WO2011076090A1 - 一种与铜内电极匹配的抗还原性高频低温烧结陶瓷介质材料 - Google Patents

一种与铜内电极匹配的抗还原性高频低温烧结陶瓷介质材料 Download PDF

Info

Publication number
WO2011076090A1
WO2011076090A1 PCT/CN2010/079974 CN2010079974W WO2011076090A1 WO 2011076090 A1 WO2011076090 A1 WO 2011076090A1 CN 2010079974 W CN2010079974 W CN 2010079974W WO 2011076090 A1 WO2011076090 A1 WO 2011076090A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
dielectric material
mol
ceramic dielectric
sintering
Prior art date
Application number
PCT/CN2010/079974
Other languages
English (en)
French (fr)
Inventor
宋蓓蓓
宋永生
莫方策
李娟�
王孝国
郭精华
Original Assignee
广东风华高新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东风华高新科技股份有限公司 filed Critical 广东风华高新科技股份有限公司
Priority to JP2012514341A priority Critical patent/JP5442114B2/ja
Priority to US13/377,499 priority patent/US8709962B2/en
Publication of WO2011076090A1 publication Critical patent/WO2011076090A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment

Definitions

  • the invention relates to a ceramic dielectric material and a preparation method of the obtained component, in particular to a conformity
  • multi-layer chip ceramic capacitors (hereinafter referred to as MLCC) have basically achieved bismuth metallization, and more than 80% of MLCCs use ruthenium metal internal electrode materials (mainly nickel) instead of palladium silver internal electrode materials, which can effectively reduce about 40 % production cost.
  • ruthenium metal internal electrode materials mainly nickel
  • palladium silver internal electrode materials which can effectively reduce about 40 % production cost.
  • copper electrodes has been put on the road, compared to other base metals, copper not only has a price advantage, but more importantly, in the high frequency field, copper's electrical performance is better.
  • the technical problem to be solved by the present invention is to provide a ceramic dielectric material for the internal electrode capacitor of the anti-reduction copper which meets the requirements of COG ceramic dielectric properties, high material dispersibility, good molding process, and meets RoSH regulations.
  • an anti-reduction copper internal electrode high-frequency low-temperature sintering ceramic dielectric material which is composed of a main crystalline phase, a modifying additive, a sintering flux, and the structural form of the main crystalline phase is Mg. x Ba( 1-x )Zr y Si (1 0 3 , wherein 0.8 ⁇ 0.95, 0.055£y3 ⁇ 4S0.2, the modifying additive is Mn0 2 , CaO, Li 2 0, Bi 2 0 3 , One or more of Ti0 2 ; the sintering flux is one or more of B 2 O 3 , Si0 2 , ZnO, CuO, K 2 0, BaO.
  • the above-mentioned anti-reduction copper internal electrode high-frequency ceramic dielectric material is characterized in that: in terms of mole percent, the main crystalline phase is 80 to 95 mol%, the modifying additive is 1.2 to 10 mol%, and the sintering flux is 2.5 to 18 mol%.
  • the composition of the modified additive in the entire anti-reduction copper internal electrode ceramic high frequency ceramic dielectric material is Mn0 2 0.2 ⁇ 0.5mol%, CaO 0 ⁇ : 1.0 mol%, Li 2 0 1.0 ⁇ 3.0 mol% , Bi 2 0 3 0 to 5.0 mol%, Ti0 2 0 to 1.0 mol%.
  • composition of the sintering flux in the high-frequency low-temperature sintering ceramic dielectric material of the entire anti-reduction copper internal electrode is B 2 0 3 1.0-3.0 mol%, Si0 2 0-6.0 mol%, ZnO 1.5 ⁇ 6.0 mol%, CuO 0 to 1.0 mol%, K 2 0 0 to: 1.0 mol%, BaO 0 to 1.0 mol%.
  • the principal component selects a composite having good high frequency performance.
  • the composite has a low dielectric constant, a low dielectric loss tangent, and a near-linear dielectric-temperature characteristic, which all ensure that the material of the present invention is made of MLCC with excellent electrical properties from the host material.
  • the addition of the modified additive material can keep the dielectric constant of the material at about 10, and adjust the temperature coefficient of the ceramic dielectric material so that the dielectric-temperature characteristics are nearly linear; at the same time, it can suppress the abnormality of the ceramic grains. Growth, uniform grain growth, which plays a good role in improving the compressive strength of the dielectric material, and finally makes the MLCC obtained by the present invention highly reliable.
  • One of the main functions of the sintering flux is to reduce the sintering temperature of the ceramic material of the present invention, so that the material can be densely sintered at a temperature of less than 1100 ° C, and the sintered ceramic body has uniform grain growth and high density, which further ensures The finished MLCC has high reliability.
  • the invention adopts a reducing atmosphere for sintering
  • the non-ferroelectric copper electrode dielectric ceramic of the system has a sintering temperature lower than 1100 ° C.
  • the porcelain material can be matched with the copper (Cu) internal electrode paste, and the porcelain material has superior performance.
  • MLCC ceramic material is prepared according to a conventional porcelain production process, including porcelain slurry preparation, production of a dielectric film, alternating overprinting of internal electrodes and dielectric layers, and drying of the compact. , lamination, cutting, debinding, sintering, chamfering, capping, burning end process. That is, a solvent such as an organic binder and ethanol is added in the production process of a sheet type MLCC to form a slurry, and the slurry is cast into a film sheet, and a copper Cu inner electrode is printed on the film, and the required number of layers are alternately laminated.
  • a solvent such as an organic binder and ethanol
  • the sintering temperature of the product is low, the requirements on the process equipment are simple, the particle size distribution of the ceramic dielectric material is uniform, the grain growth of the ceramic body in the sintering is uniform and compact, and the electrical performance of the MLCC product is excellent.
  • the gist of the present invention is to use MgxBad ⁇ ZrySi ⁇ yPs system as the main crystal phase of the material, adding a modifying additive to adjust the performance, and adding a sintering flux to help reduce the sintering temperature, and adopting a conventional process to prepare a desired powder, and obtaining a conformity COG porcelain dielectric properties, high material dispersibility, low-temperature sintering ceramic dielectric materials with good molding process, and low temperature, uniform grain growth and compactness in the production of MLCC products, no defects or small defects.
  • the content of the present invention will be further described in detail below with reference to the embodiments. The contents mentioned in the examples are not intended to limit the invention, and the material formulation selection can be adapted to the local conditions without substantial influence on the results.
  • an anti-reduction copper high-frequency low-temperature sintering ceramic dielectric material consisting of a main crystalline phase, a modifying additive, and a sintering flux
  • the structural formula of the main crystalline phase is M gx Ba (1 -x) Zr y Si (1-y) 0 3 , wherein 0.8 x 0.95, 0.05 ⁇ y ⁇ 0.2
  • the modifying additive is Mn0 2 , CaO, Li 2 0, Bi 2 0 3 , Ti0 2
  • the sintering aid is one or more of 3 ⁇ 40 3 , SiO 2 , ZnO, CuO, K 2 0, BaO.
  • a high-frequency low-temperature sintering ceramic dielectric material for anti-reduction copper internal electrodes using a raw material with a purity of 99.5% or more, and a mixing ratio of 0.8 mol Mg(OH) 2 , 0.8 mol Si0 2 , 0.2 mol BaC0 3 and B 0.2 mol Zr0 2
  • the ball was evenly milled, and the mixture was calcined at a temperature of 115 CTC for 3 hours to obtain a main crystal phase of Mgo. 8 Bao. 2 Sio. 8 Zro. 20 3 material.
  • the modifying additive and the sintering aid as shown in Table 1 were added in a predetermined ratio.
  • Table 1 Main crystal phase, modified additive, sintering flux formulation
  • the ceramic medium porcelain material is prepared according to the ceramic material production process commonly used by those skilled in the art, and then the organic binder and the solvent such as ethanol are added according to the common MLCC production process to form a slurry, and the slurry is formed.
  • the material is cast into a film sheet, and a copper Cu inner electrode is printed on the film, and the required number of layers are alternately laminated to form a green MLCC chip, and then the green MLCC chip is heat-treated at a temperature of 200 to 300 ° C to exclude organic bonding. Agents and solvents.
  • the outer electrode is heat treated within the range.
  • the MLCC product can be obtained by a process such as electroplating.
  • the MLCC product has the characteristics of stable capacity and good performance. Test the insulation capacity of the MLCC product at ⁇ , 1.0V (AC) at room temperature 25 °C using HP4278 bridge. Apply insulation voltage of 100V DC for 10 seconds using SF2512 fast insulation machine. Low temperature box, between -55 ⁇ +125°C, test dielectric constant-temperature coefficient; use HP4991A to test the frequency characteristics of this MLCC product; product performance test parameters such as MLCC test corresponding to material formula 1 ⁇ 10 of Table 2 parameter.
  • An anti-reduction copper internal electrode high-frequency low-temperature sintering ceramic dielectric material adopting a raw material with a purity of 99.5% or more, and 0.9 mol of Mg(OH) 2 , 0.9 mol of Si0 2 , O.lmol of BaC 3 3 and 0.1 mol of Zr0 2
  • the mixing ratio, ball milling was uniform, and the mixture was calcined at a temperature of 1150 ° C for 3 hours to obtain a main crystal phase of Mgo.gBao.iSio.gZrdOs material.
  • the modifying additive and the sintering aid as shown in Table 3 were added in a predetermined ratio.
  • Table 3 Composition of main crystalline phase, modified additive, and sintering flux formulation
  • a high-frequency low-temperature sintering ceramic dielectric material for anti-reduction copper internal electrodes using a raw material with a purity of 99.5% or more, with a mixture of 0.95 mol Mg(OH) 2 , 0.95 mol Si0 2 , 0.05 mol BaC0 3 and 0.05 mol Zr0 2 The ratio was uniform, and the mixture was calcined at a temperature of 1150 ° C for 3 hours to obtain a main crystal phase of Mgo.95Bao.05Sio.95Zro.05O3. Then, the modifying additive and the sintering aid as shown in Table 5 were added in a predetermined ratio.
  • Table 5 Composition of main crystalline phase, modified additive, sintering flux formulation

Description

一种与铜内电极匹配的抗还原性高频低温烧结
陶瓷介质材料
技术领域
本发明涉及陶瓷介质材料及所得元器件的制备方法, 尤其涉及一种符合
COG特性, 且能与铜内电极匹配的高频低温烧结的陶瓷介质材料。 背景技术
随着产品高性能、 低成本的市场需求, 迫使陶瓷电容器制造商不断寻找既 能降低生产成本又能满足更高性能要求的替代材料, 是制造商们面临的重大挑 战之一。 目前的多层片式陶瓷电容器 (以下简称 MLCC) 已基本实现用贱金属 化, 80%以上的 MLCC使用贱金属内电极材料 (以镍为主) 取代钯银内电极材 料, 可有效降低约 40%的生产成本。 更进一步的研究, 铜电极的使用被提上日 程, 相对于其他贱金属而言, 铜不仅具有价格上的优势, 同时更重要的是在高 频领域,铜的电气性能更为优秀。不过铜比镍更容易氧化,且铜的熔点(1083 Ό ) 比镍的 (1453°C ) 低, 而目前通用瓷料的烧结温度很高, 与铜电极难以匹配, 从而影响 MLCC的电性能。 若要使用铜作为内电极材料, 首先必然要获得满足 要求的陶瓷介质材料。 发明内容
本发明需解决的技术问题是提供一种符合 COG瓷介特性、 材料分散性高、 成型工艺好、 满足 RoSH条例要求、 抗还原铜内电极电容器用陶瓷介质材料。
为解决上述技术问题, 本发明提供的技术方案是: 一种抗还原铜内电极高 频低温烧结陶瓷介质材料,由主晶相、 改性添加剂、 烧结助熔剂组成, 主晶相的 结构式是 MgxBa(1-x)ZrySi(1 03, 其中 0.8ί≤χί≤0.95, 0.055£y¾S0.2, 所述的改性 添加剂是 Mn02、 CaO、 Li20、 Bi203、 Ti02中的一种或几种; 所述的烧结助熔剂 是 B203、 Si02、 ZnO、 CuO、 K20、 BaO中的一种或几种。
进一歩: 上述抗还原铜内电极高频陶瓷介质材料, 其特征在于: 按摩尔百 分比计, 主晶相 80〜95mol%、 改性添加剂 1.2〜10mol %、 烧结助熔剂 2.5〜18 mol%。 按摩尔百分比计, 改性添加剂在整个抗还原铜内电极陶高频陶瓷介质材 料中的组成是 Mn02 0.2〜0.5mol%、 CaO 0〜: l .0mol%、 Li20 1.0〜3.0mol%、 Bi203 0〜5.0mol%、 Ti02 0〜1.0mol%。按摩尔百分比计, 所述的烧结助熔剂在整个抗 还原铜内电极高频低温烧结陶瓷介质材料中的组成是 B203 1.0〜3.0mol%、 Si02 0〜6.0mol%、 ZnO 1.5〜6.0mol%、 CuO 0〜1.0mol%、 K20 0〜: l .0mol%、 BaO 0〜1.0mol%。所述的主晶相由 Mg(OH)2、 Si02、 BaC03和 Zr02球磨混合均勾后, 在 1050〜1170°C温度预煅烧制得。
上述组成中, 主成分选择具有良好高频性能的复合物
Figure imgf000003_0001
该复合物介电常数较低, 较低的介质损耗角正切值, 和近乎线性的介电-温度特 性, 这些都能从主材料上保证了本发明材料制作成 MLCC具有优良的电性能。 改性添加剂材料的加入, 能够使材料的介电常数保持在 10左右, 并且很好的调 节陶瓷介质材料的温度系数, 使介电-温度特性近乎线性; 同时还能抑制瓷体晶 粒的异常生长, 使晶粒生长均匀, 这对提高介质材料的耐压强度起到很好的作 用, 并最终使本发明获得的 MLCC具有高可靠性。 烧结助熔剂的一个主要作用 是降低本发明陶瓷材料的烧结温度, 使材料能在小于 1100°C的温度下进行致密 烧结, 烧结后的陶瓷体晶粒生长均匀, 具有高致密度, 进一步保证了制成的 MLCC具有高可靠性。本发明采用了还原气氛烧结的
Figure imgf000003_0002
体系 的非铁电性铜电极介质陶瓷, 烧结温度低于 1100°C, 瓷料可与铜 (Cu) 内电极 浆料匹配, 瓷料性能优越。
在用上述高频低温烧结陶瓷介质材料制备 MLCC产品的方法中, 按常规瓷 料生产工艺流程制作 MLCC瓷料, 包括瓷浆制备、 制作介质膜片、 交替叠印内 电极和介质层、 坯块干燥、 层压、 切割、 排胶、 烧结、 倒角、 封端、 烧端工艺。 即按片式 MLCC的制作流程加入有机粘合剂和乙醇等溶剂, 从而形成浆料, 把 浆料流延制作成薄膜片, 在膜片上印刷铜 Cu内电极, 交替层叠所需层数, 形成 生坯 MLCC芯片, 然后在 200〜300°C温度热处理生坯 MLCC芯片, 以排除有 机粘合剂和溶剂, 在 1000〜1100°C温度烧结 2.5〜5小时 MLCC芯片, 然后,经 表面处理,再在芯片的两端封上一对外部铜 Cu电极,使外部电极与内部电极连接, 在 830〜900°C温度范围内热处理外电极,再经电镀处理等工艺,即可得到 MLCC 产品。 该制备方法中, 产品烧结温度低, 对工艺设备的要求简单, 陶瓷介质材 料粒度分布均匀, 烧结中瓷体晶粒生长均匀、 致密, MLCC产品电气性能优良。 具体实施方式 本发明的主旨是采用 MgxBad^ZrySi^yPs体系为材料主晶相, 加入改性添加 剂调节性能, 并加入烧结助熔剂帮助降低烧结温度, 采用常规的工艺制成所需粉 体, 得到一种符合 COG瓷介特性、 材料分散性高、 成型工艺好的低温烧结陶瓷 介质材料, 且在制作 MLCC产品时, 烧结温度低、 晶粒生长均匀、 致密, 产品无 缺陷或缺陷小。 下面结合实施例对本发明的内容作进一歩详述, 实施例中所提 及的内容并非对本发明的限定, 材料配方选择可因地制宜而对结果无实质性的 影响。
首先, 简述本发明材料配方的基本方案: 一种抗还原铜高频低温烧结陶瓷 介质材料, 由主晶相、 改性添加剂、 烧结助熔剂组成, 主晶相的结构式是 MgxBa(1-x)ZrySi(1-y)03 , 其中 0.8 x 0.95, 0.05^y^0.2 , 所述的改性添加剂是 Mn02、 CaO、 Li20、 Bi203、 Ti02中的一种或几种; 所述的烧结助瑢剂是 ¾03、 Si02、 ZnO、 CuO、 K20、 BaO中的一种或几种。 实施例 1
一种抗还原铜内电极高频低温烧结陶瓷介质材料,采用纯度为 99.5%以上的 原材料, 以 0.8mol Mg(OH)2、 0.8 mol Si02、 0.2 mol BaC03禾 B 0.2 molZr02的混 合比例, 球磨均匀, 在 115CTC温度下煅烧该混合物 3 小时, 即得主晶相为 Mgo.8Bao.2Sio.8Zro.203材料。然后按预定比例添加如表 1所示的改性添加剂和烧结 助剂。
表 1: 主晶相、 改性添加剂、 烧结助熔剂配方组成
Figure imgf000004_0001
按本领域技术人员常用的瓷料生产工艺流程制作陶瓷介质瓷料, 然后按照 常用的 MLCC的制作流程加入有机粘合剂和乙醇等溶剂, 从而形成浆料, 把浆 料流延制作成薄膜片, 在膜片上印刷铜 Cu内电极, 交替层叠所需层数, 形成生 坯 MLCC芯片, 然后在 200〜300°C温度热处理生坯 MLCC芯片, 以排除有机 粘合剂和溶剂。在 1000〜1100°C温度烧结 2.5〜5小时 MLCC芯片, 经表面抛光 处理, 再在芯片的两端封上一对外部铜 Cu电极, 使外部电极与内部电极连接, 在 830〜900°C温度范围内热处理外电极。再经电镀处理等工艺,即可得到 MLCC 产品。该 MLCC产品具有容量稳定、性能好的特点。在室温 25°C时,利用 HP4278 电桥, 在 ΙΜΗζ, 1.0V (AC)下测试本 MLCC产品容量、 损耗; 利用 SF2512快 速绝缘机, 施加 100V的 DC额定电压 10秒, 测试绝缘电阻; 利用高低温箱, 在 -55〜+125°C之间, 测试介电常数 -温度系数; 利用 HP4991A测试本 MLCC产 品频率特性等; 产品性能测试参数如表 2的 1〜10号材料配方对应的 MLCC测 试参数。
表 2: 根据上述陶瓷介质材料制得的 MLCC产品性能参数
Figure imgf000005_0001
实施例 2
一种抗还原铜内电极高频低温烧结陶瓷介质材料,采用纯度为 99.5%以上的 原材料, 以 0.9mol Mg(OH)2、 0.9mol Si02、 O.lmol BaC03和 O.lmol Zr02的混合 比例, 球磨均匀, 在 1150°C温度煅烧该混合物 3 小时, 即得主晶相为 Mgo.gBao.iSio.gZrdOs材料。然后按预定比例添加如表 3所示的改性添加剂和烧结 助剂。
表 3: 主晶相、 改性添加剂、 烧结助熔剂配方组成
主晶相
发明
Mgo.9Ba0.iSio 改性添加剂 (mol %) 烧结助熔剂 (mol%) 材料
Zral03
编号 (mol%) Li20 Ti02 MnO CaO Bi203 B203 ZnO Si02 CuO K20 BaO 11 80 3.0 0 0.5 0 5.0 2.0 6.0 1.0 1.0 0.5 1.0
12 81 2.5 1.0 0.4 0+5 4.0 3.0 60 1.8 0 0 0.0
13 83 2.2 0.8 0.4 1 +0 3.0 2.1 4.5 1.6 0.4 1.0 0
14 86 2.0 0.6 0.3 0+7 2.0 2.2 4.2 2.0 0 0 0
15 88 2.0 0.4 0.3 0+4 1.0 1.8 3.5 2.3 0 0 0.3
16 90 2.0 0.2 0.2 0.2 0 1.6 3.3 2.5 0 0 0
17 90 2.0 0 0.2 0 0.5 2.0 3.0 1.0 0.8 0 0.5
18 91 1.8 0 0.2 0 0 2.0 3.8 0 1.0 0 0.2
19 93 1.5 0 0.2 0 0 1.5 2.5 0.7 0 0.6 0
20 95 1.0 0 0.2 0.3 0 1.0 2.0 0 0.2 0.3 按实施例 1的方法制造和测试 MLCC的电性能, 测试结果如表 4所示:
表 4: 根据上述陶瓷介质材料制得的 MLCC产品性能参数
Figure imgf000006_0001
实施例 3
一种抗还原铜内电极高频低温烧结陶瓷介质材料,采用纯度为 99.5%以上的 原材料,以 0.95 mol Mg(OH)2、 0.95 mol Si02、 0.05 mol BaC03禾口 0.05 mol Zr02 的混合比例, 球磨均匀, 在 1150°C温度煅烧该混合物 3 小时, 即得主晶相为 Mgo.95Bao.05Sio.95Zro.05O3材料。 然后按预定比例添加如表 5所示的改性添加剂和 烧结助剂。
表 5: 主晶相、 改性添加剂、 烧结助熔剂配方组成
发明 主晶相
改性添加剂 (mol %) 烧结助熔剂 (mol %) 材料
编号 Li20 Ti02 MnO CaO Bi203 B2O3 ZnO Si02 CuO K20 BaO
21 80 3.0 1.0 0.5 0 5.0 2.0 6.0 1.0 0 0.5 1.0
22 82 2.5 0.8 0.4 1.0 4.0 3.0 5.0 1.3 0 0 0.0
23 84 2.2 0.6 0.4 0.8 2.0 2.1 4.5 2.4 0 1.0 0
24 86 2.0 0. 4 0.3 0.6 1.0 2.2 4.5 0 1.0 1.0 1.0
25 88 2.0 0.2 0.3 0.4 0 1.8 4.0 2.5 0 0 0.8
26 90 2.0 0 0.2 0.2 0 1.6 3.3 2.5 0 0 0.4
27 92 2.0 0 0.2 0 0 2.0 3.0 0 0.8 0 0
28 92 2.0 0 0.2 0 0 2.0 3.8 0 1.0 0 0 94 1.5 0 0.2 0 0 1.5 2.5 0.3 0 0 0
95 1.0 0 0.2 0 0 1.0 1.5 0 0 0 1.3 按实施例 1的方法制造和测试 MLCC的电性能, 测试结果如表 6所示:
表 6: 根据上述陶瓷介质材料制得的 MLCC产品性能参数
介电损耗 温度系数
发明材料编号 介电常数 绝缘电阻 (Ω)
DF (χΐθ"4) -55〜+125°C (ppm/°C)
21 8.9 0.7 一 12〜22 >10π
22 9.1 0.8 4〜16 >10π
23 9.2 0.6 11〜23 >10π
24 9.5 1.0 -8〜19 >10π
25 9.7 1.2 10〜23 >10π
26 10.0 1.1 5〜16 >10π
27 10.4 0.8 -5〜20 >10π
28 10.7 1.3 3〜19 >10π
29 11.2 1.2 -5〜17 >10π
30 11.5 1.0 -6〜15 >10π

Claims

权 利 要 求 书
1、 一种抗还原铜内电极高频低温烧结陶瓷介质材料, 由主晶相、 改性添加 剂、 烧结助熔剂组成, 其特征在于: 主晶相的结构式是
Figure imgf000008_0001
, 其 中 0.8 x 0.95, 0.05^y^0.2,所述的改性添加剂是 Mn02、 CaO、 Li20、 Bi203、 Ti02中的一种或几种; 所述的烧结助熔剂是 B203、 Si02、 ZnO、 CuO、 K20、 BaO 中的一种或几种。
2、 根据权利要求 1所述的抗还原铜内电极高频低温烧结陶瓷介质材料, 其 特征在于: 按摩尔百分比计, 主晶相 80〜95mol%、 改性添加剂 1.2〜10mol%、 烧结助熔剂 2.5〜18 mol%。
3、 根据权利要求 2所述的抗还原铜内电极高频低温烧结陶瓷介质材料, 其 特征在于:所述的主晶相 MgxBa( )ZrySi(h O3,其中 0.8 x 0.95, 0.05 y 0.2, 由 Mg(OH)2、 BaC03、 Zr02、 Si02按比例球磨混合均匀后, 在 1050°C〜1170°C 温度预煅烧制得。
4、 根据权利要求 2所述的抗还原铜内电极陶高频低温烧结陶瓷介质材料, 其特征在于: 按摩尔百分比计, 改性添加剂在整个抗还原铜内电极陶高频陶瓷 介质材料中的组成是 Mn02 0.2〜0.5mol%、 CaO 0〜1.0mol%、 Li20 1.0〜 3.0mol%、 Bi203 0〜5.0mol%、 TiO20〜1.0mol%。
5、 根据权利要求 2所述的抗还原铜内电极高频低温烧结陶瓷介质材料, 其 特征在于: 按摩尔百分比计, 所述的烧结助熔剂在整个抗还原铜内电极高频低 温烧结陶瓷介质材料中的组成是 B203 1.0〜3.0mol%、 Si02 0〜6.0mol%、 ZnO 1.5〜6.0mol%、 CuO 0〜1.0mol%、 K20 0〜1.0mol%、 BaO 0〜1.0mol%。
6、 根据权利要求 1至 5的其中之一所述的抗还原铜内电极高频低温烧结陶 瓷介质材料, 其特征在于: 用该陶瓷介质材料制作的陶瓷电容器可在还原气氛 下烧结, 陶瓷电容器内电极材料可使用铜, 烧结温度 1000°C〜1100°C, 获得的陶 瓷电容器电气性能满足高频 COG类陶瓷材料特性。
PCT/CN2010/079974 2009-12-22 2010-12-20 一种与铜内电极匹配的抗还原性高频低温烧结陶瓷介质材料 WO2011076090A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012514341A JP5442114B2 (ja) 2009-12-22 2010-12-20 銅内電極と整合する耐還元性高周波低温焼結セラミック媒体材料
US13/377,499 US8709962B2 (en) 2009-12-22 2010-12-20 Anti-reductive high-frequency ceramic dielectric material sintered at low temperature and matched with copper internal electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910214109.4 2009-12-22
CN2009102141094A CN101786866B (zh) 2009-12-22 2009-12-22 一种抗还原性铜内电极高频低温烧结陶瓷介质材料

Publications (1)

Publication Number Publication Date
WO2011076090A1 true WO2011076090A1 (zh) 2011-06-30

Family

ID=42530266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079974 WO2011076090A1 (zh) 2009-12-22 2010-12-20 一种与铜内电极匹配的抗还原性高频低温烧结陶瓷介质材料

Country Status (4)

Country Link
US (1) US8709962B2 (zh)
JP (1) JP5442114B2 (zh)
CN (1) CN101786866B (zh)
WO (1) WO2011076090A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947598A (zh) * 2022-10-21 2023-04-11 西安交通大学 一种可与贱金属内电极共烧的反铁电材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933582B1 (fr) * 2008-07-10 2011-10-07 Oreal Dispositif de traitement des matieres keratiniques humaines
FR2933583B1 (fr) * 2008-07-10 2011-10-07 Oreal Dispositif pour appliquer une composition sur les matieres keratiniques humaines
FR2933611B1 (fr) 2008-07-10 2012-12-14 Oreal Procede de maquillage et dispositif pour la mise en oeuvre d'un tel procede.
CN101786866B (zh) * 2009-12-22 2012-12-05 广东风华高新科技股份有限公司 一种抗还原性铜内电极高频低温烧结陶瓷介质材料
CN102956355B (zh) * 2012-10-26 2015-07-29 广东风华高新科技股份有限公司 多层陶瓷电容器的制造方法及烧结铜端电极的设备
CN104341144B (zh) * 2013-08-01 2016-04-27 北京元六鸿远电子技术有限公司 低温烧结c0g特性微波介质材料及其制备方法
CN105347801B (zh) * 2015-11-20 2019-02-22 中国计量科学研究院 一种纳米陶瓷材料组合物和标准电容器及其制备方法
CN111933451A (zh) * 2020-07-08 2020-11-13 四川华瓷科技有限公司 一种射频片式多层陶瓷电容器的制备方法
CN112759378B (zh) * 2021-02-01 2022-09-02 郴州功田电子陶瓷技术有限公司 低温共烧微波介质陶瓷材料及其制备方法、电子元器件
CN114262219B (zh) * 2021-12-31 2022-09-06 北京元六鸿远电子科技股份有限公司 一种具备超高温度稳定性的微波介质陶瓷材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141838A (ja) * 1987-11-26 1989-06-02 Shoei Kagaku Kogyo Kk 回路基板用誘電体材料
US6602623B1 (en) * 1999-10-27 2003-08-05 Ngk Spark Plug Co., Ltd. Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
CN1673174A (zh) * 2004-03-23 2005-09-28 浙江大学 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN1801417A (zh) * 2005-12-13 2006-07-12 清华大学 细晶贱金属内电极多层陶瓷片式电容器介质材料
CN101786866A (zh) * 2009-12-22 2010-07-28 广东风华高新科技股份有限公司 一种抗还原性铜内电极高频低温烧结陶瓷介质材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030558B2 (ja) * 1987-11-28 2000-04-10 ティーディーケイ株式会社 誘電体磁器材料
DE69738011D1 (de) * 1996-10-25 2007-09-27 Ngk Spark Plug Co Dielektrisches Material, Verfahren zu dessen Herstellung und dieses Material enthaltende dielektrische Resonatorvorrichtung
JP2000276947A (ja) * 1999-01-19 2000-10-06 Taiyo Yuden Co Ltd 電子部品用セラミックス組成物、電子部品用セラミックス焼結体及び電子部品
JP2001006966A (ja) * 1999-06-17 2001-01-12 Murata Mfg Co Ltd セラミックコンデンサおよびその製造方法
JP2001313470A (ja) * 1999-10-27 2001-11-09 Ngk Spark Plug Co Ltd コンデンサ内蔵配線基板
JP2002173367A (ja) * 1999-10-27 2002-06-21 Ngk Spark Plug Co Ltd 低温焼成磁器組成物及びその製造方法並びにそれを用いた配線基板
JP3470703B2 (ja) * 2000-04-07 2003-11-25 株式会社村田製作所 非還元性誘電体セラミックおよびそれを用いた積層セラミックコンデンサ、ならびに非還元性誘電体セラミックの製造方法
US6514895B1 (en) * 2000-06-15 2003-02-04 Paratek Microwave, Inc. Electronically tunable ceramic materials including tunable dielectric and metal silicate phases
JP4110978B2 (ja) * 2003-01-24 2008-07-02 株式会社村田製作所 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP4403705B2 (ja) * 2003-02-17 2010-01-27 Tdk株式会社 誘電体磁器組成物および電子部品
CN100464382C (zh) 2003-12-31 2009-02-25 广东风华高新科技股份有限公司 钛酸锌镁系陶瓷介质材料及所得的陶瓷电容器
JP2005281010A (ja) 2004-03-26 2005-10-13 Sanyo Electric Co Ltd 誘電体セラミック材料及び積層セラミック基板
JP4736342B2 (ja) * 2004-04-09 2011-07-27 株式会社村田製作所 ガラスセラミック原料組成物、ガラスセラミック焼結体およびガラスセラミック多層基板
JP4185056B2 (ja) * 2005-01-26 2008-11-19 株式会社東芝 絶縁膜、および半導体装置
CN101323521A (zh) 2008-07-16 2008-12-17 上海大学 微波介质陶瓷材料
WO2010061842A1 (ja) * 2008-11-25 2010-06-03 宇部興産株式会社 高周波用誘電体磁器組成物及びその製造方法、高周波用誘電体磁器並びにその製造方法およびそれを用いた高周波回路素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141838A (ja) * 1987-11-26 1989-06-02 Shoei Kagaku Kogyo Kk 回路基板用誘電体材料
US6602623B1 (en) * 1999-10-27 2003-08-05 Ngk Spark Plug Co., Ltd. Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
CN1673174A (zh) * 2004-03-23 2005-09-28 浙江大学 低温烧结(Ca,Mg)SiO3系微波介质陶瓷及制备工艺
CN1801417A (zh) * 2005-12-13 2006-07-12 清华大学 细晶贱金属内电极多层陶瓷片式电容器介质材料
CN101786866A (zh) * 2009-12-22 2010-07-28 广东风华高新科技股份有限公司 一种抗还原性铜内电极高频低温烧结陶瓷介质材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947598A (zh) * 2022-10-21 2023-04-11 西安交通大学 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN115947598B (zh) * 2022-10-21 2024-03-22 西安交通大学 一种可与贱金属内电极共烧的反铁电材料及其制备方法

Also Published As

Publication number Publication date
CN101786866A (zh) 2010-07-28
JP2012529412A (ja) 2012-11-22
JP5442114B2 (ja) 2014-03-12
US20120250222A1 (en) 2012-10-04
US8709962B2 (en) 2014-04-29
CN101786866B (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2011076090A1 (zh) 一种与铜内电极匹配的抗还原性高频低温烧结陶瓷介质材料
JP5281714B2 (ja) ニッケル内電極と整合されるセラミック媒体材料及びそれによって得られたコンデンサの製備方法
JP3567759B2 (ja) 誘電体セラミック組成物および積層セラミックコンデンサ
JP5332807B2 (ja) 誘電体磁器組成物
JP3780851B2 (ja) チタン酸バリウムおよびその製造方法ならびに誘電体セラミックおよびセラミック電子部品
JP4521387B2 (ja) 耐還元性誘電体磁器組成物
JP3746763B2 (ja) 耐還元性低温焼成誘電体磁器組成物、これを用いた積層セラミックキャパシター及びその製造方法
CN100419923C (zh) 介电陶瓷及其制备方法和多层陶瓷电容器
JP5077362B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
TW201004892A (en) Dielectric ceramic composition, multilayer complex electronic device, multilayer common mode filter, multilayer ceramic coil and multilayer ceramic capacitor
CN105693236A (zh) 低温烧结介电组合物以及由其形成的多层陶瓷电容器
JP3882054B2 (ja) 積層セラミックコンデンサ
KR101237256B1 (ko) 티탄산바륨계 유전체 원료 분말, 그 제조방법, 세라믹 그린시트의 제조방법, 및 적층 세라믹 콘덴서의 제조방법
KR100826785B1 (ko) 유전체 세라믹 조성물, 그 제조방법 및 적층 세라믹커패시터
JP2006347782A (ja) 誘電体セラミック組成物、および積層セラミックコンデンサ
CN101333105B (zh) 薄介质x7r mlcc介质瓷料
JP2005187296A (ja) 誘電体セラミック組成物及び積層セラミックコンデンサ
JP5151039B2 (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
CN101913863A (zh) 一种与镍内电极匹配的陶瓷介质材料
JP4691978B2 (ja) 誘電体組成物の製造方法
JP2004210604A (ja) 誘電体セラミック、及び積層セラミックコンデンサ
TWI541215B (zh) A dielectric ceramic material composition and a multilayer ceramic capacitor comprising the dielectric ceramic material composition
JP2011011919A (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP4399703B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
CN114133238A (zh) 一种陶瓷介质材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13377499

Country of ref document: US

Ref document number: 2012514341

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838653

Country of ref document: EP

Kind code of ref document: A1