WO2011078142A1 - 改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料 - Google Patents

改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料 Download PDF

Info

Publication number
WO2011078142A1
WO2011078142A1 PCT/JP2010/072950 JP2010072950W WO2011078142A1 WO 2011078142 A1 WO2011078142 A1 WO 2011078142A1 JP 2010072950 W JP2010072950 W JP 2010072950W WO 2011078142 A1 WO2011078142 A1 WO 2011078142A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
microfibrillated cellulose
hydrolyzable silyl
silyl group
group
Prior art date
Application number
PCT/JP2010/072950
Other languages
English (en)
French (fr)
Inventor
健一 濱田
哲哉 原田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2011518616A priority Critical patent/JP4919136B2/ja
Priority to EP10839372.9A priority patent/EP2518087B1/en
Priority to CN201080058878.0A priority patent/CN102666591B/zh
Priority to US13/517,330 priority patent/US8420735B2/en
Priority to KR1020127015467A priority patent/KR101384735B1/ko
Priority to CA2784758A priority patent/CA2784758C/en
Publication of WO2011078142A1 publication Critical patent/WO2011078142A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a modified microfibrillated cellulose that gives a molded product excellent in mixing property with a resin, mechanical properties of a resin molded product, particularly fracture toughness, and a resin composition and a resin composite material containing the same.
  • microfibrillated cellulose is a nanofiber consisting of extended chain crystals obtained by defibrating plant fibers such as pulp to the level of microfibrillated cellulose.
  • microfibrillated cellulose derived from bacteria mainly acetic acid bacteria
  • Nata de Coco is well known as a food utilizing this. It is known that microfibrillated cellulose can be generally produced by grinding or beating a cellulosic fiber with a refiner, a homogenizer or the like (see, for example, Patent Document 1).
  • Microfibrillated cellulose is light, strong, and highly biodegradable, so it can be used in a wide range of fields, including housings for home appliances such as personal computers and mobile phones, office equipment such as stationery, sports equipment, transportation equipment, and building materials. Application is expected.
  • Patent Document 2 microfibrillated cellulose is known that is dispersed in an organic solvent by modifying its surface with monoisocyanate.
  • modified microfibrillated cellulose is not sufficient because it is dispersed in an organic solvent but remains hydrophilic due to the remaining hydroxyl groups on the surface. There is a problem that even if mixed and used, the mechanical properties of the resin are not improved.
  • microfibrillated cellulose is surface-treated with a silane coupling agent and then composited with a resin to produce a composite resin, and the mechanical properties of the composite resin are improved (patent) Reference 3).
  • the surface treatment agent is a low molecular weight monomer, which is a silane coupling agent, so that many silane coupling agents can be bonded to the surface of microfibrillated cellulose to improve the mechanical properties of the composite resin. Otherwise, the expected function will not appear. If more silane coupling agents are bound to the surface of the microfibrillated cellulose, a side-reaction condensation reaction between silane coupling agents will occur during the surface treatment, making it impossible to treat efficiently. There was a problem.
  • An object of the present invention is a modified microfibrillated cellulose that can be dispersed and uniformly mixed in a hydrophobic resin without aggregation. That is, by modifying microfibrillated cellulose, modified microfibrillated cellulose excellent in dispersibility that does not generate agglomerates due to the proximity, entanglement, and hydrogen bonding between fibers and resin (affinity).
  • the modified microfibrillated cellulose can be added to a resin to form a resin composite material for molding that gives a molded product excellent in mechanical properties, particularly fracture toughness, of the resin molded product.
  • the present invention relates to a modified microfibrillated cellulose modified with a surface treatment agent that exhibits an improvement in function, for example, mechanical properties, even when the amount of the surface treatment agent bonded or adsorbed to the cellulose surface is small. .
  • the inventors have completed the present invention on a modification method for obtaining a microfibrillated cellulose having excellent mixing and dispersibility in the resin and excellent affinity (reactivity) with the resin. It was.
  • the present invention is a modified microfibrillated cellulose having a hydrolyzable silyl group-containing resin (A) bound or adsorbed on the cellulose surface
  • a modified microfibrillated cellulose characterized by a silicon atom content of 0.01 to 0.5 atomic%, and a resin composition and a resin composite material containing the same.
  • the modified microfibrillated cellulose of the present invention is obtained by binding or adsorbing a polymer hydrolyzable silyl group-containing resin (A) to the microfibrillated cellulose, and the microfibrillated cellulose contains silicon atoms. Since it is modified with a small amount of resin so that the amount becomes 0.01 to 0.5 atomic%, when this modified microfibrillated cellulose is mixed with other resin, dispersion with the mixed resin It has excellent properties and affinity (reactivity). This dispersibility is considered to be because a hydrolyzable silyl group is introduced into the resin skeleton, the molecular motion is controlled, and side reactions such as polycondensation between hydrolyzable silyl groups are unlikely to occur. Furthermore, the resin composite material containing the modified microfibrillated cellulose of the present invention can obtain a resin molded product excellent in fracture toughness.
  • the microfibrillated cellulose By bonding or adsorbing the hydrolyzable silyl group-containing resin (A) to the microfibrillated cellulose, the microfibrillated cellulose is repelled by the hydrolyzable silyl group-containing resin (A) adhering to the surface. It is considered that the microfibrillated cellulose is prevented from agglomerating and can be uniformly treated. Further, by adding the modified microfibrillated cellulose of the present invention to a resin, mechanical properties such as fracture toughness of the added resin cured product can be remarkably improved.
  • the modified microfibrillated cellulose of the present invention contains silicon atomic weight of 0.01 to 0.5 atomic%, preferably 0.1 to 0.3 atomic%. Outside this range, the modified microfibrillated cellulose does not disperse in the composite resin and aggregates.
  • the method for measuring the silicon atomic weight is as follows. After contacting and heating the hydrolyzable silyl group-containing resin (A) and the microfibrillated cellulose, 10 g of a mixed solution of the modified microfibrillated cellulose is collected, 80 g of xylene is added, and the mixture is added to the TK homodisper of TK Robotics. Stir at 3000 rpm for 10 minutes.
  • the solvent is removed by suction filtration, and the modified microfibrillated cellulose is washed. This washing operation is again carried out with xylene. Thereafter, 1 g of the modified microfibrillated cellulose / xylene slurry is collected and dried at 150 ° C. for 1 hour. The surface of the dried modified microfibrillated cellulose is subjected to elemental analysis at a magnification of 1000 times using an energy dispersive X-ray analyzer (JSM-5900LV, manufactured by JEOL Ltd.), and the atomic percentage of silicon atoms is measured. To do. This silicon amount is the amount adhered to the modified microfibrillated cellulose.
  • JSM-5900LV energy dispersive X-ray analyzer
  • the step of bonding or adsorbing the hydrolyzable silyl group-containing resin (A) to the untreated microfibrillated cellulose means unmodified microfibrillated cellulose and the hydrolyzable silyl group-containing resin (A).
  • the contact step, followed by the heating step is essential. Details of this processing method will be described later.
  • Microfibrillated cellulose is obtained by a known production method, and is generally obtained by grinding and / or beating a cellulose fiber-containing material with a refiner, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, or the like. Although it is manufactured by defibration or refinement, it can also be manufactured by a known method such as the method described in JP-A-2005-42283. Moreover, it can also manufacture using microorganisms (for example, acetic acid bacteria (Acetobacter)). Furthermore, a commercially available product can be used.
  • Cellulose fiber-containing materials are used for plants (for example, wood, bamboo, hemp, jute, kenaf, crop residue, cloth, pulp, recycled pulp, waste paper), animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter) )), And those originating from microbial products are known, any of which can be used in the present invention.
  • plants for example, wood, bamboo, hemp, jute, kenaf, crop residue, cloth, pulp, recycled pulp, waste paper
  • animals for example, ascidians
  • algae for example, acetic acid bacteria (Acetobacter)
  • Acetobacter acetic acid bacteria
  • the microfibrillated cellulose may be treated with an alkali solution (eg, alkali metal hydroxide aqueous solution or aqueous ammonia). Furthermore, the microfibrillated cellulose is made into a shape (for example, powder, fiber, sheet, etc.) where the cellulose fiber-containing material can be efficiently treated with a refiner or the like, if necessary, and then treated with an alkali solution.
  • This treated product is obtained by grinding and / or beating using a known defibrating or refining technique used for the production of microfibrillated cellulose, generally a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder or the like. It may be a thing.
  • microfibrillated cellulose may be used, and examples thereof include serisch (Daicel Chemical Industries, Ltd.).
  • the average fiber diameter of the microfibrillated cellulose is preferably 4 nm to 400 nm, more preferably 4 nm to 200 nm, and even more preferably 4 nm to 100 nm.
  • the microfibrillated cellulose is a fiber having a very long fiber length with respect to the fiber diameter, and it is difficult to determine the fiber length, but preferably the average value is 5 times or more of the fiber diameter, more preferably 10 times or more, More preferably, it is 20 times or more. Further, if the fiber length is described in a dare manner, the average value is preferably 50 nm to 200 ⁇ m, more preferably 100 nm to 50 ⁇ m.
  • a hydrolyzable silyl group-containing resin (A) is used as a surface treatment agent for microfibrillated cellulose.
  • the hydrolyzable silyl group-containing resin (A) may be any resin as long as it has a hydrolyzable silyl group, but has a functional group other than the hydrolyzable silyl group and the hydrolyzable silyl group.
  • a polymer is preferred.
  • the number average molecular weight is preferably a polymer having 500 or more, more preferably 1000 or more, and particularly preferably 1000 to 3000.
  • This number average molecular weight is a value measured by HLC8220 (Tosoh) and calculated in terms of standard polystyrene.
  • the polymer may preferably have a plurality of functional groups other than hydrolyzable silyl groups and hydrolyzable silyl groups.
  • the ratio of the hydrolyzable silyl group of the resin (A) containing the hydrolyzable silyl group to the functional group other than the hydrolyzable silyl group is preferably 1: 1 to 10. If it is this range, it is excellent in the dispersibility in resin, and can improve the fracture toughness of composite resin hardened
  • polystyrene resin examples include one or more of various thermosetting or thermoplastic resins such as vinyl resin, (meth) acrylic resin, urethane resin, silicone resin, polyester resin, epoxy resin, phenol resin, and olefin resin. It is done.
  • a (meth) acrylic resin is preferred. Particularly preferred is an aqueous acrylic resin.
  • the functional group other than the hydrolyzable silyl group may be any functional group other than the hydrolyzable silyl group and capable of reacting with other functional groups, such as a hydroxyl group, a carboxyl group, a vinyl group, an epoxy group, an amino group.
  • a group, an aldehyde group, a thiol group, a sulfonic acid group, an azo group and the like can be mentioned, and an epoxy group is preferable.
  • the hydrolyzable silyl group is selected from the group consisting of a composition formula RnSiX4-n (wherein R is an optionally substituted alkyl group having 1 to 10 carbon atoms, an aryl group, and an unsaturated fatty acid residue).
  • R represents an alkoxy group
  • n represents an integer of 0 to 3
  • R and X may be the same or different. Or an alkoxysilyl group.
  • the hydrolyzable silyl group is hydrolyzed to generate a hydroxyl group.
  • the hydrolyzable silyl group-containing resin (A) contains at least one hydrolyzable silyl group in one molecule, and is preferably a (meth) acrylic resin.
  • the (meth) acrylic resin is composed of a hydrolyzable silyl group-containing unsaturated monomer, an acrylic monomer, and, if necessary, another polymerizable unsaturated monomer, and these are used in a conventional manner. It can be prepared by polymerization.
  • the hydrolyzable silyl group-containing unsaturated monomer is a compound in which one or more hydrolyzable silyl groups and polymerizable double bonds are present in one molecule, for example, trimethylsiloxyethyl (meth) acrylate , Trimethylsiloxypropyl (meth) acrylate, trimethylsiloxybutyl (meth) acrylate, triethylsiloxyethyl (meth) acrylate, triethylsiloxypropyl (meth) acrylate, triethylsiloxybutyl (meth) acrylate
  • Trialkylsiloxyalkyl (meth) acrylates such as tributylsiloxypropyl (meth) acrylate: triphenylsiloxyalkyl (meth) acrylate: dimethyl-tert-butylsiloxyalkyl (meth) acrylates, etc.
  • N-methylolated (meth) acrylamide, ⁇ -hydroxyethyl (meth) acrylate, or those obtained by adding ⁇ -caprolactone, polyoxyalkylene glycol (meth) acrylate, etc. Silylated ones are also included.
  • Silanes such as 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltrimethoxysilane, etc.
  • a coupling agent may be used.
  • acrylic monomers examples include alkyl (C1-22) esters of (meth) acrylic acid, alkoxy (meth) acrylic acid (C1-10) esters, and the like.
  • the alkyl (C1-22) ester of (meth) acrylic acid is a monoester compound of (meth) acrylic acid and a monovalent alcohol having 1 to 22 carbon atoms, such as methyl (meth) acrylate. , Ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, Examples include 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
  • the alkoxyester is (meth) acrylic acid and an alkoxyester having 2 to 18 carbon atoms, and examples thereof include methoxybutyl (meth) acrylate and methoxyethyl (meth) acrylate.
  • polymerizable unsaturated monomers are polymerizable unsaturated compounds other than the above hydrolyzable silyl group-containing unsaturated monomers and acrylic monomers.
  • unsaturated monomers containing carboxyl groups such as acrylic acid, methacrylic acid, maleic acid and fumaric acid
  • unsaturated monomers containing glycidyl groups such as glycidyl (meth) acrylate and allyl glycidyl ether
  • An aromatic ring-containing unsaturated monomer such as styrene, ⁇ -methylstyrene, and vinyltoluene
  • a nitrogen-containing unsaturated monomer such as vinylpyridine, acrylamide, N-butoxydimethylacrylamide, and acrylonitrile.
  • the other polymerizable unsaturated monomer has a functional group having reactivity with the resin to be combined.
  • the hydrolyzable silyl group-containing acrylic resin (A) can also be prepared by blocking the hydroxyl group of the hydroxyl group-containing acrylic resin with a silylating agent such as a trialkylmonochlorosilane compound.
  • the ratio of the monomer in the hydrolyzable silyl group-containing resin (A) is not particularly limited, but the hydrolyzable silyl group-containing resin (A) is based on the total weight of the monomers constituting the resin (A). 1 to 100% by weight of a saturated monomer, particularly 20 to 50% by weight, 99 to 0% by weight of the acrylic monomer, particularly 50 to 80% by weight, 0 to 80% by weight of other monomers, In particular, it is preferably contained within the range of 10 to 60% by weight.
  • the resin (A) may contain the hydrolyzable silyl group-containing unsaturated monomer having two or more, preferably two hydrolyzable silyl groups in one molecule, an acrylic monomer, if necessary.
  • Other monomers can be used in combination, and these can be prepared by (co) polymerization by a method known per se such as radical polymerization.
  • the number average molecular weight of the resin (A) is preferably a polymer having a number average molecular weight of 500 or more, more preferably 1000 to 3000.
  • Examples of the polymerization initiator that can be used when the above-mentioned various monomers are copolymerized in an organic solvent include, for example, 2,2′-azobisisobutyronitrile, 2,2′- azobis-methylbutyrate.
  • ketone peroxides such as tert-butyl peroxyisophthalate, tert-butyl peroxyacetate, tert-butyl peroxybenzoate, dicumyl peroxide or di-tert-butyl peroxide; peroxyketal; hydroperoxide Dialkyl peroxide; diacyl peroxide; peroxy ester; peroxy dicarbonate; or hydrogen peroxide can be used.
  • organic solvent that can be used when the above-mentioned various monomers are copolymerized in an organic solvent
  • known and commonly used solvents can be used.
  • Glycol ethers such as methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether;
  • Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene; Exon Aromatic Naphtha No. Mixed hydrocarbons containing aromatic hydrocarbons such as 2 (made by Exxon USA); aliphatic hydrocarbons such as n-pentane, n-hexane and n-octane; Isopar C, Isopar E, Exol DSP 100/140, Mixed hydrocarbons containing aliphatic hydrocarbons such as Exol D30 (both manufactured by Exxon USA) and IP Solvent 1016 (manufactured by Idemitsu Petrochemical Co., Ltd.): Alicyclic rings such as cyclopentane, cyclohexane, methylcyclohexane and ethylcyclohexane Group hydrocarbons;
  • Ethers such as tetrahydrofuran, dioxane, diisopropyl ether, di-n-butyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone; ketones; methyl acetoacetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate And esters such as n-amyl acetate, isoamyl acetate, hexyl acetate, ethyl propionate and butyl propionate.
  • a chain transfer agent can also be used, and examples thereof include dodecyl mercaptan, lauryl mercaptan, thioglycolic acid ester, mercaptoethanol, and ⁇ -methylstyrene dimer.
  • the method for producing the modified microfibrillated cellulose of the present invention is performed, for example, by the following procedure.
  • the hydrolyzable silyl group-containing resin (A) is mixed with water containing a catalyst such as an acid to hydrolyze the hydrolyzable silyl group, and the liquid is contacted with microfibrillated cellulose.
  • a catalyst such as an acid to hydrolyze the hydrolyzable silyl group
  • microfibrillated cellulose By this treatment, it is considered that the hydrolyzed silyl group is bonded to the surface of the microfibrillated cellulose through a hydrogen bond.
  • this liquid is heat-treated.
  • the hydrolyzed silyl group and the hydroxyl group on the surface of the microfibrillated cellulose are dehydrated and condensed to form a covalent bond, and the hydrolyzable silyl group-containing resin (A) is strong on the microfibrillated cellulose surface. It is thought that it will be in the state connected with.
  • the heating temperature should just be below the boiling point of the said hydrolyzable silyl group containing resin (A
  • the form of the microfibrillated cellulose used in the production of the modified microfibrillated cellulose is not particularly limited, and can be used, for example, in the form of a sheet, a lump, a powder, a fiber, or the like. Can be used.
  • the resin (A) may be used alone or in combination of two or more.
  • the hydrolyzable silyl group contained in the hydrolyzable silyl group-containing resin (A) is easily hydrolyzed by reacting the resin (A) with a predetermined amount of water in the presence of a catalyst such as an acid. Can be disassembled.
  • the amount of water for hydrolyzing the hydrolyzable silyl group contained in the hydrolyzable silyl group-containing resin (A) is calculated from the amount of the polymerized hydrolyzable silyl group-containing unsaturated monomer. Can do.
  • the hydrolyzable silyl group monomer has X4-n hydrolyzable silyl groups represented by the composition formula RnSiX4-n.
  • the hydrolyzable group X undergoes a one-to-one hydrolysis reaction with water H 2 O.
  • the hydrolyzable group RnSiX4-n requires (4-n) water molecules to hydrolyze all X.
  • At least (4-n) mol of water is required to hydrolyze all the hydrolyzable groups of 1 mol of the polymerized hydrolyzable silyl group-containing unsaturated monomer. If (4-n) mol of water is added, the hydrolysis reaction proceeds, but in order to hydrolyze quickly and efficiently, (4-n) mol or more of water may be added. That is, when 3 ⁇ (4-n) mol or more of water is added, hydrolysis can be performed faster. When the number of moles is multiplied by the molecular weight of water 18, the weight of water for hydrolyzing the hydrolyzable silyl group contained in the resin (A) is calculated.
  • the catalyst used for the hydrolysis for example, an acid or an alkali can be used, but an acid catalyst that can accelerate the hydrolysis reaction is preferable.
  • the acid for example, various acids such as hydrochloric acid, sulfuric acid, and acetic acid can be used. Of these, hydrochloric acid that can accelerate the hydrolysis reaction is preferred.
  • the concentration of hydrochloric acid increases, the hydrolysis rate can be increased. However, if the concentration of hydrochloric acid is high, there is an irritating odor, and it is necessary to handle with care, so it is preferable to dilute and use it as dilute hydrochloric acid of 10% or less.
  • water that is, an acidic aqueous solution in the hydrolyzable silyl group-containing resin (A)
  • alcohols such as methanol and ethanol, N, N-dimethylformamide, N, N-dimethylacetamide,
  • a polar solvent such as dimethyl sulfoxide or N-methylpyrrolidone may be added.
  • the method for the contacting step between the hydrolyzable silyl group-containing resin (A) and the microfibrillated cellulose is not particularly limited.
  • the method of immersing the microfibrillated cellulose in the resin (A) -containing liquid, the resin ( A) A method in which the containing liquid is applied to the microfibrillated cellulose by a method such as dipping, spin coating, spraying, brush coating, or roll coating.
  • the contact time can be appropriately selected, and is preferably about 1 minute to 6 hours.
  • the hydrolyzable silyl group resin (A) -containing liquid and the microfibrillated cellulose may be kneaded and brought into contact with each other.
  • kneading is performed using a conventional kneader such as a planetary mixer, a kneader, or a pressure kneader.
  • the kneader may be heated to perform contact and heat treatment at the same time.
  • the heating temperature is preferably not higher than the boiling point of the organic solvent contained in the hydrolyzable silyl group resin (A), and is preferably adjusted in the range of 50 to 150 ° C.
  • the amount of the hydrolyzable silyl group resin (A) necessary for the treatment of the microfibrillated cellulose is based on the amount of the hydrolyzable silyl group-containing unsaturated monomer used as a raw material for the production of the resin (A).
  • the hydrolyzable silyl group is calculated so that the weight ratio of hydrolyzable silyl group-containing unsaturated monomer / microfibrillated cellulose is preferably 1/100 or more, more preferably 1/100 to 1/10.
  • the base resin (A) and the microfibrillated cellulose may be kneaded.
  • the modified microfibrillated cellulose treated with the hydrolyzable silyl group resin (A) as described above can be further blended into a resin to form a composition.
  • the content of the modified microfibrillated cellulose in the resin containing the modified microfibrillated cellulose is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight.
  • the hydrolyzable silyl group-containing resin (A) further has a functional group other than the hydrolyzable silyl group, and the modified microfibrillated cellulose has a functional group other than the hydrolyzable silyl group;
  • the resin (B) having a functional group that reacts the modified microfibrillated cellulose is more preferable because it becomes more complex.
  • the resin for blending the modified microfibrillated cellulose is not particularly limited.
  • the functional group that reacts with a functional group other than the hydrolyzable silyl group of the modified microfibrillated cellulose of the resin (B) is other than the hydrolyzable silyl group of the hydrolyzable silyl group-containing resin (A).
  • a functional group for example, a hydroxyl group, a carboxyl group, a vinyl group, an epoxy group, an amino group, an aldehyde group, a thiol group, a sulfonic acid group, an azo group etc. are mentioned.
  • These functional groups may be one kind or plural kinds.
  • the method for blending the modified microfibrillated cellulose into the resin is not particularly limited, and a usual method can be adopted.
  • a method of sufficiently impregnating a resin monomer liquid with a sheet or molded body composed of microfibrillated cellulose and polymerizing with heat, UV irradiation, a polymerization initiator, or the like, or a polymer resin solution or resin powder dispersion In addition to the method of impregnating and drying, the modified microfibrillated cellulose is sufficiently dispersed in the resin monomer solution and polymerized by heat, UV irradiation, polymerization initiator, or the like, or the polymer resin solution or resin powder dispersion
  • a method of kneading and dispersing microfibrillated cellulose in a heat-melted resin liquid, press molding, extrusion molding, injection molding, or the like can be given.
  • the resin composite material can be manufactured as described above.
  • the resin composite material produced using the modified microfibrillated cellulose of the present invention is a resin composite material having superior mechanical properties as compared with a conventional resin composite material with microfibrillated cellulose.
  • This resin composite material can be molded in the same manner as other moldable resins.
  • the resin composite material can be formed into a molded product by molding by extrusion molding, injection molding, press molding, or the like. These molding conditions may be applied by appropriately adjusting the molding conditions according to the properties of the composite resin.
  • Synthesis Example 1 ⁇ Synthesis of Hydrolyzable Silyl Group-Containing Acrylic Resin (I)> Weigh 468 g of xylene into a 3 L stainless steel separable flask. The mixture was heated to 100 ° C. with stirring at 120 rpm under nitrogen flow. Next, 315 g of 2-ethylhexyl acrylate, 280 g of glycidyl methacrylate, and 105 g of SZ6030 (Toray Dow Corning) were weighed in a 1 L stainless steel container and stirred with a glass rod.
  • SZ6030 Toray Dow Corning
  • the polymerized acrylic resin was designated as a hydrolyzable silyl group-containing acrylic resin (I).
  • hydrolyzable silyl group-containing acrylic resin (I) 1 g is weighed, 5 g of a toluene / methanol mixture (7/3 weight ratio) is added and stirred, placed in a dryer at 120 ° C. for 1 hour, and the organic solvent contained Removed.
  • the solid content of the hydrolyzable silyl group-containing acrylic resin (I) was calculated from the weight after removal of the organic solvent. The solid content was 56%. Xylene was added to adjust the resin concentration so that the solid content was 55%.
  • Synthesis Example 2 ⁇ Synthesis of acrylic resin (b) containing hydrolyzable silyl group>
  • the mixed solution dropped in Synthesis Example 1 was changed to 595 g of glycidyl methacrylate, 105 g of SZ6030, 105 g of xylene, and 84 g of perbutyl O, and an acrylic resin was synthesized in the same manner.
  • the polymerized acrylic resin was designated as a hydrolyzable silyl group-containing acrylic resin (b). This hydrolyzable silyl group-containing acrylic resin (b) was also adjusted so that the solid content was 55%.
  • Synthesis Example 3 ⁇ Synthesis of Acrylic Resin (C) Containing Hydrolyzable Silyl Group>
  • An acrylic resin was synthesized in the same manner by changing the mixed solution dropped in Synthesis Example 1 to 525 g of 2-ethylhexyl acrylate, 70 g of glycidyl methacrylate, 105 g of SZ6030, 105 g of xylene, and 84 g of perbutyl O.
  • the polymerized acrylic resin was designated as a hydrolyzable silyl group-containing acrylic resin (C). This hydrolyzable silyl group-containing acrylic resin (C) was also adjusted so that the solid content was 55%.
  • the ratio of the reactive functional group epoxy group to silicon is 4.7 for hydrolyzable silyl group-containing acrylic resin (ii) and 9 for hydrolyzable silyl group-containing acrylic resin (ii) for one silicon. .9, and a hydrolyzable silyl group-containing acrylic resin (c) was synthesized to 1.2.
  • HAAKE viscometer
  • Yield stress was calculated by linearly approximating the half power of the shear rate and the half power of the viscosity, squaring the intercept. Yield stress is a measure of the viscosity of the resin. When the value is as small as possible, it means that the viscosity is low and the handling workability is good. In the present invention, the value is as small as 50 Pa or less. This shows that the handling (liquid feeding, etc.) of the resin containing microfibrillated cellulose is facilitated.
  • the surface of the dried modified microfibrillated cellulose is subjected to elemental analysis at a magnification of 1000 times using an energy dispersive X-ray analyzer (JSM-5900LV, manufactured by JEOL Ltd.), and the atomic percentage of silicon atoms is measured. did. This amount of silicon atoms was defined as the amount of treatment agent attached to the modified microfibrillated cellulose.
  • TK homomixer Specific Machine Industries
  • Resin was cast between glass plates adjusted to a width of 6 mm, and kept in a dryer at 110 ° C. for 3 hours to cure the resin. Thereafter, it was kept in a dryer at 175 ° C. for 5 hours, and after-curing was performed.
  • the obtained casting plate was cut into a width of 12.5 mm and a length of 64 mm. A cut having a width of 0.6 mm and a depth of 5 mm was made in the width direction. A razor was driven into this cut and a 1 mm long crack was added to prepare a test piece.
  • the fracture toughness test (ASTM 5045) was measured with AGS-5KNG (Shimadzu Autograph). Measurement was performed at a span of 50 mm and a test speed of 10 mm / min. The fracture toughness value was calculated from the obtained results using the following formula.
  • K1c P / 1000 * S / B / W ⁇ (3/2) * f (X)
  • K1c Fracture toughness value (MPa ⁇ ⁇ m)
  • P Maximum point load (N)
  • S span span (cm)
  • B specimen thickness (cm)
  • W specimen width (cm)
  • a notch + Crack length (cm)
  • Example 1 1.9 g of 6% hydrochloric acid aqueous solution and 15 g of dimethylformamide were added to 33.3 g of the hydrolyzable silyl group-containing acrylic resin (I), and the mixture was stirred for 1 hour with a stirrer. The methoxysilane was hydrolyzed. 20.6 g of dry microfibrillated cellulose and 132.8 g of xylene were added to this resin solution, and the mixture was stirred at 50 rpm for 6 hours with TK Hibismix f model (Special Machine Industries) while heating to 80 ° C.
  • TK Hibismix f model Specific Machine Industries
  • the number average molecular weight of the hydrolyzable silyl group-containing acrylic resin (a) was 2323.
  • Example 2 The hydrolyzable silyl group-containing acrylic resin (I) of Example 1 was changed to a hydrolyzable silyl group-containing acrylic resin (B), and the modification of microfibrillated cellulose was similarly performed.
  • the yield stress was 32.0 Pa, and the fracture toughness value was 0.93 MPa ⁇ ⁇ m.
  • the amount of silicon was 0.17 atomic%.
  • the number average molecular weight of the hydrolyzable silyl group-containing acrylic resin was 1892.
  • Example 3 The hydrolyzable silyl group-containing acrylic resin (I) of Example 1 was changed to a hydrolyzable silyl group-containing acrylic resin (C), and microfibrillated cellulose was similarly modified.
  • the yield stress was 33.0 Pa, and the fracture toughness value was 0.84 MPa ⁇ ⁇ m.
  • the amount of silicon was 0.16 atomic%.
  • the number average molecular weight of the hydrolyzable silyl group-containing acrylic resin was 2168.
  • ⁇ Comparative Example 1> The dry microfibrillated cellulose was not modified, and physical properties were evaluated in the same manner as the modified microfibrillated cellulose. Many agglomerates of cellulose of 100 ⁇ m or more were confirmed in the epoxy resin. The yield stress was 3790 Pa, and the fracture toughness value was 0.78 MPa ⁇ ⁇ m. Silicon was not detected on the cellulose surface.
  • ⁇ Comparative Example 2> As a surface treatment agent, 10.7 g of 0.05% aqueous acetic acid solution was added to 2.7 g of Z6040 (silane coupling agent, manufactured by Toray Dow Corning), and the mixture was stirred with a stirrer for 3 hours to hydrolyze methoxysilane. 20 g of dry microfibrillated cellulose and 180 g of xylene were added to this aqueous solution, and the mixture was stirred at 50 rpm for 6 hours with a planetary mixer while heating at 80 ° C., and the cellulose was subjected to a surface treatment.
  • Z6040 silane coupling agent, manufactured by Toray Dow Corning
  • the molecular weight distribution of Z6040 was measured in the same manner as was done with acrylic resin. Its number average molecular weight was 157.
  • the microfibrillated cellulose can be modified with a small amount of resin.
  • this modified microfibrillated cellulose is mixed in another resin, it can be dispersed without aggregation. This dispersibility is considered to be because a hydrolyzable silyl group is introduced into the resin skeleton, the molecular motion is controlled, and side reactions such as polycondensation between hydrolyzable silyl groups are unlikely to occur.
  • the resin composition containing the modified microfibrillated cellulose of the present invention can obtain a resin molded product having excellent mechanical properties, particularly fracture toughness, it can be used in the automotive field, electrical and electronic field, civil engineering field. It can be used as a molded product in the construction field, medical equipment field, bathtub kitchenware, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 改質ミクロフィブリル化セルロースおよびこれを含有してなる樹脂組成物及び樹脂複合材料を提供する。 本発明における改質ミクロフィブリル化セルロースは、セルロース表面に加水分解性シリル基含有樹脂(A)が結合または吸着した改質ミクロフィブリル化セルロースであって、珪素原子の含有量が0.01~0.5原子数%であることを特徴とする。また、該改質ミクロフィブリル化セルロースを0.1~10重量%含有することを特徴とする樹脂組成物を提供する。

Description

改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料
 本発明は、樹脂との混合性、樹脂成形物の機械的物性、特に破壊靭性に優れた成形物を与える改質ミクロフィブリル化セルロースおよびこれを含有する樹脂組成物及び樹脂複合材料に関する。
 すべての植物の細胞壁は、ミクロフィブリル化セルロースと呼ばれる幅約4nmの高強度ナノファイバーが基本骨格となっている。ミクロフィブリル化セルロースはパルプなどの植物繊維をミクロフィブリル化セルロースのレベルにまで解繊して得られる、伸びきり鎖結晶からなるナノファイバーである。また、バクテリア(主として酢酸菌)由来のミクロフィブリル化セルロースも知られており、これを利用した食品としてナタデココがよく知られている。ミクロフィブリル化セルロースは、一般的には、セルロース系繊維をリファイナー、ホモジナイザー等により磨砕ないし叩解することにより製造できることが知られている(例えば特許文献1参照)。ミクロフィブリル化セルロースは軽くて強度が高く、さらには生分解性も高いためパソコン、携帯電話等の家電製品の筐体、文房具等の事務機器、スポーツ用品、輸送機器、建築材料など幅広い分野への応用が期待されている。
 近年、ミクロフィブリル化セルロースは、その表面をモノイソシアネートで改質を施すことで有機溶媒に分散するものが知られている。(特許文献2)
 しかし、こうした改質ミクロフィブリル化セルロースは、有機溶媒に分散するが表面のヒドロキシル基の残存により親水性の性質が残るため充分ではなく、樹脂中に投入すると凝集・凝結の現象が起こる、あるいは樹脂中に混合使用しても樹脂の機械的物性を向上させるに至らないといった問題がある。
 また、ミクロフィブリル化セルロースをシランカップリング剤にて表面処理し、その後樹脂に複合化させて複合化樹脂を製造し、この複合化樹脂の機械的物性を向上させる方法が試みられている(特許文献3)。しかし、こうしたものでは、表面処理剤がシランカップリング剤である低分子量のモノマーであるため、複合化樹脂の機械的物性を向上させるにはミクロフィブリル化セルロース表面に数多くのシランカップリング剤を結合させなければその期待される機能が発現しない。より多くのシランカップリング剤をミクロフィブリル化セルロース表面に結合させようとすると、表面処理中に副反応であるシランカップリング剤同士の縮重合反応が起こり、効率的に処理することができないと言った問題があった。
特公昭50-38720号公報 特表2002-524618 特開2008-266630
 本発明の目的は、疎水性樹脂中において凝集がなく分散、均一混合することが可能な改質ミクロフィブリル化セルロースにある。即ち、ミクロフィブリル化セルロースを改質することで、繊維同士の接近、絡み合い、水素結合による凝集物が発生しない分散性と樹脂との親和性(反応性)に優れた改質ミクロフィブリル化セルロースを得ることができ、該改質ミクロフィブリル化セルロースを樹脂に添加して、樹脂成形物の機械的物性、特に破壊靭性に優れた成形物を与える成形用樹脂複合材料とすることにある。
 また、セルロース表面に結合または吸着した表面処理剤の量が少なくても、機能、例えば機械的物性の向上が発現するような表面処理剤によって改質された改質ミクロフィブリル化セルロースに関するものである。
 発明者らは、樹脂へ混合分散性に優れ、樹脂との親和性(反応性)に優れたミクロフィブリル化セルロースを得る為の改質方法について、鋭意研究の結果、本発明を完成するに至った。
 即ち、本発明は、セルロース表面に加水分解性シリル基含有樹脂(A)が結合または吸着した改質ミクロフィブリル化セルロースであって、
珪素原子の含有量が0.01~0.5原子数%であることを特徴とする改質ミクロフィブリル化セルロース、およびこれを含有してなる樹脂組成物及び樹脂複合材料を提供するものである。
 本発明の改質ミクロフィブリル化セルロースは、高分子の加水分解性シリル基含有樹脂(A)を該ミクロフィブリル化セルロースに結合または吸着させたものであり、該ミクロフィブリル化セルロースに珪素原子の含有量が0.01~0.5原子数%となるように少ない樹脂量で改質されているため、この改質ミクロフィブリル化セルロースを他の樹脂中に混合した際、混合した樹脂との分散性と親和性(反応性)とに優れたものである。
 この分散性は、樹脂骨格中に加水分解性シリル基が導入されているため、分子運動が制御され、加水分解性シリル基同士の縮重合といった副反応が起き難いものと考えられる。さらに、本発明の改質ミクロフィブリル化セルロースを含有する樹脂複合材料は、破壊靭性に優れた樹脂成形物を得ることができるものである。
 ミクロフィブリル化セルロースに加水分解性シリル基含有樹脂(A)を結合または吸着させることにより、表面に付着した加水分解性シリル基含有樹脂(A)によりミクロフィブリル化セルロース同士が反発することで、改質ミクロフィブリル化セルロースの凝集が防止され、均一処理することができるものと考える。また、本発明の改質ミクロフィブリル化セルロースを樹脂に添加することで、添加した樹脂硬化物の破壊靭性等の機械的物性を著しく向上させることができる。
 本発明の改質ミクロフィブリル化セルロースは、珪素原子量を0.01~0.5原子数%、好ましくは0.1~0.3原子数%含有するものである。この範囲を外れると複合化する樹脂中に改質ミクロフィブリル化セルロースが分散せず、凝集する。この珪素原子量の測定方法とは、以下の通りである。加水分解性シリル基含有樹脂(A)とミクロフィブリル化セルロースを接触後加熱したうえで、改質ミクロフィブリル化セルロースの混合液を10g採取し、キシレン80g添加し、TKロボミックスのTKホモディスパーにて3000rpm、10分間攪拌する。その後吸引ろ過にて溶媒を除去し、改質ミクロフィブリル化セルロースを洗浄する。この洗浄操作を再度キシレンで実施する。その後、改質ミクロフィブリル化セルロース/キシレンスラリーを1g採取し、150℃にて1時間乾燥する。その乾燥改質ミクロフィブリル化セルロースの表面を、エネルギー分散型X線分析装置(JSM-5900LV、日本電子製)を用いて、1000倍の倍率で元素分析を行い、珪素原子の原子数%を測定する。この珪素量を改質ミクロフィブリル化セルロースに付着した量としたものである。
 本発明において、未処理ミクロフィブリル化セルロースに加水分解性シリル基含有樹脂(A)を結合または吸着させる工程とは、未改質のミクロフィブリル化セルロースと加水分解性シリル基含有樹脂(A)との接触工程、次いで加熱工程(好ましくは50~150℃)を必須とするものである。この処理方法の詳細は、後述する。
(ミクロフィブリル化セルロース)
 ミクロフィブリル化セルロースは、公知の製造方法で得られるものであり、一般的には、セルロース繊維含有材料をリファイナー、高圧ホモジナイザー、媒体攪拌ミル、石臼、グラインダー等により磨砕及び/又は叩解することによって解繊又は微細化して製造されるが、特開2005-42283号公報に記載の方法等の公知の方法で製造することもできる。また、微生物(例えば酢酸菌(アセトバクター))を利用して製造することもできる。さらに、市販品を利用することも可能である。セルロース繊維含有材料は、植物(例えば木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、パルプ、再生パルプ、古紙)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知れているが、本発明ではそのいずれも使用できる。好ましくは植物又は微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。
 また、ミクロフィブリル化セルロースは、アルカリ溶液(例;水酸化アルカリ金属水溶液、アンモニア水)処理されたものであってもよい。さらに、ミクロフィブリル化セルロースは、セルロース繊維含有材料を必要に応じてリファイナー等によりアルカリ溶液処理を効率よく行える形状(例えば、粉体、繊維状、シート状等)とした後、アルカリ溶液処理し、この処理物をミクロフィブリル化セルロースの製造に使用される公知の解繊又は微細化技術、一般的には高圧ホモジナイザー、媒体攪拌ミル、石臼、グラインダー等により磨砕及び/又は叩解することによって得られるものであってもよい。
 また、市販されているミクロフィブリル化セルロースを用いても良く、例えばセリッシュ(ダイセル化学工業株式会社)等があげられる。
 ミクロフィブリル化セルロースの繊維径は、平均値で4nm~400nmであることが好ましく、4nm~200nmであることがより好ましく、4nm~100nmであることがより一層好ましい。また、ミクロフィブリル化セルロースは繊維径に対する繊維長が非常に長い繊維であり、その繊維長を決定することが難しいが、好ましくは平均値が繊維径の5倍以上、より好ましくは10倍以上、より一層好ましくは20倍以上である。また、その繊維長をあえて記載するならば、好ましくは平均値が50nm~200μm、より好ましくは100nm~50μmである。
(加水分解性シリル基含有樹脂(A))
 本発明において、ミクロフィブリル化セルロースの表面処理剤として加水分解性シリル基含有樹脂(A)を用いている。
 前記加水分解性シリル基含有樹脂(A)とは、加水分解性シリル基を有する樹脂であればいずれのものでも良いが、加水分解性シリル基とさらに加水分解性シリル基以外の官能基を有する重合体であることが好ましい。その数平均分子量は好ましくは500以上、より好ましくは1000以上、特に好ましくは1000~3000の重合体である。この数平均分子量は、HLC8220(東ソー)にて測定し標準ポリスチレン換算で計算した値である。前記重合体としては、好ましくは加水分解性シリル基と加水分解性シリル基以外の官能基を複数有するものであってもよい。前記加水分解性シリル基を含有する樹脂(A)の加水分解性シリル基と、加水分解性シリル基以外の官能基との比率は、1:1~10であることが好ましい。この範囲であれば、樹脂中での分散性に優れ、複合化樹脂硬化物の破壊靭性をアップすることができる。 
 前記重合体とは、例えば、ビニル樹脂、(メタ)アクリル樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、オレフィン樹脂等の各種熱硬化性あるいは熱可塑性樹脂の1種以上が挙げられる。好ましくは(メタ)アクリル樹脂である。特に好ましくは水性アクリル樹脂である。
(加水分解性シリル基以外の官能基)
 前記加水分解性シリル基以外の官能基とは、加水分解性シリル基以外であって、他の官能基と反応するものであればよく、例えば、水酸基、カルボキシル基、ビニル基、エポキシ基、アミノ基、アルデヒド基、チオール基、スルホン酸基、アゾ基等から選択される1種以上が挙げられ、好ましくはエポキシ基である。
 加水分解性シリル基とは、組成式RnSiX4-n(式中、Rは置換基を有していてもよい炭素数1~10のアルキル基、アリール基、不飽和脂肪酸残基からなる群より選ばれる少なくとも一種の有機基を表し、Xはアルコキシ基を表し、nは0~3の整数を表し、RおよびXはそれぞれ同一あるいは異なっていても良い)で表されるケイ素含有基で、シラノール基やアルコキシシリル基である。
 前記加水分解性シリル基は、加水分解して水酸基を生成するものである。
 前記加水分解性シリル基含有樹脂(A)は、この加水分解性シリル基を1分子中に1個以上併存するものであり、好ましくは(メタ)アクリル樹脂である。該(メタ)アクリル樹脂は、加水分解性シリル基含有不飽和単量体、アクリル系単量体、及び必要によりその他の重合性不飽和単量体を併用し、これらを常法で(共)重合することにより調製することができる。
 前記加水分解性シリル基含有不飽和単量体は、1分子中に加水分解性シリル基及び重合性二重結合をそれぞれ1個以上併存する化合物であり、例えば、トリメチルシロキシエチル(メタ)アクリレ-ト、トリメチルシロキシプロピル(メタ)アクリレ-ト、トリメチルシロキシブチル(メタ)アクリレ-ト、トリエチルシロキシエチル(メタ)アクリレ-ト、トリエチルシロキシプロピル(メタ)アクリレ-ト、トリエチルシロキシブチル(メタ)アクリレ-ト、トリブチルシロキシプロピル(メタ)アクリレ-ト等のトリアルキルシロキシアルキル(メタ)アクリレ-ト:トリフェニルシロキシアルキル(メタ)アクリレ-ト:ジメチル-tert-ブチルシロキシアルキル(メタ)アクリレ-ト類等が挙げられる。又、N-メチロ-ル化(メタ)アクリルアミド、β-ヒドロキシエチル(メタ)アクリレ-ト、又はこれらにε-カプロラクトンを付加させたもの、ポリオキシアルキレングリコ-ル(メタ)アクリレ-ト等をシリル化したものも包含される。
 また、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等のシランカップリング剤を使用しても良い。
 前記アクリル系単量体としては、例えば、(メタ)アクリル酸のアルキル(C1~22)エステル、(メタ)アクリル酸アルコキシ(C1~10)エステル等が挙げられる。
 前記(メタ)アクリル酸のアルキル(C1~22)エステルとは、(メタ)アクリル酸と炭素数1~22の1価アルコ-ルとのモノエステル化合物であり、例えば、メチル(メタ)アクリレ-ト、エチル(メタ)アクリレ-ト、プロピル(メタ)アクリレ-ト、ブチル(メタ)アクリレ-ト、ヘキシル(メタ)アクリレ-ト、オクチル(メタ)アクリレ-ト、ラウリル(メタ)アクリレ-ト、2-エチルヘキシル(メタ)アクリレ-ト、シクロヘキシル(メタ)アクリレ-ト等が挙げられる。アルコキシエステルは、(メタ)アクリル酸と炭素数2~18のアルコキシエステルであり、例えば、メトキシブチル(メタ)アクリレ-ト、メトキシエチル(メタ)アクリレ-ト等が挙げられる。
 その他の重合性不飽和単量体は、上記の加水分解性シリル基含有不飽和単量体及びアクリル系単量体以外の重合性不飽和化合物である。具体的には、アクリル酸、メタクリル酸、マレイン酸、フマル酸等のカルボキシル基含有不飽和単量体;グリシジル(メタ)アクリレ-ト、アリルグリシジルエ-テル等のグリシジル基含有不飽和単量体;スチレン、α-メチルスチレン、ビニルトルエン等の芳香族環含有不飽和単量体;ビニルピリジン、アクリルアミド、N-ブトキシジメチルアクリルアミド、アクリロニトリル等の窒素含有不飽和単量体等が挙げられる。
 その他の重合性不飽和単量体は、複合化させる樹脂と反応性を有する官能基を有していることがより好ましい。
 加水分解性シリル基含有アクリル樹脂(A)は、水酸基含有アクリル樹脂の水酸基にトリアルキルモノクロルシラン化合物のようなシリル化剤でブロックすることによっても調製できる。
 前記加水分解性シリル基含有樹脂(A)は、前記単量体の比率は特に制限されないが、樹脂(A)を構成する単量体の合計重量を基準に、前記加水分解性シリル基含有不飽和単量体を1~100重量%、特に20~50重量%、前記アクリル系単量体を99~0重量%、特に50~80重量%、その他の単量体は0~80重量%、特に10~60重量%の範囲内に含まれていることが好ましい。
 前記樹脂(A)は、加水分解性シリル基を1分子中に2個以上、好ましくは2個有する前記加水分解性シリル基含有不飽和単量体を、必要に応じてアクリル系単量体、その他の単量体を併用し、これらを、例えばラジカル重合などのそれ自体既知の方法により(共)重合することにより調製することができる。
 前記樹脂(A)の数平均分子量は、好ましくは数平均分子量が500以上、より好ましくは1000~3000の重合体である。
 前記した各種単量体を有機溶剤中で共重合させる際に使用することのできる重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'- アゾビス-メチルブチロニトリル、2,2'-アゾビス-2,4-ジメチルバレロニトリル、1,1'-アゾビス- シクロヘキサンカルボニトリル、ジメチル-2,2'-アゾビスイソブチレート、4,4'-アゾビス-4-シアノ吉草酸、2,2'-アゾビス-(2-アミジノプロペン)2塩酸塩、2-tert-ブチルアゾ-2-シアノプロパン、2,2'-アゾビス(2-メチル-プロピオンアミド)2水和物、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロペン] または2,2'-アゾビス(2,2,4-トリメチルペンタン)等の、各種のアゾ化合物;
 あるいは過酸化ベンゾイル、メチルエチルケトンパーオキサイド、キュメンハイドロパーオキサイド、カリウムパーサルフェート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソブチレート、1,1-ビス-tert- ブチルパーオキシ-3,3,5-トリメチルシクロヘキサンまたはtert-ブチルパーオキシーラウレート、
 tert-ブチルパーオキシイソフタレート、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエート、ジクミルパーオキシドまたはジ-tert-ブチルパーオキシド等の、各種のケトンパーオキシド; パーオキシケタール; ハイドロパーオキシド; ジアルキルパーオキシド; ジアシルパーオキシド; パーオキシエステル;パーオキシジカーボネート; あるいは過酸化水素などを使用することができる。
 前記した各種単量体を有機溶剤中で共重合させる際に使用することのできる有機溶剤としては、公知慣用のものを使用することができるが、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール等の、アルキルアルコール;
 メチルセロソルブ、エチルセロソルブ、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル等の、グリコールエーテル;
 ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素; エクソンアロマティックナフサNo.2(米国エクソン社製)等の芳香族炭化水素を含有する混合炭化水素; n-ペンタン、n-ヘキサン、n-オクタン等の、脂肪族炭化水素;アイソパーC、アイソパーE、エクソールDSP100/140,エクソールD30(いずれも米国エクソン社製)、IPソルベント1016(出光石油化学社製)等の、脂肪族炭化水素を含有する混合炭化水素; シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の、脂環族炭化水素;
 テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、ジ-n-ブチルエーテル等の、エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等の、ケトン; 酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n - アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸エチル、プロピオン酸ブチル等の、エステル等が挙げられる。
 また、必要に応じて、連鎖移動剤を用いることもでき、例えば、ドデシルメルカプタン、ラウリルメルカプタン、チオグリコール酸エステル、メルカプトエタノールまたはα -メチルスチレンダイマーなどが挙げられる。
 本発明の改質ミクロフィブリル化セルロースの製造方法は、例えば、次のような手順で行う。
 第1に、前記加水分解性シリル基含有樹脂(A)に酸などの触媒を含んだ水を混合し、加水分解性シリル基を加水分解させ、この液にミクロフィブリル化セルロースを接触させる。この処理によって、加水分解したシリル基がミクロフィブリル化セルロースの表面に水素結合を介して結合すると考えられる。次いでこの液を加熱処理する。加熱処理することにより加水分解したシリル基とミクロフィブリル化セルロースの表面の水酸基とが脱水縮合して共有結合を形成し、ミクロフィブリル化セルロース表面に前記加水分解性シリル基含有樹脂(A)が強固に結合した状態になると考えられる。加熱温度は前記加水分解性シリル基含有樹脂(A)の沸点以下であれば良く、好ましくは50℃から150℃の範囲である。
 前記改質ミクロフィブリル化セルロースの製造おいて使用されるミクロフィブリル化セルロースの形態は、特に限定されず、例えば、シート状、塊状、粉体状、繊維状等の形態で使用できるし、成形されたものであっても使用できる。前記樹脂(A)は1種単独で又は2種以上組み合わせて使用してもよい。
 前記加水分解性シリル基含有樹脂(A)に含有される加水分解性シリル基は、該樹脂(A)と所定量の水とを、酸等の触媒の存在下に反応させることにより容易に加水分解できる。
 前記加水分解性シリル基含有樹脂(A)中に含有される加水分解性シリル基を加水分解させる水の量は、重合させた加水分解性シリル基含有不飽和単量体の量から算出することができる。加水分解性シリル基単量体には組成式RnSiX4-nで表される加水分解性シリル基がX4-n存在する。加水分解性基Xは水HOと1対1で加水分解反応する。加水分解性基RnSiX4-n全てのXを加水分解させるには(4-n)の水分子が必要である。すなわち重合させた加水分解性シリル基含有不飽和単量体1モルの加水分解性基を全て加水分解させるには少なくとも(4-n)モルの水が必要である。(4-n)モルの水を添加すれば、加水分解反応は進行するが、早く、効率的に加水分解させるには(4-n)モル以上の水を添加してもよく、3倍量、すなわち3×(4-n)モル以上の水を添加させるとより早く加水分解させることができる。
上記モル数に水の分子量18を掛ければ前記樹脂(A)に含有される加水分解性シリル基を加水分解させる水の重量が算出される。
 加水分解に使用する触媒としては、例えば、酸、アルカリが使用できるが、加水分解反応を速くさせることのできる酸触媒が好ましい。酸としては、例えば、塩酸、硫酸、酢酸等各種の酸を使用することができる。中でも加水分解反応を早くすることのできる塩酸が好ましい。塩酸の濃度は、濃い程加水分解速度を早くすることができるが、塩酸の濃度が濃いと刺激臭があり、取り扱いに注意を要するため希釈し、10%以下の希塩酸として使用するほうが好ましい。
 前記加水分解性シリル基含有樹脂(A)に対する前記酸、水、すなわち酸性水溶液の溶解性を向上させるため、メタノール、エタノールなどのアルコール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドンなどの極性溶媒を添加しても良い。
 前記加水分解性シリル基含有樹脂(A)とミクロフィブリル化セルロースとの接触工程の方法としては、特に限定されず、前記樹脂(A)含有液にミクロフィブリル化セルロースを浸漬する方法、前記樹脂(A)含有液をミクロフィブリル化セルロースにディッピング、スピンコート、スプレー、ハケ塗り、ロールコート等の方法で塗布する方法などが挙げられる。接触時間は適宜選択でき、好ましくは1分~6時間程度である。
ミクロフィブリル化セルロースが、粉体状、繊維状等の形態であれば、前記加水分解性シリル基樹脂(A)含有液とミクロフィブリル化セルロースを混練し、接触させてもよい。かかる混練は、プラネタリーミキサー、ニーダー、加圧型ニーダーなど常用の混練機を使用して行う。混練する際、混練機を加熱し、接触と加熱処理を同時に行ってもよい。加熱する温度は前記加水分解性シリル基樹脂(A)に含まれる有機溶剤の沸点以下が好ましく、50~150℃の範囲で調節することが好ましい。
 ミクロフィブリル化セルロースの処理に必要な前記加水分解性シリル基樹脂(A)の量は、前記樹脂(A)の製造に原料として使用された加水分解性シリル基含有不飽和単量体の量から算出され、加水分解性シリル基含有不飽和単量体/ミクロフィブリル化セルロースの重量比が、好ましくは1/100以上、より好ましくは1/100~1/10となるように前記加水分解性シリル基樹脂(A)とミクロフィブリル化セルロースとを混練すればよい。
 上記のようにして前記加水分解性シリル基樹脂(A)にて処理された改質ミクロフィブリル化セルロースを、さらに樹脂に配合し組成物とすることができる。改質ミクロフィブリル化セルロースの配合された樹脂中における改質ミクロフィブリル化セルロースの含有量は、好ましくは0.1~10重量%、より好ましくは0.5~5重量%である。また、前記加水分解性シリル基含有樹脂(A)が、更に加水分解性シリル基以外の官能基を有しており、該改質ミクロフィブリル化セルロースが有する加水分解性シリル基以外の官能基と反応する官能基を有する樹脂(B)と配合することにより、改質ミクロフィブリル化セルロースがより複合化しやすくなるため更に好ましい。
(樹脂組成物)
 改質ミクロフィブリル化セルロースを配合する樹脂は、特に限定されないが、例えば、ポリ乳酸、ポリブチレンサクシネート、塩化ビニル樹脂、酢酸ビニル樹脂、ポリスチレン、ABS樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、フッ素樹脂、アミド樹脂、アセタール樹脂、ポリカーボネート、繊維素プラスチック、ポリグリコール酸、ポリ-3-ヒドロキシブチレート、ポリ-4-ヒドロキシブチレート、ポリヒドロキシバリレートポリエチレンアジペート、ポリカプロラクトン、ポリプロピオラクトン等のポリエステル、ポリエチレングリコール等のポリエーテル、ポリグルタミン酸、ポリリジン等のポリアミド、ポリビニルアルコールなどの熱可塑性樹脂;フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ素樹脂、ポリイミド樹脂等の熱硬化性樹脂などを使用でき、一種単独又は二種以上組み合わせて使用できるがこれらに限定されない。好ましくは、熱硬化性樹脂;エポキシ樹脂である。
(更なる樹脂の複合化)
 改質ミクロフィブリル化セルロースに結合または吸着させた前記加水分解性シリル基含有樹脂(A)が更に加水分解性シリル基以外の官能基を有するとき、該改質ミクロフィブリル化セルロースが有する加水分解性シリル基以外の官能基と反応する官能基を有する樹脂(B)を複合することが好ましい。
(樹脂(B)が有する官能基)
 樹脂(B)が有する該改質ミクロフィブリル化セルロースが有する加水分解性シリル基以外の官能基と反応する官能基は、加水分解性シリル基含有樹脂(A)が有する加水分解性シリル基以外の官能基と反応すればよく、たとえば水酸基、カルボキシル基、ビニル基、エポキシ基、アミノ基、アルデヒド基、チオール基、スルホン酸基、アゾ基などが挙げられる。これらの官能基は、一種類であっても複数種類であってもかまわない。
 前記改質ミクロフィブリル化セルロースを樹脂に配合する方法としては、特に限定されず、通常の方法を採用できる。例えば、ミクロフィブリル化セルロースより構成されるシートあるいは成形体を樹脂モノマー液に十分に含浸させて熱、UV照射、重合開始剤等によって重合する方法、あるいは、ポリマー樹脂溶液又は樹脂粉末分散液に十分に含浸させて乾燥する方法のほか、改質ミクロフィブリル化セルロースを樹脂モノマー液中に十分に分散させて熱、UV照射、重合開始剤等によって重合する方法、あるいは、ポリマー樹脂溶液又は樹脂粉末分散液に十分に分散させて乾燥する方法のほか、ミクロフィブリル化セルロースを熱溶融した樹脂液中に混練分散させてプレス成形、押し出し成形、あるいは射出成形する方法等が挙げられる。
 以上のようにして樹脂複合材料を製造することができる。本発明の改質ミクロフィブリル化セルロースを使用して製造された樹脂複合材料は、従来のミクロフィブリル化セルロースとの樹脂複合材料よりも機械的物性に優れた樹脂複合材料である。この樹脂複合材料は、他の成形可能な樹脂と同様に成形可能であり、例えば押出成形、射出成形、プレス成形等により成形することで成形品にすることができる。これらの成形条件は、複合する樹脂の性質に応じて成形条件を適宜調整して適用すればよい。
 以下本発明を実施例によって更に詳細に説明する。また、文中に「部」「%」とあるのは、質量あるいは重量基準を示すものである。
合成例1<加水分解性シリル基含有アクリル樹脂(イ)の合成>
3Lステンレスセパラブルフラスコにキシレン468gを計量。窒素通気下、120rpmにて攪拌しながら100℃に加温した。次に1Lステンレス容器に2-エチルヘキシルアクリレート315g、グリシジルメタクリレート280g、SZ6030(東レ・ダウコーニング)105gを計量しガラス棒にて攪拌した。その後キシレン105g、パーブチルO(日本油脂株式会社)84gを加えガラス棒にてよく攪拌し、混合した。この混合溶液を1L滴下ロートに移し、100℃に加温したキシレン中に4時間かけて滴下した。滴下終了後溶液を7時間100℃に保持し、重合した。重合したアクリル樹脂を加水分解性シリル基含有アクリル樹脂(イ)とした。加水分解性シリル基含有アクリル樹脂(イ)を1g計量し、トルエン/メタノール混合液(7/3重量比)を5g加えて攪拌し、120℃の乾燥機に1時間入れ、含有する有機溶媒を除去した。有機溶媒除去後の重量から加水分解性シリル基含有アクリル樹脂(イ)の固形分を計算した。固形分は56%であった。この固形分が55%となるようにキシレンを添加して樹脂濃度を調整した。
合成例2<加水分解性シリル基を含むアクリル樹脂(ロ)の合成>
 合成例1で滴下する混合溶液をグリシジルメタクリレート595g、SZ6030を105g、キシレン105g、パーブチルOを84gに変更し同様にアクリル樹脂を合成した。重合したアクリル樹脂を加水分解性シリル基含有アクリル樹脂(ロ)とした。この加水分解性シリル基含有アクリル樹脂(ロ)も固形分が55%となるように調整した。
合成例3<加水分解性シリル基を含むアクリル樹脂(ハ)の合成>
 合成例1で滴下する混合溶液を2-エチルヘキシルアクリレート525g、グリシジルメタクリレート70g、SZ6030を105g、キシレン105g、パーブチルOを84gに変更し同様にアクリル樹脂を合成した。重合したアクリル樹脂を加水分解性シリル基含有アクリル樹脂(ハ)とした。この加水分解性シリル基含有アクリル樹脂(ハ)も固形分が55%となるように調整した。
 反応性官能基であるエポキシ基と珪素の比率は、珪素1つに対して、加水分解性シリル基含有アクリル樹脂(イ)で4.7、加水分解性シリル基含有アクリル樹脂(ロ)で9.9、加水分解性シリル基含有アクリル樹脂(ハ)で1.2となるように合成した。
<数平均分子量分布の測定>
 合成したアクリル樹脂の分子量分布の測定は、HLC8220(分子量測定装置、東ソー)にて測定し、標準ポリスチレン換算で数平均分子量を計算した。
<乾燥ミクロフィブリル化セルロースの調整>
 セリッシュKY100G(ダイセル化学工業製品)50g(セルロース含有量5g)にイオン交換水950g加えミキサーにて1分間攪拌した。その後吸引ろ過にてミクロフィブリル化セルロースを濃縮した。この濃縮ミクロフィブリル化セルロースにエタノール200gを加え、TKロボミックスのTKホモディスパー(特殊機化工業)にて3000rpm、10分間攪拌した。その後吸引ろ過し、セルロースを濃縮した。再度同様の操作を実施し、濃縮ミクロフィブリル化セルロースに含まれるイオン交換水をエタノールに置換した。エタノールをn-ブタノールに変更し、同様の操作を実施し、その後ペンタノールでも同様の操作を実施してペンタノール/ミクロフィブリル化セルローススラリーを得た。このペンタノール/セルローススラリーを150℃の乾燥機に3時間入れ、ペンタノールを除去した。得られたミクロフィブリル化セルロースをラボミルサー LM-PLUS(大阪ケミカル)にて粉砕し、乾燥ミクロフィブリル化セルロースを得た。
<ミクロフィブリル化セルロースの分散性評価>
 エピクロン850(エポキシ樹脂、DIC株式会社製品)50gにエピクロンB570H(酸無水物、DIC株式会社製品)45gを加えよく攪拌した。この樹脂液にセルロース濃度が0.5重量%となるようにミクロフィブリル化セルロースを加え、超音波ホモジナイザーSonifierII(セントラル科学貿易)にて氷冷しながら30分間セルロースを超音波分散させた。その後樹脂液1滴をスライドガラスに垂らし、プレパラートを乗せ、顕微鏡ECLIPSE90i(Nikon)にて樹脂液中でのミクロフィブリル化セルロースの分散状態を100倍にて観察した。
<降伏応力の評価>
 エピクロン850を50g、エピクロンB570Hを45g加えよく攪拌した。この樹脂液にセルロース濃度が1重量%となるようにミクロフィブリル化セルロースを加え、超音波ホモジナイザーにて氷冷しながら30分間ミクロフィブリル化セルロースを超音波分散させた。その後70℃に加熱しながら真空ポンプにて樹脂液中の泡を抜いた。この樹脂液を粘度計RheoStressRS75(HAAKE)、測定モードはStress Sweepにて25℃の溶液粘度を測定した。せん断速度の1/2乗、粘度の1/2乗を直線近似し、その切片を2乗し、降伏応力を計算した。
 降伏応力は、樹脂の粘度を測定しているものであり、なるべく小さい値の場合、粘度が低くて取扱作業性が良いことを意味するものであり、本願発明では、その値が50Pa以下と小さく、ミクロフィブリル化セルロース入りの樹脂のハンドリング(送液など)が容易となることを示すものである。
<珪素原子量の測定>
 加水分解性シリル基含有樹脂(A)とミクロフィブリル化セルロースを接触後加熱したあとの、改質ミクロフィブリル化セルロースの混合液を10g採取し、キシレン80g添加し、TKロボミックスのTKホモディスパーにて3000rpm、10分間攪拌した。その後吸引ろ過にて溶媒を除去し、改質ミクロフィブリル化セルロースを洗浄した。この洗浄操作を再度キシレンで実施した。その後、改質ミクロフィブリル化セルロース/キシレンスラリーを1g採取し、150℃にて1時間乾燥した。その乾燥改質ミクロフィブリル化セルロースの表面を、エネルギー分散型X線分析装置(JSM-5900LV、日本電子製)を用いて、1000倍の倍率で元素分析を行い、珪素原子の原子数%を測定した。この珪素原子量を改質ミクロフィブリル化セルロースに付着した処理剤量とした。
<破壊じん性値の測定>
 エピクロン850を200g計量し、エピクロンB570Hを180g加えよく攪拌した。その後改質ミクロフィブリル化セルロースを1重量%となるように加え、超音波ホモジナイザーにて氷冷しながら40分間改質ミクロフィブリル化セルロースを超音波分散させた。この樹脂液にN,N-ジメチルベンジルアミンを2g添加し、氷冷下TKロボミックスのTKホモミクサー(特殊機化工業)にて8000rpmで15分間攪拌した。その後70℃に加熱しながら真空ポンプにて樹脂液中の泡を抜いた。幅6mmに調節したガラス板の間に樹脂を注型し、110℃の乾燥機中に3時間保持し、樹脂を硬化させた。その後175℃の乾燥機に5時間保持し、アフターキュアを実施した。
 得られた注型板を幅12.5mm、長さ64mmに切断した。幅方向に幅0.6mm、深さ5mmの切り込みをいれた。この切り込みに剃刀を打ち込み更に長さ1mmのクラックを追加し、試験片を作製した。破壊靭性試験(ASTM 5045)はAGS-5KNG(島津オートグラフ)にて測定した。スパン間50mm、試験速度10mm/分にて測定した。得られた結果から下記計算式を用いて破壊靭性値を計算した。
<計算式>
K1c=P/1000*S/B/W^(3/2) * f(X)

K1c:破壊靭性値(MPa・√m)、P:最大点荷重(N)、S:スパン間(cm)、B:試験片厚み(cm)、W:試験片幅(cm)、a:切り込み+クラック長さ(cm)、X:a/W

f(X)=1.5*X^(1/2)*(1.99-X*(1-X)*(2.15-3.93*X+2.7*X^2))/((1+2*X)*(1-X)^(3/2))
(保存安定性)
 実施例・比較例で得られたミクロフィブリル化セルロース含有樹脂を25℃の恒温機に入れて、1週間放置した後の状態を目視で観察した。
観察結果:○:変化なし透明、
     ×:凝集物あり、濁り有り
<実施例1>
 加水分解性シリル基含有アクリル樹脂(イ)33.3gに6%塩酸水溶液を1.9g、ジメチルホルムアミド15gを添加し、1時間スターラーにて攪拌し、加水分解性シリル基含有アクリル樹脂(イ)のメトキシシランを加水分解した。この樹脂液に乾燥ミクロフィブリル化セルロースを20.6g、キシレンを132.8g添加し、80℃に加温しながらTKハイビスミックスf model(特殊機化工業)で50rpm、6時間攪拌した。改質ミクロフィブリル化セルロース樹脂混合液を10g採取し、キシレン80g添加し、TKロボミックスのTKホモディスパーにて3000rpm、10分間攪拌した。その後吸引ろ過にて溶媒を除去し、改質ミクロフィブリル化セルロースを洗浄した。この洗浄操作を再度キシレンで実施し、その後洗浄溶媒をエタノールに変えて同様に2回洗浄した。得られた改質ミクロフィブリル化セルロース/エタノールスラリーの固形分は22%であった。このスラリーを8.6重量部エポキシ樹脂100重量部に添加し、物性を評価した。
 エポキシ樹脂中で100μm以上のセルロースの凝集物は無かった。また降伏応力は30.5Pa、破壊じん性値は0.89MPa・√mであった。珪素量は0.15原子数%であった。
 また加水分解性シリル基含有アクリル樹脂(イ)の数平均分子量は、2323であった。
<実施例2>
 上記実施例1の加水分解性シリル基含有アクリル樹脂(イ)を加水分解性シリル基含有アクリル樹脂(ロ)に変更し、同様にミクロフィブリル化セルロースの改質を行った。
 エポキシ樹脂中で100μm以上のセルロースの凝集物は無かった。また降伏応力は32.0Pa、破壊じん性値は0.93MPa・√mであった。珪素量は0.17原子数%であった。加水分解性シリル基含有アクリル樹脂の数平均分子量は、1892であった。
<実施例3>
 上記実施例1の加水分解性シリル基含有アクリル樹脂(イ)を加水分解性シリル基含有アクリル樹脂(ハ)に変更し、同様にミクロフィブリル化セルロースの改質を行った。
 エポキシ樹脂中で100μm以上のセルロースの凝集物は無かった。また降伏応力は33.0Pa、破壊じん性値は0.84MPa・√mであった。珪素量は0.16原子数%であった。加水分解性シリル基含有アクリル樹脂の数平均分子量は2168であった。
<比較例1>
 乾燥ミクロフィブリル化セルロースを改質せず、改質ミクロフィブリル化セルロースと同様に物性の評価を実施した。エポキシ樹脂中で100μm以上のセルロースの凝集物が多数確認された。また降伏応力は3790Pa、破壊靭性値は0.78MPa・√mであった。珪素はセルロース表面に検出されなかった。
<比較例2>
 表面処理剤としてZ6040(シランカップリング剤、東レ・ダウコーニング製)2.7gに0.05%酢酸水溶液10.7gを添加し、3時間スターラーにて攪拌し、メトキシシランを加水分解した。この水溶液に乾燥ミクロフィブリル化セルロースを20g、キシレンを180g添加し、80℃に加温しながらプラネタリーミキサーで50rpm、6時間攪拌し、セルロースの表面処理を行った。表面処理されたミクロフィブリル化セルロース/キシレン溶液を10g採取し、キシレン80g添加し、TKロボミックスのTKホモディスパーにて3000rpm、10分間攪拌した。その後吸引ろ過にて溶媒を除去し、シランカップリング剤処理ミクロフィブリル化セルロースを洗浄した。この洗浄操作を再度キシレンで実施し、その後洗浄溶媒をエタノールに変えて同様に2回洗浄した。得られたシランカップリング剤処理ミクロフィブリル化セルロース/エタノールスラリーの固形分は21%であった。
 エポキシ樹脂中で100μm以上のセルロースの凝集物は無かった。また降伏応力は34.3Pa、破壊じん性値は0.83MPa・√mであった。珪素量は0.40原子数%であった。
 また、アクリル樹脂で行ったようにZ6040の分子量分布も同様に測定した。その数平均分子量は157であった。
<比較例3>
 80℃に加温しながらプラネタリーミキサーで50rpm、3時間攪拌する以外は比較例2と同様に乾燥ミクロフィブリル化セルロースをシランカップリング剤処理した。
 エポキシ樹脂中で100μm以上のセルロースの凝集物が確認された。また降伏応力は320Pa、破壊靭性値は0.81MPa・√mであった。珪素量は0.18原子数%であった。
Figure JPOXMLDOC01-appb-T000001
 本発明はでミクロフィブリル化セルロースに高分子の樹脂を結合または吸着させているため、少ない樹脂量でミクロフィブリル化セルロースを改質することができる。この改質ミクロフィブリル化セルロースを他の樹脂中に混合した際に凝集なく分散することができる。この分散性は、樹脂骨格中に加水分解性シリル基が導入されているため、分子運動が制御され、加水分解性シリル基同士の縮重合といった副反応が起き難いものと考えられる。さらに、本発明の改質ミクロフィブリル化セルロースを含有する樹脂組成物は、機械的物性、特に破壊靭性に優れた樹脂成形物を得ることができるものであるため、自動車分野、電気電子分野、土木建築分野、医療機器分野、浴槽台所用品などの成形品として使用できる。

Claims (9)

  1. セルロース表面に加水分解性シリル基含有樹脂(A)が結合または吸着した改質ミクロフィブリル化セルロースであって、
    珪素原子の含有量が0.01~0.5原子数%であることを特徴とする改質ミクロフィブリル化セルロース。
  2. 前記加水分解性シリル基含有樹脂(A)が、加水分解性シリル基含有アクリル系樹脂である請求項1に記載の改質ミクロフィブリル化セルロース。
  3. 前記加水分解性シリル基含有樹脂(A)の数平均分子量が、1000~3000である請求項1又は2記載の改質ミクロフィブリル化セルロース。
  4. 前記加水分解性シリル基含有樹脂(A)が、更に、加水分解性シリル基以外の官能基を有する請求項1~3の何れか1項に記載の改質ミクロフィブリル化セルロース。
  5. 前記加水分解性シリル基含有樹脂(A)が有する加水分解性シリル基以外の官能基が、エポキシ基である請求項4に記載の改質ミクロフィブリル化セルロース。
  6. 請求項1~5何れか1項に記載した改質ミクロフィブリル化セルロースを0.1~10重量%含有することを特徴とする樹脂組成物。
  7. 請求項4又は5記載の改質ミクロフィブリル化セルロースと、該改質ミクロフィブリル化セルロースが有する加水分解性シリル基以外の官能基と反応する官能基を有する樹脂(B)とを含有する樹脂組成物。
  8. 加水分解性シリル基とそれ以外の官能基を有する加水分解性シリル基含有樹脂(A)が結合または吸着した請求項4又は5記載の改質ミクロフィブリル化セルロースを0.1~10重量%含有し、
    更に、該改質ミクロフィブリル化セルロースが有する加水分解性シリル基以外の官能基と反応する官能基を有する樹脂(B)を含有し、
    前記加水分解性シリル基含有樹脂(A)が有する加水分解性シリル基以外の官能基と、該改質ミクロフィブリル化セルロースが有する加水分解性シリル基以外の官能基と反応する官能基を有する樹脂(B)の官能基とが反応したことを特徴とする樹脂複合材料。
  9. 加水分解性シリル基含有樹脂(A)と、ミクロフィブリル化セルロースとを接触させ、加熱することを特徴とする改質ミクロフィブリル化セルロースの製造方法。
PCT/JP2010/072950 2009-12-22 2010-12-21 改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料 WO2011078142A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011518616A JP4919136B2 (ja) 2009-12-22 2010-12-21 改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料
EP10839372.9A EP2518087B1 (en) 2009-12-22 2010-12-21 Modified microfibrillated cellulose and resin composite material containing the same
CN201080058878.0A CN102666591B (zh) 2009-12-22 2010-12-21 改性微纤化纤维素及含有其的树脂复合材料
US13/517,330 US8420735B2 (en) 2009-12-22 2010-12-21 Modified microfibrillated cellulose and resin composite material containing the same
KR1020127015467A KR101384735B1 (ko) 2009-12-22 2010-12-21 개질 마이크로 피브릴화 셀룰로오스 및 이를 함유하는 수지 복합 재료
CA2784758A CA2784758C (en) 2009-12-22 2010-12-21 Modified microfibrillated cellulose and resin composite material containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009290509 2009-12-22
JP2009-290509 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011078142A1 true WO2011078142A1 (ja) 2011-06-30

Family

ID=44195669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072950 WO2011078142A1 (ja) 2009-12-22 2010-12-21 改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料

Country Status (7)

Country Link
US (1) US8420735B2 (ja)
EP (1) EP2518087B1 (ja)
JP (1) JP4919136B2 (ja)
KR (1) KR101384735B1 (ja)
CN (1) CN102666591B (ja)
CA (1) CA2784758C (ja)
WO (1) WO2011078142A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133385A1 (ja) * 2012-03-08 2013-09-12 国立大学法人京都大学 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物
CN104045846A (zh) * 2014-05-30 2014-09-17 天津工业大学 双离子改性纤维素膜及其制备方法
JP2019500443A (ja) * 2015-11-09 2019-01-10 テーザ・ソシエタス・ヨーロピア アルコキシシラン基を含むカチオン重合性ポリアクリレートおよびその使用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2812868C (en) * 2010-09-29 2016-04-19 Dic Corporation Method for fibrillating cellulose, cellulose nanofiber, masterbatch, and resin composition
CN106414505B (zh) * 2013-09-06 2020-08-11 芬兰国家技术研究中心股份公司 表面改性的纤维素纳米纤维、生物复合树脂组合物及其制造方法
CN106255512B (zh) * 2014-04-21 2021-01-01 株式会社大赛璐 含有微小纤维状纤维素的崩解性颗粒组合物
JP6640623B2 (ja) * 2016-03-18 2020-02-05 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
JP2018024967A (ja) * 2016-08-09 2018-02-15 花王株式会社 微細セルロース繊維複合体
KR102440697B1 (ko) * 2017-12-11 2022-09-05 현대자동차주식회사 실릴화 마이크로 피브릴 셀룰로오스를 포함하는 폴리프로필렌 복합수지 조성물 및 이를 이용한 자동차 필러트림
JP7220512B2 (ja) * 2018-02-06 2023-02-10 大王製紙株式会社 樹脂組成物及びその製造方法
EP3802104A1 (en) * 2018-05-29 2021-04-14 OCV Intellectual Capital, LLC Glass fiber mat with low-density fibers
CN109435650A (zh) * 2018-11-21 2019-03-08 宁波精乐汽车部件有限公司 一种汽车前门窗框
CN110003919B (zh) * 2019-03-25 2020-11-17 武汉大学 一种无溶剂纳米纤维素流体及其制备方法
WO2022162642A1 (en) * 2021-02-01 2022-08-04 Chen George Dah Ren Coffee and/or vending machine with food waste management
CH719723A1 (de) * 2022-05-25 2023-11-30 Daetwyler Schweiz Ag Verfahren zur Herstellung von oberflächenmodifizierter mikrofibrillierter Cellulose

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038720B2 (ja) 1971-09-20 1975-12-11
JP2001072916A (ja) * 1999-09-03 2001-03-21 Daicel Chem Ind Ltd 塗料組成物
JP2002524618A (ja) 1998-09-15 2002-08-06 ロディア・シミ 変性表面を持つセルロースミクロフィブリル、それらの製造方法およびそれらの用途
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2008088259A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 親水性膜形成用組成物および親水性部材
JP2008266630A (ja) 2007-03-26 2008-11-06 Kyoto Univ 表面改質ミクロフィブリル化セルロース及びこれを含有してなる複合化樹脂

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723458B2 (ja) * 1991-03-27 1995-03-15 鐘淵化学工業株式会社 塗料またはコーティング剤用組成物
DE69623947T2 (de) * 1995-04-21 2003-06-05 Toshiba Silicone Beschichtungsharzmasse
CN1234877A (zh) * 1997-05-26 1999-11-10 松下电器产业株式会社 液晶取向膜及其制法以及用此取向膜的液晶显示装置及其制法
JP5211425B2 (ja) * 2005-10-28 2013-06-12 Dic株式会社 繊維素繊維加工用水性樹脂分散体の製造方法
JP4619266B2 (ja) 2005-10-31 2011-01-26 トヨタ紡織株式会社 自動車用高張力鋼板のプレス加工用の潤滑油
US20080177022A1 (en) * 2006-09-29 2008-07-24 Sumiaki Yamasaki Hydrophilic film forming composition and hydrophilic member
JP2009052016A (ja) * 2007-07-27 2009-03-12 Fujifilm Corp 組成物、成形体とその製造方法、およびフィルムとその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038720B2 (ja) 1971-09-20 1975-12-11
JP2002524618A (ja) 1998-09-15 2002-08-06 ロディア・シミ 変性表面を持つセルロースミクロフィブリル、それらの製造方法およびそれらの用途
JP2001072916A (ja) * 1999-09-03 2001-03-21 Daicel Chem Ind Ltd 塗料組成物
JP2005042283A (ja) 2003-07-08 2005-02-17 Kansai Tlo Kk 脂肪族ポリエステル組成物の製造方法とそれに用いるパルプ及びセルロース系繊維並びにそのミクロフィブリル化方法
JP2008088259A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 親水性膜形成用組成物および親水性部材
JP2008266630A (ja) 2007-03-26 2008-11-06 Kyoto Univ 表面改質ミクロフィブリル化セルロース及びこれを含有してなる複合化樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518087A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133385A1 (ja) * 2012-03-08 2013-09-12 国立大学法人京都大学 変性セルロースナノファイバー及び変性セルロースナノファイバーを含む樹脂組成物
CN104321348A (zh) * 2012-03-08 2015-01-28 Dic株式会社 改性纤维素纳米纤维及包含改性纤维素纳米纤维的树脂组合物
CN104045846A (zh) * 2014-05-30 2014-09-17 天津工业大学 双离子改性纤维素膜及其制备方法
JP2019500443A (ja) * 2015-11-09 2019-01-10 テーザ・ソシエタス・ヨーロピア アルコキシシラン基を含むカチオン重合性ポリアクリレートおよびその使用
US11060005B2 (en) 2015-11-09 2021-07-13 Tesa Se Cationically polymerisable polyacrylate containing alkoxysilane groups and use thereof

Also Published As

Publication number Publication date
CA2784758A1 (en) 2011-06-30
JPWO2011078142A1 (ja) 2013-05-09
JP4919136B2 (ja) 2012-04-18
EP2518087A4 (en) 2013-07-10
EP2518087A1 (en) 2012-10-31
KR20120084791A (ko) 2012-07-30
US8420735B2 (en) 2013-04-16
EP2518087B1 (en) 2014-07-16
CN102666591A (zh) 2012-09-12
CN102666591B (zh) 2015-11-25
KR101384735B1 (ko) 2014-04-14
CA2784758C (en) 2014-12-09
US20120309898A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP4919136B2 (ja) 改質ミクロフィブリル化セルロースおよびこれを含有する樹脂複合材料
JP5834847B2 (ja) セルロースの微細化方法、セルロースナノファイバー、マスタバッチ組成物及び樹脂組成物
CN110741020A (zh) 微细纤维素纤维、其制造方法、浆料及复合体
CN108137763A (zh) 接枝共聚物、交联颗粒、接枝交联颗粒、橡胶质聚合物、以及使用其的热塑性树脂组合物
JP6239871B2 (ja) 樹脂組成物及びその製造方法
CN105601878B (zh) 纳米纤维素晶须接枝水稀释型光固化pua树脂及制备与应用
KR20200093579A (ko) 미세화 소수 변성 셀룰로오스 섬유의 제조 방법
JP2009067817A (ja) 繊維強化複合材料およびその製造方法
JP7110691B2 (ja) 樹脂組成物および成形体
WO2015040884A1 (ja) 変性セルロースナノファイバーの製造方法
WO2018164132A1 (ja) 改質セルロース繊維の製造方法
JP2013018851A (ja) セルロース繊維、セルロース繊維含有重合体、樹脂組成物及び成形体。
Ahmadi et al. Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting
JP2018145571A (ja) 改質セルロース繊維の製造方法
Zhao et al. Dopamine-mediated pre-crosslinked cellulose/polyurethane block elastomer for the preparation of robust biocomposites
JP6857562B2 (ja) 化学修飾セルロース繊維
Necolau et al. Tailoring an effective interface between nanocellulose and the epoxidized linseed oil network through functionalization
JP7208784B2 (ja) 微細化疎水変性セルロース繊維の製造方法
JP5656100B1 (ja) 変性セルロースナノファイバーの製造方法
JP6429978B2 (ja) 樹脂組成物及びその製造方法
JP6954884B2 (ja) セルロース分散樹脂組成物、その製造方法、及びセルロース樹脂複合材
JP2022045900A (ja) セルロースナノファイバー用改質剤、改質セルロースナノファイバーの製造方法、改質セルロースナノファイバー及び繊維強化複合材料
WO2020138291A1 (ja) 改質セルロース繊維粉末
WO2022118888A1 (ja) 樹脂組成物、樹脂組成物の製造方法、及び樹脂
Kesmez et al. Mechanical, anti-bacterial, and easy-to-clean properties of hybrid polymer-based composites containing modified SiO 2 prepared by thermal polymerization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058878.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011518616

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2784758

Country of ref document: CA

Ref document number: 20127015467

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010839372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13517330

Country of ref document: US