vacuum pump 40B), the on-off valve of the bypass line 60 61 was opened, and the gas flow was controlled so that the excess gas flowed from the connecting line 52 into the bypass line 60. When the amount of exhaust from the vacuum pump 40A gradually decreases and matches the exhaust capacity of the vacuum pump 40B, the on-off valve 61 is automatically switched from the open state to the closed state, so that both vacuum pumps 40A and 40B are in a completely serial state. Then, the decompression operation of the double vacuum pump device Y2 was continued.
  • the minimum residence time of the excess gas during the decompression operation (the time required for the excess gas to pass through the buffer tube Z1 immediately after the start of decompression) was measured. It was 50 seconds. Further, when the vibration acceleration applied to the shaft 61a of the open / close valve 61 in the open state was measured, the maximum value was 3.0G. For the measurement of the vibration acceleration, a vibration measuring instrument (Rion Co., Ltd., VM-61) was used. These measurement results for Example 3 are listed in the table of FIG.
  • Example 4 The length of the buffer tube Z1 (without the orifice plate 74) in the double vacuum pump device Y2 is changed to 3.6 m (Example 4), 2.8 m (Example 5), and 2.1 m instead of 4.4 m. (Example 6)
  • the minimum residence time in the buffer tube when the double vacuum pump device Y2 was operated under reduced pressure was measured to be 0.41 seconds (Example 4). , 0.32 seconds (Example 5), 0.24 seconds (Example 6), 0.17 seconds (Example 7), 0.15 seconds (Example 8), and 0.12 seconds (Example 9). )Met.
  • the vibration acceleration applied to the shaft 61a of the on-off valve 61 in the open state during the pressure reduction operation of the double vacuum pump device Y2 of Examples 4 to 9 the maximum value is 3.1G (Example 4). 3.1 G (Example 5), 3.2 G (Example 6), 4.5 G (Example 7), 5.5 G (Example 8), and 7.0 G (Example 9).
  • the decompression regeneration step for the adsorption towers 10A and 10B is performed by operating the vacuum pumps 40A and 40B under reduced pressure (bypass during the decompression regeneration step) in the same manner as in Example 3 except that the buffer tube is not passed.
  • the on-off valve 61 of the line 60 is switched from the open state to the closed state) and executed.
  • Example 10 A gas purification system X1 similar to that in Example 3 is used except that the buffer tube Z1 in the double vacuum pump device Y2 has an orifice plate 74, and in the same manner as in Example 3, a double vacuum is used in the decompression regeneration process. While the pump device Y2 was operated under reduced pressure, oxygen was acquired from the air as the raw material gas by repeating one cycle consisting of the adsorption step, the reduced pressure regeneration step, and the return pressure step in each of the adsorption towers 10A and 10B.
  • the orifice plate 74 was provided at a location 500 mm away from the end wall 71 on the gas inlet side in the buffer tube Z1.
  • the orifice plate 74 having a diameter of the opening 74a of 230 mm is used.
  • the opening ratio of the orifice plate 74 (the diameter of the opening 74a is 230 mm) in the buffer tube Z1 having an inner diameter of 400 mm was 33%.
  • Example 10 For the buffer tube Z1 (with the orifice plate 74) of the double vacuum pump device Y2 in Example 10, the minimum residence time in the buffer tube during the decompression operation of the double vacuum pump device Y2 is measured as in Example 3. As a result, it was 0.50 seconds. Further, when the vibration acceleration applied to the shaft 61a of the on-off valve 61 in the open state when the double vacuum pump device Y2 was operated under reduced pressure, the maximum value was 2.1G. These measurement results for Example 9 are listed in the table of FIG.
  • Example 11 The length of the buffer tube Z1 (having the orifice plate 74) in the double vacuum pump device Y2 is replaced with 4.4 m (3.6 m) (Example 11), 2.8 m (Example 12), 2.1 m ( Example 13)
  • a gas purification system X1 shown in FIG. 1 was used, except that 1.5m (Example 14), 1.3m (Example 15), and 1.05m (Example 16) were used.
  • the minimum residence time in the buffer tube during the decompression operation of the duplex vacuum pump device Y2 was measured in the same manner as in Example 3. 41 seconds (Example 11), 0.32 seconds (Example 12), 0.24 seconds (Example 13), 0.17 seconds (Example 14), 0.15 seconds (Example 15), 12 seconds (Example 16). Further, when the vibration acceleration applied to the shaft 61a of the on-off valve 61 which is in the open state when the dual vacuum pump device Y2 is operated under reduced pressure, the maximum value is 2.0G (Example 11), 2.1G (implementation).
  • Example 12 2.1G (Example 13), 2.5G (Example 14), 3.0G (Example 15), and 4.5G (Example 16). These measurement results for Examples 11 to 16 are listed in the table of FIG. In addition, the measurement results regarding Examples 9 to 16 and Comparative Example 3 described above are indicated by bold lines in the graph of FIG.
  • Example 17 180 mm (Example 17), 200 mm (Example 18), 215 mm (Example 19), 230 mm (Example) instead of the diameter of the opening 74a of the orifice plate 74 of the buffer tube Z1 in the double vacuum pump device Y2 is 230 mm. 20), 250 mm (Example 21), and 270 mm (Example 22), except that the gas purification system X1 is the same as in Example 10, and the double vacuum pump device Y2 is operated under reduced pressure in the reduced pressure regeneration process.
  • the aperture ratio of the orifice plate 74 of Example 17 is 20%
  • the aperture ratio of the orifice plate 74 of Example 18 is 25%
  • the aperture ratio of the orifice plate 74 of Example 19 is 29%
  • the aperture ratio of the orifice plate 74 of Example 20 is 33%
  • the aperture ratio of the orifice plate 74 of Example 21 is 39%
  • the aperture ratio of the orifice plate 74 of Example 22 is 46%.
  • the minimum residence time in the buffer tube during the decompression operation of the double vacuum pump device Y2 was measured in the same manner as in Example 3. It was .15 seconds. Further, when the vibration acceleration applied to the shaft 61a of the on-off valve 61 which is in the open state when the double vacuum pump device Y2 is operated under reduced pressure, the maximum value is 4.2G (Example 17), 3.8G (implementation). Example 18), 3.4G (Example 19), 3.0G (Example 20), 3.3G (Example 21), 4.0G (Example 22). These measurement results relating to Examples 17 to 22 are listed in the table of FIG. 19 and indicated by bold lines in the graph of FIG. In the graph of FIG. 20, the horizontal axis represents the opening ratio (%) by the orifice plate 74 (throttle portion), and the vertical axis represents the vibration acceleration (G) of the shaft 61a of the on-off valve 61.
  • the double vacuum pump device Y2 (Examples 3 to 8, 10 to 15) using the buffer tube Z1 in which the minimum residence time of the excess gas is 0.15 seconds or more, it is applied to the shaft 61a of the on-off valve 61.
  • the vibration acceleration can be particularly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

 二連型真空ポンプ装置Y2は、容積式の真空ポンプ40A,40B及びライン52,60を備える。各真空ポンプは吸気口41と排気口42を有し、二連型真空ポンプ装置Y2の吸気口41近傍に圧力検出器80を備えている。ライン52は、真空ポンプ40Aの排気口42と真空ポンプ40Bの吸気口41を連結する。ライン60は、連結ライン52に接続された端部E6と端部E5とを有し、バッファー管Z1および当該管Z1と端部E5との間に位置する開閉弁61を含み、圧力検出器80の圧力検出信号を開閉弁61の開閉信号とする。

Description

二連型真空ポンプ装置、およびそれを備えるガス精製システム、      ならびに二連型真空ポンプ装置における排ガス振動抑制装置
 本発明は、二連の真空ポンプを含む装置(二連型真空ポンプ装置)、およびそれを備えるガス精製システムに関する。さらに、本発明は、二連型真空ポンプ装置における排ガス振動抑制装置にも関する。
従来技術
 容積式の真空ポンプは、様々な用途で使用されている。例えば、ガス精製方法としての圧力変動吸着法(PSA法)を実行するうえで、容積式の真空ポンプを二基直列に接続した二連型真空ポンプ装置が使用される場合がある。
 PSA法では、例えば、不純物を吸着するための吸着剤が充填された吸着塔が使用される。そのような吸着塔を使用して行われるPSA法によるガスの精製においては、吸着塔にて、例えば次のような吸着工程および減圧再生工程を含むサイクルが繰り返される。吸着工程では、塔内が相対的に高圧な状態にある吸着塔に対して混合ガスたる原料ガスが導入されて、当該原料ガス中の不純物が吸着剤に吸着されつつ、当該吸着塔から非吸着ガスが導出される。この非吸着ガスは、目的ガスが富化されたガスであり、精製ガスとして取得される。減圧再生工程では、塔内が減圧されて相対的に低圧化されつつ、吸着剤から不純物が脱着され、この不純物を含む脱着ガスが塔外へ導出される。この減圧再生工程にて吸着塔内を減圧するために、容積式真空ポンプが使用される場合があるのである。このような容積式真空ポンプについては、例えば下記の特許文献1,2に記載されている。
特開平10-296034号公報 特開2006-272325号公報
 これらの公報の開示によれば、吸着塔を減圧する際の負荷(吸着塔の圧力)の変動に応じて、2個の容積式真空ポンプ(ブロワ)を吸着塔に対して並列に接続したり、直列に接続したりしている。そのため、並列接続と直列接続の切り替えのための制御が必要となり、切換えタイミングの設定が容易ではない。また、これらの公報では、2個の真空ポンプを動作させる上で、どのような制御を行えば、2個の真空ポンプの合算した消費動力を最小化できるのかの考慮がなされていない。また、容積式真空ポンプの排ガスの脈動から起こる気流振動を伴うものであるが、その振動が真空ポンプの下流側に配置される開閉弁に与える悪影響をどのように回避するかもこれら公報では考慮されていない。
 そこで、本発明は、2個の真空ポンプの所要動力を最小化できる二連型真空ポンプ装置を提供することを目的とする。
 本発明の別の課題は、以上のように所要動力を最小化できる二連型真空ポンプ装置を含むガス精製システムを提供することにある。
 本発明のさらに別の課題は、二連型真空ポンプ装置における排ガス振動抑制装置を提供することにある。
 本発明の第1の側面によると、二連型真空ポンプ装置が提供される。この二連型真空ポンプ装置は、吸気口および排気口を有する容積式の第1真空ポンプと、吸気口および排気口を有するとともに、前記第1真空ポンプの排気容量よりも小さな排気容量を有する第2真空ポンプと、前記第1真空ポンプの前記排気口および前記第2真空ポンプの前記吸気口の間を連結する連結ラインと、前記連結ラインに接続された第1端部およびガスを外部に導出するための第2端部を有するバイパスラインと、前記バイパスラインにおける前記第1端部および前記第2端部の間に配置された開閉弁と、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量に一致するまで低下したときに、前記開閉弁は開状態から閉状態へと切り替えるように構成されている。
 本発明の第1の側面による二連型真空ポンプ装置の使用に際しては、第1真空ポンプの吸気口は、例えば所定のラインを介して、大気圧より低い所定圧力まで内部を減圧することが必要な容器(減圧対象容器)に連結される。そのような減圧対象容器としては、例えば、PSA法を実行するための吸着塔や、半導体製造装置の真空チャンバなどが挙げられる。また、本ポンプ装置の稼動時には、連結ラインを介して直列に接続された第1および第2真空ポンプが稼動される。第1真空ポンプないしその排気口からの排気量のうち、第2真空ポンプの排気量を超える流量のガスは、第2真空ポンプにとっての過剰ガスであり、これを第2真空ポンプにそのまま送り込むと、第2真空ポンプは過負荷状態となって、二連型真空ポンプ装置の全体としての消費動力が増加する。そこで、本発明の第1の側面によれば、第1真空ポンプの排気量が第2真空ポンプの排気容量を超えているとき(即ち、過剰ガスのあるとき)には、バイパスラインの開閉弁を開状態として、過剰ガスが連結ラインからバイパスラインに流入するように本装置のガス流れを制御し、また、第1真空ポンプの排気量が第2真空ポンプの排気量を超えていないとき(過剰ガスのないとき)には、バイパスラインの開閉弁を閉状態として、両真空ポンプを完全直列状態としているのである。この結果、第2真空ポンプが過負荷状態にはならず、消費動力を抑制することができるのである。過剰ガスが生じている状態にあっては、当該過剰ガスは、連結ラインからバイパスラインに流入した後、バイパスライン内において、開閉弁を通過し、その後に第2端部から導出される。バイパスラインの第2端部は、例えば、第2真空ポンプの排気口から伸びる配管を通じて、間接的に消音器に連結される。一方、過剰ガスが生じていない状態にあっては、完全直列状態にある第1および第2真空ポンプが協働して減圧対象容器の内部を減圧し、第2真空ポンプから所定量のガスが導出される。このとき、バイパスラインの開閉弁は閉状態にあるため、バイパスラインを通過するガスはない。
 好ましくは、二連型真空ポンプ装置は、前記第1真空ポンプの前記吸気口の近傍の圧力を検出する圧力検出器をさらに備え、前記開閉弁は、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量に一致したことを示す圧力値まで低下したことを前記圧力検出器が検出したときに、前記開閉弁を開状態から閉状態へと切り替えるように構成されている。或いは、前記連結ライン内における圧力が大気圧まで低下したことを示す圧力値を前記圧力検出器が検出したときに、前記開閉弁を開状態から閉状態へと切り替えるように構成してもよい。
 本発明の第1の側面に係る二連型真空ポンプ装置の特性として、予め第1真空ポンプの吸気口圧力に応じて、見掛け排気量(標準状態に換算していない排気量)がどのように変化するか、および、所要動力がどのように変化するかを、図8のような特性グラフとして予測しておく。この特性グラフは、第1真空ポンプのみが作用して連結ラインからバイパスラインの開閉弁を通じて第2真空ポンプにとって過剰なガスが外部に排出される最適なポイントを示唆しており、吸気口圧力が例えば-42kPaGにまで低下し、同時に連結ラインの圧力が大気圧にまで降下し、第2真空ポンプにとって過剰なガスが0となり、第1真空ポンプと第2真空ポンプが連携して直列に排気ガスを排出することができる二連型真空ポンプ装置の最小で最適な所要動力をもたらすことを表している。
 本発明者らは、第1真空ポンプと第2真空ポンプの連結ラインの圧力が大気圧となるとき、これに対応する第1真空ポンプ吸気口の圧力がガス温度によって変動しないこと、具体的にはガス温度が変化してガス吸着量が変わっても、例えば、吸気口の圧力が-42kPaGのときに、連結ラインの圧力が大気圧であってガス温度によって変化しないことを発見した。この-42kPaGの圧力は第1真空ポンプと第2真空ポンプの組み合わせにおいて第1真空ポンプの排気量を大きくすると、所要動力の折れ曲がり点は-42kPaG以下の方向へ移動し、第2真空ポンプの排気量を大きくすると-42kPaG以上の方向へ移動する。更にガス温度の影響については、ガス温度が高くなる夏季には(例えば40℃のとき)、吸着剤へのガス吸着量が減少し、減圧再生時の吸気口側の圧力が下がり、図7の下側の曲線のように変化する。一方、ガス温度が低下する冬季には(例えば20℃になると)吸着剤へのガス吸着量が増加し、減圧再生時の吸気口側の圧力は上昇し図7の上側の曲線のように変化する。しかしながら、二連型真空ポンプ装置が、定容量式であるルーツポンプを用いる場合には、季節変動によるガス温度変化から起こるガス吸着量変化の影響を受けず見掛け排気量は変わらない。
 本発明の好適な実施形態においては、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気量に一致したことを示す圧力値を前記圧力検出器が検出したときに、前記開閉弁は開状態から閉状態へと切り替えるように構成されている。このような構成は、二連型真空ポンプ装置を効率よく稼動させるのに資する。この開閉弁を連結ラインの圧力が大気圧に降下する前に閉じると、図14のように第2真空ポンプの所要動力が増加し、また、大気圧以下に減圧される状態にまで開のままで放置すると図15のように第1真空ポンプの所要動力が増加する。したがって、連結ラインの圧力が大気圧まで降下する点を予測し、第1真空ポンプの吸気口側の圧力値を検出器で検出し、その信号でバイパスラインの開閉弁を閉じると、正確な切り替えタイミングを捕らえることができる。
 好ましくは、第1および第2真空ポンプは、それぞれ、ケーシングと当該ケーシング内のロータとを有するルーツポンプであり、単一のモータによって第1真空ポンプのロータと第2真空ポンプのロータとが連動して回転駆動されるように構成されている。このような構成は、本二連型真空ポンプ装置の所要動力を低減するうえで好適である。
 好ましくは、前記バイパスラインは、当該バイパスラインに流入するガスの気流振動を抑制するためのバッファー管を前記第1端部と前記開閉弁との間に備えている。
 好ましくは、前記バッファー管は、前記開閉弁が開状態である場合において、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量を超えているときに当該バッファー管を通過するガスのバッファー管内最小滞留時間が0.15秒以上となるように構成されている。
 好ましくは、前記バッファー管は、その内部を通過するガスの流路を局所的に狭めるための絞り部を有し、当該絞り部の開口率は20~46%である。
 好ましくは、前記バッファー管は、その内部を通過するガスの流路を局所的に狭めるための複数の絞り部を有し、当該複数の絞り部は、前記流路にて最も上流側に位置する第1の絞り部と最も下流側に位置する第2の絞り部とを含む。
 好ましくは、前記絞り部は、開口を有するオリフィス板、またはバッフル板である。
 好ましくは、前記絞り部は、開口を有するオリフィス板であり、前記開口の縁部の一部は、前記バッファー管の内壁面と面一となっている。
 好ましくは、前記バッファー管は、前記開閉弁が開状態である場合において、前記第1真空ポンプの前記排気口からの排出ガス量が前記第2真空ポンプの吸気容量を超えているときに当該バッファー管を通過するガスのバッファー管内最大流速が6~12m/秒となるように、構成されている。
 好適な実施形態によれば、前記バッファー管は、前記バイパスラインにおける前記第1端部の側の第1端壁と、前記第2端部の側の第2端壁と、当該第1および第2端壁の間を延びる周壁とを有し、前記バイパスラインは、前記周壁における前記第1端壁側の箇所にて前記バッファー管に接続された、当該バッファー管にガスを導入するための接続管部を有し、当該接続管部は、前記周壁の延び方向に交差する方向に延びる。
 別の好適な実施形態によれば、前記バッファー管は、前記バイパスラインにおける前記第1端部の側の第1端壁と、前記第2端部の側の第2端壁と、当該第1および第2端壁の間を延びる周壁とを有し、前記バイパスラインは、前記第1端壁にて前記バッファー管に接続された、当該バッファー管にガスを導入するための接続管部を有し、当該接続管部は、前記バッファー管に導入される前のガスの流れを曲げるための屈曲構造を有する。
 本発明の第2の側面によるとガス精製システムが提供される。このガス精製システムは、圧力変動吸着法(PSA法)を利用してガスを精製するための、吸着剤が内部に充填された吸着塔と、当該吸着塔の内部を減圧するための、本発明の第1の側面に係る二連型真空ポンプ装置と、を備える。
 本発明の第3の側面によると、吸気口および排気口を有する容積式の第1真空ポンプと、吸気口および排気口を有するとともに、前記第1真空ポンプの排気容量よりも小さな排気容量を有する第2真空ポンプと、前記第1真空ポンプの前記排気口および前記第2真空ポンプの前記吸気口の間を連結する連結ラインと、前記連結ラインに接続された第1端部およびガスを外部に導出するための第2端部を有するバイパスラインと、前記バイパスラインにおける前記第1端部および前記第2端部の間に配置された開閉弁と、を備える二連型真空ポンプ装置において、前記バイパスライン内に設けるための排ガス振動抑制装置が提供される。この排ガス振動抑制装置は、前記第1端部と前記開閉弁との間に、前記バイパスラインに流入するガスの気流振動を抑制するためのバッファー管を備えている。
本発明の実施形態に係るガス精製システムの概略構成図である。 図1の線II-IIに沿ったルーツポンプの断面図である。 図1に示すバッファー管およびその近傍の拡大一部断面図である。 図3の線IV-IVに沿った断面図である。 図1に示すガス精製システムの変形例の概略構成図である。 図1のガス精製システムによって実行することが可能なガス精製方法における1サイクル(ステップ1~4)を表す工程表である。 ガス温度が変化したときの減圧再生時間と吸気口圧力との関係グラフである。 二連型真空ポンプ装置の吸気口圧力と見掛け排気量および最適な所要動力との関係示すグラフである。 バイパスラインにおける開閉弁の変形例を示す図である。 バッファー管の第1変形例およびその近傍の一部断面模式図である。 バッファー管の第2変形例およびその近傍の一部断面模式図である。 図11の線XII-XIIに沿った断面図である。 バッファー管の第3変形例およびその近傍の一部断面模式図である。 二連型真空ポンプ装置の吸気口圧力と見掛け排気量およびバイパスラインの開閉弁を早いタイミングで閉じた場合の所要動力との関係を示すグラフである。 二連型真空ポンプ装置の吸気口圧力と見掛け排気量およびバイパスラインの開閉弁を遅いタイミングで閉じた場合の所要動力との関係を示すグラフである。 実施例3~16に関する測定結果をまとめた表である。 比較例3に係るガス精製システムの概略構成図である。 実施例3~16および比較例3に関する測定結果を表すグラフである。 実施例17~22に関する測定結果をまとめた表である。 実施例17~22に関する測定結果を表すグラフである。
 図1は、本発明の実施形態に係るガス精製システムX1の概略構成を表す。ガス精製システムX1は、PSA装置Y1と、二連型真空ポンプ装置Y2と、消音器Y3とを備える。
 PSA装置Y1は、吸着塔10A,10Bと、原料ブロワ21と、タンク22と、配管31~34とを備え、混合ガスたる原料ガスから圧力変動吸着法(PSA法)を利用して不純物を吸着除去して目的ガス成分を濃縮分離するように構成されている。精製対象たる目的ガス成分は、本実施形態では、空気中の酸素である。この場合、主な不純物は窒素である。
 吸着塔10A,10Bのそれぞれは、両端にガス通過口11,12を有し、ガス通過口11,12の間において、原料ガス中の不純物を選択的に吸着するための吸着剤が充填されている。本実施形態では、吸着剤として、主な不純物たる窒素を選択的に吸着するためのゼオライト系吸着剤が採用される。しかしながら、吸着剤として分子篩炭素を用いる場合には、空気中の酸素を不純物として吸着して、窒素を目的ガス成分として回収することもできる。また、原料ガスの組成と吸着剤の組合せを選択することにより、二酸化炭素、一酸化炭素、水素、メタンなどを目的ガス成分として回収することも可能である。
 原料ブロワ21は、本実施形態では空気ブロワであり、原料ガスとして吸引した空気を吸着塔10A,10Bに向けて供給ないし送出するためのものである。タンク22は、精製されたガス(本実施形態では酸素)を一旦貯留するためのものである。
 配管31は、主幹路31’および分枝路31A,31Bを有する。主幹路31’は、端部E1を有する。端部E1は、原料ブロワ21のガス送出口に接続されている。分枝路31A,31Bは、それぞれ、吸着塔10A,10Bのガス通過口11側に連結されている。また、分枝路31A,31Bには、開状態と閉状態との間を切り替わることが可能な自動弁31a,31bが付設されている。
 配管32は、主幹路32’および分枝路32A,32Bを有する。主幹路32’は、端部E2を有する。端部E2は、タンク22に接続されている。分枝路32A,32Bは、それぞれ、吸着塔10A,10Bのガス通過口12側に連結されている。また、分枝路32A,32Bには、開状態と閉状態との間を切り替わることが可能な自動弁32a,32bが付設されている。
 配管33は、主幹路33’および分枝路33A,33Bを有する。主幹路33’は、端部E3を有する。端部E3は、二連型真空ポンプ装置Y2に対して接続されている。分枝路33A,33Bは、それぞれ、吸着塔10A,10Bのガス通過口11側に連結されている。また、分枝路33A,33Bには、開状態と閉状態との間を切り替わることが可能な自動弁33a,33bが付設されている。主幹路33'の端部E3の近傍には、圧力検出器80が設置されており、当該圧力検出器80は真空ポンプ40Aの吸気口41の圧力を常時検出する。この圧力検出器80で検出される圧力値(入口圧力値)を監視することにより、真空ポンプ40Aの排気口42につながる連結ライン52内の圧力(出口圧力値)を間接的に予測し、この入口圧力値が所定の閾値(設定圧力値)になったとき、開閉弁61が開閉するように信号を発信する。この入口圧力値の所定の閾値は、例えば上記出口圧力値(連結ライン52内の圧力)が大気圧になる値に設定される。
 配管34は、配管32の分枝路32A,32Bを架橋するように設けられている。具体的には、配管34は、分枝路32Aにおける自動弁32aと吸着塔10Aとの間に連結され、且つ、分枝路32Bにおける自動弁32bと吸着塔10Bとの間に連結されている。また、配管34には、開状態と閉状態との間を切り替わることが可能な自動弁34aが付設されている。
 二連型真空ポンプ装置Y2は、二つの真空ポンプ40A,40Bと、モータ51と、連結ライン52と、配管53と、バイパスライン60とを備え、真空ポンプ40A,40Bの稼動によって上述のPSA装置Y1の吸着塔10A,10Bの内部を減圧し得るように構成されている。
 真空ポンプ40Aは、容積式の真空ポンプであり、本実施形態ではルーツポンプである。真空ポンプ40Bも、本実施形態ではルーツポンプである。真空ポンプ40Bの排気容量(単位時間に排気できるガスの最大量をいい、「吸気容量」と同じ)は、真空ポンプ40Aの排気容量より小さい。真空ポンプ40A,40Bは、それぞれ、吸気口41および排気口42を有する。上述のPSA装置Y1における配管33の端部E3は、真空ポンプ40Aの吸気口41に接続されている。
 ルーツポンプは、例えば、図2に示すように、ケーシング40aと、当該ケーシング40a内の二個の例えばマユ型のロータ40bとを有する。二個のロータ40bは、互いに反対方向に同期回転するように構成されている。このようなルーツポンプの駆動時には、吸気口41からケーシング40a内に入った気体は、ケーシング40aとロータ40b間の空間に閉じ込められ、ロータ40bの回転で排気口42の側に排出される。また、本実施形態では、いわゆるシール水を真空ポンプ40A,40Bの各ケーシング40a内に供給するためのシール水供給手段(図示略)が、二連型真空ポンプ装置Y2に設けられている。シール水により、ケーシング40aとロータ40bの間に形成される空間について高い気密性を実現することができる。
 モータ51は、真空ポンプ40A,40Bを稼動させるためのものである。二連型真空ポンプ装置Y2においては、単一のモータ51によって真空ポンプ40Aのロータと真空ポンプ40Bのロータとが連動して回転駆動されるように構成されている。具体的には、単一のモータ51によって真空ポンプ40Aのロータと真空ポンプ40Bのロータとが連動して回転駆動されるように、モータ51と真空ポンプ40A,40Bの間は、軸部品やギア部品等を介して機械的に連結されている。
 連結ライン52は、真空ポンプ40Aの排気口42と真空ポンプ40Bの吸気口41との間を連結する。配管53は、端部E4,E5を有する。配管53の端部E4は、真空ポンプ40Bの排気口42に接続されている。配管53のもう一方の端部E5は、消音器Y3に接続されている。
 バイパスライン60は、ライン入口たる端部E6およびライン出口たる端部E7を有し、且つ、開閉弁61およびバッファー管Z1をライン内に有する。端部E6は、真空ポンプ40A,40B間の連結ライン52に接続されている。端部E7は、配管53に接続されている。開閉弁61は、バイパスライン60におけるバッファー管Z1と端部E5の間に位置し、本実施形態では、圧力検出器80の圧力設定値に到達した時点で開閉される。二連型真空ポンプ装置Y2の稼動時には、開閉弁61が開状態とされてバイパスライン60をガスが通流可能とされる期間がある。開閉弁61は、真空ポンプ40Aの排気口42からの排気量(単位時間当たりに実際に排気されるガス量)が漸減して真空ポンプ40Bの排気容量に一致するときの吸気口41の圧力(その圧力は予め行われる試験により特定される)を検知し、開状態から閉状態へと切り替えられるように、構成されている。上述したように、真空ポンプ40Bの排気容量は、真空ポンプ40Aの排気容量より小さく設計されているため、このような制御が必要となる。
 バッファー管Z1は、図1または図3に示すように、バイパスライン60の一部を構成し、バイパスライン60の端部E6側の端壁71と、端部E7側の端壁72と、端壁71,72間を延びる周壁73と、オリフィス板74とを備える。本実施形態では、周壁73は円筒形状を有する。周壁73における端壁71側の箇所にガス入口73aが設けられ、且つ、端壁72にガス出口72aが設けられている。好ましくは、周壁73は水平方向Hに延びる。周壁73(すなわち、バッファー管Z1)の延び方向における長さは、例えば1m以上である。また、バイパスライン60は、周壁73に設けられたガス入口73aにてバッファー管Z1に接続された接続管部62を有する。この接続管部62は、バイパスライン60の一部を構成し、バッファー管Z1が上流側直前に位置し、バッファー管Z1へ導入される直前のガスの流路を規定する。本実施形態では、接続管部62は、周壁73の延び方向(水平方向H)に交差する方向に延びる。好ましくは、接続管部62は、周壁73の延び方向に直交する方向に延びる。より好ましくは、接続管部62は、鉛直方向Vに延び且つ鉛直方向Vにおける下側からバッファー管Z1の周壁73に接続している。
 オリフィス板74は、バッファー管Z1の内部を通過するガスの流路を局所的に狭めるための絞り部であり、図3および図4に示されるように開口74aを有する。オリフィス板74(絞り部)における開口率は、好ましくは20~46%であり、より好ましくは29~39%である。開口74aは、バッファー管Z1の周壁73の内面73’と面一の縁端74a’を有する。すなわち、円筒形状のバッファー管Z1の回転対称軸心と開口74aの中心とは位置ずれしており、周壁73の内面73’と開口74aの縁部の最下端74a’とが面一となっている。
 二連型真空ポンプ装置Y2の稼動時には、開閉弁61が開状態とされてバイパスライン60をガスが通流可能とされる期間がある。バッファー管Z1は、バイパスライン60の開閉弁61が開状態である場合において、真空ポンプ40Aの排気口42からの排気量が真空ポンプ40Bの排気容量(吸気容量に同じ)を超えているときに当該バッファー管Z1を通過するガスのバッファー管内最小滞留時間が0.15秒以上となるように、構成されている。上述のように、真空ポンプ40Bの排気容量が、真空ポンプ40Aの排気容量より小さいことからこのような状態が生じる。また、好ましくは、バッファー管Z1は、二連型真空ポンプ装置Y2の稼動時にバイパスライン60の開閉弁61が開状態である場合において、真空ポンプ40Aの排気口42からの排気量が真空ポンプ40Bの排気容量を超えているときに当該バッファー管Z1を通過するガスのバッファー管内最大流速が6~12m/秒となるようにも構成されている。
 消音器Y3は、本ガス精製システムX1から排気されるガスの当該排気に際して放射される騒音を小さくするための装置である。従って、騒音が問題にならないのであれば、消音器Y3は省略して、配管53及びバイパスライン60を直接大気中に開放してもよい。また、図1の実施形態では、バイパスライン60は配管53に合流させた上で同一の消音器Y3に接続しているが、図5に示すように、配管53とバイパスライン60とをそれぞれ別の消音器Y3、Y3’に接続するようにしてもよい。
 以上のような構成を有するガス精製システムX1(PSA装置Y1および二連型真空ポンプ装置Y2を含む)を使用して、原料ガス(本実施形態では空気)から目的ガス(本実施形態では酸素)を精製することができる。具体的には、PSA装置Y1および二連型真空ポンプ装置Y2の稼動時において、PSA装置Y1における自動弁31a,31b,32a,32b,33a,33b,34aを所定のタイミングで開閉状態を切り替えることによって、システム内にて所望のガスの流れ状態を実現して、PSA装置Y1の吸着塔10A,10Bにて以下のステップ1~4からなる1サイクルを繰り返し、精製酸素ガスを取得することができる。1サイクル(ステップ1~4)においては、図6に示すように、吸着塔10A,10Bのそれぞれにて、吸着工程、減圧再生工程、および復圧工程が行われる。
 ステップ1では、吸着塔10Aにて吸着工程が行われ、且つ、吸着塔10Bにて減圧再生工程が行われる。ステップ1にて吸着工程が行われる吸着塔10Aは、後述のステップ4(吸着塔10Aでは復圧工程が行われる)を経て塔内が相対的に高圧(例えば、大気圧より若干高い約40kPaG:Gはゲージ圧を示し、以下も同じ)の状態にある。そして、ステップ1では、このような吸着塔10Aのガス通過口11側に、原料ブロワ21から、配管31における主幹路31’および分枝路31Aを介して、空気が導入され続け、当該空気中の主に窒素が吸着塔10A内の吸着剤に吸着され、且つ、酸素が富化された精製酸素ガスが吸着塔10Aのガス通過口12側から導出され続ける。精製酸素ガスは、配管32の分枝路32Aおよび主幹路32’を介してタンク22へと導かれて当該タンク22に貯留される。この精製酸素ガスについては、タンク22から所定の装置やプラントに供給し続けてもよい。
 これとともに、ステップ1では、後述のステップ3~4(吸着塔10Bでは吸着工程が行われる)を経た吸着塔10Bにおいて、二連型真空ポンプ装置Y2によって内部が減圧される。具体的には、吸着塔10Bのガス通過口11側と二連型真空ポンプ装置Y2の真空ポンプ40Aの吸気口41側とが配管33を介して連通した状態とされたうえで、二連型真空ポンプ装置Y2によって吸着塔10Bの内部が減圧される。これにより、吸着塔10B内の吸着剤から主に窒素が脱着されて塔外に導出され、当該窒素(オフガス)は、吸着塔10Bのガス通過口11側から配管33における分枝路33Bおよび主幹路33’を介して二連型真空ポンプ装置Y2へと導かれる。吸着塔10B内の吸着剤から窒素が脱着することにより、当該吸着剤は再生されることとなる。このような減圧再生工程の開始時における吸着塔10Bの内部圧力は、例えば約40kPaGである。また、減圧再生工程の終了時における吸着塔10Bの最終到達内部圧力は、ガス温度によって変化するが、例えば、-66~-72kPaGである。
 ステップ2では、吸着塔10Aにてステップ1から引き続き吸着工程が行われ、且つ、吸着塔10Bにて復圧工程が行われる。ステップ2では、具体的には、ステップ1から引き続き、原料ブロワ21から吸着塔10Aのガス通過口11側に空気が供給され続け、吸着塔10Aのガス通過口12側から精製酸素ガスが導出され続ける。精製酸素ガスの一部は、タンク22に導入されて貯留される。精製ガスの他の一部は、配管34を介して吸着塔10Bのガス通過口12側に導かれる。ステップ2では、吸着塔10Bのガス通過口12側から精製酸素ガスが導入されることにより、吸着塔10Bの内部圧力が回復される。即ち、吸着塔10B内が相対的に高圧(例えば大気圧~約40kPaGの圧力)の状態に復帰させられる。
 ステップ3~4では、ステップ1~2で吸着塔10Aにおいて行われたのと同様に、吸着塔10Bにおいて吸着工程が行われる。したがって、ステップ1~2では、吸着塔10Bのガス通過口12側から精製酸素ガスが導出され続け、この精製酸素ガスは、タンク22に導入されて貯留される。これとともに、ステップ3~4では、ステップ1~2で吸着塔10Bにおいて行われたのと同様に、吸着塔10Aにおいて、減圧再生工程(ステップ3)および復圧工程(ステップ4)が行われる。ステップ3における吸着塔10Aの減圧再生工程では、吸着塔10Aのガス通過口11側と二連型真空ポンプ装置Y2の真空ポンプ40Aの吸気口41側とが配管33を介して連通した状態とされたうえで、二連型真空ポンプ装置Y2によって吸着塔10Aの内部が減圧され、これにより、吸着塔10A内の吸着剤から主に窒素が脱着されて塔外に導出され、当該窒素(オフガス)は、吸着塔10Aのガス通過口11側から配管33における分枝路33Aおよび主幹路33’を介して二連型真空ポンプ装置Y2へと導かれる。吸着塔10A内の吸着剤から窒素が脱着することにより、当該吸着剤は再生されることとなる。
 以上のようにして、ガス精製システムX1からは、空気を原料として精製酸素ガスを取得し続けることができる。このようなガス精製システムX1において、二連型真空ポンプ装置Y2については、具体的には以下のように稼動させる。
 上述のステップ1(吸着塔10Bでは減圧再生工程が行われている)においては、PSA装置Y1の吸着塔10Bのガス通過口11側と、二連型真空ポンプ装置Y2の真空ポンプ40Aの吸気口41側とが、配管33を介して連通している状態にあり、モータ51によって真空ポンプ40A,40B(連結ライン52を介して直列に接続されている)が駆動されて、吸着塔10Bの内部が減圧される。二連型真空ポンプ装置Y2におけるバイパスライン60の開閉弁61は、このステップ1(減圧再生工程)の開始時においては吸気口41の近傍における配管33の内部圧力は大気圧より若干高い圧力にあり(吸着塔Bにおける吸着圧力が例えば40kPaGであるため)、連結ライン52(真空ポンプ40Aによる加圧を受ける側)の内部も大気圧以上となっている。そのため、PSA装置Y1の吸着塔10Bにおける減圧再生工程の開始直後には、吸着塔10Bからのオフガスは、二連型真空ポンプ装置Y2における真空ポンプ40Aを通過した後、一部が真空ポンプ40Bを通過し、一部がバイパスライン60を通過し、消音器Y3を通じて外部へ排出される。
 また、ステップ1にある吸着塔10B(減圧再生工程が行われている)からのオフガスを吸引し続ける真空ポンプ40Aからの排気量は、吸着塔10Bと連結されている真空ポンプ40Aの吸気口41の側の圧力(即ち、二連型真空ポンプ装置Y2の入口圧力)に応じて変化する。具体的には、当該減圧再生工程が進行するほど、吸着塔10Bの内部圧力は小さくなり(従って、真空ポンプ40Aの吸気口41側圧力も小さくなり)、それに応じて真空ポンプ40Aからの排気量は減少していく。
 ステップ1にある吸着塔10Bからのオフガスを吸引し続ける真空ポンプ40Aからのこのような排気量のうち、真空ポンプ40Bの排気量を超える流量のガスは、真空ポンプ40Bにとっての過剰ガスである(上述のように、真空ポンプ40Bの排気容量は、真空ポンプ40Aの排気容量より小さい)。真空ポンプ40Bにとっての過剰ガスは、吸着塔10Bの減圧再生工程(ステップ1)の開始時からある期間だけ存在する。減圧再生工程にて吸着塔10Bの内部圧力が小さくなると、真空ポンプ40Aの吸気口41側圧力も同様に小さくなる。それに応じて真空ポンプ40Aからの排気量は真空ポンプ40Bの排気容量(吸気容量に同じ)に一致するまで減少し、この一致後は、開閉弁61が閉状態となるので、真空ポンプ40Bからの排気量は、真空ポンプ40Bの排気量に一致したまま減少し続ける。減圧再生工程における真空ポンプ40Aの吸気口41側の圧力変化は、ガス温度によって図7に示されるようになる。すなわち、ガス温度が高くなると吸着剤のガス吸着量が減少するため、第1真空ポンプ40Aの吸気口41(二連型真空ポンプ装置Y2の入口)圧力は減圧再生時間の中で早く降下し、ガス温度が低くなると吸着剤のガス吸着量が増加するため、この圧力の降下は遅くなる。
 一方、二連型真空ポンプ装置Y2の排気量特性として、図8に吸気口圧力と見掛け排気量(標準状態に換算しない排気量をいい、標準状態に換算した排気量をいう場合には、標準状態を表す“N”の表示を付加する)、および所要動力の最適な関係を示した。この関係はガス温度には影響を受けず、第1真空ポンプ40Aと第2真空ポンプ40Bの連結ライン52内の圧力が大気圧となる点は吸気口41での圧力がほぼ-42kPaG付近で移動せず、排気ガスの温度が変わり吸着剤の吸着ガス量が変化しても変わることはない。従って、気流振動のない吸気口41側近傍に圧力検出器80を設置し、予め第1真空ポンプ40Aと第2真空ポンプ40Bの連結ライン52内の圧力が大気圧以上となったり大気圧以下となったりするときの変化点に達するときの、入口圧力値(例えば-42kPaG)を設定しておけば第1真空ポンプ40Aと第2真空ポンプ40Bを常に無駄のない組み合わせで運転し、二連型真空ポンプ装置Y2として最小の所要動力運転を行うことができる。
 二連型真空ポンプ装置Y2においては、吸着塔10Bの減圧再生工程の開始時から過剰ガスの存在する期間中(即ち、真空ポンプ40Aからの排気量が真空ポンプ40Bの排気容量を超えているとき)には、吸気口41側の圧力が圧力検出器80の圧力設定値(例えば、-42kPaG)より高いことを検出し、バイパスライン60の開閉弁61を開状態として、当該過剰ガスが連結ライン52からバイパスライン60に流入するようにガス流れを制御する。また、この圧力が圧力検出器80の上記圧力設定値となったとき、即ち、真空ポンプ40Aからの排気量が漸減して真空ポンプ40Bの排気容量に等しくなったとき、バイパスライン60の開閉弁61を閉状態として両真空ポンプ40A,40Bを完全直列状態とする。
 吸着塔10Bの減圧再生工程の開始時から過剰ガスが生じている期間中にあっては、当該過剰ガスは、連結ライン52からバイパスライン60に流入した後、バイパスライン60内において、バッファー管Z1を通過し、続いて開閉弁61を通過し、その後に端部E7とE5を介して消音器Y3(または図5の別個の消音器Y3’)に導入され、当該過剰ガスは消音器Y3を介してガス精製システムX1外に排気される。これとともに、過剰ガスが生じている状態にあっては、連結ライン52を介して真空ポンプ40Aと連結されている真空ポンプ40Bの排気口42からもガスが排出される。但し、この場合は、実質的な減圧の仕事は前段の真空ポンプ40Aのみにて行われており、後段の真空ポンプ40Bは減圧に実質的に関与していない。真空ポンプ40Bの排気口42は、配管53を介して消音器Y3に接続されているので、真空ポンプ40Bを通過したガスは消音器Y3を介してガス精製システムX1外に排気される。
 一方、吸着塔10Bの減圧再生工程において過剰ガスが生じていない状態にあっては、完全直列状態にある真空ポンプ40A,40Bが協働して減圧対象容器たる吸着塔10Bの内部を減圧し、真空ポンプ40Bから所定量のガスが排出される。この排出ガスは、配管53を介して消音器Y3に導入され、ガス精製システムX1外に排気される。このとき、バイパスライン60の開閉弁61は閉状態にあるため、バイパスライン60を通過するガスはない。
 上述のステップ1における吸着塔10Bについての減圧再生工程は、以上のように二連型真空ポンプ装置Y2を減圧稼動させることにより、実行する。上述のステップ3における吸着塔10Aについての減圧再生工程も、吸着塔10Bの減圧再生工程に関して上述したのと同様にして二連型真空ポンプ装置Y2を減圧稼動させることにより、実行する。
 二連型真空ポンプ装置Y2の減圧稼動時には、上述のように、減圧開始時に開状態にある開閉弁61は、真空ポンプ40Aからの排気量が漸減して真空ポンプ40Bの排気容量に一致したときに開状態から閉状態へと吸気口41側の圧力を圧力検出器80にて検出して切り替えられる。このような構成は、減圧再生工程の後半において真空ポンプ40Aと真空ポンプ40Bが直列に作動し二連型真空ポンプ装置Y2を効率よく稼動させるのに資する。しかも、二連型真空ポンプ装置Y2の所要動力を最小化できる圧力検出器80の設定値は温度変化の影響を殆ど受けないから、減圧開始時からの経過時間を予め設定して開閉弁61の開閉制御を行う場合と比較して、温度変化による所要動力増加の問題は生じない。
 また、二連型真空ポンプ装置Y2においては、上述のように、単一のモータ51によって真空ポンプ40Aのロータ40bと真空ポンプ40Bのロータ40bとが連動して回転駆動されるように構成されている。このような構成は、二連型真空ポンプ装置Y2の所要動力を低減するうえで好適である。
 次に、バッファー管Z1の作用について詳細に説明する。上述したように、二連型真空ポンプ装置Y2においては、真空ポンプ40Aからの排気量は、吸着塔10Aまたは吸着塔10Bと連結される真空ポンプ40Aの吸気口41の側の圧力に応じて変化し、吸気口41側圧力が小さいほど排気量は小さい。したがって、排気量が最大値となるのは、減圧再生工程開始時であり、過剰ガス(真空ポンプ40Aからの排気量のうち、真空ポンプ40Bの排気容量を超えるガス量部分)が生じている状態にあっては(過剰ガスが生じているときにはバイパスライン60の開閉弁61は開状態にある)、過剰ガス量(流量)が最大値をとるのも減圧開始時である。また、過剰ガスが連結ライン52からバイパスライン60に流入する速度も、この減圧開始時に最大となる。バイパスライン60内にてバッファー管Z1を通過する過剰ガスがバッファー管Z1内に滞留する時間については、連結ライン52からバイパスライン60に流入する速度が最大となる減圧開始時に過剰ガスがバッファー管Z1を通過するときに最も短い。減圧開始時に過剰ガスがバッファー管Z1を通過するのに要する時間を、バッファー管内最小滞留時間とする。二連型真空ポンプ装置Y2においては、このバッファー管内最小滞留時間が0.15秒以上となるように、バッファー管Z1は構成されている。
 減圧稼動中の真空ポンプ40Aから排出されるガスにおいては比較的に大きな気流振動が生じる。二連型真空ポンプ装置Y2において過剰ガスが生じている状態にあっては、連結ライン52からバイパスライン60に流入する過剰ガスにも比較的に大きな気流振動が生じている。二連型真空ポンプ装置Y2のバイパスライン60からバッファー管Z1を除いた場合、そのような過剰ガスの気流振動に起因して、当該バイパスライン60の開閉弁61のシャフト61aの機械的劣化が助長される。これは、気流振動を伴ってバイパスライン60内を流れるガスに曝され続けるシャフト61aは、当該ガスから振動エネルギーを付与され続けて不当に振動し続けるからである。シャフト61aのこのような振動は、シャフト61aを構成する材料組織の局所的破壊を誘発し、ひいては、シャフト61aの機械的強度の劣化を促進するのである。真空ポンプ40Aのポンプ機構内にシール水を供給しつつ当該関連ポンプ装置を稼動する場合には、シャフト61aの機械的強度の劣化は一層顕著となる。過剰ガスの気流振動に起因するシャフト61aの振動の程度は、振動加速度で約13G以上に達することがある。
 これに対し、本実施形態に係る二連型真空ポンプ装置Y2においては、バイパスライン60にバッファー管Z1が設けられ且つバッファー管Z1について前記バッファー管内最小滞留時間が0.15秒以上となるように構成されていることにより、過剰ガスがバイパスライン60を通過する際にバッファー管Z1にて過剰ガスの気流振動が効率よく減衰される。したがって、二連型真空ポンプ装置Y2においては、バッファー管Z1より下流に位置する部材(特に開閉弁61のシャフト61a)の機械的強度の劣化は、充分に抑制される。
 二連型真空ポンプ装置Y2においては、図9に示すように、バイパスライン60は、開閉弁61に代えて逆止弁機能を有する開閉弁61’を備えてもよい。開閉弁61’は、バイパスライン60において開閉弁61’よりもバッファー管Z1の側の圧力が端部E7の側の圧力よりも高いときに開状態をとり、且つ、バッファー管Z1の側の圧力が端部E7の側の圧力以下になったときに閉状態をとるように構成されている。このような逆止弁機能を有する開閉弁61’は、二連型真空ポンプ装置Y2の減圧稼動時にて、減圧開始直後には開状態にあり、真空ポンプ40Aからの排気量が漸減して真空ポンプ40Bの排気容量に一致したとき(その時の連結ライン52内の圧力はほぼ大気圧になっている)に開状態から閉状態へと自動的に切り替わる。このような構成は、真空ポンプ40Bの稼動ロスを低減して二連型真空ポンプ装置Y2を効率よく稼動させるのに資する。
 上述したように、バッファー管Z1は、その内部を通過するガスの流路を局所的に狭めるための絞り部としてオリフィス板74を有し、且つ、このオリフィス板74の開口率は、好ましくは20~46%であり、より好ましくは29~39%である。このような構成は、バッファー管Z1を通過する前記の過剰ガスの気流振動を効率よく減衰させるのに役立つ。また、オリフィス板74は、絞り部として、その開口率を精度よく調節するうえで好適である。
 上述したように、開口74aの縁部の最下端74a’は、バッファー管Z1の内壁面73’と面一になっている。このような構成により、バッファー管Z1を通過する過剰ガスに含まれる水滴(上述のシール水に由来する)がバッファー管Z1を通過しやすくなる。
 バッファー管Z1においては、オリフィス板74を設けずに、バッファー管Z1の長さおよび/または内径を適宜設定することにより、前記のバッファー管内最小滞留時間を0.15秒以上となるように構成してもよい。
 上述したように、バッファー管Z1は、二連型真空ポンプ装置Y2の減圧稼動時にバイパスライン60の開閉弁61(または61’)が開状態である場合において、真空ポンプ40Aの排気口42からの排気量が真空ポンプ40Bの排気容量(吸気容量)を超えているときに当該バッファー管Z1を通過するガスのバッファー管内最大流速が6~12m/秒となるように、構成されている。バイパスライン60内にて過剰ガスがバッファー管Z1を通過する際の流速は、連結ライン52からバイパスライン60に流入する速度が最大となる減圧開始時に最も大きい。減圧開始時過剰ガスがバッファー管Z1を通過するときの当該流速を、バッファー管内最大流速とする。前記のバッファー管内最小滞留時間について0.15秒以上を実現しつつ、バイパスライン60の端部E7から効率よく過剰ガスを導出するうえでは、バッファー管内最大流速が6~12m/秒となるようにバッファー管Z1を構成するのが好ましいのである。
 上述したように、バイパスライン60は、バッファー管Z1の周壁73における端壁71側の箇所に設けられたガス入口73aにてバッファー管Z1に接続された、バッファー管Z1にガスを導入するための接続管部62を有する。そして、接続管部62は、周壁73の延び方向(図3の水平方向H)に対し、交差する方向に延び、好ましくは直交する方向(鉛直方向V)に延び、より好ましくは鉛直方向Vに延び且つ鉛直方向Vの下側から周壁73に接続している。このような構成は、前記のバッファー管内最小滞留時間について0.15秒以上を実現しつつ、バッファー管Z1の小型化を図るのに適する。
 図10は、第1変形例たるバッファー管Z1’およびその近傍の一部断面模式図である。バッファー管Z1’は、バイパスライン60における端部E6の側の端壁71と、端部E7の側の端壁72と、端壁71,72間を延びる周壁73と、複数のオリフィス板74とを備え、端壁71は円筒形状である。各オリフィス板74は、バッファー管Z1’の内部を通過するガスの流路を局所的に狭めるための絞り部であり、開口74aを有する。複数のオリフィス板74は、バッファー管Z1’内のガス流路に沿って配列され、ガス流路にて最も上流側に位置するオリフィス板74’と、最も下流側に位置するオリフィス板74”とを含む。このような構成のバッファー管Z1’は、複数のオリフィス板74によって過剰ガスの気流振動を段階的に減衰させるので、気流振動の減衰効果が高まる。
 図11および図12は、第2変形例たるバッファー管Z1”を表す。バッファー管Z1”は、バイパスライン60における端部E6の側の端壁71と、端部E7の側の端壁72と、端壁71,72間を延びる周壁73と、バッフル板75とを備え、周壁73は円筒形状である。バッフル板75は、バッファー管Z1”の内部を通過するガスの流路を局所的に狭めるための絞り部である。バッフル板75における開口率は、好ましくは20~46%であり、より好ましくは29~39%である。バッフル板75の開口率とは、バッファー管Z1”の横断面積に対する、バッフル板75にて占有されていないガス流路の横断面積の比率をいう。このような構成のバッファー管Z1”は、バッフル板75は、絞り部として機能し、過剰ガスの気流振動を効率よく減衰させる。また、バッフル板75は、その開口率を調節するのがオリフィス板よりも容易である。
 バッファー管Z1”は、複数のバッフル板75を備えてもよい。この場合、複数のバッフル板75は、ガス流路に沿って適宜の間隔をあけて配設され、当該ガス流路にて最も上流側に位置する第1のバッフル板と、最も下流側に位置する第2のバッフル板とを含む。このような構成のバッファー管は、複数のバッフル板75によって過剰ガスの気流振動を段階的に減衰させるので、気流振動の減衰効果が高まる。
 図13および図14は、第3変形例たるバッファー管Z2を表す。バッファー管Z2は、バイパスライン60’における端部E6の側の端壁71と、端部E7の側の端壁72と、端壁71,72間を延びる周壁73と、オリフィス板74とを備え、周壁73は円筒形状である。端壁71にガス入口71aが設けられ、且つ、端壁72にガス出口72aが設けられている。バッファー管Z2は、ガス入口が周壁73にではなく端壁71に設けられている点において、図3に示したバッファー管Z1と異なるが、その他の構成については、図3に示したバッファー管Z1の構成と同様である。
 一方、バイパスライン60’の接続管部62’は、端壁71に設けられたガス入口71aにてバッファー管Z2に接続されている。接続管部62’は、バイパスライン60’において、バッファー管Z2に対して上流側の直前に位置し、バッファー管Z2へ導入される直前のガスの流路を規定する。また、接続管部62’は、バッファー管Z2に導入される直前のガスの流れを曲げるための屈曲構造を有する。好ましくは、接続管部62’は、バッファー管Z2に導入される直前のガス流れを90度曲げるための屈曲構造を有する。より好ましくは、接続管部62’は、鉛直方向Vにおける下側からガスを導いてバッファー管Z2に導入するように配設されている。
 以上において本発明の実施形態および種々な変形例を説明したが、これらは相互に組み合わせることができる。例えば、図13に示したバッファー管Z2に図9に示した逆止弁機能を有する開閉弁61’を組み合わせてもよい。また、図13に示したバッファー管Z2において、図10に示したように複数のオリフィス板74を設けてもよいし、図11に示した一枚のバッフル板75(または複数のバッフル板75)を設けてもよい。さらに、図3に示したオリフィス板74と図11に示したバッフル板75とを組み合わせてもよい。
 次に本発明の実施例について、比較例とともに説明する。但し、比較例は本発明の効果を確認するために出願人が行った実験例であるにすぎず、公知技術に属するものではないことに留意すべきである。
 〔実施例1〕
 二連型真空ポンプ装置Y2の第1真空ポンプ40Aの排気容量を14,800m3/h、第2真空ポンプ40Bの排気容量を14,100m3/hのルーツポンプとして直列に接続し、ガス温度30℃のときに、図1に示すガス精製システムX1を使用して、図6に示す吸着工程、減圧再生工程、および復圧工程からなる1サイクル(ステップ1~4)を吸着塔10A,10Bのそれぞれにて繰り返すことにより、原料ガスたる空気から酸素を取得した。本実施例では、PSA装置Y1の原料ブロア21による空気の供給量は8,300Nm3/h(N:標準状態を表し、以下も同じ)とした。吸着工程にある吸着塔10A、10Bの内部圧力を最大40kPaGとした。また、減圧再生工程にある吸着塔10A、10Bの内部の減圧再生工程末期圧力は-69kPaGとなり、復圧工程にある吸着塔10A、10Bについては、その内部圧力を大気圧にまで復帰させた。また、吸着塔10A,10Bについての減圧再生工程は、吸気口41側の圧力が圧力検出器80で図8のような特性として、-42kPaGの圧力値に到達したときに開閉弁61が開状態から閉状態となるように設定した。
 本実施例において、二連型真空ポンプ装置Y2は、次のように減圧稼動させた。減圧再生工程の開始時から圧力検出器80の指示値がほぼ大気圧から-42kPaGの間、即ち真空ポンプ40Aからの排気量が真空ポンプ40Bの排気容量を超えているときには、バイパスライン60の開閉弁61に信号を発信して開状態として、当該過剰ガスが連結ライン52からバイパスライン60に流入するようにガス流れを制御した。そして、真空ポンプ40Aからの排気量が漸減して真空ポンプ40Bの排気容量に一致したとき、すなわち圧力検出器80が-42kPaGを示したとき、開閉弁61を開状態から閉状態へと切り替えて両真空ポンプ40A,40Bを完全直列状態としたうえで、二連型真空ポンプ装置Y2の減圧稼動を継続した。その結果、真空ポンプの積算平均所要動力は206kwとなった
 〔実施例2〕
 二連型真空ポンプ装置Y2の第1真空ポンプ40Aの排気容量を、14,800m3/h、第2真空ポンプ40Bの排気容量を14,100m3/hのルーツポンプとして直列に接続し、ガス温度40℃のときに、図1に示すガス精製システムX1を使用して、図6に示す吸着工程、減圧再生工程、および復圧工程からなる1サイクル(ステップ1~4)を吸着塔10A,10Bのそれぞれにて繰り返すことにより、原料ガスたる空気から酸素を取得した。また、PSA装置Y1の原料ブロア21による空気の供給量は8,300Nm3/hとし、吸着工程にある吸着塔10A、10Bの内部圧力を最大40kPaGとした。減圧再生工程にある吸着塔10A、10Bの内部の減圧再生工程末期圧力は-72kPaGまで降下した。復圧工程にある吸着塔10A、10Bについては、その内部圧力を大気圧にまで復帰させた。また、吸着塔10A,10Bについての減圧再生工程は、吸気口41側の圧力が圧力検出器80で図4のような特性として、-42kPaGの圧力値に到達したときに開閉弁61が開状態から閉状態となるように設定した。
 二連型真空ポンプ装置Y2については、実施例1と同様の操作を行い圧力検出器80が-42kPaGを示したとき、開閉弁61を開状態から閉状態へと切り替えて両真空ポンプ40A,40Bを完全直列状態としたうえで、二連型真空ポンプ装置Y2の減圧稼動を継続した。その結果、真空ポンプの積算平均所要動力は213kwとなった
 〔比較例1〕
 実施例1と同様に、二連型真空ポンプ装置Y2の第1真空ポンプ40Aの排気容量を14,800m3/hとし、第2真空ポンプ40Bの排気容量を14,100m3/hのルーツポンプにして直列に連結し、ガス温度30℃のときに、図1に示すガス精製システムX1を使用して、図6に示す吸着工程、減圧再生工程、および復圧工程からなる1サイクル(ステップ1~4)を吸着塔10A,10Bのそれぞれにて繰り返すことにより、原料ガスたる空気から酸素を取得した。本比較では、PSA装置Y1の原料ブロア21による空気の供給量は実施例1と同様に8,300Nm3/hとし、吸着工程にある吸着塔10A、10Bの内部圧力を最大40kPaGとした。また、吸着塔10A,10Bについての減圧再生工程では末期圧力は-69kPaGとなった。開閉弁61の開状態から閉状態への切り替えは図7のように減圧再生時間が7.5秒経過したときに開閉弁61が開状態から閉状態となるように設定した。そのときの吸気口41の圧力は-35kPaGを示していた。復圧工程にある吸着塔10A、10Bについては、その内部圧力を大気圧まで復帰させた。
 二連型真空ポンプ装置Y2は、次のように減圧稼動させた。吸気口41の圧力が減圧再生工程の開始時から7.5秒間、ほぼ大気圧から-35kPaGに至る間、バイパスライン60の開閉弁61を開状態として、その後、開閉弁61を強制的に開状態から閉状態へと切り替えて両真空ポンプ40A,40Bを完全直列状態とした上で、二連型真空ポンプ装置Y2の減圧稼動を継続した。その結果、真空ポンプ40A及び40Bの平均積算所要動力は216kwとなり、吸気口41側の圧力検出器80で制御しない場合より10kw増加した。
 なお、この比較例1に対応する吸気口圧力、見掛け排気量及び所要動力の関係を図14のグラフに示している。
 〔比較例2〕
 実施例2と同様に、二連型真空ポンプ装置Y2の第1真空ポンプ40Aの排気容量を14,800m3/hとし、第2真空ポンプ40Bの排気容量を14,100m3/hのルーツポンプにして直列に連結し、ガス温度40℃のときに、図1に示すガス精製システムX1を使用して、図6に示す吸着工程、減圧再生工程、および復圧工程からなる1サイクル(ステップ1~4)を吸着塔10A,10Bのそれぞれにて繰り返すことにより、原料ガスたる空気から酸素を取得した。本比較では、PSA装置Y1の原料ブロア21による空気の供給量は実施例2と同様に8,300Nm3/hとし、吸着工程にある吸着塔10A、10Bの内部圧力を最大40kPaGとした。また、吸着塔10A,10Bについての減圧再生工程では末期圧力は-72kPaGとなった。開閉弁61の開状態から閉状態への切り替えは図8のように減圧再生時間が15秒経過したときに開閉弁61が開状態から閉状態となるように設定した。そのときの吸気口41の圧力は-50kPaGを示していた。復圧工程にある吸着塔10A、10Bについては、その内部圧力を大気圧まで復帰させた。
 二連型真空ポンプ装置Y2は、次のように減圧稼動させた。吸気口41の圧力が減圧再生工程の開始時から15秒間、ほぼ大気圧から-50kPaGに至る間、バイパスライン60の開閉弁61を開状態として、その後、開閉弁61を強制的に開状態から閉状態へと切り替えて両真空ポンプ40A,40Bを完全直列状態としたうえで、二連型真空ポンプ装置Y2の減圧稼動を継続した。その結果、真空ポンプ40A及び40Bの平均積算所要動力は224kwとなり、吸気口41側の圧力検出器80で制御しない場合より11kw増加した。
 なお、この比較例2に対応する吸気口圧力、見掛け排気量及び所要動力の関係を図15のグラフに示している。
 〔実施例1~2および比較例1~2の評価〕
 以上説明した実施例1~2と比較例1~2に基づき、次のように評価することができる。すなわち、二連型真空ポンプ装置Y2における上流側の真空ポンプ40Aからの排気量が下流側の真空ポンプ40Bからの排気容量に一致するまで低下した時点(その時点では、連結ライン52の内部圧力はほぼ大気圧になる)で、開閉弁61を開状態から閉状態に切り替えるようにすると、二連型真空ポンプ装置Y2での消費動力は最小にすることができる。また、温度が変化した場合でも(実施例1の30℃と実施例2の40℃)、二連型真空ポンプ装置Y2における上流側の真空ポンプ40Aからの排気量が下流側の真空ポンプ40Bからの排気容量に一致するまで低下する時点における上流側真空ポンプ40Aの吸気口41での圧力はほぼ一定値(実施例1および2では-42kPaG)となる。したがって、上流側真空ポンプ40Aの吸気口41付近での圧力を測定して、開閉弁61を開閉制御すれば温度変化の影響を回避することができる。
 〔実施例3〕
 二連型真空ポンプ装置Y2のバッファー管Z1がオリフィス板74を有しないという点以外は、図1から図4に示すのと同様の構成を有するガス精製システムX1を使用して、図6に示す吸着工程、減圧再生工程、および復圧工程からなる1サイクル(ステップ1~4)を吸着塔10A,10Bのそれぞれにて繰り返すことにより、原料ガスたる空気から酸素を取得した。本実施例では、PSA装置Y1の原料ブロワ21による空気の供給量は、4,800Nm3/hとした。吸着工程にある吸着塔10A,10Bの内部圧力は大気圧とし、減圧再生工程にある吸着塔10A,10Bの内部の減圧再生工程末期圧力は-530mmHg(ゲージ圧:約-70kPaG)とし、復圧工程にある吸着塔10A,10Bについては、その内部圧力を大気圧にまで復帰させた。また、吸着塔10A,10Bについての減圧再生工程は、バッファー管Z1がオリフィス板74を有しないという点以外は上述したのと同様の構成を有する二連型真空ポンプ装置Y2を減圧稼動させることにより、実行した。真空ポンプ40Aとしては、排気容量10,000m3/hのルーツポンプを採用した。真空ポンプ40Bとしては、排気容量6,053m3/hのルーツポンプを採用した。バッファー管Z1(オリフィス板74を有しない)としては、延び方向の内寸法(長さ)が4.4mであり且つ内径が400mmであるものを採用した。
 二連型真空ポンプ装置Y2については、次のように減圧稼動させた。減圧再生工程の開始時から所定の期間であって過剰ガスのあるとき(即ち、真空ポンプ40Aからの排気量が真空ポンプ40Bの排気容量を超えているとき)には、バイパスライン60の開閉弁61を開状態として、当該過剰ガスが連結ライン52からバイパスライン60に流入するようにガス流れを制御した。そして、真空ポンプ40Aからの排気量が漸減して真空ポンプ40Bの排気容量に一致したときに開閉弁61を開状態から閉状態へと自動的に切り替えて両真空ポンプ40A,40Bを完全直列状態としたうえで、二連型真空ポンプ装置Y2の減圧稼動を継続した。
 二連型真空ポンプ装置Y2のバッファー管Z1について、減圧稼動時における過剰ガスの最小滞留時間(減圧開始直後において、過剰ガスがバッファー管Z1を通過するまでに要する時間)を測定したところ、0.50秒であった。また、開状態にある開閉弁61のシャフト61aにかかる振動加速度を測定したところ、その最大値は3.0Gであった。この振動加速度の測定には、振動計測器(リオン株式会社製 VM-61)を使用した。実施例3に関するこれら測定結果については、図16の表に掲げる。
 〔実施例4~9〕
 二連型真空ポンプ装置Y2におけるバッファー管Z1(オリフィス板74を有しない)の長さを4.4mに代えて3.6m(実施例4)、2.8m(実施例5)、2.1m(実施例6)、1.5m(実施例7)、1.3m(実施例8)、1.05m(実施例9)とした以外は実施例3と同様のガス精製システムX1を使用して、減圧再生工程にて二連型真空ポンプ装置Y2を減圧稼動させつつ、吸着工程、減圧再生工程、および復圧工程からなる1サイクルを吸着塔10A,10Bのそれぞれにて繰り返すことによって原料ガスたる空気から酸素を取得した。
 実施例4~9における二連型真空ポンプ装置Y2のバッファー管Z1について、二連型真空ポンプ装置Y2の減圧稼動時におけるバッファー管内最小滞留時間を測定したところ、0.41秒(実施例4)、0.32秒(実施例5)、0.24秒(実施例6)、0.17秒(実施例7)、0.15秒(実施例8)、および0.12秒(実施例9)であった。また、実施例4~9の二連型真空ポンプ装置Y2の減圧稼動時に開状態にある開閉弁61のシャフト61aにかかる振動加速度を測定したところ、その最大値は3.1G(実施例4)、3.1G(実施例5)、3.2G(実施例6)、4.5G(実施例7)、5.5G(実施例8)、7.0G(実施例9)であった。実施例4~9に関するこれら測定結果については、図16の表に掲げる。
 〔比較例3〕
 図17に示すガス精製システムX3を使用して、図6に示す吸着工程、減圧再生工程、および復圧工程からなる1サイクル(ステップ1~4)を吸着塔10A,10Bのそれぞれにて繰り返すことにより、原料ガスたる空気から酸素を取得した。比較例3で使用したガス精製システムX3は、バッファー管Z1を備えない点以外は、例えば実施例3で使用したガス精製システムX1と同様の構成を有する。比較例3では、吸着塔10A,10Bについての減圧再生工程は、バッファー管を通過させないこと以外は実施例3と同様に、真空ポンプ40A,40Bを減圧稼動させることにより(減圧再生工程途中でバイパスライン60の開閉弁61について開状態から閉状態へと切り替える)、実行した。比較例3の真空ポンプ40A,40Bの減圧稼動時に開状態にある開閉弁61のシャフト61aにかかる振動加速度を測定したところ、その最大値は13.5Gであった。
 以上の実施例3~9および比較例3に関する測定結果については、図18のグラフにて破線上に示す。図18のグラフでは、横軸はバッファー管内最小滞留時間(秒)を表し、縦軸は開閉弁シャフトの振動加速度(G)を表す。また、比較例3ではバッファー管が設けられていないので、図18のグラフにおける横軸の読みはゼロになる。
 〔実施例10〕
 二連型真空ポンプ装置Y2におけるバッファー管Z1がオリフィス板74を有する点以外は実施例3と同様のガス精製システムX1を使用し、実施例3と同様に、減圧再生工程にて二連型真空ポンプ装置Y2を減圧稼動させつつ、吸着工程、減圧再生工程、および復圧工程からなる1サイクルを吸着塔10A,10Bのそれぞれにて繰り返すことによって原料ガスたる空気から酸素を取得した。オリフィス板74については、バッファー管Z1内において、ガス入口側にある端壁71から500mm離れた箇所に設けた。また、本実施例では、オリフィス板74として、開口74aの直径が230mmであるものを採用した。内径400mmのバッファー管Z1における当該オリフィス板74(開口74aの直径は230mm)による開口率は33%であった。
 実施例10における二連型真空ポンプ装置Y2のバッファー管Z1(オリフィス板74を有する)について、実施例3と同様に、二連型真空ポンプ装置Y2の減圧稼動時におけるバッファー管内最小滞留時間を測定したところ、0.50秒であった。また、二連型真空ポンプ装置Y2の減圧稼動時に開状態にある開閉弁61のシャフト61aにかかる振動加速度を測定したところ、その最大値は2.1Gであった。実施例9に関するこれら測定結果については、図16の表に掲げる。
 〔実施例11~16〕
 二連型真空ポンプ装置Y2におけるバッファー管Z1(オリフィス板74を有する)の長さを4.4mに代えて3.6m(実施例11)、2.8m(実施例12)、2.1m(実施例13)、1.5m(実施例14)、1.3m(実施例15)、1.05m(実施例16)とした以外は図1に示すガス精製システムX1を使用して、実施例3と同様に、減圧再生工程にて二連型真空ポンプ装置Y2を減圧稼動させつつ、吸着工程、減圧再生工程、および復圧工程からなる1サイクルを吸着塔10A,10Bのそれぞれにて繰り返すことによって原料ガスたる空気から酸素を取得した。
 実施例11~16における二連型真空ポンプ装置Y2のバッファー管Z1について、実施例3と同様に、二連型真空ポンプ装置Y2の減圧稼動時におけるバッファー管内最小滞留時間を測定したところ、0.41秒(実施例11)、0.32秒(実施例12)、0.24秒(実施例13)、0.17秒(実施例14)、0.15秒(実施例15)、0.12秒(実施例16)であった。また、二連型真空ポンプ装置Y2の減圧稼動時に開状態にある開閉弁61のシャフト61aにかかる振動加速度を測定したところ、その最大値は2.0G(実施例11)、2.1G(実施例12)、2.1G(実施例13)、2.5G(実施例14)、3.0G(実施例15)、および4.5G(実施例16)であった。実施例11~16に関するこれら測定結果については、図16の表に掲げる。また、実施例9~16および上述の比較例3に関する測定結果については、図18のグラフにて太線上に示す。
 〔実施例17~22〕
 二連型真空ポンプ装置Y2におけるバッファー管Z1のオリフィス板74の開口74aの直径を230mmに代えて180mm(実施例17)、200mm(実施例18)、215mm(実施例19)、230mm(実施例20)、250mm(実施例21)、270mm(実施例22)とした以外は実施例10と同様のガス精製システムX1を使用して、減圧再生工程にて二連型真空ポンプ装置Y2を減圧稼動させつつ、吸着工程、減圧再生工程、および復圧工程からなる1サイクルを吸着塔10A,10Bのそれぞれにて繰り返すことによって原料ガスたる空気から酸素を取得した。内径400mmのバッファー管Z1における実施例17のオリフィス板74による開口率は20%であり、実施例18のオリフィス板74による開口率は25%であり、実施例19のオリフィス板74による開口率は29%であり、実施例20のオリフィス板74による開口率は33%であり、実施例21のオリフィス板74による開口率は39%であり、実施例22のオリフィス板74による開口率は46%であった。
 実施例17~22における二連型真空ポンプ装置Y2のバッファー管Z1について、実施例3と同様に、二連型真空ポンプ装置Y2の減圧稼動時におけるバッファー管内最小滞留時間を測定したところ、全て0.15秒であった。また、二連型真空ポンプ装置Y2の減圧稼動時に開状態にある開閉弁61のシャフト61aにかかる振動加速度を測定したところ、その最大値は4.2G(実施例17)、3.8G(実施例18)、3.4G(実施例19)、3.0G(実施例20)、3.3G(実施例21)、4.0G(実施例22)であった。実施例17~22に関するこれら測定結果については、図19の表に掲げ、また、図20のグラフにて太線上に示す。図20のグラフでは、横軸はオリフィス板74(絞り部)による開口率(%)を表し、縦軸は、開閉弁61のシャフト61aの振動加速度(G)を表す。
 〔評価〕
 実施例3~22と比較例3に係る結果の比較から、バッファー管Z1を設けた図1に示すガス精製システムX1(実施例3~22)では、このようなバッファー管を設けない図17に示すガス精製システムX3(比較例3)よりも開閉弁61のシャフト61aにかかる振動加速度が小さくなる。また、バッファー管の長さが同じであれば、オリフィス板74を設ける方が(実施例10~16)、そのようなオリフィス板を設けない場合よりも開閉弁61のシャフト61aにかかる振動加速度が小さくなる。さらに、過剰ガスの最小滞留時間が0.15秒以上であるバッファー管Z1を用いる二連型真空ポンプ装置Y2(実施例3~8,10~15)においては、開閉弁61のシャフト61aにかかる振動加速度を特に小さくすることができる。

Claims (17)

  1.  吸気口および排気口を有する容積式の第1真空ポンプと、
     吸気口および排気口を有するとともに、前記第1真空ポンプの排気容量よりも小さな排気容量を有する第2真空ポンプと、
     前記第1真空ポンプの前記排気口および前記第2真空ポンプの前記吸気口の間を連結する連結ラインと、
     前記連結ラインに接続された第1端部およびガスを外部に導出するための第2端部を有するバイパスラインと、
     前記バイパスラインにおける前記第1端部および前記第2端部の間に配置された開閉弁と、
     前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量に一致するまで低下したときに、前記開閉弁は開状態から閉状態へと切り替えるように構成されている、二連型真空ポンプ装置。
  2.  前記第1真空ポンプの前記吸気口の近傍の圧力を検出する圧力検出器をさらに備え、前記開閉弁は、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量に一致したことを示す圧力値まで低下したことを前記圧力検出器が検出したときに、前記開閉弁は開状態から閉状態へと切り替えるように構成されている、請求項1に記載の二連型真空ポンプ装置。
  3.  前記第1真空ポンプの前記吸気口の近傍の圧力を検出する圧力検出器をさらに備え、前記開閉弁は、前記連結ライン内における圧力が大気圧まで低下したことを示す圧力値を前記圧力検出器が検出したときに、前記開閉弁は開状態から閉状態へと切り替えるように構成されている、請求項1に記載の二連型真空ポンプ装置。
  4.  前記第1および第2真空ポンプは、それぞれ、ケーシングと当該ケーシング内のロータとを有するルーツポンプであり、単一のモータによって前記第1真空ポンプの前記ロータと前記第2真空ポンプの前記ロータとが連動して回転駆動されるように構成されている、請求項1~3のいずれか一つに記載の二連型真空ポンプ装置。
  5.  前記バイパスラインは、当該バイパスラインに流入するガスの気流振動を抑制するためのバッファー管を前記第1端部と前記開閉弁との間に備えている、請求項1~4のいずれか一つに記載の二連型真空ポンプ装置。
  6.  前記バッファー管は、前記開閉弁が開状態である場合において、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量を超えているときに当該バッファー管を通過するガスのバッファー管内最小滞留時間が0.15秒以上となるように構成されている、請求項5に記載の二連型真空ポンプ装置。
  7.  前記バッファー管は、その内部を通過するガスの流路を局所的に狭めるための絞り部を有し、当該絞り部の開口率は20~46%である、請求項5または6に記載の二連型真空ポンプ装置。
  8.  前記バッファー管は、その内部を通過するガスの流路を局所的に狭めるための複数の絞り部を有し、当該複数の絞り部は、前記流路にて最も上流側に位置する第1の絞り部と最も下流側に位置する第2の絞り部とを含む、請求項5~7のいずれか一つに記載の二連型真空ポンプ装置。
  9.  前記絞り部は、開口を有するオリフィス板、またはバッフル板である、請求項7または8に記載の二連型真空ポンプ装置。
  10.  前記絞り部は、開口を有するオリフィス板であり、前記開口の縁部の一部は、前記バッファー管の内壁面と面一となっている、請求項7または8に記載の二連型真空ポンプ装置。
  11.  前記バッファー管は、前記開閉弁が開状態である場合において、前記第1真空ポンプの前記排気口からの排出ガス量が前記第2真空ポンプの吸気容量を超えているときに当該バッファー管を通過するガスのバッファー管内最大流速が6~12m/秒となるように、構成されている、請求項5~10のいずれか一つに記載の二連型真空ポンプ装置。
  12.  前記バッファー管は、前記バイパスラインにおける前記第1端部の側の第1端壁と、前記第2端部の側の第2端壁と、当該第1および第2端壁の間を延びる周壁とを有し、前記バイパスラインは、前記周壁における前記第1端壁側の箇所にて前記バッファー管に接続された、当該バッファー管にガスを導入するための接続管部を有し、当該接続管部は、前記周壁の延び方向に交差する方向に延びる、請求項5~11のいずれか一つに記載の二連型真空ポンプ装置。
  13.  前記バッファー管は、前記バイパスラインにおける前記第1端部の側の第1端壁と、前記第2端部の側の第2端壁と、当該第1および第2端壁の間を延びる周壁とを有し、前記バイパスラインは、前記第1端壁にて前記バッファー管に接続された、当該バッファー管にガスを導入するための接続管部を有し、当該接続管部は、前記バッファー管に導入される前のガスの流れを曲げるための屈曲構造を有する、請求項5~11のいずれか一つに記載の二連型真空ポンプ装置。
  14.  圧力変動吸着法を利用してガスを精製するための、吸着剤が内部に充填された吸着塔と、
     前記吸着塔の内部を減圧するための、請求項1~13のいずれか一つに記載の二連型真空ポンプ装置と、を備えるガス精製システム。
  15.  吸気口および排気口を有する容積式の第1真空ポンプと、吸気口および排気口を有するとともに、前記第1真空ポンプの排気容量よりも小さな排気容量を有する第2真空ポンプと、前記第1真空ポンプの前記排気口および前記第2真空ポンプの前記吸気口の間を連結する連結ラインと、前記連結ラインに接続された第1端部およびガスを外部に導出するための第2端部を有するバイパスラインと、前記バイパスラインにおける前記第1端部および前記第2端部の間に配置された開閉弁と、を備える二連型真空ポンプ装置において、前記バイパスライン内に設けるための排ガス振動抑制装置であって、
     前記第1端部と前記開閉弁との間に、前記バイパスラインに流入するガスの気流振動を抑制するためのバッファー管を備えている、排ガス振動抑制装置。
  16.  前記バッファー管は、前記開閉弁が開状態である場合において、前記第1真空ポンプの前記排気口からの排気量が前記第2真空ポンプの排気容量を超えているときに当該バッファー管を通過するガスのバッファー管内最小滞留時間が0.15秒以上となるように構成されている、請求項15に記載の排ガス振動抑制装置。
  17.  前記バッファー管は、その内部を通過するガスの流路を局所的に狭めるための絞り部を有し、当該絞り部の開口率は20~46%である、請求項15または16に記載の排ガス振動抑制装置。
PCT/JP2010/073091 2009-12-24 2010-12-22 二連型真空ポンプ装置、およびそれを備えるガス精製システム、 ならびに二連型真空ポンプ装置における排ガス振動抑制装置 WO2011078207A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112012018803-8A BR112012018803B1 (pt) 2009-12-24 2010-12-22 Aparelho de bomba de vácuo dupla e sistema de purificação de gás
KR1020127019512A KR101506026B1 (ko) 2009-12-24 2010-12-22 2연형 진공 펌프 장치, 및 그것을 구비한 가스 정제 시스템, 그리고 2연형 진공 펌프 장치에 있어서의 배기 가스 진동 억제 장치
EP10839437.0A EP2518317B1 (en) 2009-12-24 2010-12-22 Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus
US13/518,257 US8715400B2 (en) 2009-12-24 2010-12-22 Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus
EP19156439.2A EP3502472B1 (en) 2009-12-24 2010-12-22 Exhaust gas vibration suppressing device in double vacuum pump apparatus
ES10839437T ES2731202T3 (es) 2009-12-24 2010-12-22 Aparato de doble bomba de vacío, sistema de purificación de gas dotado de aparato con doble bomba de vacío y dispositivo de supresión de vibraciones del gas de escape en un aparato con doble bomba de vacío

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-291796 2009-12-24
JP2009291796A JP4677041B1 (ja) 2009-12-24 2009-12-24 二連型真空ポンプ装置、ガス精製システム、真空ポンプ排ガス振動抑制装置、および真空ポンプ排ガス振動抑制方法
JP2010223841A JP4664444B1 (ja) 2010-10-01 2010-10-01 二連型真空ポンプ装置、およびそれを備えるガス精製システム、ならびに二連型真空ポンプ装置の制御方法
JP2010-223841 2010-10-01

Publications (1)

Publication Number Publication Date
WO2011078207A1 true WO2011078207A1 (ja) 2011-06-30

Family

ID=44195734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073091 WO2011078207A1 (ja) 2009-12-24 2010-12-22 二連型真空ポンプ装置、およびそれを備えるガス精製システム、 ならびに二連型真空ポンプ装置における排ガス振動抑制装置

Country Status (7)

Country Link
US (1) US8715400B2 (ja)
EP (2) EP3502472B1 (ja)
KR (1) KR101506026B1 (ja)
BR (1) BR112012018803B1 (ja)
ES (2) ES2731202T3 (ja)
TW (1) TWI490411B (ja)
WO (1) WO2011078207A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185788A (zh) * 2019-07-04 2021-01-05 中微半导体设备(上海)股份有限公司 一种等离子处理装置及其方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH706231B1 (fr) * 2012-03-05 2016-07-29 Ateliers Busch Sa Installation de pompage et procédé de contrôle d'une telle installation.
DE102013219464A1 (de) * 2013-09-26 2015-03-26 Inficon Gmbh Evakuierung einer Folienkammer
WO2016014232A1 (en) * 2014-07-25 2016-01-28 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
DE202017003212U1 (de) * 2017-06-17 2018-09-18 Leybold Gmbh Mehrstufige Wälzkolbenpumpe
IT201700074132A1 (it) * 2017-07-03 2019-01-03 Ecospray Tech Srl Sistema e metodo di filtraggio per gas
WO2020050389A1 (ja) * 2018-09-05 2020-03-12 システム エンジ サービス株式会社 排ガス処理方法及び装置
CN109441775A (zh) * 2018-11-29 2019-03-08 东莞市维健维康科技有限公司 一种真空系统
FR3112171B1 (fr) * 2020-10-16 2022-07-08 Pfeiffer Vacuum Procédé de contrôle d’une puissance de fonctionnement d’une pompe à vide et pompe à vide
CN114939445B (zh) * 2022-03-29 2023-12-22 合肥通用机械研究院有限公司 一种大型真空度变化试验装置及应用该装置的试验方法
CN117386541B (zh) * 2023-12-11 2024-02-09 四川航天世源科技有限公司 一种双余度电动燃油泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254333A (ja) * 1993-03-09 1994-09-13 Nippon Sanso Kk 圧力変動式空気分離装置及びその運転方法
JPH10296034A (ja) 1997-04-24 1998-11-10 Daido Hoxan Inc 真空ポンプ排気システム
JP2001212419A (ja) * 2000-02-04 2001-08-07 Nippon Sanso Corp 圧力変動吸着酸素製造方法及び装置
JP2006272325A (ja) 2005-03-03 2006-10-12 Air Water Inc ガス分離方法およびそれに用いる装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922110A (en) * 1974-01-28 1975-11-25 Henry Huse Multi-stage vacuum pump
US4505647A (en) * 1978-01-26 1985-03-19 Grumman Allied Industries, Inc. Vacuum pumping system
JPS607920A (ja) * 1983-06-29 1985-01-16 Hitachi Ltd 非凝縮性混合ガスの分離方法
JPS62241524A (ja) * 1986-04-14 1987-10-22 Kawasaki Steel Corp 純度安定化に優れる一酸化炭素の分離精製方法
US4850806A (en) * 1988-05-24 1989-07-25 The Boc Group, Inc. Controlled by-pass for a booster pump
JPH04326943A (ja) * 1991-04-25 1992-11-16 Hitachi Ltd 真空排気システム及び排気方法
DE4213763B4 (de) * 1992-04-27 2004-11-25 Unaxis Deutschland Holding Gmbh Verfahren zum Evakuieren einer Vakuumkammer und einer Hochvakuumkammer sowie Hochvakuumanlage zu seiner Durchführung
DE19500823A1 (de) * 1995-01-13 1996-07-18 Sgi Prozess Technik Gmbh Vakuum-Pumpstand
JP3309197B2 (ja) * 1995-03-02 2002-07-29 住友精化株式会社 濃縮酸素の回収方法
DE19524609A1 (de) * 1995-07-06 1997-01-09 Leybold Ag Vorrichtung zum raschen Evakuieren einer Vakuumkammer
DE19929519A1 (de) * 1999-06-28 2001-01-04 Pfeiffer Vacuum Gmbh Verfahren zum Betrieb einer Mehrkammer-Vakuumanlage
US20050189074A1 (en) * 2002-11-08 2005-09-01 Tokyo Electron Limited Gas processing apparatus and method and computer storage medium storing program for controlling same
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption
JP2003343469A (ja) * 2002-03-20 2003-12-03 Toyota Industries Corp 真空ポンプ
DE10319633A1 (de) * 2003-05-02 2004-11-18 Inficon Gmbh Lecksuchgerät
EP1666877B1 (en) * 2003-09-10 2010-09-08 Astellas Pharma Inc. Vacuum solvent evaporator
GB0329839D0 (en) * 2003-12-23 2004-01-28 Boc Group Plc Vacuum pump
GB0505500D0 (en) * 2005-03-17 2005-04-27 Boc Group Plc Vacuum pumping arrangement
JP5675505B2 (ja) * 2011-06-07 2015-02-25 住友精化株式会社 目的ガス分離方法、および目的ガス分離装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254333A (ja) * 1993-03-09 1994-09-13 Nippon Sanso Kk 圧力変動式空気分離装置及びその運転方法
JPH10296034A (ja) 1997-04-24 1998-11-10 Daido Hoxan Inc 真空ポンプ排気システム
JP2001212419A (ja) * 2000-02-04 2001-08-07 Nippon Sanso Corp 圧力変動吸着酸素製造方法及び装置
JP2006272325A (ja) 2005-03-03 2006-10-12 Air Water Inc ガス分離方法およびそれに用いる装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518317A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185788A (zh) * 2019-07-04 2021-01-05 中微半导体设备(上海)股份有限公司 一种等离子处理装置及其方法
CN112185788B (zh) * 2019-07-04 2023-09-29 中微半导体设备(上海)股份有限公司 一种等离子处理装置及其方法

Also Published As

Publication number Publication date
EP3502472A1 (en) 2019-06-26
TWI490411B (zh) 2015-07-01
TW201139855A (en) 2011-11-16
BR112012018803A2 (pt) 2020-09-01
EP2518317B1 (en) 2019-06-05
EP2518317A4 (en) 2017-11-01
ES2731202T3 (es) 2019-11-14
US8715400B2 (en) 2014-05-06
ES2818976T3 (es) 2021-04-14
US20120255445A1 (en) 2012-10-11
KR20120120256A (ko) 2012-11-01
BR112012018803B1 (pt) 2021-09-28
EP2518317A1 (en) 2012-10-31
EP3502472B1 (en) 2020-09-09
KR101506026B1 (ko) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2011078207A1 (ja) 二連型真空ポンプ装置、およびそれを備えるガス精製システム、 ならびに二連型真空ポンプ装置における排ガス振動抑制装置
KR101511803B1 (ko) 산소 농축 장치
JP5917169B2 (ja) 窒素富化ガス製造方法、ガス分離方法および窒素富化ガス製造装置
CN101522246A (zh) 氧浓缩装置
WO2006013918A1 (ja) 酸素ガスおよび窒素ガスの併行分離方法および併行分離システム
JP4758129B2 (ja) 酸素濃縮装置
JP5789449B2 (ja) 気体分離装置
JP4664444B1 (ja) 二連型真空ポンプ装置、およびそれを備えるガス精製システム、ならびに二連型真空ポンプ装置の制御方法
JP4677041B1 (ja) 二連型真空ポンプ装置、ガス精製システム、真空ポンプ排ガス振動抑制装置、および真空ポンプ排ガス振動抑制方法
JP5022785B2 (ja) 気体分離装置
JP7064835B2 (ja) 気体分離装置
JP5864994B2 (ja) 気体分離装置および方法
JP2009082782A (ja) 気体分離装置
JP2006015221A (ja) 気体分離装置
JP2007054678A (ja) 気体濃縮における気体濃度の安定化方法及び気体濃縮装置
JP5325937B2 (ja) 気体分離装置
JP4594223B2 (ja) 窒素ガス発生装置
CN220238194U (zh) 制氮机及包含其的冰箱
JP4908997B2 (ja) 圧力変動吸着式ガス分離方法および分離装置
JP2002028429A (ja) ガス分離方法
JP2023120646A (ja) 気体分離装置及び圧縮機冷却方法
JP2005160761A (ja) 酸素濃縮装置
JP2011092622A (ja) 酸素濃縮装置
JP2001179030A (ja) 酸素・窒素濃縮器
JP2005218606A (ja) 酸素濃縮装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5647/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010839437

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019512

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018803

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120625