WO2011077694A1 - リアクトル及びその製造方法 - Google Patents

リアクトル及びその製造方法 Download PDF

Info

Publication number
WO2011077694A1
WO2011077694A1 PCT/JP2010/007369 JP2010007369W WO2011077694A1 WO 2011077694 A1 WO2011077694 A1 WO 2011077694A1 JP 2010007369 W JP2010007369 W JP 2010007369W WO 2011077694 A1 WO2011077694 A1 WO 2011077694A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
soft magnetic
reactor
core
inorganic insulating
Prior art date
Application number
PCT/JP2010/007369
Other languages
English (en)
French (fr)
Inventor
大島泰雄
繁田進
赤岩功太
田村泰治
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Priority to KR1020127019388A priority Critical patent/KR101527268B1/ko
Priority to EP10838933.9A priority patent/EP2518740B1/en
Priority to CN201080058746.8A priority patent/CN102667977B/zh
Priority to US13/519,101 priority patent/US8810353B2/en
Priority to JP2011547295A priority patent/JP5739348B2/ja
Publication of WO2011077694A1 publication Critical patent/WO2011077694A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Definitions

  • the present invention relates to a reactor in which a reactor core made of a dust core is used and wound around the outer periphery of the reactor core, and a manufacturing method thereof.
  • a choke coil is used as an electronic device for a control power source such as an OA device, a solar power generation system, an automobile, or an uninterruptible power supply, and a ferrite magnetic core or a dust core is used as its core.
  • a control power source such as an OA device, a solar power generation system, an automobile, or an uninterruptible power supply
  • a ferrite magnetic core or a dust core is used as its core.
  • the ferrite core has a defect that the saturation magnetic flux density is small.
  • a dust core produced by molding metal powder has a higher saturation magnetic flux density than soft magnetic ferrite, and thus has excellent DC superposition characteristics.
  • the powder magnetic core is required to have a magnetic characteristic capable of obtaining a large magnetic flux density with a small applied magnetic field and a magnetic characteristic that an energy loss due to a change in the magnetic flux density is small due to demands such as improvement of energy exchange efficiency and low heat generation.
  • iron loss There is an energy loss called iron loss (Pc) that occurs when a dust core is used in an alternating magnetic field.
  • This iron loss (Pc) is represented by the sum of hysteresis loss (Ph) and eddy current loss (Pe) as shown in [Formula 1]. As shown in [Equation 2], this hysteresis loss is proportional to the operating frequency, and the eddy current loss (Pe) is proportional to the square of the operating frequency.
  • Such a powder magnetic core is used for a switching power supply for electronic equipment and the like, and is used as a core of a reactor for removing an AC component (noise) superimposed on a DC output.
  • a high saturation magnetic flux density is required for the effect of noise removal.
  • the dust core that is the core of the reactor is required to have a low iron loss.
  • the current value for saturating the magnetic core is increased, and the saturation of the magnetic flux density is suppressed even when a large current is passed, and the core of the reactor is ensured to ensure the function as the reactor magnetic core.
  • a method is known in which a plurality of gaps are formed perpendicular to the magnetic path of the dust core and, for example, a resinous insulating material (nonmagnetic) is disposed in the gap (see, for example, References 1 to 3).
  • the present invention has been made to solve the above-described problems, and its purpose is to uniformly disperse the periphery of soft magnetic powder with insulating fine powder and to form a magnetic core produced by high-pressure molding as a reactor.
  • a dust core that maintains a high density and has a low permeability by using it as a magnetic core, the DC superposition characteristics of the reactor core can be improved. It is to provide a manufacturing method.
  • the reactor of the present invention includes a soft magnetic powder and a soft magnetic powder obtained by mixing 0.4 to 1.5 wt% of an inorganic insulating powder with respect to the soft magnetic powder and performing heat treatment.
  • the inorganic insulating powder is mixed with a binder insulating resin and granulated, and the mixture is mixed with a lubricating resin, and the mixture is pressure-molded to produce a molded body.
  • a powder magnetic core is produced by annealing, a conductive wire is wound around the powder magnetic core, and a gap is not provided perpendicular to the magnetic path of the powder magnetic core serving as the core of the reactor.
  • the powder magnetic core to be used and the reactor described below are also one embodiment of the present invention.
  • (1) One prepared by mixing a soft magnetic powder and an inorganic insulating powder and then performing a heat treatment in a non-oxidizing atmosphere at a temperature of 1000 ° C. or higher and below the temperature at which the soft magnetic powder starts sintering.
  • the inorganic insulating powder has an average particle size of 7 to 500 nm, or a soft component having a silicon component of 0.0 to 6.5 wt%. Using powder.
  • the reactor of the present invention the following effects can be achieved by using a dust core excellent in DC superposition characteristics.
  • the core of the reactor without the gap can prevent the winding and the core from generating heat due to the leakage magnetic flux in the vicinity of the gap, thereby preventing the circuit efficiency from being lowered.
  • Noise to peripheral devices due to leakage magnetic flux in the vicinity of the gap can be prevented, and eddy current loss of peripheral conductors can be reduced.
  • Since no gap is formed in the core, the assembly of the core is simple and inexpensive.
  • Noise is generated by collision and separation of the gap and the magnetic body in each gap portion during driving. Further, the present invention can improve the direct current superposition characteristics of the powder magnetic core, so that the reactor can be downsized.
  • the flowchart which shows the manufacturing method of the powder magnetic core of an Example The figure which showed the sum total of the half value width of each surface of (110), (200), (211) in the 1st characteristic comparison.
  • the figure which showed the direct current BH characteristic of the dust core in the 2nd characteristic comparison The figure which showed the relation between differential permeability and magnetic flux density from the direct current BH characteristic in the second characteristic comparison.
  • the figure which showed the direct current BH characteristic of the dust core in the 4th characteristic comparison The figure which showed the relation between differential permeability and magnetic flux density from direct current BH characteristic in the 4th characteristic comparison.
  • the figure which shows the relationship between direct current superposition current and an inductance in the 4th characteristic comparison The figure which shows the relationship between direct current superposition current and an inductance in the 4th characteristic comparison.
  • the figure which shows the relationship between direct current superposition current and an inductance in the 4th characteristic comparison The figure which shows the relationship between direct current superposition current and an inductance in the 4th characteristic comparison.
  • the method for manufacturing a dust core according to the present invention having a reactor core includes the following steps as shown in FIG. (1) A first mixing step (step 1) in which an inorganic insulating powder is mixed with a soft magnetic powder. (2) A heat treatment step (step 2) in which heat treatment is performed on the mixture that has undergone the first mixing step. (3) A granulation step (step 3) in which a binder insulating resin is mixed with the soft magnetic powder and the inorganic insulating powder that have undergone the heat treatment step. (4) A second mixing step (step 4) in which a lubricating resin is mixed with the soft magnetic powder granulated with the binding insulating resin.
  • step 5 A molding step in which the mixture that has undergone the second mixing step is pressure-molded to produce a molded body.
  • An annealing process step 6) of annealing the molded body that has undergone the molding process.
  • soft magnetic powder mainly composed of iron and inorganic insulating powder are mixed.
  • a soft magnetic powder having an average particle diameter of 5 to 30 ⁇ m and a silicon component of 0.0 to 6.5 wt% prepared by a gas atomizing method, a water gas atomizing method and a water atomizing method is used.
  • the average particle size is larger than the range of 5 to 30 ⁇ m, the eddy current loss (Pe) increases.
  • the average particle size is smaller than the range of 5 to 30 ⁇ m, the hysteresis loss (Ph) due to density reduction increases.
  • the silicon component of the soft magnetic powder is preferably 6.5 wt% or less with respect to the soft magnetic powder, and if it is more than this, the moldability is poor, and the density of the powder magnetic core is lowered and the magnetic properties are lowered. Will occur.
  • the shape of the soft magnetic powder is indefinite, and the surface of the powder becomes uneven. For this reason, it is difficult to uniformly form the inorganic insulating powder on the surface of the soft magnetic powder. Furthermore, stress concentrates on the convex part of the powder surface during molding, and dielectric breakdown is likely to occur. Therefore, for mixing the soft magnetic powder and the inorganic insulating powder, an apparatus that develops mechanochemical effects in the powder, such as a V-type mixer, a W-type mixer, or a pot mill, is used. In addition, mixing and surface modification may be performed simultaneously by using a mixer of a type that gives mechanical energy such as compressive force and shear force to the particles.
  • the mixed powder in which the inorganic insulating powder is mixed with the soft magnetic powder is subjected to a flattening process for uniformly dispersing the inorganic insulating powder on the surface and making the powder surface uneven.
  • the direct current superimposition characteristic depends on the aspect ratio of the powder, and the aspect ratio may be set to 1.0 to 1.5 by this treatment.
  • This method is performed by mechanically plastically deforming the surface. Examples include mechanical alloying, ball mills, and attritors.
  • the average particle size of the inorganic insulating powder mixed here is 7 to 500 nm. If the average particle size is less than 7 nm, granulation is difficult, and if it exceeds 500 nm, it cannot be uniformly dispersed on the surface of the soft magnetic powder, and insulation cannot be maintained.
  • the addition amount is preferably 0.4 to 1.5 wt%. When the content is less than 0.4 wt%, the performance cannot be sufficiently exhibited. When the content exceeds 1.5 wt%, the density is remarkably lowered, and thus the magnetic properties are lowered. Examples of such an inorganic insulating material, MgO (mp 2800 °) a melting point of 1500 ° C. greater, Al 2 O 3 (melting point 2046 °), TiO 2 (melting point 1640 °), among the CaO powder (melting point 2572 °) It is desirable to use at least one kind.
  • an insulating powder such as talc or calcium carbonate can be used regardless of the melting point temperature.
  • the temperature after the first mixing step is 1000 ° C. or higher and the temperature at which the soft magnetic powder starts sintering.
  • Heat treatment is performed in the following non-oxidizing atmosphere.
  • the non-oxidizing atmosphere may be a reducing atmosphere such as a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere. That is, it is preferably not an oxidizing atmosphere.
  • the inorganic insulating powder uniformly dispersed on the surface of the soft magnetic alloy powder in the first mixing step serves to prevent the soft magnetic powder from being fused with each other during the heat treatment.
  • the domain wall can be obtained by removing strain existing in the soft magnetic powder, removing defects such as crystal grain boundaries, and growing (enlarging) crystal grains in the soft magnetic powder particles. The movement becomes easy, the coercive force can be reduced, and the hysteresis loss can be reduced.
  • heat treatment is performed at a temperature at which the soft magnetic powder sinters, the soft magnetic powder sinters and hardens, which makes it impossible to use as a material for the dust core. Therefore, it is necessary to perform the heat treatment at a temperature below the temperature at which the soft magnetic powder starts sintering.
  • This heat treatment step can be omitted depending on the type of inorganic insulating powder used.
  • a uniform dispersion on the surface of the soft magnetic powder and a flattening process for making the unevenness of the powder surface uniform are performed. Therefore, the lower the hardness of the inorganic insulating powder, Therefore, hysteresis loss can be reduced.
  • a double-structured insulating coating is formed for the purpose of uniformly dispersing the inorganic insulating powder and the purpose of improving adhesion.
  • an adhesion strengthening layer is formed by a silane coupling agent on the surface of the soft magnetic alloy powder. This silane coupling agent is added to increase the adhesion between the inorganic insulating powder and the soft magnetic powder, and the optimum additive is 0.1 to 0.5 wt%. If the amount is less than this, the adhesion amount effect is insufficient, and if it is more than this, the molding density is lowered and the magnetic properties after annealing are deteriorated.
  • a binder layer made of silicone resin is formed on the surface of the soft magnetic alloy powder on which an adhesion layer made of a silane coupling agent is formed.
  • This silicone resin is added to improve the binding performance and to prevent the occurrence of vertical streaks on the core wall surface due to the contact between the mold and the powder during molding, and the amount added is 0.5 to 2.0 wt%. Is optimal. If the amount is less than this, the insulation performance is lowered, and vertical streaks to the core wall surface occur during molding. If the amount is too large, the molding density is lowered and the magnetic properties after annealing are deteriorated.
  • Second mixing step In the second mixing step, the mixture having undergone the granulation step for the purpose of reducing the punching pressure of the upper punch at the time of molding and preventing the occurrence of vertical stripes on the core wall surface due to contact between the mold and the powder.
  • Lubricating resin is mixed with
  • waxes such as stearic acid, stearate, stearic acid soap, and ethylene bisstearamide can be used. By adding these, it is possible to improve the slippage between the granulated powders, so that the density during mixing can be improved and the molding density can be increased. Furthermore, it is possible to prevent the powder from being baked into the mold.
  • the amount of the lubricating resin to be mixed is 0.2 to 0.8 wt% with respect to the soft magnetic powder. If it is less than this, a sufficient effect cannot be obtained, and vertical stripes are generated on the wall surface of the forming core, and the punching pressure increases, and in the worst case, the upper punch cannot be removed. If the amount is too large, the molding density is lowered and the magnetic properties after annealing are deteriorated.
  • the soft magnetic powder bound by the binder as described above is put into a mold and uniaxially molded by a die floating method to form a molded body.
  • the pressure-dried binding insulating resin acts as a binder during molding.
  • the pressure at the time of molding may be the same as in the prior art, and is preferably about 1500 MPa in the present invention.
  • the powder magnetic core is formed by performing an annealing process at a temperature exceeding 600 ° C. in N 2 gas or N 2 + H 2 gas non-oxidizing atmosphere. Produced. This is because if the annealing temperature is raised too much, the magnetic characteristics deteriorate due to the deterioration of the insulation performance, and in particular, the eddy current loss greatly increases, thereby suppressing the iron loss from increasing.
  • the binding insulating resin is thermally decomposed when it reaches a certain temperature during the annealing process.
  • the binding insulating resin adheres to the surface of the soft magnetic powder. Therefore, even if heat treatment is performed at a high temperature, the insulation does not deteriorate and hysteresis loss due to oxidation does not increase. It also serves to improve mechanical strength.
  • Measurement item As measurement items, permeability, maximum magnetic flux density, and direct current superimposition are measured by the following method. The magnetic permeability was calculated from the inductance at 20 kHz and 0.5 V by applying a primary winding (20 turns) to the produced dust core and using an impedance analyzer (Agilent Technology: 4294A).
  • the core loss is obtained by applying a primary winding (20 turns) and a secondary winding (3 turns) to the dust core, and using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232) as a magnetic measurement instrument.
  • the direct current superimposition property was measured by using an LCR meter for the produced reactor.
  • Example 1 an Fe-Si alloy powder having an average particle diameter of 22 ⁇ m and having an average particle diameter of 22 ⁇ m prepared by gas atomization was added to an inorganic insulating powder as an average particle diameter of 13 nm (specific surface area of 100 m 2 / g) Add 0.4 wt% of Al 2 O 3 Thereafter, the samples of Examples 1 to 3 are reduced to 950 ° C. to 1150 ° C. in 25% hydrogen (the remaining 75% is nitrogen) in a reducing atmosphere for 2 hours. Holding and heat treatment were performed.
  • Table 1 shows the half width evaluation of the peaks of each of (110), (200), and (211) in XRD for Examples 1 to 3 and Comparative Example 1
  • FIG. FIG. 6 is a diagram showing the total half width of each surface of (110), (200), and (211) for Examples 1 to 3 and Comparative Example 1.
  • the surface of the soft magnetic powder can be modified by heat-treating the soft magnetic powder at 1000 ° C. or higher.
  • irregularities on the surface of the magnetic powder can be removed, and magnetic flux concentrates where the gap between the magnetic powders is small, preventing the magnetic flux density near the contact from increasing and hysteresis loss from increasing. Can do.
  • the gap between the magnetic powders uniform, the gap provided between the magnetic powders becomes a dispersive gap, and the direct current superimposition characteristics can be improved.
  • heat treatment is performed at a temperature at which the soft magnetic powder sinters, the soft magnetic powder sinters and hardens, which makes it impossible to use as a powder magnetic core material. Therefore, it is necessary to perform the heat treatment at a temperature below the temperature at which the soft magnetic powder starts sintering.
  • the heat treatment temperature of the powder magnetic core used in the reactor is set to 1000 ° C. or higher and below the temperature at which the soft magnetic powder starts sintering. Accordingly, it is possible to provide a reactor and a reactor manufacturing method using a dust core that can effectively reduce hysteresis loss without being sintered and hardened during heat treatment of the soft magnetic powder.
  • a sample used in this characteristic comparison was prepared by adding an inorganic insulating powder as described below to an Fe—Si alloy powder having an average particle diameter of 22 ⁇ m and a silicon component of 3.0 wt% prepared by a gas atomization method.
  • Comparative Example 2 of Item A no inorganic insulating powder is added.
  • Comparative Examples 3 and 4 of Item B 0.20 to 0.25 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as the inorganic insulating powder.
  • Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as an inorganic insulating powder in an amount of 0.40 to 1.50 wt%.
  • Comparative Example 5 and Examples 11 to 13 of Item C 0.25 to 1.00 wt% of Al 2 O 3 with a thickness of 60 nm (specific surface area 25 m 2 / g) is added as the inorganic insulating powder.
  • Comparative Example 6 and Example 14 of Item D 0.20 to 0.70 wt% of MgO having a thickness of 230 nm (specific surface area of 160 m 2 / g) is added as the inorganic insulating powder.
  • Table 2 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 4 to 14 and Comparative Examples 2 to 6. It is the table
  • FIG. 3 is a graph showing the relationship of DC superposition characteristics with respect to the amount of fine powder added in Examples 4 to 14 and Comparative Examples 2 to 6.
  • 4 is a diagram showing the DC BH characteristics of Examples 4 and 7 and Comparative Example 2.
  • FIG. 5 shows the relationship between the differential permeability and the magnetic flux density based on the DC BH characteristics of FIG. It is a thing.
  • The% of the direct current BH characteristics in Table 2 is the ratio ( ⁇ (1T) / ⁇ (0T)) of the magnetic permeability ⁇ (0T) at the magnetic flux density 0T and the magnetic permeability ⁇ (1T) at the 1T.
  • a large value means excellent DC superposition characteristics. That is, as can be seen from Table 2, in the soft magnetic powder produced by the gas atomization method with Si of 3.0 wt%, Comparative Examples 3 and 4 and Examples 4 to 10 in Item B, Comparative Example 5 and Example in Item C In Comparative Examples 6 and 14 of Items 11 to 13 and Item D, it is understood that the DC BH characteristics are improved by adding 0.4 wt% or more of fine powder in all items.
  • the higher the density the smaller the hysteresis loss.
  • the density is reduced, but the hysteresis loss (Ph) is reduced.
  • the fine powder is uniformly dispersed to make the gap between the magnetic powders uniform, and the hysteresis loss due to the concentration of magnetic flux in the gap between the magnetic powders is reduced.
  • a hysteresis loss (Ph) can be reduced.
  • the gap provided between the magnetic powders becomes a dispersive gap, and the direct current superimposition characteristics can be improved.
  • the amount of the inorganic insulating material added to the soft magnetic powder of the Fe-Si alloy powder of 3.0 wt% silicon component of the powder magnetic core used for the reactor is 0.4% with respect to the soft magnetic powder. It is good that it is ⁇ 1.5 wt%. If it is less than this, a sufficient effect cannot be obtained, and if it exceeds 1.5 wt%, it becomes a factor of direct current BH characteristics due to density reduction. Accordingly, there is provided a reactor and a reactor manufacturing method using a dust core that can effectively reduce hysteresis loss without sintering and hardening even during soft magnetic powder having a silicon component of 3.0 wt%. Can be provided.
  • the sample used in this characteristic comparison was prepared by adding an inorganic insulating powder to a Fe-Si alloy powder having an average particle size of 22 ⁇ m and having an average particle diameter of 22 ⁇ m and having an average particle diameter of 22 ⁇ m as described below. And was mixed for 30 minutes.
  • Comparative Example 7 of Item E no inorganic insulating powder is added.
  • Comparative Examples 8 and 9 of Item F 0.15 to 0.25 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as the inorganic insulating powder.
  • 0.42 to 1.00 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as the inorganic insulating powder.
  • Table 3 shows the relationship between soft magnetic powder, inorganic insulating powder type and addition amount, first heat treatment temperature, magnetic permeability, and iron loss per unit volume (core loss) for Examples 15 to 18 and Comparative Examples 7 to 9. It is the table
  • FIG. 6 is a graph showing the relationship of DC superposition characteristics with respect to the amount of fine powder added in Examples 15 to 18 and Comparative Examples 8 and 9.
  • The% of DC BH characteristics in Table 3 is the ratio ( ⁇ (1T) / ⁇ (0T)) of magnetic permeability ⁇ (0T) at magnetic flux density 0T and magnetic permeability ⁇ (1T) at 1T.
  • a large value means excellent DC superposition characteristics. That is, as can be seen from Table 3 and FIG. 6, in the soft magnetic powders produced by the gas atomization method with Si of 6.5 wt%, the fine powders of 0. 9 and Comparative Examples 8 and 9 and Examples 15 to 18 were reduced to 0. It can be seen that the DC BH characteristics are improved by adding 4 wt% or more.
  • the higher the density the smaller the hysteresis loss.
  • the density is reduced, but the hysteresis loss (Ph) is reduced.
  • the fine powder is uniformly dispersed to make the gap between the magnetic powders uniform, and the hysteresis loss due to the concentration of magnetic flux in the gap between the magnetic powders is reduced.
  • a hysteresis loss (Ph) can be reduced.
  • the gap provided between the magnetic powders becomes a dispersive gap, and the direct current superimposition characteristics can be improved.
  • the amount of the inorganic insulating material added to the soft magnetic powder of the Fe-Si alloy powder of 6.5 wt% silicon component of the dust core used for the reactor is 0.4% with respect to the soft magnetic powder. It is good that it is ⁇ 1.5 wt%. If it is less than this, a sufficient effect cannot be obtained, and if it exceeds 1.5 wt%, it becomes a factor of direct current BH characteristics due to density reduction. Accordingly, there is provided a reactor and a reactor manufacturing method using a dust core that can effectively reduce hysteresis loss without sintering and hardening even during soft magnetic powder having a silicon component of 6.5 wt%. Can be provided.
  • Example 19 of Item G 13 nm of Al 2 O 3 (specific surface area 100 m 2 / g) was added as an inorganic insulating material to pure iron having a particle size of 75 ⁇ m or less prepared by a water atomization method, and a V-type mixer was used. And mix for 30 minutes.
  • Example 20 of Item H pure iron with a particle size of 75 ⁇ m or less produced by the water atomization method is flattened, and pure iron with a circularity of 0.85 is mixed with 13 nm (ratio of Al 2 O 3 as an inorganic insulating substance).
  • Example 21 of Item I 13 nm of Al 2 O 3 (specific surface area of 100 m 2 / g) was added as an inorganic insulating material to Fe—Si alloy powder having a particle size of 63 ⁇ m or less and having a particle size of 63 ⁇ m or less prepared by water atomization. And mix for 30 minutes using a V-type mixer.
  • Table 4 is a table showing the relationship between the types and addition amounts of the soft magnetic powder and the inorganic insulating powder, the first heat treatment temperature, the magnetic permeability, and the iron loss (core loss) per unit volume for Examples 19 to 21.
  • FIG. 7 is a diagram showing the DC BH characteristics of Examples 19 to 21, and FIG. 8 shows the relationship between the differential magnetic permeability and the magnetic flux density based on the DC BH characteristics of FIG.
  • The% of the direct current BH characteristics in Table 4 is the ratio ( ⁇ (1T) / ⁇ (0T)) of the magnetic permeability ⁇ (0T) at a magnetic flux density of 0T and the magnetic permeability ⁇ (1T) at 1T.
  • a large value means excellent DC superposition characteristics. That is, as can be seen from Table 4, also in Examples 19 and 20 in which the Si component is 0 and Example 21 in which the Si component is 1.0 wt%, the gas atomization method with Si of 3.0 to 6.5 wt% is used. It can be seen that the direct current BH characteristics are improved by adding the inorganic insulating powder in the same manner as the produced soft magnetic powder. Further, comparing Examples 20 and 21 of FIG. 8, it can be seen that those subjected to the flattening process are excellent in DC superposition characteristics.
  • the example 20 in which the flattening process is performed is superior to the example 19 in which the flattening process is not performed on the soft magnetic powder, and the relative permeability in the applied magnetic field is superior.
  • the dust core has a characteristic that the DC superposition characteristic is excellent when the density is high, and the DC superposition characteristic is improved by increasing the density of the dust core.
  • the soft magnetic alloy powder of the powder magnetic core used for the reactor is a low loss powder magnetic core by using soft magnetic powder of Fe-Si alloy powder with a silicon component of 0 to 6.5 wt%.
  • by performing the flattening process together it is possible to provide a reactor and a reactor manufacturing method using a dust core having a higher density and excellent DC superposition characteristics.
  • a sample used in this characteristic comparison was prepared by adding an inorganic insulating powder as described below to an Fe—Si alloy powder having an average particle diameter of 22 ⁇ m and a silicon component of 3.0 wt% prepared by a gas atomization method.
  • an inorganic insulating powder as described below to an Fe—Si alloy powder having an average particle diameter of 22 ⁇ m and a silicon component of 3.0 wt% prepared by a gas atomization method.
  • 0.25 to 1.00 wt% of Al 2 O 3 having a thickness of 13 nm (specific surface area 100 m 2 / g) is added as an inorganic insulating powder.
  • Samples of items J, K, and M were pressure-molded at a pressure of 1500 MPa at room temperature, and samples of item L were pressure-molded at a pressure of 1200 MPa at room temperature. Thereafter, a dust core having a ring shape with an outer diameter of 60 mm, an inner diameter of 30 mm, and a height of 25 mm was produced. And these powder magnetic cores were annealed at 625 ° C. for 30 minutes in a nitrogen atmosphere (N 2 + H 2 ). For these samples, a copper wire having a wire diameter of 2.2 mm was wound (turned) for 60 turns, and a reactor was prepared. The direct current superposition characteristics were measured with an LCR meter.
  • Table 5 is a table showing the relationship between the added amount of the inorganic insulating powder, the density, the density of the magnetic part, and the magnetic permeability for Examples 22 to 24 and Comparative Examples 10 to 12. From Table 2, it can be seen that the density, the density of the magnetic portion, and the magnetic permeability decrease as the amount of the inorganic insulating powder added is increased.
  • FIG. 9 is a diagram showing the relationship between the DC superimposed current and the inductance for Example 22 and Comparative Example 10. Compared to Example 22, Comparative Example 10 in FIG. 9 shows that the inductance of Comparative Example 10 is larger at 12 A or less, but the inductance of Comparative Example 10 is reduced when the current exceeds 12 A. That is, it can be seen that the reduction rate of the inductance is larger in Comparative Example 10 and the reactor is more affected by the inductance.
  • FIG. 10 is a diagram showing the relationship between the DC superimposed current and the inductance in each example and comparative example for Example 22 and Comparative Examples 11 and 12. From FIG. 10, comparing Example 22 and Comparative Example 12, it can be seen that Comparative Example 12 having a gap in the reactor has a lower inductance reduction rate at 25 A or more. That is, it can be seen that excellent superposition characteristics can be obtained by providing a gap in the reactor even if the amount of inorganic insulating powder added is small.
  • FIG. 11 is a diagram showing the relationship between the DC superimposed current and the inductance in each of Examples and Comparative Examples for Examples 23 and 24 and Comparative Example 11. From FIG. 11, when Examples 23 and 24 are compared with Comparative Example 12, even in Examples 23 and 24 in which no gap is provided in the reactor, the DC superimposition characteristics are the same as in Comparative Example 12 in which a gap is provided in the reactor. I understand that. *
  • FIG. 12 is a diagram showing the relationship between the superimposed DC current and the inductance in Examples and Comparative Examples for Examples 23 and 24 and Comparative Example 12.
  • Comparative Example 12 the density was reduced by lowering the pressure during molding, and the L value was adjusted to that of Examples 23 and 24. However, it can be seen that the L value greatly decreases at 10 A or more. That is, it can be seen that the direct current superposition characteristics can be improved by adding insulating powder and molding at a predetermined pressure as in Examples 23 and 24. *
  • the soft magnetic powder of the powder magnetic core used for the reactor and the inorganic insulating powder of 0.4 wt% to 1.5 wt% are mixed, and the first heat treatment temperature is 1000 ° C or higher and the soft magnetic powder starts sintering.
  • a reactor using a dust core produced by heat treatment in a non-oxidizing atmosphere at a temperature lower than the temperature to be used as a reactor core a reactor with excellent DC superposition characteristics that does not significantly reduce the L value (inductance) at a high magnetic field And the manufacturing method can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 高磁界でL値(インダクタンス)が大きく低下しない優れた直流重畳特性のリアクトルとその製造方法を提供する。第1混合工程では、鉄を主とする軟磁性粉末と軟磁性粉末に対して0.4wt%~1.5wt%の無機絶縁粉末を混合機を使用して混合する。第1混合工程を経た混合物に対して1000℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化性雰囲気中で熱処理を行う。造粒工程では、第1層目として0.1~0.5wt%のシランカップリング剤を添加し密着強化層を形成する。第2層目としてシランカップリング剤による密着強化層を形成した軟磁性合金粉末に、0.5~2.0wt%のシリコーンレジンを添加し結着層を形成する。その後、潤滑性樹脂を混合し、加圧成形することにより、成形体を形成する。焼鈍工程では、前記成形体に対して、非酸化雰囲気中にて焼鈍処理を行うことにより作製した圧粉磁心を用いてリアクトルを形成する。

Description

リアクトル及びその製造方法
 本発明は、圧粉磁心よりなるリアクトルコアを用い、リアクトルコアの外周に巻き線を施したリアクトル及びその製造方法に関する。
 OA機器、太陽光発電システム、自動車、無停電電源などの制御用電源には電子機器としてチョークコイルが用いられており、そのコアとして、フェライト磁心や圧粉磁心が使用されている。これらの中で、フェライト磁心は飽和磁束密度が小さいと言う欠点を有している。これに対して、金属粉末を成形して作製される圧粉磁心は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重畳特性に優れている。
 圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、小さな印加磁界で、大きな磁束密度を得ることが出来る磁気特性と、磁束密度変化におけるエネルギー損失が小さいという磁気特性が求められる。エネルギー損失には、圧粉磁心を交流磁場で使用した場合に生じる鉄損(Pc)と呼ばれるものがある。この鉄損(Pc)は、[式1]に示すように、ヒステリシス損失(Ph)、渦電流損失(Pe)の和で表される。このヒステリシス損失は[式2]に示すように、動作周波数に比例し、渦電流損失(Pe)は動作周波数の2乗に比例する。そのため、ヒステリシス損失(Ph)は低周波領域で支配的になり、渦電流損失(Pe)は高周波領域で支配的になる。圧粉磁心は、この鉄損(Pc)の発生を小さくする磁気特性が求められている。
 [式1]Pc=Ph+Pe・・・(1)
 [式2]Ph=Kh×f Pe=Ke×f・・・(2)
     Kh:ヒステリシス損係数 Ke=渦電流損係数 f=周波数
 圧粉磁心のヒステリシス損失(Ph)を低減するためには、磁壁の移動を容易にすればよく、そのためには軟磁性粉末粒子の保磁力を低下させればよい。なお、この保磁力を低減することで、初透磁率の向上とヒステリシス損失の低減が図れる。渦電流損失は[式3]で示されるように、コアの比抵抗に反比例する。
 [式3]Ke=k1Bm/ρ・・・(3)
 k1:係数、Bm:磁束密度、t:粒子径(板材の場合厚さ)、ρ:比抵抗
 このような圧粉磁心は、電子機器用スイッチング電源等に用いられ、直流出力に重畳する交流成分(ノイズ)を除去するリアクトルのコアとして使用される。リアクトルのコアとして用いられる圧粉磁心では、ノイズ除去の効果のために、高い飽和磁束密度が要求される。また、リアクトルには電源装置の主電流が流れるため、圧粉磁心の損失が大きいと多量の熱が発生する。この発熱を防止するために、リアクトルのコアとなる圧粉磁心は、低鉄損であることが求められる。
 そこで、図13に示すように、磁心を飽和させる電流値を大きくし、大電流を流しても磁束密度の飽和が抑制されて、リアクトル磁心としての機能が確保するために、リアクトルのコアとなる圧粉磁心の磁路に直交して複数個のギャップを形成し、そのギャツプに例えば樹脂性の絶縁材(非磁性)を配置する方法が知られている(例えば、参考文献1~3参照)
 しかしながら、特許文献1~3の発明では、ギャップ付近の漏れ磁束が巻き線、コアの発熱を引き起こし、これをリアクトルに用いた場合、回路効率が低下する。また、漏れ磁束が周辺機器に対するノイズ源になるとともに、周辺の導体に渦電流損失を誘発する。さらに、構造上、コアの組み立て工程が複雑になりコストが高くなる問題や駆動時に各ギャップ部において、ギャップと磁性体が衝突、離反することで騒音が発生するなどの問題があった。
 そこで、リアクトル磁心にギャップを設けた場合、そのギャップに起因する諸問題を解消又は軽減するために、リアクトル磁心として低透磁率材としてナノ結晶材料を用いてギャップを無くしたリアクトルも知られている。(例えば、特許文献4,5参照)
特開2004-095935号公報 特開2007-012866号公報 特開2009-224584号公報 特開2006-344867号公報 特開2006-344868号公報
 しかしながら、特許文献4,5で使用するナノ結晶材料を利用した圧粉磁心では、粉末自体が固いため、成形が困難となり圧粉磁心の密度が低くなる(理論密度の85%以下)。そのため、ナノ結晶材料で作製した圧粉磁心の透磁率は、低く出来るが、透磁直流重畳特性が劣化する。また、材料自体の最大磁束密度が小さいため、リアクトルとして使用しても高磁界でL値(インダクタンス)が大きく低下するという問題点がある。
 本発明は、上述した課題を解決するためになされたものであり、その目的は、軟磁性粉末の周囲を絶縁性微粉末で均一に分散し、高圧成形することで作製した圧粉磁心をリアクトル磁心として利用することで、高密度を保ち、透磁率が低い圧粉磁心を利用することにより、リアクトル磁心の直流重畳特性を改善できるので、リアクトルの小型化が可能となるギャップがいらないリアクトル及びその製造方法を提供することである。
 前記の目的を達成するために、本発明のリアクトルは、軟磁性粉末と軟磁性粉末に対して0.4wt%~1.5wt%の無機絶縁粉末を混合し、熱処理を施した軟磁性粉末と無機絶縁粉末とに結着性絶縁樹脂を混合して造粒し、その混合物に対して潤滑性樹脂を混合し、その混合物を、加圧成形処理して成形体を作製し、その成形体を焼鈍処理することにより圧粉磁心を作製し、その圧粉磁心に導線を巻回し、リアクトルのコアとなる圧粉磁心の磁路に直交してギャップを設けないことを特徴とする。
 なお、使用する圧粉磁心が以下の述べるリアクトル及びその製造方法も本発明の一形態である。
 (1)軟磁性粉末と無機絶縁粉末とを混合した後に、1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことにより作製したもの。
 (2)軟磁性粉末の表面に均一に分散し、絶縁性を保持するために、無機絶縁粉末の平均粒子径が7~500nmとしたり、珪素成分が0.0~6.5wt%の軟磁性粉末を使用したもの。
 (3)珪素成分が0~6.5%の前記軟磁性合金粉末を使用したもの。
 本発明のリアクトルによれば、直流重畳特性に優れた圧粉磁心を用いることで、以下のような効果を奏することができる。
(1)ギャップのないリアクトルのコアにより、ギャップ付近の漏れ磁束による巻き線及びコアの発熱を防止し、回路効率が低下を防止することできる。
(2)ギャップ付近の漏れ磁束による周辺機器に対するノイズを防止し、周辺の導体の渦電流損失を低減できる。
(3)コアにギャップを形成しないので、コアの組み立てが簡易であり、安価である。
(4)駆動時に各ギャップ部において、ギャップと磁性体が衝突、離反することで騒音が発生する。さらに、本発明は圧粉磁心の直流重畳特性を改善できるため、リアクトルの小型化が可能となる。
実施例の圧粉磁心の製造方法を示すフローチャート 第1の特性比較において、(110)、(200)、(211)の各面の半価幅の合計を示した図 第2の特性比較において、微粉末の添加量に対する直流重畳特性の関係を示す図 第2の特性比較において、圧粉磁心の直流BH特性を示した図 第2の特性比較において、直流BH特性から、微分透磁率と磁束密度の関係を示した図 第3の特性比較において、微粉末の添加量に対する直流重畳特性の関係を示す図 第4の特性比較において、圧粉磁心の直流BH特性を示した図 第4の特性比較において、直流BH特性から、微分透磁率と磁束密度の関係を示した図 第4の特性比較において、直流重畳電流とインダクタンスとの関係を示す図 第4の特性比較において、直流重畳電流とインダクタンスとの関係を示す図 第4の特性比較において、直流重畳電流とインダクタンスとの関係を示す図 第4の特性比較において、直流重畳電流とインダクタンスとの関係を示す図 従来のコアにギャップを有するリアクトルを示す断面図
[1.圧粉磁心の製造工程]
 本発明のリアクトルコアとする圧粉磁心の製造方法は、図1に示すような次のような各工程を有する。
 (1)軟磁性粉末に無機絶縁粉末を混合する第1混合工程(ステップ1)。
 (2)第1混合工程を経た混合物に対して熱処理を施す熱処理工程(ステップ2)。
 (3)熱処理工程を経た軟磁性粉末と無機絶縁粉末とに結着性絶縁樹脂を混合する造粒工程(ステップ3)。
 (4)結着性絶縁樹脂で造粒した軟磁性粉末に対して、潤滑性樹脂を混合する第2混合工程(ステップ4)。
 (5)第2混合工程を経た混合物を、加圧成形処理して成形体を作製する成形工程(ステップ5)。
 (6)成形工程を経た成形体を焼鈍処理する焼鈍工程(ステップ6)。
 以下、各工程を具体的に説明する。
(1)第1混合工程
 第1混合工程では、鉄を主とする軟磁性粉末と無機絶縁粉末とを混合する。
[軟磁性粉末について]
 軟磁性粉末は、ガスアトマイズ法、水ガスアトマイズ法及び水アトマイズ法で作製した平均粒径が5~30μmで、珪素成分が0.0~6.5wt%の軟磁性粉末を使用する。平均粒径が、5~30μmの範囲より大きいと渦電流損失(Pe)が増大し、一方、平均粒径が5~30μmの範囲より小さいと、密度低下によるヒステリシス損失(Ph)が増加する。また、軟磁性粉末の珪素成分は、前記軟磁性粉末に対して6.5wt%以下が良く、これより多いと成形性が悪く、圧粉磁心の密度が低下して磁気特性が低下するという問題が発生する。
 軟磁性合金粉末を水アトマイズ法で製造した場合には、軟磁性粉末の形状は不定形であり、粉末の表面が凹凸になる。このため、軟磁性粉末の表面に無機絶縁粉末を均一に形成することが難しい。さらに、成形時に粉末表面の凸部に応力が集中し絶縁破壊しやすい。そこで、軟磁性粉末と無機絶縁粉末との混合には、V型混合機、W型混合機、ポットミルなどのメカノケミカル効果を粉末に発現する装置を用いる。その他にも、圧縮力、せん断力の機械的エネルギーを粒子に与えるタイプの混合機を使用し、混合と表面改質を同時に行っても良い。
 さらに、軟磁性粉末に無機絶縁粉末を混合した混合粉に対して、該無機絶縁粉末の表面への均一分散と粉末表面の凹凸を均一にするための平坦化処理を行なう。直流重畳特性は粉末のアスペクト比に依存しており、この処理によりアスペクト比を1.0~1.5にすることしても良い。この方法は、表面を機械的に塑性変形させて行なう。その一例としてはメカニカルアロイング、ボールミル、アトライター等がある。
[無機絶縁粉末について]
 ここで混合する無機絶縁粉末の平均粒径は、7~500nmとする。平均粒径が7nm未満であると、造粒が困難であり、500nm超であると、軟磁性粉末の表面に均一に分散することができず、絶縁性を保持することができない。また、添加量としては、0.4~1.5wt%が好適である。0.4wt%未満であると、性能が充分に発揮できず、1.5wt%を超えると、密度が著しく低下するために、磁気特性を低下させる。このような無機絶縁物質としては、融点が1500℃超であるMgO(融点2800度)、Al(融点2046度)、TiO(融点1640度)、CaO粉末(融点2572度)のうち少なくとも1種類以上を使用することが望ましい。
 また、後述の熱処理工程を行わない場合は、タルクや炭酸カルシウムなどの絶縁性の粉末であれば、融点の温度にとらわれず使用することができる。
(2)熱処理工程
 熱処理工程では、ヒステリシス損失を低減する目的と成形後の焼鈍温度を高くする目的で、前記第1混合工程を経た混合物を1000℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化性雰囲気中で熱処理を行う。非酸化性雰囲気は、水素雰囲気等の還元雰囲気でも、不活性雰囲気でも、真空雰囲気でもよい。つまり、酸化雰囲気でないことが好ましい。
 このとき、第1混合工程で軟磁性合金粉末の表面に均一に分散された無機絶縁粉末は、絶縁層は上記目的と熱処理時における軟磁性粉末同士の融着防止となる。また、1000℃以上の温度で熱処理を行うことで、軟磁性粉末内に存在する歪みの除去、結晶粒界などの欠陥の除去、軟磁性粉末粒子中の結晶粒子の成長(拡大)によって、磁壁移動が容易となり、保磁力を小さくし、ヒステリシス損失を低減することができる。また、軟磁性粉末が焼結してしまう温度で熱処理を行うと、軟磁性粉末が焼結し固まってしまい、圧粉磁心の材料として使用できなくなるという問題点がある。そのため、軟磁性粉末が焼結を開始する温度以下の温度で熱処理を行う必要がある。
 この熱処理工程は、使用する無機絶縁粉末の種類によっては、省略することもできる。この場合は、第1混合工程における混合において、軟磁性粉末の表面への均一分散と粉末表面の凹凸を均一にするための平坦化処理を行なうので、無機絶縁粉末の硬度が低いほうが、成形時の歪みを緩和できるため、ヒステリシス損失の低減をすることができる。
(3)造粒工程
 造粒工程では、前記無機絶縁粉末を均一に分散させる目的と密着性を向上させる目的のために、2重構造の絶縁被膜を構成する。第1層目として、軟磁性合金粉末の表面にシランカップリング剤による密着強化層を形成する。このシランカップリング剤は無機絶縁粉末と軟磁性粉末の密着力を高めるために添加し、添加料は、0.1~0.5wt%が最適である。これより量が少ないと密着量効果が不十分であり、多いと成形密度の低下を引き起こし焼鈍後の磁気特性を劣化させる。第2層目としては、シランカップリング剤による密着層を形成した軟磁性合金粉末の表面に、シリコーンレジンによる結着層を形成する。このシリコーンレジンは、結着性能を向上させるとともに、成形時、金型と粉末の接触によるコア壁面の縦筋の発生を防止するために添加し、添加量は0.5~2.0wt%が最適である。これより量が少ないと絶縁性能の低下、成形時コア壁面への縦筋が発生する。多いと成形密度の低下を引き起こし焼鈍後の磁気特性を劣化させる。
(4)第2混合工程
 第2混合工程では、成形時の上パンチの抜き圧低減、金型と粉末の接触によるコア壁面の縦筋の発生を防止する目的で、前記造粒工程を経た混合物に潤滑性樹脂を混合する。ここで混合する潤滑性樹脂としては、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドなどのワックスが使用できる。これらを添加することにより、造粒粉同士の滑りを良くすることができるので、混合時の密度を向上することができ成形密度を高くすることができる。さらに、粉末が金型へ焼き付くことも防止することが可能である。混合する潤滑性樹脂の量は、前記軟磁性粉末に対して0.2~0.8wt%とする。これよりも少なければ、十分な効果を得ることができず、形時コア壁面への縦筋の発生、抜き圧が高くなり最悪の場合、上パンチが抜けなくなる。多いと成形密度の低下を引き起こし焼鈍後の磁気特性を劣化させる。
(5)成形工程
 成形工程では、前記のようにして結着剤により結着した軟磁性粉末を金型に投入しダイ・フローティング法による1軸成形を行なうことにより、成形体を形成する。この時、加圧乾燥された結着性絶縁樹脂は、成形時のバインダーとして作用する。成形時の圧力は従来技術と同様で良く、本発明においては1500MPa程度が好ましい。
(6)焼鈍工程
 焼鈍工程では、前記成形体に対して、Nガス中やN+Hガス非酸化性雰囲気中にて、600℃を超える温度で焼鈍処理を行うことで圧粉磁心が作製される。焼鈍温度を上げ過ぎると絶縁性能の劣化から磁気特性が劣化するため、特に渦電流損失が大きく増加してしまうことにより、鉄損が増加するのを抑制するためである。
 また、このとき結着性絶縁樹脂は、焼鈍処理中に一定温度に達すると熱分解する。圧粉磁心の熱処理が窒素雰囲気中で行われることで、結着性絶縁樹脂は軟磁性粉末の表面に付着する。そのため高温で熱処理を行っても絶縁性が劣化せず、酸化などによるヒステリシス損失が増加しない。また、機械的強度を改善する役目も果たす。
[2.測定項目]
 測定項目として、透磁率と最大磁束密度と直流重畳性を次のような手法により測定する。透磁率は、作製された圧粉磁心に1次巻線(20ターン)を施し、インピーダンスアナライザー(アジレントテクノロジー:4294A)を使用することで、20kHz、0.5Vにおけるインダクタンスから算出した。
 コアロスは、圧粉磁心に1次巻線(20ターン)及び2次巻線(3ターン)を施し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY-8232)を用いて、周波数10kHz、最大磁束密度Bm=0.1Tの条件下で鉄損(コアロス)を測定した。この算出は、下記[式4]により、鉄損の周波数を用いた最小2乗法により、ヒステリシス損失係数、渦電流系数を算出することで行った。
[式4]
Pc=Kh×f+Ke×f
Ph=Kh×f
Pe=Ke×f
Pc:鉄損
Kh:ヒステリシス損係数
Ke:渦電流損係数
f:周波数
Ph:ヒステリシス損失
Pe:渦電流損失
 また、直流重畳性は、作製されたリアクトルに対して、LCRメータを使用することで測定した。
 本発明の実施例1~24を、表1~5を参照して、以下に説明する。
[3-1.第1の特性比較(熱処理工程の熱処理の温度の比較)]
 第1の特性比較では、熱処理工程の熱処理による軟磁性粉末の表面の改質の比較を行った。表1では、実施例1~3及び比較例1として熱処理工程において粉末に加える温度の比較を行った。表1は、軟磁性粉末に加えた温度と軟磁性粉末をX線回折法(以下、XRDとする)における評価を示した表である。
 実施例1~3及び比較例1では、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に、無機絶縁粉末として、平均粒径13nm(比表面積100m/g)のAlを0.4wt%添加する その後、実施例1~3の試料に対して、950℃~1150℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持し熱処理を行った。
 表1は、実施例1~3と比較例1について、XRDにて(110)、(200)、(211)の各面のピークについて半価幅の評価を行ったものであり、図2は、実施例1~3と比較例1について、(110)、(200)、(211)の各面の半価幅の合計を示した図である。
Figure JPOXMLDOC01-appb-T000001
 表1及び図2から判るように、熱処理工程において熱処理を施さない比較例1では、XRDにおける(110)、(200)、(211)面のピークについて、半価幅が大きくなっていることが判る。半価幅は、粉末の歪みが大きいほど大きくなり、歪みが小さいと小さくなるので、比較例1では、粉末に大きな歪みが存在している。一方、第1の熱処理工程において熱処理を施した実施例1~3では比較例1と比較して、XRDにおける(110)、(200)、(211)面のピークについての半価幅が小さくなる。すなわち、熱処理工程において熱処理を施すことによって、粉末の歪みが除去されるためである。また、表中には示していないが熱処理工程を1000℃以上で行った場合でも同様の効果を得ることができる。
 すなわち、軟磁性粉末に対して1000℃以上で熱処理を行うことで、軟磁性粉末の表面を改質することができることがわかる。これにより、磁性粉末の表面の凹凸を除去することができ、磁性粉末同士のギャップが小さいところに磁束が集中して、接点付近の磁束密度が大きくなり、ヒステリシス損失が大きくなることを防止することができる。さらに、磁性粉末同士のギャップを均一にすることで、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることができる。一方、軟磁性粉末が焼結してしまう温度で熱処理を行うと、軟磁性粉末が焼結し固まってしまい、圧粉磁心の材料として使用できなくなるという問題点がある。そのため、軟磁性粉末が焼結を開始する温度以下の温度で熱処理を行う必要がある。
 以上より、リアクトルに使用する圧粉磁心の熱処理工程の熱処理の温度としては、1000℃以上且つ軟磁性粉末が焼結を開始する温度以下とする。これにより、軟磁性粉末の熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することができる圧粉磁心を利用したリアクトル及びリアクトルの製造方法を提供することができる。
[3-2.第2の特性比較(無機絶縁物質の添加量の比較)]
 第2の特性比較では、珪素成分3.0wt%のFe-Si合金粉末に添加する無機絶縁物質の添加量の比較を行った。表2は、比較例2~6及び実施例4~14として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。各無機絶縁物質の平均粒径は、Alが13nm(比表面積100m/g)及び60nm,(比表面積25m/g),MgOが230nm(比表面積160m/g)である。
 本特性比較で使用する試料は、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に対して、下記のように無機絶縁粉末を添加して作製した。
 項目Aの比較例2では、無機絶縁粉末を添加しない。
 項目Bの比較例3、4では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.20~0.25wt%添加する。
 また、実施例4~10では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.40~1.50wt%添加する。
 項目Cの比較例5及び実施例11~13では、無機絶縁粉末として、60nm(比表面積25m/g)のAlを0.25~1.00wt%添加する。
 項目Dの比較例6及び実施例14では、無機絶縁粉末として、230nm(比表面積160m/g)のMgOを0.20~0.70wt%添加する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心に対して窒素雰囲気中(N+H)にて、625℃で30分間焼鈍処理を行った。
 表2は、実施例4~14と比較例2~6について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。図3は、実施例4~14と比較例2~6について、微粉末の添加量に対する直流重畳特性の関係を示す図である。また、図4は、実施例4,7と比較例2との直流BH特性を示した図であり、図5は、図4の直流BH特性に基づき、微分透磁率と磁束密度の関係を示したものである。
Figure JPOXMLDOC01-appb-T000002
 [直流BH特性について]
 表2の直流BH特性の%とは、磁束密度が0Tでの透磁率μ(0T)と1Tでの透磁率μ(1T)の比(μ(1T)/μ(0T))である、この値が大きいと直流重畳特性が優れている意味である。すなわち、表2から判るように、Siが3.0wt%のガスアトマイズ法で作製した軟磁性粉末では、項目Bの比較例3,4と実施例4~10、項目Cの比較例5と実施例11~13、項目Dの比較例6と実施例14では、すべての項目において、微粉末を0.4wt%以上添加することにより直流BH特性が良くなることが判る。
 一方、表2の各項目における密度及び透磁率からは、微粉末を添加しない項目Aと微粉末を添加する項目B~Dとを比較すると、微粉末を添加することにより密度が低下するため透磁率が低下し、直流BH特性に悪影響を及ぼす。特に、微粉末を1.5wt%より多く添加すると、密度が大きく低下し、直流BH特性が低下する。
[ヒステリシス損失について]
 表2のヒステリシス損失(Ph)では、無機絶縁体としてAlを添加した実施例4~14及び比較3~6の場合、無機絶縁粉末を添加していない比較例1よりも、10kHzにおけるヒステリシス損失(Ph)が低下している。それにより、全体での磁気特性が向上していることが判る。
 一般的には、高密度ほど、ヒステリシス損失が小さくなるが、本実施例では密度は低下しているがヒステリシス損失(Ph)が低下している。その理由としては、軟磁性粉末の表面に微粉末を不均一に分散すると、磁性粉末同士のギャップが小さいところに磁束が集中して、接点付近の磁束密度が大きくなり、ヒステリシス損失を増加させる一因となる。本実施例では、微粉末を均一に分散することで、磁性粉末同士のギャップを均一にし、磁性粉末同士のギャップに磁束が集中することによるヒステリシス損失を低減させる。これにより、密度が低下しても、ヒステリシス損失(Ph)が低下させることができる。さらに、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることもできる。
 以上より、リアクトルに使用する圧粉磁心の珪素成分3.0wt%のFe-Si合金粉末の軟磁性の粉末に添加する無機絶縁物質の添加量としては、軟磁性粉末に対して、0.4~1.5wt%であることが良い。これよりも少なければ、十分な効果を得ることができず、1.5wt%より多くなると密度低下による直流BH特性の要因となる。これにより、珪素成分が3.0wt%の軟磁性粉末でも熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することができる圧粉磁心を利用したリアクトル及びリアクトルの製造方法を提供することができる。
[3-3.第3の特性比較(無機絶縁物質の添加量の比較)]
 第3の特性比較では、軟磁性の粉末として、珪素成分6.5wt%のFe-Si合金粉末に添加する無機絶縁物質の添加量の比較を行った。表3は、比較例7~9及び実施例15~18として軟磁性粉末に添加した無機絶縁物質の種類と成分を示した表である。無機絶縁物質の平均粒径は、Alが13nm(比表面積100m/g)である。
 本特性比較で使用する試料は、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に対して、下記のように無機絶縁粉末を添加し、V型混合機を使用し30分混合することにより作製した。
 項目Eの比較例7では、無機絶縁粉末を添加しない。
 項目Fの比較例8,9では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.15~0.25wt%添加する。
 また、実施例15~18では、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.40~1.00wt%添加する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心に対して窒素雰囲気中(N90%+H10%)にて、625℃で30分間焼鈍処理を行った。
 表3は、実施例15~18と比較例7~9について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。図6は、実施例15~18と比較例8,9について、微粉末の添加量に対する直流重畳特性の関係を示す図である。
Figure JPOXMLDOC01-appb-T000003
 [直流BH特性について]
 表3の直流BH特性の%とは、磁束密度が0Tでの透磁率μ(0T)と1Tでの透磁率μ(1T)の比(μ(1T)/μ(0T))である、この値が大きいと直流重畳特性が優れている意味である。すなわち、表3及び図6から判るように、Siが6.5wt%のガスアトマイズ法で作製した軟磁性粉末では、項目Fの比較例8,9と実施例15~18では、微粉末を0.4wt%以上添加することにより直流BH特性が良くなることが判る。 
 一方、表3及び図6の各項目における密度及び透磁率からは、微粉末を添加しない項目Eと微粉末を添加する項目Fとを比較すると、微粉末を添加することにより密度が低下するため透磁率が低下し、直流BH特性に悪影響を及ぼす。特に、微粉末を1.5wt%より多く添加すると、密度が大きく低下し、直流BH特性が低下する。
[ヒステリシス損失について]
 表3のヒステリシス損失(Ph)では、無機絶縁体としてAlを添加した実施例15~18及び比較例8,9の場合、無機絶縁粉末を添加していない比較例7よりも、10kHzにおけるヒステリシス損失(Ph)が低下している。それにより、全体での磁気特性が向上していることが判る。
 一般的には、高密度ほど、ヒステリシス損失が小さくなるが、本実施例では密度は低下しているがヒステリシス損失(Ph)が低下している。その理由としては、軟磁性粉末の表面に微粉末を不均一に分散すると、磁性粉末同士のギャップが小さいところに磁束が集中して、接点付近の磁束密度が大きくなり、ヒステリシス損失を増加させる一因となる。本実施例では、微粉末を均一に分散することで、磁性粉末同士のギャップを均一にし、磁性粉末同士のギャップに磁束が集中することによるヒステリシス損失を低減させる。これにより、密度が低下しても、ヒステリシス損失(Ph)が低下させることができる。さらに、磁性粉末間に設けられたギャップが分散型ギャップとなり、直流重畳特性の改善をすることもできる。
 以上より、リアクトルに使用する圧粉磁心の珪素成分6.5wt%のFe-Si合金粉末の軟磁性の粉末に添加する無機絶縁物質の添加量としては、軟磁性粉末に対して、0.4~1.5wt%であることが良い。これよりも少なければ、十分な効果を得ることができず、1.5wt%より多くなると密度低下による直流BH特性の要因となる。これにより、珪素成分が6.5wt%の軟磁性粉末でも熱処理時に焼結して固まることがなく、ヒステリシス損失を効果的に低減することができる圧粉磁心を利用したリアクトル及びリアクトルの製造方法を提供することができる。
[3-4.第4の特性比較(軟磁性合金粉末の種類の比較)]
 第3の特性比較では、無機絶縁粉末を添加する軟磁性粉末の種類の比較を行った。本特性比較で使用する軟磁性粉末は、水アトマイズ法で作製した粒度75μm以下の純鉄、水アトマイズ法で作製した粒度75μm以下の純鉄を平坦化処理し、円形度を0.85とした純鉄及び、水アトマイズ法で作製した粒度63μm以下の珪素成分1wt%のFe-Si合金粉末である。
 本特性比較で使用する試料は、下記のように作製した。
 項目Gの実施例19では、水アトマイズ法で作製した粒度75μm以下の純鉄に、無機絶縁物質としてAlが13nm(比表面積100m/g)を添加し、V型混合機を使用し30分混合する。
 項目Hの実施例20では、水アトマイズ法で作製した粒度75μm以下の純鉄を平坦化処理し、円形度を0.85とした純鉄に、無機絶縁物質としてAlが13nm(比表面積100m/g)を添加し、V型混合機を使用し30分混合する。
 項目Iの実施例21では、水アトマイズ法で作製した粒度63μm以下の珪素成分1wt%のFe-Si合金粉末に、無機絶縁物質としてAlが13nm(比表面積100m/g)を添加し、V型混合機を使用し30分混合する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 これらの試料を室温にて、1500MPaの圧力で加圧成形し、外径16mm、内径8mm、高さ5mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心に対して窒素雰囲気中(N90%+H10%)にて、625℃で30分間焼鈍処理を行った。
 表4は、実施例19~21について、軟磁性粉末、無機絶縁粉末の種類と添加量、第1熱処理温度、透磁率及び単位体積あたりの鉄損(コアロス)との関係について示した表である。図7は、実施例19~21の直流BH特性を示した図であり、図8は、図7の直流BH特性に基づき、微分透磁率と磁束密度の関係を示したものである。
Figure JPOXMLDOC01-appb-T000004
[直流BH特性について]
 表4の直流BH特性の%とは、磁束密度が0Tでの透磁率μ(0T)と1Tでの透磁率μ(1T)の比(μ(1T)/μ(0T))である、この値が大きいと直流重畳特性が優れている意味である。すなわち、表4から判るように、Si成分が0である実施例19,20及びSi成分が1.0wt%である実施例21においても、Siが3.0~6.5wt%のガスアトマイズ法で作製した軟磁性粉末と同様に、無機絶縁粉末を添加することにより、直流BH特性が良くなることが判る。また、図8の実施例20,21とを比較すると、平坦化処理を行ったものは、直流重畳特性が優れることがわかる。
 また、図7,8からは、軟磁性合末に対して平坦化処理を行わない実施例19に対して、平坦化処理を行った実施例20の方が、印加磁界における比透磁率が優れることが判る。これは、軟磁性粉末に対して平坦化処理を行うことで、表面の凹凸を除去し粉末の形状を球に近くすることができる。このため、低い圧力でも密度が高い圧粉磁心を製作することができる。圧粉磁心は、密度が高くなると直流重畳特性が優れるという特性があり、圧粉磁心の密度が高くなることにより直流重畳特性が向上していることがわかる。
 以上より、リアクトルに使用する圧粉磁心の軟磁性合金粉末としては、珪素成分が0~6.5wt%のFe-Si合金粉末の軟磁性の粉末を利用することにより低損失な圧粉磁心を提供できるだけでなく、高密度で直流重畳特性に優れた圧粉磁心を提供することができる。また、平坦化処理をあわせて行うことで、さらに高密度で直流重畳特性に優れた圧粉磁心を利用したリアクトル及びリアクトルの製造方法を提供することができる。
[3-1.第3の特性比較(リアクトル磁心の無機絶縁物質の添加量の比較)]
 第3の特性比較では、軟磁性粉末に添加する無機絶縁物質の添加量を変化させたリアクトル磁心の比較を行った。表5は、比較例10~12及び実施例22~24として軟磁性粉末に添加した無機絶縁物質の添加量を示した表である。無機絶縁物質の平均粒径は、Alが13nm(比表面積100m/g)である。
 本特性比較で使用する試料は、ガスアトマイズ法で作製した平均粒子径22μmの珪素成分3.0wt%のFe-Si合金粉末に対して、下記のように無機絶縁粉末を添加して作製した。
 項目J~Mの比較例10~12及び実施例22~24は、無機絶縁粉末として、13nm(比表面積100m/g)のAlを0.25~1.00wt%添加する。
 その後、これらの試料に対して、1100℃の水素25%(残り75%は、窒素)の還元雰囲気で2時間保持する熱処理を行う。そして、シランカップリング剤を0.25wt%、シリコーンレジンを1.2wt%の順に混合し加熱乾燥後(180℃_2時間)、潤滑剤としてステアリン酸亜鉛を0.4wt%添加して混合した。
 項目J,K,Mの試料は、室温にて1500MPaの圧力で加圧成形し、項目Lの試料は、室温にて1200MPaの圧力で加圧成形した。その後、外径60mm、内径30mm、高さ25mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心に対して窒素雰囲気中(N+H)にて、625℃で30分間焼鈍処理を行った。これらの試料に対して、線径2.2mmの銅線を60ターン(巻き)、巻き線を施してリアクトルを作製して、LCRメータにて直流重畳特性を測定した。
 表5は、実施例22~24と比較例10~12について、無機絶縁粉末の添加量、密度、磁性部分の密度及び透磁率との関係について示した表である。
Figure JPOXMLDOC01-appb-T000005
 表2からは、無機絶縁粉末の添加量を多くするに従って、密度、磁性部分の密度及び透磁率が低下することが判る。また、図9は、実施例22と比較例10について、直流重畳電流とインダクタンスとの関係を示す図である。図9の比較例10は実施例22と比較すると、12A以下では比較例10の方がインダクタンスが大きいが、12Aを超えると比較例10の方がインダクタンスが低下することが判る。すなわち、インダクタンスの低下率は比較例10の方が大きく、インダクタンスの影響が大きいリアクトルであることが判る。
 図10は、実施例22と比較例11,12について、各実施例及び比較例における直流重畳電流とインダクタンスとの関係を示す図である。図10からは、実施例22と比較例12とを比較すると、リアクトルにギャップを設けた比較例12のほうが25A以上でのインダクタンスの低下率が低いことが判る。すなわち、無機絶縁粉末の添加量が少なくてもリアクトルにギャップを設けることにより、優れた重畳特性を得ることができることが判る。
 図11は、実施例23,24と比較例11について、各実施例及び比較例における直流重畳電流とインダクタンスとの関係を示す図である。図11からは、実施例23,24と比較例12とを比較すると、リアクトルにギャップを設けない実施例23,24においても、リアクトルにギャップを設けた比較例12と同等の直流重畳特性であることが判る。 
 図12は、実施例23,24と比較例12について、各実施例及び比較例における直流重畳電流とインダクタンスとの関係を示す図である。比較例12は、成形時の圧力を低下することにより、密度を低下して、L値を実施例23,24にあわせたものであるが、10A以上でL値が大きく低下することが判る。すなわち、実施例23、24のように絶縁粉末を添加して、所定の圧力で成形することで、直流重畳特性が改善できることが判る。 
 以上より、リアクトルに使用する圧粉磁心の軟磁性粉末と0.4wt~1.5wt%の無機絶縁粉末とを混合し、第1の熱処理温度が1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことにより作製された圧粉磁心を、リアクトル磁心として使用したリアクトルでは、高磁界でL値(インダクタンス)が大きく低下しない優れた直流重畳特性のリアクトルと、その製造方法を提供することができる。

Claims (8)

  1.  軟磁性粉末と軟磁性粉末に対して0.4wt%~1.5wt%の無機絶縁粉末を混合し、
     その混合物と結着性絶縁樹脂を混合して造粒し、その混合物に対して潤滑性樹脂を混合し、
     その混合物を加圧成形処理して成形体を作製し、その成形体を焼鈍処理することにより作製した圧粉磁心に導線を巻回したリアクトルにおいて、
     リアクトルのコアとなる圧粉磁心の磁路に直交してギャップを設けないことを特徴とするリアクトル。
  2.  前記軟磁性粉末と前記無機絶縁粉末とを混合した後、その混合物に対して1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行うことにより作製した圧粉磁心に導線を巻回したことを特徴とする請求項1に記載のリアクトル。
  3.  前記無機絶縁粉末の平均粒子径が7~500nmであることを特徴とする請求項1または2に記載のリアクトル。
  4.  前記軟磁性粉末の珪素成分が0~6.5wt%であることを特徴とする請求項1~3のいずれか1項に記載のリアクトル。
  5.  軟磁性粉末と前記軟磁性粉末に対して0.4wt%~1.5wt%の無機絶縁粉末とを混合する第1混合工程と、
     前記第1混合工程を経た軟磁性粉末と無機絶縁粉末に結着性絶縁樹脂を混合して結着する結着工程と、
     前記結着工程を経た混合物に対して、潤滑性樹脂を混合する第2混合工程と、
     前記第2混合工程を経た混合物を、加圧成形処理して成形体を作製する成形工程と、
     前記成形工程を経た成形体を焼鈍処理し圧粉磁心を作製する焼鈍工程と、
     前記焼鈍工程を経た圧粉磁心に導線を巻回する実装工程とを備えるリアクトルの製造方法において、
     リアクトルのコアとなる圧粉磁心の磁路に直交してギャップを設けないことを特徴とするリアクトルの製造方法。
  6.  前記軟磁性粉末と前記無機絶縁粉末とを混合する第1混合工程の後、その混合物に対して1000℃以上且つ軟磁性粉末が焼結を開始する温度以下での非酸化性雰囲気で熱処理を行う熱処理工程を備えることを特徴とする請求項5に記載のリアクトルの製造方法。
  7.  前記無機絶縁粉末の平均粒子径が7~500nmであることを特徴とする請求項5または6に記載のリアクトルの製造方法。
  8.  前記軟磁性粉末の珪素成分が0~6.5wt%であることを特徴とする請求項5~7のいずれか1項に記載のリアクトルの製造方法。
PCT/JP2010/007369 2009-12-25 2010-12-20 リアクトル及びその製造方法 WO2011077694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127019388A KR101527268B1 (ko) 2009-12-25 2010-12-20 리액터 및 그의 제조 방법
EP10838933.9A EP2518740B1 (en) 2009-12-25 2010-12-20 Method for producing a reactor
CN201080058746.8A CN102667977B (zh) 2009-12-25 2010-12-20 电抗器和电抗器的制造方法
US13/519,101 US8810353B2 (en) 2009-12-25 2010-12-20 Reactor and method for manufacturing same
JP2011547295A JP5739348B2 (ja) 2009-12-25 2010-12-20 リアクトル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009296417 2009-12-25
JP2009-296417 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077694A1 true WO2011077694A1 (ja) 2011-06-30

Family

ID=44195248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007369 WO2011077694A1 (ja) 2009-12-25 2010-12-20 リアクトル及びその製造方法

Country Status (6)

Country Link
US (1) US8810353B2 (ja)
EP (2) EP3252786A1 (ja)
JP (1) JP5739348B2 (ja)
KR (1) KR101527268B1 (ja)
CN (1) CN102667977B (ja)
WO (1) WO2011077694A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658367A (zh) * 2012-05-16 2012-09-12 上海大学 稳恒磁场下粉末烧结法制备高硅硅钢片的方法及其装置
JP2014072478A (ja) * 2012-10-01 2014-04-21 Panasonic Corp 圧粉磁心の製造方法とその製造方法で作製された圧粉磁心を用いた磁性素子の製造方法
JP2015095570A (ja) * 2013-11-12 2015-05-18 株式会社タムラ製作所 低騒音リアクトル、圧粉磁心およびその製造方法
KR20220158841A (ko) 2020-06-15 2022-12-01 가부시키가이샤 고베 세이코쇼 압분자심용 분말

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492031B1 (en) * 2009-12-25 2017-10-18 Tamura Corporation Dust core and process for producing same
US10840005B2 (en) 2013-01-25 2020-11-17 Vishay Dale Electronics, Llc Low profile high current composite transformer
EP2811495B1 (en) * 2013-06-05 2017-01-11 Delphi Automotive Systems Luxembourg SA Transformer
CN105268975B (zh) * 2014-07-11 2017-08-29 台耀科技股份有限公司 高密度粉末冶金金属软磁材料的制备方法
WO2016039267A1 (ja) 2014-09-08 2016-03-17 トヨタ自動車株式会社 圧粉磁心、磁心用粉末およびそれらの製造方法
CN105149581B (zh) * 2015-09-16 2017-10-31 江苏佰迪凯磁性材料有限公司 避免es磁芯烧结过程中变形开裂的方法
CN108028131B (zh) * 2015-09-16 2021-11-12 日立金属株式会社 压粉磁芯的制造方法
JP6378156B2 (ja) * 2015-10-14 2018-08-22 トヨタ自動車株式会社 圧粉磁心、圧粉磁心用粉末、および圧粉磁心の製造方法
US10998124B2 (en) 2016-05-06 2021-05-04 Vishay Dale Electronics, Llc Nested flat wound coils forming windings for transformers and inductors
CN105993053B (zh) * 2016-05-13 2018-02-02 深圳顺络电子股份有限公司 复合软磁材料及其制备方法
EP3507816A4 (en) 2016-08-31 2020-02-26 Vishay Dale Electronics, LLC INDUCTANCE COIL COMPRISING A HIGH CURRENT COIL HAVING LOW DIRECT CURRENT RESISTANCE
JP6858158B2 (ja) * 2018-06-13 2021-04-14 株式会社タムラ製作所 コア、リアクトル、コアの製造方法及びリアクトルの製造方法
US11948724B2 (en) 2021-06-18 2024-04-02 Vishay Dale Electronics, Llc Method for making a multi-thickness electro-magnetic device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033211A (ja) * 2000-07-17 2002-01-31 Tokin Corp 圧粉磁芯及びその製造方法
JP2003217919A (ja) * 2002-01-17 2003-07-31 Nec Tokin Corp 圧粉磁芯及びこれを用いた高周波リアクトル
JP2003332116A (ja) * 2002-05-15 2003-11-21 Hitachi Powdered Metals Co Ltd 圧粉磁心およびその製造方法
JP2004095935A (ja) 2002-09-02 2004-03-25 Jfe Steel Kk 分割鉄心
JP2005217289A (ja) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd 圧粉磁心およびその製造方法
JP2005336513A (ja) * 2004-05-24 2005-12-08 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性材料、圧粉磁心の製造方法、および圧粉磁心
JP2006344867A (ja) 2005-06-10 2006-12-21 Sumitomo Electric Ind Ltd リアクトル
JP2006344868A (ja) 2005-06-10 2006-12-21 Sumitomo Electric Ind Ltd リアクトル及びトランス
JP2007012866A (ja) 2005-06-30 2007-01-18 Daido Steel Co Ltd リアクトル用圧粉磁心
JP2007214366A (ja) * 2006-02-09 2007-08-23 Toyota Motor Corp 圧粉磁心用粉末、圧粉磁心およびそれらの製造方法
JP2008112935A (ja) * 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd リアクトル
JP2009224584A (ja) 2008-03-17 2009-10-01 Toyota Motor Corp リアクトル装置
JP2009302165A (ja) * 2008-06-11 2009-12-24 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2010245459A (ja) * 2009-04-09 2010-10-28 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2010251474A (ja) * 2009-04-14 2010-11-04 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837107A (ja) * 1994-07-22 1996-02-06 Tdk Corp 圧粉コア
US6284060B1 (en) 1997-04-18 2001-09-04 Matsushita Electric Industrial Co., Ltd. Magnetic core and method of manufacturing the same
TW428183B (en) 1997-04-18 2001-04-01 Matsushita Electric Ind Co Ltd Magnetic core and method of manufacturing the same
JP4596697B2 (ja) 2001-07-19 2010-12-08 ローム株式会社 積分型a/dコンバータ
US6964811B2 (en) * 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
CA2452234A1 (en) * 2002-12-26 2004-06-26 Jfe Steel Corporation Metal powder and powder magnetic core using the same
US8048191B2 (en) * 2005-12-28 2011-11-01 Advanced Technology & Material Co., Ltd. Compound magnetic powder and magnetic powder cores, and methods for making them thereof
WO2010082486A1 (ja) * 2009-01-16 2010-07-22 パナソニック株式会社 複合磁性材料の製造方法とそれを用いた圧粉磁芯及びその製造方法
CN102341869A (zh) * 2009-03-09 2012-02-01 松下电器产业株式会社 压粉磁芯及使用该压粉磁芯的磁性元件

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033211A (ja) * 2000-07-17 2002-01-31 Tokin Corp 圧粉磁芯及びその製造方法
JP2003217919A (ja) * 2002-01-17 2003-07-31 Nec Tokin Corp 圧粉磁芯及びこれを用いた高周波リアクトル
JP2003332116A (ja) * 2002-05-15 2003-11-21 Hitachi Powdered Metals Co Ltd 圧粉磁心およびその製造方法
JP2004095935A (ja) 2002-09-02 2004-03-25 Jfe Steel Kk 分割鉄心
JP2005217289A (ja) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd 圧粉磁心およびその製造方法
JP2005336513A (ja) * 2004-05-24 2005-12-08 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性材料、圧粉磁心の製造方法、および圧粉磁心
JP2006344867A (ja) 2005-06-10 2006-12-21 Sumitomo Electric Ind Ltd リアクトル
JP2006344868A (ja) 2005-06-10 2006-12-21 Sumitomo Electric Ind Ltd リアクトル及びトランス
JP2007012866A (ja) 2005-06-30 2007-01-18 Daido Steel Co Ltd リアクトル用圧粉磁心
JP2007214366A (ja) * 2006-02-09 2007-08-23 Toyota Motor Corp 圧粉磁心用粉末、圧粉磁心およびそれらの製造方法
JP2008112935A (ja) * 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd リアクトル
JP2009224584A (ja) 2008-03-17 2009-10-01 Toyota Motor Corp リアクトル装置
JP2009302165A (ja) * 2008-06-11 2009-12-24 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2010245459A (ja) * 2009-04-09 2010-10-28 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法
JP2010251474A (ja) * 2009-04-14 2010-11-04 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658367A (zh) * 2012-05-16 2012-09-12 上海大学 稳恒磁场下粉末烧结法制备高硅硅钢片的方法及其装置
JP2014072478A (ja) * 2012-10-01 2014-04-21 Panasonic Corp 圧粉磁心の製造方法とその製造方法で作製された圧粉磁心を用いた磁性素子の製造方法
JP2015095570A (ja) * 2013-11-12 2015-05-18 株式会社タムラ製作所 低騒音リアクトル、圧粉磁心およびその製造方法
KR20220158841A (ko) 2020-06-15 2022-12-01 가부시키가이샤 고베 세이코쇼 압분자심용 분말

Also Published As

Publication number Publication date
EP2518740A4 (en) 2014-01-29
US20120326830A1 (en) 2012-12-27
EP2518740B1 (en) 2017-11-08
JPWO2011077694A1 (ja) 2013-05-02
US8810353B2 (en) 2014-08-19
KR20120098921A (ko) 2012-09-05
EP2518740A1 (en) 2012-10-31
CN102667977B (zh) 2015-11-25
JP5739348B2 (ja) 2015-06-24
KR101527268B1 (ko) 2015-06-08
CN102667977A (zh) 2012-09-12
EP3252786A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5739348B2 (ja) リアクトル及びその製造方法
JP5501970B2 (ja) 圧粉磁心及びその製造方法
WO2012131872A1 (ja) 複合軟磁性粉末及びその製造方法、並びにそれを用いた圧粉磁心
EP1710815A1 (en) Dust core and method for producing same
KR101470513B1 (ko) 대전류 직류중첩특성 및 코어손실 특성이 우수한 연자성 코어 및 그의 제조방법
WO2014068928A1 (ja) 複合磁性体およびその製造方法
KR101385756B1 (ko) Fe계 비정질 금속분말의 제조방법 및 이를 이용한 비정질 연자성 코어의 제조방법
JP2007019134A (ja) 複合磁性材料の製造方法
JP3964213B2 (ja) 圧粉磁芯及び高周波リアクトルの製造方法
JP2008277775A (ja) 圧粉磁心およびその製造方法
JP4908546B2 (ja) 圧粉磁心及びその製造方法
JP4995222B2 (ja) 圧粉磁心及びその製造方法
JP6578083B2 (ja) 低騒音リアクトル、圧粉磁心およびその製造方法
JP5150535B2 (ja) 圧粉磁心及びその製造方法
JP2012222062A (ja) 複合磁性材料
JP4723609B2 (ja) 圧粉磁心、圧粉磁心の製造方法、チョークコイル及びその製造方法
JP2014116527A (ja) 圧粉磁心の製造方法
JP5232717B2 (ja) 圧粉磁心及びその製造方法
JP2019195068A (ja) 低騒音リアクトル、圧粉磁心およびその製造方法
JP4568691B2 (ja) 圧粉磁芯用マグネタイト−鉄−コバルト複合粉末、その製造方法およびこれを用いた圧粉磁芯
WO2019044132A1 (ja) Fe基合金組成物、軟磁性材料、圧粉磁心、電気・電子関連部品および機器
JP2023069772A (ja) 圧粉磁心

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058746.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547295

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010838933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010838933

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019388

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13519101

Country of ref document: US