JP6280318B2 - 網内通信帯域幅を計測する方法及び装置 - Google Patents

網内通信帯域幅を計測する方法及び装置 Download PDF

Info

Publication number
JP6280318B2
JP6280318B2 JP2013126133A JP2013126133A JP6280318B2 JP 6280318 B2 JP6280318 B2 JP 6280318B2 JP 2013126133 A JP2013126133 A JP 2013126133A JP 2013126133 A JP2013126133 A JP 2013126133A JP 6280318 B2 JP6280318 B2 JP 6280318B2
Authority
JP
Japan
Prior art keywords
wireless
terminal
server
measurement
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013126133A
Other languages
English (en)
Other versions
JP2015002444A (ja
Inventor
一敏 篠原
一敏 篠原
萩原 淳一郎
淳一郎 萩原
曉 山田
曉 山田
正周 大和
正周 大和
和之 村上
和之 村上
大輔 野島
大輔 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2013126133A priority Critical patent/JP6280318B2/ja
Publication of JP2015002444A publication Critical patent/JP2015002444A/ja
Application granted granted Critical
Publication of JP6280318B2 publication Critical patent/JP6280318B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、異なる無線サービスを提供する複数の無線ベアラにアクセスするマルチモード無線端末が無線通信エリア内において可用通信帯域幅を効率的に測定する方法と装置とに関する。
近年の無線端末の利用態様として、利用する無線アクセス網を、セルラー無線網と無線LANサービスとの間でユーザ自身により状況に応じて切り替えることが一般的である。無線端末のこのような利用態様を可能とするには、複数の異なるRAT(例えば、LTE、WiMAXおよび無線LANなどの無線アクセス技術)にそれぞれ対応した複数の無線インターフェース回路を装備したマルチモード無線端末を使用してユーザが無線網アクセスを行うことが前提となる。この場合、マルチモード無線端末は、同時利用可能な複数の異なるRATのそれぞれに接続する複数の無線ベアラを確立し、当該複数の無線ベアラ上での同時並列無線伝送を実行することが可能であり、これはリンク・アグリゲーションとして知られている。また、別の態様として、マルチモード無線端末は、同時利用可能な複数の異なるRATの間で状況に応じて一の無線ベアラが接続するRATを選択的に切り替えて無線通信することも可能であり、これは異種RAT間接続切替と呼ばれる。
上記のように異なるRATに接続する複数の無線ベアラ間で無線端末の通信トラフィックを配分制御することにより、無線帯域幅の集約、異種RAT間での通信負荷分散、弾力的なネットワーク利用可能性などの利点を達成することができる。この場合、各無線ベアラ上での可用通信帯域幅の大きさに基づいて、マルチモード無線端末から同時接続可能な複数の無線ベアラ間で端末トラフィックを最適配分したり、端末トラフィック伝送に使用する無線ベアラを取捨選択したりすることが有益である。そのためには、複数の無線ベアラがそれぞれ接続する複数の異なるRATの各々について、各RATを構成する無線通信事業者網の上での可用通信帯域幅を計測することが必要となる。
特定のRATを構成する無線通信事業者網の上で可用通信帯域幅を計測する方式の一つにアクティブ計測がある。アクティブ計測においては、複数個の計測用のパケットをあるノードに対して送信し、そのノードからの計測パケットに対する応答数、応答間隔、または応答までの待ち時間などを計測する手法が用いられる。アクティブ計測は到達性のチェックや応答時間、実効的な帯域の計測等の性能計測によく用いられている。アクティブ計測の場合、任意の区間での実測値を得られることが大きな利点である。
その反面、アクティブ計測をネットワーク内の全測定機器間で実施する場合、ネットワークに負荷がかかってしまう。特に、全計測機器間をフルメッシュ接続し、同時にアクティブ計測を実施する場合には、大きな負荷となる。また、アクティブ計測を継続的に行うのは、ネットワークにとって大きな負荷となる。
異なる手法としては、パッシブ計測と呼ばれる手法がある。この方法はアクティブ計測と異なり計測用のパケットを送信しないため、ユーザ・パケットで通信路が混雑しているような状況でもユーザ・パケットに対する影響が少ないという特徴がある。しかしながら、パッシブ計測では計測用のパケットを送受信しないためユーザ・パケットへの影響は無いが、ユーザ・パケットを受信する毎にTCP、RTPなどのアプリケーション・レベルのコネクションを分類し、コネクション毎のプロトコル情報を解析する必要があり、必要な記憶容量が大で処理負荷が重い、という問題がある。
これに対して、アクティブ計測では計測用のパケットを処理だけでよいため、計測に必要なソフトウェア・ハードウェアの処理が比較的簡単で処理負荷が軽く、低コストで実現できる、というメリットがある。このアクティブ計測のメリットを生かしながら、ネットワーク負荷に対する影響が少なく、高精度でパケットの伝送スループットを計測できる方法が望まれている。
特許文献1が開示するアクティブ計測方式は、計測用パケットの伝送による通信負荷や通信帯域消費が通常のユーザ・パケットのトラフィックに与える影響を少なくするために、計測用パケットをユーザ・パケット伝送の間隙を利用して送信する。例えば、特許文献1記載のアクティブ計測方式においては、パケット送信ノードから通常のユーザ・パケットが送出されない無送出時間を監視し、無送出時間の長さが所定の時間長を超えたタイミングで計測用パケットをパケット受信ノードへと送出する。
特許文献2が開示するアクティブ計測方式は、以下の手順で網内の計測を実行する。まず、パケット送信部から送出された計測用パケットをネットワーク内の通信経路上の複数のルータが順次中継してゆく際に、各ルータが当該計測用パケットにルータ識別情報、パケット受信時刻および現在までのパケット中継回数を追記する。続いて、パケット受信部が当該中継された計測用パケットを受信した後に、受信した計測用パケットに追記された通信経路上の各ルータの識別情報、各ルータ上での受信時刻およびパケット中継回数を収集し、通信経路毎にネットワーク情報の統計を取る。特許文献2記載のアクティブ計測方式は、このように一つだけの計測用パケットをネットワーク内で巡回させ、通過する各ルータが計測用パケット内に情報を追記してゆく形でネットワーク情報を収集し、計測用パケットの受信部で収集したネットワーク情報の統計を取る。その結果、アクティブ計測のために送出する計測用パケットの個数を大幅に減らし、計測用パケットがネットワークにかける負荷を減らしている。
国際公開WO2008/117379号公報 特開2010−041543号公報
マルチモード無線端末は、今後の一層の普及が予想される端末である。しかしながら、セルラー無線通信システムのセル内に在圏している無線端末や無線LANの通信エリア内に在圏している各無線端末が、上述したアクティブ計測を実行する際、以下の問題を生じる。すなわち、同一セル内に非常に多数の無線端末が在圏している場合、これら多数の無線端末がセルに通信カバレージを提供する基地局に対して一斉に計測用パケットを送信する可能性がある。これは、同一の無線LAN通信エリア内に非常に多数の無線端末が在圏している場合も同様である。
さらに、以下の問題が生じる可能性も考えられる。各無線端末が複数の異なるRAT間で頻繁に無線接続を切り替えるマルチモード端末である場合、各RATの配下にある基地局から見ると、多くのマルチモード無線端末が極めて頻繁にセルに出入りしているように見える。この場合、マルチモード無線端末が一つのセルに出入りする頻度は、無線端末が一つのRAT内において、通常のハンドオーバー動作によってセルに出入りする頻度よりも遥かに高い。従って、数多くのマルチモード無線端末の各々が新たなセルに進入する毎に、異なるRATに接続する複数の無線ベアラ間での接続切り替えのために、アクティブ計測に使用する計測用パケットが無線端末から送出される。その場合、無線端末からの計測用パケット送出により基地局に集中する通信負荷は特許文献1や特許文献2において想定されているネットワーク環境よりも飛躍的に大きくなる。これは、無線LANの通信エリア内にマルチモード無線端末が在圏している場合であっても同様である。
以上の問題点に鑑み、本発明は、アクティブ計測に使用される計測用パケットの送信元となるマルチモード無線端末が同一セル内に多数存在する状況において、基地局に計測用パケットによる通信負荷が集中しないような仕組みを実現することを目的とする。また、本発明は、上述した計測用パケットの送信元となる多数のマルチモード無線端末が新たなセルと頻繁に接続する状況において、セルへの接続時に送信される計測用パケットによる通信負荷が基地局に集中しないような仕組みを実現することを目的とする。
以上から、本発明は、無線端末とサーバとの間の可用通信帯域を計測する方法であって:一つ以上の無線端末がサーバと通信するためにセル内の基地局に無線接続するたびに、前記セル内に在圏中の全ての無線端末の中から前記基地局が代表端末を選出するステップ;前記基地局が前記選出された代表端末に対して、前記代表端末と前記サーバとの間の可用通信帯域幅を計測するように指示するステップ;および、前記代表端末から受信した前記帯域幅計測の結果を前記基地局が前記セル内の全ての無線端末にブロードキャストするステップ;を備える構成を採る。
さらに本発明においては、前記ブロードキャストするステップは:前記セル内のダウンリンク共通制御チャネルを使用して前記基地局から前記帯域幅計測の結果を前記セルに接続中の全ての無線端末にブロードキャストするステップを備え、前記ダウンリンク共通制御チャネルは、単一の周波数バンドのみを占有する、ことを特徴とする。
さらに本発明においては、前記無線端末は、異なるRATにそれぞれ対応する複数の無線通信事業者網に同時接続して前記サーバと通信することが可能なマルチモード無線端末であることを特徴とし、前記マルチモード無線端末が、前記複数の無線通信事業者の各々を経由して計測された可用通信帯域幅に基づいて前記複数の無線通信事業者網の中から無線接続先を取捨選択しようとするたびに、新たに接続可能となった無線通信事業者網を経由した可用通信帯域幅を取得するために、前記マルチモード無線端末によって本発明に係る上述した方法が実行される、ことを特徴とする。
さらに本発明においては、前記制御プロセッサが前記複数の無線通信事業者網の各々を経由した可用通信帯域幅を計測する動作は、前記マルチモード無線端末が、各無線通信事業者網を経由して自端末と前記サーバとの間で計測用パケットを送受信することにより可用通信帯域幅を計測する動作を備える、ことを特徴とする。
本発明は、アクティブ計測に使用される計測用パケットの送信元となるマルチモード無線端末が同一セル内に多数存在する状況において、基地局に計測用パケットによる通信負荷が集中しないようにすることができる。また、本発明は、上述した計測用パケットの送信元となる多数のマルチモード無線端末が新たなセルと頻繁に接続する状況において、セルへの接続時に送信される計測用パケットによる通信負荷が基地局に集中しないようにすることができる。
本実施の形態に係る無線通信システムの構成を示す図。 本実施の形態においてユーザが使用する無線端末(UE)の装置構成を示す図。 本実施の形態を説明するのに使用されるネットワーク計測システムの概略図。 本実施の形態に従い、無線端末、アクセスポイントおよびサーバの三者間でのネットワーク計測用信号の流れを説明するイベント・フロー図。 本実施の形態に係る全体の動作フローを説明するフローチャート。 本実施の形態に従い、ネットワーク計測のために送受信されるパケットのフォーマットを示す図。
<1>本実施の形態の概要
本実施の形態は、セルラー基地局または無線LANアクセスポイントを介して異なるRATに対応した一つ以上の無線通信事業者網と接続中のマルチモード無線端末が、同時接続可能な一つ以上の無線通信事業者網の各々を経由した可用通信帯域幅の推定結果を取得する。その上で、本実施の形態は、無線通信事業者網毎に取得された可用通信帯域幅に応じて、いずれの無線通信事業者網をサーバと通信するための無線通信サービスとして選択するかを決定する。代替的に、本実施の形態は、無線通信事業者網毎に取得された可用通信帯域幅に応じて、同時接続可能な一つ以上の無線通信事業者網の間でマルチモード無線端末が送受信するトラフィックを最適配分する。
本実施の形態に関する以下の説明においては、まず最初に、図1を参照しながら、異なるRATに対応した複数の無線通信事業者網およびインターネット網から構成される無線通信システムであって、本実施の形態が実現される無線通信システムの全体構成を説明する。続いて、図2を参照しながら、上述した本実施の形態において使用されるマルチモード無線端末のハードウェア構成を説明する。
続いて、本実施の形態に従い、マルチモード無線端末上において自端末から同時接続可能な複数の無線ベアラ間の接続切り替えを各無線ベアラ毎に取得された可用通信帯域幅、通信遅延量またはパケット損失率に応じて制御する方法について説明する。
続いて、図3乃至図6を参照しながら、本実施の形態において、マルチモード端末が無線通信事業者網毎に可用通信帯域幅をアクティブ計測方式に基づいて計測する際に、計測用パケットの送受信により無線ネットワークに対してかかる負荷を軽減する方法について説明する。本実施の形態において使用されるこの計測方法は、上記計測用パケットの送信元となるマルチモード無線端末が同一セル内に多数存在する状況において、またはこれらの端末がセルと頻繁に接続する状況において、セルをサービスする基地局に計測用パケットによる通信負荷が集中しないようにする。
<2>本実施の形態に係る無線通信システムのネットワーク構成
以下、図2を使用して、本実施の形態に係る無線通信システムのネットワーク構成を説明する。図2の無線通信システムは、UE10、一つ以上の無線アクセス網40A〜40C、無線アクセス網40A〜40Cとコア網ゲートウェイ61〜63を介して接続された一つ以上のコア網(CN: Core Network)51/52、コア網51/52と外部接続ゲートウェイ71/72を介して接続されたインターネット網80およびインターネット網80に接続されたサーバ20から構成される。
無線アクセス網40A〜40Cは、無線通信を介したコア網への無線アクセス経路をUE10に対して提供するネットワークであり、無線アクセス網40A〜40Cの各々は、互いに異なるRATに基づくことが可能である。例えば、無線アクセス網40Aは、3GPPが標準化を進めるE−UTRAN標準に基づいたLTE網とすることが出来、無線アクセス網40Bは、IEEE802.16e標準に基づいたWiMAX網とすることが出来、無線アクセス網40Cは、Wi−Fiのような無線LAN網とすることが出来る。
コア網51および52は、無線通信サービス提供事業者内において多数のルータ機器やネットワーク制御用サーバ機器を高速回線で接続することによって形成され、UEのインターネットへの接続(E−UTRANのコア網においてはP−GW(PDN-Gateway)の機能に相当する)、UEの端末モビリティ管理(E−UTRANのコア網においてはMMEの機能に相当する)またはUEの通信サービス認証(E−UTRANのコア網においてはHSSの機能に相当する)などの機能を実行する。2つ以上の異なる無線アクセス網を介して同一のコア網に無線アクセスすることも可能である。例えば、コア網51は、無線アクセス網40Aおよびコア網ゲートウェイ61を介してUE10から無線アクセスが可能であるのと同時に、無線アクセス網40Bおよびコア網ゲートウェイ62を介してUE10から無線アクセスが可能である。他方、コア網52は、無線アクセス網40Cおよびコア網ゲートウェイ63を介してUE10から無線アクセスが可能である。
外部接続ゲートウェイ71/72は、コア網51/52をインターネット網80にそれぞれ接続し、これにより、コア網51/52は、インターネット網80との間でトラフィックを通信することが可能となる。コア網51がE−UTRAN標準に基づいて構成されている場合には、外部接続ゲートウェイ71は、P−GW(PDN-Gateway)とすることが可能である。
図2において、無線ベアラ30Aは、UE10をLTE網である無線アクセス網40Aに接続する無線接続手段である。同様に、無線ベアラ30Bは、UE10をWiMAX網である無線アクセス網40Bに接続する無線接続手段である。無線ベアラ30Cは、UE10をWi−Fi網である無線アクセス網40Cに接続する無線接続手段である。
図2において、UE10は、無線ベアラ30A〜30Cのいずれか一つ以上を使用して、無線アクセス網40A〜40Cのいずれか一つ以上と無線接続する。続いて、UE10は、無線アクセス網、コア網51/52およびインターネット網80を経由してサーバ20との間でTCP/IPに基づくエンド・ツー・エンド通信を行う。
<3>本実施の形態において使用されるUEのハードウェア構成
以下、図3を使用して、本実施の形態に係る無線通信システム内において使用されるUE10のハードウェア構成を説明する。
図3において、UEは、無線信号を送受信するアンテナ101、アンテナ101と接続された無線インターフェース102a〜102n、メモリ103、制御プロセッサ104、制御プロセッサ104との間で入出力データをやり取りしながらユーザとUE10との間のユーザ・インターフェースを制御するユーザ入出力装置105、およびUE10の設定パラメータなどを記憶する永続的な記憶媒体であるストレージ106およびバス107から構成される。上述した無線インターフェース102、メモリ103、制御プロセッサ104、ユーザ入出力装置105、およびストレージ106は、バス107を介して相互に接続されている。
無線インターフェース102a〜102nの各々は、受信したRF信号を周波数ダウンコンバートしてデジタル化し、復調し、そして復号化することにより、デジタル情報に変換して後続の情報処理のために提供する。これとは逆に、無線インターフェース102a〜102nの各々は、UE10内で生成されたデジタル情報を、符号化し、変調し、そして周波数アップコンバートすることによりRF信号に変換して無線送信のためにアンテナ101に提供する。無線インターフェース102a〜102nの各々は、LTE、WiMAXまたは無線LANなどのような複数の異なる種類のRATに対応した信号処理を実行可能となるように構成されている。すなわち、無線インターフェース102a〜102nの各々は、n種類のRATの各々と一対一に対応する。例えば、無線インターフェース102aは、LTE網に対応した無線信号の送受信処理を実行可能に構成され、無線インターフェース102bは、WiMAX網に対応した無線信号の送受信処理を実行可能に構成され、無線インターフェース102cは、無線LAN網に対応した無線信号の送受信処理を実行可能に構成されている。
メモリ103は、無線インターフェース102a〜102nが後述する制御プロセッサ104との間でやり取りするデジタル情報やUE10全体を制御するプログラムなどを記憶する。
制御プロセッサ104は、メモリ103からプログラムを読み出してUE10全体の制御、無線インターフェース102a〜102nを介してアンテナ101から送信されるデジタル情報の生成、無線インターフェース102a〜102nを介してアンテナ101から受信したデジタル情報の更なる処理などを実行する。
制御プロセッサ104は、無線インターフェース102a〜102nの中のいずれか一つ以上を選択的にイネーブルし、バス107を介して当該イネーブルされた無線インターフェースのみを介してデジタル情報をやり取りすることにより、特定のRATを選択的に使用して通信することが出来る。また、制御プロセッサ104は、無線インターフェース102a〜102nの全てをイネーブルし、バス107を介して全ての無線インターフェース102a〜102nを介してデジタル情報をやり取りすることにより、同時利用可能な全てのRAT(無線アクセス網)を同時に使用して通信することが出来る。
ユーザ入出力装置105は、UE10上に設けられた画面表示ディスプレイやキーパッドと制御プロセッサ104との間で入出力データのやり取りを行うと同時に、ユーザとUE10の間のユーザ・インターフェースの制御を行う。加えて、ユーザ入出力装置105は、UE10上に設けられた画面表示ディスプレイやキーパッドのデバイス状態や入出力ステータスが変化した際に、バス107を介して当該変化と関係付けられた割り込み処理を制御プロセッサ104に対して指示する。このような割り込み制御を可能とするために、ユーザ入出力装置105は、自身が管理する画面表示ディスプレイやキーパッドなどの入出力デバイス状態を電気的にモニタリングする機能を備えている。
<4>本実施の形態に係る無線ベアラ間の切り替え制御
以下、図1を再度参照しながら、本実施の形態に係る無線ベアラ間での切り替え制御に関して説明する。具体的には、本実施の形態に従い、マルチモード無線端末上において自端末から同時接続可能な複数の無線ベアラ間の接続切り替えを各無線ベアラ上で計測された可用通信帯域幅、通信遅延量またはパケット損失率に応じて制御する方法について説明する。
図1において、マルチモード無線端末10は、無線アクセス網40A〜40Cにそれぞれ対応する3つのRATからのキャリア信号を検出したと仮定する。この場合、マルチモード無線端末10は、無線アクセス網40A〜40Cにそれぞれ対応する3つのRATに対して3つの無線ベアラ30A〜30Cをそれぞれ介して同時に接続可能な状態にある。この時、無線ベアラ30Aが接続するRATであるLTE網は、無線アクセス網40A、コア網51およびルータ網54から成る第1の無線通信事業者網によって構成される。同様に、無線ベアラ30Bが接続するRATであるWiMAX網は、無線アクセス網40B、コア網52およびルータ網54から成る第2の無線通信事業者網によって構成される。同様に、無線ベアラ30Cが接続するRATである無線LANは、無線アクセス網40CおよびISP網53およびルータ網54から成る第2の無線通信事業者網によって構成される。
上述した仮定の下で、マルチモード無線端末10は、以下のようにして3つの無線ベアラ30A〜30Cのそれぞれの上で同時並列的に伝送すべき端末トラフィックを上記3つの無線ベアラ間で最適配分する。マルチモード無線端末10は、3つの無線ベアラ30A〜30Cをそれぞれ無線接続手段として、上述した第1〜第3の無線通信事業者網をそれぞれ経由する3本の通信経路を介して、インターネット網80内のサーバ20とエンド・ツー・エンドで通信する。従って、上述した3本の通信経路のそれぞれについてマルチモード無線端末10とサーバ20との間の可用通信帯域幅を計測することにより、3つの無線ベアラ30A〜30Cの各々についてサーバ20までのエンド・ツー・エンドの可用通信帯域幅を推定することが出来る。
本実施の形態に係る無線ベアラ間の切り替え制御は、上述のように3つの無線ベアラ30A〜30Cの各々についてサーバ20までのエンド・ツー・エンドの可用通信帯域幅を取得し、当該取得された可用通信帯域幅の大きさに応じて、3つの無線ベアラ30A〜30Cの間で端末トラフィック量を配分する。代替的に、本実施の形態に係る無線ベアラ間の切り替え制御は、上述のように3つの無線ベアラ30A〜30Cの各々についてサーバ20までのエンド・ツー・エンドの可用通信帯域幅を取得し、当該取得された可用通信帯域幅の大きさに応じて、3つの無線ベアラ30A〜30Cの中から端末トラフィックの伝送に使用する無線ベアラを選択し、選択されなかった無線ベアラの接続を切る。
なお、本実施の形態においては、3つの無線ベアラ30A〜30Cの各々について取得した可用通信帯域幅に基づいて同時接続可能な複数の無線ベアラ間でのトラフィック配分や接続に使用する無線ベアラの取捨選択を実行していた。しかし、代替的な実施例においては、3つの無線ベアラ30A〜30Cの各々についてサーバ20までのエンド・ツー・エンドの通信遅延量やパケット損失率を取得し、当該取得された通信遅延量やパケット損失率に応じて無線ベアラ間でのトラフィック配分や接続に使用する無線ベアラの取捨選択を実行してもよい。この場合、上述した3本の通信経路のそれぞれについてマルチモード無線端末10とサーバ20との間の通信遅延量やパケット損失率を計測することにより、3つの無線ベアラ30A〜30Cの各々についてサーバ20までのエンド・ツー・エンドの通信遅延量やパケット損失率を推定することが出来る。
<5>本実施の形態において実行されるアクティブ計測
以下本実施の形態に係る第1と第2の実施例について説明する。
(5−1)第1実施例
図3(A)は、図1に示したマルチモード無線端末10とサーバ20との間を結ぶエンド・ツー・エンド通信経路において可用通信帯域幅(および、通信遅延量/パケット損失率)を計測する際のネットワーク計測システムを示す。図4(A)は、図3(A)に示すネットワーク計測システム内におけるネットワーク計測動作の流れを示す。なお、以下の説明においては、マルチモード無線端末10が無線接続のために使用するRATが無線LANである場合を例として説明している。しかし、本実施例においては、マルチモード無線端末10が無線接続のために使用するRATがセルラー基地局によってサービスされるセルラー無線網である場合も同様に考えることが出来る。
図3(A)のネットワーク構成は、マルチモード無線端末10、無線LANアクセスポイント90、サーバ20および通信エリア301より構成される。エリア301は、無線LANアクセスポイント90によってサービスされる無線LAN通信エリアであり、マルチモード無線端末10は、エリア301内に在圏している。マルチモード無線端末10と無線LANアクセスポイント90との間は無線通信により結ばれる。マルチモード無線端末10と無線LANアクセスポイント90との間の無線通信区間は、IEEE802.11a/b/g/nなどの規格によってWiFiのエア・インターフェースとして規定されている。無線LANアクセスポイント90とサーバ20との間は有線の回線で結ばれている。無線LANアクセスポイント90とサーバ20との間を結ぶ有線の回線の例は、図1におけるISP網53などに対応し、サーバ20の例は、図1におけるインターネット網80内に設置されたサーバ20に対応する。無線LANアクセスポイント90は、無線端末が図1におけるISP網53に接続するための網接続ポイントに対応し、通信エリア301内に在圏する無線端末10とサーバ20との間の通信を中継する。
マルチモード無線端末10は、計測パケット送受信部11および可用帯域推定部12の2つの機能モジュールから構成される。これらの機能モジュール11および12は、マルチモード無線端末10内の制御プロセッサ104が、ストレージ106からメモリ103に読み込んだ専用ソフトウェアを実行することにより実現される。マルチモード無線端末10内の計測パケット送受信部11は、マルチモード無線端末10とサーバ20との間の可用通信帯域幅をアクティブ計測により計測するために使用する計測用パケットをサーバ20との間で送受信する。マルチモード無線端末10内の可用帯域推定部12は、計測パケット送受信部11がサーバ20との間で計測用パケットをやり取りするアクティブ計測により計測された情報から、マルチモード無線端末10とサーバ20との間におけるエンド・ツー・エンドの可用通信帯域幅を推定する。加えて、可用帯域推定部12は、計測パケット送受信部11がサーバ20との間で計測用パケットをやり取りするアクティブ計測により計測された情報から、マルチモード無線端末10とサーバ20との間におけるエンド・ツー・エンドの通信遅延量/パケット損失率を推定することも可能である。なお、上述したマルチモード無線端末10は、通信エリア301内に在圏している全ての無線端末の各々を総称的に表すものである。
無線LANアクセスポイント90は、代表端末選出処理部91および計測結果配信部92の2つの機能モジュールから構成される。これらの機能モジュール91および92は、無線LANアクセスポイント90内の制御プロセッサによって実行されるソフトウェア・プロセスとして実現することが可能である。代表端末選出処理部91は、通信エリア301内に在圏する全ての無線端末の中から一つの無線端末を後述する代表端末として選出し、当該選出された代表端末に所定の制御メッセージを送信する。なお、代表端末とは、通信エリア301内に在圏している全ての無線端末の中から、これらの無線端末を代表して、サーバ20との間で可用通信帯域幅を計測する役割を与えられる無線端末である。計測結果配信部92は、可能通信帯域幅の推定結果を代表端末から受信し、当該受信した可能通信帯域幅の推定結果を通信エリア301内の全ての無線端末にブロードキャストする。
サーバ20は、例えば、図1のインターネット網80内に設置されたメール・サーバやウェブ・サーバなどであり、マルチモード無線端末10を含む様々なユーザ端末がクライアントとしてアクセスするサーバである。サーバ20は、計測パケット送受信部22を機能もモジュールとして含む。計測パケット送受信部22は、サーバ20内の制御プロセッサによって実行されるソフトウェア・プロセスとして実現することが可能である。計測パケット送受信部22は、マルチモード無線端末10内の計測パケット送受信部11との間で上述した可用通信帯域幅をアクティブ計測により計測するための計測用パケットを送受信する。
次に、図4(A)を参照しながら、上述した可用帯域幅をマルチモード無線端末10とサーバ20との間でアクティブ計測により計測し、当該計測の結果を通信エリア301内の全ての無線端末間で共有する仕組みの動作フローを説明する。この動作フローは、図3(A)に示すマルチモード無線端末10、無線LANアクセスポイント90およびサーバ20の三者間で図4(A)に示す処理フローを実行することによって実現される。
図4(A)の処理フローは、まずステップS11から開始する。ステップS11において、通信エリア301に進入し、無線LANアクセスポイントからのキャリア信号を検出した全てのマルチモード無線端末10は、無線LANアクセスポイント90との間でデータリンク層レベルのコネクションを確立する。このコネクションの確立は、マルチモード無線端末10内において、制御プロセッサ104が、無線インターフェース回路102A〜102Nの中で無線LAN通信をサポートする無線インターフェース回路に対して、WiFiセッションを設定するよう指示することにより達成される。
続いて、処理フローは、ステップS12に進み、無線LANアクセスポイント90は、通信エリア301内に在圏する全てのマルチモード無線端末10の中から代表端末とすべき一つの端末を選出する。代表端末とは、通信エリア301内に在圏している全てのマルチモード無線端末10の中から、これらの端末を代表して、サーバ20との間で可用通信帯域幅を計測する役割を与えられる端末である。
続いて、処理フローは、ステップS13に進み、無線LANアクセスポイント90は、代表端末10に対して、計測指示メッセージを送信する。計測指示メッセージとは、代表端末10とサーバ20との間で計測用パケットを交換することにより、両者の間の可用通信帯域幅をアクティブ計測するよう指示するメッセージである。
続いて、処理フローは、ステップS14に進み、代表端末10が上述した計測指示メッセージを受信すると、代表端末10内の計測パケット送受信部11は、サーバ20との間で計測用パケットを交換する。
続いて、処理フローは、ステップS15に進み、代表端末10内の可用帯域推定部12は、サーバ20との間の上述した計測用パケットの交換により得られた情報から、両者の間の可用通信帯域幅をアクティブ計測方式に従って推定する。加えて、代表端末10内の可用帯域推定部12は、サーバ20との間の上述した計測用パケットの交換により得られた情報から、サーバ20との間におけるエンド・ツー・エンドの通信遅延量/パケット損失率を推定することも可能である。代表端末10がサーバ20との間で上述した計測用パケットを交換することにより得られる情報には、例えば、以下のものがある。
(A1)代表端末10とサーバ20との間で計測用パケットが往復するのに要したラウンドトリップ時間。
(A2)代表端末10から可変の送出レート(毎秒あたりのパケット送出数)で複数の計測用パケットを連続送信した結果として、サーバ20から受信した応答パケットの受信レート(毎秒当たりの応答パケット受信数)。
(A3)代表端末10から可変の送出レート(毎秒あたりのパケット送出数)で複数の計測用パケットを連続送信した結果として、サーバ20から受信した否定応答(NACK)信号の毎秒当たりの個数。
例えば、代表端末10内の可用帯域推定部12は、上述した(A1)の情報から、代表端末10とサーバ20との間のエンド・ツー・エンドの通信遅延量を推定することが可能である。また例えば、代表端末10内の可用帯域推定部12は、上述した(A2)の情報から、代表端末10とサーバ20との間のエンド・ツー・エンドの可用通信帯域幅を推定することが可能である。また例えば、代表端末10内の可用帯域推定部12は、上述した(A3)の情報から、代表端末10とサーバ20との間のエンド・ツー・エンドのパケット損失率を推定することが可能である。
続いて、処理フローは、ステップS16に進み、代表端末10は、ステップS15において可用帯域推定部12が推定したサーバ20との間の可用通信帯域幅を無線LANアクセスポイント90に対して報告する。この時、代表端末10は、上述した可用通信帯域幅と共に、ステップS15において可用帯域推定部12が推定したサーバ20との間の通信遅延量やパケット損失率を無線LANアクセスポイント90に対して報告することも可能である。すなわち、ステップS16において、代表端末10は、自端末とサーバ20との間の通信経路においてアクティブ計測により計測された可用通信帯域幅、通信遅延量およびパケット損失率を含む全ての計測結果を無線LANアクセスポイント90に対して報告することが可能である。
続いて、処理フローは、ステップS17に進み、無線LANアクセスポイント90は、代表端末10とサーバ20との間の通信経路において計測された可用通信帯域幅、通信遅延量およびパケット損失率を含む計測結果を代表端末10から受け取る。そして、無線LANアクセスポイント90は、上記受け取った計測結果を通信エリア301内に在圏している全てのマルチモード無線端末10に対してブロードキャストする。
なお、上述した第1実施例の変形実施例として、通信エリア301および無線LANアクセスポイント90がセルラー無線網におけるセルと基地局にそれぞれ置き換えられ、無線LANアクセスポイント90とサーバ20との間で接続がセルラー無線網に置き換えられるような代替的な実施例を想定することも可能である。このような代替的実施例においては、上述したブロードキャストは、セルラー基地局90からセル301に関するダウンリンク共通制御チャネルを使用して上述した計測結果をセル301内に在圏する全端末に向けてダウンリンク送信することにより達成されても良い。上記ダウンリンク共通制御チャネルによるダウンリンク信号伝送は、単一の周波数バンドしか占有しない。そのため、上述した計測結果のブロードキャストを、上記ダウンリンク共通制御チャネルによるダウンリンク信号伝送によって実現することにより、セル301内の周波数リソースの消費を最小限に抑えることが出来る。
(5−2)第2実施例
図3(B)は、図1に示したマルチモード無線端末10とサーバ20との間を結ぶエンド・ツー・エンド通信経路において可用通信帯域幅を計測する際のネットワーク計測システムを示す。図4(B)は、図3(B)に示すネットワーク計測システム内におけるネットワーク計測動作の流れを示す。なお、以下の説明においては、マルチモード無線端末10が無線接続のために使用するRATが無線LANである場合を例として説明している。しかし、本実施例においては、マルチモード無線端末10が無線接続のために使用するRATがセルラー基地局によってサービスされるセルラー無線網である場合も同様に考えることが出来る。
無線LANアクセスポイント90は、計測結果配信部92を機能モジュールとして含む。機能モジュール92は、無線LANアクセスポイント90内の制御プロセッサによって実行されるソフトウェア・プロセスとして実現することが可能である。計測結果配信部92は、可能通信帯域幅の推定結果を後述する代表端末から受信し、当該受信した可能通信帯域幅の推定結果を通信エリア301内の全ての無線端末にブロードキャストする。
サーバ20は、代表端末選出処理部21および計測パケット送受信部22の2つの機能モジュールから構成される。機能モジュール21および22は、サーバ20内の制御プロセッサによって実行されるソフトウェア・プロセスとして実現することが可能である。代表端末選出処理部21は、通信エリア301内に在圏する全ての無線端末の中から一つの無線端末を後述する代表端末として選出し、当該選出された代表端末に所定の制御メッセージを送信する。なお、代表端末とは、通信エリア301内に在圏している全ての無線端末の中から、これらの無線端末を代表して、サーバ20との間で可用通信帯域幅を計測する役割を与えられる無線端末である。計測パケット送受信部22は、マルチモード無線端末10内の計測パケット送受信部11との間で上述した可用通信帯域幅をアクティブ計測により計測するための計測用パケットを送受信する。
次に、図4(B)を参照しながら、上述した可用帯域幅をマルチモード無線端末10とサーバ20との間でアクティブ計測により計測し、当該計測の結果を通信エリア301内の全ての無線端末間で共有する仕組みの動作フローを説明する。この動作フローは、図3(B)に示すマルチモード無線端末10、無線LANアクセスポイント90およびサーバ20の三者間で図4(B)に示す処理フローを実行することによって実現される。
図4(B)の処理フローは、まずステップS21から開始する。ステップS21において、通信エリア301に進入し、無線LANアクセスポイントからのキャリア信号を検出した全てのマルチモード無線端末10は、サーバ20との間でトランスポート層レベルのコネクションを確立する。このコネクションの確立は、マルチモード無線端末10内において、制御プロセッサ104が、サーバ20上の所定のTCP/UDPポートとの間でTCPコネクションやRTPコネクションを確立することにより達成される。
続いて、処理フローは、ステップS22に進み、サーバ20は、通信エリア301内に在圏する全てのマルチモード無線端末10の中から代表端末とすべき一つの端末を選出する。代表端末とは、通信エリア301内に在圏している全てのマルチモード無線端末10の中から、これらの端末を代表して、サーバ20との間で可用通信帯域幅を計測する役割を与えられる端末である。
続いて、処理フローは、ステップS23に進み、サーバ20は、代表端末10に対して、計測指示メッセージを送信する。計測指示メッセージとは、代表端末10とサーバ20との間で計測用パケットを交換することにより、両者の間の可用通信帯域幅をアクティブ計測するよう指示するメッセージである。
続いて、処理フローは、ステップS24に進み、代表端末10が上述した計測指示メッセージを受信すると、代表端末10内の計測パケット送受信部11は、サーバ20との間で計測用パケットを交換する。
続いて、処理フローは、ステップS25に進み、代表端末10内の可用帯域推定部12は、サーバ20との間の上述した計測用パケットの交換により得られた情報から、サーバ20との間における可用通信帯域幅をアクティブ計測方式に従って推定する。加えて、代表端末10内の可用帯域推定部12は、サーバ20との間の上述した計測用パケットの交換により得られた情報から、サーバ20との間におけるエンド・ツー・エンドの通信遅延量/パケット損失率を推定することも可能である。
例えば、可用帯域推定部12は、代表端末10とサーバ20との間のエンド・ツー・エンドの通信遅延量を推定することが可能である。また例えば、可用帯域推定部12は、代表端末10とサーバ20との間のエンド・ツー・エンドの可用通信帯域幅を推定することが可能である。また例えば、可用帯域推定部12は、代表端末10とサーバ20との間のエンド・ツー・エンドのパケット損失率を推定することが可能である。
続いて、処理フローは、ステップS26に進み、代表端末10は、ステップS25において可用帯域推定部12が推定したサーバ20との間の可用通信帯域幅をサーバ20に対して報告する。この時、代表端末10は、上述した可用通信帯域幅と共に、ステップS25において可用帯域推定部12が推定したサーバ20との間の通信遅延量やパケット損失率をサーバ20に対して報告することも可能である。すなわち、ステップS26において、代表端末10は、自端末とサーバ20との間の通信経路においてアクティブ計測により計測された可用通信帯域幅、通信遅延量およびパケット損失率を含む全ての計測結果をサーバ20に対して報告することが可能である。
続いて、処理フローは、ステップS27に進み、サーバ20は、代表端末10とサーバ20との間の通信経路において計測された可用通信帯域幅、通信遅延量およびパケット損失率を含む計測結果を代表端末10から受け取る。そして、無線LANアクセスポイント90は、上記受け取った計測結果を無線LANアクセスポイント90に転送する。
続いて、処理フローは、ステップS28に進み、上述したアクティブ計測の結果をサーバ20から転送された無線LANアクセスポイント90は、通信エリア301内に在圏している全てのマルチモード無線端末10に対して当該アクティブ計測の結果をブロードキャストする。
なお、上述した第1実施例の変形実施例として、通信エリア301および無線LANアクセスポイント90がセルラー無線網におけるセルと基地局にそれぞれ置き換えられ、無線LANアクセスポイント90とサーバ20との間で接続がセルラー無線網に置き換えられるような代替的な実施例を想定することも可能である。このような代替的実施例においては、上述したブロードキャストは、セルラー基地局90からセル301に関するダウンリンク共通制御チャネルを使用して上述した計測結果をセル301内に在圏する全端末に向けてダウンリンク送信することにより達成されても良い。上記ダウンリンク共通制御チャネルによるダウンリンク信号伝送は、単一の周波数バンドしか占有しない。そのため、上述した計測結果のブロードキャストを、上記ダウンリンク共通制御チャネルによるダウンリンク信号伝送によって実現することにより、セル301内の周波数リソースの消費を最小限に抑えることが出来る。
<6>本実施の形態に係るアクティブ計測の動作フロー
以下、本実施の形態に係るアクティブ計測の全体動作フローを、図5のフローチャートに沿って説明する。
図5に示す処理フローは、ステップS31から開始し、図3に示すサーバ20または無線LANアクセスポイント90は、図4に関して上述した代表端末を選出する処理を実行する。代替的な実施例においては、図3に示す無線LANアクセスポイント90およびこれとサーバ20との間の接続は、セルラー基地局及びセルラー無線網と置き換えられても良い。代表端末は、同一のセルまたは通信エリアに在圏している全ての無線端末の中から選出される。言い換えると、代表端末は、同一のセルラー基地局または同一の無線LANアクセスポイントに接続している全ての無線端末の中から選出される。この時、同一のセルまたは通信エリアに在圏している全ての無線端末がそれぞれ有する複数の無線ベアラは、同一のセルラー基地局または同一の無線LANアクセスポイントの上で多重化されることにより、無線通信事業者網内での通信リソースを互いに共有する無線ベアラである。
図3に示すサーバ20または無線LANアクセスポイント90は、選出候補となる各無線端末の端末識別情報、無線ベアラの識別情報などを使用して識別する。また、図3に示すサーバ20または無線LANアクセスポイント90は、通信エリア内での各無線端末の位置情報、各無線端末から受信した制御信号内の送信時刻情報などを利用して選出候補となる全ての無線端末の中から代表端末を選出する。各無線端末の端末位置情報は、無線網内のサーバ20が選出候補となる一群の無線端末のグループを識別する際、同一の通信エリア内に在圏している無線端末同士を選出候補としてグループ化するために使用される。また例えば、端末位置情報を使用して、通信エリアの中心である無線LANアクセスポイント90の位置と通信エリアの外縁部との間の丁度中間に位置する無線端末を代表端末として選出するようにすることが可能である。そうすれば、無線LANアクセスポイント90からの無線信号の受信強度や受信品質に偏りが無いため、通信エリア内で偏りの無い適切な可用通信帯域幅を測定できる可能性が高い。
続いて、処理フローはステップS32に進み、代表端末内の計測パケット送受信部11は、サーバ20との間で計測用パケットの送受信を行うことによって、サーバ20との間における可用通信帯域幅をアクティブ計測により計測する。一実施例においては、代表端末は、サーバ20との間における可用通信帯域幅をアクティブ計測によって直接計測することが可能である。また、別の代替的な実施例においては、代表端末は、サーバ20との間における通信遅延量とパケット損失率をアクティブ計測によって計測してから、当該計測した通信遅延量とパケット損失率に基づいてサーバ20との間における可用通信帯域幅を推定することも可能である。
続いて、処理フローはステップS33に進み、代表端末は、上述したアクティブ計測の結果をサーバ20または無線LANアクセスポイント90に対して報告する。
続いて、処理フローはステップS34に進み、代表端末から上述したアクティブ計測の結果を報告されたサーバ20は、当該報告されたアクティブ計測の結果を無線LANアクセスポイント90に対して転送する。
続いて、処理フローはステップS35に進み、上述したアクティブ計測の結果を受け取った無線LANアクセスポイント90は、自身がサービスする通信エリア内に在圏している全ての無線端末に対して上述したアクティブ計測の結果をブロードキャストする。この時、無線LANアクセスポイント90は、自身がサービスする通信エリア内に在圏している全ての無線端末を識別するために、各無線端末の端末位置情報を使用する。その結果、無線LANアクセスポイント90は、自身の周辺に位置する無線端末を、自身がサービスする通信エリア内に在圏している全ての無線端末として識別することが出来る。また、無線LANアクセスポイント90は、無線端末の端末位置情報内に含まれるエリア情報が自身の通信エリアに対応するならば、当該無線端末を自身がサービスする通信エリア内に在圏している無線端末として識別することが出来る。
次に、図4および図5において上述した処理フローを本実施の形態に従って実行する際に、無線端末10、無線LANアクセスポイント90およびサーバ20の3者の間で送受信されるフレームのフォーマットについて図6を参照しながら説明する。
図6の(a)は、サーバ20または無線LANアクセスポイント90が代表端末に対して上述したアクティブ計測の動作を実行するように指示するために代表端末に対して送信される計測指示メッセージを運ぶフレームのフォーマットである。図6の(a)に示すフレーム・フォーマットにおいて、IEEE802.11ヘッダは、無線LANアクセスポイント90との間で送受信されるデータリンク・フレームの先頭部分であるプロトコル・ヘッダである。図6の(a)において、「Type」と表記されたフィールドは、上記データリンク・フレームのフレーム種別が上述した計測指示メッセージを運ぶフレームに対応することを表す。図6の(a)において、「サーバURL」と表記されたフィールドは、代表端末がアクティブ計測の相手ノードとするサーバ20をURLで指定するための情報である。図6の(a)において、「時刻情報」と表記されたフィールドは、個々の計測指示メッセージを識別するためのタイムスタンプである。
図6の(b)は、代表端末からサーバ20または無線LANアクセスポイント90に対して上述したアクティブ計測の結果を報告するために使用するフレームである。図6の(b)に示すフレーム・フォーマットにおいて、IEEE802.11ヘッダは、無線LANアクセスポイント90との間で送受信されるデータリンク・フレームの先頭部分であるプロトコル・ヘッダである。図6の(b)において、「位置情報」と表記されたフィールドは、代表端末の端末位置情報を含むフィールドである。無線LANアクセスポイント90は、位置情報フィールドが表す端末位置情報内に含まれるエリア情報は、代表端末が在圏している通信エリアに対応する通信エリア識別情報である。図6の(b)において、「ベアラ情報」および「端末識別情報」と表記されたフィールドは、代表端末が無線LANアクセスポイント90に接続するための無線ベアラの識別情報および代表端末自身の端末識別情報をそれぞれ含むフィールドである。図6の(b)において、「可用帯域」、「遅延」および「損失率」と表記されたフィールドは、代表端末が上述したアクティブ計測によりサーバ20との間のエンド・ツー・エンド通信経路上で計測した可用通信帯域幅、通信遅延量およびパケット損失率をそれぞれ含むフィールドである。
図6の(c)は、上述したアクティブ計測により計測されたサーバ20との間の可用通信帯域幅、通信遅延量およびパケット損失率を、無線LANアクセスポイント90から通信エリア内に在圏している全ての無線端末に対してブロードキャストするために使用するフレームである。図6の(c)に示すフレーム・フォーマット内の各フィールドの意味は図6の(a)および(b)に関して上述したものと同様であるので説明を省略する。
本発明は、無線端末が多種多様な無線通信サービスを切り替えて通信する際に、これらの無線通信サービスの各々に関して無線端末によるネットワーク計測を実行するための端末制御ソフトウェアとして利用することが出来る。
10 UE
11 計測パケット送受信部
12 可用帯域推定部
20 UEにネットワーク・サービスを提供するサーバ
21 代表端末選出処理部
22 計測結果配信部
30 無線ベアラ
40 無線アクセス網
50 コア網
60 コア網ゲートウェイ
70 外部接続ゲートウェイ
80 インターネット網
90 無線LANアクセスポイント
91 代表端末選出処理部
92 計測結果配信部
101 アンテナ
102 無線インターフェース
103 メモリ
104 制御プロセッサ
105 ユーザ入出力装置
106 ストレージ
107 バス
301 通信エリア
302 通信エリア

Claims (8)

  1. 無線端末とサーバとの間の可用通信帯域を計測する方法であって:
    一つ以上の無線端末がサーバと通信するためにセル内の基地局に無線接続するたびに、前記セル内に在圏中の全ての無線端末の中から前記基地局が代表端末を選出するステップ;
    前記基地局が前記選出された代表端末に対して前記代表端末と前記サーバとの間の可用通信帯域幅を計測するように指示するステップ;および、
    前記代表端末から受信した前記可用通信帯域幅計測の結果を前記基地局が前記セル内の全ての無線端末にブロードキャストするステップ;
    を備える方法。
  2. 前記ブロードキャストするステップは:
    前記セル内のダウンリンク共通制御チャネルを使用して前記基地局から前記可用通信帯域幅計測の結果を前記セルに接続中の全ての無線端末にブロードキャストするステップを備え、
    前記ダウンリンク共通制御チャネルは、単一の周波数バンドのみを占有する、
    ことを特徴とする、請求項1記載の方法。
  3. 前記無線端末は、異なるRATにそれぞれ対応する複数の無線通信事業者網に同時接続して前記サーバと通信することが可能なマルチモード無線端末であることを特徴とする、請求項1または請求項2のいずれか一項に記載の方法であって、
    前記マルチモード無線端末が、前記複数の無線通信事業者の各々を経由して計測された可用通信帯域幅に基づいて前記複数の無線通信事業者網の中から無線接続先を取捨選択しようとするたびに、新たに接続可能となった無線通信事業者網を経由した可用通信帯域幅を取得するために、前記マルチモード無線端末によって実行される、
    ことを特徴とする、方法。
  4. 前記選出された代表端末が前記複数の無線通信事業者網の各々を経由した可用通信帯域幅を計測する動作は、前記代表端末が、各無線通信事業者網を経由して自端末と前記サーバとの間で計測用パケットを送受信することにより可用通信帯域幅を計測する動作を備える、
    ことを特徴とする、請求項3記載の方法。
  5. 無線端末とサーバとの間の可用通信帯域を計測するよう構成された無線端末であって:
    セル内に在圏中の全ての無線端末の中から自端末が基地局により代表端末として選出された場合、前記サーバとの間の可用通信帯域幅を計測するよう前記基地局から指示されることに応じて、前記可用通信帯域幅をアクティブ計測により計測し、前記計測の結果を前記基地局から前記セル内の全ての無線端末にブロードキャストするために、前記計測の結果を前記基地局に報告するように構成された制御プロセッサ;および、
    前記制御プロセッサに前記計測及び前記報告を実行させる制御プログラムを記憶したメモリ;
    を備える無線端末。
  6. 前記無線端末は、異なるRATにそれぞれ対応する複数の無線通信事業者網に同時に接続することが可能なマルチモード無線端末であり、
    前記代表端末として選出された前記無線端末内の前記制御プロセッサは、前記複数の無線通信事業者網の各々を経由した可用通信帯域幅を計測し、無線通信事業者毎に前記計測された帯域幅計測の結果に基づいて前記複数の無線通信事業者網の中から前記マルチモード無線端末の接続先を取捨選択する動作を実行するようにさらに構成される、
    ことを特徴とする、請求項5記載の無線端末。
  7. 前記代表端末として選出された前記無線端末内の前記制御プロセッサが前記複数の無線通信事業者網の各々を経由した可用通信帯域幅を計測する動作は、前記代表端末内の前記制御プロセッサが、前記複数の無線通信事業者網の各々を経由して自端末と前記サーバとの間で計測用パケットを送受信することにより可用通信帯域幅を計測する動作を備える、
    ことを特徴とする、請求項6記載の無線端末。
  8. 前記可用通信帯域幅計測の結果は、前記セル内のダウンリンク共通制御チャネルを使用して前記基地局からを前記セルに接続中の全ての無線端末にブロードキャストされ、
    前記ダウンリンク共通制御チャネルは、単一の周波数バンドのみを占有する、
    ことを特徴とする、請求項5記載の無線端末。
JP2013126133A 2013-06-14 2013-06-14 網内通信帯域幅を計測する方法及び装置 Expired - Fee Related JP6280318B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126133A JP6280318B2 (ja) 2013-06-14 2013-06-14 網内通信帯域幅を計測する方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126133A JP6280318B2 (ja) 2013-06-14 2013-06-14 網内通信帯域幅を計測する方法及び装置

Publications (2)

Publication Number Publication Date
JP2015002444A JP2015002444A (ja) 2015-01-05
JP6280318B2 true JP6280318B2 (ja) 2018-02-14

Family

ID=52296719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126133A Expired - Fee Related JP6280318B2 (ja) 2013-06-14 2013-06-14 網内通信帯域幅を計測する方法及び装置

Country Status (1)

Country Link
JP (1) JP6280318B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066577A1 (ja) * 2005-12-08 2007-06-14 Sharp Kabushiki Kaisha 無線通信システム及び無線通信方法
EP2355589A1 (en) * 2010-01-28 2011-08-10 ST-Ericsson SA Cell selection and reselection in a telecommunication network
GB2496720A (en) * 2010-09-14 2013-05-22 Mocana Corp Agent-based bandwidth monitoring for predictive network selection

Also Published As

Publication number Publication date
JP2015002444A (ja) 2015-01-05

Similar Documents

Publication Publication Date Title
US11832164B2 (en) Technique for time-sensitive networking over a radio access network
US9356865B2 (en) Method for dynamically controlling data paths, MTC gateway and network device using the same
US9049648B2 (en) Cognitive communication network system and communicating method thereof
US11343693B2 (en) Enhancement of MDT services
CN110831075A (zh) 数据传输方法及装置,业务切换方法及装置
EP3036943A2 (en) Reporting performance and controlling mobility between different radio access technologies
US11696182B2 (en) Core network node, user equipment and methods in a packet communications network
JP6203548B2 (ja) 複数の無線ベアラにアクセスする方法及び装置
US20170251401A1 (en) Traffic steering between cellular networks and wireless local area networks (wlans) using user equipment (ue) throughput estimates
JP5857440B2 (ja) 通信システム、管理装置、制御方法およびプログラム
CN114073121B (zh) 用于流控制的方法和装置
JP6280318B2 (ja) 網内通信帯域幅を計測する方法及び装置
JP2014230037A (ja) 複数の無線ベアラにアクセスする方法及び装置
JP6126914B2 (ja) 複数の無線ベアラにアクセスする方法及び装置
JP2014225743A (ja) 複数の無線ベアラにアクセスする方法及び装置
US9525535B1 (en) Systems and methods for scheduling transmissions from an access node
KR102217772B1 (ko) 컨텐츠를 나눈 컨텐츠 조각을 전송하는 방법 및 그 방법을 수행하는 단말
US9231884B2 (en) Traffic control device, traffic control method, and communication system
US20220217571A1 (en) Method Performed by a Core Network Node for Deciding How to Shape a Specific Data Flow
KR20100068849A (ko) 이종 네트워크 환경에서 서비스 품질 제공 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees