WO2011072417A1 - 高交换容量全氟树脂及其制备方法和用途 - Google Patents

高交换容量全氟树脂及其制备方法和用途 Download PDF

Info

Publication number
WO2011072417A1
WO2011072417A1 PCT/CN2009/001456 CN2009001456W WO2011072417A1 WO 2011072417 A1 WO2011072417 A1 WO 2011072417A1 CN 2009001456 W CN2009001456 W CN 2009001456W WO 2011072417 A1 WO2011072417 A1 WO 2011072417A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
resin
monomer
exchange capacity
cyano
Prior art date
Application number
PCT/CN2009/001456
Other languages
English (en)
French (fr)
Inventor
张永明
张恒
高自宏
秦胜
王丽
魏茂祥
王汉利
Original Assignee
山东东岳神舟新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东东岳神舟新材料有限公司 filed Critical 山东东岳神舟新材料有限公司
Priority to PCT/CN2009/001456 priority Critical patent/WO2011072417A1/zh
Publication of WO2011072417A1 publication Critical patent/WO2011072417A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of fluorine-containing polymer materials, relates to a perfluoro resin with high exchange capacity and a preparation method thereof, in particular to a multi-component copolymerized perfluoro ion with two different structures of short-side sulfonyl fluoride and cyano side groups.
  • Exchange resin and its preparation method relates to the field of fluorine-containing polymer materials, relates to a perfluoro resin with high exchange capacity and a preparation method thereof, in particular to a multi-component copolymerized perfluoro ion with two different structures of short-side sulfonyl fluoride and cyano side groups.
  • Exchange resin and its preparation method in particular to a multi-component copolymerized perfluoro ion with two different structures of short-side sulfonyl fluoride and cyano side groups.
  • US3282875 is the first publication published by DuPont on the synthesis of sulfonyl fluoride monomers and the preparation of sulfonic acid resins. The emulsion polymerization reaction in aqueous systems is carried out.
  • US3560568 is a patent published by DuPont on the preparation and properties of short-side sulfonyl fluoride monomer and acid resin.
  • a sulfonic acid resin prepared from a novel structure perfluorosulfonyl fluoride monomer is described in US Pat. No. 3,884,885 and US Pat. No. 3,013,317.
  • 4,940,525 discloses the preparation of a sulfonyl fluoride monomer copolymer resin using a vinylidene fluoride monomer and a short side group which has no perfluorinated structure and is inferior in corrosion resistance.
  • the preparation of low EW sulfonic acid resins is disclosed in EP 0 289 869.
  • the sulfonyl fluoride monomers used are currently commonly used monomer structures with EW values of 575-800.
  • GB 1034197 discloses perfluorosulfonic acid polymers containing sulfonic acid groups
  • EP 1091435 discloses a structure of a block sulfonic acid resin.
  • microemulsion polymerization such as US6639011, EP1 172382, US5608022, etc.
  • dispersion polymerization suspension polymerization
  • miniemulsion Aggregation EP1451233
  • These polymers having pendant sulfonyl fluoride groups can be subjected to a suitable hydrolysis reaction of sulfonyl fluoride to obtain a free sulfonic acid group, and are used as ion exchange membranes in the fields of fuel cells, electrolytic cells, diffusion dialysis, catalysis, precious metal recovery, and the like.
  • perfluorosulfonic acid resins are their use as a membrane material in fuel cells.
  • a very important requirement for such ion exchange membranes is their ionic conductivity.
  • the practice is to increase the ion exchange capacity of the sulfonic acid resin, but as the ion exchange capacity increases, its mechanical properties are degraded. In extreme cases, the high exchange capacity ion exchange resin can even be dissolved in water.
  • the patent EP0031724 mentions that the total ion exchange capacity for the membrane used in the cell is between 0.5 and 1.6 mmol/g (dry resin), preferably between 0.8 and 1.2 mmol/g.
  • the total ion exchange capacity is less than 0.5 mmol/g, the resistivity of the membrane is too high, and the voltage and energy consumption of the electrolytic cell are relatively high, which cannot meet the industrial application. If the total ion exchange capacity is greater than 1.6 mmol/g, the membrane material The mechanical properties are not good, and the life and use are limited. In order to increase the exchange capacity and minimize the loss of mechanical properties, other methods are to use composite membranes. For example, US 5654109 and US5246792 are combined with double or triple membrane materials. The inner membrane has high EW value and bears mechanical strength.
  • the outer membrane has a low EW value and acts as an ion transport; US5981097 uses a plurality of different ion exchange capacity membranes for recombination; and US5082472 is a composite of a biaxially stretched polytetrafluoroethylene porous membrane and a low EW resin composite. The film is used. Although these practices maintain the mechanical strength of the membrane to a certain extent, there is still a certain lack of uniformity in ion conduction and improvement in electrical conductivity.
  • perfluorosulfonic acid resins are their use as a membrane material in fuel cells.
  • An important requirement for such membrane electrodes formed by ion exchange membranes and catalyst layers is their chemical stability and Enhance the toxic ability of the electrode catalyst against carbon monoxide (CO).
  • CO carbon monoxide
  • the operating temperature of the fuel cell membrane electrode widely studied and demonstrated is between 25-80 °C, and the poisoning behavior occurs in the catalyst layer where the CO content is reached.
  • the present invention provides a high exchange capacity perfluororesin comprising multicomponent copolymerization of tetrafluoroethylene, two different pendant short-side sulfonyl fluoroether monomers, and a cyano pendant olefin ether monomer.
  • the structural formulas of the short-side sulfonyl fluoroalkenyl ether monomers of the two different structures are:
  • the molar percentage of each polymerized unit in the resin is: the total mole fraction of the tetrafluoroethylene polymerized unit is 50 to 85%, and the total mole fraction of the short-side sulfonyl fluoroalkenyl ether polymer unit of two different structures
  • the total mole fraction of the cyano side oxime ether polymerization unit is from 5 to 49%, and is from 1 to 10%.
  • the molar percentage of each polymerized unit in the resin is: the total mole fraction of the tetrafluoroethylene polymerized unit is 70 to 80%, and the total mole fraction of the short-side sulfonyl fluoroalkenyl ether polymer unit of two different structures
  • the total mole fraction of the cyano side olefin ether polymerized unit is from 15 to 29%, and is from 1 to 5%.
  • the molar ratio of the polymer units (1) and (2) of the short-side sulfonyl fluoroolefin ether of the two different structures in the resin is 0.2-0.8: 0.8-0.2; preferably 0.4-0.6: 0.6-0.4 .
  • the present invention provides a process for the preparation of the above high exchange capacity perfluororesin, which comprises a tetrafluoroethylene, two different structures of a short pendant sulfonyl fluoroether ether monomer, and a cyano pendant olefin.
  • the ether monomer is subjected to polymerization under the action of an initiator.
  • the polymerization reaction has a reaction time of 1 to 8 hours, a reaction temperature of 10 to 80 ° C, and a reaction pressure of 2 to 10 MPa.
  • the initiator is selected from one or more of N 2 F 2 , perfluoroalkyl peroxide and persulphate.
  • the perfluoroalkyl peroxide is selected from the group consisting of a perfluoroalkyl acyl peroxide compound, a perfluoroalkoxy acyl compound, a peroxide partial fluoroalkyl acyl compound, and a peroxylated partial fluoroalkane.
  • a perfluoroalkyl acyl peroxide compound a perfluoroalkoxy acyl compound
  • a peroxide partial fluoroalkyl acyl compound a peroxylated partial fluoroalkane.
  • the persulfate is one or more selected from the group consisting of ammonium persulfate, alkali metal persulfide and alkaline earth metal persulfide.
  • the perfluoroalkyl peroxide is selected from the group consisting of perfluoropropionyl peroxide, 3-chlorofluoropropionyl peroxide, perfluorodecyl acetyl peroxide, ⁇ - ⁇ -perfluoro Butyryl peroxide, -S0 2 F-perfluoro-2,5,8-trimethyl-3,6,9-trioxa-undecyl peroxide, CF 3 CF 2 CF 2 CO-00-COCF 2 CF 2 CF 3 ,
  • the persulfate is selected from One or more of ammonium sulfate and potassium persulfate.
  • the emulsifier is selected from the group consisting of anionic emulsifiers such as sodium fatty acid, sodium lauryl sulfate, sodium alkyl sulfonate and sodium alkylaryl sulfonate; and nonionic emulsifiers
  • anionic emulsifiers such as sodium fatty acid, sodium lauryl sulfate, sodium alkyl sulfonate and sodium alkylaryl sulfonate
  • nonionic emulsifiers For example, one or more of alkylphenol polyether alcohols such as nonylphenol ethoxylates, polyoxyethylene fatty acids, and polyoxyethylene fatty acid ethers.
  • the mass percentage concentration of the emulsifier in water is
  • the concentration of the short-side sulfonyl fluoroether ether monomer in two different structures is 5-30% in water, and the mass concentration of the cyano side olefin ether monomer in water is 1 ⁇ 12 %.
  • the present invention provides an ion exchange membrane prepared from the above-described high exchange capacity perfluororesin.
  • the present invention provides a fuel cell or electrolytic cell device comprising the above ion exchange membrane; the fuel cell is preferably a proton membrane fuel cell or a high temperature fuel cell, more preferably a high temperature proton membrane fuel cell; It is preferably a chloralkali electrolytic cell.
  • the present invention provides the use of the above high exchange capacity perfluororesin for the manufacture of an ion exchange membrane in a fuel cell or cell device;
  • the fuel cell is preferably a proton membrane fuel cell or a high temperature fuel cell, more preferably a high temperature proton Membrane fuel cell;
  • the electrolytic cell is preferably a chloralkali electrolytic cell; preferably, the cyano side groups are cyclically cross-linked by chemical methods prior to use.
  • the present invention has at least the following advantages:
  • the perfluoro resin of the present invention has two different structures of short-side sulfonyl fluoride and cyano side groups, which solves the contradiction between the ion exchange capacity and the mechanical strength in the prior art, and overcomes the high temperature resistance.
  • the defect provides a perfluoro resin having both high ion exchange capacity and good mechanical properties.
  • the perfluoro resin of the present invention has two different structures of short-side sulfonyl fluoride and cyano side groups, which solves the chain transfer reaction of the short-side sulfonyl fluoroolefin ether monomer during polymerization.
  • the problem of the molecular weight of the resin is not high enough.
  • the specific reaction mechanism can be as follows: First, two short-side acyl fluoride-containing ether monomers having different structures are used in the polymerization process, and the two monomers cooperate with each other; The cyanoolefin ether is present in the polymerization system, and participates in the polymerization reaction while interacting with the other two olefin ether monomers. The presence of these different kinds of oxime ethers makes the polymerization reaction proceed toward the high molecular weight direction, eliminating the chain transfer cyclization reaction.
  • the invention adopts tetrafluoroethylene (TFE) and two kinds of short-side sulfonyl fluoroether ether monomers with different structures and cyano side olefin ether monomers for multi-component copolymerization to obtain high molecular weight and high exchange capacity perfluorocarbon.
  • TFE tetrafluoroethylene
  • two kinds of short-side sulfonyl fluoroether ether monomers with different structures and cyano side olefin ether monomers for multi-component copolymerization to obtain high molecular weight and high exchange capacity perfluorocarbon.
  • Tree Lipid this multi-component copolymer has high chemical stability, high ion exchange capacity and good high temperature mechanical stability.
  • the film material prepared by using this resin has high current efficiency, low film resistance, high dimensional stability, and high mechanical strength.
  • the present invention provides a high exchange capacity perfluororesin having a short side group sulfonyl fluoride and a cyano side group having two different structures, the perfluoro resin comprising tetrafluoroethylene, two different structures of short side sulfonyl groups.
  • Fluoroethers are:
  • the total mole fraction of the tetrafluoroethylene polymerized units is 50 to 85%, and the total mole fraction of the short-side sulfonyl fluoroalkenyl ether units of the two different structures is 5 to 49. %, the total mole fraction of the cyano side olefin ether polymerized unit is from 1 to 10%.
  • the percentage of moles of various polymerized units in the polymer is 70 to 80%, and the total mole fraction of the polymerized units of the two different structures of the sulfonyl fluoride side olefin ether is 15 ⁇ 29%, the cyano side olefin ether polymerized unit has a total mole fraction of 1 to 5%.
  • the number average molecular weight of the above high exchange capacity perfluororesin is from 10 to 600,000, preferably from 150,000 to 300,000, and most preferably from 18 to 250,000.
  • the molecular weight distribution value (referred to as the weight average molecular weight ratio number average molecular weight) of the above high exchange capacity perfluororesin is 1.5 to 2.0.
  • the invention provides a preparation method of the above-mentioned perfluoro ion exchange resin with two different structures of short-side sulfonyl fluoride and cyano side groups, which is prepared by using tetrafluoroethylene, two different structures of short-side sulfonate.
  • the acyl fluoride ether monomer and a cyano side olefin ether monomer are prepared by copolymerization (polymerization) under the action of an initiator at 10 to 80 V, and the reaction time of the copolymerization reaction is 1-8. Hours, the reaction pressure is 2 ⁇ 10MPa.
  • an initiator known in the art may be used as the initiator, or a self-made initiator may be used.
  • the initiator is selected from the group consisting of: N 2 F 2 , perfluoroalkyl peroxide or persulphate.
  • the perfluoroalkyl peroxide comprises: a perfluoroalkyl acyl compound, a perfluoroalkoxy acyl compound, a partially fluorinated alkyl acyl compound, and a partially fluorinated alkoxy group.
  • Alkyl compound a perfluoroalkyl acyl compound, a perfluoroalkoxy acyl compound, a partially fluorinated alkyl acyl compound, and a partially fluorinated alkoxy group.
  • the perfluoroalkyl peroxide is perfluoropropionyl peroxide, 3-chlorofluoropropionyl peroxide, perfluorodecyl acetyl peroxide, ⁇ - ⁇ -perfluorobutyryl Peroxide, -S0 2 F-perfluoro-2,5,8-trimethyl-3,6,9-trioxa-undecyl peroxide, CF 3 CF 2 CF 2 CO-00- COCF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 OCFCF 3 CO-00-COCFCF 3 OCF 2 CF 2 CF 3 , CF 3 CF 2 CH 2 CO-00-COCH 2 CF 2 CF 3 or CF 3 OCF 2 CF 2 CO-00-COCF 2 CF 2 OCF 3 .
  • the persulfate salt comprises an ammonium persulfate salt, an alkali metal persulfide or an alkaline earth metal persulfide; more preferably, the persulfate salt is ammonium perrhenate or potassium persulfate or the like.
  • the molar ratio of the tetrafluoroethylene polymerized unit in the resin, the short-side acyl fluoride olefin ether polymerization unit and the cyano side olefin ether polymer unit of the two different structures is: 50 to 85: 5-49: 1 ⁇ 10.
  • the molar ratio of the polymer units (1) and (2) of the short-side sulfonyl fluoroalkenyl ether of the two different structures in the resin is 0.2-0.8: 0.8-0.2; more preferably, the short side of the two different structures
  • the molar ratio of the polymer units (1) and (2) of the sulfonyl fluoride ether in the resin is from 0.4 to 0.6: 0.6 to 0.4.
  • the above copolymerization reaction is carried out in an aqueous phase for emulsion polymerization.
  • the specific emulsion polymerization method is as follows: 1) After washing the reaction vessel, adding pure water, different ratios of two short-side sulfonyl fluoride ether monomers, The cyano side olefin ether monomer and emulsifier, the total mass concentration of the emulsifier in water is 0.1-20%, and the concentration of the two short-side sulfonyl fluoroolefin ethers in water is 5-30%, cyanide The concentration of the pendant olefinic ether monomer in water is 1 to 12%;
  • the emulsifier comprises an anionic emulsifier and a nonionic emulsifier.
  • the anionic emulsifier includes sodium fatty acid, sodium lauryl sulfate, sodium alkylate hydride, sodium alkylaryl sulfonate, etc.;
  • the nonionic emulsifier includes alkylphenol polyether alcohols such as hydrazine Phenolic polyoxyethylene ether, polyoxyethylene Fatty acid, polyoxyethylene fatty acid ether.
  • the above emulsifiers may be used singly or in combination of plural kinds.
  • the reactor is heated to 10 ⁇ 80 °C, and the initiator is added to the reaction system by a metering pump to initiate the reaction.
  • the tetrafluoroethylene monomer and the initiator are continuously added to the reaction vessel, and the reaction pressure of the reaction vessel is maintained at 2-10 MPa.
  • the reaction time is 1 to 8 hours;
  • the initiator is selected from the group consisting of: N 2 F 2 , perfluoroalkyl peroxide or persulfate; those skilled in the art can select the concentration of the initiator according to common knowledge in the art.
  • the perfluoroalkyl peroxide comprises: a perfluoroalkyl acyl compound, a perfluoroalkoxy acyl compound, a fluorinated partial fluoroalkyl compound or a peroxidized partial fluoroalkoxy acyl compound. .
  • the persulfate salt comprises ammonium persulfate, an alkali metal persulfate or an alkaline earth metal persulfate; preferably ammonium or potassium perchlorate.
  • the high exchange capacity perfluororesin of the present invention having a short side group sulfonyl fluoride and a cyano side group having two different structures can be used for the manufacture of a fuel cell, such as an ion exchange membrane for a high temperature fuel cell.
  • the high exchange capacity perfluoro resin with short side sulfonyl fluoride and cyano side groups having two different structures according to the present invention can be used for a proton membrane fuel cell (for example, a high temperature proton membrane fuel cell) or a chloralkali electrolysis cell.
  • a proton membrane fuel cell for example, a high temperature proton membrane fuel cell
  • a chloralkali electrolysis cell Used as an ion exchange membrane.
  • ion exchange membranes have high chemical stability, high current efficiency, low membrane resistance, high dimensional stability, and high mechanical strength.
  • the high-exchange capacity perfluororesin of the present invention having a short-side sulfonyl fluoride and a cyano side group having two different structures can be prepared by a solution casting process to form a perfluorosulfonic acid ion exchange membrane of a suitable thickness or by melting.
  • the extrusion apparatus prepares a film material of a suitable thickness by high temperature melt extrusion.
  • the membrane material is then subjected to cyclization crosslinking by known methods such as radiation crosslinking, heat treatment crosslinking, addition of a photoinitiator to initiate crosslinking or crosslinking by a free radical initiator to initiate crosslinking, followed by sulfonyl fluoride.
  • the side group is transformed into a side group of sulfonic acid, and the perfluoro ion exchange membrane is not only resistant to various chemical media, but also has high conductivity, high mechanical strength and high dimensional stability, and low membrane resistance, which is very suitable. Used in fuel cells, high temperature fuel cells or chlor-alkali cells.
  • the high exchange capacity perfluoro resin with short side sulfonyl fluoride and cyano side groups having two different structures according to the present invention can further increase the ion based on cyano side group cyclization crosslinking when used in a fuel cell.
  • the water retention capacity, dimensional stability and mechanical strength of the exchange membrane effectively improve the usability of the membrane material. Further increase the life of the membrane material.
  • the perfluorinated ion exchange resin synthesized by the invention has an ion exchange capacity of 0.5-2.6 mmol/g (dry resin), and the smaller the ion exchange capacity, the greater the mechanical strength, wherein the ion exchange capacity is between 1.28 and 1.95 mmol/
  • the mechanical strength of the uncrosslinked resin of g exceeds 20 MPa, and the prepared film material has very good thermal stability energy, and the mechanical strength of the film material after cross-linking treatment exceeds 30 MPa.
  • the conductivity of the membrane material is greater than 0.2 S/cm, and the conductivity measured at 100 ° C and 45% humidity is still higher than 0.05 S/cm, which fully meets the requirements of the fuel cell proton membrane and the chlor-alkali electrolyte membrane material.
  • 1A and 1B respectively show F 19 NMR spectrum and infrared spectrum of a perfluoro resin of one embodiment of the present invention
  • FIG. 2 is a F 19 NMR chart of a perfluoro resin according to an embodiment of the present invention
  • FIG. 3 is an infrared spectrum of a perfluoro resin according to an embodiment of the present invention
  • Fig. 4 shows an F 19 NMR image of a perfluoro resin according to an embodiment of the present invention. The best way to implement the invention
  • the reactors used in the examples are 10L stainless steel high pressure reactors, equipped with temperature sensors, pressure sensors, heating circulation systems, cooling circulation systems, mixing motors, internal cooling water pipes, liquid metering pumps, gases. Feed valve, liquid feed valve and material discharge valve in the reactor.
  • the ion exchange capacity was all the result of measurement after hydrolysis of sulfonyl fluoride to sulfonic acid.
  • perfluoroalkyl initiators employed in the synthesis of the present invention can be prepared according to techniques well known in the art. For the preferred preparation methods of the present invention, see J. Org. Chem., 1982, 47(11): 2009-2013.
  • the potassium persulfate, ammonium persulfate, and N 2 F 2 gases used in the synthesis of the present invention are all commercially available. Among them, tetramethyl persulfate and ammonium persulfate can be purchased through Sinopharm Group. N 2 F 2 gas can be purchased from Dongyue Chemical Co., Ltd.
  • the comonomer tetrafluoroethylene, short-side sulfonyl fluoroether monomer, and cyano side olefin ether monomer used in the synthesis of the present invention are commercially available or can be prepared by methods well known in the art.
  • the tetrafluoroethylene monomer of the present invention is purchased from Shandong Dongyue Polymer Material Co., Ltd.; the short-side acyl fluoride monomer can be obtained by the preparation method described in US Pat. No. 3,560,568 and US Pat. No. 6,422,328, the short-side sulfonyl group of the present invention.
  • Fluorine monomer adopts Chinese patent application number: CN200910229444.1, CN 200910229446.0, CN 200910230218.5 obtained in the preparation process; alkenyl ether monomer pendant cyano groups can be prepared with reference to US36 4 1104 and obtained according to US3852326, pendant cyano alkenyl ether monomer according to the present invention by the Chinese Patent Application No.: The method described in CN 200910230075.8 is prepared.
  • the reaction kettle was washed and 5.0 L of deionized water, 100 g of sodium dodecylbenzenesulfonate and 125 g of nonylphenol ethoxylate NP-10 emulsifier were added, and the stirring device was started, and vacuum-filled with high-purity nitrogen was replaced three times.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • the white polymer powder was dried in an oven at 100 ° C to obtain a perfluoro ion exchange resin having a short pendant sulfonyl fluoride and a cyano side group.
  • the sulfonyl fluoroether ether monomer and the cyano side olefin ether monomer in the filtrate are recovered by a recovery system and reused.
  • Polymer data It was confirmed by F 19 NMR and IR analysis that it was a multi-component copolymer.
  • the fluorine core magnetic integral value showed that the polymer structure contained a tetrafluoroethylene monomer in a molar percentage of 62.71%, and contained a sulfonyl fluoride side olefin ether monomer.
  • the mole percentage is 16.5%
  • mole percentage is 16.3%
  • the cyano side olefin ether monomer mole percentage is 4.49%
  • the total ion exchange capacity is: 1.77 Mmmol/g dry resin.
  • the reaction kettle was washed and added with 5.0 L of deionized water, 220 g of sodium dodecylbenzenesulfonate, and the stirring device was started.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • the white polymer powder was dried in an oven at 100 ° C to give a perfluoro ion exchange resin with a short pendant sulfonyl fluoride and a cyano side group.
  • the sulfonyl fluoroether ether monomer and the cyano side olefin ether monomer in the filtrate are recovered by a recovery system and reused.
  • Polymer data analysis by F 19 NMR (shown in Figure 1A) and IR (as shown in Figure 1B) confirmed to be a multi-component copolymer.
  • the molar integral of tetrafluoroethylene monomer in the polymer structure was confirmed by the fluorine core magnetic integral value. 73.8%, containing sulfonyl fluoride side olefin ether monomer (1) mole percent 15%, containing sulfonyl fluoride side olefin ether monomer (2) mole percent 9%, containing cyano side olefin ether single
  • the molar fraction was 2.2% and the overall ion exchange capacity was: 1.53 mmol/g dry resin.
  • the reaction kettle was washed and 5.0 L of deionized water, 120 g of sodium dodecylbenzenesulfonate and 95 g of nonylphenol polyoxyethylene ether NP-10 emulsifier were added, and the stirring device was started, and vacuum-filled with high-purity nitrogen was replaced three times.
  • the polymerization was initiated by adding 320 g of a 10% aqueous solution of ammonium persulfate to the polymerization reaction.
  • CF 2 CF 2
  • the addition of the tetrafluoroethylene monomer was stopped. Cooling the reactor through the cooling circulation system, the same
  • the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the white polymer powder is obtained by filtration, at 100'C.
  • Drying in an oven gives a perfluorinated ion exchange tree with short-side sulfonyl fluoride and cyano side groups.
  • the sulfonyl fluoroether ether monomer and the cyano side olefin ether monomer in the filtrate are recovered by a recovery system and reused.
  • the decomposition temperature (T d ) of the TGA test resin under nitrogen atmosphere was 397 ° C;
  • the reaction kettle was washed and 5.0 L of deionized water, 180 g of sodium dodecylbenzenesulfonate and 45 g of nonylphenol polyoxyethyl ether NP-10 emulsifier were added, and the stirring device was started, and the vacuum was filled with high-purity nitrogen for three times.
  • the initiator N 2 F 2 was added , and after the reaction for 2 hours, the pressure of the reactor was 3.0 MPa, the addition of the initiator was stopped, and after the reaction was continued for 1 min, the addition of the tetrafluoroethylene monomer was stopped.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • the white polymer powder was dried in a 100 ° C oven to give a perfluoro ion exchange resin with a short pendant aryl fluoride and a cyano side group.
  • the sulfonyl fluoroether ether monomer and the cyano side olefin ether monomer in the filtrate are recovered by a recovery system and reused.
  • Polymer data It was confirmed by F 19 NMR and IR (as shown in Fig. 3) that it was a multi-component copolymer.
  • the fluorine core magnetic integral value showed that the polymer structure contained a tetrafluoroethylene monomer in a mole percentage of 74.5%, containing a sulfonyl group.
  • the fluorine side olefin ether monomer (1) has a molar percentage of 10.5% and contains a sulfonyl fluoride side group.
  • the molar ratio of the alkenyl ether monomer ( 2 ) was 13.79%, the molar percentage of the cyanoether-containing olefin monomer was 1.21%, and the overall ion exchange capacity was: 1.54 mmol/g dry resin.
  • the two strongest absorptions are caused by CF vibration, where 985.6 cm- 1 is the characteristic vibration absorption peak of -CF 3 ; 720 cm - 1 , 641 cm is caused by TFE vibration.
  • the reaction kettle was washed and 5.0 L of deionized water and 215 g of sodium dodecylbenzene sulfonate emulsifier were added, and the stirring device was started, and the vacuum was filled with high-purity nitrogen for three times.
  • the reaction kettle is cooled by the cooling circulation system, and the unreacted tetrafluoroethylene monomer is recovered by the recovery system, and the milky white slurry in the kettle is placed in the aftertreatment system through the lower discharge valve, and after high-speed shearing, the filtration is separated.
  • the white polymer powder was dried in a box at 100 ° C to obtain a perfluoro ion exchange resin having a short-side sulfonyl fluoride and a cyano side group.
  • the sulfonyl fluoroether ether monomer and the cyano side olefin ether monomer in the reaction liquid are recovered by a recovery system and reused.
  • the reaction kettle was washed and 5.0 L of deionized water and 225 g of sodium dodecyl phthalate emulsifier were added, and the stirring device was started, and the vacuum was filled with high-purity nitrogen for three times.
  • the reaction kettle is cooled by the cooling circulation system, and unreacted tetrafluoroethylene monomer is recovered through the recovery system, and the milky white slurry in the kettle is placed in the post-treatment system through the lower discharge wide door, and after high-speed shearing, filtration separation A white polymer powder was obtained, which was dried in an oven at 100 ° C to obtain a perfluoro ion exchange resin having a short-side sulfonyl fluoride and a cyano side group.
  • the sulfonyl fluoroether ether monomer and the cyano side olefin ether monomer in the filtrate are recovered by a recovery system and reused.
  • Polymer data It was confirmed by F 19 NMR and IR analysis that it was a multi-component copolymer.
  • the fluorine core magnetic integral value showed that the polymer structure contained 80% by mole of tetrafluoroethylene monomer, and contained a sulfonyl fluoride side olefin ether monomer.
  • the mole percentage is 8.2%
  • the sulfonyl fluoride-containing olefin ether monomer (2) has a mole percentage of 9.92%
  • the cyano group-containing olefin ether monomer has a molar percentage of 1.88%
  • the overall ion exchange capacity is: 1.27 Mmmol/g dry resin.
  • This example is intended to illustrate the process of preparing an ion exchange membrane using the perfluoro ion exchange resin of Examples 1 to 6, and the mechanical properties of the prepared membrane.
  • Pellet preparation The white powder product obtained in Example 1-6 was separately extruded through a small melt extruder to prepare pellets, and the extrusion temperature of the melt extruder was set to: screw zone 250 ° C, screw II Area 255. C, screw three zone 260 °C, extruder die temperature 2, Q. C, extruder die diameter 3mm, by adjusting the shear rate, the melt-extruded columnar transparent material is sheared to prepare transparent resin pellets with a length of 2-4mm, and the pellets are double-layer PE The plastic bag is kept in a sealed condition.
  • Melt extrusion extrusion film The melt extruder die is replaced with a film extrusion die, the screw zone is set at the same temperature as above, and the prepared transparent pellets are prepared by melt extrusion to form a film, and the film thickness can be adjusted.
  • the width and width of the die are generally adjusted to a film thickness of 20-100 ⁇ m.
  • Membrane mechanical property test The test method was GB/T1040-92, and the ion exchange membrane 1-film 6 prepared by using the perfluoro ion exchange resin prepared in Example 1-6, and the sulfonic acid membrane of the model NRE211 by DuPont were measured. The mechanical properties are shown in Table 1.
  • the 1.0 L reactor was washed and 500 ml of deionized water, 10 g of sodium dodecylbenzenesulfonate and 13 g of nonylphenol ethoxylate NP-10 emulsifier were added, and the stirring device was started, and the vacuum was filled with high-purity nitrogen for three times. After testing the oxygen content in the reactor below 1 ppm, vacuuming, adding 50 g of sulfonyl fluoride pendant olefin ether monomer (1) (F 2 OCF-0-CF 2 -CF) through the liquid feed valve into the reactor.
  • sulfonyl fluoride pendant olefin ether monomer (1) F 2 OCF-0-CF 2 -CF
  • the reaction was stopped after maintaining the pressure at 3.9 MPa for 2 hr, and the white polymer powder was obtained after demulsification. After washing and drying, the white polymer powder was dissolved in DMF solvent to prepare a solution having a concentration of 10 mg/ml.
  • the GPC test showed that the number average molecular weight was 225,000 and the weight average molecular weight was 360,000. No abnormal vibration absorption peak was detected in the infrared test results.

Description

高交换容量全氟树脂及其制备方法和用途 技术领域
本发明属于含氟高分子材料领域, 涉及一种具有高交换容量全氟树脂及 其制备方法, 尤其涉及带有两种不同结构短侧基磺酰氟及氰基侧基的多元共 聚全氟离子交换树脂及其制备方法。 背景技术
自上世纪 70年代杜邦公司将全氟磺酸树脂加工成全氟磺酸型离子交换 膜并且这种膜在氯碱工业及质子交换膜燃料电池中应用后, 全氟离子交换树 脂在世界各国得到了广泛的研究。
含有离子交换基团, 尤其是含有磺酸基和羧酸基的含氟离子交换膜由于 其耐化学降解性而更适合用作燃料电池和氯碱电解槽的离子交换膜。 US3282875是杜邦公司公开的第一个关于磺酰氟单体合成及磺酸树脂制备的 文献, 采用的是水体系中乳液聚合反应, 含有磺酰氟侧基的功能性单体结构 为: F02SCF2CF2OCF(CF3)CF2OCF=CF2, 该单体结构目前已经被普遍采用。 US3560568是杜邦公司公开的一篇关于短侧基磺酰氟单体及 酸树脂的制备 及性能的专利,所报道的磺酰氟单体结构为 F02SCF2CF2OCF=CF2,制备路线 复杂并且收率比较低。 US3884885、 US 3041317中介绍了由新型结构全氟磺 酰氟单体制备的磺酸树脂, 采用的磺酰氟单体的结构为 Κ^Τ= Ρ802Ρ, 这种 单体的反应活性比较低。 US4358545、 US4417969是美国 Dow化学公司公开 的专利, 该专利主要涉及采用短侧基单体( CF2=CFOCF2CF2S02F )与四氟乙 烯等含氟乙烯基单体共聚形成的共聚物的性质和应用, 通过这种方法制备的 磺酸树脂由于是釆用溶液制膜,很难制备出薄膜,并且膜的力学强度不够高, 如专利 US4661411、 US5718947中所述。 US4940525公开了一种使用偏氟乙 烯单体与短侧基的磺酰氟单体共聚树脂的制备方法, 这种树脂已经不具备全 氟结构,在耐腐蚀性方面要差一些。 EP0289869中公布了低 EW值磺酸树脂的 制备, 采用的磺酰氟单体为目前普遍所釆用的单体结构, 其 EW值在 575-800
US7022428, US7041409, US6861489报道了低 EW值的磺酸树脂的制备, 采 用细乳液聚合反应, 并且在聚合过程中加入了含有双烯醚的单体, 双烯醚单 体结构为 CF2=CF-0-CF2CF2CF2-OCF=CF2, EW值在 625-850之间。 GB1034197 公开了含磺酸基的全氟磺酸聚合物, EP1091435公开了一种嵌段磺酸树脂的 结构。 上述聚合物都是以使用四氟乙烯单体与磺酰氟侧基烯醚 (比如 CF2=CFOCF2CF(CF3)OCF2CF2S02F )共聚制备或者进一步在上述聚合体系中 引入其他不具有离子交换功能的侧基含有双键的单体成分如 US4940525 , 聚 合方法可以釆用本领域已经公知的技术, 如溶液聚合 (US2393967、 US3041317等) 、 乳液聚合 (US4789717、 US4864006等)、 微乳液聚合(如 US6639011、 EP1 172382, US5608022等)、 分散聚合、 悬浮聚合、 细乳液聚 合(EP1451233 )等等。 这些具有磺酰氟侧基的聚合物可以经过磺酰氟的适 当水解反应得到游离的磺酸基, 作为离子交换膜用于燃料电池、 电解池、 扩 散渗析、 催化、 贵金属回收等领域。
全氟磺酸树脂的一个最重要的用途就是其作为膜材料在燃料电池中的 应用, 对这类离子交换膜的一个非常重要的要求是它的离子导电性, 为了提 高电导率, 公知的一种做法是提高磺酸树脂的离子交换容量, 但是随着离子 交换容量的增加, 其机械性能下降, 极端情况下, 高交换容量的离子交换树 脂甚至可以溶解在水中。 专利 EP0031724中提及: 对于在电槽中使用的膜的 离子交换容量总量要在 0.5-1.6mmol/g (干树脂)之间, 优选 0.8-1.2mmol/g。 若离子交换容量总量小于 0.5 mmol/g, 则膜的电阻率太高, 电解槽电压和能 耗都会比较高, 不能满足工业化应用, 若离子交换容量总量大于 1.6mmol/g, 则膜材料的机械性能不好, 寿命及使用方面受限制。 为了提高交换容量并且 尽量减少机械性能的损失, 另外一些做法是采用复合膜, 如 US5654109、 US5246792釆用的做法是双层或者三层膜材料复合, 内部的膜具有高 EW值, 承担机械强度作用, 外部的膜为低 EW值, 起离子传导作用; US5981097采 用多层不同离子交换容量膜进行复合; 而 US5082472是采用了双向拉伸的聚 四氟乙烯多孔膜与低 EW值的树脂复合得到复合膜进行使用。 这些做法虽然 一定程度上保持了膜的机械强度,但是在离子传导的均匀性及电导率的提高 上还是有一定的欠缺。
为提高交换膜的机械强度及尺寸稳定性,在对树脂结构进行改性的做法 中, 公知的做法有在树脂结构中引入可以交联的基团如 US20020014405、 US6767977在树脂结构中引入了双烯单体, 中国专利申请号 200480033602.1 公开了一种在聚合体系中引入腈基的做法, 通过处理后使腈基进行交联, 增 加膜的机械强度。中国专利申请号 200480033631.8 公开了一种在聚合体系中 引入氰基、 氯、 碘基, 通过电子束进行交联。 目前现有的另外一种做法是缩 短共聚单体磺酰氟的侧基, 在增加离子交换容量的同时提升膜材料的机械强 度, 但是在专利 US6680346提到: 由短侧基磺酰氟单体合成的聚合物由于聚 合条件的不同会产生环化反应,导致了聚合反应的链转移,从而分子量降低, 材料的力学强度降低, 并且随着短侧基磺酰单体与四氟乙烯单体摩尔比例增 加会进一步促进这类副反应的发生, 限制了离子交换容量的提升及材料的稳 定性。
全氟磺酸树脂的一个最重要的用途就是其作为膜材料在燃料电池中的 应用,对这类由离子交换膜及催化剂层所形成的膜电极的一个重要的要求是 它的化学稳定性及增强电极催化剂抗一氧化碳(CO ) 中毒性能力。 当前广 泛研究和示范的燃料电池膜电极的工作温度在 25-80 °C之间, 在 CO含量达到 的催化剂层即会发生中毒行为, 为了克服目前低温燃料 电池膜电极许多难以 如提高催化剂活性和利用率, 增强电极催 化剂抗一氧化碳中毒性能等, 有效的解决办法是提高燃料电池的使用温度, 在超过 100 °C时, 膜电极中催化剂对 CO的耐受性会提高到 l,000ppm左右。 开 发高温质子交换膜可更好地提高燃料电池的电效率, 降低电池系统的成本, 更加适应燃料电池商业化的要求。 目前国际上燃料电池研究的主要国家开始 投入大量的人力物力进行研究。 目前燃料电池领域公知具有长侧基磺酰氟的 磺酸树脂已经不能满足高温使用要求。 发明内容
本发明的一个目的在于, 提供一种高交换容量全氟树脂, 该高交换容量 全氟树脂带有两种不同结构的短侧基礅酰氟及氰基侧基, 具有高的离子交换 容量及良好的机械性能。 本发明的另一个目的在于, 提供一种上述高交换容 量全氟树脂的制备方法。 本发明的又一目的在于, 提供一种由上述高交换容 量全氟树脂制备而成的离子交换膜。 本发明的再一目的在于, 提供一种包含 上述离子交换膜的燃料电池或电解池。 本发明的再一个目的在于, 提供一种 上述高交换容量全氟树脂的用途。
本发明的上述目的采用如下技术方案来实现:
一方面, 本发明提供一种高交换容量全氟树脂, 其由四氟乙烯、 两种不 同结构的短侧基磺酰氟烯醚单体、 一种氰基侧基烯醚单体多元共聚合而成, 该树
Figure imgf000005_0001
其中 n=0-3的整数,优选地 n=0; m=2-4的整数; a、 b、 c = 3-15的整数 a, 、 b, 、 c'=l-3 的 整数; x/(x+y+z)=0.2-0.7 , y/(x+y+z)=0.2-0.79 , z/(x+y+z)=0.01-0. K
优选地, 所述两种不同结构的短侧基磺酰氟烯醚单体的结构式分别为:
F2C=C-0-C2-C2-S02F
F (1) r2 r2 r2 r2
:2C=C— 0— C -c -c -c -so
所述氰基侧基烯醚单体的结构式为:
Figure imgf000006_0001
其中 n=0-3的整数, 优选地 n=0; m=2-4的整数。
优选地, 所述树脂中各聚合单元所占的摩尔含量百分数为: 四氟乙烯聚 合单元总体摩尔分数为 50〜85%, 两种不同结构的短侧基磺酰氟烯醚聚合单 元总体摩尔分数为 5〜49%, 氰基侧基浠醚聚合单元总体摩尔分数为 1〜10%。
优选地, 所述树脂中各聚合单元所占的摩尔含量百分数为: 四氟乙烯聚 合单元总体摩尔分数为 70〜80%, 两种不同结构的短侧基磺酰氟烯醚聚合单 元总体摩尔分数为 15〜29%, 氰基侧基烯醚聚合单元总体摩尔分数为 1〜5%。
优选地, 所述树脂中两种不同结构的短侧基磺酰氟烯醚聚合单元(1 ) 和(2 ) 的摩尔比为 0.2-0.8: 0.8-0.2; 优选为 0.4-0.6: 0.6-0.4。
另一方面, 本发明提供上述高交换容量全氟树脂的制备方法, 该制备方 法包括使四氟乙烯、 两种不同结构的短侧基磺酰氟烯醚单体、 一种氰基侧基 烯醚单体在引发剂作用下进行聚合反应, 优选地, 所述聚合反应的反应时间 为 1〜8小时, 反应温度为 10 ~ 80°C , 反应压力为 2〜10MPa。
优选地, 所述引发剂选自 N2F2、全氟烷基过氧化物和过硫酸盐中的一种 或多种。
优选地, 所述全氟烷基过氧化物为选自过氧化全氟烷基酰基化合物、 过 氧化全氟烷氧基酰基化合物、过氧化部分含氟烷基酰基化合物和过氧化部分 含氟烷氧基酰基化合物中的一种或多种; 所述过硫酸盐为选自过硫酸铵盐、 碱金属过硫化物和碱土金属过硫化物中的一种或多种。
更优选地, 所述全氟烷基过氧化物为选自全氟丙酰基过氧化物、 3-氯氟 丙酰过氧化物、全氟曱氧基乙酰过氧化物、 ώ-Η-全氟丁酰过氧化物、 -S02F- 全 氟 -2,5,8- 三 曱 基 -3,6,9- 三 氧 杂 - 十 一 烷 基 过 氧 化 物 、 CF3CF2CF2CO-00-COCF2CF2CF3
CF3CF2CF2OCFCF3CO-00-COCFCF3OCF2CF2CF、
CF3CF2CH2CO-00-COCH2CF2CF3和 CF3OCF2CF2CO-00-COCF2CF2OCF3中 的一种或多种; 所述过硫酸盐为选自过硫酸铵和过硫酸钾中的一种或多种。 优选地, 在乳液聚合反应步骤中, 乳化剂选自阴离子型乳化剂, 例如脂 肪酸钠、 十二烷基硫酸钠、 烷基磺酸钠和烷基芳基磺酸钠; 以及非离子型乳 化剂, 例如烷基酚聚醚醇类, 如壬基酚聚氧乙烯醚、 聚氧乙烯脂肪酸和聚氧 乙烯脂肪酸醚中的一种或多种。
更优选地, 在乳液聚合反应步骤中, 乳化剂在水中的质量百分比浓度为
0.1-20%, 两种不同结构的短侧基磺酰氟烯醚单体在水中的质量百分比浓度 为 5-30%, 氰基侧基烯醚单体在水中的质量百分比浓度为 1 ~ 12%。
又一方面, 本发明提供一种由上述的高交换容量全氟树脂制备而成的离 子交换膜。
再一方面, 本发明提供一种包含上述离子交换膜的燃料电池或电解池装 置; 所述燃料电池优选为质子膜燃料电池或高温燃料电池, 更优选为高温质 子膜燃料电池; 所述电解池优选为氯碱电解池。
再一方面, 本发明提供上述高交换容量全氟树脂用于制造燃料电池或电 解池装置中离子交换膜的用途; 所述燃料电池优选为质子膜燃料电池或高温 燃料电池, 更优选为高温质子膜燃料电池; 所述电解池优选为氯碱电解池; 优选地, 使用之前, 先将氰基侧基通过化学方法环化交联。
与现有技术相比, 本发明至少具有以下优点:
1、 本发明的全氟树脂带有两种不同结构的短侧基磺酰氟及氰基侧基, 解决了现有技术中离子交换容量与机械强度相对立的矛盾, 并且克服不耐高 温的缺陷, 提供了同时具有高的离子交换容量及良好的机械性能的全氟树 脂。
2、 本发明的全氟树脂带有两种不同结构的短侧基磺酰氟及氰基侧基, 解决了短侧基磺酰氟烯醚单体在聚合过程中发生链转移反应,得到的树脂分 子量不够高的问题, 具体反应机理可如下: 其一, 聚合过程中采用了两种具 有不同结构的短侧基横酰氟烯醚单体, 这两种单体相互协同作用; 其二, 聚 合体系中存在氰基烯醚, 参与聚合反应的同时与另外两种烯醚单体互相作 用, 这些不同种类浠醚的存在使得聚合反应协同向高分子量方向进行, 消除 了链转移环化反应。
3、 本发明采用四氟乙烯(TFE )与两种带有不同结构的短侧基磺酰氟烯 醚单体及氰基侧基烯醚单体进行多元共聚,得到高分子量高交换容量全氟树 脂, 这种多元共聚物具有高的化学稳定性、 高的离子交换容量及良好的高温 机械稳定性。
本发
池)和氯碱电解槽等装置中的离子交换膜。 应用这种树脂制备的膜材料具有 高的电流效率、 低的膜电阻、 高的尺寸稳定性以及较高的机械强度。
以下是本发明的详细描述:
本发明提供一种带有两种不同结构的短侧基磺酰氟及氰基侧基的高交 换容量全氟树脂, 该全氟树脂由四氟乙烯、 两种不同结构的短侧基磺酰氟烯 醚 为:
Figure imgf000008_0001
( I )
其中 η=0-3的整数, 优选地 n=0; m=2-4的整数; a、 b、 c = 3-15的整数, a b, 、 c'=l-3 的 整数; x/(x+y+z)=0.2-0.7 , y/(x+y+z)=0.2-0.79 , z/(x+y+z)=0.01-0.1。
聚合物中各种聚合单元所占的摩尔含量百分数: 四氟乙烯聚合单元总体 摩尔分数为 50〜85%, 两种不同结构的短侧基磺酰氟烯醚聚合单元总体摩尔 分数为 5~49%, 氰基侧基烯醚聚合单元总体摩尔分数为 1〜10%。
优选地, 聚合物中各种聚合单元所占的摩尔含量百分数: 四氟乙烯聚合 单元总体摩尔分数为 70〜80%, 两种不同结构的磺酰氟侧基烯醚聚合单元总 体摩尔分数为 15〜29%, 氰基侧基烯醚聚合单元总体摩尔分数为 1〜5%。
所述的两种不同结构的短侧基磺酰氟烯醚单体的结构式分别为:
Figure imgf000008_0002
Γ 2 f" 2 >" 2 f" 2
: 2C=C-0-C -C -C -C -S02F 所述的氰基侧基烯醚单体的结构式为
Figure imgf000008_0003
式中 n=0-3 , 优选地 n=0; m=2-4的整数。
上述高交换容量全氟树脂的数均分子量是 10〜60万, 优选为 15~30万, 最优选为 18-25万。 上述高交换容量全氟树脂的分子量分布数值(是指重均 分子量比数均分子量) 为 1.5-2.0。
本发明提供上述带有两种不同结构的短侧基磺酰氟及氰基侧基的全氟 离子交换树脂的制备方法, 该制备方法是通过四氟乙烯、 两种不同结构的短 侧基磺酰氟烯醚单体、一种氰基侧基烯醚单体在 10 ~ 80 V、在引发剂的作用 下进行共聚反应 (聚合反应) 来制备的, 该共聚反应的反应时间为 1 ~ 8小 时, 反应压力为 2 ~ 10MPa。
上述制备方法中, 引发剂可以使用本领域公知的引发剂, 也可以使用自 制的引发剂。
所述引发剂选自: N2F2、 全氟烷基过氧化物或过硫酸盐。
优选地, 所述全氟烷基过氧化物包括: 过氧化全氟烷基酰基化合物、 过 氧化全氟烷氧基酰基化合物、过氧化部分含氟烷基酰基化合物和过氧化部分 含氟烷氧基酰基化合物。 更优选地, 所述全氟烷基过氧化物为全氟丙酰基过 氧化物、 3-氯氟丙酰过氧化物、 全氟曱氧基乙酰过氧化物、 ώ-Η-全氟丁酰过 氧化物、 -S02F-全氟 -2,5,8-三曱基 -3,6,9-三氧杂-十一烷基过氧化物、 CF3CF2CF2CO-00-COCF2CF2CF3 、 CF3CF2CF2OCFCF3CO-00-COCFCF3OCF2CF2CF3 、 CF3CF2CH2CO-00-COCH2CF2CF3或 CF3OCF2CF2CO-00-COCF2CF2OCF3
优选地, 所述过硫酸盐包括过硫酸铵盐、 碱金属过硫化物或碱土金属过 硫化物; 更优选地, 所述过硫酸盐为过石克酸铵或过硫酸钾等。
优选地, 树脂中四氟乙烯聚合单元、 两种不同结构的短侧基横酰氟烯醚 聚合单元和氰基侧基烯醚聚合单元的摩尔比为: 50〜85: 5-49: 1〜10。
优选地, 两种不同结构的短侧基磺酰氟烯醚聚合单元( 1 )和(2 )在树 脂中的摩尔比 0.2-0.8 : 0.8-0.2; 更优选地, 两种不同结构的短侧基磺酰氟烯 醚聚合单元 ( 1 )和(2 )在树脂中的摩尔比为 0.4-0.6: 0.6-0.4。
优选地,上述共聚反应在水相中进行乳液聚合,具体的乳液聚合法如下: 1 )将反应釜洗净后, 加入纯水、 不同比例的两种短侧基磺酰氟晞醚单 体、 氰基侧基烯醚单体和乳化剂, 乳化剂在水中的总体质量百分比浓度为 0.1 -20% , 两种短侧基磺酰氟烯醚在水中的质量百分比浓度为 5-30% , 氰基 侧基烯醚单体在水中的质量百分比浓度为 1 ~ 12%;
其中, 所述乳化剂包括阴离子型乳化剂和非离子型乳化剂。 所述阴离子 型乳化剂包括脂肪酸钠、十二烷基硫酸钠、烷基横酸钠、烷基芳基磺酸钠等; 所述非离子型乳化剂包括烷基酚聚醚醇类, 如壬基酚聚氧乙烯醚、 聚氧乙烯 脂肪酸、聚氧乙烯脂肪酸醚。上述乳化剂可以单独使用也可以多种复配使用。
2 )通过气体计量槽向反应釜内充四氟乙烯单体至压力为 2-10MPa;
3 )反应釜升温至 10 ~ 80°C , 通过计量泵向反应体系中加入引发剂引发 反应进行, 持续向反应釜补加四氟乙烯单体和引发剂, 保持反应釜反应压力 2-10MPa, 反应时间为 1 ~ 8小时;
4 )反应结束时, 停止向反应釜内加入引发剂和四氟乙烯单体, 通过反 应釜放空管路及回收槽放空回收未反应的四氟乙烯单体; 得到乳白色的聚合 物浆料, 将液体浆料通过放料系统进入后处理设备中, 高速剪切, 过滤分离 得到白色聚合物粉末, 于 100°C烘箱中烘干, 得到带有两种不同结构的短侧 基磺酰氟及氰基侧基的高交换容量全氟树脂。 过滤液中的磺酰氟烯醚单体和 氰基侧基烯醚单体通过回收系统回收利用。
上述聚合反应中, 所述引发剂选自: N2F2、 全氟烷基过氧化物或过硫酸 盐; 本领域的技术人员可以根据本领域的公知常识选择引发剂的浓度。
所述全氟烷基过氧化物包括: 过氧化全氟烷基酰基化合物、 过氧化全氟 烷氧基酰基化合物、过氧化部分含氟烷基酰基化合物或过氧化部分含氟烷氧 基酰基化合物。
所述过硫酸盐包括过硫酸铵、 碱金属过硫酸盐或碱土金属过硫酸盐; 优 选过 ^£酸铵或过 酸钾。
本发明所述的带有两种不同结构的短侧基磺酰氟及氰基侧基的高交换 容量全氟树脂可用于制造燃料电池, 例如高温燃料电池的离子交换膜。
本发明所述的带有两种不同结构的短侧基磺酰氟及氰基侧基的高交换 容量全氟树脂可用于质子膜燃料电池(例如高温质子膜燃料电池)或氯碱电 解槽等装置中作为离子交换膜。 这类离子交换膜具有高的化学稳定性、 高的 电流效率、 低的膜电阻、 高的尺寸稳定性以及较高的机械强度等。
本发明所述的带有两种不同结构的短侧基磺酰氟及氰基侧基的高交换 容量全氟树脂可采用溶液浇注工艺制成合适厚度的全氟磺酸离子交换膜或 者采用熔融挤出设备通过高温熔融挤出制备出合适厚度的膜材料。 而后将膜 材料通过公知的做法如辐射交联、 热处理交联、 加入光引发剂引发交联或者 通过自由基引发剂引发交联将氰基侧基进行环化交联; 其后将磺酰氟侧基转 型为磺酸侧基, 制成的全氟离子交换膜不但具有耐各种化学介质性, 还具有 高的导电性、 高机械强度及高的尺寸稳定性, 低的膜电阻, 非常适合在燃料 电池、 高温燃料电池或氯碱电解池中使用。
本发明所述的带有两种不同结构的短侧基磺酰氟及氰基侧基的高交换 容量全氟树脂在燃料电池中应用时,基于氰基侧基环化交联可以进一步提高 离子交换膜的保水能力、尺寸稳定性和机械强度,有效提高膜材料的使用性, 进一步增加膜材料的使用期限。
本发明的有益效果是:
本发明所合成的全氟离子交换树脂的离子交换容量介于 0.5-2.6mmol/g (干树脂) , 离子交换容量越小, 其机械强度越大, 其中离子交换容量介于 1.28-1.95 mmol/g的未交联树脂的机械强度超过 20MPa, 制备的膜材料具有 非常好的热稳定性能, 膜材料经过交联处理后, 其机械强度超过 30MPa。 室 温测定膜材料的电导率大于 0.2S/cm, 在 100°C、 45%湿度情况下测定的电导 率仍然高于 0.05S/cm, 完全能满足燃料电池质子膜和氯碱电解膜材料的需 求。 附图说明
图 1A和图 1B分别表示本发明的一个实施方式的全氟树脂的 F19 NMR 图谱和红外图谱;
图 2表示本发明的一个实施方式的全氟树脂的 F19 NMR图 i普; 图 3表示本发明的一个实施方式的全氟树脂的红外图谱;
图 4表示本发明的一个实施方式的全氟树脂的 F19 NMR图语。 实施发明的最佳方式
以下实施例是对本发明的进一步说明, 但本发明并不局限于此。 如无特 别说明, 各实施例中所用的反应釜均为 10L不锈钢高压反应釜, 并配有温度 传感器、 压力传感器、 加热循环系统、 冷却循环系统、 搅拌电机、 内部冷却 水管、液体计量泵、气体进料阀门、液体进料阀门和反应釜内物料出料阀门。
以下实施例中无特别说明外, 离子交换容量全部为磺酰氟水解为磺酸后 测定的结果。
本发明在合成过程中所釆用的全氟烷基引发剂可以按照本领域公知技 术制备,本发明推荐的制备方法参见 J. Org. Chem. , 1982, 47(11): 2009-2013。
本发明在合成过程中所采用的过硫酸钾、 过硫酸铵、 N2F2气体全部可以 购买得到。 其中, 过硫酸 4甲、 过硫酸铵可以通过国药集团购买。 N2F2气体可 以在东岳化工有限公司购买得到。
本发明在合成过程中所采用的共聚单体四氟乙烯、 短侧基磺酰氟烯醚单 体、 氰基侧基烯醚单体可购买得到, 也可按本领域公知方法制备。 其中, 本 发明的四氟乙烯单体购自山东东岳高分子材料有限公司; 短侧基横酰氟单体 可以参考 US3560568和 US6624328中所述的制备方法获得, 本发明的短侧 基磺酰氟单体采用中国专利申请号为: CN200910229444.1、 CN 200910229446.0、 CN 200910230218.5中所述的方法制备获得; 氰基侧基烯 醚单体可以参考 US3641104和 US3852326中所述的制备方法获得, 本发明 的氰基侧基烯醚单体采用中国专利申请号为: CN 200910230075.8中所述的 方法制备获得。 实施例 1
将反应釜洗净并加入 5.0L去离子水、 100g十二烷基苯磺酸钠和 125g壬 基酚聚氧乙烯醚 NP-10乳化剂,开动搅拌装置,抽真空充高纯氮气置换三次, 经测试反应釜内氧含量在 lppm以下后, 抽真空, 通过液体进料阀门向反应 釜内加入 500g磺酰氟侧基烯醚单体(1) ( F2C=CF-0-CF2-CF2-S02F )及 650g 磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2-CF2-CF2CF2-S02F )及 405g氰基侧 基烯醚单体 ( F2C=CF-0-CF2CF2-CN )后, 向反应釜内充四氟乙烯单体至压 力为 2.9MPa, 升温至 20°C , 用计量泵加入 2.6g过氧化全氟丁酰基化合物 ( CF3CF2CF2CO-00-CCF2CF2CF3 ) 引发聚合反应, 持续通入四氟乙烯 ( CF2=CF2 )单体保持反应压力在 2.9MPa, 每隔 15min向体系中加入引发剂 0.75g, 反应 2h后, 停止加入引发剂, 让反应继续进行 15min后, 停止加入 四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同时通过回收系统回收未 反应的四氟乙烯单体, 将釜内的乳白色浆料通过下放料阀门放入后处理系统 中, 通过高速剪切后, 过滤分离得到白色聚合物粉末, 于 100°C烘箱中烘干, 得到带有短侧基磺酰氟及氰基侧基的全氟离子交换树脂。 过滤液中的磺酰氟 烯醚单体和氰基侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为 62.71%, 含有磺酰 氟侧基烯醚单体 (1)摩尔百分数为 16.5%,含有磺酰氟侧基烯醚单体 (2)摩尔百 分数为 16.3%, 含有氰基侧基烯醚单体摩尔百分数为 4.49%, 总体离子交换 容量为: 1.77mmol/g干树脂。 TGA测试树脂氮气气氛下的分解温度( Td ) 为 403 °C ; IR谱图: 1468cm-1为磺酰氟中 S = 0振动吸收峰; 2272cm-1处为 -CN振动吸收峰; 1200和 1148cm- 1两个最强吸收由 CF振动引起; 720cm人 641cm-1由 TFE振动引起。 实施例 2
将反应釜洗净并加入 5.0L去离子水、 220g十二烷基苯磺酸钠, 开动搅 拌装置, 抽真空充高纯氮气置换三次, 经测试反应釜内氧含量在 lppm以下 后 , 抽真空, 通过液体进料阀门向反应釜内加入 500g磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2-CF2-S02F )及 405g磺酰氟侧基烯醚单体 (2)
( F2C=CF-0-CF2 CF2CF2 CF2-S02F ) 以及 225g氰基侧基烯醚单体
( F2C=CF-0-CF2CF2CF2CN )后, 向反应釜内充四氟乙烯单体至压力为 2.9MPa, 升温至 35 °C , 用计量泵加入 8.0g过氧化全氟丙氧基丙基化合物 ( CF3CF2CF2OCF(CF3)CO-00-CCF(CF3)OCF2CF2CF3 ) 引发聚合反应, 持续 通入四氟乙烯( CF2=CF2 )单体保持反应压力在 2.9MPa, 每隔 25min向体系 中加入引发剂 2.3g, 反应 2.5h后, 停止加入引发剂, 让反应继续进行 25min 后, 停止加入四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同时通过回 收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放料阀门放 入后处理系统中, 通过高速剪切后, 过滤分离得到白色聚合物粉末, 于 100 °c烘箱中烘干, 得到带有短侧基磺酰氟及氰基侧基的全氟离子交换树脂。 过 滤液中的磺酰氟烯醚单体和氰基侧基烯醚单体通过回收系统回收后重复利 用。
聚合物数据: 经 F19 NMR (如图 1A所示)、 IR (如图 1B所示)分析证 实为多元共聚物, 通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的 摩尔百分数为 73.8%, 含有磺酰氟侧基烯醚单体 (1)摩尔百分数为 15%, 含有 磺酰氟侧基烯醚单体 (2)摩尔百分数为 9%, 含有氰基侧基烯醚单体摩尔百分 数为 2.2%, 总体离子交换容量为: 1.53mmol/g干树脂。 TGA测试树脂氮气 气氛下的分解温度(Td ) 为 402°C ; IR谱图: 1468cm-1为磺酰氟中 S = 0振 动吸收峰; 2272cm"1处为 -CN振动吸收峰; 1200和 1148cm-1两个最强吸收 由 CF振动弓 I起; 720cm 、 641 cm"1由 TFE振动引起。 实施例 3
将反应釜洗净并加入 5.0L去离子水、 120g十二烷基苯磺酸钠及 95g壬 基酚聚氧乙烯醚 NP-10乳化剂,开动搅拌装置,抽真空充高纯氮气置换三次, 经测试反应釜内氧含量在 1 ppm以下后, 抽真空, 通过液体进料阀门向反应 釜内加入 300g磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2-CF2-S02F )及 610g 磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2 -CF2CF2 CF2-S02F ) 以及 250g氰基 侧基烯醚单体( F2C=CF-0-CF2CF2 CF2CF2CN )后, 向反应釜内充四氟乙烯 单体至压力为 3.2MPa,升温至 80°C,用计量泵加入 10%过硫酸铵水溶液 320g 引发聚合反应,持续通入四氟乙烯( CF2=CF2 )单体保持反应压力在 3.2MPa, 反应 3h后, 停止加入四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同 时通过回收系统回收未反应的四氟乙烯单体,将釜内的乳白色浆料通过下放 料阀门放入后处理系统中,通过高速剪切后,过滤分离得到白色聚合物粉末, 于 100'C烘箱中烘干, 得到带有短侧基磺酰氟、 氰基侧基的全氟离子交换树 月旨。 过滤液中的磺酰氟烯醚单体和氰基侧基烯醚单体通过回收系统回收后重 复利用。
聚合物数据: 经 F19 NMR (如图 2所示) 、 IR分析证实为多元共聚物, 通过氟核磁积分值可知聚合物结构中含有四氟乙浠单体的摩尔百分数为 75.7%, 含有磺酰氟侧基烯醚单体 (1)摩尔百分数为 8.9%, 含有磺酰氟侧基烯 醚单体 (2)摩尔百分数为 12.28%, 含有氰基侧基烯醚单体摩尔百分数为 3.12%, 总体离子交换容量为: 1.34mmol/g干树脂。 TGA测试树脂氮气气氛 下的分解温度(Td ) 为 397°C ; IR谱图: 1468cm-1为磺酰氟中 S = 0振动吸 收峰; 2272cm-1处为 -CN振动吸收峰; 984cm-1为 -CF3振动引起的; 1200和 1148cm"1两个最强吸收由 CF振动引起; 720cm-1, 641cm-1由 TFE振动引起。 实施例 4
将反应釜洗净并加入 5.0L去离子水、 180g十二烷基苯磺酸钠及 45g壬 基酚聚氧乙浠醚 NP-10乳化剂,开动搅拌装置,抽真空充高纯氮气置换三次, 经测试反应釜内氧含量在 lppm以下后, 抽真空, 通过液体进料阀门向反应 釜内加入 300g磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2-CF2-S02F )及 400g 磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2 -CF2CF2 CF2-S02F ) 以及 250g氰基 侧基烯醚单体( F2C=CF-0-CF2CF(CF3)OCF2 CF2CN )后, 向反应釜内充四 氟乙烯单体至压力为 2.7MPa, 升温至 20°C , 用气体流量计控制流量向反应 釜内引入由 N2F2引发聚合反应, 持续通入四氟乙烯(CF2=CF2 )单体, 保持 反应压力从 2.7MPa緩慢上升, 持续向体系中加入引发剂 N2F2, 反应 2h后, 反应釜压力为 3.0MPa, 停止加入引发剂, 让反应继续进行 lmin后, 停止加 入四氟乙烯单体。 通过冷却循环系统给反应釜降温, 同时通过回收系统回收 未反应的四氟乙烯单体, 将釜内的乳白色浆料通过下放料阀门放入后处理系 统中, 通过高速剪切后, 过滤分离得到白色聚合物粉末, 于 lOO'C烘箱中烘 干, 得到带有短侧基横酰氟及氰基侧基的全氟离子交换树脂。 过滤液中的磺 酰氟烯醚单体和氰基侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR (如图 3所示)分析证实为多元共聚物, 通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为 74.5%, 含有磺酰氟侧基烯醚单体 (1)摩尔百分数为 10.5%, 含有磺酰氟侧基 烯醚单体 (2)摩尔百分数为 13.79%, 含有氰基侧基烯醚单体摩尔百分数为 1.21%, 总体离子交换容量为: 1.54mmol/g干树脂。 TGA测试树脂氮气气氛 下的分解温度(Td ) 为 388°C ; IR谱图: 1468cm-1为磺酰氟中 S = 0振动吸 收峰; 2272cm"处为 -CN振动吸收峰; 1200和 1148cm-1两个最强吸收由 CF 振动引起, 其中 985.6cm-1处为 -CF3的特征振动吸收峰; 720cm-1 , 641cm 由 TFE振动引起。 实施例 5
将反应釜洗净并加入 5.0L去离子水、 215g十二烷基苯磺酸钠乳化剂, 开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在 lppm 以下后, 抽真空, 通过液体进料阀门向反应釜内加入 780g磺酰氟侧基烯醚 单体 (1) ( F2C=CF-0-CF2-CF2-S02F )及 720g磺酰氟侧基烯醚单体 (2)
( F2OCF-0-CF2 -CF2CF2 CF2 -S02F ) 以及 650g氰基侧基烯醚单体
( F2C=CF-0-CF2CF2CN )后,向反应釜内充四氟乙烯单体至压力为 2.8MPa, 升温至 25 °C,用气体流量计控制流量向反应釜内引入由 N2F2引发聚合反应, 持续通入四氟乙烯(CF2=CF2 )单体, 保持反应压力从 2.8MPa緩慢上升, 持 续向体系中加入引发剂 N2F2, 反应 2h后, 反应压力为 3.2MPa, 停止加入引 发剂, 让反应继续进行 lmin后, 停止加入四氟乙烯单体。 通过冷却循环系 统给反应釜降温, 同时通过回收系统回收未反应的四氟乙烯单体, 将釜内的 乳白色浆料通过下放料阀门放入后处理系统中, 通过高速剪切后, 过滤分离 得到白色聚合物粉末, 于 100°C供箱中烘干, 得到带有短侧基磺酰氟及氰基 侧基的全氟离子交换树脂。反应液体中的磺酰氟烯醚单体和氰基侧基烯醚单 体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR (如图 4所示) 、 IR分析证实为多元共聚物, 通过氟核磁积分值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为 67.1%, 含有磺酰氟侧基烯醚单体 (1)摩尔百分数为 14.2%, 含有磺酰氟侧基 烯醚单体 (2)摩尔百分数为 11.46%, 含有氰基侧基烯醚单体摩尔百分数为
7.24%, 总体离子交换容量为: 1.44mmol/g干树脂。 TGA测试树脂氮气气氛 下的分解温度(Td ) 为 385 °C ; IR谱图: 1468cm-1为磺酰氟中 S = 0振动吸 收峰; 2272cm 处为 -CN振动吸收峰; 984cm— 1为 -CF3振动引起的; 1200和 1148cm-1两个最强吸收由 CF振动引起; SOcm-1 641αη-1由 TFE振动引起。
Figure imgf000015_0001
将反应釜洗净并加入 5.0L去离子水、 225g十二烷基苯黄酸钠乳化剂, 开动搅拌装置,抽真空充高纯氮气置换三次,经测试反应釜内氧含量在 lppm 以下后, 抽真空, 通过液体进料岡门向反应釜内加入 420g磺酰氟侧基烯醚 单体 (1) ( F2C=CF-0-CF2-CF2-S02F ) 及 265g磺酰氟侧基烯醚单体 (2)
( F2C=CF-0-CF2-CF2CF2 CF2 -S02F ) 以及 350g氰基侧基烯醚单体
( F2C=CF-0-CF2 CF2 CF2CF2CN )后, 向反应釜内充四氟乙烯单体至压力为 5.2MPa, 升温至 45 °C , 用计量泵加入 20.2g d)-S02F-全氟 -2,5,8-三甲基 -3,6,9- 三氧杂-十一烷基过氧化物引发聚合反应, 持续通入四氟乙烯(CF2=CF2 )单 体保持反应压力在 5.2MPa, 每隔 45min向体系中加入引发剂 6g, 反应 2h 后, 停止加入引发剂, 让反应继续进行 45min后, 停止加入四氟乙浠单体。 通过冷却循环系统给反应釜降温, 同时通过回收系统回收未反应的四氟乙烯 单体, 将釜内的乳白色浆料通过下放料阔门放入后处理系统中, 通过高速剪 切后, 过滤分离得到白色聚合物粉末, 于 100°C烘箱中烘干, 得到带有短侧 基磺酰氟及氰基侧基的全氟离子交换树脂。 过滤液中的磺酰氟烯醚单体和氰 基侧基烯醚单体通过回收系统回收后重复利用。
聚合物数据: 经 F19 NMR、 IR分析证实为多元共聚物, 通过氟核磁积分 值可知聚合物结构中含有四氟乙烯单体的摩尔百分数为 80%,含有磺酰氟侧 基烯醚单体 (1)摩尔百分数为 8.2%, 含有磺酰氟侧基烯醚单体 (2)摩尔百分数 为 9.92%, 含有氰基侧基烯醚单体摩尔百分数为 1.88%, 总体离子交换容量 为: 1.27mmol/g干树脂。 TGA测试树脂氮气气氛下的分解温度( Td )为 389 °C ; IR谱图: 1468cm 为磺酰氟中 S = 0振动吸收峰; 2272cm-1处为 -CN振 动吸收峰; 1200和 1148cm 两个最强吸收由 CF振动引起; 720cm"1 , 641cm"1 由 TFE振动引起。 实施例 Ί
本实施例用于说明使用实施例 1 -6的全氟离子交换树脂制备离 子交换膜的过程,以及所制备的膜的力学性能。
离子交换膜的制备过程:
粒料制备: 分别将实施例 1 -6中得到的白色粉末产物经小型熔 融挤出机挤出制备粒料, 熔融挤出机的挤出温度设定为: 螺杆一区 250 °C、 螺杆二区 255。C、 螺杆三区 260 °C、 挤出机模口温度 2,Q。C, 挤出机口模直径 3mm, 通过调整剪切速率, 将熔融挤出的柱状透 明物料剪切制备出长度 2-4mm的透明树脂粒料, 将粒料用双层 PE 塑料袋密闭保存。
熔融挤出挤膜: 将熔融挤出机口模更换为薄膜挤出模头, 螺杆 区域设定温度同上,将制备的透明粒料釆用熔融挤出的方式制备成 薄膜, 薄膜厚度可以通过调整模口的宽窄调节, 通常制备的薄膜厚 度为 20-100μιη。
熔融挤出模转型: 将薄膜的磺酰氟( -S02F )侧基转为磺酸离子( -S03H) 形式, 将制备的薄膜依次通过 80°C质量百分浓度 30%的氢氧化钠溶液、 30 °C质量百分比浓度 30%的硫酸溶液 (H2S04)、 流动的去离子水洗涤槽。 薄膜 在碱液中停留时间 30min、 在 u酸溶液中停留时间为 10min, 在去离子水槽 中用去离子水沖洗 lOmin, 其后将膜材料收卷, 密闭保存,即得到膜产品, 由 实施例 1-6的全氟离子交换树脂制备的离子交换膜分别相应地记作膜 1-膜 6。
膜力学性能测试: 测试方式采用方法为 GB/T1040-92, 测定使用实施例 1-6制备的全氟离子交换树脂制备离子交换膜 1-膜 6, 以及杜邦公司的型 号为 NRE211的磺酸膜的力学性能, 结果列于表 1。
Figure imgf000017_0001
通过表 1的数据可以看出, 与本领域常用的商购离子交换膜相比, 本 发明的树脂制备的膜产品具有更好的机械性能。 实施例 8
将 1.0L反应釜洗净并加入 500ml去离子水、 10g十二烷基苯磺酸钠和 13g 壬基酚聚氧乙烯醚 NP-10乳化剂, 开动搅拌装置, 抽真空充高纯氮气置换三 次, 经测试反应釜内氧含量在 lppm以下后, 抽真空, 通过液体进料阀门向 反应釜内加入 50g磺酰氟侧基烯醚单体 (1)( F2OCF-0-CF2-CF2-S02F )及 60g 磺酰氟侧基烯醚单体 (2) ( F2C=CF-0-CF2-CF2-CF2CF2-S02F )及 40g氰基侧基 烯醚单体( F2C=CF-0-CF2CF2-CN )后, 向反应釜内充四氟乙烯单体至压力 为 3.9MPa, 升温至 80°C, 向反应釜内加 5.2g过硫酸铵引发剂, 保持压力在 3.9MPa聚合 2hr后停止反应, 破乳后得到白色聚合物粉末, 洗涤干燥后, 将 白色聚合物粉末溶于 DMF溶剂中配制成 10mg/ml浓度的溶液,进行 GPC测 试, 结果显示数均分子量在 22.5万、 重均分子量在 36万, 红外测试结果中 未检测到异常的振动吸收峰。
采取以上同样的条件, 唯一改变的是通过液体进料阀门向反应釜内加入 145g磺酰氟侧基烯醚单体 (1) ( F2C=CF-0-CF2-CF2-S02F ), 保证体系内总的 双键的浓度与以上条件一致, 所得聚合物的粉末溶于测定 GPC结果显示出 数均分子量在 12.3万、 重均分子量在 20.5万, 并且红外测试结果中检测到 了 -S-0-C-单键的反对称伸缩振动吸收峰, 出现在 830cm-1处。 这些结果显示 短侧基环化在聚合过程中确实会出现, 由于其他烯醚单体的相互作用, 环化 反应会减弱或者消除。

Claims

权 利 要 求
1 - 一种高交换容量全氟树脂, 其由四氟乙烯、 两种不同结构的短侧基 磺酰氟烯醚单体、 一种氰基侧基烯醚单体多元共聚合而成, 该树脂主要含有 以下式(I )所示的重复单元:
Figure imgf000019_0001
( I )
其中 n=0-3的整数,优选地 n=0; m=2-4的整数; a、 b、 c = 3-15的整数, a, 、 b, 、 c'=l-3 的 整数; x/(x+y+z)=0.2-0.7 , y/(x+y+z)=0.2-0.79 , z/(x+y+z)=0.01-0.1。
2. 根据权利要求 1所述的高交换容量全氟树脂, 其特征在于, 所述两种 不同结构的短侧基礒酰氟烯醚单体的结构式分别为:
F2 F2
F2C=C-0-C -C -S02F
2 F 2 (1)
F2 F2 F2 F2
F2C=C-0-C - C -C -C -S02F
构式为:
Figure imgf000019_0002
其中 n=0-3的整数, 优选地 n=0; m=2-4的整数。
3.根据权利要求 1或 2所述的高交换容量全氟树脂,其特征在于, 所述 树脂中各聚合单元所占的摩尔含量百分数为: 四氟乙烯聚合单元总体摩尔分 数为 50〜85%, 两种不同结构的短侧基磺酰氟烯醚聚合单元总体摩尔分数为 5-49%, 氰基侧基烯醚聚合单元总体摩尔分数为 1〜10%; 优选地, 所述树脂中各聚合单元所占的摩尔含量百分数为: 四氟乙烯聚 合单元总体摩尔分数为 70〜80%, 两种不同结构的短侧基磺酰氟烯醚聚合单 元总体摩尔分数为 15〜29%, 氰基侧基烯醚聚合单元总体摩尔分数为 1~5%。 4. 根据权利要求 1至 3任一项所述的高交换容量全氟树脂,其特征在于, 所述树脂中两种不同结构的短侧基磺酰氟烯醚聚合单元( 1 )和(2 )的摩尔 比为 0.2-0.8: 0.8-0.2; 优选为 0.4-0.6: 0.6-0.
4。
5. 一种权利要求 1至 4任一项所述的高交换容量全氟树脂的制备方法, 该制备方法包括使四氟乙烯、 两种不同结构的短侧基磺酰氟烯醚单体、 一种 氰基侧基烯醚单体在引发剂作用下进行聚合反应, 优选地, 所述聚合反应的 反应时间为卜 8小时, 反应温度为 10 ~ 80°C , 反应压力为 2〜10MPa。
6. 根据权利要求 5所述的制备方法,其特征在于,所述引发剂选自 N2F2、 全氟烷基过氧化物和过硫酸盐中的一种或多种;
优选地, 所述全氟烷基过氧化物为选自过氧化全氟烷基酰基化合物、 过 氧化全氟烷氧基酰基化合物、过氧化部分含氟烷基酰基化合物和过氧化部分 含氟烷氧基酰基化合物中的一种或多种; 所述过硫酸盐为选自过硫酸铵盐、 碱金属过硫化物和碱土金属过硫化物中的一种或多种。
更优选地, 所述全氟烷基过氧化物为选自全氟丙酰基过氧化物、 3-氯氟 丙酰过氧化物、全氟曱氧基乙酰过氧化物、 ώ-Η-全氟丁酰过氧化物、 -S02F- 全 氟 -2,5,8- 三 曱 基 -3,6,9- 三 氧 杂 - 十 一 烷 基 过 氧 化 物 、 CF3CF2CF2CO-00-COCF2CF2CF3
CF3CF2CF2OCFCF3CO-00-COCFCF3OCF2CF2CF、
CF3CF2CH2CO-00-COCH2CF2CF3和 CF3OCF2CF2CO-00-COCF2CF2OCF3中 的一种或多种; 所述过硫酸盐为选自过硫酸铵和过硫酸钾中的一种或多种。
7.根据权利要求 5或 6所述的制备方法,其特征在于, 所述制备方法还 包括在水相中进行乳液聚合反应的步骤;
优选地, 在乳液聚合反应步骤中, 乳化剂选自阴离子型乳化剂, 例如脂 肪酸钠、 十二烷基硫酸钠、 烷基横酸钠和烷基芳基磺酸钠; 以及非离子型乳 化剂, 例如烷基酚聚醚醇类, 如壬基酚聚氧乙烯醚、 聚氧乙烯脂肪酸和聚氧 乙烯脂肪酸醚中的一种或多种;
更优选地, 在乳液聚合反应步骤中, 乳化剂在水中的质量百分比浓度为 0.1-20%, 两种不同结构的短侧基磺酰氟烯醚单体在水中的质量百分比浓度 为 5-30%, 氰基侧基烯醚单体在水中的质量百分比浓度为 1 ~ 12%。
8. 一种由权利要求 1至 4任一项所述的高交换容量全氟树脂制备而成的 离子交换膜。
9. 一种包含权利要求 8所述的离子交换膜的燃料电池或电解池装置;所 述燃料电池优选为质子膜燃料电池或高温燃料电池, 更优选为高温质子膜燃 料电池; 所述电解池优选为氯碱电解池。
10. 权利要求 1至 4任一项所述的高交换容量全氟树脂用于制造燃料电 池或电解池装置中离子交换膜的用途; 所述燃料电池优选为质子膜燃料电池 或高温燃料电池, 更优选为高温质子膜燃料电池; 所述电解池优选为氯碱电 解池; 优选地, 使用之前, 先将氰基侧基通过化学方法环化交联。
PCT/CN2009/001456 2009-12-15 2009-12-15 高交换容量全氟树脂及其制备方法和用途 WO2011072417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001456 WO2011072417A1 (zh) 2009-12-15 2009-12-15 高交换容量全氟树脂及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001456 WO2011072417A1 (zh) 2009-12-15 2009-12-15 高交换容量全氟树脂及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2011072417A1 true WO2011072417A1 (zh) 2011-06-23

Family

ID=44166700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001456 WO2011072417A1 (zh) 2009-12-15 2009-12-15 高交换容量全氟树脂及其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2011072417A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289869A2 (en) * 1987-05-08 1988-11-09 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
CN1147567A (zh) * 1995-07-10 1997-04-16 旭硝子株式会社 电解用的阳离子交换膜和生产高纯度氢氧化钾的方法
CN1882642A (zh) * 2003-11-13 2006-12-20 3M创新有限公司 通过腈三聚合交联的聚合物电解质膜
CN101020758A (zh) * 2007-02-25 2007-08-22 山东东岳神舟新材料有限公司 一种聚合物离子交换膜及其制备方法
CN101709102A (zh) * 2009-12-15 2010-05-19 山东东岳神舟新材料有限公司 高交换容量全氟树脂及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289869A2 (en) * 1987-05-08 1988-11-09 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
CN1147567A (zh) * 1995-07-10 1997-04-16 旭硝子株式会社 电解用的阳离子交换膜和生产高纯度氢氧化钾的方法
CN1882642A (zh) * 2003-11-13 2006-12-20 3M创新有限公司 通过腈三聚合交联的聚合物电解质膜
CN101020758A (zh) * 2007-02-25 2007-08-22 山东东岳神舟新材料有限公司 一种聚合物离子交换膜及其制备方法
CN101709102A (zh) * 2009-12-15 2010-05-19 山东东岳神舟新材料有限公司 高交换容量全氟树脂及其制备方法和用途

Similar Documents

Publication Publication Date Title
WO2011069281A1 (zh) 一种全氟离子交换树脂及其制备方法和应用
US8993682B2 (en) Polyelectrolyte and process for producing the polyelectrolyte
EP1589062A2 (en) Fluorinated membranes
CN101709101B (zh) 高交换容量全氟离子交换树脂及其制备方法和用途
CN101798365B (zh) 一种全氟离子交换树脂及其制备方法和应用
WO2011072418A1 (zh) 高交换容量全氟离子交换树脂及其制备方法和用途
JP6078342B2 (ja) スルホニルフルオリドポリマーの単離方法、およびそれによって得られるポリマー
CN101709102B (zh) 高交换容量全氟树脂及其制备方法和用途
CN113861327A (zh) 一种具有高质子传导性和机械性能的全氟磺酸树脂粘结剂及其制备方法
CN115991835B (zh) 一种宽温区的聚合型膦酸树脂及制备方法
WO2011075877A1 (zh) 一种全氟离子交换树脂及其制备方法和用途
WO2011072417A1 (zh) 高交换容量全氟树脂及其制备方法和用途
US10461336B2 (en) Process for producing liquid composition and process for producing catalyst layer-forming coating liquid
CN101333323B (zh) 一种交联的含氟离子交换膜及其制备方法
CN116285175A (zh) 一种增强型含氟质子交换膜或含氟离子交换膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852155

Country of ref document: EP

Kind code of ref document: A1