WO2011075877A1 - 一种全氟离子交换树脂及其制备方法和用途 - Google Patents

一种全氟离子交换树脂及其制备方法和用途 Download PDF

Info

Publication number
WO2011075877A1
WO2011075877A1 PCT/CN2009/001557 CN2009001557W WO2011075877A1 WO 2011075877 A1 WO2011075877 A1 WO 2011075877A1 CN 2009001557 W CN2009001557 W CN 2009001557W WO 2011075877 A1 WO2011075877 A1 WO 2011075877A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ion exchange
monomer
sulfonyl
reaction
Prior art date
Application number
PCT/CN2009/001557
Other languages
English (en)
French (fr)
Inventor
张永明
高自宏
秦胜
张恒
李勇
魏茂祥
王军
Original Assignee
山东东岳神舟新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东东岳神舟新材料有限公司 filed Critical 山东东岳神舟新材料有限公司
Priority to PCT/CN2009/001557 priority Critical patent/WO2011075877A1/zh
Publication of WO2011075877A1 publication Critical patent/WO2011075877A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1466Monomers containing sulfur
    • C08F216/1475Monomers containing sulfur and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1458Monomers containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of fluorine-containing polymer materials, relates to a functional perfluorinated ion exchange resin with high exchange capacity, a preparation method and application thereof, and particularly relates to a sulfonyl group with a phosphonate side group and two different structures. Multi-component copolymerized perfluoro ion exchange resin with short side groups of fluorine, preparation method and use thereof. Background technique
  • a fluorine-containing ion exchange membrane containing an ion exchange group, particularly a sulfonic acid group and a carboxylic acid group, is more suitable as an ion exchange membrane for a fuel cell and a chloralkali electrolytic cell because of its chemical resistance.
  • US 3,560,568 is a patent published by DuPont for the preparation of short-side sulfonyl fluoride monomer, sulfonic acid resin and its properties.
  • the preparation route of the method is complicated and the yield is relatively low.
  • No. 4,940,525 discloses a process for preparing a copolymer resin using a vinylidene fluoride monomer and a short-side sulfonyl fluoride monomer which does not have a perfluoro structure and is inferior in corrosion resistance.
  • GB 1034197 discloses perfluorosulfonic acid polymers containing sulfonic acid groups
  • EP 1091435 discloses the structure of a block sulfonic acid resin using both tetrafluoroethylene monomer and sulfonyl fluoride side alkylene ether.
  • CF 2 CFOCF 2 CF(CF 3 )OCF 2 CF 2 S0 2 F
  • CF 2 CFOCF 2 CF(CF 3 )OCF 2 CF 2 S0 2 F
  • the polymerization method includes solution polymerization (US 2393967, US 3041317), emulsion polymerization (US 4789717, US 4864006), microemulsion polymerization (US 6639011, EP 1172382, US 5608022), dispersion polymerization, suspension polymerization, miniemulsion polymerization, and the like.
  • These polymers having pendant sulfonyl fluoride groups can be subjected to a suitable hydrolysis reaction of sulfonyl fluoride to obtain a free sulfonic acid group, and are used as ion exchange membranes in the fields of fuel cells, electrolytic cells, diffusion dialysis, catalysis, precious metal recovery, and the like.
  • perfluorosulfonic acid resins are their use as membrane materials in the chlor-alkali industry and fuel cells.
  • a very important requirement for such ion exchange membranes is their ionic conductivity.
  • high exchange capacity ion exchange resins can even be dissolved in water. It is mentioned in EP 0031724 that the total amount of ion exchange capacity for the membrane used in the cell is between 0.5 and 1.6 mmol/g (dry resin), preferably between 0.8 and 1.2 mmol/g.
  • the inner film has a high EW value (the mass of dry resin contained per mole of sulfonic acid groups), which is responsible for mechanical strength, and the outer film is Low EW value, ion conduction; US 5981097 ⁇ composite film with multiple layers of different ion exchange capacity; and US 5082472 is composited with biaxially stretched polytetrafluoroethylene porous membrane and low EW resin composite membrane.
  • CN 200480033602.1 discloses a method of introducing a nitrile group in a polymerization system by crosslinking the nitrile group after treatment to increase the mechanical strength of the film.
  • CN 200480033631.8 discloses a method of introducing bromine, chlorine, iodine groups into a polymerization system and crosslinking them by electron beam.
  • Another method is to shorten the pendant groups of the comonomer sulfonyl fluoride and increase the mechanical strength of the membrane material while increasing the ion exchange capacity, but in US 6680346 it is mentioned that the polymerization is synthesized from the short-side sulfonyl fluoride monomer.
  • the cyclization reaction occurs due to different polymerization conditions, resulting in chain transfer of the polymerization reaction, resulting in a decrease in molecular weight, a decrease in the mechanical strength of the material, and an increase in the molar ratio of the short-side sulfonyl monomer to the tetrafluoroethylene monomer. It will further promote the occurrence of such side reactions, which limits the improvement of ion exchange capacity and the stability of materials.
  • an important requirement for a membrane electrode formed by an ion exchange membrane and a catalyst layer in a fuel cell is its chemical stability and the ability of the electrode catalyst to resist carbon monoxide (CO) poisoning.
  • CO carbon monoxide
  • the operating temperature of the fuel cell membrane electrode widely studied and demonstrated is between 25 and 8 TC.
  • the catalyst layer of the membrane electrode will be poisoned.
  • an effective solution is to increase the use temperature of the fuel cell.
  • the catalyst is over 10 (TC)
  • the catalyst is CO to the CO.
  • the object of the present invention is to solve the contradiction between the ion exchange capacity of the existing perfluorosulfonic acid resin and the mechanical strength, and to overcome the disadvantage of not being able to withstand high temperature, to provide a requirement that can simultaneously satisfy the mechanical strength and ion exchange capacity and is thermally stable.
  • Another object of the present invention is to solve the problem that a chain transfer reaction occurs in a short-side sulfonyl fluoroolefin ether monomer during polymerization, and the obtained resin has a sufficiently low molecular weight.
  • the present invention provides a functional high exchange capacity perfluororesin having a sulfonyl fluoride short side group having a phosphonate side group and two different structures, which has high chemical stability and high ion. Exchange capacity and good high temperature mechanical stability.
  • the present invention also provides a process for the preparation of the functional high exchange capacity perfluororesin.
  • the present invention also provides the use of the functional high exchange capacity perfluororesin for the manufacture of fuel cells and high temperature fuel cells.
  • the present invention also provides an ion exchange membrane made of the functional high exchange capacity perfluororesin and a fuel cell comprising the ion exchange membrane.
  • the number average molecular weight of the above high exchange capacity perfluororesin is from 1 to 600,000, preferably from 15 to 300,000, and most preferably from 18 to 250,000.
  • the molecular weight distribution value (weight average molecular weight ratio number average molecular weight) of the above high exchange capacity perfluororesin is from 1.5 to 2.0.
  • the molar fraction of each polymerized unit in the resin is: the total mole fraction of the tetrafluoroethylene polymerized unit may be 50-85%, preferably 70-80%; the short side sulfonyl fluoroether ether monomer polymerization unit total The molar fraction may be 5 to 49%, preferably 15 to 29%; the total mole fraction of the polymerized unit of the phosphonate side olefin ether monomer may be 1-10%, preferably 1-5%;
  • the molar ratio of the sulfonyl fluoroether ether monomers (1) and (2) of the different short side group structures may be from 0.25 to 4, preferably from 0.6 to 1.5.
  • the method for preparing the above perfluororesin comprises the steps of copolymerizing a tetrafluoroethylene, a phosphonate side olefin ether monomer, and two different short side group structure sulfonyl fluoroether ether monomers under the action of an initiator.
  • the reaction temperature of the copolymerization reaction may be 10-100 ° C, preferably 10-80 ° C
  • the reaction time may be 1-10 hours, preferably 2-8 hours
  • the reaction pressure may be 2-10 MPa, preferably 2 -6 MPa.
  • the molar ratio of the tetrafluoroethylene, the phosphonate side olefin ether monomer, and the two different short side group structure sulfonyl fluoroether ether monomers (1) and (2) may be 1: 0.01-0.2: 0.2-0.8: 0.2-0.8, preferably 1: 0.5-0.15: 0.3-0.7: 0.3-0.7.
  • the initiator may be any initiator conventionally used in the preparation of a sulfonic acid resin, for example, may be N 2 F 2 , perfluorodecyl peroxide, and persulfate.
  • the perfluorodecyl peroxide may be a perfluorodecyl acyl compound, a perfluorodecyloxy acyl compound, a partial fluorinated fluorenyl acyl compound, and a partial fluorinated fluorenyloxy group.
  • the persulfate may be ammonium persulfate, alkali One or more of metal persulfide and alkaline earth metal persulfide, preferably ammonium persulfate and/or potassium persulfate.
  • the copolymerization reaction may preferably be an emulsion polymerization reaction carried out in an aqueous phase.
  • concentration of the phosphonate side-enyl ether monomer, the two different short-side structure sulfonyl fluoroether ether monomers (1) and (2) in the aqueous phase can vary over a wide range.
  • the weight percent concentration of the phosphonate pendant olefin ether monomer may be from 1 to 12%, preferably from 5 to 10%, based on the total weight of the aqueous phase; the total of the two sulfonyl fluoroether ether monomers
  • the weight percentage concentration may be 5-30%, preferably 5-20%.
  • tetrafluoroethylene as a reactant can be continuously introduced into the reaction system in the form of a gas.
  • the method can also include adding an emulsifier to the aqueous phase.
  • the emulsifier can be any emulsifier commonly used in the preparation of sulfonic acid resins.
  • the emulsifier used in the emulsion polymerization reaction of the present invention is one or more of nonionic emulsifiers, such as nonylphenol polyether alcohols, such as nonylphenol ethoxylates, polyoxyethylene fatty acids. , polyoxyethylene fatty acid ether.
  • the emulsifier may have a concentration by weight of from 0.1 to 10%, preferably from 1 to 8%, based on the total weight of the aqueous phase.
  • the specific steps of performing emulsion polymerization in the aqueous phase may include:
  • the total mass concentration of the emulsifier in water is 0.1-10%
  • the total short-side sulfonyl fluoride ether in the mass percentage concentration in water is 5-30%
  • the phosphonate side olefin ether monomer in The mass concentration in water is
  • the molar ratio of the two different short-side structure sulfonyl fluoroether ether monomers (1) and (2) is 0.2-0.8: 0.8-0.2, preferably 0.4-0.6: 0.6-0.4;
  • the reactor is heated to 10-100 ° C, the reaction is initiated by adding an initiator to the reaction system through a metering pump, and the tetrafluoroethylene monomer and the initiator are continuously added to the reaction vessel to maintain the reaction pressure of the reaction vessel.
  • reaction time is 1-10 hours, and those skilled in the art can select the concentration of the initiator according to common knowledge in the art;
  • the initiator and the tetrafluoroethylene monomer are stopped from being added to the reaction vessel, and the unreacted tetrafluoroethylene monomer is recovered by the reaction vessel venting line and the recovery tank to be emptied; the milky white polymer slurry is obtained.
  • the liquid slurry is passed through the discharge system into the post-treatment equipment, sheared at high speed, and separated by filtration to obtain a white polymer powder, which is dried in 10 (TC oven) to obtain a side group with a phosphonate and two different structures.
  • the functional high ion exchange capacity perfluoro resin of the short side group of the sulfonyl fluoride, the sulfonyl fluoroether ether monomer and the phosphonate side olefin ether monomer in the filtrate are recovered by the recovery system.
  • a fuel cell comprising the above ion exchange membrane.
  • the invention solves the problem that the short-side sulfonyl fluoroolefin ether monomer undergoes chain transfer reaction during the polymerization process, and the obtained resin has insufficient molecular weight.
  • the specific reaction mechanism has not been studied clearly, and it is presumed that there are two kinds of effects from the viewpoint of the resin structure. Effect: In the polymerization process, two sulfonyl fluoroether ether monomers with different short side groups are used, and the two monomers work synergistically; the phosphonate ether monomer is present in the two polymerization system. Participate in the polymerization reaction and act as a dispersant. These small amounts of metal ions The presence of (or ammonium ions) allows the polymerization to proceed synergistically toward the high molecular weight direction and eliminates the chain transfer cyclization reaction.
  • the functional perfluororesin synthesized by the invention has an ion exchange capacity of between 0.5 and 2.7 mmol/g (dry resin), and the smaller the ion exchange capacity, the greater the mechanical strength, wherein the ion exchange capacity is between 1.2 and 2.0.
  • the mechanical strength of the resin between mmol/g exceeds 30 MPa, and the prepared membrane material has very good thermal stability.
  • the conductivity of the membrane material measured at room temperature is greater than 0.2 S/cm, measured at 100 ° C, 45% humidity. The conductivity is still higher than 0.05S/cm, which can fully meet the needs of fuel cell proton membrane materials.
  • the ion exchange membrane prepared from the perfluororesin of the present invention has excellent chemical stability, high current efficiency, low membrane resistance, and high mechanical strength, thereby improving the ion exchange capacity of the ion exchange membrane and the membrane. Water retention capacity, improve the usability of membrane materials, and further increase conductivity
  • Figure 3 is a NMR spectrum of the perfluororesin prepared in Examples 1-6. Since the structures of the perfluororesins prepared in Examples 1-6 are similar, the NMR spectra are also coincident in chemical shifts, with the only difference being that The size of the peak area is extremely subtle. The best way to implement the invention
  • the reactors used in the examples are 10L stainless steel high pressure reactors, equipped with temperature sensors, pressure sensors, heating circulation systems, cooling circulation systems, mixing motors, internal cooling water pipes, liquid metering pumps, gases.
  • the feed valve, the liquid feed valve, and the contents of the reactor are not specifically described in the following examples, and the ion exchange capacity is a result of measurement after the hydrolysis of the sulfonyl fluoride to the sulfonic acid and the hydrolysis of the phosphate to the acid form.
  • the perfluorodecyl initiator used in the synthesis of the present invention can be prepared according to techniques well known in the art. For the preparation method recommended by the present invention, see J. Org. Chem., 1982, 47(11): 2009-2013.
  • the potassium persulfate and ammonium persulfate used in the synthesis process of the invention are purchased from the national medicine group, the N 2 F 2 gas is purchased from Dongyue Chemical Co., Ltd., and the tetrafluoroethylene monomer is purchased from Shandong Dongyue Polymer Material Co., Ltd. the company.
  • the short-side sulfonyl fluoride monomer can be prepared according to the method disclosed in Chinese Patent Application No.: CN200910229444.1, CN 200910229446.0, and CN 200910230218.5; the phosphonate side olefin ether monomer can be used according to the application number: CN 200910230218.5
  • the method disclosed in the Chinese patent is prepared, and the phosphonate olefin ether oxime prepared in the patent is hydrolyzed with dilute sulfuric acid to obtain the phosphonate side olefin ether monomer used in the present invention.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • White polymer powder dried in 10 (TC oven) to obtain a functional perfluoro resin with a short side group of sulfonyl fluoride and a side group of ammonium phosphate. Sulfonyl fluoroether monomer and ammonium phosphonate in the filtrate The pendant olefin ether monomer is recovered by the recovery system and reused.
  • T d decomposition temperature
  • Nonylphenol ethoxylate NP-10 start the stirring device, vacuum-filled with high-purity nitrogen for three times. After the oxygen content in the reactor is below 1ppm, vacuum is applied, and 500g is added to the reactor through the liquid feed valve.
  • the monomer kept the reaction pressure at 2.9 MPa, and 2.4 g of the initiator was added to the system every 25 minutes. After the reaction for 2.5 hours, the addition of the initiator was stopped, and the reaction was continued for 25 minutes, and then the addition of the tetrafluoroethylene monomer was stopped.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • the white polymer powder was dried in an oven at 100 ° C to obtain a functional perfluoro resin having a short side group of sulfonyl fluoride and a sodium phosphinate side group.
  • the sulfonyl fluoroether ether monomer and the phosphonic acid sodium olefin ether monomer in the filtrate are recovered by a recovery system and reused.
  • the reaction kettle is cooled by the cooling circulation system, and unreacted tetrafluoroethylene monomer is recovered through the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the separation is obtained by filtration.
  • a white polymer powder dried in a 10 (TC oven) to give a functional perfluororesin with a pendant pendant sulfonyl fluoride, potassium phosphinate side group. Sulfonyl fluoroether ether monomer and phosphonic acid in the filtrate The potassium side olefin ether monomer is recovered by the recovery system and reused.
  • the number average molecular weight of the resin measured by GPC was 230,000; the decomposition temperature (T d ) of the TGA test resin under nitrogen atmosphere was 392 ° C;
  • IR spectrum: ⁇ 1 is the vibration absorption peak of S 0 in the sulfonyl fluoride
  • ⁇ 1 , 641 cm" 1 is caused by vibration of -CF 2 -CF 2 - copolymerized with tetrafluoroethylene.
  • Phenol polyoxyethylene ether NP-10 start the stirring device, vacuum-filled with high-purity nitrogen for three times. After the oxygen content in the reactor is below 1ppm, vacuum is applied. 300g of sulfonyl group is added to the reactor through the liquid feed valve.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • the white polymer powder was dried in a 10 (TC oven) to give a functional perfluororesin with a pendant sulfonyl fluoride and a phosphonic acid side group.
  • the sulfonyl fluoroether monomer and phosphonic acid side in the filtrate The olefin ether monomer is recovered by the recovery system and reused.
  • F 2 after 2 h of reaction, the reaction pressure was 2.7 MPa, the addition of the initiator was stopped, and after the reaction was continued for 1 min, the addition of the tetrafluoroethylene monomer was stopped.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • White polymer powder dried in 10 (TC oven) A functional perfluororesin having a short-side sulfonyl fluoride and a lithium phosphonate side group.
  • the sulfonyl fluoroether ether monomer and the lithium phosphonate side olefin ether monomer in the reaction liquid are recovered by a recovery system and reused.
  • the number average molecular weight of the resin measured by GPC was 189,000; the decomposition temperature (T d ) of the TGA test resin under nitrogen atmosphere was 385 ° C;
  • IR spectrum: ⁇ 1 is the vibration absorption peak of S 0 in the sulfonyl fluoride
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • a white polymer powder dried in a 10 (TC oven) to give a functional perfluororesin with pendant sulfonyl fluoride and ammonium phosphonate side groups. Sulfonyl fluoroether ether monomer and phosphonic acid in the filtrate. The ammonium side olefin ether monomer is recovered by the recovery system and reused.
  • the number average molecular weight of the resin measured by GPC was 247,000; the decomposition temperature (T d ) of the TGA test resin under nitrogen atmosphere was 386 ° C;
  • IR spectrum: ⁇ 1 is the vibration absorption peak of S 0 in the sulfonyl fluoride
  • the white polymer powder was dissolved in DMF solvent to prepare a solution having a concentration of 10 mg/ml, and GPC test was performed.
  • the molecular weight of the display data was 238,000 and the weight average molecular weight was 369,000. No abnormal vibration absorption peak was detected in the infrared test results.
  • Pellet preparation the white powder product obtained in Example 1-6 was subjected to hot press vulcanization by a flat vulcanizing machine, and the temperature of the upper and lower heating plates of the vulcanizing press was set to 27 (TC, to obtain a transparent sheet having a thickness of l-3 mm, which was transparent.
  • the sheet material was cut to prepare transparent resin pellets having a length of 2-4 mm, and the pellets were sealed in a double PE plastic bag.
  • the first step of the solution film formation (the sulfonyl fluoride form is converted to the sulfonic acid form):
  • the sheared pellets are placed in 8 (TC mass percent concentration 30% sulfuric acid solution, and after stirring for 72 hr, the resin is filtered. , The deionized water is washed to neutral, that is, a resin having pendant sulfonic acid and phosphoric acid.
  • Preparation of Resin Solution Put the resin with sulfonic acid and phosphoric acid side groups in a stainless steel autoclave, add 2.0 times of deionized water of resin quality, 0.5 times of ethanol of resin, 0.5 times of methanol of resin, stir and mix evenly.
  • the reactor was heated to 90 ° C, the reactor pressure was 2.8 MPa, the temperature was maintained, the reaction was stirred for 2.5 hr, and then the temperature was lowered to room temperature. The pressure in the system was completely released through the reactor vent valve, and then the solution was taken out.
  • the solution is coated into a film: the resin solution prepared above is prepared into a film on a flat glass by a usual coating method, and the flat glass is placed in a drying chamber of 8 (TC constant temperature), after drying for 12 hours, the film is placed together with the flat glass. In deionized water, the film product is peeled off.
  • Membrane mechanical properties test Ion exchange capacity, heat resistance temperature, tensile strength of the film prepared in Example 8 and the sulfonic acid film (acid form) of DuPont model NRE 211 using the GB/T1040-92 test method The elongation at break was tested and the results are shown in Table 1. The results of the measurement showed that the hydrolyzed film prepared by melt extrusion had good mechanical properties.
  • the resin-prepared film product of the present invention has higher ion exchange capacity, higher heat resistance temperature, and superior mechanical properties than commercially available ion exchange membranes commonly used in the art.

Description

一种全氟离子交换树脂及其制备方法和用途 技术领域
本发明属于含氟高分子材料领域, 涉及一种高交换容量的功能性全氟离 子交换树脂及其制备方法和用途, 尤其涉及一种带有膦酸盐侧基及两种不同 结构的磺酰氟短侧基的多元共聚全氟离子交换树脂及其制备方法和用途。 背景技术
自上世纪 70年代杜邦公司将全氟磺酸树脂加工成全氟磺酸型离子交换 膜并将这种膜在氯碱工业及质子交换膜燃料电池中应用后,全氟离子交换树 脂在世界各国得到了广泛的研究。
含有离子交换基团, 尤其是含有磺酸基和羧酸基的含氟离子交换膜由于 其耐化学降解性而更适合用作燃料电池和氯碱电解槽的离子交换膜。 us
3282875是杜邦公司公开的第一个关于磺酰氟单体合成及磺酸树脂制备的文 献,釆用的是水体系中乳液聚合反应,含有磺酰氟侧基的功能性单体结构为: F02SCF2CF2OCF(CF3)CF2OCF=CF2, 该单体结构目前已经被普遍釆用。 US 3560568是杜邦公司公开的一篇关于短侧基磺酰氟单体、 磺酸树脂的制备及 其性能的专利, 其磺酰氟单体结构为: F02SCF2CF2OCF=CF2, 但是该方法的 制备路线复杂并且收率比较低。 US 4940525公开了一种使用了偏氟乙烯单体 与短侧基磺酰氟单体的共聚树脂的制备方法, 这种树脂已经不具备全氟结 构, 在耐腐蚀性方面要差一些。 GB 1034197公开了含磺酸基的全氟磺酸聚 合物, EP 1091435公开了一种嵌段磺酸树脂的结构, 这两种聚合物都使用四 氟乙烯单体与磺酰氟侧基烯醚(如 CF2=CFOCF2CF(CF3)OCF2CF2S02F )共聚 制备, 或者进一步在上述聚合体系中引入其他不具有离子交换功能的侧基、 含有双键的单体成分, 如 US 4940525。 聚合的方法包括溶液聚合 (US 2393967、 US 3041317 )、 乳液聚合( US 4789717、 US 4864006 )、 微乳液聚 合 ( US 6639011、 EP 1172382、 US 5608022 )、 分散聚合、 悬浮聚合、 细乳 液聚合等。这些具有磺酰氟侧基的聚合物可以经过磺酰氟的适当水解反应得 到游离的磺酸基, 作为离子交换膜用于燃料电池、 电解池、 扩散渗析、催化、 贵金属回收等领域。
全氟磺酸树脂的一个最重要的用途就是其作为膜材料应用于氯碱工业 及燃料电池。 对这类离子交换膜的一个非常重要的要求是它的离子导电性。 为了提高电导率, 公知的做法通常是提高磺酸树脂的离子交换容量, 但是随 着离子交换容量的增加, 其机械性能下降。 极端情况下, 高交换容量的离子 交换树脂甚至可以溶解在水中。 EP 0031724中提及: 对于在电槽中使用的膜 的离子交换容量总量要在 0.5-1.6mmol/g(干树脂)之间,优选 0.8-1.2mmol/g。 若离子交换容量总量小于 0.5 mmol/g, 则膜的电阻太高, 槽电压和能耗都会 比较高, 不能满足工业化应用。 若离子交换容量总量大于 1.6mmol/g, 则膜 材料的机械性能不好, 寿命及使用方面受限制。 为了提高交换容量并且尽量 减少机械性能的损失, 另外一些做法是釆用复合膜。 如 US 5654109和 US 5246792釆用的是双层或者三层膜材料复合, 内部的膜具有高 EW值(每摩 尔磺酸基团所含的干树脂质量), 承担机械强度作用, 外部的膜为低 EW值, 起离子传导作用; US 5981097釆用将多层不同离子交换容量的膜进行复合; 而 US 5082472是釆用双向拉伸的聚四氟乙烯多孔膜与低 EW值的树脂复合 得到复合膜。 这些做法虽然在一定程度上保持了膜的机械强度, 但是在离子 传导的均匀性及电导率的提高上还是有一定的欠缺。
为提高离子交换膜的机械强度及尺寸稳定性, 一种方法是对树脂结构进 行改性, 公知的做法有在树脂结构中引入可以交联的基团, 如 US 20020014405 和 US 6767977 在树脂结构中引入了双烯单体。 CN 200480033602.1公开了在聚合体系中引入腈基的方法, 通过处理后使腈基进 行交联, 增加膜的机械强度。 CN 200480033631.8公开了在聚合体系中引入 溴、 氯、 碘基, 通过电子束进行交联的方法。 另外一种方法是缩短共聚单体 磺酰氟的侧基, 在增加离子交换容量的同时提升膜材料的机械强度, 但是在 US 6680346中提到:由短侧基磺酰氟单体合成的聚合物由于聚合条件的不同 会产生环化反应, 导致了聚合反应的链转移, 从而导致分子量降低, 材料的 力学强度下降, 并且随着短侧基磺酰单体与四氟乙烯单体摩尔比增加会进一 步促进这类副反应的发生, 限制了离子交换容量的提升及材料的稳定性。
此外, 对燃料电池中由离子交换膜及催化剂层所形成的膜电极一个重要 的要求是它的化学稳定性及电极催化剂抗一氧化碳 (CO ) 中毒的能力。 当 前广泛研究和示范的燃料电池膜电极的工作温度在 25-8(TC之间, 在 CO含 量达到 lOppm的环境中膜电极的催化剂层即会发生中毒行为。为了克服目前 低温燃料电池膜电极存在的许多难以解决的困难, 如提高催化剂活性和利用 率, 增强电极催化剂抗一氧化碳中毒性能等, 有效的解决办法是提高燃料电 池的使用温度, 在超过 10(TC时, 膜电极中催化剂对 CO的耐受性会提高到 lOOOppm左右。 开发高温质子交换膜可更好地提高燃料电池的电效率, 降低 电池系统的成本, 更加适应燃料电池商业化的要求。 目前国际上开展燃料电 池研究的主要国家开始投入大量的人力物力进行研究。燃料电池领域现有的 具有长侧基的磺酸树脂在抗高温氧化性能、 高温质子传导性、 保水性、 耐温 性能等各个方面都不能满足要求, 尤其是高温质子传导率方面, 在 120°C高 温时的质子传导率远远低于 0.01S/cm, 已经无法满足离子传导的需求。 发明内容
本发明的目的是解决现有全氟磺酸树脂的离子交换容量与机械强度相 对立的矛盾, 并且克服不耐高温的缺点, 提供一种能够同时满足机械强度和 离子交换容量的需求并且热稳定性好的全氟树脂及其制备方法和应用。
本发明的目的还在于解决短侧基磺酰氟烯醚单体在聚合过程中发生链 转移反应、 得到的树脂分子量不够高的问题。
因此针对上述问题, 本发明提供一种带有膦酸盐侧基及两种不同结构的 磺酰氟短侧基的功能性高交换容量全氟树脂, 其具有高的化学稳定性、 高的 离子交换容量及 好的高温机械稳定性。
本发明还提供该功能性高交换容量全氟树脂的制备方法。
本发明还提供该功能性高交换容量全氟树脂在制造燃料电池和高温燃 料电池中的应用。
本发明还提供由该功能性高交换容量全氟树脂制成的离子交换膜以及 包含该离子交换膜的燃料电池。
本发明的技术方案包括:
一种全氟离子交换树脂, 其由四氟乙烯、 两种不同结构短侧基磺酰氟烯 醚单体以及一种膦酸盐侧基烯醚单体多元共聚合而成, 其重复单元如下式所 示:
Figure imgf000006_0001
其中 n为 0-3的整数, 优选地 n=0; M+为氢离子 (H+)、 锂离子 (Li+)、 纳 离子 (Na+)、 钾离子 (K+)、 铷离子 (Rb+)、 铯离子 (Cs+)和铵根离子 (NH4 +)中的一 种或多种, 优选为氢离子 (H+)、 锂离子 (Li+)、 纳离子 (Na+)、 钾离子 (K+)和铵 根离子 (ΝΗ4 +)中的一种或多种, 更优选为纳离子 (Na+)、 钾离子 (K+)和铵根离 子 (ΝΗ4 +)中的一种或多种。
上述高交换容量全氟树脂的数均分子量是 10-60万, 优选为 15-30万, 最优选为 18-25万。 上述高交换容量全氟树脂的分子量分布数值(重均分子 量比数均分子量)为 1.5-2.0。 该树脂中各聚合单元所占的摩尔分数为: 四氟乙烯聚合单元总的摩尔分 数可以为 50-85%, 优选为 70-80%; 短侧基磺酰氟烯醚单体聚合单元总的摩 尔分数可以为 5-49%, 优选为 15-29%; 膦酸盐侧基烯醚单体聚合单元总的 摩尔分数可以为 1-10%, 优选为 1-5%; 该树脂中两种不同短侧基结构磺酰 氟烯醚单体(1 )和 (2 ) 的摩尔比可以为 0.25-4, 优选为 0.6-1.5。
上述全氟树脂的制备方法, 包括使四氟乙烯、 膦酸盐侧基烯醚单体、 两 种不同短侧基结构磺酰氟烯醚单体在引发剂的作用下进行共聚反应的步骤, 所述共聚反应的反应温度可以为 10-100°C , 优选为 10-80°C , 反应时间可以 为 1-10小时, 优选为 2-8小时, 反应压力可以为 2-10MPa, 优选为 2-6MPa。
在所述共聚合反应中, 四氟乙烯、 膦酸盐侧基烯醚单体、 两种不同短侧 基结构磺酰氟烯醚单体(1 )和 ( 2 ) 的摩尔比可以为 1 : 0.01-0.2: 0.2-0.8: 0.2-0.8, 优选为 1 : 0.5-0.15: 0.3-0.7: 0.3-0.7。
根据本发明提供的制备方法, 其中, 所述引发剂可以为任何常规用于磺 酸树脂制备过程的引发剂, 例如, 可以为 N2F2、 全氟垸基过氧化物和过硫酸 盐中的一种或多种。 其中, 所述全氟垸基过氧化物可以为过氧化全氟垸基酰 基化合物、 过氧化全氟垸氧基酰基化合物、 过氧化部分含氟垸基酰基化合物 和过氧化部分含氟垸氧基酰基化合物中的一种或多种, 优选为全氟丙酰基过 氧化物、 d)-S02F-全氟 -2,5,8-三甲基 -3,6,9-三氧杂-十一垸基过氧化物、 CF3CF2CF2CO-00-COCF2CF2CF3 、 CF3CF2CF2OCFCF3CO-00-COCFCF3OCF2CF2CF3 、 CF3CF2CH2CO-00-COCH2CF2CF3和 CF3OCF2CF2CO-00-COCF2CF2OCF3中 的一种或多种; 所述过硫酸盐可以为过硫酸铵盐、 碱金属过硫化物和碱土金 属过硫化物中的一种或多种, 优选为过硫酸铵和 /或过硫酸钾。
根据本发明提供的制备方法, 其中, 所述共聚合反应可以优选为在水相 中进行的乳液聚合反应。 所述膦酸盐侧基烯醚单体、 两种不同短侧基结构磺 酰氟烯醚单体(1 ) 和 (2 )在水相中的浓度可以在很大范围内变化。 例如, 以该水相的总重量为基准, 膦酸盐侧基烯醚单体的重量百分比浓度可以为 1-12% , 优选为 5-10%; 两种磺酰氟烯醚单体总的重量百分比浓度可以为 5-30%, 优选为 5-20%。 在所述乳液聚合反应中, 作为反应物的四氟乙烯可 以以气体的形式持续地通入到反应体系中。
为了使所述两种磺酰氟烯醚单体在水相中更好地分散, 本发明提供的方 法还可以包括向所述水相中加入乳化剂。所述乳化剂可以为任何通常用于磺 酸树脂制备过程的乳化剂。 优选情况下, 本发明的乳液聚合反应所用的乳化 剂为非离子型乳化剂中的一种或多种, 例如垸基酚聚醚醇类, 如壬基酚聚氧 乙烯醚、聚氧乙烯脂肪酸、聚氧乙烯脂肪酸醚。 以所述水相的总重量为基准, 所述乳化剂重量百分比浓度可以为 0.1-10%, 优选为 1-8%。
其中, 在水相中进行乳液聚合的具体步骤可包括:
1 )、 将反应釜洗净后, 加入纯水、 不同配比的两种短侧基磺酰氟烯醚单 体、 既作为反应单体又作为分散剂的膦酸盐侧基烯醚单体和乳化剂, 乳化剂 在水中的总体质量百分比浓度为 0.1-10%, 总体短侧基磺酰氟烯醚在水中的 质量百分比浓度为 5-30%, 膦酸盐侧基烯醚单体在水中的质量百分比浓度为
1- 12%,两种不同短侧基结构磺酰氟烯醚单体( 1 )和(2 )的摩尔比为 0.2-0.8: 0.8-0.2, 优选为 0.4-0.6: 0.6-0.4;
2 )、 通过气体计量槽向反应釜内充四氟乙烯单体至压力为 2-10MPa;
3 )、 反应釜升温至 10-100°C , 通过计量泵向反应体系中加入引发剂引发 反应进行, 持续向反应釜补加四氟乙烯单体和引发剂, 保持反应釜反应压力
2- 10MPa, 反应时间为 1-10小时, 本领域技术人员可以根据本领域的公知常 识选择引发剂的浓度;
4 )、 反应结束时, 停止向反应釜内加入引发剂和四氟乙烯单体, 通过反 应釜放空管路及回收槽放空回收未反应的四氟乙烯单体; 得到乳白色的聚合 物浆料, 将液体浆料通过放料系统进入后处理设备中, 高速剪切, 过滤分离 得到白色聚合物粉末, 于 10(TC烘箱中烘干, 得到带有膦酸盐侧基及两种不 同结构的磺酰氟短侧基的功能性高离子交换容量全氟树脂, 过滤液中的磺酰 氟烯醚单体和膦酸盐侧基烯醚单体通过回收系统回收利用。
上述全氟树脂在制造燃料电池、 高温燃料电池中的应用, 例如用于制造 离子交换膜。
一种由上述全氟树脂制备的离子交换膜。
一种包含上述离子交换膜的燃料电池。
本发明解决了短侧基磺酰氟烯醚单体在聚合过程中发生链转移反应、得 到的树脂分子量不够高的问题, 具体反应机理尚未研究清楚, 从树脂结构的 角度推测有两种作用互相影响: 其一聚合过程中釆用了两种具有不同结构短 侧基的磺酰氟烯醚单体, 这两种单体相互协同作用; 其二聚合体系中存在膦 酸盐烯醚单体, 参与聚合反应的同时起到分散剂的作用, 这些少量金属离子 (或铵离子)的存在使得聚合反应协同向高分子量方向进行, 并消除了链转 移环化反应。
本发明所合成的功能性全氟树脂的离子交换容量介于 0.5-2.7mmol/g(干 树脂)之间, 离子交换容量越小, 其机械强度越大, 其中离子交换容量介于 1.2-2.0 mmol/g之间的树脂的机械强度超过 30MPa, 制备的膜材料具有非常 好的热稳定性能, 室温测定膜材料的电导率大于 0.2S/cm, 在 100°C、 45%湿 度情况下测定的电导率仍然高于 0.05S/cm, 完全能满足燃料电池质子膜材料 的需求。
由本发明的全氟树脂制备的离子交换膜具有高的化学稳定性、 高的电流 效率、 低的膜电阻以及较高的机械强度等优良性质, 因此能够提高离子交换 膜的离子交换能力和膜的保水能力, 提高膜材料的使用性, 进一步增大导电
附图的简要说明
图 1为实施例 1、 2、 4、 6制备的全氟树脂的傅里叶变换红外光谱谱图, 由于实施例 1、 2、 4、 6 中使用的是短侧基磷酸盐单体, 因此这类聚合物的 傅里叶变换红外光谱谱图振动吸收峰峰位完全相同;
图 2为实施例 3、 5制备的全氟树脂的傅里叶变换红外光谱谱图, 由于 实施例 3、 5 中使用的是长侧基磷酸盐单体, 因此这类聚合物的傅里叶变换 红外光谱谱图振动吸收峰峰位完全相同;
图 3为实施例 1-6制备的全氟树脂的核磁谱图, 由于实施例 1-6制备的 全氟树脂的结构是类似的, 其核磁谱图在化学位移上也是重合的, 仅仅差别 在于峰面积的大小, 差别极其细微。 实施发明的最佳方式
以下实施例是对本发明的进一步说明, 但本发明并不局限于此。
如无特别说明, 各实施例中所用的反应釜均为 10L不锈钢高压反应釜, 并配有温度传感器、压力传感器、加热循环系统、冷却循环系统、搅拌电机、 内部冷却水管、 液体计量泵、 气体进料阀门、 液体进料阀门、 反应釜内物料 以下实施例中无特别说明外, 离子交换容量为磺酰氟水解为磺酸、 磷酸 盐水解为酸形式后测定的结果。 本发明在合成过程中所釆用的全氟垸基引发剂可以按照本领域公知技 术制备,本发明推荐的制备方法参见 J. Org. Chem., 1982, 47(11): 2009-2013。
本发明在合成过程中所釆用的过硫酸钾、 过硫酸铵购自国药基团, N2F2 气体购自东岳化工有限公司, 四氟乙烯单体购自山东东岳高分子材料有限公 司。 短侧基磺酰氟单体可按照申请号为: CN200910229444.1 、 CN 200910229446.0、 CN 200910230218.5 的中国专利所公开的方法制备; 膦酸 盐侧基烯醚单体可按照申请号为: CN 200910230218.5的中国专利中所公开 的方法制备, 将该专利内制备得到的磷酸酯端基烯醚釆用稀硫酸水解后即可 得到本发明使用的膦酸盐侧基烯醚单体。 实施例 1
将反应釜洗净并加入 5.0L去离子水、 500ml含有 240g膦酸铵侧基烯醚 单体( F2C=CF-0-CF2CF2-P03 2-(NH4 +)2 ) 的水溶液和 125g壬基酚聚氧乙烯醚 NP-10, 开动搅拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜内氧含 量在 lppm以下后,抽真空,通过液体进料阀门向反应釜内加入 400g磺酰氟 侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F )及 550g磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2CF2CF2CF2-S02F )后, 向反应釜内充四氟乙烯单体至压力 为 2.9MPa, 升温至 20 °C , 用计量泵加入 2.6g 过氧化全氟丁酰基化合物 ( CF3CF2CF2CO-00-CCF2CF2CF3 ) 引发聚合反应, 持续通入四氟乙烯 ( CF2=CF2 )单体保持反应压力在 2.9MPa, 每隔 15min向体系中加入引发剂 0.78g, 反应 2h后, 停止加入引发剂, 让反应继续进行 15min后, 停止加入 四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同时通过回收系统回收未 反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放入后处理系统 中, 通过高速剪切后, 过滤分离得到白色聚合物粉末, 于 10(TC烘箱中烘干, 得到带有磺酰氟短侧基及磷酸铵侧基的功能性全氟树脂。 过滤液中的磺酰氟 烯醚单体和膦酸铵侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中四氟乙烯单体的摩尔百分数为 62.71%, 磺酰氟侧基烯 醚单体 (1)摩尔百分数为 16.5%,磺酰氟侧基烯醚单体 (2)摩尔百分数为 16.3%, 膦酸铵侧基烯醚单体摩尔百分数为 4.49%, 总体离子交换容量为 2.28mmol/g 干树脂。 GPC测定树脂的数均分子量在 22.5万; TGA测试树脂在氮气气氛 下的分解温度(Td )为 396°C ; IR谱图: Μόδ^η·1为磺酰氟中 S=0振动吸收 峰, Un.Ocm 处强吸收峰是磷酸酯基团 P=0 的伸展振动吸收峰, 1200和 1148cm-1两个最强吸收由 C-F振动引起, SOcm-1 641cm 由四氟乙烯共聚 后的 -CF2-CF2-振动引起。 实施例 2
将反应釜洗净并加入 5.0L去离子水、 500ml含有 105g膦酸纳侧基烯醚 单体( F2C=CF-0-CF2CF2-P03 2-2Na+ ) 的水溶液和 150g 壬基酚聚氧乙烯醚 NP-10, 开动搅拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜内氧含 量在 lppm以下后,抽真空,通过液体进料阀门向反应釜内加入 500g磺酰氟 侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F )及 405g磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2CF2CF2CF2-S02F )后, 向反应釜内充四氟乙烯单体至压力 为 2.9MPa, 升温至 35 °C , 用计量泵加入 8.0g过氧化全氟丙氧基丙基化合物 ( CF3CF2CF2OCF(CF3)CO-00-CCF(CF3)OCF2CF2CF3 ) 引发聚合反应, 持续 通入四氟乙烯(CF2=CF2 )单体保持反应压力在 2.9MPa, 每隔 25min向体系 中加入引发剂 2.4g, 反应 2.5h后, 停止加入引发剂, 让反应继续进行 25min 后, 停止加入四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同时通过回 收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放 入后处理系统中, 通过高速剪切后, 过滤分离得到白色聚合物粉末, 于 100 °c烘箱中烘干, 得到带有短侧基磺酰氟及膦酸纳侧基的功能性全氟树脂。 过 滤液中的磺酰氟烯醚单体和膦酸纳侧基烯醚单体通过回收系统回收后重复 利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中四氟乙烯单体的摩尔百分数为 73.8%, 磺酰氟侧基烯醚 单体 (1)摩尔百分数为 15%, 磺酰氟侧基烯醚单体 (2)摩尔百分数为 9%, 膦酸 纳侧基烯醚单体摩尔百分数为 2.2%, 总体离子交换容量为 1.82mmol/g干树 脂。 GPC测定树脂的数均分子量在 20万; TGA测试树脂在氮气气氛下的分 解温度 (Td ) 为 399°C ; IR谱图: Μόδεηι·1为磺酰氟中 S=0振动吸收峰, 1217.0cm"1处强吸收峰是磷酸酯基团 P=0 的伸展振动吸收峰, 1200 和 1148cm-1两个最强吸收由 C-F振动引起, SOcm-1 641cm 由四氟乙烯共聚 后的 -CF2-CF2-振动引起。 实施例 3 将反应釜洗净并加入 5.0L去离子水、 500ml含有 380g膦酸钾侧基烯醚 单体( F2C=CF-0-CF2CF(CF3)OCF2CF2-P03 2-2K+ )水溶液及 95g壬基酚聚氧 乙烯醚 NP-10, 开动搅拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜 内氧含量在 lppm以下后, 抽真空, 通过液体进料阀门向反应釜内加入 300g 磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F )及 610g磺酰氟侧基烯醚 单体 (2) ( F2C=CF-0-CF2CF2CF2CF2-S02F )后, 向反应釜内充四氟乙烯单体 至压力为 3.2MPa, 升温至 80 °C , 用计量泵加入 10%过硫酸铵水溶液 320g 引发聚合反应,持续通入四氟乙烯(CF2=CF2 )单体保持反应压力在 3.2MPa, 反应 3h后, 停止加入四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同 时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放 料阀门放入后处理系统中,通过高速剪切后,过滤分离得到白色聚合物粉末, 于 10(TC烘箱中烘干, 得到带有短侧基磺酰氟、 膦酸钾侧基的功能性全氟树 脂。 过滤液中的磺酰氟烯醚单体和膦酸钾侧基烯醚单体通过回收系统回收后 重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中四氟乙烯单体的摩尔百分数为 75.7%, 磺酰氟侧基烯醚 单体 (1)摩尔百分数为 8.9%, 磺酰氟侧基烯醚单体 (2)摩尔百分数为 12.28%, 膦酸钾侧基烯醚单体摩尔百分数为 3.12%, 总体离子交换容量为 1.7mmol/g 干树脂。 GPC测定树脂的数均分子量在 23万; TGA测试树脂在氮气气氛下 的分解温度(Td )为 392°C ; IR谱图: Μόδ^η·1为磺酰氟中 S=0振动吸收峰, Un.Ocm 处强吸收峰是磷酸酯基团 P=0的伸展振动吸收峰, 984cm 为 -CF3 振动引起的, 1200 和 1148cm 两个最强吸收由 C-F 振动引起, ?。^^1、 641cm"1由四氟乙烯共聚后的 -CF2-CF2-振动引起。 实施例 4
将反应釜洗净并加入 5.0L去离子水、 500ml含有 180g膦酸侧基烯醚单 体( F2C=CF-0-CF2CF2-P03 22H+ )水溶液及及 115g壬基酚聚氧乙烯醚 NP-10, 开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在 lppm 以下后, 抽真空, 通过液体进料阀门向反应釜内加入 300g磺酰氟侧基烯醚 单体(1) ( F2C=CF-0-CF2CF2-S02F ) 及 400g 磺酰氟侧基烯醚单体(2) ( F2C=CF-0-CF2CF2CF2CF2-S02F )后, 向反应釜内充四氟乙烯单体至压力 为 2.7MPa, 升温至 20°C , 用气体流量计控制流量向反应釜内引入由 N2F2引 发聚合反应, 持续通入四氟乙烯(CF2=CF2 )单体, 保持反应压力从 2.7MPa 缓慢上升,持续向体系中加入引发剂 N2F2,反应 2h后,反应釜压力为 3.0MPa, 停止加入引发剂, 让反应继续进行 lmin后, 停止加入四氟乙烯单体。 通过 冷却循环系统给反应釜降温, 同时通过回收系统回收未反应的四氟乙烯单 体, 将釜内的乳白色浆料通过下放料阀门放入后处理系统中, 通过高速剪切 后, 过滤分离得到白色聚合物粉末, 于 10(TC烘箱中烘干, 得到带有短侧基 磺酰氟及膦酸侧基的功能性全氟树脂。 过滤液中的磺酰氟烯醚单体和膦酸侧 基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中四氟乙烯单体的摩尔百分数为 74.5%, 磺酰氟侧基烯醚 单体 (1)摩尔百分数为 10.5%,磺酰氟侧基烯醚单体 (2)摩尔百分数为 13.79%, 膦酸侧基烯醚单体摩尔百分数为 1.21%, 总体离子交换容量为 1.67mmol/g 干树脂。 GPC测定树脂的数均分子量在 19.7万; TGA测试树脂在氮气气氛 下的分解温度(Td )为 385°C ; IR谱图: Μόδ η·1为磺酰氟中 S=0振动吸收 峰, Un.Ocm 处强吸收峰是磷酸酯基团 P=0 的伸展振动吸收峰, 1200和 1148cm-1两个最强吸收由 C-F振动引起, SOcm-1 641cm-1由四氟乙烯共聚 后的 -CF2-CF2-振动引起。 实施例 5
将反应釜洗净并加入 5.0L去离子水、 500ml含有 195g膦酸锂侧基烯醚 单体( F2C=CF-0-CF2CF(CF3)OCF2CF2-P03 2-2Li+ )水溶液及 125g壬基酚聚氧 乙烯醚 NP-10, 开动搅拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜 内氧含量在 lppm以下后, 抽真空, 通过液体进料阀门向反应釜内加入 480g 磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F )及 420g磺酰氟侧基烯醚 单体 (2) ( F2C=CF-0-CF2CF2CF2CF2-S02F )后, 向反应釜内充四氟乙烯单体 至压力为 2.4MPa, 升温至 25°C , 用气体流量计控制流量向反应釜内引入由 N2F2引发聚合反应, 持续通入四氟乙烯 (CF2=CF2 ) 单体, 保持反应压力从 2.4MPa缓慢上升, 持续向体系中加入引发剂 N2F2, 反应 2h后, 反应压力为 2.7MPa, 停止加入引发剂, 让反应继续进行 lmin后, 停止加入四氟乙烯单 体。 通过冷却循环系统给反应釜降温, 同时通过回收系统回收未反应的四氟 乙烯单体, 将釜内的乳白色浆料通过下放料阀门放入后处理系统中, 通过高 速剪切后, 过滤分离得到白色聚合物粉末, 于 10(TC烘箱中烘干, 得到带有 短侧基磺酰氟及膦酸锂侧基的功能性全氟树脂。反应液体中的磺酰氟烯醚单 体和膦酸锂侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中四氟乙烯单体的摩尔百分数为 67.1%, 磺酰氟侧基烯醚 单体 (1)摩尔百分数为 16.7%,磺酰氟侧基烯醚单体 (2)摩尔百分数为 13.46%, 膦酸锂侧基烯醚单体摩尔百分数为 2.74%, 总体离子交换容量为 2.01mmol/g 干树脂。 GPC测定树脂的数均分子量在 18.9万; TGA测试树脂在氮气气氛 下的分解温度(Td )为 385°C ; IR谱图: Μόδ^η·1为磺酰氟中 S=0振动吸收 峰, Un.Ocm 处强吸收峰是磷酸酯基团 P=0 的伸展振动吸收峰, δ^ηι·1 为 -CF3振动引起的, 1200和 lMScm 两个最强吸收由 C-F振动引起, SOcm^ 641cm"1由四氟乙烯共聚后的 -CF2-CF2-振动引起。 实施例 6
将反应釜洗净并加入 5.0L去离子水、 500ml含有 175g膦酸铵侧基烯醚 单体( F2C=CF-0-CF2CF2-P03 2XNH4 +)2 ) 的水溶液和 105g壬基酚聚氧乙烯醚 NP-10, 开动搅拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜内氧含 量在 lppm以下后,抽真空,通过液体进料阀门向反应釜内加入 220g磺酰氟 侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F )及 365g磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2CF2CF2CF2-S02F )后, 向反应釜内充四氟乙烯单体至压力 为 5.2MPa, 升温至 45 °C , 用计量泵加入 20.2g d)-S02F-全氟 -2,5,8-三甲基 -3,6,9-三氧杂-十一垸基过氧化物引发聚合反应, 持续通入四氟乙烯 ( CF2=CF2 )单体保持反应压力在 5.2MPa, 每隔 45min向体系中加入引发剂 6g, 反应 2h后, 停止加入引发剂, 让反应继续进行 45min后, 停止加入四 氟乙烯单体。 通过冷却循环系统给反应釜降温, 同时通过回收系统回收未反 应的四氟乙烯单体, 将釜内的乳白色浆料通过下放料阀门放入后处理系统 中, 通过高速剪切后, 过滤分离得到白色聚合物粉末, 于 10(TC烘箱中烘干, 得到带有短侧基磺酰氟及膦酸铵侧基的功能性全氟树脂。 过滤液中的磺酰氟 烯醚单体和膦酸铵侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中四氟乙烯单体的摩尔百分数为 81%,磺酰氟侧基烯醚单 体 (1)摩尔百分数为 6.2%, 磺酰氟侧基烯醚单体 (2)摩尔百分数为 10.92%, 膦 酸铵侧基烯醚单体摩尔百分数为 1.88%, 总体离子交换容量为 1.44mmol/g 干树脂。 GPC测定树脂的数均分子量在 24.7万; TGA测试树脂在氮气气氛 下的分解温度(Td )为 386°C ; IR谱图: Μόδ^η·1为磺酰氟中 S=0振动吸收 峰, Un.Ocm 处强吸收峰是磷酸酯基团 P=0 的伸展振动吸收峰, 1200和 1148cm-1两个最强吸收由 C-F振动引起, SOcm-1 641cm 由四氟乙烯共聚 后的 -CF2-CF2-振动引起。 实施例 7
将 1.0L反应釜洗净并加入 400ml去离子水及 15g壬基酚聚氧乙烯醚 NP-10、 100ml含有 28g膦酸侧基烯醚单体 ( F2C=CF-0-CF2CF2-P03 2"2H+ )的 水溶液, 开动搅拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜内氧含 量在 lppm以下后, 抽真空, 通过液体进料阀门向反应釜内加入 50g磺酰氟 侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F )及 60g磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2CF2CF2CF2-S02F ), 向反应釜内充四氟乙烯单体至压力为 3.9MPa, 升温至 80°C , 向反应釜内加 5.2g过硫酸铵引发剂, 保持压力在 3.9MPa聚合 2hr后停止反应, 破乳后得到白色聚合物粉末, 洗涤干燥后, 将 白色聚合物粉末溶于 DMF溶剂中配制成 10mg/ml浓度的溶液,进行 GPC测 试, 结果显示数据分子量在 23.8万、 重均分子量在 36.9万, 红外测试结果 中未检测到异常的振动吸收峰。
釆取以上同样的条件, 唯一改变的是通过液体进料阀门向反应釜内加入 122.5g磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2CF2-S02F ), 保证体系内总的 双键的浓度与以上条件一致, 所得聚合物的粉末溶于测定 GPC结果显示出 数据分子量在 11.3万、 重均分子量在 16.5万, 并且红外测试结果中检测到 了 -S-0-C-单键的反对称伸缩振动吸收峰, 出现在 SSOcm 处。 这些结果显示 短侧基环化在聚会过程中确实会出现, 但由于其他烯醚单体的相互作用, 环 化反应会减弱或者消除。 实施例 8
粒料制备:将实施例 1-6中得到的白色粉末产物经平板硫化机热压硫化、 平板硫化机上下加热板温度设定为 27(TC , 得到厚度为 l-3mm的透明薄片, 将透明片状物料剪切制备出长度 2-4mm的透明树脂粒料, 将粒料用双层 PE 塑料袋密闭保存。
溶液制膜第一步转型 (磺酰氟形式转为磺酸形式): 将剪切好的粒料放 置于 8(TC质量百分浓度 30%的硫酸溶液中, 不断搅拌 72hr后, 将树脂过滤、 去离子水洗涤至中性, 即为具有磺酸和磷酸侧基的树脂。
树脂溶液的制备: 将具有磺酸和磷酸侧基树脂置于不锈钢高压反应釜 中, 加入树脂质量 2.0倍的去离子水、 树脂质量 0.5倍的乙醇、 树脂质量 0.5 倍的甲醇, 搅拌混合均匀后, 将反应釜升温至 90°C , 反应釜压力为 2.8MPa, 保持温度、 搅拌下反应 2.5hr后, 降温至室温, 通过反应釜放空阀将体系内 的压力完全释放, 其后将溶液取出, 置于细口塑料瓶内密闭保存。
溶液涂覆成膜: 将上述制备的树脂溶液釆用通常的涂覆方式在平板玻璃 上制备成膜, 将平板玻璃放置于 8(TC恒温的干燥室内, 干燥 12hr后, 将膜 连同平板玻璃放置于去离子水中, 剥离下膜产品。
膜力学性能测试:釆用 GB/T1040-92测试方法对实施例 8制得的膜和杜 邦公司型号为 NRE 211的磺酸膜(酸形式)产品的离子交换容量、耐热温度、 拉伸强度和断裂伸长率进行测试, 结果见表 1 , 该测定结果显示通过熔融挤 出制备的水解膜具有 好的机械性能。
Figure imgf000016_0001
通过表 1的数据可以看出, 与本领域常用的商购离子交换膜相比, 本发 明的树脂制备的膜产品具有更高的离子交换容量、更高的耐热温度和更优秀 机械性能。

Claims

杈 利 要 求
1. 一种全氟离子交换树脂, 其特征在于, 该全 '子交换树脂由四 乙烯、 两种不同结构短侧基磺酰氟烯醚单体以及一种 【盐侧基烯醚单体」 元共聚合而成, 其重复单元如下式所示:
Figure imgf000017_0001
M + 其中 n为 0-3的整数, 优选地 n=0; a、 b、 c分别为 3-15的整数, a'、 b' 分别为 1-3的整数; x/(x+y+z)=0.2-0.7, y/(x+y+z)=0.2-0.79, z/(x+y+z)=0.01-0.1 ;
M+为氢离子、 锂离子、 纳离子、 钾离子、 铷离子、 铯离子和铵根离子中的一 种或多种, 优选为氢离子、 锂离子、 纳离子、 钾离子和铵根离子中的一种或 多种, 更优选为纳离子、 钾离子和铵根离子中的一种或多种。
2. 根据权利要求 1所述的全氟离子交换树脂, 其特征在于, 所述的两 种不同结构磺酰氟侧基烯醚单体的结构式分别为:
F2C=C-0-C2-C2-SO
Figure imgf000017_0002
所述膦酸盐侧基烯醚单体的结构式为
Figure imgf000017_0003
其中 n为 0-3的整数, 优选地 n=0; M+为氢离子、 锂离子、 纳离子、 钾 '子、 铷离子、 铯离子和铵根离子中的一种或多种, 优选为氢离子、 锂离子、 I离子、 钾离子和铵根离子中的一种或多种, 更优选为纳离子、 钾离子和铵 根离子中的一种或多种。
3. 如权利要求 1或 2所述的全氟离子交换树脂, 其特征在于, 该树脂 中各聚合单元所占的摩尔分数为:四氟乙烯聚合单元总的摩尔分数 =50-85%, 优选 70-80%; 短侧基磺酰氟烯醚单体聚合单元总的摩尔分数 =5-49%, 优选 15-29%; 膦酸盐侧基烯醚单体聚合单元总的摩尔分数 =1-10%, 优选 1-5%; 该树脂中两种不同短侧基结构磺酰氟烯醚单体(1 )和(2 )的摩尔比为 0.25-4, 优选为 0.6-1.5。
4. 如权利要求 1至 3中任一项所述的全氟离子交换树脂的制备方法, 包括使四氟乙烯、 膦酸盐侧基烯醚单体、 两种不同短侧基结构磺酰氟烯醚单 体在引发剂的作用下进行共聚反应的步骤, 所述共聚反应的反应温度为 10-100 C , 优选为 10-80°C , 反应时间 1-10小时, 优选为 2-8小时, 反应压 力 2-10MPa, 优选为 2-6MPa。
5.如权利要求 4所述的制备方法,其特征在于,所述的引发剂选自 N2F2、 全氟垸基过氧化物和过硫酸盐中的一种或多种; 所述全氟垸基过氧化物选自 过氧化全氟垸基酰基化合物、 过氧化全氟垸氧基酰基化合物、 过氧化部分含 氟垸基酰基化合物和过氧化部分含氟垸氧基酰基化合物中的一种或多种, 优 物、 ώ-Η-全氟丁酰过氧化物、 d)-S02F-全氟 -2,5,8-三甲基 -3,6,9-三氧杂-十一垸 基 过 氧 化 物 、 CF3CF2CF2CO-00-COCF2CF2CF3 、 CF3CF2CF2OCFCF3CO-00-COCFCF3OCF2CF2CF3 、 CF3CF2CH2CO-00-COCH2CF2CF3和 CF3OCF2CF2CO-00-COCF2CF2OCF3中 的一种或多种; 所述过硫酸盐选自过硫酸铵盐、 碱金属过硫化物和碱土金属 过硫化物中的一种或多种, 优选为过硫酸铵和 /或过硫酸钾。
6. 如权利要求 4或 5所述的制备方法, 其特征在于, 所述四氟乙烯、 膦酸盐侧基烯醚单体、 两种不同短侧基结构磺酰氟烯醚单体( 1 )和(2 ) 的 摩尔比为 1 : 0.01-0.2: 0.2-0.8: 0.2-0.8,优选为 1 : 0.05-0.15: 0.3-0.7: 0.3-0.7。
7. 如权利要求 4至 6中任一项所述的制备方法, 其特征在于, 所述共 聚合反应为在水相中进行的乳液聚合反应,该乳液聚合反应所用的乳化剂为 非离子型乳化剂中的一种或多种, 例如垸基酚聚醚醇类, 如壬基酚聚氧乙烯 醚、 聚氧乙烯脂肪酸、 聚氧乙烯脂肪酸醚; 乳液聚合反应所用的乳化剂在水 中的总体质量百分比浓度为 0.1-10%, 优选为 1-8%, 总体短侧基磺酰氟烯醚 在水中的质量百分比浓度为 5-30%, 优选为 5-20%, 膦酸盐侧基烯醚单体在 水中的质量百分比浓度为 1-12%, 优选为 5-10%。
8. 如权利要求 1至 3中任一项所述的全氟离子交换树脂在制造燃料电 池、 高温燃料电池中的应用, 例如用于制造离子交换膜。
9. 一种离子交换膜, 其特征在于, 其由如权利要求 1至 3中任一项所 述的全氟离子交换树脂制备。
10. 一种燃料电池, 其特征在于, 该燃料电池包含如权利要求 9所述的 离子交换膜。
PCT/CN2009/001557 2009-12-25 2009-12-25 一种全氟离子交换树脂及其制备方法和用途 WO2011075877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001557 WO2011075877A1 (zh) 2009-12-25 2009-12-25 一种全氟离子交换树脂及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001557 WO2011075877A1 (zh) 2009-12-25 2009-12-25 一种全氟离子交换树脂及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2011075877A1 true WO2011075877A1 (zh) 2011-06-30

Family

ID=44194894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001557 WO2011075877A1 (zh) 2009-12-25 2009-12-25 一种全氟离子交换树脂及其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2011075877A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878934A (zh) * 2018-07-02 2018-11-23 天津农学院 一种锂离子树脂离子导电膜的制备方法
CN115368492A (zh) * 2022-09-28 2022-11-22 国家电投集团氢能科技发展有限公司 长侧链全氟阴离子交换树脂、其制备方法和含有其的离子交换膜
CN115991817A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 膦酸磺酸共聚离子交换膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003596A (zh) * 2006-12-25 2007-07-25 山东东岳神舟新材料有限公司 一种具有离子交换功能的全氟树脂及其应用
CN101003588A (zh) * 2006-12-25 2007-07-25 山东东岳神舟新材料有限公司 一种含氟聚合物及其作为离子交换纤维材料的应用
CN101220120A (zh) * 2007-01-12 2008-07-16 山东东岳神舟新材料有限公司 带有磺酰氟及醚端基侧基的氟树脂及其合成方法与应用
US7455934B1 (en) * 1998-05-13 2008-11-25 Daikin Industries, Ltd. Fluorocopolymer material with sulfonic acid functional groups as a solid polyelectrolyte for use in fuel cells
CN101768236A (zh) * 2009-12-25 2010-07-07 山东东岳神舟新材料有限公司 一种全氟离子交换树脂及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455934B1 (en) * 1998-05-13 2008-11-25 Daikin Industries, Ltd. Fluorocopolymer material with sulfonic acid functional groups as a solid polyelectrolyte for use in fuel cells
CN101003596A (zh) * 2006-12-25 2007-07-25 山东东岳神舟新材料有限公司 一种具有离子交换功能的全氟树脂及其应用
CN101003588A (zh) * 2006-12-25 2007-07-25 山东东岳神舟新材料有限公司 一种含氟聚合物及其作为离子交换纤维材料的应用
CN101220120A (zh) * 2007-01-12 2008-07-16 山东东岳神舟新材料有限公司 带有磺酰氟及醚端基侧基的氟树脂及其合成方法与应用
CN101768236A (zh) * 2009-12-25 2010-07-07 山东东岳神舟新材料有限公司 一种全氟离子交换树脂及其制备方法和用途

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878934A (zh) * 2018-07-02 2018-11-23 天津农学院 一种锂离子树脂离子导电膜的制备方法
CN108878934B (zh) * 2018-07-02 2021-06-25 天津农学院 一种锂离子树脂离子导电膜的制备方法
CN115991834A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 具有高透氧、高温质子传导性的含氟磺酸膦酸树脂及其制备方法
CN115991820A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 聚合型膦酸离子膜及制备方法
CN115991836A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 膦酸磺酸共聚离子树脂及制备方法
CN115991832A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 一种混合型含氟离子树脂
CN115991833A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 透气型含氟离子聚合物及其制备方法
CN115991819A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 一种膦酸磺酸复合质子交换膜及其制备方法
CN115991816A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 耐高温质子交换膜及其制备方法
CN115991835A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 一种宽温区的聚合型膦酸树脂及制备方法
CN115991819B (zh) * 2021-10-18 2024-05-03 山东东岳未来氢能材料股份有限公司 一种膦酸磺酸复合质子交换膜及其制备方法
CN115991817A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 膦酸磺酸共聚离子交换膜及其制备方法
CN115991820B (zh) * 2021-10-18 2024-01-05 山东东岳未来氢能材料股份有限公司 聚合型膦酸离子膜及制备方法
CN115991835B (zh) * 2021-10-18 2024-01-05 山东东岳未来氢能材料股份有限公司 一种宽温区的聚合型膦酸树脂及制备方法
CN115991816B (zh) * 2021-10-18 2024-01-23 山东东岳未来氢能材料股份有限公司 耐高温质子交换膜及其制备方法
CN115991817B (zh) * 2021-10-18 2024-01-23 山东东岳未来氢能材料股份有限公司 膦酸磺酸共聚离子交换膜及其制备方法
CN115991833B (zh) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 透气型含氟离子聚合物及其制备方法
CN115991836B (zh) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 膦酸磺酸共聚离子树脂及制备方法
CN115991834B (zh) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 具有高透氧、高温质子传导性的含氟磺酸膦酸树脂及其制备方法
CN115991832B (zh) * 2021-10-18 2024-04-12 山东东岳未来氢能材料股份有限公司 一种混合型含氟离子树脂
CN115368492A (zh) * 2022-09-28 2022-11-22 国家电投集团氢能科技发展有限公司 长侧链全氟阴离子交换树脂、其制备方法和含有其的离子交换膜

Similar Documents

Publication Publication Date Title
WO2011069281A1 (zh) 一种全氟离子交换树脂及其制备方法和应用
CN101798365B (zh) 一种全氟离子交换树脂及其制备方法和应用
CN101768236B (zh) 一种全氟离子交换树脂及其制备方法和用途
CN113861327A (zh) 一种具有高质子传导性和机械性能的全氟磺酸树脂粘结剂及其制备方法
EP2514773B1 (en) High exchange capacity perfluorinated ion exchange resin, preparation method and use thereof
WO2011075877A1 (zh) 一种全氟离子交换树脂及其制备方法和用途
CN115991831B (zh) 含环状结构的含氟树脂及其制备方法
WO2011072417A1 (zh) 高交换容量全氟树脂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 31.08.12.

122 Ep: pct application non-entry in european phase

Ref document number: 09852427

Country of ref document: EP

Kind code of ref document: A1