WO2011074170A1 - ボールねじ - Google Patents

ボールねじ Download PDF

Info

Publication number
WO2011074170A1
WO2011074170A1 PCT/JP2010/006421 JP2010006421W WO2011074170A1 WO 2011074170 A1 WO2011074170 A1 WO 2011074170A1 JP 2010006421 W JP2010006421 W JP 2010006421W WO 2011074170 A1 WO2011074170 A1 WO 2011074170A1
Authority
WO
WIPO (PCT)
Prior art keywords
nut
ball
spiral groove
screw shaft
hole
Prior art date
Application number
PCT/JP2010/006421
Other languages
English (en)
French (fr)
Inventor
大久保 努
和史 山本
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010190656A external-priority patent/JP5691296B2/ja
Priority claimed from JP2010190659A external-priority patent/JP5728852B2/ja
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP10805569.0A priority Critical patent/EP2515001B1/en
Priority to CN201080002290.3A priority patent/CN102165221B/zh
Priority to US13/058,148 priority patent/US20120240706A1/en
Publication of WO2011074170A1 publication Critical patent/WO2011074170A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H25/2418Screw seals, wipers, scrapers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0463Grease lubrication; Drop-feed lubrication
    • F16H57/0464Grease lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0497Screw mechanisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19702Screw and nut
    • Y10T74/19744Rolling element engaging thread
    • Y10T74/19749Recirculating rolling elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19702Screw and nut
    • Y10T74/19744Rolling element engaging thread
    • Y10T74/19749Recirculating rolling elements
    • Y10T74/19753Plural independent recirculating element paths

Definitions

  • This invention relates to a ball screw.
  • the particles are emitted from the space between the screw shaft and the nut to the outside, causing dust generation.
  • the ball return path of the ball screw is formed by a through hole (that is, a ball return path) extending in the axial direction of the nut and a ball circulation piece continuous therewith. It is described that the shape can be circulated without colliding with the tongue.
  • Patent Document 1 is lubricated with low dusting grease, and the annular gap between the screw shaft and the nut is closed by ring-shaped contact seals arranged at both axial ends of the nut.
  • Patent Document 2 describes that a suction pipe is connected to an oil supply hole provided in a nut of a ball screw to suck and remove dust generated inside the nut.
  • dust generation from a lubricant is suppressed by applying grease plating to the screw shaft (that is, a method of forming a lubricant film by drying after being immersed in a lubricant-containing solution).
  • JP 2006-112517 A Japanese Patent No. 2638955
  • An object of the present invention is to obtain a dust reduction effect higher than that of a conventional ball screw by preventing dust generated inside the nut from being emitted to the outside as much as possible.
  • a ball screw includes a nut having a spiral groove formed on an inner peripheral surface, a screw shaft having a spiral groove formed on an outer peripheral surface, and a spiral of the nut.
  • a ball disposed between a raceway formed by a groove and a spiral groove of a screw shaft; and a ball return path for returning the ball from an end point of the raceway to a start point.
  • ring-shaped non-contact seals are disposed at both ends of the nut in the axial direction, and suction holes that penetrate the nut in the radial direction are provided in the axial direction of the nut. It is formed in the central part (a part other than both axial ends, a part between both non-contact seals).
  • a ball screw includes a nut having a spiral groove formed on an inner peripheral surface, a screw shaft having a spiral groove formed on an outer peripheral surface, and a spiral of the nut.
  • a ball disposed between a raceway (rolling path) formed by a groove and a spiral groove of a screw shaft, and a ball return path for returning the ball from the end point of the raceway to the start point, and the ball rolls in the raceway.
  • This is a ball screw in which the nut moves relative to the screw shaft, and ring-shaped non-contact seals are disposed at both ends of the nut in the axial direction, and suction holes (suction holes) that penetrate the nut in the radial direction.
  • a hole connecting to the means) is formed within the range of the track (the range in which the ball rolls in the axial direction of the nut).
  • the ball screw which concerns on the said 1st and 2nd aspect can be made into the structure where the flange was formed in the axial direction center part of the said nut, and the said suction hole was formed in the said flange.
  • a ball screw includes a nut having a spiral groove formed on the inner peripheral surface, a screw shaft having a spiral groove formed on the outer peripheral surface, and a spiral of the nut.
  • a ball disposed between a raceway formed by a groove and a spiral groove of a screw shaft; and a ball return path for returning the ball from an end point of the raceway to a start point.
  • a ball screw that moves relative to the screw shaft and has a plurality of circulation circuits composed of the track and the ball return path, and ring-shaped non-contact seals are arranged at both ends of the nut in the axial direction.
  • the suction hole which penetrates the said nut to radial direction is formed in the axial direction center part of the said nut.
  • a ball screw includes a double nut in which two nuts each having a spiral groove formed on an inner peripheral surface are connected via a spacer, and an outer peripheral surface.
  • a ball screw having two ball return paths that is, having two circulation circuits), wherein the double nut moves relative to the screw shaft by rolling the ball in each track.
  • ring-shaped non-contact seals are arranged at both axial ends of the double nut, and suction holes penetrating the double nut in the radial direction are formed in the spacer.
  • a path through which dust inside the nut goes out exists only at both ends in the axial direction of the nut (limited to both ends in the axial direction).
  • a path through which dust inside the double nut goes outside exists only at both axial ends of the double nut (limited to both axial ends).
  • the ball screw according to the fourth aspect may have a structure in which a greasing hole for supplying a lubricant to the inside of the double nut is formed in a portion other than the spacer.
  • a ball screw includes a nut having a spiral groove formed on an inner peripheral surface, a screw shaft having a spiral groove formed on an outer peripheral surface, and a spiral of the nut.
  • a ball disposed between a raceway formed by a groove and a spiral groove of a screw shaft; and a ball return path for returning the ball from an end point of the raceway to a start point.
  • a plurality of ring-shaped non-contact seals are arranged on both ends in the axial direction through a predetermined space, and have a suction mechanism for sucking air in the space, and a suction hole of the suction mechanism is formed in the nut. Yes.
  • the suction mechanism is provided in a ventilation hole formed in the nut in the axial direction and an inner seal disposed at the innermost side of each end of the nut.
  • a communication hole communicating the space with the ventilation hole, the suction hole extending in a radial direction from an outer surface of the nut to the ventilation hole, and between the inner seals in the axial direction of the nut. It is preferable to be arranged at a position.
  • the ball screw according to the first to fifth aspects may have a structure in which the ball return path is formed inside a nut.
  • a greasing hole for supplying a lubricant to the inside of the nut is formed in the nut, and the suction hole is located at a position different from the greasing hole. It can be a formed structure.
  • the dust generation source of the ball screw is a lubricant, and dust is generated by scattering the lubricant when the ball rolls on the track.
  • Lubricant is also attached to the portion outside the nut of the screw shaft, but since there is no ball in the spiral groove of that portion, there is little dust generation from that portion even if the screw shaft is rotating. That is, in the ball screw, dust is generated mainly within the range of the track inside the nut (the range in which the ball rolls).
  • a suction hole is provided in the axially central portion of the nut (a portion other than both axial ends and a portion between both non-contact seals). Therefore, when one circulation circuit composed of the track and the ball return path is provided, a suction hole is formed in the range of the track where the dust of the nut is generated. When a plurality of circulation circuits are provided, suction holes are formed in positions within or between the tracks where nut dust is generated.
  • the dust inside a nut is efficiently suction-removed. Further, since the non-contact seal is disposed, dust generation due to contact between the screw shaft and the seal is prevented.
  • the suction hole is provided in the range of the track in which the dust of the nut is generated (the range in which the ball rolls), so the dust inside the nut is efficiently sucked and removed. . Further, since the non-contact seal is disposed, dust generation due to contact between the screw shaft and the seal is prevented.
  • a suction hole is provided in the axial central portion of the nut.
  • a suction hole is formed at a position within or between the range of the track where the nut dust is generated (the range in which the ball rolls), so that the dust inside the nut is efficiently removed by suction. Is done. Further, since the non-contact seal is disposed, dust generation due to contact between the screw shaft and the seal is prevented.
  • the ball screw according to the first to third aspects has a structure in which a path through which dust inside the nut comes out exists only at both axial ends of the nut (limited to both axial ends of the nut). It is preferable to have. Since the ring-shaped non-contact seal is disposed at both axial ends of the nut, the gap between the nut and the screw shaft is only the gap between the screw shaft and the non-contact seal with the above structure. Therefore, while connecting the suction means to the suction hole and sucking the inside of the nut, the air outside the nut enters the nut through the gap between the non-contact seal and the screw shaft, and the air inside the nut is the non-contact seal And going to the outside through the gap between the screw shaft.
  • or 3 aspect WHEREIN The greasing hole which supplies a lubricant to the inside of the said nut is formed in the said nut, The said suction hole is formed in the position different from the said greasing hole.
  • the ball screw can be lubricated by supplying a lubricant from the greasing hole into the nut.
  • the lubricant supplied from the greasing hole tends to accumulate inside the non-contact seals at both ends in the axial direction of the nut due to the relative reciprocation of the nut relative to the screw shaft accompanying the rolling of the ball. It is difficult to collect in the center of the direction and the range of the track.
  • suction holes are formed in this range, the suction holes are not easily blocked by the lubricant, and stable suction can be performed. Thereby, it is possible to efficiently suck and remove the dust generated inside the nut without directing it to the outside while performing lubrication of the ball screw by supplying the lubricant into the nut.
  • a nut in the ball screw according to the fourth aspect, includes two double nuts connected via a spacer, and a suction hole is formed in the spacer.
  • the dust present in the range of the nut track moves between the spacer and the screw shaft, so that the dust inside each nut is efficiently sucked and removed. Further, since the non-contact seal is disposed, dust generation due to contact between the screw shaft and the seal is prevented.
  • the ball screw according to the fourth aspect has a structure in which dust inside the nut comes out only at both ends in the axial direction of the double nut (limited to both ends in the axial direction of the double nut). It is preferable to have. Since the ring-shaped non-contact seal is disposed at both axial ends of the double nut, the gap between the double nut and the screw shaft is only the gap between the screw shaft and the non-contact seal. Therefore, while connecting the suction means to the suction hole and sucking the inside of the double nut, the air outside the double nut enters the double nut through the gap between the non-contact seal and the screw shaft, and the double nut The air inside is prevented from going outside through the gap between the non-contact seal and the screw shaft.
  • a portion other than the spacer that is, one of the two nuts
  • the lubricant supplied from the greasing hole tends to accumulate inside the non-contact seals at both axial ends of the double nut due to the relative reciprocation of the double nut relative to the screw shaft accompanying the rolling of the ball. It is difficult to accumulate in the orbital range.
  • the suction hole is formed in the spacer sandwiched in the range of the track of both nuts, the suction hole is not easily blocked by the lubricant, and stable suction can be performed. . Accordingly, it is possible to efficiently suck and remove the dust generated inside the nut without facing the outside while lubricating the ball screw by supplying a lubricant to the inside of the double nut.
  • the structure in which the path through which the dust inside the nut goes out exists only at both axial ends of the nut or the double nut is the nut return path. It can be realized by forming the inside. Further, when the ball return path is formed using a circulation tube, the structure is formed by closing a gap between a nut hole into which the circulation tube is inserted and a leg portion of the circulation tube inserted into the hole. realizable.
  • a path through which dust inside the nut goes out is limited to both ends in the axial direction of the nut, and a plurality of non-contact seals are respectively provided at both ends in the axial direction of the nut. Since it is arranged through a predetermined space, dust inside the nut not only exists in the range of the track, but also accumulates in the space sandwiched between adjacent non-contact seals. By sucking the air in this space with the suction mechanism, the dust in this space is removed. While sucking with the suction mechanism, outside air enters the space through the gap between the non-contact seal and the screw shaft, and air inside the nut goes to the outside through the gap between the non-contact seal and the screw shaft. Disturb that.
  • the ball return path is formed inside a nut.
  • the ball return path is formed by using a circulation tube, the gap between the hole of the nut into which the circulation tube is inserted and the leg of the circulation tube inserted into the hole is closed.
  • the path through which the internal dust goes out can be limited to the axial ends of the nut.
  • the suction mechanism of the ball screw according to the fifth aspect includes an axially penetrating vent formed in the nut and an inner seal disposed on the innermost side of each end of the nut.
  • the suction hole extends in a radial direction from an outer surface of the nut to the ventilation hole, and is between the inner seals in the axial direction of the nut. It is preferable to arrange in the position.
  • a grease supply hole for supplying a lubricant to the inside of the nut is formed in the nut, and the suction hole is formed at a position different from the grease supply hole.
  • the ball screw can be lubricated by supplying a lubricant from the greasing hole into the nut. That is, in the case of this configuration, while the ball screw is lubricated by supplying a lubricant to the inside of the nut, most of the dust generated inside the nut is sucked and removed without going outward.
  • the annular clearance formed by the screw shaft and the non-contact seal is substantially the same in the entire circumferential direction.
  • the spiral groove of the screw shaft has a simple gothic arc shape in which no grinding relief is formed, and the inner peripheral portion of the non-contact seal has a shape corresponding thereto.
  • the lubricant it is preferable to use a low dusting grease having a consistency of 300 or less.
  • a lubricant is interposed in the gap between the non-contact seal and the screw shaft by supplying a lubricant to the inside of the nut and performing a break-in operation, a minute gap is formed between the screw shaft and the non-contact seal. it can. Therefore, the suction efficiency is improved by using the ball screw of the present invention after the running-in operation.
  • the ball screw of the present invention since most of the dust generated inside the nut does not go to the outside and is efficiently removed by suction, a higher dust generation reduction effect than the conventional ball screw can be obtained.
  • FIG. 1 is a cross-sectional view showing a ball screw according to Embodiment 1-1.
  • FIG. 3 is a cross-sectional view showing a ball screw according to Embodiment 1-2.
  • FIG. 4 is a cross-sectional view showing a ball screw according to Embodiment 1-3.
  • FIG. 6 is a front view showing a ball screw according to Embodiment 1-4.
  • FIG. 5 is a cross-sectional view (cross-sectional view taken along line AA in FIG. 4) showing the embodiment 1-4 ball screw.
  • FIG. 5 is a cross-sectional view showing a ball screw according to Embodiment 2-1. It is sectional drawing which shows the ball screw of Embodiment 2-2. It is sectional drawing which shows the ball screw of Embodiment 2-3.
  • FIG. 3 is a cross-sectional view showing a ball screw according to Embodiment 3-1. It is sectional drawing which shows the ball screw of Embodiment 3-2. It is sectional drawing which shows the ball screw of Embodiment 3-3.
  • FIG. 6 is a partially broken front view showing a ball screw according to Embodiment 4-1.
  • FIG. 13 is a cross-sectional view taken along line AA in FIG. 12.
  • FIG. 13 is a sectional view taken along line BB in FIG.
  • FIG. 13 is a BB cross-sectional view of a nut constituting the ball screw of FIG.
  • It is AA sectional drawing of FIG. It is a partially broken front view which shows the ball screw of Embodiment 4-3.
  • Embodiments of the present invention will be described below.
  • FIG. 1 is a cross-sectional view showing a ball screw according to Embodiment 1-1.
  • the ball screw includes a nut 1, a screw shaft 2, a ball 3, a ring-shaped non-contact seal 4, an end deflector 5, and an annular spacer 6.
  • a spiral groove 1 a is formed on the inner peripheral surface of the nut 1, and a spiral groove 2 a is formed on the outer peripheral surface of the screw shaft 2.
  • a ball 3 is disposed between the tracks formed by the spiral groove 1 a of the nut 1 and the spiral groove 2 a of the screw shaft 2.
  • a flange 11 is formed at one axial end of the nut 1.
  • the nut 1 has a through hole 13 extending in the axial direction. Concave portions 15 in which the end deflectors 5 are disposed are formed at both end portions of the through hole 13 of the nut 1. That is, the ball return path of this ball screw is formed inside the nut 1 by the ball return path formed of the through hole 13 and the end deflectors 5 connected to both ends thereof.
  • the end deflector 5 has a tangential scooping shape.
  • recesses 14 for attaching the spacer 6 and the non-contact seal 4 are formed.
  • the spacer 6 and the non-contact seal 4 are disposed in the concave portion 14 of the nut 1 in this order from the inner side in the axial direction, and these are fixed to the end surface 14a of the concave portion 14 with a bolt (not shown).
  • spaces 46 surrounded by the non-contact seal 4, the spacer 6, and the screw shaft 2 are generated at both axial ends of the nut 1.
  • These spaces 46 become grease (lubricant) accumulation spaces.
  • the spacer 6 may be formed integrally with the nut 1.
  • the nut 1 further has a suction hole 7 connected to the suction means and a greasing hole 8 for supplying a lubricant therein.
  • the suction hole 7 is formed as a through-hole penetrating in the radial direction at a position between the adjacent spiral grooves 1 a in the axial center portion of the nut 1. That is, the suction hole 7 is provided in the range of the track formed by the spiral groove 1 a of the nut 1 and the spiral groove 2 a of the screw shaft 2.
  • the diameter of the outer periphery of the nut of the suction hole 7 is increased to form a mounting hole 71 for inserting and inserting the tip of the suction pipe.
  • the greasing hole 8 is formed as a through hole penetrating in the radial direction at a position between the adjacent spiral grooves 1a of the portion where the flange 11 of the nut 1 is formed.
  • the nut outer peripheral side of the greasing hole 8 is expanded in diameter (all portions disposed on the flange 11), and serves as a mounting hole 81 to which the tip of the greasing pipe is inserted and attached.
  • the cross-sectional shape of the spiral groove 2a of the screw shaft 2 is a simple gothic arc shape in which no grinding relief groove is formed.
  • the shape of the inner peripheral portion of the non-contact seal 4 is such that the annular gap formed by the screw shaft 2 and the non-contact seal 4 is substantially the same in the entire circumferential direction.
  • This ball screw is used in the following procedure, for example.
  • the tip of the grease supply pipe of low dust generation grease having a consistency of 300 or less is attached to the attachment hole 81 of the grease supply hole 8 of the nut 1, and the tip of the suction pipe is attached to the attachment hole 71 of the suction hole 7 of the nut 1.
  • the grease is stored in the grease storage space 46 by supplying a low dust generation grease amounting to about 1/4 of the internal space from the greasing hole 8 into the nut 1.
  • the nut 1 is moved relative to the screw shaft 2 several times with a stroke corresponding to the length of the nut 1 to move the grease in the grease reservoir space 46, and the non-contact seal 4 and the screw Grease is interposed in the gap with the shaft 2. Thereby, a minute (0.5 mm or less) annular gap is formed between the non-contact seal 4 and the screw shaft 2.
  • the suction source of the suction pipe is actuated to suck the inside of the nut 1, and in this state, the operation of the ball screw is started.
  • dust generated inside the nut 1 due to rolling of the ball 3 is sucked and removed from the suction hole 7.
  • external air enters the inside of the nut 1 through a minute gap between the non-contact seal 4 and the screw shaft 2, and air inside the nut 1 passes through a gap between the non-contact seal 4 and the screw shaft 2. Prevent going outside. In this way, dust inside the nut 1 is efficiently removed by suction.
  • a minute annular gap is formed between the non-contact seal 4 and the screw shaft 2, so that the suction efficiency is particularly high. Further, since the non-contact seal 4 is used, dust generation due to contact with the screw shaft 2 is prevented.
  • the ball screw of this embodiment while performing the lubrication of the ball screw by supplying a lubricant to the inside of the nut, most of the dust generated inside the nut is sucked and removed without going to the outside. A higher dust generation reduction effect than the conventional ball screw can be obtained.
  • the grease inside the nut 1 may enter the suction pipe through the suction hole 7 during suction due to long-term use. By removing it, etc., it is possible to prevent the suction efficiency from being lowered even after long-term use.
  • FIG. 2 is a cross-sectional view showing the ball screw of the embodiment 1-2.
  • two non-contact seals 41 and 42 are attached to the recesses 14 at both ends of the nut 1 in the axial direction via spacers 6 respectively. Thereby, the grease reservoir space 46 is formed between the non-contact seals 41 and 42.
  • the other points are the same as in Embodiment 1-1.
  • FIG. 3 is a cross-sectional view illustrating the ball screw according to Embodiment 1-3.
  • the greasing hole 8 is formed at a position different from the suction hole 7 of the nut 1, and the grease is supplied from the greasing hole 8.
  • the nut 1 is not provided with a greasing hole 8 and is lubricated by applying grease plating to the screw shaft 2.
  • the gap between the seal 4 and the screw shaft 2 is held substantially constant, and grease does not enter the suction hole 7.
  • the ball screw of FIGS. 1 and 2 it cannot be said that there is no possibility that the grease supplied from the greasing hole 8 enters the suction hole 7. If the grease enters the suction hole 7, the suction effect may be reduced. Therefore, the ball screw of FIG. 3 can obtain a higher dust generation reduction effect than the ball screw of FIGS. 1 and 2.
  • the same effect as described above can be obtained by forming a film made of a solid lubricant on the surface of the screw shaft 2 instead of applying grease plating to the screw shaft 2.
  • solid lubricant forming the coating examples include those composed of at least one of molybdenum disulfide, an organic molybdenum compound, a soft metal (for example, gold, silver, lead), and a polymer material (for example, PTFE, polyimide). It is done.
  • FIG. 4 and 5 are a front view and a cross-sectional view showing a ball screw according to Embodiment 1-4.
  • the greasing hole 8 is provided in the flange 11 formed at one end of the nut 1 in the axial direction, and the suction hole 7 is provided in a portion other than the flange 11, but the fourth embodiment Then, the flange 11 is formed in the axial direction center part of the nut 1, and the suction hole 7 and the greasing hole 8 are provided in the flange 11.
  • the suction hole 7 and the greasing hole 8 are formed at positions that are 90 ° out of phase.
  • the other configuration is the same as that of FIG.
  • the suction hole 7 when the suction hole 7 is formed in the flange 11, when the housing 17 is externally fitted to a portion other than the flange 11 of the nut 1 and the end face of the housing 17 is brought into contact with the end face of the flange 11, Since the attachment hole 71 of the suction hole 7 is not hidden by the housing 17, the suction pipe can be easily attached to the attachment hole 71 of the suction hole 7. On the other hand, if the suction hole 7 is formed in a portion other than the flange 11, the attachment hole 71 of the suction hole 7 is hidden by the housing in the above-described mounting method. Must be provided in the housing.
  • the suction hole 7 is provided at a position between the adjacent spiral grooves 1a in the axial central portion of the nut 1, but may be provided at the position of the spiral groove 1a.
  • the present invention can also be applied to a ball screw having a plurality of circulation circuits (ball return path + track).
  • the suction hole penetrating the nut in the radial direction may be formed at a position corresponding to between adjacent circulation circuits.
  • the ball screw of these embodiments has a ball return path consisting of a ball return path consisting of the through hole 13 and an end deflector 5.
  • the ball return path is an end cap type, circulation tube type, It can also be applied to a ball screw that is a formula.
  • Embodiment 2 corresponds to an embodiment of the ball screw of the first aspect and the ball screw of the third aspect of the present invention.
  • FIG. 6 is a cross-sectional view showing the ball screw of the embodiment 2-1.
  • this ball screw includes a nut 1, a screw shaft 2, a ball 3, a ring-shaped non-contact seal 4, a circulation tube 50, and an annular spacer 6.
  • a spiral groove 1 a is formed on the inner peripheral surface of the nut 1
  • a spiral groove 2 a is formed on the outer peripheral surface of the screw shaft 2.
  • a ball 3 is disposed between the tracks formed by the spiral groove 1 a of the nut 1 and the spiral groove 2 a of the screw shaft 2.
  • a flange 11 is formed at one axial end of the nut 1.
  • This ball screw has two circulation circuits composed of a raceway of the ball 3 (a rolling path formed by the spiral groove 1 a of the nut 1 and the spiral groove 2 a of the screw shaft 2) and the circulation tube 50.
  • a flat surface portion 12 for arranging the two circulation tubes 50 is formed on the outer periphery of a portion other than the flange 11 of the nut 1.
  • a tube mounting hole 16 for attaching two circulation tubes 50 is formed in the flat portion 12. Leg portions of the circulation tube 50 are inserted into the tube mounting holes 16. Further, the circulation tube 50 is fixed to the nut 1 with a tube holding metal fitting (not shown). Further, the gap between the tube mounting hole 16 and the leg of the circulation tube 50 is sealed with a sealing agent.
  • the ball screw of FIG. 6 has a structure in which the path through which dust inside the nut 1 exits is limited to both ends of the nut 1 in the axial direction (exists only at both ends of the nut 1 in the axial direction). .
  • recesses 14 for attaching the spacer 6 and the non-contact seal 4 are formed.
  • the spacer 6 and the non-contact seal 4 are disposed in the concave portion 14 of the nut 1 in this order from the inner side in the axial direction, and these are fixed to the end surface 14a of the concave portion 14 with a bolt (not shown).
  • spaces 46 surrounded by the non-contact seal 4, the spacer 6, and the screw shaft 2 are generated at both axial ends of the nut 1.
  • These spaces 46 become grease (lubricant) accumulation spaces.
  • the spacer 6 may be formed integrally with the nut 1.
  • the nut 1 further has a suction hole 7 connected to the suction means and a greasing hole 8 for supplying a lubricant therein.
  • the suction hole 7 is formed as a through-hole penetrating in the radial direction at a position between the adjacent spiral grooves 1 a in the axial center portion of the nut 1.
  • the position where the suction hole 7 is formed is the position of the boundary between the two circulation circuits.
  • the diameter of the outer periphery of the nut of the suction hole 7 is increased to form a mounting hole 71 for inserting and inserting the tip of the suction pipe.
  • the greasing hole 8 is formed as a through hole penetrating in the radial direction at a position between the adjacent spiral grooves 1a of the portion where the flange 11 of the nut 1 is formed.
  • the nut outer peripheral side of the greasing hole 8 is expanded in diameter (all portions disposed on the flange 11), and serves as a mounting hole 81 to which the tip of the greasing pipe is inserted and attached.
  • the cross-sectional shape of the spiral groove 2a of the screw shaft 2 is a simple gothic arc shape in which no grinding relief groove is formed.
  • the shape of the inner peripheral portion of the non-contact seal 4 is such that the annular gap formed by the screw shaft 2 and the non-contact seal 4 is substantially the same in the entire circumferential direction.
  • This ball screw is used in the following procedure, for example.
  • the tip of the grease supply pipe of low dust generation grease having a consistency of 300 or less is attached to the attachment hole 81 of the grease supply hole 8 of the nut 1, and the tip of the suction pipe is attached to the attachment hole 71 of the suction hole 7 of the nut 1.
  • the grease is stored in the grease storage space 46 by supplying a low dust generation grease amounting to about 1/4 of the internal space from the greasing hole 8 into the nut 1.
  • the nut 1 is moved relative to the screw shaft 2 several times with a stroke corresponding to the length of the nut 1 to move the grease in the grease reservoir space 46, and the non-contact seal 4 and the screw Grease is interposed in the gap with the shaft 2. Thereby, a minute (0.5 mm or less) annular gap is formed between the non-contact seal 4 and the screw shaft 2.
  • the suction source of the suction pipe is actuated to suck the inside of the nut 1, and in this state, the operation of the ball screw is started.
  • dust generated inside the nut 1 due to rolling of the ball 3 is sucked and removed from the suction hole 7.
  • external air enters the inside of the nut 1 through a minute gap between the non-contact seal 4 and the screw shaft 2, and air inside the nut 1 passes through a gap between the non-contact seal 4 and the screw shaft 2. Prevent going outside. In this way, dust inside the nut 1 is efficiently removed by suction.
  • a minute annular gap is formed between the non-contact seal 4 and the screw shaft 2, so that the suction efficiency is particularly high. Further, since the non-contact seal 4 is used, dust generation due to contact with the screw shaft 2 is prevented.
  • the ball screw of this embodiment while performing the lubrication of the ball screw by supplying a lubricant to the inside of the nut, most of the dust generated inside the nut is sucked and removed without going to the outside. A higher dust generation reduction effect than the conventional ball screw can be obtained.
  • the grease inside the nut 1 may enter the suction pipe through the suction hole 7 during suction due to long-term use. By removing it, etc., it is possible to prevent the suction efficiency from being lowered even after long-term use.
  • FIG. 7 is a cross-sectional view showing the ball screw of the embodiment 2-2.
  • two non-contact seals 41 and 42 are attached to the recesses 14 at both ends of the nut 1 in the axial direction via spacers 6 respectively. Thereby, the grease reservoir space 46 is formed between the non-contact seals 41 and 42.
  • the other points are the same as in the embodiment 2-1.
  • FIG. 8 is a cross-sectional view showing the ball screw of the embodiment 2-3.
  • a greasing hole 8 is formed at a position different from the suction hole 7 of the nut 1, and grease is supplied from this greasing hole 8, but in Embodiment 2-3, The nut 1 is not provided with the greasing hole 8 and is lubricated by applying grease plating to the screw shaft 2.
  • the gap between the seal 4 and the screw shaft 2 is held substantially constant, and grease does not enter the suction hole 7.
  • the ball screw of FIG. 8 may have a higher dust generation reduction effect than the ball screw of FIGS.
  • the same effect as described above can be obtained by forming a film made of a solid lubricant on the surface of the screw shaft 2 instead of applying grease plating to the screw shaft 2.
  • solid lubricant forming the coating examples include those composed of at least one of molybdenum disulfide, an organic molybdenum compound, a soft metal (for example, gold, silver, lead), and a polymer material (for example, PTFE, polyimide). It is done.
  • the suction hole 7 is provided at a position between the adjacent spiral grooves 1a in the axial central portion of the nut 1, but may be provided at the position of the spiral groove 1a.
  • the ball screw of these embodiments uses the circulation tube 50 as a ball return path, but a ball return path is formed by an axially extending through hole (ball return path) provided in the nut and an end deflector. May be.
  • the present invention can also be applied to a ball screw whose ball return path is an end cap type or a top type.
  • Embodiment 3 corresponds to an embodiment of the ball screw of the first aspect and the ball screw of the fourth aspect of the present invention.
  • FIG. 9 is a cross-sectional view showing the ball screw of the embodiment 3-1. As shown in FIG. 9, this ball screw includes a double nut 10, a screw shaft 2, a ball 3, a ring-shaped non-contact seal 4, an end deflector 5, and an annular spacer 6. .
  • the double nut 10 is formed by connecting a first nut 1A and a second nut 1B via a spacer 9 made of an annular body.
  • a flange 11 is formed at one axial end of the first nut 1A, but no flange is formed on the second nut 1B.
  • a spiral groove 1 a is formed on the inner peripheral surfaces of both nuts 1 A and 1 B, and a spiral groove 2 a is formed on the outer peripheral surface of the screw shaft 2.
  • a ball 3 is disposed between the tracks formed by the spiral groove 1a of both nuts 1A and 1B and the spiral groove 2a of the screw shaft 2.
  • Both nuts 1A and 1B are formed with through holes 13 extending in the axial direction.
  • Concave portions 15 in which the end deflectors 5 are disposed are formed at both ends of the through holes 13 of both nuts 1A and 1B. That is, the two ball return paths of the ball screw are formed inside the nuts 1A and 1B by the ball return path formed of the through holes 13 and the end deflectors 5 connected to both ends thereof.
  • the end deflector 5 has a tangential scooping shape.
  • Concave portions 14 for attaching the spacer 6 and the non-contact seal 4 are formed at both ends of the double nut 10 in the axial direction.
  • the spacer 6 and the non-contact seal 4 are disposed in the concave portion 14 of the double nut 10 in this order from the inner side in the axial direction, and these are fixed to the end surface 14a of the concave portion 14 with a bolt (not shown).
  • spaces 46 surrounded by the non-contact seal 4, the spacer 6, and the screw shaft 2 are formed at both axial ends of the double nut 10. These spaces 46 become grease (lubricant) accumulation spaces.
  • the spacer 6 may be formed integrally with both nuts 1A and 1B.
  • a suction hole 7 connected to the suction means is formed in the spacer 9 of the double nut 10.
  • the suction hole 7 is formed as a through hole penetrating in the radial direction of the annular body forming the spacer 9 at a position that is the center of the double nut 10 in the axial direction.
  • the outer peripheral side of the spacer 9 of the suction hole 7 is enlarged in diameter to form an attachment hole 71 for inserting and attaching the tip of the suction pipe.
  • a greasing hole 8 for supplying a lubricant to the inside is formed as a through-hole penetrating in the radial direction at a position between adjacent spiral grooves 1a of a portion where the flange 11 of the first nut 1A is formed. ing.
  • the nut outer peripheral side of the greasing hole 8 is expanded in diameter (all portions disposed on the flange 11), and serves as a mounting hole 81 to which the tip of the greasing pipe is inserted and attached.
  • the cross-sectional shape of the spiral groove 2a of the screw shaft 2 is a simple gothic arc shape in which no grinding relief groove is formed.
  • the shape of the inner peripheral portion of the non-contact seal 4 is such that the annular gap formed by the screw shaft 2 and the non-contact seal 4 is substantially the same in the entire circumferential direction.
  • This ball screw is used in the following procedure, for example.
  • the tip of a low dusting grease supply pipe having a consistency of 300 or less is attached to the attachment hole 81 of the grease supply hole 8 of the first nut 1A, and the suction pipe is attached to the attachment hole 71 of the suction hole 7 of the spacer 9 Attach the tip.
  • the grease reservoir space 46 is supplied. Accumulate grease.
  • the double nut 10 is moved relative to the screw shaft 2 several times with a stroke corresponding to the length of the double nut 10, thereby moving the grease in the grease reservoir space 46 and non-contact sealing.
  • Grease is interposed in the gap between 4 and the screw shaft 2. Thereby, a minute (0.5 mm or less) annular gap is formed between the non-contact seal 4 and the screw shaft 2.
  • the suction source of the suction pipe is operated to suck the inside of the double nut 10, and in this state, the operation of the ball screw is started.
  • dust generated inside the nuts 1 ⁇ / b> A and 1 ⁇ / b> B due to the rolling of the ball 3 moves between the spacer 9 and the screw shaft 2 and is sucked and removed from the suction hole 7.
  • outside air passes through the minute gap between the non-contact seal 4 and the screw shaft 2 and enters the inside of both nuts 1A and 1B, and the air inside both the nuts 1A and 1B passes through the non-contact seal 4 and the screw shaft 2.
  • dust inside the double nut 10 is efficiently removed by suction.
  • a minute annular gap is formed between the non-contact seal 4 and the screw shaft 2, so that the suction efficiency is particularly high. Further, since the non-contact seal 4 is used, dust generation due to contact with the screw shaft 2 is prevented.
  • the ball screw of this embodiment while the ball screw is lubricated by supplying a lubricant to the inside of the double nut, most of the dust generated inside the double nut is sucked and removed without going outward. Therefore, a higher dust generation reduction effect than the conventional ball screw can be obtained.
  • the grease inside the double nut 10 enters the suction pipe through the suction hole 7 during suction for a long period of time. By removing the etc., it is possible to prevent the suction efficiency from being lowered even after long-term use.
  • FIG. 10 is a cross-sectional view showing the ball screw of the embodiment 3-2.
  • two non-contact seals 41 and 42 are attached to the recesses 14 at both ends in the axial direction of the double nut 10 via spacers 6, respectively.
  • the grease reservoir space 46 is formed between the non-contact seals 41 and 42.
  • the other points are the same as in Embodiment 3-1.
  • FIG. 11 is a cross-sectional view showing a ball screw according to Embodiment 3-3.
  • the greasing hole 8 is formed in the flange 11 of the first nut 1A, and grease is supplied from the greasing hole 8.
  • No lubrication hole 8 is provided in the nut 1A of 1 and lubrication is performed by applying grease plating to the screw shaft 2.
  • the gap between the seal 4 and the screw shaft 2 is held substantially constant and no grease enters the suction hole 7.
  • the ball screw of FIGS. 9 and 10 it cannot be said that there is no possibility that the grease supplied from the greasing hole 8 enters the suction hole 7. If the grease enters the suction hole 7, the suction effect may be reduced. Therefore, the ball screw of FIG. 11 may have a higher dust generation reduction effect than the ball screw of FIGS. 9 and 10.
  • the same effect as described above can be obtained by forming a film made of a solid lubricant on the surface of the screw shaft 2 instead of applying grease plating to the screw shaft 2.
  • the solid lubricant forming the coating include those composed of at least one of molybdenum disulfide, an organic molybdenum compound, a soft metal (for example, gold, silver, lead), and a polymer material (for example, PTFE, polyimide). It is done.
  • the ball screw of these embodiments has a ball return path consisting of a ball return path consisting of the through hole 13 and an end deflector 5.
  • the ball return path is an end cap type, circulation tube type, top piece. It can also be applied to a ball screw that is a formula.
  • Embodiment 4 corresponds to an embodiment of the ball screw of the fifth aspect of the present invention.
  • the ball screw includes a nut 1, a screw shaft 2, a ball 3, ring-shaped non-contact seals 410 and 420, an end deflector 5, a disk-shaped support member 60, and the like. , C-shaped retaining ring 70.
  • a spiral groove 1 a is formed on the inner peripheral surface of the nut 1, and a spiral groove 2 a is formed on the outer peripheral surface of the screw shaft 2.
  • a ball 3 is disposed between the tracks formed by the spiral groove 1 a of the nut 1 and the spiral groove 2 a of the screw shaft 2.
  • the nut 1 includes a cylindrical portion 110 and a flange 120 integrally formed on the radially outer side of the cylindrical portion 110.
  • the flange 120 is disposed on the one end portion side in the axial direction of the cylindrical portion 110 and slightly shifted from the end face.
  • the cylindrical portion 110 includes a raceway portion 111 in which the spiral groove 1a is formed, and seal portions 112 and 113 having an inner diameter larger than that of the raceway portion 111, which are positioned at both end portions in the axial direction.
  • the track portion 111 of the cylindrical portion 110 is formed with a vent hole 111b penetrating between both end surfaces (boundary surfaces with the seal portions 112 and 113) 111a in the axial direction.
  • the nut 1 is also formed with a suction hole 130 connected to the suction means.
  • the suction hole 130 extends in the radial direction from the outer peripheral surface of the flange 120 to the ventilation hole 111 b of the cylindrical portion 110.
  • the suction hole 130 is enlarged in diameter on the boundary side with the cylindrical portion 110 of the flange 120, and a large diameter portion is an attachment hole 130a to which the tip of the suction pipe is inserted and attached.
  • the nut 1 is also formed with a greasing hole 140 for supplying a lubricant therein.
  • the greasing hole 140 has the same position in the axial direction as the suction hole 130 and is disposed at a position opposite to the suction hole 130 in the radial direction.
  • the greasing hole 140 is enlarged in diameter on the boundary side with the cylindrical portion 110 of the flange 120, and the large diameter portion is an attachment hole 140a for inserting and attaching the tip of the greasing pipe.
  • An attachment hole 120a for attaching the nut 1 to the housing is formed in the flange 120 of the nut 1.
  • the ball return path of this ball screw is formed inside the nut 1 and includes a ball return path 111 c formed of a through hole extending in the axial direction and end deflectors 5 connected to both ends thereof.
  • the ball return passage 111c is formed in the track portion 111 of the cylindrical portion 110 of the nut 1 at a position where the central angle is 90 degrees with respect to the suction hole 130 in the circumferential direction.
  • Concave portions 111d for disposing the end deflectors 5 are formed at positions corresponding to both ends of the ball return passage 111c on both end surfaces 111a of the track portion 111.
  • first seal mounting grooves 112a and 113a, second grooves 112b, 113b are formed at intervals.
  • a first non-contact seal (inner seal) 410 is attached to the first grooves 112 a and 113 a using the C-shaped retaining ring 70 with the end surface 111 a of the track portion 111 as a support surface.
  • the first non-contact seal 410 has a communication hole 410 a having the same diameter as the cross-sectional circle of the ventilation hole 111 b, and the communication hole 410 a is attached so as to fit the ventilation hole 111 b of the nut 1.
  • the C-shaped retaining ring 70 is also arranged so that the opening 70a is aligned with the communication hole 410a.
  • a disc-shaped support member 60, a second seal 420, and a C-shaped retaining ring 70 are arranged in this order from the first grooves 112a and 113a. That is, the second non-contact seal 420 is fixed to the second grooves 112 b and 113 b by using the C-shaped retaining ring 70 with the disk surface of the disk-shaped support member 60 as a support surface.
  • the disc-like support member 60 is a disc having a hole with the same inner diameter as that of the non-contact seal 420, and a circular portion having a width corresponding to the diameter of the vent hole 111b in the circumferential direction (see FIG. 12). is there.
  • the first non-contact seal 410 and the second non-contact seal 420 are the same at both axial ends of the nut 1 and the gap between the screw shaft 2 is the same at both ends, so that the amount of dust generated from both sides Makes uniform suction and efficient suction.
  • the radial clearance with respect to the screw shaft 2 of the first non-contact seal (inner seal) 410 is preferably about 0.1 mm in order to reduce grease leakage as much as possible.
  • the radial clearance with respect to the screw shaft 2 of the second non-contact seal 420 is preferably about 0.3 mm in order to obtain a good suction effect.
  • the tip of the grease supply pipe for low dust generation grease having a consistency of 300 or less is attached to the attachment hole 140a of the grease supply hole 140 of the nut 1, and the suction hole 130 of the nut 1 is attached.
  • the tip of the suction pipe is attached to the attachment hole 130a.
  • the operation of the ball screw is started by operating the suction source of the suction pipe.
  • external air enters the spaces K1 and K2 through the gap between the second non-contact seal 420 and the screw shaft 2, and the air inside the nut 1 passes through the second non-contact seal 420 and the screw shaft 2.
  • the air existing in the range of the track inside the nut 1 passes through the gap between the first non-contact seal 410 and the screw shaft 2 toward the spaces K1 and K2.
  • the air in the spaces K1 and K2 passes through the communication hole 410a of the first non-contact seal 410 and enters the ventilation hole 111b of the nut 1 and is sucked and removed from the suction hole 130.
  • the ball screw of this embodiment while performing the lubrication of the ball screw by supplying a lubricant to the inside of the nut, most of the dust generated inside the nut is sucked and removed without going to the outside. A higher dust generation reduction effect than the conventional ball screw can be obtained.
  • two non-contact seals 410 and 420 are disposed at both ends of the nut 1 in the axial direction, but three or more non-contact seals may be disposed respectively. Even in that case, in order to make the dust generation from both sides of the nut 1 axially uniform and perform efficient suction, the same non-contact seals are arranged at both ends of the nut 1 in the axial direction, The gap with the shaft 2 is made the same at both ends.
  • FIG. 17 is a cross-sectional view taken along the line AA in FIG. 16 is the same as FIG. 14, and the BB sectional view of the nut constituting the ball screw of FIG. 16 is the same as FIG.
  • the ball screw shown in FIG. 16 is lubricated by applying grease plating to the screw shaft 2, the gap between the non-contact seals 410, 420 and the screw shaft 2 is kept substantially constant, and the ventilation hole Grease does not enter 111b.
  • the ball screw of FIG. 12 it cannot be said that there is no possibility that the grease supplied from the greasing hole 140 enters the ventilation hole 111b. If the grease enters the ventilation hole 111b, the suction effect may be reduced. Therefore, the ball screw of FIG. 16 may have a higher dust generation reduction effect than the ball screw of FIG.
  • the same effect as described above can be obtained by forming a film made of a solid lubricant on the surface of the screw shaft 2 instead of applying grease plating to the screw shaft 2.
  • the solid lubricant forming the coating include those composed of at least one of molybdenum disulfide, an organic molybdenum compound, a soft metal (for example, gold, silver, lead), and a polymer material (for example, PTFE, polyimide). It is done.
  • the ball screw of FIG. 18 is an example in which the ball return path is formed using the circulation tube 80. In the ball screw of FIG.
  • a tube mounting hole 111 e that penetrates in the radial direction is formed in the raceway portion 111 of the cylindrical portion 110 of the nut 1, and the ball return passage 111 c and the end deflector 5 are arranged as shown in FIG. 15.
  • the recess 111d is not formed.
  • a flat surface portion 111 f for arranging the circulation tube 80 is formed on the outer periphery of the track portion 111.
  • the leg portion of the circulation tube 80 is inserted into the tube mounting hole 111 e of the track portion 111.
  • the circulation tube 80 is fixed to the track portion 111 with a tube holding fitting (not shown).
  • the gap between the tube mounting hole 111e and the leg of the circulation tube 80 is sealed with a sealing agent. Accordingly, in the ball screw of FIG. 18, the path through which the dust inside the nut 1 goes out is limited to both ends of the nut 1 in the axial direction (exists only at both ends of the nut 1 in the axial direction). .
  • the other points are the same as the ball screw of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

 ボールねじのボール戻し経路をナット1の内部に形成し、ナット1の軸方向両端にリング状の非接触シール4を配置する。ナット1を径方向に貫通する吸引穴7を、給脂穴8とは別に、ボール3の軌道(ナット1の螺旋溝1aとねじ軸2の螺旋溝2aとで形成される転動路)の範囲内に形成する。これにより、ナット内部に発生した塵埃を外部に極力出さないようにして、従来のボールねじよりも高い発塵低減効果を得る。

Description

ボールねじ
 この発明は、ボールねじに関する。
 半導体素子や液晶表示パネルを製造する環境に塵埃が存在すると歩留まり低下の原因になるため、これらの製造はクリーンルーム等の清浄な環境下で行われている。よって、半導体素子や液晶表示パネルの製造に使用される装置(例えば、製造装置や搬送装置)を構成するボールねじには、使用状態で塵埃が発生しないことが求められている。
 特許文献1には、ボールねじのボール戻し経路が、ボールを循環チューブのタングに衝突させてナットの外部にすくい上げる構造であると、衝突の際にボール等に付着しているグリースの油分が飛散して、ねじ軸とナットの間から外部に微粒子として放出されるため、発塵の原因になることが記載されている。この原因をなくすために、ボールねじのボール戻し経路を、ナットの軸方向に延びる貫通穴(すなわち、ボール戻し通路)と、これに連続するボール循環コマで形成し、ボール循環コマを、ボールがタングに衝突しない状態で循環できる形状にすることが記載されている。
 また、特許文献1に記載されたボールねじは、低発塵性グリースで潤滑され、ねじ軸とナットの環状隙間が、ナットの軸方向両端に配置されたリング状の接触シールで塞がれている。
 特許文献2には、ボールねじのナットに設けた給油孔に吸引配管を接続して、ナットの内部に発生した塵埃を吸引除去することが記載されている。また、ねじ軸にグリースプレーティング(すなわち、潤滑剤含有溶液に浸漬後、乾燥することで潤滑剤被膜を形成する方法)を施すことで、潤滑剤からの発塵を抑制することが記載されている。
特開2006-112517号公報 特許第2638955号公報
 しかしながら、特許文献1および2に記載されたボールねじには、発塵低減効果の点でさらなる改善の余地がある。
 この発明の課題は、ナット内部に発生した塵埃を外部に極力出さないようにして、従来のボールねじよりも高い発塵低減効果を得ることである。
<発明の構成>
 上記課題を解決するために、この発明の第1の態様に係るボールねじは、内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動するボールねじであって、前記ナットの軸方向両端に、リング状の非接触シールが配置され、前記ナットを径方向に貫通する吸引穴が、前記ナットの軸方向中央部(軸方向両端以外の部分、両非接触シールの間の部分)に形成されている。
 上記課題を解決するために、この発明の第2の態様に係るボールねじは、内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道(転動路)の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動するボールねじであって、前記ナットの軸方向両端に、リング状の非接触シールが配置され、前記ナットを径方向に貫通する吸引穴(吸引手段に接続する穴)が、前記軌道の範囲内(ナットの軸方向でボールが転動する範囲)に形成されている。
 前記第1および第2の態様に係るボールねじは、前記ナットの軸方向中央部にフランジが形成され、前記フランジに前記吸引穴が形成された構造とすることができる。
 上記課題を解決するために、この発明の第3の態様に係るボールねじは、内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動するボールねじであって、前記軌道と前記ボール戻し経路とで構成される循環回路を複数有し、前記ナットの軸方向両端に、リング状の非接触シールが配置され、前記ナットを径方向に貫通する吸引穴が、前記ナットの軸方向中央部に形成されている。
 上記課題を解決するために、この発明の第4の態様に係るボールねじは、内周面に螺旋溝が形成されたナットが間座を介して二個連結されたダブルナットと、外周面に螺旋溝が形成されたねじ軸と、前記二個のナットの螺旋溝と前記ねじ軸の螺旋溝で形成される各軌道の間に配置されたボールと、ボールを各軌道の終点から始点に戻す二個のボール戻し経路とを備え(すなわち、循環回路を二個有し)、前記各軌道内をボールが転動することで前記ダブルナットがねじ軸に対して相対移動するボールねじであって、前記ダブルナットの軸方向両端に、リング状の非接触シールが配置され、前記ダブルナットを径方向に貫通する吸引穴が、前記間座に形成されている。
 前記第1乃至第3の態様に係るボールねじは、前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端のみに存在する(軸方向両端に限定されている)ことが好ましい。
 前記第4の態様に係るボールねじは、前記ダブルナットの内部の塵埃が外部に出る経路が、前記ダブルナットの軸方向両端のみに存在する(軸方向両端に限定されている)ことが好ましい。
 前記第4の態様に係るボールねじは、前記間座以外の部分に、前記ダブルナットの内部に潤滑剤を供給する給脂穴が形成された構造とすることができる。
 上記課題を解決するために、この発明の第5の態様に係るボールねじは、内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動するボールねじであって、前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端のみに存在し(軸方向両端に限定され)、前記ナットの軸方向両端に、それぞれ複数枚のリング状の非接触シールが所定の空間を介して配置され、前記空間内の空気を吸引する吸引機構を有し、吸引機構の吸引穴がナットに形成されている。
 前記第5の態様に係るボールねじは、前記吸引機構が、前記ナットに形成された軸方向に貫通する通気穴と、前記ナットの各端部の最も内側に配置された内側シールに設けた、前記通気穴と前記空間を連通させる連通穴と、を有し、前記吸引穴が、ナットの外面から前記通気穴に至るまで径方向に延び、前記ナットの軸方向で前記内側シール同士の間となる位置に配置されていることが好ましい。
 前記第1乃至第5の態様に係るボールねじは、前記ボール戻し経路がナットの内部に形成された構造とすることができる。
 前記第1乃至3および第5の態様に係るボールねじは、前記ナットの内部に潤滑剤を供給する給脂穴が前記ナットに形成され、前記吸引穴が前記給脂穴とは別の位置に形成された構造とすることができる。
<発明の作用>
 ボールねじの発塵源は潤滑剤であり、ボールが軌道を転動する際に潤滑剤を飛び散らすことによって塵埃が生じる。ねじ軸のナットの外側にある部分にも潤滑剤は付着しているが、その部分の螺旋溝にはボールが存在しないため、ねじ軸が回転していてもその部分からの発塵は少ない。すなわち、ボールねじにおいては、主にナット内部の軌道の範囲(ボールが転動する範囲)内で塵埃が発生している。
 前記第1の態様に係るボールねじでは、前記ナットの軸方向中央部(軸方向両端以外の部分、両非接触シールの間の部分)に吸引穴を設けている。そのため、前記軌道と前記ボール戻し経路とで構成される循環回路を一つ有する場合は、ナットの塵埃が発生している軌道の範囲内に吸引穴が形成された状態となる。前記循環回路を複数有する場合は、ナットの塵埃が発生している軌道の範囲内またはその間となる位置に吸引穴が形成された状態となる。
 よって、前記第1の態様に係るボールねじによれば、前記いずれの場合でも、ナット内部の塵埃が効率的に吸引除去される。また、非接触シールが配置されているため、ねじ軸とシールとの接触による発塵が防止される。
 前記第2の態様に係るボールねじでは、ナットの塵埃が発生している軌道の範囲(ボールが転動する範囲)内に吸引穴を設けたため、ナット内部の塵埃が効率的に吸引除去される。また、非接触シールが配置されているため、ねじ軸とシールとの接触による発塵が防止される。
 前記第3の態様に係るボールねじでは、前記循環回路を複数有する場合に、ナットの軸方向中央部に吸引穴を設けている。これにより、ナットの塵埃が発生している軌道の範囲(ボールが転動する範囲)内またはその間となる位置に吸引穴が形成された状態となるため、ナット内部の塵埃が効率的に吸引除去される。また、非接触シールが配置されているため、ねじ軸とシールとの接触による発塵が防止される。
 前記第1乃至3の態様に係るボールねじは、前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端のみに存在する(前記ナットの軸方向両端に限定された)構造を有することが好ましい。このナットの軸方向両端にはリング状の非接触シールが配置されているため、前記構造を有すると、ナットとねじ軸との隙間は、ねじ軸と非接触シールとの隙間のみになる。よって、吸引穴に吸引手段を接続してナット内部を吸引している間、ナット外部の空気が非接触シールとねじ軸との隙間を通ってナット内部に入り、ナット内部の空気が非接触シールとねじ軸との隙間を通って外部に向かうことを妨げる。
 前記第1乃至3の態様に係るボールねじが、前記ナットの内部に潤滑剤を供給する給脂穴が前記ナットに形成され、前記吸引穴が前記給脂穴とは別の位置に形成されていると、前記給脂穴からナット内部へ潤滑剤を供給してボールねじの潤滑を行うことができる。
 また、前記給脂穴から供給された潤滑剤は、ボールの転動に伴うナットのねじ軸に対する相対的往復移動により、ナットの軸方向両端の非接触シールの内側に溜まり易く、ナット内部の軸方向中央部および軌道の範囲には溜まりにくい。この範囲に吸引穴が形成されているため、吸引穴が潤滑剤で塞がれにくく、安定的に吸引を行うことができる。
 これにより、ボールねじの潤滑をナット内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどを外部に向かわせずに、効率的に吸引除去することができる。
 前記第4の態様に係るボールねじでは、ナットが間座を介して二個連結されたダブルナットを備え、前記間座に吸引穴が形成されているため、前記吸引穴からの吸引時に、各ナットの軌道の範囲に存在している塵埃が前記間座とねじ軸との間に移行することで、各ナット内部の塵埃が効率的に吸引除去される。また、非接触シールが配置されているため、ねじ軸とシールとの接触による発塵が防止される。
 前記第4の態様に係るボールねじは、前記ナットの内部の塵埃が外部に出る経路が、前記ダブルナットの軸方向両端のみに存在する(前記ダブルナットの軸方向両端に限定された)構造を有することが好ましい。このダブルナットの軸方向両端にはリング状の非接触シールが配置されているため、ダブルナットとねじ軸との隙間は、ねじ軸と非接触シールとの隙間のみになる。よって、吸引穴に吸引手段を接続してダブルナットの内部を吸引している間、ダブルナットの外部の空気が非接触シールとねじ軸との隙間を通ってダブルナットの内部に入り、ダブルナットの内部の空気が非接触シールとねじ軸との隙間を通って外部に向かうことを妨げる。
 前記第4の態様に係るボールねじのダブルナットに、ダブルナットの内部に潤滑剤を供給する給脂穴を形成する場合は、前記間座以外の部分(すなわち、二個のナットのいずれか)に形成することが好ましい。前記給脂穴から供給された潤滑剤は、ボールの転動に伴うダブルナットのねじ軸に対する相対的往復移動により、ダブルナットの軸方向両端の非接触シールの内側に溜まり易く、各ナット内部の軌道の範囲には溜まりにくい。この発明のボールねじでは、両ナットの前記軌道の範囲で挟まれた間座に吸引穴が形成されているため、吸引穴が潤滑剤で塞がれにくく、安定的に吸引を行うことができる。
 これにより、ボールねじの潤滑をダブルナットの内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどを外部に向かわせずに、効率的に吸引除去することができる。
 前記第1乃至第4の態様に係るボールねじにおいて、前記ナットの内部の塵埃が外部に出る経路が、前記ナットまたは前記ダブルナットの軸方向両端のみに存在する構造は、前記ボール戻し経路をナットの内部に形成することによって実現できる。また、前記ボール戻し経路が循環チューブを用いて形成されている場合には、循環チューブを差し込むナットの穴と、その穴に差し込まれた循環チューブの脚部との隙間を塞ぐことにより前記構造が実現できる。
 前記第5の態様に係るボールねじでは、前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端に限定され、前記ナットの軸方向両端に、それぞれ複数枚の非接触シールが所定の空間を介して配置されているため、ナット内部の塵埃は軌道の範囲に存在するだけでなく、隣り合う非接触シールで挟まれた前記空間にも溜まるようになる。
 この空間内の空気を吸引機構で吸引することにより、この空間内の塵埃が除去される。吸引機構で吸引している間、外部の空気が非接触シールとねじ軸との隙間を通って前記空間に入り、ナット内部の空気が非接触シールとねじ軸との隙間を通って外部に向かうことを妨げる。
 また、この吸引により、ナット内部の軌道の範囲に存在する空気が、非接触シールとねじ軸との隙間を通って前記空間に導入される。よって、ナット内部の軌道の範囲に存在した塵埃と前記空間に溜まった塵埃の両方が、前記空間から吸引除去されるため、ナット内部全体の塵埃が効率的に除去される。さらに、非接触シールを配置することで、ねじ軸とシールとの接触による発塵が防止される。
 前記第5の態様に係るボールねじは、前記ボール戻し経路がナットの内部に形成されていることが好ましい。これにより、前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端に限定された(軸方向両端のみに存在する)状態にすることが容易に行える。なお、前記ボール戻し経路が循環チューブを用いて形成されている場合は、循環チューブを差し込むナットの穴と、その穴に差し込まれた循環チューブの脚部との隙間を塞ぐことで、前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端に限定された状態にすることができる。
 前記第5の態様に係るボールねじの前記吸引機構は、前記ナットに形成された軸方向に貫通する通気穴と、前記ナットの各端部の最も内側に配置された内側シールに設けた、前記通気穴と前記空間を連通させる連通穴と、を有し、前記吸引穴は、ナットの外面から前記通気穴に至るまで径方向に延び、前記ナットの軸方向で前記内側シール同士の間となる位置に配置されていることが好ましい。
 これにより、前記吸引穴から吸引することで、ナットの軸方向両端で、隣り合う非接触シールで挟まれた前記空間の空気が前記内側シールの連通穴から前記通気穴に入るため、ナット内部の塵埃の除去が軸方向両端から効率よく行われる。また、吸引穴が、ナットの外面から前記通気穴に至るまで径方向に延びていて、ナットの内面には開口していないため、吸引穴が潤滑剤で詰まりにくいとともに、潤滑剤が吸引穴から排出されにくい。
 また、前記第5の態様に係るボールねじが、前記ナットの内部に潤滑剤を供給する給脂穴が前記ナットに形成され、前記吸引穴が前記給脂穴とは別の位置に形成されていると、前記給脂穴からナット内部へ潤滑剤を供給してボールねじの潤滑を行うことができる。すなわち、この構成の場合、ボールねじの潤滑をナット内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどが、外部に向かわず吸引除去される。
 なお、この発明の各態様に係るボールねじ(前記第1乃至第5の態様に係るボールねじ)は、ねじ軸と非接触シールとで形成される円環状隙間が周方向全体でほぼ同じになるように、非接触シールの内周部の形状とねじ軸の螺旋溝の形状を組合せることが好ましい。例えば、ねじ軸の螺旋溝を研削逃げが形成されていない単純なゴシックアーク形状とし、非接触シールの内周部をこれに対応させた形状とする。これにより、吸引時に、円環状隙間の周方向全体からナット内部に均一に空気が導入されて、空気の流れが周方向全体で均一になるため吸引効率が高くなる。ねじ軸と非接触シールとで形成される円環状隙間は0.5mm以下であることが好ましい。
 前記潤滑剤としては、ちょう度が300以下の低発塵性グリースを使用することが好ましい。
 また、ナットの内部に潤滑剤を供給して慣らし運転をすることにより、非接触シールとねじ軸との隙間に潤滑剤を介在させると、ねじ軸と非接触シールとの間に微小な隙間ができる。よって、この発明のボールねじは、慣らし運転を行った後に使用することで吸引効率が向上する。
 この発明のボールねじによれば、ナットの内部に発生した塵埃のほとんどが外部に向かわず、効率的に吸引除去されるため、従来のボールねじよりも高い発塵低減効果が得られる。
実施形態1-1のボールねじを示す断面図である。 実施形態1-2のボールねじを示す断面図である。 実施形態1-3のボールねじを示す断面図である。 実施形態1-4のボールねじを示す正面図である。 実施形態1-4ボールねじを示す断面図(図4のA-A断面図)である。 実施形態2-1のボールねじを示す断面図である。 実施形態2-2のボールねじを示す断面図である。 実施形態2-3のボールねじを示す断面図である。 実施形態3-1のボールねじを示す断面図である。 実施形態3-2のボールねじを示す断面図である。 実施形態3-3のボールねじを示す断面図である。 実施形態4-1のボールねじを示す一部破断正面図である。 図12のA-A断面図である。 図12のB-B断面図である。 図12のボールねじを構成するナットのB-B断面図である。 実施形態4-2のボールねじを示す一部破断正面図である。 図16のA-A断面図である。 実施形態4-3のボールねじを示す一部破断正面図である。
 以下、この発明の実施形態について説明する。
[実施形態1]
 実施形態1は、この発明の第1の態様のボールねじおよび第2の態様のボールねじの実施形態に相当する。
 図1は、実施形態1-1のボールねじを示す断面図である。
 図1に示すように、このボールねじは、ナット1と、ねじ軸2と、ボール3と、リング状の非接触シール4と、エンドデフレクタ5と、環状のスペーサ6で構成されている。ナット1の内周面に螺旋溝1aが形成され、ねじ軸2の外周面に螺旋溝2aが形成されている。ナット1の螺旋溝1aとねじ軸2の螺旋溝2aで形成される軌道の間に、ボール3が配置されている。ナット1の軸方向一端にはフランジ11が形成されている。
 ナット1には、軸方向に延びる貫通穴13が形成されている。ナット1の貫通穴13の両端部に、エンドデフレクタ5を配置する凹部15が形成されている。すなわち、このボールねじのボール戻し経路は、貫通穴13からなるボール戻し通路と、その両端に接続されたエンドデフレクタ5とにより、ナット1の内部に形成されている。エンドデフレクタ5は接線すくい上げ形状のものを用いている。
 ナット1の軸方向両端に、スペーサ6と非接触シール4を取り付けるための凹部14が形成されている。ナット1の凹部14内に、軸方向内側から順に、スペーサ6、非接触シール4が配置され、これらが、図示されないボルトで凹部14の端面14aに固定されている。これにより、ナット1の軸方向両端に、非接触シール4とスペーサ6とねじ軸2とで囲まれた空間46が生じる。これらの空間46が、グリ-ス(潤滑剤)溜まり空間となる。スペーサ6はナット1と一体に形成されていてもよい。
 ナット1には、さらに、吸引手段に接続する吸引穴7と、内部に潤滑剤を供給する給脂穴8が形成されている。吸引穴7は、ナット1の軸方向中央部の隣り合う螺旋溝1aの間となる位置に、径方向に貫通する貫通穴として形成されている。すなわち、吸引穴7は、ナット1の螺旋溝1aとねじ軸2の螺旋溝2aで形成される軌道の範囲内に設けてある。吸引穴7のナット外周側は拡径されて、吸引配管の先端を挿入して取り付ける取り付け穴71となっている。
 給脂穴8は、ナット1のフランジ11が形成されている部分の隣り合う螺旋溝1aの間となる位置に、径方向に貫通する貫通穴として形成されている。給脂穴8のナット外周側は(フランジ11に配置されている部分は全て)拡径されて、給脂配管の先端を挿入して取り付ける取り付け穴81となっている。
 ねじ軸2の螺旋溝2aの断面形状は、研削逃げ溝が形成されていない単純なゴシックアーク形状である。これに対応させて、非接触シール4の内周部の形状を、ねじ軸2と非接触シール4とで形成される円環状隙間が周方向全体でほぼ同じになるようにしてある。
 このボールねじは、例えば以下の手順で使用される。
 ナット1の給脂穴8の取り付け穴81に、ちょう度が300以下の低発塵グリースの給脂配管の先端を取り付け、ナット1の吸引穴7の取り付け穴71に吸引配管の先端を取り付ける。そして、先ず、給脂穴8からナット1の内部に、内部空間の1/4程度となる量の低発塵グリースを供給することで、グリ-ス溜まり空間46にグリースを溜める。
 次に、慣らし運転として、ナット1をねじ軸2に対してナット1の長さ分のストロークで数回相対移動させることで、グリース溜まり空間46のグリースを移動させて、非接触シール4とねじ軸2との隙間にグリースを介在させる。これにより、非接触シール4とねじ軸2との間に微小な(0.5mm以下の)円環状の隙間が形成される。
 次に、吸引配管の吸引源を作動させてナット1の内部を吸引し、この状態でボールねじの運転を開始する。これにより、ボール3の転動によりナット1の内部に発生した塵埃が吸引穴7から吸引除去される。また、外部の空気が非接触シール4とねじ軸2との微小な隙間を通ってナット1の内部に入り、ナット1の内部の空気が非接触シール4とねじ軸2との隙間を通って外部に向かうことを妨げる。
 このようにして、ナット1の内部の塵埃が効率的に吸引除去される。グリース溜まり空間46を設けたことで、非接触シール4とねじ軸2との間に微小な円環状の隙間が形成されるため、吸引効率が特に高くなる。また、非接触シール4を用いているため、ねじ軸2との接触による発塵が防止される。
 したがって、この実施形態のボールねじによれば、ボールねじの潤滑をナット内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどが外部に向かわず吸引除去されるため、従来のボールねじよりも高い発塵低減効果が得られる。
 なお、長期間の使用により、吸引時にナット1の内部のグリースが吸引穴7から吸引配管に入ることが考えられるが、吸引配管にグリースを溜める部分を設けて、その部分から定期的にグリースを取り除くこと等により、長期間の使用でも吸引効率を低下させないようにすることができる。
 図2は、実施形態1-2のボールねじを示す断面図である。
 この実施形態では、ナット1の軸方向両端の凹部14に、それぞれスペーサ6を介して2枚の非接触シール41,42を取り付けている。これにより、グリース溜まり空間46が非接触シール41,42の間に形成されている。これ以外の点は実施形態1-1と同じである。
 図3は、実施形態1-3のボールねじを示す断面図である。
 実施形態1-1および1-2では、ナット1の吸引穴7とは異なる位置に給脂穴8が形成され、この給脂穴8からグリースを供給しているが、第3実施形態では、ナット1に給脂穴8を設けず、ねじ軸2にグリースプレーティングを施すことで潤滑を行っている。これにより、図3のボールねじは、シール4とねじ軸2との隙間がほぼ一定に保持されるとともに、吸引穴7にグリースが入らない。
 これに対して、図1および図2のボールねじでは、給脂穴8から供給したグリースが吸引穴7に入る可能性がないとは言えない。そして、吸引穴7にグリースが入ると吸引効果が低減する場合がある。よって、図3のボールねじは、図1および図2のボールねじよりも高い発塵低減効果が得られる。
 ねじ軸2にグリースプレーティングを施すことに代えて、固体潤滑剤からなる被膜をねじ軸2の表面に形成することによっても、上記と同様の効果を得ることができる。前記被膜をなす固体潤滑剤としては、二硫化モリブデン、有機モリブデン化合物、軟質金属(例えば、金、銀、鉛)、および高分子材料(例えば、PTFE、ポリイミド)の少なくとも1種からなるものが挙げられる。
 図4および5は、実施形態1-4のボールねじを示す正面図および断面図である。
 実施形態1-1~1-3では、ナット1の軸方向一端に形成されたフランジ11に給脂穴8を設け、フランジ11以外の部分に吸引穴7を設けているが、第4実施形態では、ナット1の軸方向中央部にフランジ11を形成し、フランジ11に吸引穴7と給脂穴8を設けている。図4に示すように、吸引穴7と給脂穴8は90°位相が異なる位置に形成されている。これ以外の構成は図1の構成と同じである。
 このように、吸引穴7がフランジ11に形成されていると、ハウジング17をナット1のフランジ11以外の部分に外嵌し、ハウジング17の端面をフランジ11の端面に接触させて取り付ける際に、吸引穴7の取り付け穴71がハウジング17で隠れないため、吸引穴7の取り付け穴71に吸引配管を容易に取り付けることができる。これに対して、吸引穴7がフランジ11以外の部分に形成されていると、上述の取り付け方では、吸引穴7の取り付け穴71がハウジングで隠れるため、吸引穴7の取り付け穴71と吸引配管を接続する貫通穴をハウジングに設ける必要がある。
 なお、これらの実施形態では、吸引穴7を、ナット1の軸方向中央部の隣り合う螺旋溝1aの間となる位置に設けているが、螺旋溝1aの位置に設けてもよい。
 また、この発明は、循環回路(ボール戻し経路+軌道)が複数あるボールねじにも適用できる。その場合、ナットを径方向に貫通する吸引穴は、隣り合う循環回路の間に相当する位置に形成されていてもよい。
 また、これらの実施形態のボールねじは、貫通穴13からなるボール戻し通路とエンドデフレクタ5とからなるボール戻し経路を有するが、この発明は、ボール戻し経路がエンドキャップ式、循環チューブ式、コマ式であるボールねじにも適用できる。
[実施形態2]
 実施形態2は、この発明の第1の態様のボールねじおよび第3の態様のボールねじの実施形態に相当する。
 図6は、実施形態2-1のボールねじを示す断面図である。
 図6に示すように、このボールねじは、ナット1と、ねじ軸2と、ボール3と、リング状の非接触シール4と、循環チューブ50と、環状のスペーサ6で構成されている。ナット1の内周面に螺旋溝1aが形成され、ねじ軸2の外周面に螺旋溝2aが形成されている。ナット1の螺旋溝1aとねじ軸2の螺旋溝2aで形成される軌道の間に、ボール3が配置されている。ナット1の軸方向一端にはフランジ11が形成されている。
 このボールねじは、ボール3の軌道(ナット1の螺旋溝1aとねじ軸2の螺旋溝2aとで形成される転動路)と循環チューブ50とで構成される2個の循環回路を有する。
 ナット1のフランジ11以外の部分の外周に、2本の循環チューブ50を配置するための平面部12が形成されている。この平面部12に、2本の循環チューブ50を取り付けるチューブ取付穴16が形成されている。チューブ取付穴16に、循環チューブ50の脚部が差し込まれている。また、循環チューブ50はナット1に対して、図示されないチューブ抑え金具で固定されている。
 さらに、チューブ取付穴16と循環チューブ50の脚部との隙間がシーリング剤でシールされている。これにより、図6のボールねじは、ナット1の内部の塵埃が外部に出る経路が、ナット1の軸方向両端に限定された(ナット1の軸方向両端のみに存在する)構造になっている。
 ナット1の軸方向両端に、スペーサ6と非接触シール4を取り付けるための凹部14が形成されている。ナット1の凹部14内に、軸方向内側から順に、スペーサ6、非接触シール4が配置され、これらが、図示されないボルトで凹部14の端面14aに固定されている。これにより、ナット1の軸方向両端に、非接触シール4とスペーサ6とねじ軸2とで囲まれた空間46が生じる。これらの空間46が、グリ-ス(潤滑剤)溜まり空間となる。スペーサ6はナット1と一体に形成されていてもよい。
 ナット1には、さらに、吸引手段に接続する吸引穴7と、内部に潤滑剤を供給する給脂穴8が形成されている。吸引穴7は、ナット1の軸方向中央部の隣り合う螺旋溝1aの間となる位置に、径方向に貫通する貫通穴として形成されている。吸引穴7が形成されている位置は、2個の循環回路の境界の位置である。吸引穴7のナット外周側は拡径されて、吸引配管の先端を挿入して取り付ける取り付け穴71となっている。
 給脂穴8は、ナット1のフランジ11が形成されている部分の隣り合う螺旋溝1aの間となる位置に、径方向に貫通する貫通穴として形成されている。給脂穴8のナット外周側は(フランジ11に配置されている部分は全て)拡径されて、給脂配管の先端を挿入して取り付ける取り付け穴81となっている。
 ねじ軸2の螺旋溝2aの断面形状は、研削逃げ溝が形成されていない単純なゴシックアーク形状である。これに対応させて、非接触シール4の内周部の形状を、ねじ軸2と非接触シール4とで形成される円環状隙間が周方向全体でほぼ同じになるようにしてある。
 このボールねじは、例えば以下の手順で使用される。
 ナット1の給脂穴8の取り付け穴81に、ちょう度が300以下の低発塵グリースの給脂配管の先端を取り付け、ナット1の吸引穴7の取り付け穴71に吸引配管の先端を取り付ける。そして、先ず、給脂穴8からナット1の内部に、内部空間の1/4程度となる量の低発塵グリースを供給することで、グリ-ス溜まり空間46にグリースを溜める。
 次に、慣らし運転として、ナット1をねじ軸2に対してナット1の長さ分のストロークで数回相対移動させることで、グリース溜まり空間46のグリースを移動させて、非接触シール4とねじ軸2との隙間にグリースを介在させる。これにより、非接触シール4とねじ軸2との間に微小な(0.5mm以下の)円環状の隙間が形成される。
 次に、吸引配管の吸引源を作動させてナット1の内部を吸引し、この状態でボールねじの運転を開始する。これにより、ボール3の転動によりナット1の内部に発生した塵埃が吸引穴7から吸引除去される。また、外部の空気が非接触シール4とねじ軸2との微小な隙間を通ってナット1の内部に入り、ナット1の内部の空気が非接触シール4とねじ軸2との隙間を通って外部に向かうことを妨げる。
 このようにして、ナット1の内部の塵埃が効率的に吸引除去される。グリース溜まり空間46を設けたことで、非接触シール4とねじ軸2との間に微小な円環状の隙間が形成されるため、吸引効率が特に高くなる。また、非接触シール4を用いているため、ねじ軸2との接触による発塵が防止される。
 したがって、この実施形態のボールねじによれば、ボールねじの潤滑をナット内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどが外部に向かわず吸引除去されるため、従来のボールねじよりも高い発塵低減効果が得られる。
 なお、長期間の使用により、吸引時にナット1の内部のグリースが吸引穴7から吸引配管に入ることが考えられるが、吸引配管にグリースを溜める部分を設けて、その部分から定期的にグリースを取り除くこと等により、長期間の使用でも吸引効率を低下させないようにすることができる。
 図7は、実施形態2-2のボールねじを示す断面図である。
 この実施形態では、ナット1の軸方向両端の凹部14に、それぞれスペーサ6を介して2枚の非接触シール41,42を取り付けている。これにより、グリース溜まり空間46が非接触シール41,42の間に形成されている。これ以外の点は実施形態2-1と同じである。
 図8は、実施形態2-3のボールねじを示す断面図である。
 実施形態2-1および2-2では、ナット1の吸引穴7とは異なる位置に給脂穴8が形成され、この給脂穴8からグリースを供給しているが、実施形態2-3では、ナット1に給脂穴8を設けず、ねじ軸2にグリースプレーティングを施すことで潤滑を行っている。これにより、図8のボールねじは、シール4とねじ軸2との隙間がほぼ一定に保持されるとともに、吸引穴7にグリースが入らない。
 これに対して、図6および図7のボールねじでは、給脂穴8から供給したグリースが吸引穴7に入る可能性がないとは言えない。そして、吸引穴7にグリースが入ると吸引効果が低減する場合がある。よって、図8のボールねじは、図6および図7のボールねじよりも高い発塵低減効果が得られる可能性がある。
 ねじ軸2にグリースプレーティングを施すことに代えて、固体潤滑剤からなる被膜をねじ軸2の表面に形成することによっても、上記と同様の効果を得ることができる。前記被膜をなす固体潤滑剤としては、二硫化モリブデン、有機モリブデン化合物、軟質金属(例えば、金、銀、鉛)、および高分子材料(例えば、PTFE、ポリイミド)の少なくとも1種からなるものが挙げられる。
 なお、これらの実施形態では、吸引穴7を、ナット1の軸方向中央部の隣り合う螺旋溝1aの間となる位置に設けているが、螺旋溝1aの位置に設けてもよい。
 また、これらの実施形態のボールねじは、ボール戻し通路として循環チューブ50を用いているが、ナットに設けた軸方向に延びる貫通穴(ボール戻し通路)とエンドデフレクタとでボール戻し経路を形成してもよい。また、この発明は、ボール戻し経路がエンドキャップ式、コマ式であるボールねじにも適用できる。
[実施形態3]
 実施形態3は、この発明の第1の態様のボールねじおよび第4の態様のボールねじの実施形態に相当する。
 図9は、実施形態3-1のボールねじを示す断面図である。
 図9に示すように、このボールねじは、ダブルナット10と、ねじ軸2と、ボール3と、リング状の非接触シール4と、エンドデフレクタ5と、環状のスペーサ6とで構成されている。ダブルナット10は、第1のナット1Aと第2のナット1Bが、環状体からなる間座9を介して連結されたものである。
 第1のナット1Aの軸方向一端にはフランジ11が形成されているが、第2のナット1Bにはフランジが形成されていない。両ナット1A,1Bの内周面に螺旋溝1aが形成され、ねじ軸2の外周面に螺旋溝2aが形成されている。両ナット1A,1Bの螺旋溝1aとねじ軸2の螺旋溝2aで形成される軌道の間に、ボール3が配置されている。
 両ナット1A,1Bには、軸方向に延びる貫通穴13が形成されている。両ナット1A,1Bの貫通穴13の両端部に、エンドデフレクタ5を配置する凹部15が形成されている。すなわち、このボールねじの二個のボール戻し経路は、貫通穴13からなるボール戻し通路と、その両端に接続されたエンドデフレクタ5とにより、両ナット1A,1Bの内部に形成されている。エンドデフレクタ5は接線すくい上げ形状のものを用いている。
 ダブルナット10の軸方向両端に、スペーサ6と非接触シール4を取り付けるための凹部14が形成されている。ダブルナット10の凹部14内に、軸方向内側から順に、スペーサ6、非接触シール4が配置され、これらが、図示されないボルトで凹部14の端面14aに固定されている。これにより、ダブルナット10の軸方向両端に、非接触シール4とスペーサ6とねじ軸2とで囲まれた空間46が生じる。これらの空間46が、グリ-ス(潤滑剤)溜まり空間となる。スペーサ6は両ナット1A,1Bと一体に形成されていてもよい。
 ダブルナット10の間座9に、吸引手段に接続する吸引穴7が形成されている。吸引穴7は、ダブルナット10の軸方向中央となる位置に、間座9をなす環状体の径方向に貫通する貫通穴として形成されている。吸引穴7の間座9の外周側は拡径されて、吸引配管の先端を挿入して取り付ける取り付け穴71となっている。
 第1のナット1Aのフランジ11が形成されている部分の隣り合う螺旋溝1aの間となる位置に、内部に潤滑剤を供給する給脂穴8が、径方向に貫通する貫通穴として形成されている。給脂穴8のナット外周側は(フランジ11に配置されている部分は全て)拡径されて、給脂配管の先端を挿入して取り付ける取り付け穴81となっている。
 ねじ軸2の螺旋溝2aの断面形状は、研削逃げ溝が形成されていない単純なゴシックアーク形状である。これに対応させて、非接触シール4の内周部の形状を、ねじ軸2と非接触シール4とで形成される円環状隙間が周方向全体でほぼ同じになるようにしてある。
 このボールねじは、例えば以下の手順で使用される。
 第1のナット1Aの給脂穴8の取り付け穴81に、ちょう度が300以下の低発塵グリースの給脂配管の先端を取り付け、間座9の吸引穴7の取り付け穴71に吸引配管の先端を取り付ける。そして、先ず、給脂穴8から第1のナット1Aの内部に、ダブルナット10の内部空間の1/4程度となる量の低発塵グリースを供給することで、グリ-ス溜まり空間46にグリースを溜める。
 次に、慣らし運転として、ダブルナット10を、ねじ軸2に対してダブルナット10の長さ分のストロークで数回相対移動させることで、グリース溜まり空間46のグリースを移動させて、非接触シール4とねじ軸2との隙間にグリースを介在させる。これにより、非接触シール4とねじ軸2との間に微小な(0.5mm以下の)円環状の隙間が形成される。
 次に、吸引配管の吸引源を作動させてダブルナット10の内部を吸引し、この状態でボールねじの運転を開始する。これにより、ボール3の転動により両ナット1A,1Bの内部に発生した塵埃が、間座9とねじ軸2との間に移行して、吸引穴7から吸引除去される。また、外部の空気が非接触シール4とねじ軸2との微小な隙間を通って両ナット1A,1Bの内部に入り、両ナット1A,1Bの内部の空気が非接触シール4とねじ軸2との隙間を通って外部に向かうことを妨げる。
 このようにして、ダブルナット10の内部の塵埃が効率的に吸引除去される。グリース溜まり空間46を設けたことで、非接触シール4とねじ軸2との間に微小な円環状の隙間が形成されるため、吸引効率が特に高くなる。また、非接触シール4を用いているため、ねじ軸2との接触による発塵が防止される。
 したがって、この実施形態のボールねじによれば、ボールねじの潤滑をダブルナットの内部へ潤滑剤を供給することで行いながら、ダブルナットの内部に発生した塵埃のほとんどが外部に向かわず吸引除去されるため、従来のボールねじよりも高い発塵低減効果が得られる。
 なお、長期間の使用により、吸引時にダブルナット10の内部のグリースが吸引穴7から吸引配管に入ることが考えられるが、吸引配管にグリースを溜める部分を設けて、その部分から定期的にグリースを取り除くこと等により、長期間の使用でも吸引効率を低下させないようにすることができる。
 図10は、実施形態3-2のボールねじを示す断面図である。
 この実施形態では、ダブルナット10の軸方向両端の凹部14に、それぞれスペーサ6を介して2枚の非接触シール41,42を取り付けている。これにより、グリース溜まり空間46が非接触シール41,42の間に形成されている。これ以外の点は実施形態3-1と同じである。
 図11は、実施形態3-3のボールねじを示す断面図である。
 実施形態3-1および3-2では、第1のナット1Aのフランジ11に給脂穴8が形成され、この給脂穴8からグリースを供給しているが、実施形態3-3では、第1のナット1Aに給脂穴8を設けず、ねじ軸2にグリースプレーティングを施すことで潤滑を行っている。これにより、図11のボールねじは、シール4とねじ軸2との隙間がほぼ一定に保持されるとともに、吸引穴7にグリースが入らない。
 これに対して、図9および図10のボールねじでは、給脂穴8から供給したグリースが吸引穴7に入る可能性がないとは言えない。そして、吸引穴7にグリースが入ると吸引効果が低減する場合がある。よって、図11のボールねじは、図9および図10のボールねじよりも高い発塵低減効果が得られる可能性がある。
 ねじ軸2にグリースプレーティングを施すことに代えて、固体潤滑剤からなる被膜をねじ軸2の表面に形成することによっても、上記と同様の効果を得ることができる。前記被膜をなす固体潤滑剤としては、二硫化モリブデン、有機モリブデン化合物、軟質金属(例えば、金、銀、鉛)、および高分子材料(例えば、PTFE、ポリイミド)の少なくとも1種からなるものが挙げられる。 また、これらの実施形態のボールねじは、貫通穴13からなるボール戻し通路とエンドデフレクタ5とからなるボール戻し経路を有するが、この発明は、ボール戻し経路がエンドキャップ式、循環チューブ式、コマ式であるボールねじにも適用できる。
[実施形態4]
 実施形態4は、この発明の第5の態様のボールねじの実施形態に相当する。
 図12~14に示すように、このボールねじは、ナット1と、ねじ軸2と、ボール3と、リング状の非接触シール410,420と、エンドデフレクタ5と、円板状支持部材60と、C形止め輪70で構成されている。ナット1の内周面に螺旋溝1aが形成され、ねじ軸2の外周面に螺旋溝2aが形成されている。ナット1の螺旋溝1aとねじ軸2の螺旋溝2aで形成される軌道の間に、ボール3が配置されている。
 図12~15に示すように、ナット1は、円筒部110と、円筒部110の径方向外側に一体に形成されたフランジ120と、からなる。フランジ120は、円筒部110の軸方向の一端部側であって、端面から少しずれた位置に配置されている。円筒部110は、螺旋溝1aが形成されている軌道部111と、その軸方向両端部に位置する、軌道部111より内径の大きいシール部112,113と、からなる。円筒部110の軌道部111には、両端面(シール部112,113との境界面)111a間を軸方向に貫通する通気穴111bが形成されている。
 ナット1には、また、吸引手段に接続する吸引穴130が形成されている。この吸引穴130は、フランジ120の外周面から円筒部110の通気穴111bに至るまで径方向に延びている。この吸引穴130は、フランジ120の円筒部110との境界側で拡径され、大径部分が吸引配管の先端を挿入して取り付ける取り付け穴130aとなっている。
 ナット1には、また、内部に潤滑剤を供給する給脂穴140が形成されている。この給脂穴140は、軸方向での位置が吸引穴130と同じで、径方向で吸引穴130の反対側となる位置に配置され、フランジ120の外周面から円筒部110の軌道部111の内周面まで径方向に貫通している。この給脂穴140は、フランジ120の円筒部110との境界側で拡径され、大径部分が、給脂配管の先端を挿入して取り付ける取り付け穴140aとなっている。
 ナット1のフランジ120には、ナット1をハウジングに取り付ける取り付け穴120aが形成されている。
 このボールねじのボール戻し経路は、軸方向に延びる貫通穴からなるボール戻し通路111cと、その両端に接続されたエンドデフレクタ5とからなり、ナット1の内部に形成されている。ボール戻し通路111cは、ナット1の円筒部110の軌道部111に、周方向で吸引穴130に対して中心角が90度となる位置に形成されている。軌道部111の両端面111aのボール戻し通路111cの両端となる位置に、エンドデフレクタ5を配置する凹部111dが形成されている。
 ナット1の円筒部110のシール部112,113の内周面には、軸方向で軌道部111の端面111a側から順に、シール取り付け用の第1の溝112a,113a、第2の溝112b,113bが、間隔を開けて形成されている。
 第1の溝112a,113aには、軌道部111の端面111aを支持面として、第1の非接触シール(内側シール)410がC形止め輪70を用いて取り付けられている。第1の非接触シール410は通気穴111bの断面円と同じ径の連通穴410aを有し、この連通穴410aがナット1の通気穴111bと合うように取り付けられている。C形止め輪70も開口部70aが連通穴410aと合うように配置されている。
 第2の溝112b,113bには、第1の溝112a,113a側から順に、円板状支持部材60、第2のシール420、C形止め輪70が配置されている。すなわち、第2の溝112b,113bには、円板状支持部材60の円板面を支持面として、第2の非接触シール420がC形止め輪70を用いて固定されている。円板状支持部材60は、非接触シール420と同じ内径の穴を有する円板に、周方向で通気穴111bの直径に対応する幅の欠円部(図12参照)が形成されたものである。この欠円部の端面61が図13に表示されている。
 これにより、この実施形態のボールねじは、ナット1の軸方向両端に、それぞれ2枚のリング状の非接触シール410,420が所定の空間K1,K2を介して配置され、これらの空間K1,K2と通気穴111bの両端が、それぞれ第1の非接触シール410の連通穴410aで連通されている。
 第1の非接触シール410および第2の非接触シール420を、ナット1の軸方向両端でそれぞれ同じものとし、ねじ軸2との隙間を両端で同じにすることで、両側からの発塵量が均一になって効率的な吸引ができる。第1の非接触シール(内側シール)410のねじ軸2に対する径方向隙間は、グリース漏れを極力減らすために、0.1mm程度とすることが好ましい。第2の非接触シール420のねじ軸2に対する径方向隙間は、良好な吸引効果を得るために、0.3mm程度とすることが好ましい。
 このボールねじを使用する際には、先ず、ナット1の給脂穴140の取り付け穴140aに、ちょう度が300以下の低発塵グリースの給脂配管の先端を取り付け、ナット1の吸引穴130の取り付け穴130aに吸引配管の先端を取り付ける。
 次に、吸引配管の吸引源を作動させてボールねじの運転を開始する。これにより、外部の空気が第2の非接触シール420とねじ軸2との隙間を通って前記空間K1,K2に入り、ナット1の内部の空気が第2の非接触シール420とねじ軸2との隙間を通って外部に向かうことを妨げる。また、ナット1内部の軌道の範囲に存在する空気が、第1の非接触シール410とねじ軸2との隙間を通って空間K1,K2に向かう。そして、各空間K1,K2内の空気が、第1の非接触シール410の連通穴410aを通ってナット1の通気穴111bに入り、吸引穴130から吸引除去される。
 このようにして、ナット1の内部の塵埃が、空間K1,K2を介して効率的に吸引除去される。また、両空間K1,K2がナット1の軸方向に延びる通気穴111bで接続されているため、このような通気穴111bを設けない場合と比較して、ナット内部の塵埃の除去効率が高くなる。さらに、非接触シール410,420を用いているため、ねじ軸2との接触による発塵が防止される。
 したがって、この実施形態のボールねじによれば、ボールねじの潤滑をナット内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどが外部に向かわず吸引除去されるため、従来のボールねじよりも高い発塵低減効果が得られる。
 なお、この実施形態では、ナット1の軸方向両端にそれぞれ2枚の非接触シール410,420を配置しているが、非接触シールをそれぞれ3枚以上配置してもよい。その場合も、ナット1の軸方向両側からの発塵量を均一にして効率的な吸引を行うために、各非接触シールをナット1の軸方向両端でそれぞれ同じものを配置することで、ねじ軸2との隙間が両端で同じになるようにする。
 上記実施形態では、ナット1の吸引穴130とは異なる位置に給脂穴140が形成され、この給脂穴140からグリースを供給しているが、図16に示すように、給脂穴140を設けず、ねじ軸2にグリースプレーティングを施すことで潤滑を行ってもよい。 図17は図16のA-A断面図である。図16のB-B断面図は図14と同じであり、図16のボールねじを構成するナットのB-B断面図は図15と同じである。
 図16のボールねじの潤滑は、ねじ軸2にグリースプレーティングを施すことで行われているため、非接触シール410,420とねじ軸2との隙間がほぼ一定に保持されるとともに、通気穴111bにグリースが入らない。これに対して、図12のボールねじでは、給脂穴140から供給したグリースが通気穴111bに入る可能性がないとは言えない。そして、通気穴111bにグリースが入ると吸引効果が低減する場合がある。よって、図16のボールねじは、図12のボールねじよりも高い発塵低減効果が得られる可能性がある。
 ねじ軸2にグリースプレーティングを施すことに代えて、固体潤滑剤からなる被膜をねじ軸2の表面に形成することによっても、上記と同様の効果を得ることができる。前記被膜をなす固体潤滑剤としては、二硫化モリブデン、有機モリブデン化合物、軟質金属(例えば、金、銀、鉛)、および高分子材料(例えば、PTFE、ポリイミド)の少なくとも1種からなるものが挙げられる。
 図18のボールねじは、ボール戻し経路が循環チューブ80を用いて形成されている例である。図18のボールねじでは、ナット1の円筒部110の軌道部111に、径方向に貫通するチューブ取付穴111eが形成され、図15に示すような、ボール戻し通路111cおよびエンドデフレクタ5を配置する凹部111dは形成されていない。
 また、軌道部111の外周に、循環チューブ80を配置するための平面部111fが形成されている。そして、軌道部111のチューブ取付穴111eに、循環チューブ80の脚部が差し込まれている。また、循環チューブ80は軌道部111に対して、図示されないチューブ抑え金具で固定されている。さらに、チューブ取付穴111eと循環チューブ80の脚部との隙間がシーリング剤でシールされている。これにより、図18のボールねじは、ナット1の内部の塵埃が外部に出る経路が、ナット1の軸方向両端に限定された(ナット1の軸方向両端のみに存在する)状態になっている。これ以外の点は図12のボールねじと同じである。
 したがって、図18のボールねじによれば、ボールねじの潤滑をナット内部へ潤滑剤を供給することで行いながら、ナットの内部に発生した塵埃のほとんどが外部に向かわず吸引除去されるため、従来のボールねじよりも高い発塵低減効果が得られる。
 1 ナット
 1a ナットの螺旋溝
 1A 第1のナット
 1B 第2のナット
 10 ダブルナット
 11 フランジ
 12 循環チューブ配置用の平面部
 13 ボール戻し通路をなす貫通穴
 14 シール取り付け用の凹部
 14a 凹部14の端面
 15 エンドデフレクタ取り付け用の凹部
 16 チューブ取付穴
 17 ハウジング
 2 ねじ軸
 2a ねじ軸の螺旋溝
 3 ボール
 4 非接触シール
 41 非接触シール
 42 非接触シール
 46 グリース溜まり空間
 5 エンドデフレクタ
 50 循環チューブ
 6 スペーサ
 7 吸引穴
 71 取り付け部
 8 給脂穴
 81 取り付け部
 9 間座
 110 ナットの円筒部
 111 ナットの軌道部
 111a 軌道部の端面
 111b 通気穴
 111c ボール戻し通路
 111d エンドデフレクタ取り付け用の凹部
 111e チューブ取付穴
 111f 循環チューブ配置用の平面部
 112 シール部
 112a 第1の溝
 112b 第2の溝
 120 フランジ
 120a 取り付け穴
 130 吸引穴
 130a 吸引穴の取り付け部
 140 給脂穴
 140a 給脂穴の取り付け部
 410 第1の非接触シール(内側シール)
 410a 連通穴
 420 第2の非接触シール
 60 円板状支持部材
 61 円板状支持部材の欠円部の端面
 70 C形止め輪
 70a C形止め輪の開口部
 80 循環チューブ
 K1,K2 2枚の非接触シールで挟まれた空間

Claims (12)

  1.  内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、
     前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動し、
     前記ナットの軸方向両端に、リング状の非接触シールが配置され、
     前記ナットを径方向に貫通する吸引穴が、前記ナットの軸方向中央部に形成されていることを特徴とするボールねじ。
  2.  内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、
     前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動し、
     前記ナットの軸方向両端に、リング状の非接触シールが配置され、
     前記ナットを径方向に貫通する吸引穴が、前記軌道の範囲内に形成されていることを特徴とするボールねじ。
  3.  前記ナットの軸方向中央部にフランジが形成され、前記フランジに前記吸引穴が形成されている請求項1または2記載のボールねじ。
  4.  内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、
     前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動し、
     前記軌道と前記ボール戻し経路とで構成される循環回路を複数有し、
     前記ナットの軸方向両端に、リング状の非接触シールが配置され、
     前記ナットを径方向に貫通する吸引穴が、前記ナットの軸方向中央部に形成されていることを特徴とするボールねじ。
  5.  内周面に螺旋溝が形成されたナットが間座を介して二個連結されたダブルナットと、外周面に螺旋溝が形成されたねじ軸と、前記二個のナットの螺旋溝と前記ねじ軸の螺旋溝で形成される各軌道の間に配置されたボールと、ボールを各軌道の終点から始点に戻す二個のボール戻し経路とを備え、
     前記各軌道内をボールが転動することで前記ダブルナットがねじ軸に対して相対移動し、
     前記ダブルナットの軸方向両端に、リング状の非接触シールが配置され、前記ダブルナットを径方向に貫通する吸引穴が、前記間座に形成されていることを特徴とするボールねじ。
  6.  前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端のみに存在する請求項1、2、4のいずれか1項に記載のボールねじ。
  7.  前記ダブルナットの内部の塵埃が外部に出る経路が、前記ダブルナットの軸方向両端のみに存在する請求項5記載のボールねじ。
  8.  前記間座以外の部分に、前記ダブルナットの内部に潤滑剤を供給する給脂穴が形成されている請求項5記載のボールねじ。
  9.  内周面に螺旋溝が形成されたナットと、外周面に螺旋溝が形成されたねじ軸と、ナットの螺旋溝とねじ軸の螺旋溝で形成される軌道の間に配置されたボールと、ボールを軌道の終点から始点に戻すボール戻し経路とを備え、
     前記軌道内をボールが転動することで前記ナットがねじ軸に対して相対移動し、
     前記ナットの内部の塵埃が外部に出る経路が、前記ナットの軸方向両端のみに存在し、前記ナットの軸方向両端に、それぞれ複数枚のリング状の非接触シールが所定の空間を介して配置され、前記空間内の空気を吸引する吸引機構を有し、吸引機構の吸引穴がナットに形成されていることを特徴とするボールねじ。
  10.  前記吸引機構は、前記ナットに形成された軸方向に貫通する通気穴と、前記ナットの各端部の最も内側に配置された内側シールに設けた、前記通気穴と前記空間を連通させる連通穴と、を有し、
     前記吸引穴は、ナットの外面から前記通気穴に至るまで径方向に延び、前記ナットの軸方向で前記内側シール同士の間となる位置に配置されている請求項9記載のボールねじ。
  11.  前記ボール戻し経路がナットの内部に形成されている請求項1、2、4、5、9のいずれか1項に記載のボールねじ。
  12.  前記ナットの内部に潤滑剤を供給する給脂穴が前記ナットに形成され、前記吸引穴が前記給脂穴とは別の位置に形成されている請求項1、2、4、9のいずれか1項に記載のボールねじ。
PCT/JP2010/006421 2009-12-17 2010-10-29 ボールねじ WO2011074170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10805569.0A EP2515001B1 (en) 2009-12-17 2010-10-29 Ball screw
CN201080002290.3A CN102165221B (zh) 2009-12-17 2010-10-29 滚珠丝杠
US13/058,148 US20120240706A1 (en) 2009-12-17 2010-10-29 Ball Screw

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2009286242 2009-12-17
JP2009-286242 2009-12-17
JP2010-033682 2010-02-18
JP2010033682 2010-02-18
JP2010-132929 2010-06-10
JP2010132929 2010-06-10
JP2010-190656 2010-08-27
JP2010-190658 2010-08-27
JP2010190656A JP5691296B2 (ja) 2010-02-18 2010-08-27 ボールねじ
JP2010-190657 2010-08-27
JP2010-190659 2010-08-27
JP2010190657A JP5879677B2 (ja) 2010-02-18 2010-08-27 ボールねじ
JP2010190658A JP2011190928A (ja) 2010-02-18 2010-08-27 ボールねじ
JP2010190659A JP5728852B2 (ja) 2009-12-17 2010-08-27 ボールねじ

Publications (1)

Publication Number Publication Date
WO2011074170A1 true WO2011074170A1 (ja) 2011-06-23

Family

ID=46846179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006421 WO2011074170A1 (ja) 2009-12-17 2010-10-29 ボールねじ

Country Status (4)

Country Link
US (1) US20120240706A1 (ja)
EP (1) EP2515001B1 (ja)
CN (1) CN102165221B (ja)
WO (1) WO2011074170A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061059A (ja) * 2011-08-22 2013-04-04 Nsk Ltd 直動装置
EP2607048A1 (de) * 2011-12-19 2013-06-26 Arburg GmbH + Co. KG Spritzgießmaschine zur Verarbeitung von Kunststoffen
JP2013222817A (ja) * 2012-04-16 2013-10-28 Canon Inc 駆動装置、露光装置および物品の製造方法
GB2558516A (en) * 2016-05-10 2018-07-18 Pavegen Systems Ltd Electrical generator

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261178B2 (en) * 2011-06-07 2016-02-16 Nsk Ltd. Linear device
FR2983546B1 (fr) * 2011-12-06 2014-04-11 Sagem Defense Securite Organe mecanique
US9243697B2 (en) * 2011-12-23 2016-01-26 Pacific Bearing Company Nut with flexible fingers and radial compression members
DE12747876T1 (de) * 2012-08-01 2015-06-03 Nsk Ltd. Vorrichtung für Lineare Bewegung
TWI558808B (zh) * 2014-06-25 2016-11-21 Hiwin Tech Corp A linear device for heating the lubricating element and a synthetic lubricating oil for use therewith
CN105042000A (zh) * 2015-06-29 2015-11-11 柳州蚊敌香业有限公司 一种不具有削减加工部的滚珠丝杠
TWI588386B (zh) * 2015-12-30 2017-06-21 Hiwin Tech Corp Ball screw with maintenance device
CN108679186A (zh) * 2018-08-01 2018-10-19 北京海月星科技有限公司 丝杠传动机构及传动装置
US11041553B2 (en) 2019-05-14 2021-06-22 Ametek, Inc. Everted ball screw drive
BR112021023004A2 (pt) 2019-05-14 2022-01-04 Ametek Inc Atuador linear com acionamento de parafuso esférico evertido
CN110523675A (zh) * 2019-09-26 2019-12-03 共享铸钢有限公司 丝杠表面清理装置
WO2022045070A1 (ja) * 2020-08-24 2022-03-03 日本精工株式会社 ボールねじ装置のグリース封入方法及びグリース封入装置、並びに、ボールねじ装置、ボールねじ装置の製造方法、直動アクチュエータの製造方法、車両用ブレーキの製造方法、及び車両の製造方法
CN114321310B (zh) * 2021-12-29 2023-06-23 浙江得利亚自动化制造有限公司 一种可排尘的左旋低噪音滚珠螺母

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435166A (en) * 1987-07-30 1989-02-06 Hitachi Electr Eng Feed screw mechanism of no dust generation type
JP2638955B2 (ja) 1988-07-14 1997-08-06 日本精工株式会社 無塵室用作動装置
JPH09264324A (ja) * 1996-03-29 1997-10-07 Nikon Corp 送りネジ機構
JPH11118017A (ja) * 1997-10-15 1999-04-30 Nippon Seiko Kk 潤滑剤の補給方法
JP2006112517A (ja) 2004-10-14 2006-04-27 Nsk Ltd ボールねじ
JP2008057576A (ja) * 2006-08-29 2008-03-13 Nsk Ltd 直線運動装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049475Y2 (ja) * 1987-03-25 1992-03-10
JPH02116055U (ja) * 1989-03-02 1990-09-17
JPH05283510A (ja) * 1992-03-31 1993-10-29 Nippon Seiko Kk 位置決めテーブル装置
US6338285B2 (en) * 1996-06-17 2002-01-15 Nsk Ltd. Feed screw device
JP3367911B2 (ja) * 1999-02-26 2003-01-20 Thk株式会社 潤滑油供給装置及びこれを用いた転動体ねじ装置
US6681651B2 (en) * 2000-07-18 2004-01-27 Thk Co., Ltd. Ball screw
JP4507368B2 (ja) * 2000-08-25 2010-07-21 日本精工株式会社 ボールねじ用シール、ボールねじ
US6406188B1 (en) * 2000-09-15 2002-06-18 Hiwin Technologies Corp. Ball bushed bearing screw bolt and nut
JP3942365B2 (ja) * 2001-02-22 2007-07-11 パスカルエンジニアリング株式会社 工作機械用主軸バランサ
JP2002364726A (ja) * 2001-04-05 2002-12-18 Thk Co Ltd ボールねじ用シール及びこのボールねじ用シールを用いたボールねじ
JP3948973B2 (ja) * 2002-02-07 2007-07-25 Thk株式会社 潤滑剤塗布機能付ねじ装置
WO2007091584A1 (ja) * 2006-02-08 2007-08-16 Thk Co., Ltd. 低騒音ねじ装置
US7533593B2 (en) * 2006-04-28 2009-05-19 Hiwin Technologies Corp. Ball screw unit with dust cleaning and ball deflecting element fixing mechanism
US8225686B2 (en) * 2006-05-11 2012-07-24 Hiwin Technologies Corp. Chips dischargeable wiper
US7634952B2 (en) * 2007-11-26 2009-12-22 Hiwin Technologies Corp. Rotating nut ball screw unit with lubricating arrangement
CN201190770Y (zh) * 2008-05-01 2009-02-04 山东博特精工股份有限公司 空心高速精密滚珠丝杠副

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435166A (en) * 1987-07-30 1989-02-06 Hitachi Electr Eng Feed screw mechanism of no dust generation type
JP2638955B2 (ja) 1988-07-14 1997-08-06 日本精工株式会社 無塵室用作動装置
JPH09264324A (ja) * 1996-03-29 1997-10-07 Nikon Corp 送りネジ機構
JPH11118017A (ja) * 1997-10-15 1999-04-30 Nippon Seiko Kk 潤滑剤の補給方法
JP2006112517A (ja) 2004-10-14 2006-04-27 Nsk Ltd ボールねじ
JP2008057576A (ja) * 2006-08-29 2008-03-13 Nsk Ltd 直線運動装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061059A (ja) * 2011-08-22 2013-04-04 Nsk Ltd 直動装置
JP2013061060A (ja) * 2011-08-22 2013-04-04 Nsk Ltd 直動装置
EP2607048A1 (de) * 2011-12-19 2013-06-26 Arburg GmbH + Co. KG Spritzgießmaschine zur Verarbeitung von Kunststoffen
JP2013222817A (ja) * 2012-04-16 2013-10-28 Canon Inc 駆動装置、露光装置および物品の製造方法
GB2558516A (en) * 2016-05-10 2018-07-18 Pavegen Systems Ltd Electrical generator

Also Published As

Publication number Publication date
CN102165221B (zh) 2014-03-05
EP2515001A4 (en) 2014-01-15
US20120240706A1 (en) 2012-09-27
EP2515001B1 (en) 2016-07-06
EP2515001A1 (en) 2012-10-24
CN102165221A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2011074170A1 (ja) ボールねじ
JP5598136B2 (ja) ボールねじ
US9506544B2 (en) Seal member and linear motion guide device using same
JP5120271B2 (ja) ボールねじ
JP5300420B2 (ja) シール付き軸受
RU2624931C1 (ru) Конструкция для смазки и коробка передач
JP5195434B2 (ja) ボールねじ
JP5728852B2 (ja) ボールねじ
JPWO2016185885A1 (ja) ボールねじ
JP2018028329A (ja) 軸受装置、及び工作機械用主軸装置
JP5691296B2 (ja) ボールねじ
JP2010230058A (ja) 密封装置および転がり軸受
JP4941134B2 (ja) 直動ねじ装置
JP2012082844A (ja) 転がり軸受
JP2017048900A (ja) 減速機
JP2005325866A (ja) 鉄道車両用軸受
JP2006112517A (ja) ボールねじ
CN110792693B (zh) 一种电机滚动轴承
JP2004316762A (ja) 摺動装置
US20090028476A1 (en) Anti-leakage device in a fan for an oily bearing
TWI712748B (zh) 用於滾珠軸承之滾珠保持器
JP3140596U (ja) ベアリング
JP2014156929A (ja) ボールねじ装置
CN108916370B (zh) 减速器和机器人
KR200208284Y1 (ko) 이송장치구조

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002290.3

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2010805569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010805569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058148

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805569

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE