WO2011074670A1 - 液状食品組成物 - Google Patents
液状食品組成物 Download PDFInfo
- Publication number
- WO2011074670A1 WO2011074670A1 PCT/JP2010/072774 JP2010072774W WO2011074670A1 WO 2011074670 A1 WO2011074670 A1 WO 2011074670A1 JP 2010072774 W JP2010072774 W JP 2010072774W WO 2011074670 A1 WO2011074670 A1 WO 2011074670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- food composition
- liquid food
- composition according
- liquid
- particle size
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/16—Inorganic salts, minerals or trace elements
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/185—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/20—Reducing nutritive value; Dietetic products with reduced nutritive value
- A23L33/21—Addition of substantially indigestible substances, e.g. dietary fibres
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/40—Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0065—Forms with gastric retention, e.g. floating on gastric juice, adhering to gastric mucosa, expanding to prevent passage through the pylorus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
Definitions
- the present invention relates to a liquid food composition used when, for example, an elderly person, a sick person, a patient before and after surgery, or a healthy person ingests nutritional components.
- tube feeding method There are two types of tube feeding methods: one is to administer nutrients intravenously and the other is to enter the gastrointestinal tract, where there is no need for strict aseptic operation or maintenance of intestinal function compared to intravenous administration. Therefore, it is considered desirable to use enteral nutrition when administration to the digestive tract is possible.
- enteral nutrition method administration is often performed through a tube from a nasogastric tube or gastrostomy, and in this case, liquid type nutritional food is mainly used.
- liquid type nutritional food is mainly used.
- it is known that when liquid type nutritional food is used it may cause gastroesophageal reflux disease, aspiration pneumonia, diarrhea, fistula leakage, etc. ing.
- semi-solid and high-viscosity foods are effective in dealing with such problems, preparation takes time and force is added to extrude nutritional foods during tube administration. It is hard to say that they are fully satisfied with the need to continue.
- a gelling agent containing gellan gum and alginic acid and a tube-feeding food containing the gelling agent (Patent Document 1), or an enteral intestine using sodium-type carrageenan as a semi-solidifying agent.
- a nutrient Patent Document 2 and the like are disclosed.
- These inventions add gellan gum, carrageenan, etc. to a liquid food, and gel the liquid food (semi-solid) to prevent the above-mentioned problems.
- These liquid food gelation technologies are said to be effective in reducing hunger and suppressing rapid increases in blood glucose levels.
- Inventions relating to use in diet foods and diabetic foods (patents) Documents 3 to 5) are also disclosed.
- the tube-fed food disclosed in Patent Document 1 is obtained by adding a gelling agent containing gellan gum and alginic acid to the tube-fed food.
- a gelling agent containing gellan gum and alginic acid is added to the tube-fed food.
- the food after preparation is diluted by the amount added with the gelling agent, the physical properties of the original tube-fed food may be greatly different.
- a carrageenan is added to a foodstuff as a semi-solidifying agent, and a foodstuff semi-solidifies in a short time after preparation. Therefore, even if the prepared food has fluidity that can be ingested by tube, its viscosity is high, so force is required to pass through the tube, and sometimes the tube It is not always easy to ingest, such as causing clogging. Furthermore, these technologies (Patent Documents 1 and 2) solidify with time when the gelling agent or semi-solidifying agent is blended in the food in advance. A gelling agent is added to food, so to speak, it is a technique of mixing and using two liquids, and is not a one-pack type product in which a gelling agent is pre-mixed in food.
- Patent Document 3 discloses a technique relating to diet foods and diabetic foods that utilizes the fact that a simple composition composed of alginic acid and a neutral insoluble calcium compound changes into a gel when it comes into contact with gastric juice.
- water-soluble dietary fibers such as alginic acid are mixed with protein, separation of components such as phase separation may occur.
- no protein is blended.
- the technique of patent document 3 is a technique used as a diet food or diabetes food, there is no description regarding the addition method of minerals other than a calcium compound, and the influence is not examined.
- minerals other than calcium compounds are important mineral components for humans, and compositions that do not contain minerals other than calcium compounds are not nutritionally satisfactory.
- enteral nutritional food for intake by a person who cannot take food orally such as an elderly person, a disease or a patient before and after surgery, protein, mineral content, etc.
- enteral nutritional food for intake by a person who cannot take food orally such as an elderly person, a disease or a patient before and after surgery, protein, mineral content, etc.
- problems such as physical properties being impaired during preparation and storage, and separation of the nutritional components during storage may occur.
- Patent Document 4 relates to a composition that is liquid near neutral pH and forms a sticky matrix at low pH.
- the composition contains (a) at least 0.05 wt% of 2 as an essential component.
- Pectin and / or alginate having a degree of methoxylation of -50, (b) at least 5 mg of calcium per 100 ml, and (c) at least 0.1 wt% of indigestible oligosaccharides having a degree of polymerization of 2-60.
- Patent Document 5 relates to a food composition having an accelerated satiety effect, and the food composition does not denature or hydrolyze as an essential component between at least 1 wt% protein and pH 2-4.
- a food composition comprising 0.1 to 5 wt% of a biopolymer thickener (pectin, alginate, etc.).
- pectin, alginate, etc. a biopolymer thickener
- the food compositions described in these patents have the effect of promoting the satiety effect by thickening in the stomach, but when the food composition is prepared by blending the raw materials described in these patents, As a result of investigations by the present inventors, it has become clear that there arises a problem that aggregates are generated during storage.
- the present invention is a liquid food composition that is semi-solidified in the stomach, and is a composition in which water-soluble dietary fiber is preliminarily blended. Even during storage, the liquid physical properties are maintained stably, there is little clogging in the tube when ingested by tube, and the tube has good passage properties. Therefore, the present invention is intended to provide a liquid food composition that is low in amount, has a good “nodding”, and is easy to drink.
- the present inventors diligently studied the selection of ingredients in foods in order to solve the above problems. As a result, it contains water-soluble dietary fibers such as alginic acid and its salts and minerals necessary for humans such as calcium compounds and magnesium compounds that are sparingly soluble, and gels water-soluble dietary fibers in the neutral region.
- water-soluble dietary fibers such as alginic acid and its salts and minerals necessary for humans such as calcium compounds and magnesium compounds that are sparingly soluble, and gels water-soluble dietary fibers in the neutral region.
- a liquid food composition containing a metal compound that does not cause oxidization, a vegetable protein such as soybean protein or a hydrolyzate thereof, and an emulsifier such as lysolecithin or sucrose laurate, and the like In a liquid food composition that is semi-solidified by acidity in the stomach by adjusting the particle size distribution of (1), it is a composition that is pre-blended with water-soluble dietary fiber, and (2) can be easily consumed in liquid form (3) The liquid state is maintained stably during distribution and storage, and (4) there is no generation of aggregates, and (5) it is nutritionally satisfactory. May provide a liquid food composition found that it is possible, and completed the present invention.
- the present invention (1) water-soluble dietary fiber (a); A metal compound (b) that contains minerals necessary for humans and does not cause gelation of the water-soluble dietary fiber in a neutral region; Protein (c); A liquid food composition comprising an emulsifier (d) and semi-solidified in an acidic region, A liquid food composition having two or more peaks in a particle size distribution of particles contained in the liquid food composition in a neutral region; (2) In the acidic region, the liquid food composition according to (1), wherein the liquid food composition has a viscosity at the time of semi-solidification of 1000 cP or more, (3) The liquid food composition according to (2), wherein among the two or more peaks present in the particle size distribution of the particles, at least one peak is present at a particle diameter of 3000 nm or less, (4) When the liquid food composition is further subjected to ultrasonic treatment, the frequency of at least one peak existing at a particle diameter of 3000 nm or less is higher than that before the ultrasonic treatment.
- the frequency after the decrease is 60% or less with respect to the frequency in the particle size distribution of the particles before the ultrasonic treatment.
- the particle size distribution of the particles contained in the liquid food composition in the neutral region is represented by a distribution curve having a volume-based cumulative amount of passage, the liquid curve having two or more inflection points in the distribution curve Food composition, (7)
- the liquid food composition according to (6) wherein the liquid food composition has a viscosity at the time of semi-solidification of 1000 cP or more
- the calcium compound (b) that is sparingly soluble in the neutral region contains calcium citrate, calcium carbonate, calcium dihydrogen pyrophosphate, tricalcium phosphate
- the magnesium compound (b) that is hardly soluble in the neutral region is at least one selected from the group consisting of magnesium carbonate, magnesium oxide, magnesium stearate, and trimagnesium phosphate.
- the metal compound (b) that contains minerals necessary for humans and does not cause gelation of the water-soluble dietary fiber (a) in a neutral region is zinc-containing yeast, copper-containing yeast, manganese
- the above-mentioned (16), wherein the metal compound (b) that contains minerals necessary for humans and does not cause gelation of the water-soluble dietary fiber (a) in a neutral region is iron citrate (16)
- Liquid food composition according to (22) The liquid food composition according to any one of (1) to (21), wherein the emulsifier (d) is an emulsifier having an HLB value greater than 9.
- Liquid crystal food composition (27) The liquid food composition according to any one of (1) to (26), wherein at least the components (a) to (d) are one-pack products filled in the same container, (28) The liquid food composition according to any one of (1) to (27), further comprising a nutritional component (f), (29) The liquid food composition according to any one of (1) to (28), wherein the liquid state is maintained during storage, (30) Any of the above (1) to (29), which is semi-solidified in an acidic environment in the stomach and has a function of preventing gastroesophageal reflux disease, aspiration pneumonia, diarrhea, leakage from the fistula, etc.
- the liquid food composition according to the description (31) The liquid food composition according to any one of (1) to (30), wherein the liquid food composition has a function of being semi-solid under an acidic environment in the stomach and reducing a feeling of hunger, (32) The liquid food composition according to any one of (1) to (31), which is semi-solidified in an acidic environment in the stomach and has an effect of suppressing a rapid increase in blood glucose level. (33) Enteral nutritional food comprising the liquid food composition according to any one of (1) to (32), (34) An oral nutritional food comprising the liquid food composition according to any one of (1) to (32), (35) A diet food comprising the liquid food composition according to any one of (1) to (32), About.
- the acidic and semi-solidified liquid food composition according to the present invention as described above is preliminarily formulated with water-soluble dietary fiber, so that it does not require time and effort such as adding a gelling agent at the time of ingestion. Therefore, it can be taken easily. Furthermore, since the liquid food composition of the present invention can stably maintain its quality during preparation, distribution and long-term storage, the liquid food composition that is semi-solidified acidic is practically used. It is possible to supply. In addition, for example, by containing calcium and other minerals necessary for humans and vegetable proteins such as soy protein, the above effects can be achieved while being a nutritionally satisfactory ingredient combination. Liquid food compositions can be provided.
- the liquid food composition according to the present invention can be used for enteral nutritional foods and oral nutritional foods taking advantage of the above-mentioned advantages, for example, nutritional foods, enteral nutritional foods, enteral nutritional agents including pharmaceutical classification, ingredients It can be used for nutrients, semi-digested nutrients, digested nutrients, concentrated liquid foods, diet foods, diabetic foods, and the like.
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- shaft is. It is the figure represented by the distribution curve which is a volume reference
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- shaft is. It is the figure represented by the distribution curve which is a volume reference
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- shaft is. It is the figure represented by the distribution curve which is a volume reference
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- shaft is It is the figure represented by the distribution curve which is a volume reference
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- shaft is It is the figure represented by the distribution curve which is a volume reference
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- shaft is It is the figure represented by the distribution curve which is a volume reference
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- (A) is the figure which showed the particle size distribution of the particle
- (b) is the particle size distribution of the particle
- (A) is the figure which represented the particle size distribution of the particle
- (b) is (a).
- the relationship between the particle diameter (nm) and the amount of change (%) in the accumulated amount of passage, which is created when determining the inflection point of the distribution curve shown, is the particle diameter (nm) on the horizontal axis and the passage amount on the vertical axis. It is the figure represented as change amount (%) of an integrated value.
- the liquid food composition according to the present invention comprises a water-soluble dietary fiber (a) and a metal compound (b) that contains minerals necessary for humans and does not cause gelation of the water-soluble dietary fiber in a neutral region.
- a liquid food composition containing a protein (c) and an emulsifier (d) and semi-solidified in an acidic region, and having a particle size distribution of particles contained in the liquid food composition in a neutral region It is characterized by the presence of two or more peaks.
- the “semi-solidification” as used in the present invention is a state in which the liquid physical properties of the liquid food composition are changed, and refers to insolubilization of components in the composition, increase in viscosity, solification, gelation, and the like.
- the state is not limited as long as the liquid physical properties at the time of ingestion are changed by the acidity in the stomach.
- semi-solidification can also be represented by the solidification rate mentioned later.
- the solidification rate is not particularly limited, but is preferably 45% or more.
- the liquid food composition is better semi-solidified in the acidic region in the stomach, preventing gastroesophageal reflux disease, aspiration pneumonia, diarrhea, fistula leakage, etc.
- the effect of reducing the feeling of hunger and suppressing the rapid rise in blood glucose level can be exhibited more effectively.
- viscosity is also possible to use viscosity as an index for semi-solidification.
- the viscosity when the liquid food composition is semi-solidified is not particularly limited as long as it is a viscosity that prevents gastroesophageal reflux and promotes satiety, but when semi-solidified
- the viscosity is preferably 1000 cP or more, more preferably 2000 cP or more, more preferably 5000 cP or more, and particularly preferably 10,000 cP or more.
- the liquid food composition has a viscosity of 1000 cP or more when semi-solidified, the effect of preventing gastroesophageal reflux disease, aspiration pneumonia, diarrhea, leakage from the fistula, etc. The effect of suppressing a rapid rise can be exhibited more effectively.
- the “liquid physical property of the liquid food composition” means that the convenience at the time of ingestion is within a range that is not impaired, for example, a solid substance that causes tube clogging (for example, This means that there is no agglomerate) and the composition is in a uniform state.
- the “uniform state” in this case is a range in which there is almost no separation of components and there is no problem in product quality.
- the separation of the components is large, even if there is no solid matter (for example, agglomerates) that causes the tube clogging, the appearance is bad, and the commercial value is lowered, which may not be accepted in the market.
- the liquid food composition of the present invention has little change in physical properties such as solidification and separation of components even during long-term storage, and the “liquid physical properties” are maintained over a long period of time.
- the water-soluble dietary fiber (a) that can be used in the present invention is not particularly limited as long as it does not impair the liquid physical properties of the liquid food composition during ingestion or storage and makes the liquid food composition semi-solid in the acidic region.
- alginic acid and / or alginate, gellan gum, pectin, carrageenan, curdlan, polyglutamic acid and the like can be used. Of these, the use of alginic acid and / or alginate is particularly suitable.
- the type of the alginic acid and / or alginate is not particularly limited, and those with a pharmaceutical additive standard and those with a food additive standard can be used.
- the kind of alginate is not particularly limited, but sodium salt, potassium salt and ammonium salt are particularly suitable.
- the viscosity in a 1 wt% aqueous solution (20 ° C.) is preferably 500 cP or less, more preferably 300 cP or less, Those having a viscosity of 100 cP or less are more preferred, and those having a viscosity of 50 cP or less are particularly preferred.
- the concentration of the water-soluble dietary fiber (a) such as alginic acid and / or alginate (hereinafter sometimes collectively referred to as “alginic acid”) is set in the acidic region of the liquid food composition.
- the appropriate amount varies depending on the type of water-soluble dietary fiber and the composition of the composition, but generally 0.3 wt% or more, preferably 0.5 wt% in the liquid food composition Above, more preferably 0.7 wt% or more, still more preferably 1.0 wt% or more. If it is less than 0.3 wt%, semi-solidification of the liquid food composition in the acidic region may be insufficient.
- the upper limit of water-soluble dietary fiber concentration such as alginic acid is preferably 5.0 wt% or less, more preferably 2.5 wt% or less, further preferably 2.0 wt% or less, most preferably 1 in the liquid food composition. .5 wt% or less is preferable.
- the amount is more than 5.0 wt%, the viscosity of the liquid food composition increases, and the convenience during ingestion may be impaired.
- the pH of the liquid food composition according to the present invention is not particularly limited as long as the liquid physical properties of the liquid food composition are not impaired during ingestion or storage, but the pH is generally 5.5. It is preferable that the pH exceeds 6.0, more preferably pH 6.0 or higher, and still more preferably pH 6.5 or higher. Below pH 5.5, the water-soluble dietary fiber in the composition becomes semi-solid, and the liquid physical properties of the liquid food composition may not be maintained during ingestion or storage.
- the upper limit of the pH of the liquid food composition is not particularly limited, but is generally preferably about 10.0 or less, more preferably 9.0 or less, and even more preferably 8.0 or less.
- the water-soluble dietary fiber in a composition may decompose
- region said by this invention, it is preferable that a minimum exceeds pH 5.5, pH 6.0 is more preferable, and pH 6.5 is still more preferable.
- the upper limit of the neutral region is preferably pH 10.0 or less, more preferably pH 9.0 or less, and even more preferably pH 8.0.
- the acidic region as referred to in the present invention means pH 5.5 or less, preferably pH 4.5 or less, more preferably pH 3.5 or less.
- “does not cause gelation of water-soluble dietary fiber” means that the water-soluble dietary fiber (a) and the water-soluble dietary fiber (a) are mixed with each other in the same container. It means that the compound does not impair the liquid physical properties of the liquid composition as a result of reaction. That is, even if it is blended, if it is a property, state, and amount added so as not to impair the liquid physical properties of the composition, it can be regarded as “does not cause gelation of water-soluble dietary fiber”. Therefore, in the present invention, as the metal compound (b) that does not cause gelation of water-soluble dietary fiber in the neutral region, the metal compound itself does not cause gelation of water-soluble dietary fiber in the neutral region.
- a metal compound that inherently has water content and even a metal compound that causes water-soluble dietary fiber to gel in a neutral region does not cause water-soluble dietary fiber to gel in a neutral region Alternatively, it can be used if it is blended in a blending amount that does not cause gelation of water-soluble dietary fiber in the neutral region.
- mineral content necessary for human means a mineral essential for human, for example, sodium, potassium, calcium, magnesium, iron, zinc, copper, manganese, iodine, selenium, chromium, molybdenum. is there.
- phosphorus, sulfur, cobalt, etc. which are treated as essential minerals can be mentioned, and these can be used in combination.
- these compounds are preferably used in properties, states, and addition amounts that do not impair the liquid physical properties of the liquid food composition.
- Examples of the metal compound (b) that can be used in the present invention and contains minerals necessary for humans and does not cause gelation of water-soluble dietary fiber in the neutral region include, for example, alkali metals such as sodium compounds and potassium compounds Examples thereof include alkaline earth metal compounds such as compounds, calcium compounds and magnesium compounds, and other metal compounds such as chromium, molybdenum, manganese, iron, copper, zinc and selenium. These metal compounds may be in any form as long as the food composition containing them is in the neutral region as long as it does not cause gelation of water-soluble dietary fiber. It is preferably in a state of a soluble metal salt, a state contained in a microorganism such as yeast, and a state contained in a microcapsule that is hardly soluble in the neutral region and dissolves in the acidic region.
- alkali metals such as sodium compounds and potassium compounds
- alkaline earth metal compounds such as compounds, calcium compounds and magnesium compounds
- other metal compounds such as chromium, molybdenum
- the metal compound (b) that does not cause the water-soluble dietary fiber to gel in the neutral region the liquid physical properties of the liquid food composition during ingestion or storage, such as a small amount added in the liquid food composition. Can be used even if the metal compound itself has a property and state that cause gelation of water-soluble dietary fiber.
- calcium compounds and magnesium compounds are useful minerals, and therefore their use is preferable.
- the form of the calcium compound or magnesium compound is not limited as long as it does not cause gelation of water-soluble dietary fiber in the neutral region, but among them, it is hardly soluble in the neutral region.
- the use of calcium and magnesium compounds is preferred. Since calcium and magnesium have a higher essential intake in humans than other minerals, it is preferable to use sparingly soluble calcium and magnesium compounds rather than those encapsulated in yeast or the like.
- Preferred calcium compounds that can be used in the present invention are sparingly soluble in the neutral region, and react with the water-soluble dietary fiber blended in the composition, so that the liquid physical properties of the liquid food composition during ingestion and storage
- the solubility is not particularly limited as long as the solubility is not impaired.
- use of calcium citrate, calcium carbonate, calcium dihydrogen pyrophosphate, tricalcium phosphate, calcium monohydrogen phosphate, calcium stearate, calcium silicate is preferable, among which calcium carbonate, calcium dihydrogen pyrophosphate, phosphoric acid
- tricalcium is preferred, and among these calcium compounds, the use of calcium carbonate and tricalcium phosphate having particularly low solubility is more preferred.
- these calcium compounds can be used individually or in combination of 2 or more types.
- the preferred magnesium compound that can be used in the present invention is also hardly soluble in the neutral region, and due to the reaction with the water-soluble dietary fiber blended in the composition, its liquid food composition during intake or storage
- the solubility is not particularly limited as long as the liquid physical properties are not impaired.
- the use of magnesium carbonate, magnesium oxide, magnesium stearate, trimagnesium phosphate, magnesium silicate, etc. is suitable, and among them, magnesium carbonate and magnesium oxide that are poorly soluble among magnesium compounds that can be used as food additives Is more preferred.
- These magnesium compounds may be used alone or in combination of two or more.
- any of the above calcium compounds and magnesium compounds may be used, and the combination thereof is not particularly limited, but as a combination suitable for use in foods and solubility in the neutral region, in particular, carbonic acid.
- a combination of calcium and magnesium carbonate is preferred.
- the blending amount in the food composition is an amount that can be nutritionally satisfied by the user of the liquid food composition, and is sufficient for semi-solidification in the acidic region of the liquid food composition.
- calcium is 0 ⁇ g / 100 ml, 1 ⁇ g / 100 ml or more, preferably 1 mg / 100 ml or more, more preferably 10 mg / 100 ml or more, further preferably 30 mg / 100 ml or more, and even more preferably 50 mg.
- the upper limit of the amount of calcium added is not particularly limited, but is 3000 mg / 100 ml or less, preferably 2000 mg / 100 ml or less, more preferably 1000 mg / 100 ml or less, more preferably 500 mg / 100 ml or less, and even more preferably 250 mg. / 100ml or less is good.
- the amount of magnesium added is 0 ⁇ g / 100 ml, 1 ⁇ g / 100 ml or more, preferably 1 mg / 100 ml or more, more preferably 10 mg / 100 ml or more, further preferably 15 mg / 100 ml or more, and even more preferably 20 mg / 100 ml as magnesium. As described above, 35 mg / 100 ml or more is particularly preferable.
- the upper limit of the amount of magnesium added is not particularly limited, but is 500 mg / 100 ml or less, preferably 350 mg / 100 ml or less, more preferably 100 mg / 100 ml or less, more preferably 75 mg / 100 ml or less, and even more preferably 50 mg. / 100ml or less is good.
- the metal compound (b) contains one or more of calcium compounds, magnesium compounds and various metal compounds described in the paragraph [0023], which is nutritionally satisfied by the liquid food composition ingestor and administrator.
- the total amount of the metal compound (b) is approximately 1 ⁇ g to 5 mg / 100 ml, preferably 1 ⁇ g to 50 mg / 100 ml, more preferably 1 ⁇ g to 100 mg / 100 ml. More preferably, it is about 1 ⁇ g to 500 mg / 100 ml, and still more preferably about 1 ⁇ g to 1000 mg / 100 ml.
- the protein (c) used in the present invention is not particularly limited, and examples thereof include vegetable proteins such as soybean protein, wheat protein, pea protein, and rice protein and / or hydrolysates thereof. However, those that cause gelation of dietary fiber in the neutral region are excluded. Among these proteins, soy protein and / or a hydrolyzate thereof are preferable. By blending these proteins, the liquid physical properties of the liquid food composition are stably maintained during preparation, distribution and storage.
- the type of soy protein is not particularly limited, but soy milk, concentrated soy protein, separated soy protein, soy peptide, and the like can be used.
- the amount of protein to be added is not particularly specified, and is preferably an amount that can be nutritionally satisfied by the intake or administration of the liquid food composition, but is 0.3 g / 100 ml or more, more preferably 1. It is 0 g / 100 ml or more, more preferably 2.0 g / 100 ml or more, particularly preferably 4.0 g / 100 ml or more.
- the upper limit of the amount of protein added is generally 10.0 g / 100 ml or less, more preferably 7.5 g / 100 ml or less, and particularly preferably 5.0 g / 100 ml or less. It is suitable for extracting the feature of the present invention, that is, sex.
- the Ca content of the protein raw material is preferably 2.0% or less, more preferably 1.5% or less, and 1.0% or less. It is more preferable that it is 0.8% or less.
- the emulsifier (d) that can be used in the present invention is not particularly limited, and examples thereof include lysolecithin and sucrose fatty acid ester from the viewpoint of suppressing the generation of aggregates.
- lysolecithin those derived from soybean or egg yolk can be used, and use of lysolecithin derived from soybean is preferred. Any of crude lysolecithin, purified lysolecithin, fractionated lysolecithin, enzyme-modified lysolecithin and the like may be used, but use of purified lysolecithin or fractionated lysolecithin is preferred.
- the sucrose fatty acid ester is not particularly limited, but the fatty acid residue has a carbon number of 18 or less, preferably 16 or less, more preferably 14 or less, and even more preferably 12 or less, and a monosaccharide comprising these fatty acids. What has ester as a main component is suitable. Among these, a sucrose fatty acid ester mainly composed of a monoester with lauric acid having 12 or less carbon atoms is more preferable. Moreover, these emulsifiers may be used independently and may be used in combination of 2 or more type.
- the emulsifier (d) that can be used in the present invention can be selected with reference to the HLB (Hydrophile-Lipophile Balance) value of the emulsifier. From the viewpoint of suppressing the generation of aggregates, it is preferable to use an emulsifier having an HLB value of more than 9, preferably 10 or more, more preferably 12 or more.
- Examples of the emulsifier having an HLB value larger than 9 include the lysolecithin having an HLB value of about 12 (for example, SLP-paste lyso, SLP-white lyso, SLP-LPC70 manufactured by Sakai Oil Co., Ltd.)
- sucrose stearate S-970, S-1170, S-1570, S-1670
- sucrose palmitate P-1570, P-1670
- sucrose myristic acid ester M-1695
- sucrose oleic acid ester O-1570
- sucrose lauric acid ester L-1695
- the concentration of the emulsifier (d) in the liquid food composition varies depending on the blending of the composition, but is generally 0.17 wt% in the liquid food composition. 5 wt%) is more preferable, more preferably 0.24 wt% (when adding fats and oils, 7 wt% with respect to fats and oils) and more preferably 0.34 wt% (when adding fats and oils, 10 wt% or more). In the case of 0.17 wt% or less, there is a tendency that the generation of aggregates cannot be suppressed.
- the upper limit is not particularly limited, but addition of an excessive amount of an emulsifier leads to an increase in the viscosity of the composition, and therefore, 1.02 wt% (30 wt% with respect to fat when adding fat) or less, Preferably, it is 0.85 wt% (when oil is added, 25 wt% with respect to oil) or less, more preferably 0.68 wt% (when oil is added, 20 wt% with respect to oil) or less, particularly preferably Is preferably 0.51 wt% or less (15 wt% with respect to fat when fat is added).
- the oil and fat (e) that can be used in the present invention is not particularly limited, and examples thereof include soybean oil, corn oil, rapeseed oil, palm oil, palm kernel oil, safflower oil, olive oil, sesame oil, fish oil, beef tallow, lard and the like.
- medium-chain fatty acid triglycerides saturated fatty acids such as stearic acid, unsaturated fatty acids such as oleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid, linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid, etc. They can be used in combination.
- the amount of oil (e) added to the liquid food composition is not particularly limited, and the appropriate amount varies depending on the composition of the composition, but the amount that can be nutritionally satisfied by the intake and administration of the liquid food composition 0 g / 100 ml, preferably 0.2 g / 100 ml or more, more preferably 0.5 g / 100 ml or more, still more preferably 1.0 g / 100 ml or more, still more preferably 2.0 g / 100 ml or more, particularly preferably It is 3.0 g / 100 ml or more, particularly preferably about 3.4 g / 100 ml or more.
- the upper limit of the added amount of fats and oils is generally 10.0 g / 100 ml or less, preferably 7.5 g / 100 ml or less, more preferably 5.0 g / 100 ml or less, particularly preferably 4.0 g / 100 ml or less. Mixing is preferable from the viewpoint of suppressing the generation of aggregates.
- the addition amount of the emulsifier (d) can be adjusted according to the amount of fats and oils in the composition.
- the mixing ratio of the emulsifier (d) and the fat (e) ((d) / (e), based on weight) is larger than 5/100, preferably 7/100 or higher, more preferably 10/100 or higher. In the case of 5/100 or less, there exists a tendency which cannot suppress generation
- the upper limit is not particularly limited, but it leads to an increase in the viscosity of the composition. Therefore, it is 30/100 or less, preferably 25/100 or less, more preferably 20/100 or less, and even more preferably 15/100 or less. Is good.
- a liquid food composition that can be used by a person who takes or administers a liquid food composition to achieve the desired nutritional supplement and nutritional management is referred to as a “nutritionally satisfactory liquid food composition”.
- the nutritional component that can be blended in the liquid food composition is not particularly limited as long as the desired nutritional supplementation and nutritional management can be achieved, but as described above, in the present invention, the water-soluble food By containing protein (c) that is a source of nitrogen, such as fiber (a), metal compound (b) containing minerals necessary for humans, and soy protein and its hydrolyzate, nutritional It is a liquid food composition that can be satisfied.
- a metal compound (b) containing a mineral necessary for humans that does not cause gelation of water-soluble dietary fiber (a) in a neutral region may be used.
- the liquid physical properties of the liquid food composition may be impaired during storage due to reaction with the water-soluble dietary fiber in the composition.
- animal protein other than vegetable protein, such as said soybean protein may be mix
- general proteins such as milk protein, sodium caseinate, egg protein, and peptides and hydrolysates derived from these proteins can be used in combination as a nitrogen source as appropriate.
- any raw material may be used as long as the liquid food composition does not impair the liquid physical properties during ingestion or storage.
- Ingredients that can be nutritionally satisfied can be added as appropriate.
- carbohydrates include starch, dextrin and hydrolysates thereof, disaccharides such as sucrose, maltose, and lactose, and monosaccharides such as glucose and fructose, and these can also be used in combination.
- vitamins include vitamins A, B, C, D, E, K, folic acid, pantothenic acid, niacin, biotin, and the like, and these can be used in combination.
- minerals other than calcium and magnesium various trace nutrients and trace metals that have been conventionally used, such as sodium described in “Japanese dietary intake standards (2010 edition)”, sodium, Examples include potassium, calcium, magnesium, phosphorus, iron, zinc, copper, manganese, iodine, selenium, chromium, and molybdenum.
- sulfur, cobalt, etc. which are treated as essential minerals can be mentioned, and these can be used in combination. Although it is not particularly limited as long as it is an amount that can be nutritionally satisfied by the intake or administration of the liquid food composition, these compounds do not impair the liquid properties of the liquid food composition. It is preferable to use it in an added amount.
- agar, xanthan gum, locust bean gum, gum arabic, collagen, gelatin, fucoidan, Glucomannan, polydextrose, starch, inulin and the like may be used.
- Insoluble dietary fibers include, for example, cellulose, crystalline cellulose, microcrystalline cellulose, hemicellulose, lignin, chitin, chitosan, corn fiber, beet fiber, etc. A combination of these can also be used.
- flavor, fruit juice, and a functional material can be used for the liquid food composition of this invention.
- the composition of the nutritional component of the liquid food composition according to the present invention is not particularly limited as long as the intended nutritional supplementation and nutritional management can be achieved, and the intaker and the administrator can be satisfied.
- the protein is 0.5 to 10 wt%
- the fat and oil is 1 to 10 wt%
- the carbohydrate is 5 to 40 wt%. What is necessary is just to adjust a compounding quantity.
- liquid food can also be used as a nutritional component
- commercially available products include Ensure Liquid (registered trademark) of Abbott Japan Co., Ltd. and MA-7 (MoA) of Morinaga Milk Industry Co., Ltd. Seven, distributor: Clinico Co., Ltd.) can be used.
- particle in the present invention means a substance dispersed and / or suspended in a liquid which is a continuous phase in a liquid food composition.
- the “particle” may be any component as long as it is a substance dispersed and / or suspended in a liquid, but water-soluble dietary fiber, metal compound, protein, emulsifier, oil and fat that can be contained in the composition. It is presumed that nutritional components (sugars, dietary fiber, etc.) and the like are composed solely and / or in combination.
- the particle size distribution of the particles in the liquid food composition can be measured and evaluated by using, for example, a particle size distribution measuring apparatus using a laser diffraction / scattering method.
- a laser diffraction / scattering particle size distribution measuring apparatus LA-950, manufactured by Horiba, Ltd.
- LA-950 laser diffraction / scattering particle size distribution measuring apparatus
- the measurement conditions by the laser diffraction / scattering particle size distribution measuring apparatus are as follows: dispersion medium: distilled water, sample refractive index: 1.600-0.000i, dispersion medium refractive index: 1.333, circulation speed: 13, stirring speed 2 is used, and the sample concentration is adjusted so that the light transmittance (R) is 90 to 80% and the transmittance (B) is 90 to 70%.
- dispersion medium distilled water
- sample refractive index 1.600-0.000i
- dispersion medium refractive index 1.333
- circulation speed 13
- stirring speed 2 is used
- the sample concentration is adjusted so that the light transmittance (R) is 90 to 80% and the transmittance (B) is 90 to 70%.
- the particle size distribution of the particles is measured under the above measurement conditions after sonication for 3 minutes at sonication strength: 3. And the change of the particle size distribution of the particle
- the particle size distribution of the particles is measured by the laser diffraction / scattering method, the horizontal axis is the particle diameter (nm), and the vertical axis is the volume-based frequency (%).
- the peak in the particle size distribution in the present invention means a point showing the maximum frequency value in a mountain-shaped distribution curve with the horizontal axis (particle diameter) as the base.
- the mountain-shaped distribution curve does not necessarily have its start point and / or end point in contact with the horizontal axis (particle diameter), and the frequency (%) at the start point and / or end point is 0 to 5%. If it is in between, it will be regarded as a mountain-shaped distribution.
- the liquid food composition according to the present invention measures the particle size distribution of the particles in the liquid food composition having a pH in a neutral region by the method exemplified above, and the particle size distribution of the particles has two or more peaks.
- the particle size is 3000 nm or less, more preferably the particle size is 2000 nm or less, More preferably, at least one peak is present at a particle diameter of 1000 nm or less.
- the particle diameter is 3000 nm or less, more preferably 2000 nm, and still more preferably.
- the frequency of at least one peak existing at a particle diameter of 1000 nm or less is increased after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the frequency of at least one peak different from the peak increasing in frequency is: More preferably, it decreases after the ultrasonic treatment compared to before the ultrasonic treatment.
- the increase / decrease in the peak frequency before and after the ultrasonic treatment of the liquid food composition can be evaluated by the following equation. (Peak frequency after sonication) / (Peak frequency before sonication) ⁇ 100
- the peak frequency after the increase is 105% or more, preferably 110% or more, more preferably 120% or more, and still more preferably 130% or more.
- the peak whose frequency decreases when sonicated is compared with the frequency in the particle size distribution of the particles before sonication, the peak frequency after the decrease is 60% or less, preferably 50% or less, more preferably. Is 40% or less, more preferably 30% or less.
- the particle size distribution of the particles is measured by the laser diffraction / scattering method. It can also be expressed by a distribution curve (%).
- the inflection point in the particle size distribution in the present invention means a point where the sign of curvature in the distribution curve changes, and a point where the tangent at that point intersects the distribution curve itself.
- the liquid food composition according to the present invention measures the particle size distribution of the particles in the liquid food composition having a pH in the neutral region by the method exemplified above, and sets the inflection point in the particle size distribution curve of the particles. From the viewpoint of suppressing the generation of aggregates, at least one of the two or more inflection points existing in the particle size distribution curve of the particle has a particle diameter of 3000 nm. In the following, it is preferable that it exists in a particle diameter section having a particle diameter of 2000 nm or less, more preferably 1500 nm or less.
- the liquid food composition according to the present invention when further subjected to ultrasonic treatment, among the inflection points existing in the particle size distribution curve of the particles, at least one existing in the particle section having a particle diameter of 2000 nm or less.
- the passage integrated value (%) corresponding to the inflection point is increased by 5% or more, preferably by 10% or more, more preferably by 15% or more after the ultrasonic treatment as compared with that before the ultrasonic treatment. An increase, particularly preferably an increase of 20% or more is preferred.
- a passing integrated value (%) corresponding to at least one inflection point existing in a particle section having a particle diameter of 2000 nm or less is 25% or more, preferably 35 after the ultrasonic treatment. %, More preferably 50% or more, and particularly preferably 75% or more in the passage integrated value section.
- a change in the curvature of the distribution curve can be confirmed from the amount of change in the accumulated value of the passage in each particle diameter interval, and the particle diameter interval in which the amount of change in the accumulated value of the passage increases (the sign of the curvature is “+”);
- the inflection point can be a boundary point (a point at which the sign of curvature changes) in the particle diameter section where the amount of change in the passage integrated value decreases (the sign of curvature is “ ⁇ ”).
- the particle size distribution of particles in a liquid food composition is represented by a distribution curve shown in FIG. 17 (a) where the vertical axis is the volume-based passing portion integrated value (%). This will be described with reference to FIG.
- the particle diameter (nm) and the vertical axis represent the amount of change in the integrated value (%) for passage.
- FIG. 17B there is no change in the curvature of the distribution curve in the section where the particle diameter is 10 nm to 3400 nm or less and the section where the particle diameter is 30000 nm or more (in FIG. 17B, the change amount is 0% in both cases).
- the curvature of the distribution curve changes to a positive (+) in the section where the particle diameter is 3400 nm or more to 10000 nm or less (in FIG. 17B, the amount of change increases with increasing particle diameter), and the particle diameter is about 10000 nm.
- the curvature of the distribution curve changes to negative ( ⁇ ) (in FIG. 17B, the amount of change decreases with increasing particle diameter).
- this point can be used as an inflection point. That is, in this example, in the distribution curve (FIG. 17A) of the particle size distribution in which the horizontal axis represents the particle size (nm) and the vertical axis represents the integrated value (%) for the passage, the inflection point is the particle size: It can be seen that it is around 10,000 nm and the integrated value of the passage: 47%.
- the weight of the aggregate calculated by the following measurement method is preferably 0.1 g or less for the liquid food composition.
- the weight of the aggregate is more than 0.1 g, clogging in the tube occurs at the time of tube administration, or a rough feeling tends to occur when taken orally.
- it is more preferably 0.07 g or less, further preferably 0.05 g or less, still more preferably 0.03 g or less, and most preferably 0.01 g or less. In such a case, there is a tendency that it can be determined that there is little or no feeling of roughness.
- the “aggregate” is formed during preparation or storage of a liquid food composition, which may cause clogging in a tube at the time of tube administration, or when the liquid food composition is taken orally. Say something that can cause a rough feeling.
- the agglomerates are composed of particles, aggregates of particles, water-soluble dietary fibers, metal compounds, proteins, emulsifiers, fats and oils, nutrient components (sugars, dietary fibers, etc.) alone and / or complex. It is inferred that it is composed of
- the amount of agglomerates that may cause clogging of the tube or a feeling of roughness can be evaluated by the weight of the filtrate when the liquid food composition is filtered through, for example, a nylon net or filter paper.
- the present invention pays attention to the particle size distribution of the particles contained in the liquid food composition as described above, and in particular, the generation of aggregates tends to be suppressed when the particle size distribution has two or more peaks. It has been found that. In addition, the inventors have found that it is preferable that the two peaks undergo specific changes as described above by ultrasonic treatment.
- the present invention is not limited by theory, but the present inventors infer the relationship between the occurrence of aggregates and the particle size distribution and / or the change in the particle size distribution as follows.
- Water-soluble dietary fibers such as alginic acid and pectin are generally poorly compatible with particles (emulsions (emulsifiers and fats)) and biopolymers (proteins, etc.) in the composition, and are depleted, electrostatic, and molecular. It is known to induce “aggregation” of particles by various actions such as a bridging action between the particles.In the process where “aggregation” occurs, the particles in the composition are “aggregated” as a previous step.
- a composition having two or more peaks in the particle size distribution (horizontal axis: particle diameter (nm), vertical axis: volume-based frequency (%)) and / or sonication of particles
- the composition in which the particle size distribution changes is considered to be a result of observing the particles in the “flocculation” state.
- the (at least one) peak observed at 3000 nm or less indicates the original particle diameter of the particle, and the other peaks (observed at 1000 nm or more) are states in which the particles are “gathered”. It is thought that it shows.
- the frequency of (at least one) peak observed below 3000 nm is increased by sonication of the composition, and the frequency of another (at least one) peak is decreased.
- This is considered to indicate a phenomenon in which the particles in the state are redispersed, and can be explained by the above inference.
- the single peak observed in the particle size distribution of conventional liquid food compositions is believed to be the result of observing the particles in the “Aggregation” state described above, and such particles are no longer regenerated. Since it does not disperse, it is considered that aggregates are likely to be generated.
- the production method of the liquid food composition of the present invention is not particularly limited, but water contains water-soluble dietary fiber (a), minerals necessary for humans, and water-soluble dietary fiber in a neutral region.
- water contains water-soluble dietary fiber (a), minerals necessary for humans, and water-soluble dietary fiber in a neutral region.
- Metallic compounds (b), proteins (c), emulsifiers (d) that do not cause gelation, and fats and oils (e), other proteins, carbohydrates and vitamins, minerals such as minerals ( f) can be appropriately added and mixed, and prepared by a conventional method such as homogenization with a high-pressure emulsifier or a homogenizer.
- the prepared liquid food composition is filled in pouches such as soft bags and aluminum pouches, paper packs, cans, bottles and other containers, and heat-pressure sterilization such as retorts and autoclaves, electric heating sterilization, and microwave heat sterilization.
- General sterilization treatment such as can be performed. By such sterilization treatment, changes in physical properties of the liquid food composition caused by microorganisms can be prevented.
- the sterilization treatment can be performed after filling the liquid food composition into the container, but any method may be used as long as the change in physical properties of the liquid food composition due to microorganisms or the like can be prevented.
- the container filled with the liquid food composition is not particularly limited with respect to its material and form, but the container used in the present invention is in a form in which the physical properties of the liquid food composition do not change due to contamination with microorganisms and the like. It is preferable that Further, from the viewpoint of preventing a decrease in nutritional components such as vitamins, a container made of a material having a light-shielding property and / or a gas barrier property is preferable, but a transparent container is not problematic.
- the liquid food composition of the present invention does not impair the liquid physical properties even when the water-soluble dietary fiber is blended in advance, so that the water-soluble dietary fiber (a) and other metal compounds (b ), Protein (c), emulsifier (d) and the like can be filled in the same container.
- the water-soluble dietary fiber (a) and other metal compounds (b ), Protein (c), emulsifier (d) and the like can be filled in the same container.
- such a state in which the liquid food composition is filled in the same container is referred to as “one-component product”.
- the liquid food composition of the present invention prepared as described above is a one-component product pre-blended with water-soluble dietary fiber, but is solid even during its production process, distribution, and storage. Since changes in physical properties such as chemical conversion and component separation are small, the quality can be stably maintained for a long period of time. This makes it possible to practically supply to the market a liquid food composition having the effect of being liquid before entering the stomach and thickening and / or semi-solidifying inside the stomach. Furthermore, since it becomes possible to suppress the formation of aggregates during the preparation and / or storage of the composition, there is little occurrence of clogging in the tube at the time of tube ingestion, and the tube passage is good. Furthermore, when taken orally, a liquid food composition can be provided which has a less “feeling of roughness”, a good “nodding” and easy to drink.
- the liquid food composition of the present invention is usually applicable to the distribution conditions and storage conditions to be used, and can be distributed and stored under the temperature conditions of 0 ° C to 40 ° C. Distribution and storage at 30 ° C. are preferable, and distribution and storage at 4 to 25 ° C. are more preferable.
- the condition at the time of distribution and / or storage is lower than 0 ° C., the water in the liquid food composition may be frozen and separation of food components may occur, and when it is higher than 40 ° C., the liquid food composition may Decrease in nutrients such as vitamins may occur.
- liquid food composition of this invention can be distribute
- save in a dark place are preferable from a viewpoint of preventing the reduction
- the liquid food composition of the present invention can be taken by conventional methods such as oral and tube.
- the liquid food composition can be taken directly from the mouth, or the container can be hung on a stand and dropped via a tube. It is also possible to forcibly ingest by using a pump or a pressurized bag, or by manually pushing the container, but the ingestion method is not limited to these.
- the viscosity of the liquid food composition is not particularly limited as long as the convenience during ingestion in each ingestion method is not impaired, but it is less than 1000 cP, preferably 500 cP or less, more preferably 400 cP or less. More preferably, it is 300 cP or less, More preferably, it is 200 cP or less.
- the viscosity is 1000 cP or more, it may be difficult to pass a tube or the like, and the convenience during ingestion may be impaired.
- the viscosity of the composition is 170 cP or less, it feels torrent but is easy to drink, the viscosity of the composition is 150 cP
- it is preferably 135 cP or less, more preferably 100 cP or less, even more preferably 85 cP or less, and most preferably 80 cP or less, the composition tends to be easy to drink and easy to drink.
- the liquid food composition of the present invention is semi-solidified in the acidic region in the stomach.
- effects such as gastroesophageal reflux disease, aspiration pneumonia, diarrhea, leakage from fistula and the like, reduction of hunger and suppression of rapid increase in blood glucose level can be expected.
- the pH at the time of semi-solidification is not particularly limited, but from the viewpoint of satisfactorily semi-solidifying in an acidic environment in the stomach, those which are semi-solid at pH 5.5 or less are preferable, and pH 5.
- those that are semi-solid at 0 or less are more preferred, those that are semi-solid at pH 4.8 or less are more preferred, and those that are semi-solid at pH 4.5 or less are particularly preferred.
- the liquid food composition of the present invention is a nutritional food, enteral nutrition food, enteral nutrition including ingredient classification, ingredient nutrition, semi-digested nutrition, digested nutrition, concentrated liquid food utilizing the above-mentioned advantages It can be used for diet foods, diabetic foods and the like.
- the liquid food composition of the present invention can be ingested by a method such as oral or tube, and the ingestion method is not particularly limited. It is suitable as an enteral nutrition food or enteral nutrition taken through a tube.
- the plastic tube is gently agitated by “HL-2000 HybridLinker (manufactured by UVP Laboratory Products)”. Specifically, the tube is fixed to a fixture in the chamber, the motor control knob of the device is set to “MIN”, and the mixture is stirred at 37 ° C. for 2 minutes and 30 seconds.
- the solid material is suction filtered on a nylon mesh (40 mesh; manufactured by Mutual Chemical Glass Co., Ltd.), and after removing the liquid portion, the nylon mesh is placed on a paper towel or the like for 2 minutes. , Removing excess water, measuring the weight of the solid material including the nylon net (referred to as [solid weight after filtration]), and measuring the weight of the plastic tube after discharging the inner solution ([ Tare weight after filtration]. (5) Confirm the solid matter remaining on the nylon net. Moreover, a solidification rate is calculated by Formula (1).
- the preparation was liquid and had a pH of 9.9 and a viscosity of 10 cP. Further, as a result of confirmation of acidic semi-solidification, this preparation was semi-solidified in an artificial gastric juice, and a solid remained on the nylon net. Even after one month of storage (25 ° C.), this preparation had no change in pH and viscosity, and the degree of acidification and semi-solidification did not change.
- the liquid food composition containing sodium alginate, a calcium compound that is sparingly soluble in the neutral region, and a magnesium compound as a basic component has no change in its liquid physical properties at the time of preparation and after storage. Was confirmed to be semisolid. Moreover, since the magnesium compound was blended, the preparation was a liquid food composition that was nutritionally satisfactory.
- Example 1 Based on the composition described in Table 1, a liquid food composition containing 0.5 wt% sodium alginate was prepared.
- distilled water was added to make 1000 ml, and homogenization treatment (first time: 20 MPa, second time: 48 MPa) was performed using a Menton-Gorin type high-pressure emulsifier (Rannie 2000: manufactured by APV).
- the prepared liquid food composition containing 0.5 wt% sodium alginate was filled in 200 g each in a soft bag (R1420H: manufactured by Meiwa Packs Co., Ltd.) and sterilized by an autoclave sterilizer (121 ° C., 20 minutes). .
- This liquid food composition was in a uniform liquid state, and generation of solids and separation of nutritional components were not observed.
- this liquid food composition had a fluidity of pH 6.7 and a viscosity of 110 cP. Furthermore, as a result of confirmation of acid semi-solidification, the liquid food composition was semi-solidified in the artificial gastric juice, and the solid matter remained on the nylon net. Table 1 shows the pH, viscosity, degree of occurrence of solid matter and component separation of the liquid food composition. This liquid food composition did not change in pH and viscosity even after 3 months of standing storage (25 ° C.), and there was little change in physical properties such as separation of components during storage. Furthermore, the degree of acidification and solidification did not change.
- sodium alginate, calcium compound, magnesium compound that is sparingly soluble in the neutral region, zinc, copper, manganese, chromium, selenium, molybdenum metal compounds contained in yeast the amount added is sodium alginate Liquid food compositions containing iron compounds, which are so small that they do not cause gelation, and soy protein as basic ingredients, remain in the liquid state even during preparation and after storage, and there are changes in physical properties such as separation of ingredients. It was confirmed to be semi-solid with less acidity. Moreover, since the mineral and protein required for humans were blended, the liquid food composition was more satisfying nutritionally. Further, when the particle size distribution of the liquid food composition (Example 1) was measured, as shown in FIG.
- the particle size distribution of the present liquid food composition (Example 1) is represented by a distribution curve in which the vertical axis indicates the volume-based passage integrated value (%) as shown in FIG.
- the integrated value of the passage at the inflection point (2) is increased by 21% after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the inflection point after the ultrasonic treatment is (2 ′ ) 60.86%, around 669 nm.
- this liquid food composition was orally ingested, there was little feeling of roughness, it was easy to drink, and it was easy to drink.
- Example 1 Based on the composition described in Table 1, a liquid food composition containing 0.5 wt% sodium alginate was prepared in the same manner as in Example 1. Note that “calcium dihydrogen phosphate monohydrate” was used as the calcium compound, and “magnesium sulfate heptahydrate” was used as the magnesium compound. These are metal salts that are soluble in the neutral region. In this liquid food composition, generation of solids was observed during the production process of the composition, and the whole gelled after sterilization. This was considered to be because sodium alginate was gelled by divalent ions of calcium ion and magnesium ion derived from them because soluble calcium compound and magnesium compound were used even though the amount of Ca and Mg were the same. Thus, when a soluble calcium compound and a magnesium compound were used, the liquid food composition made into the objective of this invention was not able to be prepared.
- Example 2 Based on the composition described in Table 1, a liquid food composition containing 0.5 wt% sodium alginate was prepared in the same manner as in Example 1.
- sodium caseinate was used instead of soy protein.
- the obtained food composition was liquid, pH 6.8, and the viscosity before semi-solidification was 110 cP. Further, as a result of confirmation of acid semi-solidification, this liquid food composition was semi-solidified in an artificial gastric juice, and a solid remained on the nylon net. However, this liquid food composition was separated into two layers after sterilization. Table 1 shows the pH, viscosity, degree of occurrence of solid matter and component separation of the liquid food composition. In this way, when casein sodium, which is milk protein, was used instead of soybean protein, which is vegetable protein, the entire food composition did not gel, but the separation of the components occurred, and The intended liquid food composition could not be prepared.
- Example 2 In the same manner as in Example 1, (1) no sodium alginate added, (2) 0.3 wt%, (3) 0.5 wt%, (4) 1.0 wt%, (5) 1.5 wt% alginic acid A liquid food composition containing sodium was prepared.
- Example 3 Based on the composition described in Table 3, a liquid food composition containing lysolecin as an emulsifier was prepared by the following method. To 223 ml of distilled water, 3.6 g of lysolecithin (manufactured by Sakai Oil Co., Ltd. (product name: SLP-white lyso, HLB value: about 12)) and 36 g of fat (corn oil) are added and stirred with a Manton-Gorin type 260 ml of an emulsified liquid was obtained by homogenization (20 MPa) using a high-pressure emulsifier (Rannie 2000: manufactured by APV).
- lysolecithin manufactured by Sakai Oil Co., Ltd. (product name: SLP-white lyso, HLB value: about 12)
- a Manton-Gorin type 260 ml of an emulsified liquid was obtained by homogenization (20 MPa) using a high-pressure emulsifier (Rannie
- Each 200 g of the prepared liquid food composition was filled into a soft bag (R1420H: manufactured by Meiwa Packs Co., Ltd.) and sterilized (121 ° C., 20 minutes) with an autoclave sterilizer.
- This liquid food composition was in a uniform liquid state, and generation of solids and separation of nutritional components were not observed.
- This liquid food composition had a solidification rate of 51%, an aggregate weight of 0.01 g, and a viscosity before semi-solidification of 77 cP.
- the particle size distribution of the present liquid food composition had two peaks as shown in FIG. 2 (a), and a smaller peak at a position having a particle diameter of 3000 nm or less (particle diameter 259 nm).
- the ultrasonic treatment decreased the frequency of the larger peak and increased the frequency of the smaller peak existing at a position having a particle diameter of 3000 nm or less.
- the frequency of each peak increasing or decreasing before and after sonication is evaluated by the above formula ((peak frequency after sonication) / (peak frequency before sonication) ⁇ 100)
- the peak frequency increases.
- the particle size distribution of the present liquid food composition is represented by a distribution curve in which the vertical axis is the volume-based passage integrated value (%) as shown in FIG.
- the inflection point in the particle size distribution curve is There were three points: (1) integrated value of passage: 15.79%, particle size: around 226 nm, (2) around 33.76%, around 877 nm, and (3) around 62.21%, around 5876 nm. Further, by ultrasonic treatment, the integrated value of the passage at the inflection point (2) is increased by 29% after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the inflection point after the ultrasonic treatment is (2 ′ ) 62.92%, around 877 nm. Moreover, when this liquid food composition was orally ingested, there was little feeling of roughness, it was easy to drink, and it was easy to drink.
- Example 4 Based on the composition described in Table 3, except that sucrose laurate (manufactured by Mitsubishi Chemical Foods (product name: Ryoto Sugar Ester L-1695, HLB value: 16)) was used instead of lysolesin as an emulsifier, A liquid food composition was prepared in the same manner as in Example 3. This liquid food composition was in a uniform liquid state, and generation of solids and separation of nutritional components were not observed. This liquid food composition had a solidification rate of 46%, an aggregate weight of 0.07 g, and a viscosity before semi-solidification of 161 cP. In the particle size distribution of the present liquid food composition, there are two peaks as shown in FIG.
- the smaller peak is present at a particle diameter of 3000 nm or less (particle diameter 197 nm).
- the ultrasonic treatment decreased the frequency of the larger peak and increased the frequency of the smaller peak existing at a position having a particle diameter of 3000 nm or less.
- the particle size distribution of the present liquid food composition is represented by a distribution curve in which the vertical axis represents the volume-based passage integrated value (%) as shown in FIG.
- the inflection point in the particle size distribution curve is There were three points: (1) integrated value for passage: 5.70%, particle size: around 172 nm, (2) 19.30%, around 1005 nm, (3) around 50.44%, 7696 nm. Further, by ultrasonic treatment, the integrated value of the passage at the inflection point (2) is increased by 37% after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the inflection point after the ultrasonic treatment is (2 ′ ) 56.11%, near 1005 nm. Moreover, when this liquid food composition was orally ingested, there was little feeling of roughness and a slight trotomy was felt, but it was easy to drink.
- Example 3 Based on the composition described in Table 3, a liquid food composition was prepared in the same manner as in Example 3 except that lecithin (manufactured by Wako, HLB value: about 3.5) was used instead of lysolesin as an emulsifier.
- This liquid food composition has a solidification rate of 36%, an aggregate weight of 0.3 g, a viscosity before semi-solidification of 190 cP, and has a lower solidification rate than the liquid food composition of Example 3. Although it was liquid, it was in a non-uniform state such that the agglomerates could be visually confirmed, and the viscosity was large.
- the particle size distribution of the liquid food composition had one peak at a position of 3000 nm or more as shown in FIG. Furthermore, the frequency of peaks decreased by sonication, but no peak was observed at a particle diameter of 3000 nm or less.
- the particle size distribution of the present liquid food composition is represented by a distribution curve in which the vertical axis represents the volume-based passage integrated value (%) as shown in FIG. 4 (b), the inflection point in the particle size distribution curve is There was one point, and the integrated value of the passage was 42.43%, and the particle diameter was around 10097 nm.
- the integrated value of the passage amount is increased by 5% after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the inflection point after the ultrasonic treatment is 47.54%, around 5867 nm. Met.
- the liquid food composition was orally ingested, a rough feeling was felt, the fluidity was poor, and it was difficult to drink.
- production condition of the aggregate as a residue when this liquid composition was filtered similarly to the measurement of the aggregate was shown in FIG. In this figure, it can be seen that the white portions are aggregates and a large amount of aggregates are generated.
- Example 4 Example 3 except that diacetyltartaric acid ester (manufactured by Taiyo Kagaku Co., Ltd. (product name: Sunsoft No. 641D, HLB value: 9.0)) was used as an emulsifier instead of lysolesin based on the composition described in Table 3.
- diacetyltartaric acid ester manufactured by Taiyo Kagaku Co., Ltd. (product name: Sunsoft No. 641D, HLB value: 9.0)
- a liquid food composition was prepared.
- This liquid food composition had a solidification rate of 41%, an aggregate weight of 0.14 g, and a viscosity before semi-solidification of 182 cP.
- the solidification rate was low, and although it was liquid, it was in a non-uniform state such that the aggregates could be visually confirmed, and the viscosity was large.
- the particle size distribution of the liquid food composition had one peak at a position of 1000 nm or more as shown in FIG.
- the frequency of peaks decreased by sonication, but no peak was observed at a particle diameter of 1000 nm or less.
- the particle size distribution of the liquid food composition is represented by a distribution curve with the vertical axis representing the volume-based passage integrated value (%) as shown in FIG.
- the inflection point in the particle size distribution curve is One point was present, and the integrated value of passage was 40.75%, and the particle size was in the vicinity of 8816 nm. Further, when the ultrasonic treatment is performed, the integrated value of the passage amount is increased by 9% after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the inflection point after the ultrasonic treatment is 49.93%, around 5867 nm. Met. In addition, when the liquid food composition was orally ingested, a rough feeling was felt, the fluidity was poor, and it was difficult to drink. In addition, the generation
- Example 5 Based on the composition described in Table 3, except that hexaglycerin tristearate (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd. (product name: TS-5S, HLB value: 7.0)) was used instead of lysolesin as an emulsifier.
- a liquid food composition was prepared in the same manner as in Example 3. This liquid food composition had a solidification rate of 44%, an aggregate weight of 0.13 g, and a viscosity before semi-solidification of 185 cP. Compared with the liquid food composition of Example 3, the solidification rate was low and it was liquid, but it was in a non-uniform state such that the aggregate could be visually confirmed, and the viscosity was large.
- the particle size distribution of the liquid food composition was represented by a distribution curve in which the vertical axis represents the volume-based passage integrated value (%) as shown in FIG. 6 (b), the inflection point in the particle size distribution curve is One point was present, the integrated value of the passing portion: 47.17%, and the particle size: around 8816 nm.
- the integrated value of the passage amount is increased by 5% after the ultrasonic treatment as compared with that before the ultrasonic treatment, and the inflection point after the ultrasonic treatment is 52.20%, around 5122 nm. Met.
- the liquid food composition was orally ingested, a rough feeling was felt, the fluidity was poor, and it was difficult to drink.
- the liquid food composition prepared in Examples 3 and 4 and Comparative Example 3 was used, and the passage of the liquid food composition at the time of administration by tube (tube) was tested.
- the tube used for the test was a general-purpose tube for enteral nutrient administration having a tube thickness: 16 Fr, a tube length: 135 cm, and a throttle for speed adjustment at a position 30 cm from the end on one side of the tube.
- the liquid food composition was transferred to a plastic bottle (JMS nutrition bottle), installed so that the lower end of the plastic bottle was 150 cm above the floor, and the one end of the tube was the lower end of the plastic bottle. Connected to.
- the tube end opposite to the connecting portion with the plastic bottle was installed to be 50 cm above the floor.
- each liquid food composition was allowed to flow and its permeability was observed.
- the results are shown in FIG.
- the composition containing lysolecithin had almost no clogging of aggregates, and the tube passage was very good.
- the liquid food composition containing sucrose lauric acid ester had less clogging of aggregates, and the tube passage was good.
- the composition containing lysolecithin and sucrose laurate could be suitably used for tube administration.
- the composition containing lecithin clogging of aggregates occurred, the tube passageability was poor, and it finally stopped flowing.
- the liquid food composition containing lecithin could not be used for tube administration.
- Example 1 Evaluation of the amount of emulsifier added
- lysolecithin was used as an emulsifier and the addition amount (mixing ratio based on weight of emulsifier / fat) was changed as shown in Table 5.
- the addition amount of the emulsifier was changed while keeping the addition amount of fats and oils constant.
- the prepared liquid food compositions A to E were evaluated in the same manner as described above. The evaluation results are shown in Table 5.
- the liquid food compositions A and B have a solidification rate of 41% or less, an aggregate weight of 0.13 g or more, and a viscosity of 158 cP or more, and the solidification rate is low compared with the liquid food compositions C to E. Although it was liquid, it was in a non-uniform state such that the aggregates could be visually confirmed, and the viscosity was large.
- the particle size distributions of the liquid food composition A and B particles are shown in FIGS. 8 (a) and 9 (a), respectively. In each of the liquid food compositions A and B, one peak was present at a position having a particle diameter of 3000 nm or more.
- 8B and 9B show the particle size distribution when the particle size distribution of the liquid food compositions A and B is represented by a distribution curve with the vertical axis representing the volume-based passage integrated value (%). It was. There was only one point of inflection in the particle size distribution curve for each of compositions A and B. Moreover, when it was orally ingested, a rough feeling was felt, the fluidity was poor, and it was difficult to drink. The liquid food compositions C to E were in a uniform liquid state, and generation of solids and separation of nutrient components were not observed.
- the solidification rate was 49% or more, the aggregate weight was 0.03 g or less, and the viscosity was 133 cP or less.
- the particle size distributions of the liquid food compositions C to E are shown in FIGS. 10 (a), 11 (a), and 12 (a), respectively. All of the liquid food compositions C to E had two peaks in the particle size distribution, and a smaller peak at a position having a particle diameter of 3000 nm or less. Further, the ultrasonic treatment decreased the frequency of the larger peak and increased the frequency of the smaller peak existing at a position having a particle diameter of 3000 nm or less.
- the particle size distributions of the liquid food compositions C to E are shown in the distribution curves with the vertical axis representing the volume-based passage integrated value (%) as shown in FIGS. 10 (b), 11 (b), This is shown in FIG. There are three inflection points in the particle size distribution curve for each of the compositions C to E.
- a liquid food composition was prepared. 10 g of sodium alginate was added to 650 ml of distilled water. Next, dextrin powder and soy protein powder were sequentially added, and fats and oils (including emulsifiers) were further added. Thereafter, calcium carbonate, magnesium carbonate, phosphate, potassium salt, sodium salt, other minerals and vitamins were added and stirred.
- Other minerals include zinc-containing yeast, copper-containing yeast, manganese-containing yeast, chromium-containing yeast, selenium-containing yeast, molybdenum-containing yeast (previously mineral-containing yeast: manufactured by Rulece Corporation), iron citrate A mixture of sodium (manufactured by Ebisu Chemical Co., Ltd.) was used. Then, distilled water was added to make 1000 ml, and homogenization treatment (first time: 20 MPa, second time: 48 MPa) was performed using a Menton-Gorin type high-pressure emulsifier (Rannie 2000: manufactured by APV).
- Menton-Gorin type high-pressure emulsifier Rannie 2000: manufactured by APV
- Each 200 g of the prepared liquid food composition was filled in a soft bag (R1420H: manufactured by Meiwa Packs Co., Ltd.), and sterilized by an autoclave sterilizer (121 ° C., 20 minutes).
- the pH of the liquid food composition before pH adjustment was 6.7.
- the viscosity was measured with a B-type viscometer. 200 ml of liquid food composition is put into a glass container with an inner diameter of 60 mm, and the pH of the composition is adjusted to pH 4.5 to 5.5 (very gently stirred to prevent the solidified material from collapsing) using 5N HCl. And left to stand for 5 minutes. After standing, the measured value was read under the conditions of 12 rpm and a holding time of 1 minute.
- Table 7 shows the measurement results. As shown in Table 7, the viscosity of the liquid food composition increased to 1000 cP or more in the acidic region. In particular, when the pH was 4.5, the viscosity was 10,000 cP or more.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Nutrition Science (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physiology (AREA)
- Pediatric Medicine (AREA)
- Inorganic Chemistry (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Obesity (AREA)
- Diabetes (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
本発明は、上記の点に鑑み、胃内にて半固形化する液状食品組成物において、水溶性食物繊維を予め配合した組成物であり、液状で簡便に摂取でき、調製中、流通中や保存中においても、その液状の物性が安定に維持され、かつ、経管摂取時にはチューブ内での詰まりの発生が少なく、チューブ通過性が良好であり、さらに経口摂取時には、「ザラつき感」が少なく、「ノドごし」が良好で飲みやすい液状食品組成物を提供せんとするものである。
(1)水溶性食物繊維(a)と、
ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化原因にならない金属化合物(b)と、
タンパク質(c)と、
乳化剤(d)と、を含有し、酸性領域において半固形化する液状食品組成物であって、
中性領域における前記液状食品組成物中に含まれる粒子の粒度分布に2つ以上のピークが存在する液状食品組成物、
(2)酸性領域における、前記液状食品組成物の半固形化時の粘度が、1000cP以上である前記(1)に記載の液状食品組成物、
(3)前記の粒子の粒度分布に存在する2つ以上のピークのうち、粒子径3000nm以下に少なくとも1つのピークが存在する前記(2)記載の液状食品組成物、
(4)前記液状食品組成物に対してさらに超音波処理を行った場合に、前記の粒子径3000nm以下に存在する少なくとも1つのピークの頻度が、前記超音波処理前に比べて前記超音波処理後に増加し、頻度の増加する前記ピークとは別の少なくとも1つのピークの頻度が、前記超音波処理前に比べて前記超音波処理後に減少する前記(1)~(3)のいずれかに記載の液状食品組成物、
(5)前記超音波処理後に、粒子の粒度分布における頻度が増加する少なくとも1つのピークについて、その増加後の頻度が、前記超音波処理前の粒子の粒度分布における頻度に対して105%以上であり、前記超音波処理後に、粒子の粒度分布における頻度が減少する少なくとも1つのピークについて、その減少後の頻度が、前記超音波処理前の粒子の粒度分布における頻度に対して60%以下である前記(1)~(4)のいずれかに記載の液状食品組成物、
(6)水溶性食物繊維(a)と、
ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化原因にならない金属化合物(b)と、
タンパク質(c)と、
乳化剤(d)と、を含有し、酸性領域において半固形化する液状食品組成物であって、
中性領域における前記液状食品組成物中に含まれる粒子の粒度分布を体積基準の通過分積算値とする分布曲線にて表したときに、該分布曲線において変曲点が2点以上存在する液状食品組成物、
(7)酸性領域における、前記液状食品組成物の半固形化時の粘度が、1000cP以上である前記(6)に記載の液状食品組成物、
(8)前記分布曲線において変曲点の少なくとも一つが粒子径3000nm以下の粒子径区間に存在する前記(7)記載の液状食品組成物、
(9)前記液状食品組成物に対してさらに超音波処理を行った場合に、前記分布曲線における変曲点のうち、粒子径2000nm以下の粒子径区間に存在する少なくとも一つの変曲点に対応する通過分積算値が、前記超音波処理前に比べて前記超音波処理後に5%以上増加する前記(6)~(8)のいずれかに記載の液状食品組成物、
(10)前記液状食品組成物に対してさらに超音波処理を行った場合に、前記分布曲線における変曲点のうち、粒子径2000nm以下の粒子径区間に存在する少なくとも一つの変曲点に対応する通過分積算値が、前記超音波処理前に比べて前記超音波処理後に、通過分積算値25%以上の区間に移行する前記(6)~(9)のいずれかに記載の液状食品組成物、
(11)下記測定方法により算出される凝集物の重量が、0.1g以下である前記(1)~(10)のいずれかに記載の液状食品組成物、
凝集物の重量:予め乾燥重量(W1)を測定した264メッシュのナイロン製網を用いて、前記液状食品組成物200mlをろ過し、当該ろ過後のナイロン製網を60℃、1時間乾燥し、冷却して、乾燥重量(W2)を測定し、ろ過前後の乾燥重量差(W2-W1)より算出される、残渣として得られる凝集物の重量、
(12)前記水溶性食物繊維(a)がアルギン酸及び/又はその塩である前記(1)~(11)のいずれかに記載の液状食品組成物、
(13)前記タンパク質(c)が、植物由来の植物性タンパク質である前記(1)~(12)のいずれかに記載の液状食品組成物、
(14)前記植物性タンパク質が、豆類由来のタンパク質である前記(13)に記載の液状食品組成物、
(15)前記豆類由来のタンパク質が、大豆タンパク質及び/又はその加水分解物である前記(14)に記載の液状食品組成物、
(16)前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化の原因にならない金属化合物(b)が、中性領域において難溶性である金属化合物、酵母などの微生物に含有された状態の金属化合物及びマイクロカプセル中に含有された状態の金属化合物からなる群から選ばれる少なくとも1種である前記(1)~(15)のいずれかに記載の液状食品組成物、
(17)前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維(a)のゲル化の原因にならない金属化合物(b)が、中性領域において難溶性であるカルシウム化合物及び/又はマグネシウム化合物である前記(16)に記載の液状食品組成物、
(18)前記、中性領域において難溶性であるカルシウム化合物(b)が、クエン酸カルシウム、炭酸カルシウム、ピロリン酸二水素カルシウム、リン酸三カルシウム、リン酸一水素カルシウム、ステアリン酸カルシウム及びケイ酸カルシウムからなる群より選ばれる少なくとも1種である前記(17)に記載の液状食品組成物、
(19)前記、中性領域において難溶性であるマグネシウム化合物(b)が、炭酸マグネシウム、酸化マグネシウム、ステアリン酸マグネシウム及びリン酸三マグネシウムからなる群より選ばれる少なくとも1種である前記(17)に記載の液状食品組成物、
(20)前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維(a)のゲル化の原因にならない金属化合物(b)が、亜鉛含有酵母、銅含有酵母、マンガン含有酵母、クロム含有酵母、セレン含有酵母、モリブデン含有酵母からなる群より選ばれる少なくとも1種である前記(16)に記載の液状食品組成物、
(21)前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維(a)のゲル化の原因にならない金属化合物(b)が、クエン酸鉄ナトリウムである前記(16)に記載の液状食品組成物、
(22)前記乳化剤(d)が、HLB値9より大きい乳化剤である前記(1)~(21)のいずれかに記載の液状食品組成物、
(23)前記乳化剤(d)が、リゾレシチン及び/又は炭素数18以下の脂肪酸モノエステルよりなるショ糖脂肪酸エステルである前記(22)に記載の液状食品組成物、
(24)前記乳化剤(d)が、リゾレシチン及び/又はショ糖ラウリン酸エステルである前記(22)または(23)に記載の液状食品組成物、
(25)さらに、油脂(e)が含有される前記(1)~(24)のいずれかに記載の液状食品組成物、
(26)前記乳化剤(d)と油脂(e)との混合比((d)/(e)、重量基準)が、5/100より大きく、30/100以下である前記(25)に記載の液晶食品組成物、
(27)少なくとも前記(a)~(d)の成分が、同一容器内に充填された1液型の製品である前記(1)~(26)のいずれかに記載の液状食品組成物、
(28)さらに、栄養成分(f)が含有される前記(1)~(27)のいずれかに記載の液状食品組成物、
(29)保存中に液状状態が保たれる、前記(1)~(28)のいずれかに記載の液状食品組成物、
(30)胃内の酸性環境下において半固形化し、胃食道逆流症、誤嚥性肺炎、下痢症、瘻孔からの漏れなどを防止する機能を有する前記(1)~(29)のいずれかに記載の液状食品組成物、
(31)胃内の酸性環境下において半固形化し、空腹感を軽減する機能を有する前記(1)~(30)のいずれかに記載の液状食品組成物、
(32)胃内の酸性環境下において半固形化し、血糖値の急激な上昇の抑制効果を有する前記(1)~(31)のいずれかに記載の液状食品組成物、
(33)前記(1)~(32)のいずれかに記載の液状食品組成物よりなる経腸栄養食品、
(34)前記(1)~(32)のいずれかに記載の液状食品組成物よりなる経口栄養食品、
(35)前記(1)~(32)のいずれかに記載の液状食品組成物よりなるダイエット食品、
に関する。
本発明に係る液状食品組成物は、水溶性食物繊維(a)と、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化原因にならない金属化合物(b)と、タンパク質(c)と、乳化剤(d)と、を含有し、酸性領域において半固形化する液状食品組成物であって、中性領域における前記液状食品組成物中に含まれる粒子の粒度分布に2つ以上のピークが存在ことを特徴とする。
このように、上記の液状食品組成物中に含まれる粒子の粒度分布に着目し、特に粒度分布に2つ以上のピークが存在するものに凝集物の発生が抑制される傾向にあることを見出したものである。
以下に、粒度分布の測定方法につき、粒度分布測定装置として、レーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、LA-950)を用いた場合の例を説明する。
(超音波処理後のピークの頻度)/(超音波処理前のピークの頻度)×100
そして、超音波処理した際に頻度が増加するピークを上記の式にて評価すると、その増加後のピーク頻度は105%以上、好ましくは110%以上、より好ましくは120%以上、さらにより好ましくは130%以上である。また、超音波処理した際に頻度が減少する前記ピークは、超音波処理前の粒子の粒度分布における頻度と比較すると、その減少後のピーク頻度は60%以下、好ましくは50%以下、さらに好ましくは40%以下、さらにより好ましくは30%以下である。
一例として、ある液状食品組成物中の粒子の粒度分布を、図17(a)に示す、縦軸が体積基準の通過分積算値(%)である分布曲線により表したものについて、横軸を粒子径(nm)、縦軸を通過分積算値(%)の変化量として表した図17(b)により説明する。図17(b)に示すように、概ね粒子径10nmから3400nm以下の区間および粒子径30000nm以上の区間においては分布曲線の曲率に変化は無く(図17(b)ではいずれも変化量が0%)、概ね粒子径3400nm以上から粒子径10000nm以下の区間では分布曲線の曲率が正(+)に変化しており(図17(b)では粒子径増加とともに変化量が増加)、概ね粒子径10000nm以上から30000nm以下の区間では分布曲線の曲率が負(-)に変化している(図17(b)では粒子径増加とともに変化量が減少)。このように、粒子径10000nm付近(図17(b)ではピーク部分付近)に分布曲線の曲率が変化する点が存在しており、この点を変曲点とすることができる。すなわち、本例では、横軸を粒子径(nm)、縦軸を通過分積算値(%)として表した粒度分布の分布曲線(図17(a))において、変曲点が、粒子径:10000nm、通過分積算値:47%付近にあることがわかる。
(i)ナイロン製網(HC-58(NYTAL社製)メッシュ:264インチ)の乾燥重量(W1とする)を測定する。
(ii)直径11cmのブフナー漏斗(孔径:2mm)にナイロン製網をのせ、吸引瓶にセットする。
(iii)ASPIRATOR A-3S(EYELA社製)を使用し、吸引瓶を減圧しながら200mlの液状食品組成物をろ過する。
(iv)ろ過後のナイロン製網を、60℃にて1時間乾燥し、室温に冷却後、乾燥重量(W2とする)を測定する。
(v)ろ過前後の乾燥重量差(W2-W1)より、残渣として得られる凝集物の重量を算出する。
なお、本発明の特徴を示す物性の評価には、以下の試験を実施した。
液状食品組成物の粘度の確認は、「B型粘度計(トキメック社製)」により測定した。詳しくは、内径60mmのガラス製容器に測定サンプルを投入し、液温度25℃、ロータNo.2、回転数60回転/分、保持時間30秒の条件で3回測定し、その平均値を測定値(粘度)とした。
液状食品組成物の酸性領域における半固形化の確認は、以下の方法で実施した。尚、固形化率の算出は、実施例3、4、比較例3~5、および後述の乳化剤の添加量依存性の評価において行った。
(1) 50ml容量のプラスチック製チューブに、37℃に保温した人工胃液(日本薬局方)20gを投入する。
(2) 25℃にて保存した液状食品組成物10gを人工胃液中に投入し、人工胃液と液状食品組成物を含むプラスチック製チューブの重量を測定(〔ろ過前チューブ重量〕とする)する。
(3) プラスチック製チューブは、「HL-2000 HybriLinker(UVP Laboratory Products社製)」により穏やかに攪拌する。詳しくは、チューブをチャンバー内の固定具に固定し、機器のMotor Controlつまみを“MIN”に設定のうえ、37℃の条件に2分30秒の条件で攪拌する。
(4) 固形物をナイロン製網(40メッシュ;(株)相互理化学硝子製作所製)上にて吸引ろ過し、液部分を除いた後に、ナイロン製網ごとペーパータオル等の上に置いて、2分間、余分な水分を除去し、ナイロン製網を含む固形物の重量を測定(〔ろ過後固形物重量〕とする)し、さらに、内溶液を払い出した後のプラスチック製チューブの重量を測定(〔ろ過後風袋重量〕とする)する。
(5) ナイロン製網上に残存した固形物を確認する。また、固形化率を、式(1)にて計算する。
実施例1、3、4、比較例3~5、および乳化剤の添加量依存性の評価においては、上述した、粒度分布測定装置としてレーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、LA-950)を用いた方法に従って、液状食品組成物の凝集物の粒度分布を測定した。
上述した、ナイロン製網を使用した液状食品組成物の凝集物の測定方法に従って、ろ過前後の乾燥重量差より、凝集物の重量を算出した。
実施例1、3、4、比較例3~5、および後述の乳化剤の添加量依存性の評価においては、液状食品組成物の経口摂取における評価を行った。当該評価は、ザラつき感の有無とノドごしの良さを指標として評価した。ザラつき感の評価は、経口摂取時にザラつき感を感じるものは「あり」、ザラつき感を感じないものを「なし」として評価した。また、ノドごしの評価は、ノドごし良く飲むことができるものを「○」、トロミを感じるが飲みやすいものを「△」、流動性が悪く飲みにくいものを「×」として評価した。
400mlの蒸留水に2.5gのアルギン酸ナトリウム(キミカアルギンIL-2:(株)キミカ製)を添加し、0.5wt%のアルギン酸ナトリウム水溶液を調製した。次に、1.15gの炭酸カルシウムと0.75gの炭酸マグネシウムを、アルギン酸ナトリウム水溶液に混合した。室温にまで冷却した後、蒸留水を加え、500mlとした。調製した液状食品組成物 200gをソフトバック(R1420H:(株)メイワパックス製)に充填し、オートクレーブ滅菌機により滅菌処理(121℃、20分)した。
本調製物は液状であり、pH9.9、粘度が10cPであった。また、酸性での半固形化を確認したところ、本調製物は人工胃液中にて半固形化し、ナイロン製網上に固形物が残存した。本調製物は1ヶ月の静置保存(25℃)後においても、そのpH、粘度に変化はなく、酸性での半固形化の度合いも変化しなかった。
このように、アルギン酸ナトリウム、中性領域にて難溶性のカルシウム化合物、マグネシウム化合物を基本成分として配合した液状食品組成物は、調製時及び保存後においてもその液状の物性に変化が無く、さらに酸性にて半固形化することが確認された。また、マグネシウム化合物を配合したことから、本調製物は栄養的にも満足し得る液状食品組成物であった。
表1に記載した組成に基づき、0.5wt%のアルギン酸ナトリウムを含有する液状食品組成物を調製した。
本液状食品組成物は、均一な液状であり、固形物の発生や栄養成分の分離は認められなかった。また、本液状食品組成物は、pH6.7、粘度が110cPであり流動性を有していた。さらに、酸性での半固形化を確認したところ、本液状食品組成物は人工胃液中にて半固形化し、ナイロン製網上に固形物が残存した。本液状食品組成物のpH、粘度、固形物や成分分離の発生の程度を表1に示した。
本液状食品組成物は3ヶ月の静置保存(25℃)後においても、そのpH、粘度に変化はなく、保存中にも成分の分離などの物性変化は少なかった。さらに、酸性での半固形化度合いも変化しなかった。
このように、アルギン酸ナトリウム、中性領域にて難溶性のカルシウム化合物、マグネシウム化合物、酵母中に含有された状態である亜鉛、銅、マンガン、クロム、セレン、モリブデンの金属化合物、添加量がアルギン酸ナトリウムのゲル化の原因にならない程度に少なかった鉄化合物、さらに大豆タンパク質を基本成分として配合した液状食品組成物は、調製時及び保存後においてもその液状が維持され、成分の分離などの物性変化が少なく、さらに酸性にて半固形化することが確認された。また、ヒトに必要なミネラル分、タンパク質を配合したことから、栄養的にもより満足し得る液状食品組成物であった。
また、本液状食品組成物(実施例1)について、粒子の粒度分布を測定したところ、図1(a)に示すように、粒度分布には、2つのピークが存在し、粒子径3000nm以下の位置に小さい方のピークが存在した(粒子径259nm、頻度6.940%)。さらに超音波処理により、大きい方のピークの頻度が減少し、かつ、粒子径3000nm以下の位置に存在する小さい方のピークの頻度が増加した。超音波処理前後において増減する各ピークの頻度を前記した式(超音波処理後のピークの頻度)/(超音波処理前のピークの頻度)×100)にて評価すると、ピークの頻度が増加した小さい方のピークは、154%(=10.700%/6.940%×100)、ピークの頻度が減少した大きい方のピークは、47%(=2.548%/5.401%×100)であった。
また、本液状食品組成物(実施例1)の粒度分布を図1(b)に示すように縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合、粒度分布曲線における変曲点は3点存在し、(1)通過分積算値:20.23%、粒子径:226nm付近、(2)39.75%、669nm付近、(3)74.55%、5133nm付近にあった。さらに超音波処理により、変曲点(2)の通過分積算値は、前記超音波処理前に比べて前記超音波処理後に、21%増加し、超音波処理後の変曲点は(2’)60.86%、669nm付近であった。
また、本液状食品組成物を経口摂取した際には、ザラつき感が少なく、ノドごしが良く、飲みやすいものであった。
表1に記載した組成に基づき、実施例1と同様の方法により、0.5wt%のアルギン酸ナトリウムを含有する液状食品組成物を調製した。
なお、カルシウム化合物には「リン酸二水素カルシウム・1水和物」、マグネシウム化合物には「硫酸マグネシウム・7水和物」を使用した。これらは中性領域にて可溶性の金属塩である。
この液状食品組成物は、組成物の製造工程中より固形物の発生が認められ、さらに滅菌処理後に全体がゲル化した。
これはCa量、Mg量は同じでも、可溶性のカルシウム化合物とマグネシウム化合物を使用したことから、それらに由来するカルシウムイオン、マグネシウムイオンの2価イオン類によりアルギン酸ナトリウムがゲル化したと考えられた。
このように、可溶性のカルシウム化合物、マグネシウム化合物を使用した場合には、本発明の目的とする液状食品組成物を調製することは出来なかった。
表1に記載した組成に基づき、実施例1と同様の方法により、0.5wt%のアルギン酸ナトリウムを含有する液状食品組成物を調製した。
なお、タンパク質源としては、大豆タンパク質の代わりにカゼインナトリウムを使用した。
得られた食品組成物は液状であり、pH6.8、半固形化前の粘度が110cPであった。また、酸性での半固形化を確認したところ、この液状食品組成物は人工胃液中にて半固形化し、ナイロン製網上に固形物が残存した。しかし、この液状食品組成物は、滅菌処理後、成分が2層に分離した。本液状食品組成物のpH、粘度、固形物や成分分離の発生の程度を表1に示した。
このように、植物性タンパク質である大豆タンパク質の代わりに乳タンパク質であるカゼインナトリウムを使用した場合には、食品組成物全体がゲル化することはなかったが、成分の分離が生じ、本発明の目的とする液状食品組成物を調製することが出来なかった。
実施例1と同様の方法により、(1)アルギン酸ナトリウム無添加、(2)0.3wt%、(3)0.5wt%、(4)1.0wt%、(5)1.5wt% のアルギン酸ナトリウムを含有する液状食品組成物を調製した。なお、アルギン酸ナトリウムとして、(2)~(4)では「キミカアルギンIL-2:(株)キミカ製」、(5)では「キミカアルギンIL-1:(株)キミカ製」を使用し、タンパク質源に大豆タンパク質を使用した。
また、酸性での半固形化を確認したところ、(1)アルギン酸ナトリウム無添加の組成物は、人工胃液と完全に混合し、ナイロン製網上に固形物は観察されなかった。(2)~(5)の各液状食品組成物は、人工胃液中にて半固形化し、ナイロン製網上に固形物が残存した。各液状組成物のpH、半固形化前の粘度、半固形化の程度を表2に示した。
表3に記載した組成に基づき、乳化剤としてリゾレシンを含有する液状食品組成物を下記の方法により調製した。
223mlの蒸留水に、3.6gのリゾレシチン(辻製油社製(製品名:SLP-ホワイトリゾ、HLB値:約12)及び36gの油脂(コーン油)を投入し、攪拌しながらマントン・ゴーリン型高圧乳化機(Rannie2000:APV社製)により均質化処理(20MPa)することで、260mlの乳化液を得た。
次に、蒸留水320mlに、先の乳化液173mlを投入した。適度な速度で攪拌しながら、蒸留水と乳化液を混合した後、7gのアルギン酸ナトリウムを添加した。次に、デキストリン粉末と大豆タンパク質(不二製油(株)製)を添加し、完全に溶解するまで添加した。その後、リン酸塩、炭酸カルシウム、炭酸マグネシウム、その他のミネラル類、さらに、ビタミン類を順次添加し攪拌した。その後、蒸留水を加え700mlとし、マントン・ゴーリン型高圧乳化機により均質化処理(1回目:20MPa、2回目:48MPa)した。調製した液状食品組成物は、200gずつソフトバック(R1420H:(株)メイワパックス社製)に充填し、オートクレーブ滅菌機により滅菌処理(121℃、20分)した。
本液状食品組成物は、均一な液状であり、固形物の発生や栄養成分の分離は認められなかった。本液状食品組成物は、固形化率が51%、凝集物重量が0.01g、半固形化前の粘度が77cPであった。また、本液状食品組成物の粒度分布は、図2(a)に示すように2つのピークが存在し、粒子径3000nm以下の位置に小さい方のピークが存在した(粒子径259nm)。さらに超音波処理により、大きい方のピークの頻度が減少し、かつ、粒子径3000nm以下の位置に存在する小さい方のピークの頻度が増加した。超音波処理前後において増減する各ピークの頻度を前記した式((超音波処理後のピークの頻度)/(超音波処理前のピークの頻度)×100)にて評価すると、ピークの頻度が増加した小さい方のピークは、137%(=12.32%/8.999%×100)、ピークの頻度が減少した大きい方のピークは、40%(=2.188%/5.482%×100)であった。
また、本液状食品組成物の粒度分布を図2(b)に示すように縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合、粒度分布曲線における変曲点は3点存在し、(1)通過分積算値:15.79%、粒子径:226nm付近、(2)33.76%、877nm付近、(3)62.21%、5876nm付近にあった。さらに超音波処理により、変曲点(2)の通過分積算値は、前記超音波処理前に比べて前記超音波処理後に、29%増加し、超音波処理後の変曲点は(2’)62.92%、877nm付近であった。
また、本液状食品組成物を経口摂取した際には、ザラつき感が少なく、ノドごしが良く、飲みやすいものであった。
表3に記載した組成に基づき、乳化剤としてリゾレシンに替えてショ糖ラウリン酸エステル(三菱化学フーズ社製(製品名:リョートーシュガーエステル L-1695、HLB値:16))を用いた以外は、実施例3と同様にして液状食品組成物を調製した。
本液状食品組成物は、均一な液状であり、固形物の発生や栄養成分の分離は認められなかった。本液状食品組成物は、固形化率が46%、凝集物重量が0.07g、半固形化前の粘度が161cPであった。本液状食品組成物の粒度分布は、図3(a)に示すように2つのピークが存在し、粒子径3000nm以下の位置に小さい方のピークが存在した(粒子径197nm)。さらに超音波処理により、大きい方のピークの頻度が減少し、かつ、粒子径3000nm以下の位置に存在する小さい方のピークの頻度が増加した。超音波処理前後において増減する各ピークの頻度を前記した式にて評価すると、ピークの頻度が増加した小さい方のピークは、(11.13/4.269×100)261%、ピークの頻度が減少した大きい方のピークは、38%(=4.882%/12.528%×100)であった。
また、本液状食品組成物の粒度分布を図3(b)に示すように縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合、粒度分布曲線における変曲点は3点存在し、(1)通過分積算値:5.70%、粒子径:172nm付近、(2)19.30%、1005nm付近、(3)50.44%、7696nm付近にあった。さらに超音波処理により、変曲点(2)の通過分積算値は、前記超音波処理前に比べて前記超音波処理後に、37%増加し、超音波処理後の変曲点は(2’)56.11%、1005nm付近であった。
また、本液状食品組成物を経口摂取した際には、ザラつき感が少なく、若干のトロミを感じるが、飲みやすいものであった。
表3に記載した組成に基づき、乳化剤としてリゾレシンに替えてレシチン(Wako社製、HLB値:約3.5)を用いた以外は、実施例3と同様にして液状食品組成物を調製した。
本液状食品組成物は、固形化率が36%、凝集物重量が0.3g、半固形化前の粘度が190cPであり、実施例3の液状食品組成物と比較すると、固形化率が低く、液状であったが凝集物が目視により確認できるなど不均一な状態であり、粘度も大きかった。
また、本液状食品組成物の粒度分布は図4(a)に示すように、3000nm以上の位置に1つのピークが存在した。さらに超音波処理により、ピークの頻度が減少したが、粒子径3000nm以下の位置にはピークが認められなかった。
また、本液状食品組成物の粒度分布を図4(b)に示すように縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合、粒度分布曲線における変曲点は1点存在し、通過分積算値:42.43%、粒子径:10097nm付近にあった。さらに超音波処理した場合に、その通過分積算値は前記超音波処理前に比べて前記超音波処理後に、5%増加し、超音波処理後の変曲点は、47.54%、5867nm付近であった。
また、本液状食品組成物を経口摂取した際には、ザラつき感が感じられ、流動性が悪く、飲みにくい性状であった。
尚、本液状組成物を凝集物の測定と同様にして、ろ過した時の残渣としての凝集物の発生状況を図13に示した。本図では、白色部分が凝集物であり、多量の凝集物が発生していることが分かる。
表3に記載した組成に基づき、乳化剤としてリゾレシンに替えてジアセチル酒石酸エステル(太陽化学社製(製品名:サンソフト No.641D、HLB値:9.0))を用いた以外は、実施例3と同様にして液状食品組成物を調製した。
本液状食品組成物は、固形化率が41%、凝集物重量が0.14g、半固形化前の粘度が182cPであった。実施例3の液状食品組成物と比較すると、固形化率が低く、液状であったが凝集物が目視により確認できるなど不均一な状態であり、粘度も大きかった。また、本液状食品組成物の粒度分布は図5(a)に示すように、1000nm以上の位置に1つのピークが存在した。さらに超音波処理により、ピークの頻度が減少したが、粒子径1000nm以下の位置にはピークが認められなかった。
また、本液状食品組成物の粒度分布を図5(b)に示すように縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合、粒度分布曲線における変曲点は1点存在し、通過分積算値:40.75%、粒子径:8816nm付近にあった。さらに超音波処理した場合に、その通過分積算値は前記超音波処理前に比べて前記超音波処理後に、9%増加し、超音波処理後の変曲点は、49.93%、5867nm付近であった。
また、本液状食品組成物を経口摂取した際には、ザラつき感が感じられ、流動性が悪く、飲みにくい性状であった。
尚、本液状組成物を凝集物の測定と同様にして、ろ過した時の残渣としての凝集物の発生状況を図14に示した。本図では、点在する略円状の濃色部分が凝集物であり、ナイロン製網全体に凝集物が見受けられ、凝集物が多く発生していることが分かる。
表3に記載した組成に基づき、乳化剤としてリゾレシンに替えてヘキサグリセリントリステアリン酸エステル(阪本薬品工業社製(製品名:TS-5S、HLB値:7.0))を用いた以外は、実施例3と同様にして液状食品組成物を調製した。
本液状食品組成物は、固形化率が44%、凝集物重量が0.13g、半固形化前の粘度が185cPであった。実施例3の液状食品組成物と比較すると、固形化率が低く、液状であったが凝集物が目視により確認できなど不均一な状態であり、粘度も大きかった。また、本液状食品組成物の粒度分布は図6(a)に示すように、3000nm以上の位置に1つのピークが存在した。さらに超音波処理により、ピークの頻度が減少したが、粒子径3000nm以下の位置にはピークが認められなかった。
また、本液状食品組成物の粒度分布を図6(b)に示すように縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合、粒度分布曲線における変曲点は1点存在し、通過分積算値:47.17%、粒子径:8816nm付近にあった。さらに超音波処理した場合に、その通過分積算値は前記超音波処理前に比べて前記超音波処理後に、5%増加し、超音波処理後の変曲点は、52.20%、5122nm付近であった。
また、本液状食品組成物を経口摂取した際には、ザラつき感が感じられ、流動性が悪く、飲みにくい性状であった。
実施例3、4、比較例3にて調製した液状食品組成物を使用し、液状食品組成物の経管(チューブ)投与時における通過性を試験した。
試験に使用したチューブは、チューブ太さ:16Fr、チューブ長:135cm、チューブの片側の末端から30cmの位置に速度調節用の絞りを有する経腸栄養剤投与用の汎用チューブであった。試験は、液状食品組成物をプラスチック製ボトル(JMS栄養ボトル)に移し替え、プラスチック製ボトルの下端が床上150cmの高さになるように設置のうえ、前記チューブの片側末端をプラスチック製ボトルの下端に接続した。さらに、プラスチック製ボトルとの接続部と反対側のチューブ末端は、床上50cmの高さになるように設置した。試験は、チューブの速度調節用絞りを、蒸留水が200g/分の流速で流れる位置に調節したうえで、各液状食品組成物を流し、その通過性を観察した。
結果を、図7に示す。リゾレシチンを含有する組成物は凝集物の詰まりがほとんどなく、チューブ通過性が極めて良好であった。ショ糖ラウリン酸エステルを含有する液状食品組成物は凝集物の詰まりが少なく、チューブ通過性は良好であった。このように、リゾレシチン、ショ糖ラウリン酸エステルを含有する組成物は経管投与に好適に使用することができた。しかし、レシチンを含有する組成物は凝集物の詰まりが発生し、チューブ通過性が悪く、最終的に流れなくなった。このように、レシチンを含有する液状食品組成物は経管投与に使用することができなかった。
乳化剤としてリゾレシチンを用い、その添加量(乳化剤/油脂の重量基準の混合比)を表5に示すよう変化させた以外は実施例1と同様にして液状食品組成物を調製した。但し、実施例1の組成において、油脂の添加量を一定にして、乳化剤の添加量を替えた。調製した液状食品組成物A~Eについて、上記と同様の評価を行った。評価結果を表5に示す。
液状食品組成物A、Bは、固形化率が41%以下、凝集物重量が0.13g以上、粘度が158cP以上であり、液状食品組成物C~Eと比較すると、固形化率が低く、液状であったが凝集物が目視により確認できるなど不均一な状態であり、粘度も大きかった。また、液状食品組成物A、Bの粒子の粒度分布をそれぞれ図8(a)、9(a)に示した。液状食品組成物A、Bのいずれも、粒子径3000nm以上の位置に1つのピークが存在した。さらに超音波処理により、ピークの頻度が減少したが、粒子径3000nm以下の位置にはピークが認められなかった。
また、液状食品組成物A、Bの粒度分布を縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合の粒度分布を図8(b)、9(b)に示した。粒度分布曲線における変曲点は各組成物A、Bともに1点しか存在しなかった。また、経口摂取した際には、ザラつき感が感じられ、流動性が悪く、飲みにくい性状であった。
液状食品組成物C~Eは、均一な液状であり、固形物の発生や栄養成分の分離は認められなかった。固形化率は49%以上、凝集物重量は0.03g以下、粘度は133cP以下であった。また、液状食品組成物C~Eの粒子の粒度分布をそれぞれ図10(a)、図11(a)、図12(a)に示した。液状食品組成物C~Eのいずれも、粒度分布に2つのピークが存在し、粒子径3000nm以下の位置に小さい方のピークが存在した。さらに超音波処理により、大きい方のピークの頻度が減少し、かつ、粒子径3000nm以下の位置に存在する小さい方のピークの頻度が増加した。超音波処理前後において増減する各ピークの頻度を前記した式にて評価すると、液状食品組成物Cにてピークの頻度が増加した小さい方のピークは、190%(=10.569%/5.618%×100)、ピークの頻度が減少した大きい方のピークは、26%(=2.550%/9.755%×100)であった。液状食品組成物Dにてピークの頻度が増加した小さい方のピークは、140%(=12.32%/8.999%×100)、ピークの頻度が減少した大きい方のピークは、40%(=2.188%/5.482%×100)であった。液状食品組成物Eにてピークの頻度が増加した小さい方のピークは、150%(=11.676%/7.871%×100)、ピークの頻度が減少した大きい方のピークは、36%(=2.819%/7.764%×100)であった。
また、液状食品組成物C~Eの粒度分布を縦軸を体積基準の通過分積算値(%)とする分布曲線により表した場合の粒度分布を図10(b)、図11(b)、図12(b)に示した。粒度分布曲線における変曲点は各組成物C~Eともに3点存在し、C:(1)通過分積算値:12.27%、粒子径:226nm付近、(2)30.12%、1005nm付近、(3)66.19%、6720nm付近、D:(4)16.58%、226nm付近、(5)49.19%、766nm付近、(6)76.27%、5122nm付近、E:(7)15.63%、197nm付近、(8)40.82%、766nm付近、(9)71.13%、5867nm付近にあった。さらに超音波処理により、組成物C~Eの各変曲点(2,5,8)における通過分積算値は、前記超音波処理前に比べて前記超音波処理後に、C:(2’)64.58%、877nm付近、D:(5’)70.79%、877nm付近、E:(8’)62.08%、766nm付近にあり、通過分積算値の変化は、C:34%増加、D:22%増加、E:21%増加であった。
また、経口摂取した際には、ザラつき感がすくなく、ノドごしが良く、飲みやすいものであった。
尚、液状組成物D、Eを凝集物の測定と同様にして、ろ過した時の残渣としての凝集物の発生状況をそれぞれ図15、16に示した。液状組成物D、Eでは、点在する濃色部分が凝集物であるが、濃色部分がナイロン製網上に殆ど見受けられず、凝集物の発生が効果的に抑制されていることが分かる。
表6に記載した組成に基づき、液状食品組成物を調製した。
650mlの蒸留水に10gのアルギン酸ナトリウムを添加した。次に、デキストリン粉末と大豆タンパク質粉末を順次添加しさらに、油脂(乳化剤含)を添加した。その後、炭酸カルシウム、炭酸マグネシウム、リン酸塩、カリウム塩、ナトリウム塩、その他のミネラル類、ビタミン類を加え、攪拌した。なお、その他のミネラル類には、亜鉛含有酵母、銅含有酵母、マンガン含有酵母、クロム含有酵母、セレン含有酵母、モリブデン含有酵母(ここまでのミネラル含有酵母:メディエンス(株)製)、クエン酸鉄ナトリウム(恵美須薬品化工(株)製)の混合物を使用した。その後、蒸留水を加え1000mlとし、マントン・ゴーリン型高圧乳化機(Rannie2000:APV社製)により均質化処理(1回目:20MPa、2回目:48MPa)した。調製した液状食品組成物は、200gずつソフトバック(R1420H:(株)メイワパックス製)に充填し、オートクレーブ滅菌機により滅菌処理(121℃、20分)した。pH調整前の液状食品組成物のpHは6.7であった。
粘度は、B型粘度計によって測定した。液状食品組成物200mlを内径60mmのガラス製容器に投入し、5N HClを用いて組成物のpHをpH4.5~5.5(固形化物の崩壊を防ぐため、極めて穏やかに攪拌する)に調製し、5分間静置した。静置後、回転数12回転/分、保持時間1分の条件にて測定値を読み取った。尚、ロータNo.は、サンプルの粘度に応じて、表7に示すように適宜変更した。
測定結果を表7に示す。表7に示したとおり、酸性領域では液状食品組成物の粘度は1000cP以上に上昇した。特にpH4.5になると粘度が10000cP以上となった。
Claims (35)
- 水溶性食物繊維(a)と、
ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化原因にならない金属化合物(b)と、
タンパク質(c)と、
乳化剤(d)と、を含有し、酸性領域において半固形化する液状食品組成物であって、
中性領域における前記液状食品組成物中に含まれる粒子の粒度分布に2つ以上のピークが存在する液状食品組成物。 - 酸性領域における、前記液状食品組成物の半固形化時の粘度が、1000cP以上である請求項1に記載の液状食品組成物。
- 前記の粒子の粒度分布に存在する2つ以上のピークのうち、粒子径3000nm以下に少なくとも1つのピークが存在する請求項2記載の液状食品組成物。
- 前記液状食品組成物に対してさらに超音波処理を行った場合に、前記の粒子径3000nm以下に存在する少なくとも1つのピークの頻度が、前記超音波処理前に比べて前記超音波処理後に増加し、頻度の増加する前記ピークとは別の少なくとも1つのピークの頻度が、前記超音波処理前に比べて前記超音波処理後に減少する請求項1~3のいずれかに記載の液状食品組成物。
- 前記超音波処理後に、粒子の粒度分布における頻度が増加する少なくとも1つのピークについて、その増加後の頻度が、前記超音波処理前の粒子の粒度分布における頻度に対して105%以上であり、前記超音波処理後に、粒子の粒度分布における頻度が減少する少なくとも1つのピークについて、その減少後の頻度が、前記超音波処理前の粒子の粒度分布における頻度に対して60%以下である請求項1~4のいずれかに記載の液状食品組成物。
- 水溶性食物繊維(a)と、
ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化原因にならない金属化合物(b)と、
タンパク質(c)と、
乳化剤(d)と、を含有し、酸性領域において半固形化する液状食品組成物であって、
中性領域における前記液状食品組成物中に含まれる粒子の粒度分布を体積基準の通過分積算値とする分布曲線にて表したときに、該分布曲線において変曲点が2点以上存在する液状食品組成物。 - 酸性領域における、前記液状食品組成物の半固形化時の粘度が、1000cP以上である請求項6に記載の液状食品組成物。
- 前記分布曲線において変曲点の少なくとも一つが粒子径3000nm以下の粒子径区間に存在する請求項7記載の液状食品組成物。
- 前記液状食品組成物に対してさらに超音波処理を行った場合に、前記分布曲線における変曲点のうち、粒子径2000nm以下の粒子径区間に存在する少なくとも一つの変曲点に対応する通過分積算値が、前記超音波処理前に比べて前記超音波処理後に5%以上増加する請求項6~8のいずれか記載の液状食品組成物。
- 前記液状食品組成物に対してさらに超音波処理を行った場合に、前記分布曲線における変曲点のうち、粒子径2000nm以下の粒子径区間に存在する少なくとも一つの変曲点に対応する通過分積算値が、前記超音波処理前に比べて前記超音波処理後に、通過分積算値25%以上の区間に移行する請求項6~9のいずれかに記載の液状食品組成物。
- 下記測定方法により算出される凝集物の重量が、0.1g以下である請求項1~10のいずれかに記載の液状食品組成物。
凝集物の重量:予め乾燥重量(W1)を測定した264メッシュのナイロン製網を用いて、前記液状食品組成物200mlをろ過し、当該ろ過後のナイロン製網を60℃、1時間乾燥し、冷却して、乾燥重量(W2)を測定し、ろ過前後の乾燥重量差(W2-W1)より算出される、残渣として得られる凝集物の重量。 - 前記水溶性食物繊維(a)がアルギン酸及び/又はその塩である請求項1~11のいずれかに記載の液状食品組成物。
- 前記タンパク質(c)が、植物由来の植物性タンパク質である請求項1~12のいずれかに記載の液状食品組成物。
- 前記植物性タンパク質が、豆類由来のタンパク質である請求項13に記載の液状食品組成物。
- 前記豆類由来のタンパク質が、大豆タンパク質及び/又はその加水分解物である請求項14に記載の液状食品組成物。
- 前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維のゲル化の原因にならない金属化合物(b)が、中性領域において難溶性である金属化合物、酵母などの微生物に含有された状態の金属化合物及びマイクロカプセル中に含有された状態の金属化合物からなる群から選ばれる少なくとも1種である請求項1~15のいずれかに記載の液状食品組成物。
- 前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維(a)のゲル化の原因にならない金属化合物(b)が、中性領域において難溶性であるカルシウム化合物及び/又はマグネシウム化合物である請求項16に記載の液状食品組成物。
- 前記、中性領域において難溶性であるカルシウム化合物(b)が、クエン酸カルシウム、炭酸カルシウム、ピロリン酸二水素カルシウム、リン酸三カルシウム、リン酸一水素カルシウム、ステアリン酸カルシウム及びケイ酸カルシウムからなる群より選ばれる少なくとも1種である請求項17に記載の液状食品組成物。
- 前記、中性領域において難溶性であるマグネシウム化合物(b)が、炭酸マグネシウム、酸化マグネシウム、ステアリン酸マグネシウム及びリン酸三マグネシウムからなる群より選ばれる少なくとも1種である請求項17に記載の液状食品組成物。
- 前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維(a)のゲル化の原因にならない金属化合物(b)が、亜鉛含有酵母、銅含有酵母、マンガン含有酵母、クロム含有酵母、セレン含有酵母、モリブデン含有酵母からなる群より選ばれる少なくとも1種である請求項16に記載の液状食品組成物。
- 前記、ヒトにおいて必要なミネラル分を含み、かつ中性領域において前記水溶性食物繊維(a)のゲル化の原因にならない金属化合物(b)が、クエン酸鉄ナトリウムである請求項16に記載の液状食品組成物。
- 前記乳化剤(d)が、HLB値9より大きい乳化剤である請求項1~21のいずれかに記載の液状食品組成物。
- 前記乳化剤(d)が、リゾレシチン及び/又は炭素数18以下の脂肪酸モノエステルよりなるショ糖脂肪酸エステルである請求項22に記載の液状食品組成物。
- 前記乳化剤(d)が、リゾレシチン及び/又はショ糖ラウリン酸エステルである請求項22または23に記載の液状食品組成物。
- さらに、油脂(e)が含有される請求項1~24のいずれかに記載の液状食品組成物。
- 前記乳化剤(d)と油脂(e)との混合比((d)/(e)、重量基準)が、5/100より大きく、30/100以下である請求項25に記載の液晶食品組成物。
- 少なくとも前記(a)~(d)の成分が、同一容器内に充填された1液型の製品である請求項1~26のいずれかに記載の液状食品組成物。
- さらに、栄養成分(f)が含有される請求項1~27のいずれかに記載の液状食品組成物。
- 保存中に液状状態が保たれる、請求項1~28のいずれかに記載の液状食品組成物。
- 胃内の酸性環境下において半固形化し、胃食道逆流症、誤嚥性肺炎、下痢症、瘻孔からの漏れなどを防止する機能を有する請求項1~29のいずれかに記載の液状食品組成物。
- 胃内の酸性環境下において半固形化し、空腹感を軽減する機能を有する請求項1~30のいずれかに記載の液状食品組成物。
- 胃内の酸性環境下において半固形化し、血糖値の急激な上昇の抑制効果を有する請求項1~31のいずれかに記載の液状食品組成物。
- 請求項1~32のいずれかに記載の液状食品組成物よりなる経腸栄養食品。
- 請求項1~32のいずれかに記載の液状食品組成物よりなる経口栄養食品。
- 請求項1~32のいずれかに記載の液状食品組成物よりなるダイエット食品。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2784714A CA2784714A1 (en) | 2009-12-18 | 2010-12-17 | Liquid food composition |
AU2010331187A AU2010331187B2 (en) | 2009-12-18 | 2010-12-17 | Liquid food composition |
KR1020127018738A KR101822076B1 (ko) | 2009-12-18 | 2010-12-17 | 액상 식품 조성물 |
EP18199795.8A EP3461473B1 (en) | 2009-12-18 | 2010-12-17 | Liquid food composition being semisolidified in the acidic region |
JP2011546184A JP5910084B2 (ja) | 2009-12-18 | 2010-12-17 | 液状食品組成物 |
EP10837694.8A EP2514321B1 (en) | 2009-12-18 | 2010-12-17 | Liquid food composition |
US13/516,536 US8889617B2 (en) | 2009-12-18 | 2010-12-17 | Liquid food composition |
CN2010800574985A CN102655767A (zh) | 2009-12-18 | 2010-12-17 | 液状食品组合物 |
US14/491,620 US9192573B2 (en) | 2009-12-18 | 2014-09-19 | Treatment method using liquid food composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-287972 | 2009-12-18 | ||
JP2009287972 | 2009-12-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/516,536 A-371-Of-International US8889617B2 (en) | 2009-12-18 | 2010-12-17 | Liquid food composition |
US14/491,620 Continuation-In-Part US9192573B2 (en) | 2009-12-18 | 2014-09-19 | Treatment method using liquid food composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074670A1 true WO2011074670A1 (ja) | 2011-06-23 |
Family
ID=44167420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072774 WO2011074670A1 (ja) | 2009-12-18 | 2010-12-17 | 液状食品組成物 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8889617B2 (ja) |
EP (2) | EP2514321B1 (ja) |
JP (3) | JP5910084B2 (ja) |
KR (1) | KR101822076B1 (ja) |
CN (2) | CN102655767A (ja) |
AU (1) | AU2010331187B2 (ja) |
CA (1) | CA2784714A1 (ja) |
WO (1) | WO2011074670A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124239A (ja) * | 2011-12-15 | 2013-06-24 | Ajinomoto Co Inc | 液状乳化組成物の製造方法 |
WO2013125067A1 (ja) * | 2012-02-22 | 2013-08-29 | テルモ株式会社 | 胃瘻用半固形栄養剤 |
WO2014030605A1 (ja) * | 2012-08-20 | 2014-02-27 | 味の素株式会社 | 栄養組成物 |
CN103876160A (zh) * | 2014-02-24 | 2014-06-25 | 南通励成生物工程有限公司 | 食品或保健品用低毒性微量元素化合物稀释料的生产方法 |
CN104203007A (zh) * | 2012-03-30 | 2014-12-10 | 株式会社大塚制药工场 | 乳化食品组合物 |
WO2014200079A1 (ja) * | 2013-06-14 | 2014-12-18 | 株式会社カネカ | 液状食品組成物の製造方法 |
WO2014203838A1 (ja) * | 2013-06-17 | 2014-12-24 | 株式会社カネカ | 液状食品組成物 |
JP2016049020A (ja) * | 2014-08-28 | 2016-04-11 | オリエンタル酵母工業株式会社 | 銅含有酵母抽出物及びその製造方法、並びに食品 |
JPWO2014073675A1 (ja) * | 2012-11-08 | 2016-09-08 | 三栄源エフ・エフ・アイ株式会社 | 濃厚流動食 |
JP2017171592A (ja) * | 2016-03-22 | 2017-09-28 | テルモ株式会社 | 液状栄養組成物 |
JP2017171593A (ja) * | 2016-03-22 | 2017-09-28 | テルモ株式会社 | 液状栄養組成物 |
JP2017537101A (ja) * | 2014-11-26 | 2017-12-14 | インキューファーム グループ エスディーエヌ ビーエイチディー | 食物繊維組成物 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2716164B2 (en) * | 2011-05-26 | 2024-06-12 | Kaneka Corporation | Additive and method for producing oil-in-water emulsified food product composition |
CN104982647B (zh) * | 2015-07-07 | 2018-09-18 | 平顶山天晶植物蛋白有限责任公司 | 一种提高大豆分离蛋白起泡性和稳定性的方法 |
EP4349181A1 (en) | 2021-05-31 | 2024-04-10 | Nutri Co., Ltd. | Nutritional composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005513077A (ja) * | 2001-12-20 | 2005-05-12 | エヌ・ヴイ・ヌートリシア | ペクチンを含有するマトリックス形成組成物 |
WO2006041173A1 (ja) * | 2004-10-12 | 2006-04-20 | Meiji Dairies Corporation | 経腸栄養剤 |
WO2008032432A1 (fr) * | 2006-09-13 | 2008-03-20 | En Otsuka Pharmaceutical Co., Ltd. | Nutriment entérique de type gel |
WO2008098579A1 (en) * | 2007-02-13 | 2008-08-21 | S-Biotek Holding Aps | Diet product comprising alginate |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6178719A (ja) * | 1984-09-25 | 1986-04-22 | Tanabe Seiyaku Co Ltd | 総合輸液剤 |
JP2673992B2 (ja) | 1990-05-17 | 1997-11-05 | 明治製菓株式会社 | 食品用組成物 |
JP3846739B2 (ja) * | 1993-04-16 | 2006-11-15 | 旭化成ケミカルズ株式会社 | 経管流動食 |
NZ260933A (en) * | 1993-07-16 | 1996-07-26 | Hercules Inc | Cation-complexed polysaccharides; use in foods and pharmaceuticals |
JP2006325603A (ja) * | 1997-11-07 | 2006-12-07 | Kyowa Hakko Kogyo Co Ltd | 蛋白質含有酸性飲食品 |
JP3959192B2 (ja) | 1998-12-03 | 2007-08-15 | 株式会社大塚製薬工場 | 経管栄養食品 |
JP3959191B2 (ja) | 1998-12-03 | 2007-08-15 | 株式会社大塚製薬工場 | 経管栄養食品用ゲル化剤およびそれを含有する経管栄養食品 |
US7101576B2 (en) * | 2002-04-12 | 2006-09-05 | Elan Pharma International Limited | Nanoparticulate megestrol formulations |
CN1874690B (zh) * | 2003-09-03 | 2011-06-08 | 荷兰联合利华有限公司 | 增加饱足感的食物组合物 |
US8597709B2 (en) * | 2005-04-12 | 2013-12-03 | Inovobiologic Inc. | Dietary supplement and methods of use |
KR101067266B1 (ko) * | 2005-08-29 | 2011-09-23 | 아지노모토 가부시키가이샤 | 영양 조성물 |
CN101631476B (zh) * | 2005-10-05 | 2012-07-04 | Fmc生物聚合物联合股份有限公司 | 胶凝组合物和方法 |
JP4907439B2 (ja) * | 2007-06-05 | 2012-03-28 | 日油株式会社 | 乳化状総合栄養食 |
JP2008054694A (ja) * | 2007-11-19 | 2008-03-13 | Ajinomoto Co Inc | 酵母を配合するミネラル強化流動食 |
-
2010
- 2010-12-17 WO PCT/JP2010/072774 patent/WO2011074670A1/ja active Application Filing
- 2010-12-17 AU AU2010331187A patent/AU2010331187B2/en active Active
- 2010-12-17 US US13/516,536 patent/US8889617B2/en active Active
- 2010-12-17 JP JP2011546184A patent/JP5910084B2/ja active Active
- 2010-12-17 CA CA2784714A patent/CA2784714A1/en not_active Abandoned
- 2010-12-17 CN CN2010800574985A patent/CN102655767A/zh active Pending
- 2010-12-17 EP EP10837694.8A patent/EP2514321B1/en active Active
- 2010-12-17 EP EP18199795.8A patent/EP3461473B1/en active Active
- 2010-12-17 CN CN201510526255.6A patent/CN105166891A/zh active Pending
- 2010-12-17 KR KR1020127018738A patent/KR101822076B1/ko active IP Right Grant
-
2015
- 2015-11-26 JP JP2015231085A patent/JP6349296B2/ja active Active
-
2018
- 2018-06-04 JP JP2018106981A patent/JP6562119B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005513077A (ja) * | 2001-12-20 | 2005-05-12 | エヌ・ヴイ・ヌートリシア | ペクチンを含有するマトリックス形成組成物 |
WO2006041173A1 (ja) * | 2004-10-12 | 2006-04-20 | Meiji Dairies Corporation | 経腸栄養剤 |
WO2008032432A1 (fr) * | 2006-09-13 | 2008-03-20 | En Otsuka Pharmaceutical Co., Ltd. | Nutriment entérique de type gel |
WO2008098579A1 (en) * | 2007-02-13 | 2008-08-21 | S-Biotek Holding Aps | Diet product comprising alginate |
Non-Patent Citations (1)
Title |
---|
See also references of EP2514321A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124239A (ja) * | 2011-12-15 | 2013-06-24 | Ajinomoto Co Inc | 液状乳化組成物の製造方法 |
WO2013125067A1 (ja) * | 2012-02-22 | 2013-08-29 | テルモ株式会社 | 胃瘻用半固形栄養剤 |
JP5632113B2 (ja) * | 2012-02-22 | 2014-11-26 | テルモ株式会社 | 胃瘻用半固形栄養剤 |
CN104203007A (zh) * | 2012-03-30 | 2014-12-10 | 株式会社大塚制药工场 | 乳化食品组合物 |
WO2014030605A1 (ja) * | 2012-08-20 | 2014-02-27 | 味の素株式会社 | 栄養組成物 |
JPWO2014073675A1 (ja) * | 2012-11-08 | 2016-09-08 | 三栄源エフ・エフ・アイ株式会社 | 濃厚流動食 |
US10034489B2 (en) | 2013-06-14 | 2018-07-31 | Kaneka Corporation | Method for producing liquid food composition |
WO2014200079A1 (ja) * | 2013-06-14 | 2014-12-18 | 株式会社カネカ | 液状食品組成物の製造方法 |
JPWO2014200079A1 (ja) * | 2013-06-14 | 2017-02-23 | 株式会社カネカ | 液状食品組成物の製造方法 |
WO2014203838A1 (ja) * | 2013-06-17 | 2014-12-24 | 株式会社カネカ | 液状食品組成物 |
JPWO2014203838A1 (ja) * | 2013-06-17 | 2017-02-23 | 株式会社カネカ | 液状食品組成物 |
CN103876160A (zh) * | 2014-02-24 | 2014-06-25 | 南通励成生物工程有限公司 | 食品或保健品用低毒性微量元素化合物稀释料的生产方法 |
JP2016049020A (ja) * | 2014-08-28 | 2016-04-11 | オリエンタル酵母工業株式会社 | 銅含有酵母抽出物及びその製造方法、並びに食品 |
JP2017537101A (ja) * | 2014-11-26 | 2017-12-14 | インキューファーム グループ エスディーエヌ ビーエイチディー | 食物繊維組成物 |
JP2017171593A (ja) * | 2016-03-22 | 2017-09-28 | テルモ株式会社 | 液状栄養組成物 |
JP2017171592A (ja) * | 2016-03-22 | 2017-09-28 | テルモ株式会社 | 液状栄養組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP6562119B2 (ja) | 2019-08-21 |
JP2018130128A (ja) | 2018-08-23 |
US20130172245A1 (en) | 2013-07-04 |
JPWO2011074670A1 (ja) | 2013-05-02 |
KR20120104382A (ko) | 2012-09-20 |
JP6349296B2 (ja) | 2018-06-27 |
EP2514321B1 (en) | 2018-11-21 |
CA2784714A1 (en) | 2011-06-23 |
JP2016052324A (ja) | 2016-04-14 |
EP2514321A1 (en) | 2012-10-24 |
CN102655767A (zh) | 2012-09-05 |
US8889617B2 (en) | 2014-11-18 |
KR101822076B1 (ko) | 2018-01-25 |
CN105166891A (zh) | 2015-12-23 |
EP2514321A4 (en) | 2015-08-12 |
AU2010331187B2 (en) | 2015-04-30 |
EP3461473A1 (en) | 2019-04-03 |
EP3461473B1 (en) | 2021-09-22 |
JP5910084B2 (ja) | 2016-04-27 |
AU2010331187A1 (en) | 2012-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6562119B2 (ja) | 液状食品組成物 | |
JP5034946B2 (ja) | 栄養組成物 | |
JP6424937B2 (ja) | 水中油滴型乳化食品組成物の製造方法及び水中油滴型乳化食品組成物用添加剤 | |
JP6277957B2 (ja) | 栄養組成物 | |
JP5900347B2 (ja) | 乳化食品組成物 | |
US9192573B2 (en) | Treatment method using liquid food composition | |
JP4907439B2 (ja) | 乳化状総合栄養食 | |
JP6408984B2 (ja) | 液状食品組成物の製造方法 | |
JP4634757B2 (ja) | 乳化液状経腸栄養剤 | |
JP5665009B2 (ja) | 液状乳化栄養組成物 | |
JP6019577B2 (ja) | 液状乳化組成物の製造方法 | |
JP2007295830A (ja) | 安定性に優れた流動食 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080057498.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837694 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011546184 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2784714 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12012501221 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010331187 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2010331187 Country of ref document: AU Date of ref document: 20101217 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010837694 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127018738 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13516536 Country of ref document: US |