WO2011074659A1 - 移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム - Google Patents

移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム Download PDF

Info

Publication number
WO2011074659A1
WO2011074659A1 PCT/JP2010/072745 JP2010072745W WO2011074659A1 WO 2011074659 A1 WO2011074659 A1 WO 2011074659A1 JP 2010072745 W JP2010072745 W JP 2010072745W WO 2011074659 A1 WO2011074659 A1 WO 2011074659A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
node
nodes
control device
control information
Prior art date
Application number
PCT/JP2010/072745
Other languages
English (en)
French (fr)
Inventor
真人 大西
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011546177A priority Critical patent/JP5729310B2/ja
Priority to CN201080057900XA priority patent/CN102656911A/zh
Priority to US13/516,164 priority patent/US8948775B2/en
Publication of WO2011074659A1 publication Critical patent/WO2011074659A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/122Avoiding congestion; Recovering from congestion by diverting traffic away from congested entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0882Utilisation of link capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2009-287190 (filed on Dec. 18, 2009), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a mobile communication system, a constituent device thereof, a traffic leveling method and a program, and more particularly to a mobile communication system having a traffic monitoring function, a constituent device thereof, a traffic leveling method and a program.
  • Patent Document 1 a base station that collects the number of mobile stations located within the range of the own station and the status of each mobile station (in use, waiting for reception, and being powered off after location registration) and received from the base station
  • a high-order control station that receives communication traffic information, grasps the limit of traffic density, and supplies control information for adjusting the communication support range (cover area) of the base station based on the information; Has been disclosed that adjusts the coverage area of the base station to reduce the communication impossible state.
  • the mobile terminal When the IPGW (Internet Protocol Gateway) having a load measuring unit that measures the number of accesses to the IPGW and the CPU load is notified in Patent Document 2 that a change has occurred in the load state, the mobile terminal transmits information on the IPGW nearby.
  • a configuration including a management system that issues an instruction to a mobile subscriber switching unit (MSC) so that a lightly loaded IPGW is used as an access destination.
  • MSC mobile subscriber switching unit
  • Patent Document 3 discloses an optimal call connection as a whole network system by directly or indirectly connecting to all of a plurality of base control stations and a plurality of base stations and acquiring traffic load information of all the base control stations.
  • a wireless network system including a node selection information management function unit that transmits the priorities to the respective base stations is disclosed.
  • Non-Patent Document 1 proposes a technique called OpenFlow.
  • OpenFlow captures communication as an end-to-end flow and performs path control, failure recovery, load balancing, and optimization on a per-flow basis.
  • the OpenFlow switch functioning as a forwarding node operates according to a flow table added / updated by the OpenFlow controller according to the OpenFlow protocol.
  • a packet matching rule for specifying a packet and a set of actions such as outputting to a specific port, discarding, and rewriting a header are registered as a flow entry.
  • the OpenFlow switch processes the received packet according to the action described in the entry.
  • the OpenFlow switch notifies the OpenFlow protocol of the reception of the packet.
  • Non-Patent Document 2 is a specification document created by the OpenFlow Consortium, and details of the counter function provided in the OpenFlow switch are described in the section “3.2 Counters” on page 4. Also, in the section “4.1.1 Controller-to-Switch” on page 9 of the same specification, the OpenFlow controller has a function of collecting statistical information recorded by the counter function from each OpenFlow switch. Is described (see Read-State section).
  • Non-Patent Documents 1 and 2 are incorporated herein by reference. The following analysis has been made by the present invention.
  • a mechanism of load distribution depending on the number of calls (number of sessions) is considered.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • U-Plane User Plane path connection
  • QoS Quality Of Service
  • RNC Radio Network Controller / SGSrPrSrMoMoS
  • SGSrPrSrMoMoS Radio Network Controller
  • CS Circuit Switched
  • PS Packet Switched
  • SNR Packet Switched network controller
  • S1 is an interface between a mobile network node and a base station (eNB), and “S1-Flex” is a redundant configuration, and each is specified by 3GPP (3rd Generation Partnership Project). Has been. “Iu-Flex” is used in a mobile communication system before the LTE system of “S1-Flex”.
  • FIG. 15 is a diagram showing points that may become a bottleneck in a mobile network.
  • Point A is the communication band for PDN (Packet Data Network) in P-GW (PDN Gateway)
  • Point B is the communication band for S-GW in P-GW
  • Point C is the communication band for P-GW in S-GW Band
  • point D indicates a communication band for eNB (evolved NodeB) in S-GW
  • point E indicates a communication band for S-GW in eNB.
  • SON Self Organizing Network
  • Patent Document 1 it is described that the communication support range is adjusted based on communication traffic information.
  • “communication traffic information” in Patent Document 1 is expressed by Equation (1) in the specification. The number of mobile stations in each state as shown is multiplied by a predetermined coefficient, and the actual traffic is not measured. Also, the techniques of Patent Documents 2 and 3 measure the number of accesses to the IPGW and the load on the CPU, respectively, and do not measure the amount of data that actually flows.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a mobile communication system capable of leveling traffic in a mobile network, a constituent device thereof, a traffic leveling method, and To provide a program.
  • a plurality of traffic monitoring devices that are respectively arranged between predetermined nodes of a mobile network and monitor the traffic volume between the nodes, and based on reports from the traffic monitoring devices
  • a mobile communication system comprising: a traffic control device that outputs control information to a predetermined node so that the traffic amount is leveled.
  • the second aspect of the present invention is arranged between predetermined nodes of a mobile network and is connected to a traffic monitoring device that monitors the traffic volume between the nodes, and based on a report from the traffic monitoring device, A traffic control device is provided that outputs control information to a predetermined node so as to equalize the traffic volume.
  • the third aspect of the present invention is arranged between predetermined nodes of a mobile network, monitors the traffic volume between the nodes, and reports the monitored traffic volume to the traffic control device described above.
  • a traffic monitoring device is provided.
  • an MME Mobility Management Entity
  • an access node that perform a traffic leveling operation based on the above-described traffic control device empty control information.
  • the method is tied to a specific machine, a traffic controller.
  • a program for causing a computer to execute a process of outputting control information so as to equalize the traffic amount is provided.
  • This program can be recorded on a computer-readable storage medium. That is, the present invention can be embodied as a computer program product.
  • the present invention it becomes possible to level the traffic volume in the mobile network.
  • the reason is that a traffic control device that outputs control information to a predetermined node based on a report from a traffic monitoring device arranged between the predetermined nodes of the mobile network is provided.
  • FIG. 6 is a second diagram for explaining the operation of the handover activation unit of the traffic control device according to the first embodiment of the present invention. It is a 2nd flowchart showing operation
  • FIG. A device that monitors the usage status of a mobile network (traffic monitoring device; TC 601 in FIG. 1) and a device that controls a network node (traffic control device; TES 602 in FIG. 1) to effectively use a communication band held by the mobile network )
  • TC 601 in FIG. 1 a device that monitors the usage status of a mobile network
  • TES 602 in FIG. 1 a device that controls a network node
  • TES 602 in FIG. 1 to effectively use a communication band held by the mobile network
  • the traffic monitoring device (TC 601 in FIG. 1) is arranged between different types of nodes in the mobile network, monitors the usage status of the mobile network, and collects information such as the amount of data flowing through the U-Plane and the IP address.
  • the traffic control device (TES 602 in FIG. 1) grasps the traffic generation status in the mobile network based on the report content from each traffic monitoring device, and for example, traffic is unevenly distributed (concentrated) at a specific location. If the traffic is unevenly distributed, the node having the surplus power is obtained from the same node as the node where the traffic is concentrated from the access node 20 or the node 10 according to the uneven distribution situation of the traffic, and the traffic is distributed to the node. Control information is output.
  • Control information and its destination node are selected according to the uneven distribution status of the traffic. For example, the following can be considered.
  • the traffic at the point E is transmitted by reducing the coverage area of the eNB a501 and transmitting the control information for expanding the coverage area of the adjacent eNB b502 in accordance with the traffic volume concentration state at the point E.
  • the amount can be distributed to other nodes in the same hierarchy and leveled as a whole.
  • one or more calls accommodated in S-GW a301 are sent to S-GW a301 and S-GW b302 depending on the traffic concentration at points C and D.
  • -By sending control information instructing to be accommodated in GW b302 it becomes possible to distribute the traffic volume at points C and D in Fig. 15 to other nodes in the same hierarchy and level them as a whole.
  • the control is performed so that the S-GW a301 and the P-GW a201 where the traffic is concentrated are not easily selected when a new call is connected in accordance with the traffic volume concentration state at the points A to D.
  • the traffic volume at points A to D in FIG. 1 can be distributed to other nodes in the same hierarchy and can be leveled as a whole.
  • the following modes are possible. [Form 1] As in the mobile communication system according to the first aspect.
  • the traffic monitoring device monitors the traffic volume of two or more paths in which at least one node is different between different types of nodes in the mobile network
  • the traffic control device selects the type of control information and the destination node according to the uneven distribution of traffic, and controls the traffic information of the node where the traffic is unevenly distributed to the same type of nodes as the relevant node. Is preferably output.
  • One of the types of control information selected by the traffic control device according to the uneven distribution of traffic and the transmission destination are the access node when traffic between a certain access node and an upper node exceeds a predetermined threshold. It is preferable to instruct to reduce the cover area and to instruct the access node adjacent to the access node to enlarge the cover area.
  • One of the types of control information selected by the traffic control device according to the uneven distribution of traffic and the transmission destination are the calls accommodated by the node when the traffic of a certain node exceeds a predetermined threshold. Preferably, the call is handed over to another node that can accommodate the call.
  • the type of control information selected by the traffic control device according to the uneven distribution of traffic and one of the destinations are based on the amount of traffic between the nodes, and the higher-level node selected by a node when a new call is connected It is preferable to change the selection ratio.
  • the traffic control device instructs the access node to reduce the coverage area, and the access node adjacent to the access node
  • a traffic analysis unit for instructing expansion of the coverage area A handover activation unit for handing over a call accommodated by the node to another node capable of accommodating the call when traffic of a node exceeds a predetermined threshold; It is preferable to include a selection ratio calculation unit that changes a selection ratio of a higher-level node selected by a node when a new call is connected based on the traffic volume between the nodes.
  • the traffic monitoring device is preferably connected to an input / output port of the predetermined node to monitor the traffic volume.
  • the traffic monitoring device includes a source IP address of data to be monitored, an IP address monitoring unit that monitors a destination IP address, A URL analysis unit for obtaining a URL (Uniform Resource Locator) corresponding to the IP address; It is preferable that a data cache unit is provided that caches data for each acquired URL and returns the cached data to a request source when accesses to URLs for a certain period are concentrated.
  • the traffic monitoring device preferably reports the traffic amount to the traffic control device when the amount of traffic being monitored exceeds a predetermined threshold.
  • Mode 10 As in the traffic control device described in the second viewpoint.
  • the traffic control device is disposed between different types of nodes in the mobile network, and at least one of the nodes is connected to a traffic monitoring device that monitors the traffic volume of two or more different paths. Select the type of control information and the destination node according to the reported traffic uneven distribution status, and output the control information so that the traffic amount of the node where traffic is unevenly distributed is distributed to the same type of nodes as the relevant node. It is preferable.
  • One of the types of control information to be selected according to the uneven distribution situation of the traffic and the transmission destination is the coverage area for the access node when the traffic between a certain access node and an upper node exceeds a predetermined threshold.
  • One of the types of control information selected according to the uneven distribution status of the traffic and the transmission destination is that the call accommodated by the node is accommodated when the traffic of a certain node exceeds a predetermined threshold. It is preferable to hand over to another possible node.
  • One of the types of control information to be selected according to the traffic uneven distribution status and one of the transmission destinations changes the selection ratio of the upper node selected by a node when a new call is connected based on the traffic volume between the nodes.
  • the traffic control device instructs the access node to reduce the coverage area when the traffic between a certain access node and an upper node exceeds a predetermined threshold, and the access node adjacent to the access node.
  • a traffic analysis unit for instructing expansion of the coverage area A handover activation unit for handing over a call accommodated by the node to another node capable of accommodating the call when traffic of a node exceeds a predetermined threshold; It is preferable to include a selection ratio calculation unit that changes a selection ratio of a higher-level node selected by a node when a new call is connected based on the traffic volume between the nodes.
  • the traffic monitoring device is: A source IP address of data to be monitored, an IP address monitoring unit for monitoring a destination IP address, A URL analysis unit for obtaining a URL (Uniform Resource Locator) corresponding to the IP address; It is preferable that a data cache unit is provided that caches data for each acquired URL and returns the cached data to a request source when accesses to URLs for a certain period are concentrated.
  • a data cache unit is provided that caches data for each acquired URL and returns the cached data to a request source when accesses to URLs for a certain period are concentrated.
  • FIG. 2 is a diagram showing the configuration of the mobile communication system according to the first embodiment of the present invention.
  • a traffic monitoring device (traffic counter; hereinafter referred to as “TC”) 601 is located between nodes of a mobile network configured by a LTE (Long Term Evolution) / EPC (Evolved Packet Core) network.
  • LTE Long Term Evolution
  • EPC Evolved Packet Core
  • the TC 601 is a device having a function of collecting information such as the data amount and IP address of U-Plane (user plane) data flowing through a mobile network.
  • the TC 601 is at least between different types of nodes in the mobile network such as between the eNBs 501 to 503 and the S-GWs 301 and 302, between the S-GWs 301 and 302 and the P-GWs 201 and 202, and between the P-GWs 201 and 202 and the PDN 101. Necessary numbers are installed so that one node monitors the traffic volume of two or more different paths.
  • the TC 601 in the present embodiment includes a data cache unit (refer to the data cache unit 704 in FIG.
  • a traffic control device (traffic engineering server; hereinafter referred to as “TES”) 602 collects information from the TC 601 via the M-Plane (management / plane) and equalizes the traffic of the entire mobile network. In cooperation with eNBs 501 to 503 and MME 401.
  • the TES 602 may be configured to have the above-described function, but may have a function as a SON (Self Organizing Network) server.
  • P-GWs 201 and 202 are gateways serving as connection points with the PDN 101
  • S-GWs 301 and 302 are gateways that accommodate calls and transmit data.
  • the MME 401 is connected to the S-GWs 301 and 302 and the eNBs 501 to 503 via the C-Plane (control plane), and mobility management such as location registration of mobile terminals, terminal call processing at the time of incoming calls, and handover between radio base stations It is a device that performs.
  • Each of the eNBs 501 to 503 is a base station apparatus that has a cover area and receives access from mobile terminals located in the respective cover areas.
  • the eNBs 501 to 503 have the ability to continue the U-Plane path on the wireless side and replace the U-Plane path for S-GW.
  • FIG. 3 is a block diagram showing the detailed configuration of the TC 601 and the TES 602.
  • the TC 601 includes a traffic volume monitoring unit 701, an IP address monitoring unit 702, a URL analysis unit 703, a data cache unit 704, and an inter-TES communication unit 705. Each of these operates as follows.
  • the traffic amount monitoring unit 701 observes the data amount of U-Plane data flowing between mobile network nodes.
  • the IP address monitoring unit 702 monitors the source IP address and destination IP address of U-Plane data. With this information, it is possible to determine which node of the mobile network is the data being transmitted and received.
  • the URL analysis unit 703 analyzes the URL accessed by the user based on the IP address acquired by the IP address monitoring unit 702.
  • the data cache unit 704 performs processing for holding and returning cache data for a predetermined time with respect to the URL analyzed by the URL analysis unit 703.
  • the inter-TES communication unit 705 uploads (reports) the data collected by the traffic volume monitoring unit 701 and the IP address monitoring unit 702 to the TES 602.
  • the processing in the traffic amount monitoring unit 701, IP address monitoring unit 702, URL analysis unit 703, and data cache unit 704 corresponds to each unit using the hardware of the computer constituting the TC 601. It is realizable with the program which performs the process to perform.
  • the functions corresponding to the traffic amount monitoring unit 701, IP address monitoring unit 702, and inter-TES communication unit 705 collect statistical information by matching with flow entries stored in the flow table, ), And can be realized by a mechanism equivalent to the open flow switch of Non-Patent Documents 1 and 2.
  • the TC 601 itself has a transfer function, which has a cost advantage.
  • FIG. 4 is a diagram for explaining the arrangement position of the TC 601 described above.
  • the TC 601 can be installed at any of the positions (A) to (C) in FIG. 4, but it is desirable that other forwarding nodes 211 be located as in the positions (A) and (C) in FIG. Are connected to the input / output ports of the P-GWa 201 and the S-GWa 301 without going through. By doing so, it becomes possible to measure the input / output data amounts of the P-GWa 201 and the S-GWa 301 respectively.
  • the TES 602 includes a traffic analysis unit 801, a selection ratio calculation unit 802, a handover activation unit 803, a statistical data storage unit 804, and an TC / node communication unit 805. Each of these operates as follows.
  • the traffic analysis unit 801 checks the communication band used for each node of the mobile network, that is, the traffic distribution from the data amount collected from the TC 601 and the IP address information, and if necessary, the eNB coverage area is optimized. (See FIGS. 5 to 7). Moreover, in this embodiment, the traffic analysis part 801 shall also perform a process required as a SON server which implement
  • the selection ratio calculation unit 802 calculates S-GW / P-GW selection ratio data considering the communication band used for each node of the mobile network when a new call is connected.
  • the S-GW / P-GW selection ratio data is referred to when the MME 401 selects S-GWs 301 to 302 or P-GWs 201 to 202.
  • the MME 401 can select S-GWs 301 to 302 or P-GWs 201 to 202 with a small communication band in use.
  • the handover activation unit 803 determines a call for initiating handover in order to reduce the communication band of a specific node from the communication band used for each node of the mobile network analyzed by the traffic analysis unit 801, and hands the call to the MME 401. Instruct over start.
  • the statistical data storage unit 804 stores the data analyzed by the traffic analysis unit 801 as reference data for optimizing the long-term network configuration for the maintenance personnel.
  • the TC / node communication unit 805 communicates with the TC 601, notifies the cover area change from the traffic analysis unit 801 to the eNBs 501 to 503, and S-GW / P-GW selection ratio data from the selection ratio calculation unit 802 to the MME 401. And a handover process activation notification from the handover activation unit 803 to the MME 401.
  • the traffic analysis unit 801, the selection ratio calculation unit 802, the handover activation unit 803, and the statistical data storage unit 804 correspond to each unit using the hardware of the computer that configures the TES 602. It can be realized by a program for executing processing.
  • the functions corresponding to the traffic analysis unit 801, the statistical data storage unit 804, and the TC / node communication unit 805 acquire the statistical information from each open flow switch and set the route. It can also be realized with the same mechanism as the controller.
  • the TES 602 itself has a function of controlling the flow of a flow flowing through the mobile network, apart from some traffic leveling processing described later. It is also possible to use these collected traffic situations for route setting in the TES 602.
  • FIGS. 5 and 6 are diagrams for explaining the operation of the traffic analysis unit 801 of the TES 602.
  • FIG. 5 shows a state before the traffic analysis unit 801 issues a cover area change instruction.
  • both eNBa 501 and eNBb 502 are accommodated in both S-GWa 301 and S-GWb 302 by S1-Flex.
  • there are many mobile terminals (including communication modules) under the eNBa 501 and communication is in progress and the S-GW communication band of the eNB 501 is congested (a traffic amount is a predetermined amount). The threshold is exceeded.) Indicates a state.
  • FIG. 6 shows a cover area change instruction by the traffic analysis unit 801 and a state in which the cover area has changed.
  • the traffic analysis unit 801 calculates a cover area to instruct the eNBa 501 and the eNBb 502 so that the traffic amount in the eNBa 501 can be transferred to the eNBb 502 and the traffic can be leveled.
  • the eNBa 501 and eNBb 502 are each instructed to change the cover area.
  • an instruction to change the cover area for reducing the cover area of the eNBa 501 and increasing the cover area of the eNBb 502 is performed.
  • the mobile terminal that is located in the cover area of the eNBb 502 activates the handover process and replaces the U-Plane path via the eNBb 502.
  • the communication band for S-GW of eNBa 501 and eNBb 502 is leveled.
  • FIG. 7 is a diagram illustrating a processing flow until an instruction to change the eNB cover area is issued.
  • the TC 601 installed between the eNBs 501 to 503 and the S-GWs 301 and 302 monitors (collects) information such as the data amount of the U-Plane data and the IP address (step S001), The data is reported to the TES 602 every predetermined time, at a predetermined time, and at a predetermined report timing such as a sudden change in traffic volume.
  • TES 602 analyzes the traffic information received from TC 601.
  • the traffic band for S-GW of eNB 501 is detected as a result of traffic analysis (step S002).
  • the subsequent processing is omitted (however, when the handover activation described later or calculation of the selection ratio is necessary, Applicable processing is performed.)
  • the TES 602 investigates the status of the eNB adjacent to the eNBa 501 and detects an eNB having a sufficient communication band and a free band for the S-GW.
  • the eNBb 502 adjacent to the eNBa 501 has been detected (step S003).
  • the TES 602 can equalize the S-GW communication bandwidths of the two eNBs based on the traffic situation analyzed in step S002 and the S-GW free bandwidth detected in step S003.
  • the cover areas of eNBa 501 and eNBb 502 are calculated respectively (step S004).
  • the TES 602 instructs the eNBa 501 and the eNBb 502 to change the cover area including the calculated cover area information (step S005).
  • the eNBa 501 is instructed to reduce the cover area
  • the eNBb 502 is instructed to expand the cover area.
  • the eNB 501 and the eNB 502 receiving the instruction change the cover area according to the instruction from the TES 602, respectively (step S006).
  • the mobile terminal accommodated in the changed cover area that is, the mobile terminal that was located in the eNBb501 cover area but was located in the eNBb501 cover area starts the handover process.
  • the eNB cover area By changing the eNB cover area in this way, it becomes possible to avoid congestion of the communication band for the S-GW of the eNB and level the traffic.
  • the e-band S-GW communication band has been described as being congested.
  • the S-GW e-band communication band is congested, the S-GW P- Even when the communication band for GW is congested, it is effective to change the cover area of the eNB in the same manner.
  • node re-selection is performed based on the selection ratio calculated based on the traffic situation due to the activation of the handover of the mobile terminal, and as a result, the congestion of the upper node can be leveled is there.
  • the congestion in the eNBa 501 has been described as being equalized using the eNBb 502, but each traffic may be leveled using three or more eNBs.
  • a shortage of bandwidth in eNBb502 may be covered by eNBa501 and eNBc503, or a shortage of bandwidth in eNBa501 and eNBc503 may be covered by eNBb502.
  • FIG. 8 and 9 are diagrams for explaining the operation of the handover activation unit 803 of the TES 602.
  • FIG. 8 illustrates a state before the handover process activation by the handover activation unit 803 is performed.
  • the eNBa 501, eNBb 502, and eNBc 503 are both accommodated in both the S-GWa 301 and S-GWb 302 by S 1 -Flex.
  • Mobile terminals exist under the control of eNBa501, eNBb502, and eNBc503, respectively.
  • the U-Plane path is set between the S-GWa 301 and the S-GWb 301 rather than the S-GWb 302, there are many mobile terminals in communication, and the communication band for the eNB of the S-GWa 301 is congested (traffic amount is predetermined). The threshold is exceeded.)
  • FIG. 9 shows a state where the handover activation process is performed by the handover activation unit 803.
  • the handover activation unit 803 instructs the MME 401 to activate handover so that the traffic amount for eNB in the S-GWa 301 can be transferred to the S-GWb 302 and the traffic can be leveled.
  • the U-Plane path (thick broken line) accommodated in the S-GWa 301 is accommodated in the S-GWb 302 (see the thick solid line in FIG. 9).
  • FIG. 10 is a diagram showing a processing flow until the handover activation is performed.
  • the TC 601 installed between the eNBs 501 to 503 and the S-GWs 301 and 302 monitors (collects) information such as the amount of U-Plane data and the IP address (step S001), The data is reported to the TES 602 every predetermined time, at a predetermined time, and at a predetermined report timing such as a sudden change in traffic volume. This report may also serve as the report for the cover area changing process described above.
  • TES 602 analyzes the traffic information received from TC 601.
  • the traffic band for the eNB of the S-GWa 301 is detected as a result of the traffic analysis (step S101).
  • the subsequent processing is omitted (however, when the above-described change of the cover area or calculation of the selection ratio described later is necessary) , Each corresponding process is performed.)
  • the TES 602 investigates the status of the S-GW accommodating the same eNB as the eNB accommodated by the S-GWa 301, and detects a free band for the S-GW and the eNB having a sufficient communication band.
  • an S-GWb 302 accommodating the same eNB as the eNB accommodated by the S-GWa 301 is detected (step S102).
  • the TES 602 determines the level of the communication band for the eNBs of the two S-GWs based on the traffic situation analyzed in step S101 and the free band for the eNB detected in step S102.
  • the U-Plane path to be handed over is calculated (step S103).
  • the TES 602 instructs the MME 401 to start handover by designating the calculated U-Plane path (step S104).
  • the eNBa 501 is instructed to reduce the cover area
  • the eNBb 502 is instructed to expand the cover area.
  • the MME 401 activates a handover process for the designated call (step S105).
  • the S-GWa 301 and the S-GWb 302 cooperate with the eNB and change the designated U-Plane path among the U-Plane paths accommodated in the S-GWa 301 to the S-GWb 302.
  • FIG. 11 and 12 are diagrams for explaining the operation of the selection ratio calculation unit 802 of the TES 602.
  • FIG. 11 shows a state before the node selection ratio calculation by the selection ratio calculation unit 802 is performed.
  • FIG. 11 shows a state in which the bandwidth usage rate for the P-GW of the S-GWa 301 is 20% and the bandwidth usage rate for the P-GW of the S-GWb 302 is 80%.
  • the bandwidth for the P-GW of the S-GWb 302 may be insufficient.
  • the selection ratio calculation unit 802 of the TES 602 is configured so that the bandwidths for the P-GWs of the two S-GWs are leveled in consideration of the bandwidth usage rate as illustrated in FIG. Then, the selection ratio of the two S-GWs is calculated and notified to the MME 401. For example, in the example of FIG. 12, a selection ratio that gives priority to the selection of the S-GWb 301 is calculated based on the band usage rate described above, and as a result, a path is set via the S-GWa 301 Is shown.
  • FIG. 13 is a diagram showing a processing flow until the selection ratio is changed.
  • a TC 601 is installed between the eNBs 501 to 503 and the S-GWs 301 and 302, between the S-GWs 301 and 302 and the P-GWs 201 and 202, and between the P-GWs 201 and 202 and the PDN 101.
  • Monitors collects) information such as the amount of U-Plane data, IP address, etc. (step S001), and reports it to TES 602 at predetermined reporting timings such as every certain time, at certain times, and sudden changes in traffic volume. To do.
  • This report may also serve as a report for the above-described cover area change process or handover activation process.
  • the TES 602 aggregates the communication bandwidth used by each network node based on the traffic information received from the TC 601 and analyzes the congestion state (step S201). As a result of the traffic analysis, if it is determined that there is no need to change the node selection ratio between any of the nodes, the subsequent processing is omitted (however, the above-described change of the cover area or the selection ratio described later is omitted). When calculation is necessary, the corresponding processing is performed.)
  • the TES 602 calculates the S-GW / P-GW selection ratio when the MME 401 selects the S-GW and P-GW to which the new call is connected based on the result of the analysis (step S202). .
  • the TES 602 notifies the MME 401 of the calculated S-GW / P-GW selection ratio (step S203).
  • the MME 401 preferentially selects an S-GW / P-GW having a sufficient communication band according to the notified S-GW / P-GW selection ratio at the time of a new call connection, and S-GW / P-GW. Level the communication bandwidth.
  • FIG. 14 shows the S-GW selection in the case where the total result is obtained that the bandwidth usage rate for the P-GW of the S-GWa 301 is 20% and the bandwidth usage rate for the P-GW of the S-GWb 302 is 80%. It is a figure which shows the calculation flow of a ratio.
  • a selection ratio is calculated with the selection ratio of S-GWa 301 set to 80 and the selection ratio of S-GWb 302 set to 20 so that the band usage rate is equalized.
  • the change timing of the node selection ratio can be changed as appropriate. For example, if the node selection ratio is changed according to the minute fluctuation of the bandwidth usage rate, fine control that can prevent the occurrence of congestion in advance. Is also possible.
  • the URL is handled.
  • the U-Plane data is not sent to the HTTP server, but the process of returning the cache data is performed in the TC 601.
  • the cache data is returned, and according to the location of the occurrence, the change of the cover area and the handover are performed. Since the activation and the change of the node selection ratio are performed following, it becomes possible to level the traffic as quickly as possible without causing the user to feel the lack of bandwidth.
  • the mobile communication carrier it is not necessary for the mobile communication carrier to prepare a network node that is more redundant than necessary, and CAPEX (capital expandability) / OPEX (operating expenditure). ) Can be reduced.
  • the TC 601 has been described as having traffic function monitoring units 701, IP address monitoring units 702, URL analysis units 703, and data cache units 704. Some may be integrated. Some functional blocks may be omitted depending on the functions required of the TC 601. For example, if the data cache function is unnecessary, at least the URL analysis unit 703 and the data cache unit 704 can be omitted.
  • the TC 601 is connected to the input port (or output port) of the monitoring target node and the input traffic (or output traffic) only needs to be monitored, the source IP address / destination IP address of the U-Plane data When monitoring is not required, the IP address monitoring unit 702 can be omitted.
  • the TES 602 has been described as having functional blocks independent of the traffic analysis unit 801, the selection ratio calculation unit 802, the handover activation unit 803, and the statistical data storage unit 804. Some of them may be integrated or omitted. For example, if the handover activation function is unnecessary, the handover activation unit 803 can be omitted, and if the selection ratio changing function is unnecessary, the selection ratio calculation unit 802 can be omitted, or It is also possible to adopt a configuration in which a control unit (traffic uneven distribution state determination unit) that determines the uneven distribution state and gives an instruction to each functional block is provided.
  • a control unit traffic uneven distribution state determination unit
  • the TC 601 has been described as reporting the traffic status to the TES 602 at a predetermined report timing. However, if the monitored traffic volume exceeds a predetermined threshold, the TC 601 The traffic volume may be reported. As a result, the load on the network can be reduced, and the traffic analysis in the TES 602 can be simplified.
  • the cover area has been described as being enlarged / reduced.
  • the base station includes a directional antenna such as an adaptive array antenna
  • various proposals have been made by SON.
  • the cover area is locally changed by changing the antenna tilt and increasing the transmission power.
  • the above-described embodiment can be understood as the following traffic leveling method.
  • Appendix 1 Using at least one traffic monitoring device arranged between different types of nodes in the mobile network to monitor the traffic volume of two or more paths with different at least one node;
  • the traffic control device collects the traffic amount from each of the traffic monitoring devices, selects the type of control information and the destination node according to the uneven distribution status of the traffic, and determines the traffic amount of the node where the traffic is unevenly distributed. Outputting the control information so as to be distributed to nodes of the same type as the node.
  • nodes 20 access nodes 101 packet data network (PDN) 201, 202 PDN / Gateway (P-GW) 211 Forwarding node 301, 302 Serving gateway (S-GW) 401 Mobility Management Entity (MME) 501-503 evolved NodeB (eNB) 601 Traffic monitoring device (TC) 602 Traffic control device (TES) 701 Traffic volume monitoring unit 702 IP address monitoring unit 703 URL analysis unit 704 Data cache unit 705 Inter-TES communication unit 801 Traffic analysis unit 802 Selection ratio calculation unit 803 Handover activation unit 804 Statistical data storage unit 805 TC / internode communication unit

Abstract

 移動体ネットワークにおけるトラヒックを平準化させることのできる構成・方法の提供。移動体通信システムは、移動体ネットワークの所定のノード間に配置されて、ノード間のトラヒック量を監視するトラヒック監視装置と、前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するトラヒック制御装置とを、備える。

Description

移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム
[関連出願についての記載]
 本発明は、日本国特許出願:特願2009-287190号(2009年12月18日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、移動体通信システム、その構成装置、トラヒック平準化方法およびプログラムに関し、トラヒック量の監視機能を備えた移動体通信システム、その構成装置、トラヒック平準化方法およびプログラムに関する。
 特許文献1に、自局の圏内に位置する移動局数や各移動局の状態(使用中,受信待受中,位置登録後電源切断中)を収集する基地局と、前記基地局から受信した通信トラフィック情報を受け取り、トラフィック密度の限界を把握し、その情報に基づいて基地局の通信サポート範囲(カバーエリア)を調整するための制御情報を供給する上位制御局と、を用いて、移動局が一部に偏在した場合に、基地局のカバーエリアを調整して、通信不可能状態を低減する構成が開示されている。
 特許文献2に、IPGWへのアクセス数やCPU負荷を計測する負荷計測部を備えたIPGW(Internet Protocol GateWay)から負荷状態に変化が生じたことを通知されると、移動端末から近くのIPGWでなく、軽負荷のIPGWをアクセス先とするように移動体加入者交換機(MSC)に指示を出す管理システムを備えた構成が開示されている。
 特許文献3に、複数の基地制御局と複数の基地局との全てに直接的または間接的に接続され、すべての基地制御局のトラヒック負荷情報を取得して、ネットワークシステム全体として最適な呼接続先の優先順位をそれぞれの基地局に向けて送信するノード選択情報管理機能部を備えた無線ネットワークシステムが開示されている。
 また、非特許文献1には、オープンフロー(OpenFlow)という技術が提案されている。オープンフローは、通信をエンドツーエンドのフローとして捉え、フロー単位で経路制御、障害回復、負荷分散、最適化を行うものである。転送ノードとして機能するオープンフロースイッチは、オープンフロープロトコルに従ってオープンフローコントローラにより追加・更新されるフローテーブルに従って動作する。フローテーブルには、パケットを特定するパケットマッチングルールと、特定のポートに出力する、廃棄する、ヘッダを書き換えるといったアクションの組がフローエントリとして登録される。オープンフロースイッチは、該当するエントリがあった場合、エントリに記載されたアクションに従って受信パケットの処理を行い、該当エントリがない場合は、オープンフロープロトコルにパケットの受信を通知する。
 非特許文献2は、オープンフローコンソーシアム作成の仕様書であり、4頁「3.2 Counters」の項に、オープンフロースイッチが備えるカウンタ機能の詳細が記載されている。また、同仕様書9頁「4.1.1 Controller-to-Switch」の項に、オープンフローコントローラが、各オープンフロースイッチから前記カウンタ機能にて記録された統計情報を収集する機能を備える点が記載されている(Read-Stateの項参照)。
特開2003-111133号公報 特開2001-069176号公報 特開2008-236037号公報
Nick McKeownほか7名、"OpenFlow: Enabling Innovation in Campus Networks"、[online]、[平成21年7月17日検索]、インターネット〈URL:http://www.openflowswitch.org//documents/openflow-wp-latest.pdf〉 OpenFlow Switch Specification" Version 0.9.0. (Wire Protocol 0x98) [平成21年12月7日検索] 、インターネット〈URL:http://www.openflowswitch.org/documents/openflow-spec-v0.9.0.pdf〉
 上記特許文献1-3および非特許文献1、2の全開示内容はその引用をもって本書に繰込み記載する。
 以下の分析は、本発明によってなされたものである。
 移動体ネットワークにおける呼を処理するノード選択方法については呼数(セッション数)により負荷分散する仕組みは考えられている。例えば、LTE(Long Term Evolution)において、MME(Mobility Management Entity)が、接続中のセッション数を考慮し、U-Plane(ユーザプレーン)パス接続を確立するS-GW(Serving GateWay)を選択することは可能であり、接続したセッションに関して、最低保証通信帯域や最大通信帯域等のQoS(Quality Of Service)制御を実施することも可能である。
 また、ネットワークの冗長という側面では、UTRAN(UMTS Terrestrial Radio Access Network)/CS(Circuit Switched)・PS(Packet Switched)ドメインにおけるRNC(Radio Network Controller)とSGSN(Serving GPRS Support Node)/MSC(Mobile Switch Center)間のIu-Flex機能やLTE/EPC(Evolved Packet Core)網におけるS1-Flex機能により位置登録を実施するコアノードの冗長をとることは可能である。なお、「S1」とは、移動体ネットワークノードと基地局(eNB)間のインタフェースであり、“S1-Flex”とは、その冗長構成であり、それぞれ3GPP(3rd Generation Partnership Project)にて仕様化されている。また、“Iu-Flex”は、 “S1-Flex”のLTE方式以前における移動体通信システムで採用されていたものである。
 しかしながら、移動体ネットワークにおいて、呼を処理するノードの選択時に、トラヒックは考慮に入れておらず、通信帯域の面では平準化したノード選択ができず、移動体ネットワークのノード間において通信帯域不足が起こりうるという問題点がある。例えば、LTEでは、MMEが複数のセルで構成されたトラッキングエリア(TA)毎に、S-GWを選択することにより負荷を分散しており、あるノード間での帯域不足が生じることが考えられる。このため、移動体ネットワークは、QoS制御による最低保障通信帯域の確保のため、上記のようなノード間の通信帯域不足が起きないように過剰なデータ通信帯域(ネットワークノード)を確保する必要が生じている。
 図15は、移動体ネットワークにおいてボトルネックとなる可能性のあるポイントを示した図である。ポイントAは、P-GW(PDN GateWay)におけるPDN(Packet Data Network)向け通信帯域、ポイントBは、P-GWにおけるS-GW向け通信帯域、ポイントCは、S-GWにおけるP-GW向け通信帯域、ポイントDは、S-GWにおけるeNB(evolved NodeB)向け通信帯域、ポイントEはeNBにおけるS-GW向け通信帯域を示している。なお、eNBにおける端末向け通信帯域については、別途SON(Self Organizing Network)という技術が提案されている。
 なお、特許文献1には、通信トラフィック情報を基に、通信サポート範囲を調整すると記載されているが、特許文献1でいうところの「通信トラフィック情報」は、明細書中の(1)式に表されたような各状態の移動局の数に、それぞれ所定の係数を乗じたものであり、実際のトラヒックを測定しているものではない。また、特許文献2、3の技術も、それぞれIPGWへのアクセス数やCPUの負荷を測定しているものであり、実際に流れるデータ量を測定するものではない。
 本発明は、上記した事情に鑑みてなされたものであって、その目的とするところは、移動体ネットワークにおけるトラヒックを平準化させることのできる移動体通信システム、その構成装置、トラヒック平準化方法およびプログラムを提供することにある。
 本発明の第1の視点によれば、移動体ネットワークの所定のノード間にそれぞれ配置されて、ノード間のトラヒック量を監視する複数のトラヒック監視装置と、前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するトラヒック制御装置と、を備える移動体通信システムが提供される。
 本発明の第2の視点によれば、移動体ネットワークの所定のノード間に配置されて、ノード間のトラヒック量を監視するトラヒック監視装置と接続され、前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するトラヒック制御装置が提供される。
 本発明の第3の視点によれば、移動体ネットワークの所定のノード間に配置されて、ノード間のトラヒック量を監視するとともに、上記したトラヒック制御装置に対し、前記監視したトラヒック量を報告するトラヒック監視装置が提供される。
 本発明の第4の視点によれば、上記したトラヒック制御装置空の制御情報に基づいてトラヒックの平準化動作を行うMME(Mobility Management Entity)およびアクセスノードが提供される。
 本発明の第5の視点によれば、移動体ネットワークの所定のノード間に配置したトラヒック監視装置を用いて、ノード間のトラヒック量を監視するステップと、前記トラヒック監視装置からの報告に基づいて、トラヒック制御装置が、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するステップと、を含むトラヒック平準化方法が提供される。本方法は、トラヒック制御装置という、特定の機械に結びつけられている。
 本発明の第6の視点によれば、移動体ネットワークの所定のノード間に配置したトラヒック監視装置から、ノード間のトラヒック量を収集する処理と、前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力する処理と、をコンピュータに実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。
 本発明によれば、移動体ネットワークにおけるトラヒック量を平準化することが可能になる。その理由は、移動体ネットワークの所定のノード間に配置したトラヒック監視装置からの報告に基づいて、所定のノードに対し、制御情報を出力するトラヒック制御装置を備えたことにある。
本発明の概要を説明するための図である。 本発明の第1の実施形態に係る移動体通信システムの構成を表した図である。 本発明の第1の実施形態に係るトラヒック監視装置とトラヒック制御装置の構成を表した図である。 本発明の第1の実施形態に係るトラヒック監視装置の配置位置を説明するための図である。 本発明の第1の実施形態に係るトラヒック制御装置のトラヒック分析部の動作を説明するための図である。 本発明の第1の実施形態に係るトラヒック制御装置のトラヒック分析部の動作を説明するための第2の図である。 本発明の第1の実施形態に係るトラヒック制御装置の動作を表したフローチャートである。 本発明の第1の実施形態に係るトラヒック制御装置のハンドオーバー起動部の動作を説明するための図である。 本発明の第1の実施形態に係るトラヒック制御装置のハンドオーバー起動部の動作を説明するための第2の図である。 本発明の第1の実施形態に係るトラヒック制御装置の動作を表した第2のフローチャートである。 本発明の第1の実施形態に係るトラヒック制御装置の選択比率算出部の動作を説明するための図である。 本発明の第1の実施形態に係るトラヒック制御装置の選択比率算出部の動作を説明するための第2の図である。 本発明の第1の実施形態に係るトラヒック制御装置の動作を表した第3のフローチャートである。 選択比率算出処理の具体例を説明するためのフローチャートである。 移動体ネットワークにおいてボトルネックとなる可能性のあるポイントを示した図である。
 はじめに、図1を参照して本発明の概要を説明する。移動体ネットワークの使用状況を監視する装置(トラヒック監視装置;図1のTC601)と、移動体ネットワークが保持する通信帯域を有効活用するためネットワークノードを制御する装置(トラヒック制御装置;図1のTES602)とをそれぞれ配置して、移動体ネットワークを流れるトラヒックを平準化するものである。なお、この概要に付記した図面参照符号は、専ら理解を助けるための例示であり、図示の態様に限定することを意図するものではない。
 トラヒック監視装置(図1のTC601)は、移動体ネットワークの異なる種類のノード間に配置され、移動体ネットワークの使用状況を監視し、U-Planeを流れるデータ量やIPアドレスなどの情報を収集し、トラヒック制御装置(図1のTES602)に報告する。また、トラヒック制御装置(図1のTES602)は、各トラヒック監視装置からの報告内容に基づいて、移動体ネットワークにおけるトラヒックの発生状況を把握し、例えば、特定の箇所にトラヒックが偏在(集中)している場合、当該トラヒックの偏在状況に応じて、アクセスノード20やノード10の中から、当該トラヒックが集中しているノードと同一のノードで余力のあるノードを求め、当該ノードにトラヒックを分散させるよう制御情報を出力する。
 制御情報およびその送信先ノードは、当該トラヒックの偏在状況に応じて選択され、例えば次のようなものが考えられる。例えば、図15の場合、ポイントEにおけるトラヒック量の集中状況に応じて、eNB a501のカバーエリアを縮小し、隣接するeNB b502のカバーエリアを拡大させる制御情報を送出することで、ポイントEにおけるトラヒック量を同一階層の他のノードに分散し、全体として平準化させることが可能になる。
 また例えば、図15において、ポイントC、Dにおけるトラヒック量の集中状況に応じて、S-GW a301およびS-GW b302に対して、S-GW a301に収容されている1以上の呼を、S-GW b302に収容するよう指示する制御情報を送出することで、図15のポイントC、Dにおけるトラヒック量を同一階層の他のノードに分散し、全体として平準化させることが可能になる。
 また例えば、図15において、ポイントA~Dにおけるトラヒック量の集中状況に応じて、新規呼の接続に際して、トラヒックが集中しているS-GW a301やP-GW a201が選択されにくくなるように制御することで、図1のポイントA~Dにおけるトラヒック量を同一階層の他のノードに分散し、全体として平準化させることが可能になる。
 本発明において以下の形態が可能である。
[形態1]
 前記第1の視点に記載の移動体通信システムのとおり。
[形態2]
 前記トラヒック監視装置は、移動体ネットワークの異なる種類のノード間の、少なくとも一方のノードが異なる2以上のパスのトラヒック量を監視し、
 前記トラヒック制御装置は、トラヒックの偏在状況に応じて制御情報の種類および送信先ノードを選択し、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散するよう制御情報を出力することが好ましい。
[形態3]
 前記トラヒック制御装置がトラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するものであることが好ましい。
[形態4]
 前記トラヒック制御装置がトラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるものであることが好ましい。
[形態5]
 前記トラヒック制御装置がトラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更するものであることが好ましい。
[形態6]
 前記トラヒック制御装置が、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するトラヒック分析部と、
 あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるハンドオーバ起動部と、
 前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更する選択比率算出部と、を備えることが好ましい。
[形態7]
 前記トラヒック監視装置は、前記所定のノードの入出力ポートに接続されてトラヒック量を監視することが好ましい。
[形態8]
 前記トラヒック監視装置は、監視するデータの送信元IPアドレスと、送信先IPアドレスを監視するIPアドレス監視部と、
 前記IPアドレスに対応するURL(Uniform Resource Locator)を取得するURL分析部と、
 前記取得したURL毎にデータをキャッシュし、一定期間にあるURLへのアクセスが集中した際に前記キャッシュしたデータを要求元に返すデータキャッシュ部と、を備えることが好ましい。
[形態9]
 前記トラヒック監視装置は、監視しているトラヒック量が所定の閾値を超えた場合に前記トラヒック制御装置に対しトラヒック量の報告を行うことが好ましい。
[形態10]
 前記第2の視点に記載のトラヒック制御装置のとおり。
[形態11]
 前記トラヒック制御装置は、移動体ネットワークの異なる種類のノード間に配置され、少なくとも一方のノードが異なる2以上のパスのトラヒック量を監視を監視するトラヒック監視装置と接続され、前記各トラヒック監視装置から報告されたトラヒックの偏在状況に応じて制御情報の種類および送信先ノードを選択し、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散するよう制御情報を出力することが好ましい。
[形態12]
 前記トラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するものであることが好ましい。
[形態13]
 前記トラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるものであることが好ましい。
[形態14]
 前記トラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更するものであることが好ましい。
[形態15]
 前記トラヒック制御装置は、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するトラヒック分析部と、
 あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるハンドオーバ起動部と、
 前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更する選択比率算出部と、を備えることが好ましい。
[形態16]
 前記第3の視点に記載のトラヒック監視装置のとおり。
[形態17]
 前記トラヒック監視装置は、
 監視するデータの送信元IPアドレスと、送信先IPアドレスを監視するIPアドレス監視部と、
 前記IPアドレスに対応するURL(Uniform Resource Locator)を取得するURL分析部と、
 前記取得したURL毎にデータをキャッシュし、一定期間にあるURLへのアクセスが集中した際に前記キャッシュしたデータを要求元に返すデータキャッシュ部と、を備えることが好ましい。
[形態18]
 前記第4の視点に記載のモビリティ管理エンティティのとおり。
[形態19]
 前記第4の視点に記載のアクセスノードのとおり。
[形態20]
 前記第5の視点に記載のトラヒック平準化方法のとおり。
[形態21]
 前記第6の視点に記載のプログラムのとおり。
[第1の実施形態]
 続いて、本発明の第1の実施形態について図面を参照して詳細に説明する。図2は、本発明の第1の実施形態に係る移動体通信システムの構成を表した図である。図2を参照すると、LTE(Long Term Evolution)/EPC(Evolved Packet Core)網で構成された移動体ネットワークのノード間に、トラヒック監視装置(トラヒックカウンタ;以下、「TC」とする。)601が複数配置されている。なお、図1の例では、LTE/EPC網の例を挙げているが、その他移動体ネットワークにも適用可能である。
 TC601は、移動体ネットワークを流れるU-Plane(ユーザ・プレーン)データのデータ量やIPアドレスなどの情報を収集する機能を備えた装置である。TC601は、eNB501~503とS-GW301、302の間や、S-GW301、302とP-GW201、202、P-GW201、202とPDN101の間といった移動体ネットワークの異なる種類のノード間の、少なくとも一方のノードが異なる2以上のパスのトラヒック量を監視するよう、それぞれ必要数設置される。また、本実施形態におけるTC601は、URL(Uniform Resource Locator)と対応付けてU-Planeデータを、一定期間保持(キャッシュ)するデータキャッシュ部(図3のデータキャッシュ部704参照)を備え、一定時間に特定URLへのアクセスが集中した場合に、当該URLに対応するHTTPサーバまでU-Planeデータを流さず、キャッシュデータを返す機能を備えている。
 トラヒック制御装置(トラヒックエンジニアリングサーバ;以下、「TES」とする。)602は、M-Plane(管理・プレーン)を介して、TC601から情報を収集し、移動体ネットワーク全体のトラヒックを平準化するため、eNB501~503やMME401と連携する。TES602は、上記した機能を備えるものとして構成してもよいが、SON(Self Organizing Network)サーバとしての機能を備えるものとしてもよい。
 P-GW201、202は、PDN101との接続点となるゲートウェイであり、S-GW301、302は、呼を収容しデータの伝送を行うゲートウェイである。また、MME401は、C-Plane(コントロールプレーン)を介して、S-GW301、302やeNB501~503と接続され、携帯端末の位置登録や着信時の端末呼び出し処理、無線基地局間ハンドオーバといったモビリティ管理を行う装置である。eNB501~503は、それぞれカバーエリアを有し、それぞれのカバーエリアに位置する携帯端末からアクセスを受け付ける基地局装置である。
 また本実施形態では、MME401起動のハンドオーバー処理を行うため、eNB501~503は、無線側のU-Planeパスをそのまま継続させ、S-GW向けU-Planeパスを張り替える能力を備えているものとする。
 図3は、上記TC601と、TES602の詳細構成を表したブロック図である。図3を参照すると、TC601は、トラヒック量監視部701と、IPアドレス監視部702と、URL分析部703と、データキャッシュ部704と、TES間通信部705とを備えている。これらはそれぞれ次のように動作する。
 トラヒック量監視部701は、移動体ネットワークノード間を流れるU-Planeデータのデータ量を観測する。
 IPアドレス監視部702は、U-Planeデータの送信元IPアドレスと送信先IPアドレスを監視する。この情報により移動体ネットワークのどのノードが送信、受信しているデータなのかを判別することが可能となる。
 URL分析部703は、前記IPアドレス監視部702にて取得されたIPアドレスに基づいて、ユーザがアクセスしているURLを分析する。データキャッシュ部704は、URL分析部703で分析したURLに対して一定時間キャッシュデータを保持、返送する処理を行う。このようなURL分析部703およびデータキャッシュ部704を備えることにより、一時的に特定URLへのアクセスが集中した場合に、当該URLに対応するHTTPサーバまでアクセスせず、TC601側でキャッシュデータを返すことが可能となる。これにより、ネットワークに流れるデータ量を低減することが可能になる。
 TES間通信部705は、トラヒック量監視部701、IPアドレス監視部702で収集したデータをTES602にアップロード(報告)する。
 なお、上記したトラヒック量監視部701と、IPアドレス監視部702と、URL分析部703と、データキャッシュ部704における処理は、TC601を構成するコンピュータに、そのハードウェアを用いて、それぞれ各部に対応する処理を実行させるプログラムにて実現することができる。
 また、上記トラヒック量監視部701、IPアドレス監視部702およびTES間通信部705に相当する機能は、フローテーブルに格納されたフローエントリとのマッチングにより統計情報を収集し、上位装置(オープンフローコントローラ)に送信する、非特許文献1、2のオープンフロースイッチと同等の仕組みにて実現することもできる。この場合、TC601自体が転送機能を持つことになりコスト上の利点がある。また、特定のフローを監視対象から外すなど、細かいトラヒックの監視が可能になるといった利点もある。
 図4は、上記したTC601の配置位置を説明するための図である。TC601は、図4の位置(A)~(C)のいずれにも設置することが可能であるが、望ましくは、図4の位置(A)、(C)のように、他の転送ノード211を経由せずに、P-GWa201、S-GWa301の入出力ポートに接続される。このようにすることにより、P-GWa201、S-GWa301のそれぞれの入出力データ量を計測することが可能になる。また、(B)の位置であってもよく、IPアドレス監視部702と連携することにより、トラヒックを送受信したノードを判別し、P-GWa201、S-GWa301それぞれの入出力データ量を計測することになる。
 再度図3を参照して、TES602の構成について説明する。TES602は、トラヒック分析部801と、選択比率算出部802と、ハンドオーバー起動部803と、統計データ蓄積部804と、TC/ノード間通信部805とを備えている。これらはそれぞれ次のように動作する。
 トラヒック分析部801は、TC601から収集したデータ量やIPアドレスの情報から移動体ネットワークのノード毎の使用している通信帯域、即ち、トラヒックの分布をチェックし、必要があれば、eNBカバーエリア最適化の指示を行う(図5~図7参照)。また、本実施形態では、トラヒック分析部801は、eNB間の自動的な協調制御を実現するSONサーバとして必要な処理も行うものとする。
 選択比率算出部802は、新規呼接続時に、移動体ネットワークのノード毎の使用している通信帯域を考慮したS-GW/P-GW選択比率データを算出する。このS-GW/P-GW選択比率データは、MME401が、S-GW301~302またはP-GW201~202を選択する際に、参照される。このS-GW/P-GW選択比率データにより、MME401は使用している通信帯域の少ないS-GW301~302またはP-GW201~202をそれぞれ選択することが可能となる。
 ハンドオーバー起動部803は、トラヒック分析部801で分析した移動体ネットワークのノードごとの使用している通信帯域から、特定ノードの通信帯域を減らすためハンドオーバーを起動する呼を決定し、MME401にハンドオーバー起動を指示する。
 統計データ蓄積部804は、保守者向けの長期的なネットワーク構成の最適化に向けた参考データとして、トラヒック分析部801で分析したデータを蓄積する。
 TC/ノード間通信部805は、TC601との通信や、トラヒック分析部801からeNB501~503へのカバーエリア変更の通知、選択比率算出部802からMME401へのS-GW/P-GW選択比率データの通知、ハンドオーバー起動部803からMME401へのハンドオーバー処理起動の通知を行う。
 なお、上記したトラヒック分析部801と、選択比率算出部802と、ハンドオーバー起動部803と、統計データ蓄積部804は、TES602を構成するコンピュータに、そのハードウェアを用いて、それぞれ各部に対応する処理を実行させるプログラムにて実現することができる。
 また、トラヒック分析部801、統計データ蓄積部804およびTC/ノード間通信部805に相当する機能は、各オープンフロースイッチから統計情報を取得し、経路設定を行う非特許文献1、2のオープンフローコントローラと同等の仕組みにて実現することもできる。この場合、TES602自体が後記するいくつかのトラヒック平準化処理とは別に、移動体ネットワークを流れるフローの経路制御機能を持つことになる。また、これら収集されたトラヒック状況をTES602における経路設定に役立てることも可能になる。
 続いて、本実施形態の動作について図面を参照して詳細説明する。
[eNBカバーエリア可変化]
 まず、トラヒック分析部801によるeNB501~503のカバーエリアの変更処理について説明する。
 図5、図6は、上記TES602のトラヒック分析部801の動作を説明するための図である。図5は、トラヒック分析部801によるカバーエリア変更指示が行われる前の状態を示している。
 図5の例では、eNBa501とeNBb502は、ともにS1-FlexによりS-GWa301とS-GWb302双方に収容されている。また、図5の例では、eNBa501配下に携帯端末(通信モジュールを含む。)が多数存在し、かつ、通信中でありeNBa501のS-GW向け通信帯域が輻輳している(トラヒック量が所定のしきい値を超えている。)状態を示している。
 図6は、トラヒック分析部801によるカバーエリア変更指示と、それによるカバーエリアの変化した状態を示している。図5に示したような輻輳を検出すると、トラヒック分析部801は、eNBa501におけるトラヒック量をeNBb502に移してトラヒックを平準化できるよう、eNBa501およびeNBb502に指示するカバーエリアを算出し、図6に示すとおり、eNBa501およびeNBb502にそれぞれカバーエリアの変更を指示する。図6の例では、eNBa501のカバーエリアを小さくし、eNBb502のカバーエリアを大きくするカバーエリアの変更指示が行われている。
 前記カバーエリアの変更の結果、eNBa501に収容されていた携帯端末のうち、eNBb502のカバーエリアに位置することになった携帯端末は、ハンドオーバー処理を起動し、U-PlaneパスをeNBb502経由に張り替える。この結果、eNBa501とeNBb502のS-GW向け通信帯域が平準化される
 図7は、上記eNBのカバーエリアの変更指示が行われるまでの処理フローを表した図である。図7に示すように、eNB501~503とS-GW301、302の間に設置されているTC601は、U-Planeデータのデータ量、IPアドレス等の情報を監視(収集)し(ステップS001)、一定時間おき、一定時刻、トラヒック量の急激な変化などの所定の報告タイミングで、TES602に報告する。
 TES602は、TC601から受信したトラヒック情報を分析する。ここでは、トラヒック分析の結果、eNBa501のS-GW向け通信帯域が輻輳していることを検出したものとする(ステップS002)。なお、トラヒック分析の結果、カバーエリアの変更が不要であると判定した場合には、後続する処理は省略される(但し、後記するハンドオーバー起動または選択比率の算出が必要な場合には、それぞれ該当する処理が行われる。)。
 次に、TES602は、eNBa501に隣接しているeNBの状況を調査し、通信帯域に余裕のあるeNBおよびそのS-GW向け空き帯域を検出する。ここでは、eNBa501に隣接しているeNBb502が検出されたものとする(ステップS003)。
 次に、TES602は、ステップS002にて分析したトラヒックの状況と、ステップS003にて検出したS-GW向け空き帯域に基づいて、2つのeNBのS-GW向けの通信帯域を平準化できるよう、eNBa501とeNBb502のカバーエリアをそれぞれ算出する(ステップS004)。
 次に、TES602は、eNBa501およびeNBb502に対して、前記算出したカバーエリア情報を含むカバーエリアの変更を指示する(ステップS005)。ここでは、eNBa501にて輻輳が検出されているため、eNBa501に対してカバーエリアの縮小が指示され、eNBb502に対してカバーエリアの拡大が指示される。
 前記指示を受け取ったeNBa501およびeNBb502は、それぞれTES602からの指示に従って、カバーエリアを変更する(ステップS006)。
 変化したカバーエリアに収容されている携帯端末、つまり、eNBa501のカバーエリアに位置していたがeNBb502のカバーエリアに位置することになった携帯端末は、ハンドオーバー処理を起動する。このようにeNBのカバーエリアを変化させることでeNBのS-GW向け通信帯域の輻輳を避け、トラヒックを平準化することが可能となる。
 なお、上記した例では、eNBのS-GW向け通信帯域が輻輳している例を挙げて説明したが、S-GWのeNB向け通信帯域が輻輳している場合や、S-GWのP-GW向け通信帯域が輻輳している場合にも、同様にeNBのカバーエリアを変化させることが有効である。その理由は、携帯端末のハンドオーバーの起動により、後述するように、トラヒック状況に基づいて算出された選択比率によるノードの再選択が行われ、結果として、上位ノードの輻輳の平準化できるからである。
 なお、上記した例では、eNBa501における輻輳をeNBb502を用いて平準化するものとして説明したが、3つ以上のeNBを用いて、それぞれのトラヒックを平準化するようにしてもよい。例えば、eNBb502における帯域不足をeNBa501およびeNBc503でカバーするようにしてもよいし、あるいは、eNBa501およびeNBc503における帯域不足をeNBb502でカバーするようにしてもよい。
[ハンドオーバー起動]
 次に、ハンドオーバー起動部803による収容している呼のハンドオーバー処理について説明する。
 図8、図9は、上記TES602のハンドオーバー起動部803の動作を説明するための図である。図8は、ハンドオーバー起動部803によるハンドオーバー処理起動が行われる前の状態を示している。
 図8の例では、eNBa501とeNBb502、eNBc503は、ともにS1-FlexによりS-GWa301とS-GWb302との双方に収容されている。eNBa501、eNBb502、eNBc503の配下に携帯端末がそれぞれ存在している。図8の例では、S-GWb302よりもS-GWa301との間にU-Planeパスを設定し、通信中である携帯端末が多く、S-GWa301のeNB向け通信帯域が輻輳(トラヒック量が所定のしきい値を超えている。)している。
 図9は、ハンドオーバー起動部803によるハンドオーバー起動処理が行われた状態を示している。図8に示したような輻輳を検出すると、ハンドオーバー起動部803は、S-GWa301におけるeNBa向けトラヒック量をS-GWb302に移してトラヒックを平準化できるよう、MME401にハンドオーバー起動を指示する。これにより図9の矢印に示すように、S-GWa301に収容されていたU-Planeパス(太破線)が、S-GWb302に収容される(同図太実線参照)。
 図10は、上記ハンドオーバー起動が行われるまでの処理フローを表した図である。図10に示すように、eNB501~503とS-GW301、302の間に設置されているTC601は、U-Planeデータのデータ量、IPアドレス等の情報を監視(収集)し(ステップS001)、一定時間おき、一定時刻、トラヒック量の急激な変化などの所定の報告タイミングで、TES602に報告する。なお、この報告は、前述したカバーエリアの変更処理のための報告を兼ねていてもよい。
 TES602は、TC601から受信したトラヒック情報を分析する。ここでは、トラヒック分析の結果、S-GWa301のeNB向け通信帯域が輻輳していることを検出したものとする(ステップS101)。なお、トラヒック分析の結果、ハンドオーバー起動が不要であると判定した場合には、後続する処理は省略される(但し、前述したカバーエリアの変更または後記する選択比率の算出が必要な場合には、それぞれ該当する処理が行われる。)。
 次に、TES602は、S-GWa301が収容しているeNBと同じeNBを収容しているS-GWの状況を調査し、通信帯域に余裕のあるS-GWおよびeNB向け空き帯域を検出する。ここでは、S-GWa301が収容しているeNBと同じeNBを収容しているS-GWb302が検出されたものとする(ステップS102)。
 次に、TES602は、ステップS101にて分析したトラヒックの状況と、ステップS102にて検出したeNB向け空き帯域に基づいて、2つのS-GWのeNB向けの通信帯域を平準化できるよう、S-GWa301が収容しているU-Planeパスのうち、ハンドオーバーの対象とするU-Planeパスを算出する(ステップS103)。
 次に、TES602は、MME401に対して、前記算出したU-Planeパスを指定してハンドオーバー起動を指示する(ステップS104)。ここでは、eNBa501にて輻輳が検出されているため、eNBa501に対してカバーエリアの縮小が指示され、eNBb502に対してカバーエリアの拡大が指示される。
 MME401は、前記指定された呼に対してハンドオーバー処理を起動する(ステップS105)。これにより、S-GWa301およびS-GWb302は、eNBと連携し、S-GWa301に収容されているU-Planeパスのうち指定されたU-Planeパスを、S-GWb302に変える。
 このようにMME401からハンドオーバー処理を起動することで、携帯端末を接続したままで、S-GWのeNB向け通信帯域の輻輳を避け、トラヒックを平準化することが可能となる。
[ノード選択比率変更]
 続いて、選択比率算出部802による新規呼の接続の際のノード選択比率の変更処理について説明する。
 図11、図12は、上記TES602の選択比率算出部802の動作を説明するための図である。図11は、選択比率算出部802によるノード選択比率算出が行われる前の状態を示している。
 図11の例では、S-GWa301のP-GW向け帯域使用率が20%であり、S-GWb302のP-GW向け帯域使用率が80%である状態を示している。今後、新規呼が、S-GWb302経由で接続される場合、S-GWb302のP-GW向け帯域が不足する可能性がある。
 そこで、本実施形態のTES602の選択比率算出部802は、図12に示すように、上記帯域使用率を考慮して、上記2つのS-GWのP-GW向け帯域が平準化されるように、上記2つのS-GWの選択比率を算出し、MME401に対し通知する。例えば、図12の例では、上記した帯域使用率に基づき、S-GWb301の選択が優先されるような選択比率が算出され、その結果として、S-GWa301を経由してパスが設定された状態を示している。
 図13は、上記選択比率の変更が行われるまでの処理フローを表した図である。図13に示すように、eNB501~503とS-GW301、302の間、S-GW301、302とP-GW201、202との間およびP-GW201、202とPDN101との間に設置されているTC601は、U-Planeデータのデータ量、IPアドレス等の情報を監視(収集)し(ステップS001)、一定時間おき、一定時刻、トラヒック量の急激な変化などの所定の報告タイミングで、TES602に報告する。なお、この報告は、前述したカバーエリアの変更処理やハンドオーバー起動処理のための報告を兼ねていてもよい。
 TES602は、TC601から受信したトラヒック情報に基づいて、各ネットワークノードの使用している通信帯域を集計し、輻輳状況を分析する(ステップS201)。なお、トラヒック分析の結果、いずれのノード間においてもノード選択比率の変更の必要ないと判定した場合には、後続する処理は省略される(但し、前述したカバーエリアの変更または後記する選択比率の算出が必要な場合には、それぞれ該当する処理が行われる。)。
 次に、TES602は、前記分析の結果に基づいて、MME401が新規呼を接続するS-GWおよびP-GWを選択する場合に、S-GW/P-GW選択比率を算出する(ステップS202)。
 次に、TES602は、前記算出したS-GW/P-GW選択比率をMME401に通知する(ステップS203)。
 MME401は、新規呼接続時に、前記通知されたS-GW/P-GW選択比率に従い、通信帯域に余裕のあるS-GW/P-GWを優先的に選択し、S-GW/P-GWの通信帯域を平準化する。
 図14は、S-GWa301のP-GW向け帯域使用率が20%であり、S-GWb302のP-GW向け帯域使用率が80%であるという集計結果が得られた場合のS-GW選択比率の算出フローを示す図である。図14の例では、ステップS202aにおいて、上記帯域使用率が均等になるように、S-GWa301の選択比率を80とし、S-GWb302の選択比率を20とする選択比率が算出される。
 このように、MME401が新規呼の接続する際に参照するノード選択比率を変更することでトラヒックを平準化することが可能である。また、ノード選択比率の変更契機は適宜変更可能であり、例えば、帯域使用率の細かい変動に応じて、ノード選択比率を変更するようにすれば、輻輳の発生を未然に防止できるような細かい制御も可能となる。
 また本実施形態では、上記TES602によるトラヒック平準化処理に加えて、TC601のURL分析部703とデータキャッシュ部704により、一定時間に特定URLへの大量アクセスが発生した場合に、当該URLに対応するHTTPサーバまでU-Planeデータを流さず、TC601にてキャッシュデータを返す処理が行われる。
 従って、移動体ネットワークのあるノードにトラヒックが集中するような事態が生じた場合には、キャッシュデータの返送処理が行われるとともに、その発生箇所に応じて、上記したカバーエリアの変更、ハンドオーバーの起動、ノード選択比率の変更が追随して行われるため、ユーザに帯域の不足を感じさせることなく、可及的速やかにトラヒックを平準化することが可能になる。
 また、上記した実施形態からも明らかなように、本発明によれば、移動体通信事業者は、必要以上に冗長なネットワークノードを用意する必要な無くなり、CAPEX(capital expenditure)/OPEX(operating expenditure)を低減することが可能となる。
 以上、本発明の好適な実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、上記した実施形態では、LTE/EPCに適用した例を挙げて説明したが、UTRAN/CS・PSドメインなど移動体ネットワークであればシステムに依存せず活用することが可能である。また、TCの機能は、各ネットワークノード内に内蔵することも可能である。
 また例えば、上記した実施形態では、TC601に、トラヒック量監視部701、IPアドレス監視部702、URL分析部703、データキャッシュ部704とのそれぞれ独立した機能ブロックがあるものとして説明したが、これらのいくつかを統合してもよい。また、TC601に求められる機能に応じて、いくつかの機能ブロックを省略することも可能である。例えば、データキャッシュ機能が不要であれば、少なくともURL分析部703、データキャッシュ部704を省略することができる。また、TC601が監視対象のノードの入力ポート(または出力ポート)に接続され、入力トラヒック(または出力トラヒック)を監視すればよいケースなど、U-Planeデータの送信元IPアドレス/送信先IPアドレスの監視を必要としない場合には、IPアドレス監視部702を省略することが可能である。
 また例えば、上記した実施形態では、TES602に、トラヒック分析部801、選択比率算出部802、ハンドオーバー起動部803、統計データ蓄積部804とのそれぞれ独立した機能ブロックがあるものとして説明したが、これらのいくつかを統合または省略してもよい。例えば、ハンドオーバー起動機能が不要であれば、ハンドオーバー起動部803を省略することができ、選択比率の変更機能が不要であれば、選択比率算出部802省略することができる、あるいは、トラヒックの偏在状況を判断し、前記各機能ブロックに指示を与える制御部(トラヒック偏在状況判断部)を設ける構成も採用可能である。
 また例えば、上記した実施形態では、TC601は、所定の報告タイミングで、TES602にトラヒック状況を報告するものとして説明したが、監視しているトラヒック量が所定の閾値を超えた場合に、TES602に対しトラヒック量の報告を行うようにしてもよい。これにより、ネットワークにおける負荷を軽減するとともに、TES602におけるトラヒック分析を簡略化することができる。
 また例えば、上記した実施形態では、カバーエリアの拡大・縮小を行うものとして説明したが、基地局がアダプティブアレイアンテナ等の指向性アンテナを備えている場合には、SONにて種々提案されているようにアンテナチルトの変更、送信電力の増大により、局所的にカバーエリアを変更する構成も採用可能である。
 また例えば、上記した実施形態は、次のようなトラヒック平準化方法として捉えることが可能である。
[付記1]
 移動体ネットワークの異なる種類のノード間間に配置したトラヒック監視装置を用いて、少なくとも一方のノードが異なる2以上のパスのトラヒック量を監視するステップと、
 トラヒック制御装置が、前記各トラヒック監視装置からのトラヒック量を収集し、トラヒックの偏在状況に応じて制御情報の種類および送信先ノードを選択し、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散するよう制御情報を出力するステップと、を含むトラヒック平準化方法。
[付記2]
 上記したトラヒック平準化方法において、前記トラヒック制御装置があるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示することにより、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散することができる。
[付記3]
 上記したトラヒック平準化方法において、あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせることにより、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散することができる。
[付記4]
 上記したトラヒック平準化方法において、前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更することにより、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散することができる。
 なお、前述の非特許文献の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲および図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲および図面の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 10 ノード
 20 アクセスノード
 101 パケットデータネットワーク(PDN)
 201、202 PDN・ゲートウェイ(P-GW)
 211 転送ノード
 301、302 サービング・ゲートウェイ(S-GW)
 401 モビリティ管理エンティティ(MME)
 501~503 evolved NodeB(eNB)
 601 トラヒック監視装置(TC)
 602 トラヒック制御装置(TES)
 701 トラヒック量監視部
 702 IPアドレス監視部
 703 URL分析部
 704 データキャッシュ部
 705 TES間通信部
 801 トラヒック分析部
 802 選択比率算出部
 803 ハンドオーバー起動部
 804 統計データ蓄積部
 805 TC/ノード間通信部

Claims (21)

  1.  移動体ネットワークの所定のノード間に配置されて、ノード間のトラヒック量を監視するトラヒック監視装置と、
     前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するトラヒック制御装置とを、備える移動体通信システム。
  2.  前記トラヒック監視装置は、移動体ネットワークの異なる種類のノード間の、少なくとも一方のノードが異なる2以上のパスのトラヒック量を監視し、
     前記トラヒック制御装置は、トラヒックの偏在状況に応じて制御情報の種類および送信先ノードを選択し、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散するよう制御情報を出力する請求項1の移動体通信システム。
  3.  前記トラヒック制御装置がトラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するものである請求項1または2の移動体通信システム。
  4.  前記トラヒック制御装置がトラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるものである請求項1から3いずれか一の移動体通信システム。
  5.  前記トラヒック制御装置がトラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更するものである請求項1から4いずれか一の移動体通信システム。
  6.  前記トラヒック制御装置が、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するトラヒック分析部と、
     あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるハンドオーバ起動部と、
     前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更する選択比率算出部と、を備える請求項1から5いずれか一の移動体通信システム。
  7.  前記トラヒック監視装置は、前記所定のノードの入出力ポートに接続されてトラヒック量を監視する請求項1から6いずれか一の移動体通信システム。
  8.  前記トラヒック監視装置は、監視するデータの送信元IPアドレスと、送信先IPアドレスを監視するIPアドレス監視部と、
     前記IPアドレスに対応するURL(Uniform Resource Locator)を取得するURL分析部と、
     前記取得したURL毎にデータをキャッシュし、一定期間にあるURLへのアクセスが集中した際に前記キャッシュしたデータを要求元に返すデータキャッシュ部と、を備える請求項1から7いずれか一の移動体通信システム。
  9.  前記トラヒック監視装置は、監視しているトラヒック量が所定の閾値を超えた場合に前記トラヒック制御装置に対しトラヒック量の報告を行う請求項1から8いずれか一の移動体通信システム。
  10.  移動体ネットワークの所定のノード間に配置されて、ノード間のトラヒック量を監視するトラヒック監視装置と接続され、
     前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するトラヒック制御装置。
  11.  移動体ネットワークの異なる種類のノード間に配置され、少なくとも一方のノードが異なる2以上のパスのトラヒック量を監視するトラヒック監視装置と接続され、
     前記各トラヒック監視装置から報告されたトラヒックの偏在状況に応じて制御情報の種類および送信先ノードを選択し、トラヒックが偏在しているノードのトラヒック量を、当該ノードと同一種類のノードに分散するよう制御情報を出力する請求項10のトラヒック制御装置。
  12.  前記トラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するものである請求項10または11のトラヒック制御装置。
  13.  前記トラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるものである請求項10から12いずれか一のトラヒック制御装置。
  14.  前記トラヒックの偏在状況に応じて選択する制御情報の種類および送信先の一つは、前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更するものである請求項10から13いずれか一のトラヒック制御装置。
  15.  あるアクセスノードと上位ノードとの間のトラヒックが所定の閾値を超えたときに、前記アクセスノードに対しカバーエリアの縮小を指示するとともに、前記アクセスノードに隣接するアクセスノードに対し、カバーエリアの拡大を指示するトラヒック分析部と、
     あるノードのトラヒックが所定の閾値を超えたときに、前記ノードが収容している呼を、前記呼を収容可能な他のノードにハンドオーバさせるハンドオーバ起動部と、
     前記各ノード間のトラヒック量に基づいて、新規呼の接続時にあるノードが選択する上位ノードの選択比率を変更する選択比率算出部と、を備える請求項10から14いずれか一のトラヒック制御装置。
  16.  移動体ネットワークの所定のノード間に配置されて、ノード間のトラヒック量を監視するとともに、
     請求項10から15いずれか一のトラヒック制御装置に対し、前記監視したトラヒック量を報告するトラヒック監視装置。
  17.  さらに、
     監視するデータの送信元IPアドレスと、送信先IPアドレスを監視するIPアドレス監視部と、
     前記IPアドレスに対応するURL(Uniform Resource Locator)を取得するURL分析部と、
     前記取得したURL毎にデータをキャッシュし、一定期間にあるURLへのアクセスが集中した際に前記キャッシュしたデータを要求元に返すデータキャッシュ部と、を備える請求項16のトラヒック監視装置。
  18.  請求項10から15いずれか一のトラヒック制御装置からの制御情報に基づいて、トラヒックの平準化動作を行うモビリティ管理エンティティ。
  19.  請求項10から15いずれか一のトラヒック制御装置からの制御情報に基づいて、トラヒックの平準化動作を行うアクセスノード。
  20.  移動体ネットワークの所定のノード間に配置したトラヒック監視装置を用いて、ノード間のトラヒック量を監視するステップと、
     前記トラヒック監視装置からの報告に基づいて、トラヒック制御装置が、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力するステップと、を含むトラヒック平準化方法。
  21.  移動体ネットワークの所定のノード間に配置したトラヒック監視装置から、ノード間のトラヒック量を収集する処理と、
     前記トラヒック監視装置からの報告に基づいて、所定のノードに対し、前記トラヒック量を平準化するよう制御情報を出力する処理と、をトラヒック制御装置を構成するコンピュータに実行させるプログラム。
PCT/JP2010/072745 2009-12-18 2010-12-17 移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム WO2011074659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011546177A JP5729310B2 (ja) 2009-12-18 2010-12-17 移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム
CN201080057900XA CN102656911A (zh) 2009-12-18 2010-12-17 移动通信系统、移动通信系统的构成装置、通信均衡化方法以及程序
US13/516,164 US8948775B2 (en) 2009-12-18 2010-12-17 Mobile communication system, constituent apparatuses thereof, traffic leveling method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009287190 2009-12-18
JP2009-287190 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074659A1 true WO2011074659A1 (ja) 2011-06-23

Family

ID=44167409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072745 WO2011074659A1 (ja) 2009-12-18 2010-12-17 移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム

Country Status (4)

Country Link
US (1) US8948775B2 (ja)
JP (1) JP5729310B2 (ja)
CN (1) CN102656911A (ja)
WO (1) WO2011074659A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156877A (ja) * 2011-01-27 2012-08-16 Kddi R & D Laboratories Inc セッション移行後のシグナリングメッセージの経路制御方法及びネットワークシステム
JP2012238996A (ja) * 2011-05-11 2012-12-06 Nec Corp 通信システム、管理装置、制御方法およびプログラム
JP2013098585A (ja) * 2011-10-27 2013-05-20 Kyocera Corp 無線基地局、無線基地局の制御方法、及び無線基地局の制御プログラム
WO2013172107A1 (ja) * 2012-05-15 2013-11-21 株式会社エヌ・ティ・ティ・ドコモ 制御ノード及び通信制御方法
WO2015004921A1 (ja) * 2013-07-11 2015-01-15 日本電気株式会社 通信システム、通信装置、その制御方法および制御装置
WO2015029420A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける通信装置、通信方法、制御装置および管理装置
WO2015029417A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける通信装置および方法、通信パスの制御装置および方法
WO2015029419A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける管理装置および方法
JP2015050772A (ja) * 2013-08-29 2015-03-16 株式会社Nttドコモ パケットゲートウェイユーザプレーンを実装する装置及び方法
JP2015162800A (ja) * 2014-02-27 2015-09-07 ソフトバンク株式会社 通信システム
WO2015182629A1 (ja) * 2014-05-30 2015-12-03 株式会社日立製作所 監視システム、監視装置及び監視プログラム
JP2016509790A (ja) * 2013-01-21 2016-03-31 華為技術有限公司Huawei Technologies Co.,Ltd. オープンフロー可能なWiFi管理エンティティアーキテクチャ
US9819578B2 (en) 2013-08-26 2017-11-14 Nec Corporation Communication device and method in a communication system, and device and method for communication path control
JP2019508963A (ja) * 2016-03-14 2019-03-28 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線リンクにおけるアプリケーショントランザクションの通信

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8804530B2 (en) * 2011-12-21 2014-08-12 Cisco Technology, Inc. Systems and methods for gateway relocation
CN103731901A (zh) 2012-10-11 2014-04-16 中兴通讯股份有限公司 一种路由转发的方法、系统及控制器
US9014116B2 (en) 2012-12-19 2015-04-21 Alcatel Lucent Methods for congestion control in wireless networks
WO2014110239A1 (en) 2013-01-09 2014-07-17 Trendium, Inc. Methods, systems, and computer program products for distributed packet traffic performance analysis in a communication network
WO2014141332A1 (ja) * 2013-03-14 2014-09-18 日本電気株式会社 通信ネットワーク、通信ネットワークのデータ送受信方法
KR20140135000A (ko) * 2013-05-15 2014-11-25 삼성전자주식회사 소프트웨어정의네트워킹 기반 통신시스템의 서비스 처리 방법 및 장치
US9143419B2 (en) 2013-06-14 2015-09-22 Hewlett-Packard Development Company, L.P. Measuring flow activity on an openflow enabled network device
WO2015020468A1 (en) 2013-08-09 2015-02-12 Lg Electronics Inc. Method and apparatus for transmitting cell shaping indication in wireless communication system
EP2879339A1 (en) * 2013-11-27 2015-06-03 Thomson Licensing Method for distributing available bandwidth of a network amongst ongoing traffic sessions run by devices of the network, corresponding device.
CN104780073A (zh) * 2014-01-10 2015-07-15 中兴通讯股份有限公司 一种监控网络流量的方法、装置和控制器
WO2015113279A1 (zh) * 2014-01-29 2015-08-06 华为技术有限公司 通信网络、设备和控制方法
US9838475B2 (en) * 2014-04-07 2017-12-05 Infinidat Ltd. Connectivity analysis and a mass storage system capable of connectivity analysis
US9591509B2 (en) * 2014-04-10 2017-03-07 Qualcomm Incorporated Congestion control scheme
JP2016042230A (ja) * 2014-08-14 2016-03-31 富士通株式会社 コンテンツ送信プログラム、装置、及び方法
US9807669B1 (en) 2014-10-24 2017-10-31 Sprint Communications Company L.P. Identifying communication paths based on packet data network gateway status reports
WO2016072686A1 (ko) * 2014-11-03 2016-05-12 엘지전자 주식회사 셀 형상화를 수행하기 위한 방법 및 장치
TWI552638B (zh) 2014-11-06 2016-10-01 財團法人工業技術研究院 軟體定義網路與其行動管理方法與控制器
WO2017089872A1 (en) * 2015-11-27 2017-06-01 Nokia Technologies Oy Handover with postponed path switch
CN108242951B (zh) * 2016-12-27 2021-10-01 华为技术有限公司 用于高空平台电台协作覆盖的方法、装置和系统
WO2020005237A1 (en) * 2018-06-27 2020-01-02 Intel Corporation Tuning topology for distribution mesh
CN112702766B (zh) * 2019-10-22 2023-10-17 大唐移动通信设备有限公司 一种控制天线通道的方法、装置、电子设备及存储介质
CN114513464B (zh) * 2021-12-31 2024-03-29 深圳市联洲国际技术有限公司 流量负载均衡调度方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261925A (ja) * 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> VoIPネットワーク輻輳制御方法及びシステム装置
JP2003051845A (ja) * 2001-08-07 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> ネットワーク経路制御システムと方法およびプログラムと記録媒体
JP2003298631A (ja) * 2002-03-29 2003-10-17 Toshiba Corp トラヒック監視サーバ装置、トラヒックエンジニアリングシステム及びトラヒックエンジニアリング方法
JP2005318222A (ja) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp パケット伝送システム及びパケット伝送方法
JP2006054652A (ja) * 2004-08-11 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> 通信ネットワークトラヒック分析装置、システム、および分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069176A (ja) 1999-08-27 2001-03-16 Nippon Telegr & Teleph Corp <Ntt> 移動体通信網
JP2003111133A (ja) 2001-09-27 2003-04-11 Nec Microsystems Ltd 移動体通信システムおよびそのトラフィック制御法
US9369498B2 (en) * 2003-01-30 2016-06-14 Nokia Technologies Oy Message-based conveyance of load control information
JP2005031822A (ja) 2003-07-09 2005-02-03 Hitachi Ltd 自治体向け外国人相談窓口支援システム
CN100480711C (zh) 2003-08-14 2009-04-22 特尔科迪亚技术股份有限公司 在移动电信系统中的自动ip话务优化
JP2004343807A (ja) * 2004-08-23 2004-12-02 Hitachi Ltd セルラ移動通信システム
WO2007116984A1 (en) * 2006-03-31 2007-10-18 Matsushita Electric Industrial Co., Ltd. Method for selecting attachment points and relay node used in the method
JP2008042451A (ja) * 2006-08-04 2008-02-21 Nec Corp 無線lanネットワークシステム、ポリシコントロール装置、アクセスポイント、および負荷制御方法
US8064342B2 (en) * 2006-10-27 2011-11-22 Verizon Patent And Licensing Inc. Load balancing session initiation protocol (SIP) servers
JP2008236037A (ja) 2007-03-16 2008-10-02 Nec Corp 無線ネットワークシステム
JP2008259046A (ja) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd 無線制御装置、無線基地局、通信端末装置及び強制ハンドオーバー方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261925A (ja) * 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> VoIPネットワーク輻輳制御方法及びシステム装置
JP2003051845A (ja) * 2001-08-07 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> ネットワーク経路制御システムと方法およびプログラムと記録媒体
JP2003298631A (ja) * 2002-03-29 2003-10-17 Toshiba Corp トラヒック監視サーバ装置、トラヒックエンジニアリングシステム及びトラヒックエンジニアリング方法
JP2005318222A (ja) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp パケット伝送システム及びパケット伝送方法
JP2006054652A (ja) * 2004-08-11 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> 通信ネットワークトラヒック分析装置、システム、および分析方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156877A (ja) * 2011-01-27 2012-08-16 Kddi R & D Laboratories Inc セッション移行後のシグナリングメッセージの経路制御方法及びネットワークシステム
JP2012238996A (ja) * 2011-05-11 2012-12-06 Nec Corp 通信システム、管理装置、制御方法およびプログラム
JP2013098585A (ja) * 2011-10-27 2013-05-20 Kyocera Corp 無線基地局、無線基地局の制御方法、及び無線基地局の制御プログラム
WO2013172107A1 (ja) * 2012-05-15 2013-11-21 株式会社エヌ・ティ・ティ・ドコモ 制御ノード及び通信制御方法
JP2013239913A (ja) * 2012-05-15 2013-11-28 Ntt Docomo Inc 制御ノード及び通信制御方法
JP2016509790A (ja) * 2013-01-21 2016-03-31 華為技術有限公司Huawei Technologies Co.,Ltd. オープンフロー可能なWiFi管理エンティティアーキテクチャ
JPWO2015004921A1 (ja) * 2013-07-11 2017-03-02 日本電気株式会社 通信システム、通信装置、その制御方法および制御装置
WO2015004921A1 (ja) * 2013-07-11 2015-01-15 日本電気株式会社 通信システム、通信装置、その制御方法および制御装置
US10136412B2 (en) 2013-07-11 2018-11-20 Nec Corporation Communication system, communication apparatus, and control method and control apparatus thereof
JPWO2015029420A1 (ja) * 2013-08-26 2017-03-02 日本電気株式会社 通信システムにおける通信装置、通信方法、制御装置および管理装置
WO2015029420A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける通信装置、通信方法、制御装置および管理装置
JPWO2015029417A1 (ja) * 2013-08-26 2017-03-02 日本電気株式会社 通信システムにおける通信装置および方法、通信パスの制御装置および方法
JPWO2015029419A1 (ja) * 2013-08-26 2017-03-02 日本電気株式会社 通信システムにおける管理装置および方法
WO2015029417A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける通信装置および方法、通信パスの制御装置および方法
US9819578B2 (en) 2013-08-26 2017-11-14 Nec Corporation Communication device and method in a communication system, and device and method for communication path control
WO2015029419A1 (ja) * 2013-08-26 2015-03-05 日本電気株式会社 通信システムにおける管理装置および方法
JP2015050772A (ja) * 2013-08-29 2015-03-16 株式会社Nttドコモ パケットゲートウェイユーザプレーンを実装する装置及び方法
JP2015162800A (ja) * 2014-02-27 2015-09-07 ソフトバンク株式会社 通信システム
WO2015182629A1 (ja) * 2014-05-30 2015-12-03 株式会社日立製作所 監視システム、監視装置及び監視プログラム
JP2019508963A (ja) * 2016-03-14 2019-03-28 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線リンクにおけるアプリケーショントランザクションの通信

Also Published As

Publication number Publication date
JP5729310B2 (ja) 2015-06-03
US20120252458A1 (en) 2012-10-04
CN102656911A (zh) 2012-09-05
US8948775B2 (en) 2015-02-03
JPWO2011074659A1 (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5729310B2 (ja) 移動体通信システム、その構成装置、トラヒック平準化方法およびプログラム
US9860768B2 (en) System and method for load based optimization in communication networks
US8693456B2 (en) Method, system, and device for radio network aggregation
EP2472946B1 (en) Adaptive control of video transcoding in mobile networks
US20190289499A1 (en) Control Method and Apparatus for Load Transmission
JP5820533B2 (ja) モバイルデバイスのためのネットワークアクセスを制御する方法
JP5433577B2 (ja) データ伝送制御方法及びデバイス
CN103563475B (zh) 用于利用多描述编码的移动多媒体服务的多路径管理架构和协议
US20120257581A1 (en) Femto Cluster Architecture for WCDMA and LTE
EP2985939B1 (en) Apparatus and method for distribution of radio channel state and base station congestion state in a network environment
CN107534608B (zh) 用于在无线通信网络中处理数据流的方法和装置
JP2005348391A (ja) データ転送システムおよびその方法
JPWO2014199646A1 (ja) 通信システムにおけるサービス品質の制御方法および制御装置、ならびに通信装置
EP3025544A1 (en) Method and network node for congestion management in a wireless communications network
JP6011619B2 (ja) 移動通信端末、通信方法、通信システムおよび制御装置
EP2625826B1 (en) Subscriber handling in radio telecommunication networks
US20140126373A1 (en) Dynamic traffic offloading
JP2012238996A (ja) 通信システム、管理装置、制御方法およびプログラム
JP2021505041A (ja) システムおよびユーザ機器
KR101579070B1 (ko) 펨토셀을 이용한 코어 네트워크 무선 데이터의 오프로딩 방법
Venmani et al. Substitution networks based on software defined networking
KR100779834B1 (ko) 트래픽 제어 방법
JP6280318B2 (ja) 網内通信帯域幅を計測する方法及び装置
JP2020191497A (ja) 情報処理方法
JP2011254296A (ja) 情報処理装置および情報処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057900.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13516164

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011546177

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837683

Country of ref document: EP

Kind code of ref document: A1