WO2011070758A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2011070758A1
WO2011070758A1 PCT/JP2010/007065 JP2010007065W WO2011070758A1 WO 2011070758 A1 WO2011070758 A1 WO 2011070758A1 JP 2010007065 W JP2010007065 W JP 2010007065W WO 2011070758 A1 WO2011070758 A1 WO 2011070758A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
wall plate
power storage
wall
storage module
Prior art date
Application number
PCT/JP2010/007065
Other languages
English (en)
French (fr)
Inventor
宮武 勤
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to DE201011004703 priority Critical patent/DE112010004703T5/de
Priority to US13/514,068 priority patent/US9200428B2/en
Priority to KR1020127014207A priority patent/KR101361375B1/ko
Priority to CN201080054333.2A priority patent/CN102640347B/zh
Priority to JP2011545077A priority patent/JP5102902B2/ja
Publication of WO2011070758A1 publication Critical patent/WO2011070758A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an excavator using a power storage module for work machines in which a plurality of cells are stacked.
  • Patent Document 4 Development of automobiles and work machines using storage cells such as rechargeable secondary batteries and capacitors is underway (Patent Document 4).
  • a flat (plate-shaped) power storage cell (battery pack) in which a power storage element is wrapped with a film has been proposed as a power storage cell employed in automobiles and work machines.
  • a positive electrode terminal and a negative electrode terminal are led out from the outer periphery of the storage cell.
  • a power storage module in which a plurality of power storage cells are electrically connected is obtained by stacking a plurality of power storage cells and passing tie rods through through holes provided in the positive electrode terminal and the negative electrode terminal (Patent Document 1). .
  • Various configurations for dissipating heat generated in stacked power storage cells to the outside have been proposed (Patent Documents 2 and 3).
  • the upper revolving body is affected by an impact during operation or traveling because of the backlash of a revolving bearing to which the upper revolving body is attached. Vibrates violently up and down. There is a demand for a power storage module that has sufficient reliability even when attached to an upper rotating body.
  • a lower traveling body An upper swinging body that is pivotably mounted on the lower traveling body;
  • a power storage module mounted on the upper swing body,
  • the power storage module is: When the xyz Cartesian coordinate system is defined, a plurality of plate-shaped storage cells stacked in the z-direction; At least one heat transfer plate disposed between the storage cells, and a pair of pressing plates disposed at both ends of the stacked structure of the storage cells and applying a compressive force in the stacking direction of the storage cells to the storage cells
  • a laminate comprising: Having the first wall plate and the second wall plate sandwiched in the y direction and fixed to the pair of pressing plates;
  • An excavator is provided in which the position of the heat transfer plate is restrained with respect to the first wall plate and the second wall plate.
  • the power storage module is: When the xyz Cartesian coordinate system is defined, Each is a plurality of plate-shaped storage cells stacked in the z-direction; A pair of pressing plates disposed at both ends of the stacked structure of the storage cell; A first tie rod that connects the pair of pressing plates and applies a compressive force in the stacking direction to the stacked structure of the storage cells; and at least one heat transfer plate sandwiched between the storage cells, A plurality of laminates arranged in A first wall plate and a second wall plate attached to each of the laminates, sandwiching each of the laminates in the y direction, fixed to the pressing plate, and thermally coupled to the heat transfer plate; A plurality of the laminated bodies are sandwiched in the x direction, and the pressing plates of the laminated bodies, the first wall plates attached to the plurality of laminated bodies, and a third wall plate fixed to
  • the pair of pressing plates, the first wall plate, and the second wall plate constitute a highly rigid structure. For this reason, the rigidity of the power storage module can be increased. Even if this power storage module is mounted on an upper swing body that is prone to vibration and impact, sufficient reliability can be ensured. In addition, the storage cell can be efficiently cooled through the heat transfer plate, the first wall plate, and the second wall plate.
  • FIG. 1A and 1B are cross-sectional views of a power storage module according to the first embodiment.
  • 1C and 1D are cross-sectional views of the power storage module according to the first embodiment.
  • 2A and 2B are schematic views illustrating the refrigerant flow path of the power storage module according to the first embodiment.
  • 3A and 3B are cross-sectional views of the power storage module according to the second embodiment.
  • FIG. 4 is a cross-sectional view of the power storage module according to the third embodiment.
  • 5A is a cross-sectional view of the power storage module according to the fourth embodiment
  • FIG. 5B is a cross-sectional view of the power storage module according to the fifth embodiment
  • FIG. 5C is a cross-sectional view of the power storage module according to the sixth embodiment.
  • FIG. 6A and 6B are partial cross-sectional views of the power storage module according to the seventh embodiment.
  • 7A and 7B are cross-sectional views of the power storage module according to the eighth embodiment.
  • 8A to 8C are partial cross-sectional views of the power storage module according to the ninth embodiment.
  • FIG. 9 is a cross-sectional view of the power storage module according to the tenth embodiment.
  • FIG. 10 is a cross-sectional view of the power storage module according to the thirteenth embodiment.
  • 11A is a plan view of a power storage cell and a support frame used in the power storage module according to Example 12
  • FIG. 11B is a cross-sectional view taken along one-dot chain line 11B-11B in FIG. 11A, and FIG.
  • FIG. 12 is a schematic plan view of a hybrid excavator according to the thirteenth embodiment.
  • FIG. 13 is a schematic side view of a hybrid excavator according to the thirteenth embodiment.
  • FIG. 14 is a block diagram of a hybrid excavator according to the thirteenth embodiment.
  • FIG. 15 is an equivalent circuit diagram of the storage circuit of the hybrid excavator according to the thirteenth embodiment.
  • FIG. 16 is a schematic plan view of the electric shovel according to the fourteenth embodiment.
  • FIG. 17 is a block diagram of an electric shovel according to the fourteenth embodiment.
  • FIG. 1A shows a cross-sectional view of a power storage module according to the first embodiment.
  • an xyz Cartesian coordinate system is defined.
  • a plurality of plate-shaped storage cells 20 and heat transfer plates 25 are alternately stacked in the thickness direction (z direction).
  • the storage cell 20 is arrange
  • a pressing plate 31 is in close contact with each of the outermost storage cells 20.
  • a plurality of tie rods 33 penetrate from one pressing plate 31 to the other pressing plate 31 to apply a compressive force in the stacking direction (z direction) to the storage cell 20 and the heat transfer plate 25.
  • Each of the electricity storage cells 20 is formed by sandwiching a flat electricity storage element such as a secondary battery or an electric double layer capacitor between a pair of laminate films.
  • the electricity storage cell 20 includes a region (fused portion) where the laminate films are fused to each other on the outer peripheral portion thereof.
  • the storage cell 20 includes a pair of electrode terminals 21.
  • the electrode terminals 21 are led out from the outer peripheral portions of the storage cells 20 facing each other.
  • One of the electrode terminals 21 is a positive electrode, and the other is a negative electrode.
  • a plurality of power storage cells 20 are connected in series by connecting the electrode terminals 21 of the power storage cells 20 adjacent to each other.
  • a structure including the storage cell 20, the heat transfer plate 25, the pressing plate 31, and the tie rod 33 is referred to as a stacked body 30.
  • a pair of wall plates 13 and 14 are arranged on both sides of the laminate 30 in the x direction, that is, so as to sandwich the laminate 30 in the x direction.
  • Each of the wall plates 13 and 14 is fixed to the holding plate 31 with bolts.
  • FIG. 1B shows a cross-sectional view taken along one-dot chain line 1B-1B in FIG. 1A.
  • a cross-sectional view taken along one-dot chain line 1A-1A in FIG. 1B corresponds to FIG. 1A.
  • the planar shape of the storage cell 20 and the heat transfer plate 25 is substantially rectangular.
  • the electrode terminal 21 is led out from the mutually opposing sides (upper side and lower side in FIG. 1B).
  • the heat transfer plate 25 projects to the outside of the edge of the storage cell 20 in plan view.
  • a pair of wall plates 11 and 12 are arranged on both sides of the laminate 30 in the y direction, that is, so as to sandwich the laminate 30 in the y direction.
  • the wall plates 11 and 12 are in contact with the end face of the heat transfer plate 25. Thereby, the heat transfer plate 25 is thermally coupled to the wall plates 11 and 12.
  • Each of the wall plates 11 and 12 is fixed to the wall plates 13 and 14 with bolts.
  • a channel 17 is formed in the wall plates 11 and 12 for flowing the refrigerant.
  • FIG. 1C shows a cross-sectional view taken along one-dot chain line 1C-1C in FIG. 1B.
  • the electrode terminals 21 led out from the storage cells 20 adjacent to each other pass through the outside of the edge of the heat transfer plate 25 and are connected to the electrode terminals 21 of the adjacent storage cells 20.
  • FIG. 1D shows a cross-sectional view taken along one-dot chain line 1D-1D in FIG. 1B.
  • the heat transfer plate 25 is in contact with the wall plates 11 and 12 at its end face.
  • Each of the wall plates 11 and 12 is fixed to the holding plate 31 with bolts.
  • FIG. 2A shows the shape of the refrigerant flow path 17 formed in the wall plate 11.
  • the refrigerant flow path 17 includes an introduction path 17A, a plurality of main paths 17B, and a discharge path 17C.
  • Each of the introduction path 17A and the discharge path 17C extends from the one end face parallel to the z direction to the inside of the wall plate 11 along the x direction.
  • Each of the main paths 17B extends in the z direction from the introduction path 17A and reaches the discharge path 17C.
  • the introduction path 17A, the main path 17B, and the discharge path 17C are, for example, arranged in the wall plate 11 and configured by elongated holes extending in a direction parallel to the surface.
  • the introduction path 17A and the introduction path 17C are formed by drilling from an end surface parallel to the yz plane with a drill.
  • the main path 17B is formed by drilling a hole from an end surface parallel to the xy plane with a drill and then embedding the opening with an embedded plug 17D.
  • a pipe through which the refrigerant passes may be brought into close contact with the wall plate 11.
  • FIG. 2B shows another example of the refrigerant flow path 17.
  • a plurality of main paths 17B extending from the introduction path 17A to the discharge path 17C are arranged.
  • the main path 17 ⁇ / b> B is configured by a single wide planar flow path.
  • the wall plate 11 is formed by forming a recess corresponding to the refrigerant flow path 17 in one metal plate, closing the recess with another metal plate, and welding the outer circumferences of the two metal plates. .
  • the stacked structure of the power storage cell 20 and the heat transfer plate 25 is maintained by the tie rod 33 and the holding plate 31.
  • the pressing plate 31 and the wall plates 11 to 14 form a rectangular parallelepiped parallelepiped structure, and adjacent wall surfaces of the parallelepiped structure are fixed with bolts. For this reason, high rigidity can be ensured and the position of the heat transfer plate 25 can be restrained with respect to the wall plates 11 and 12. Heat generated from the storage cell 20 is transferred to the wall plates 11 and 12 via the heat transfer plate 25. For this reason, the electrical storage cell 20 can be cooled efficiently.
  • the pressing force is applied to the electricity storage cell 20 and the heat transfer plate 25 by the pressing plate 31, the close contact state between the electricity storage cell 20 and the heat transfer plate 25 can be enhanced. Thereby, the heat transfer efficiency between the electrical storage cell 20 and the heat exchanger plate 25 can be improved.
  • the pressing plate 31 for maintaining the laminated structure of the storage cell 20 and the heat transfer plate 25 also serves as a parallelepiped wall.
  • the parallelepiped wall plates 11 and 12 also serve as heat absorption plates for cooling the storage cell 20.
  • Example 1 the storage cells 20 and the heat transfer plates 25 are alternately stacked, but the number of heat transfer plates 25 may be reduced.
  • one heat transfer plate 25 may be arranged for two power storage cells 20.
  • at least one heat transfer plate 25 may be disposed at substantially the center of the stacked power storage cells 20.
  • Excavators run on metal crawlers, unlike cars that run on rubber tires.
  • the upper swing body is supported on the lower traveling body via a bearing.
  • the bearings include metal parts that move relative to each other and are not free of play. For this reason, the vibration of the lower traveling body during traveling may be amplified and transmitted to the upper swing body. Therefore, the power storage module mounted on the upper swing body is required to have a high natural frequency in order to prevent resonance.
  • Example 1 although the example of the highly rigid electrical storage module by a parallelepiped structure was shown, when the rigidity requested
  • Example 1 an electric double layer capacitor or the like is used for the storage cell 20, but a lithium ion capacitor may be used.
  • the lithium ion capacitor does not need to be applied with a compressive force in order to maintain electrical characteristics.
  • the application of the compressive force has an effect of increasing the heat transfer efficiency from the storage cell 20 to the heat transfer plate 25.
  • the compressive force required to mechanically support the storage cell and the compressive force required to increase the heat transfer efficiency are smaller than the compressive force required to maintain the electrical characteristics of the electric double layer capacitor. Therefore, when an electric double layer capacitor is used for the storage cell 20, the compressive force may be reduced as compared with the case where an electric double layer capacitor is used.
  • 3A and 3B are cross-sectional views of the power storage module according to the second embodiment.
  • 3B is a cross-sectional view taken along one-dot chain line 3B-3B in FIG. 3A
  • FIG. 3A is a cross-sectional view taken along one-dot chain line 3A-3A in FIG. 3B.
  • Example 1 the wall plate 11 and the wall plate 12 are fixed to the wall plates 13 and 14 shown in FIG. 1B and the pressing plate 31 shown in FIG. At the position where the wall plates 11 and 12 and the heat transfer plate 25 are in contact, the wall plates 11 and 12 are pressed against the heat transfer plate 25 due to the rigidity of the wall plates 11 and 12.
  • a plurality of tie rods 40 penetrate from the wall plate 11 to the wall plate 12.
  • the tie rod 40 is attached to a position that does not spatially interfere with the storage cell 20 and the heat transfer plate 25.
  • the tie rod 40 applies a force in a direction to narrow the distance between the wall plate 11 and the wall plate 12.
  • the hole through which the tie rod 40 passes is arranged on the inner side of the position where the wall plates 11 and 12 are fixed to the pressing plate 31 and the wall plates 13 and 14. For this reason, the wall plates 11 and 12 can be pressed against the heat transfer plate 25 with a greater force. Thereby, the heat transfer rate from the heat transfer plate 25 to the wall plates 11 and 12 can be increased.
  • 3A and 3B show an example in which a plurality of tie rods 40 are attached, but a single tie rod 40 may be attached.
  • FIG. 4 shows a cross-sectional view of the power storage module according to the third embodiment.
  • differences from the power storage module according to the first embodiment will be described.
  • Example 3 an intermediate plate 43 is inserted between the two storage cells 20 at the substantially center of the stacked structure of the storage cells 20 instead of the heat transfer plate. Iron or stainless steel is used for the intermediate plate 43, and the intermediate plate 43 has higher rigidity than the heat transfer plate 25.
  • the intermediate plate 43 is in contact with the wall plates 11 and 12 at its end face, and is fixed to the wall plates 11 and 12 by bolts.
  • the tie rod 33 passes through a through hole formed in the intermediate plate 43.
  • the intermediate plate 43 prohibits the displacement of the tie rod 33 in the x direction and the y direction.
  • the tie rod 33 can be considered as a beam structure supported by the pressing plates 31 at both ends thereof. Supporting the tie rod 33 with the intermediate plate 43 at the approximate center is equivalent to the length of the beam being halved. For this reason, the natural frequency of the vibration regarding the x direction and the y direction of the power storage module can be increased. Moreover, the intermediate
  • FIG. 5A shows a cross-sectional view of the power storage module according to the fourth embodiment.
  • the power storage module according to the fourth embodiment three power storage modules having the same structure as the power storage module according to the first embodiment illustrated in FIG. 1B are arranged in the y direction.
  • a wall plate between the stacked bodies 30 adjacent to each other is shared by the power storage modules on both sides. That is, the wall plate 12 of one power storage module also serves as the wall plate 11 of the adjacent power storage module.
  • the heat transfer plate 25 of each laminate 30 is in contact with the two wall plates 11 and 12 that sandwich the laminate 30 in the y direction.
  • Each of the wall plates 13 and 14 sandwiching the three laminated bodies 30 in the x direction is composed of one continuous plate member.
  • the electricity storage cell 20 is provided with a gas vent valve 27 for discharging the gas generated inside. Since the gas vent valve 27 is generally larger than the thickness of the electricity storage cell 20, it is difficult to attach the gas vent valve 27 to an end surface substantially perpendicular to the z-axis of the electricity storage cell 20. The vicinity of the edge from which the electrode terminal 21 of the storage cell 20 is led out is inclined with respect to the xy plane because a lead wire or the like for taking out the electrode is disposed. In many cases, the gas vent valve 27 is attached to the inclined portion.
  • the heat transfer plate 25 of each laminate 30 is brought into contact with the wall plates on both sides by applying a compressive force in the y direction to the three power storage modules arranged in the y direction.
  • the wall plates 13 and 14 are fixed to the wall plates 11 and 12 and the pressing plate 31 (FIG. 1D) of the laminated body 30 with bolts.
  • the power storage module according to the fourth embodiment is preferably mounted on the work machine in a posture in which the x direction is parallel to the vertical direction (a posture in which the yz plane is horizontal).
  • the power storage module according to the fourth embodiment is suitable for mounting on a device or work machine having a mounting space extending in the horizontal direction.
  • FIG. 5B shows a cross-sectional view of the power storage module according to the fifth embodiment.
  • the power storage module according to the fifth embodiment includes three stacked bodies 30 having the same structure as the power storage module according to the first embodiment.
  • the three stacked bodies 30 are arranged in the x direction in such a posture that each stacked direction is parallel to the z direction.
  • the wall plates 11 and 12 sandwich the three laminated bodies 30 in the y direction.
  • the wall plates 13 and 14 sandwich the three laminated bodies 30 in the x direction.
  • a partition wall 15 is disposed between the stacked bodies 30 adjacent to each other.
  • the wall plates 13 and 14 and the partition wall 15 are fixed to the wall plates 11 and 12 by bolts.
  • the pressing plate 31 (FIG. 1D) of the laminated body 30 is fixed to the wall plates 11 and 12 by bolts as in the case of the first embodiment.
  • the pressing plate 31 and the partition wall 15 are also fixed to each other by bolts.
  • Each heat transfer plate 25 of the laminate 30 is in contact with the wall plates 11 and 12.
  • a refrigerant flow path 17 is formed in the wall plates 11 and 12.
  • the holding plate 31 and the wall plates 11 to 14 constitute a parallelepiped structure. For this reason, high rigidity is securable. Further, the partition wall 15 plays a role of further increasing the rigidity.
  • Example 5 since the heat transfer plate 25 contacts the wall plates 11 and 12, it is not necessary to apply a compressive force in the x direction when the wall plates 11 and 12 are fixed. For this reason, the electrical storage module according to the fifth embodiment is easier to assemble and maintain than the electrical storage module according to the fourth embodiment.
  • the power storage module according to the fifth embodiment is also mounted on the work machine in the posture in which the x direction is parallel to the vertical direction (the posture in which the yz plane is horizontal), as in the fourth embodiment. It is preferable to do.
  • the power storage module according to the fifth embodiment is suitable for mounting on a device or work machine having a flat mounting space in which the thickness direction is substantially horizontal.
  • FIG. 5C shows a cross-sectional view of the power storage module according to Example 6.
  • three power storage modules having the same structure as the power storage module according to the first embodiment illustrated in FIG. 1B are arranged in the y direction.
  • the storage modules adjacent to each other do not share the wall plates 11 and 12 and are individually provided with wall plates. For this reason, the two wall boards 11 and 12 are arrange
  • Example 6 after attaching the wall plates 11 and 12 to each of the laminates 30, the wall plates 13 and 14 may be fixed to the wall plates 11 and 12. For this reason, when fixing the wall boards 13 and 14, it is not necessary to apply the compressive force of a y direction to an electrical storage module.
  • the power storage module according to Example 6 is easier to assemble and maintain than the power storage module according to Example 4 illustrated in FIG.
  • the power storage module according to the sixth embodiment is also mounted on the work machine in a posture in which the x direction is parallel to the vertical direction (the posture in which the yz plane is horizontal), as in the fourth embodiment. It is preferable to do.
  • the power storage module according to the sixth embodiment is suitable for mounting on a device or work machine having a mounting space extending in the horizontal direction.
  • FIG. 6A shows a partial cross-sectional view of the power storage module according to the seventh embodiment.
  • FIGS. 1A to 1D differences from the power storage module according to the first embodiment shown in FIGS. 1A to 1D will be described.
  • Example 1 the heat transfer plate 25 was brought into contact with the wall plates 11 and 12 to thermally couple them.
  • the heat transfer plate 25 is bonded to the wall plates 11 and 12 with a heat conductive adhesive 45 at the contact points so that the heat transfer plate 25 is fixed to the wall plates 11 and 12.
  • a minute gap is formed between the heat transfer plate 25 and the wall plates 11 and 12, this gap is embedded with an adhesive.
  • the heat transfer rate between the heat transfer plate 25 and the wall plates 11 and 12 can be increased.
  • the heat transfer plate 25 is prevented from slidingly contacting the wall plates 11 and 12 (so that the heat transfer plate 25 does not move while being in contact with the wall plates 11 and 12). Thermal resistance can be reduced. Thereby, the cooling efficiency of the heat exchanger plate 25 and the electrical storage cell 20 can be improved, and the remarkable raise of the temperature of the electrical storage cell 20 can be suppressed.
  • a groove 46 may be formed on the inner surface of each of the wall plates 11 and 12. The edge of the heat transfer plate 25 is inserted into the groove 46 and the thermally conductive adhesive 46 is filled.
  • FIGS. 7A and 7B are cross-sectional views of the power storage module according to Example 8.
  • FIG. 7B is a cross-sectional view taken along one-dot chain line 7B-7B in FIG. 7A
  • FIG. 7A is a cross-sectional view taken along one-dot chain line 7A-7A in FIG. 7B.
  • the pressing plate 31 applies a compressive force in the stacking direction to the storage cell 20, and the position of the heat transfer plate 25 is restricted with respect to the wall plates 11 and 12.
  • Three concave portions 50 extending in the z direction are formed on the inner surfaces of the wall plates 11 and 12.
  • Each of the recesses 50 has a dimension in the width direction larger than a dimension in the depth direction.
  • An elastic member 51 having thermal conductivity is loaded in the recess 50.
  • the elastic member 51 for example, a heat transfer rubber sheet is used.
  • the edge of the heat transfer plate 25 intersects the recess 50 or partially overlaps the recess 50.
  • a part of the elastic member 51 protrudes from the opening surface of the recess 50.
  • a heat transfer rubber sheet thicker than the depth of the recess 50 is used as the elastic member 51.
  • the heat transfer plate 25 is in contact with the inner surfaces of the wall plates 11 and 12 in the region where the recess 50 is not formed. As shown in FIGS. 7A and 7B, the heat transfer plate 25 crushes the elastic member 51 in a region where the edge of the heat transfer plate 25 intersects the recess 50 and a region where the edge of the heat transfer plate 25 overlaps the recess 50. ing.
  • the heat transfer member 25 and the wall plates 11 and 12 are thermally coupled via the elastic member 51. For this reason, stable thermal coupling can be ensured.
  • the heat resistance in a contact location can be made small by preventing the heat exchanger plate 25 from slidingly contacting the wall plates 11 and 12. Thereby, the cooling efficiency of the heat exchanger plate 25 and the electrical storage cell 20 can be improved, and the remarkable temperature rise of the electrical storage cell 20 can be suppressed.
  • the portion of the elastic member 51 that protrudes from the opening surface of the recess 50 is a crushing allowance.
  • the elastic member 51 is not crushed beyond this crushing allowance.
  • the crushing allowance can be set within a desired allowable range. For this reason, aged deterioration of the elastic member 51 due to creep strain can be suppressed.
  • FIG. 8A shows a partial cross-sectional view of the power storage module according to Example 9.
  • FIG. 8A shows a partial cross-sectional view of the power storage module according to Example 9.
  • Example 9 the end portions of the heat transfer plate 25 that are in contact with the wall plates 11 and 12 are bent at a substantially right angle in a cross section parallel to the yz plane. For this reason, the contact area between the heat transfer plate 25 and the wall plates 11 and 12 is increased. Thereby, the heat transfer rate between them can be increased.
  • a certain degree of curvature may be provided in the bent portion.
  • FIG. 9 shows a cross-sectional view of the power storage module according to the tenth embodiment.
  • Example 10 in place of the refrigerant flow path 17 of Example 1 shown in FIG. 1B, irregularities 55 for increasing the heat radiation efficiency are formed on the outer surfaces of the wall plates 11 and 12.
  • the recesses of the unevenness 55 form, for example, a lattice pattern.
  • Other structures are the same as those of the power storage module according to the first embodiment. Even if the heat dissipation unevenness 55 is attached instead of the refrigerant flow path 17, the heat generated in the storage cell 20 can be efficiently radiated.
  • FIG. 10 shows a cross-sectional view of the power storage module according to the eleventh embodiment.
  • attention is focused on differences from the eighth embodiment shown in FIGS. 7A and 7B, and description of the same configuration is omitted.
  • Example 11 a tie rod 33 (FIGS. 7A and 7B) was used to apply a compressive force to the laminated structure of the storage cell 20 and the heat transfer plate 25. In Example 11, a tie rod is not used, and a compressive force is applied by a wedge.
  • a portion connecting the end surface parallel to the x-axis and the outer surface of the pressing plate 31 is chamfered to form a slope 11A.
  • the wall plates 11 and 12 are formed with a slope 31A parallel to the slope 11A.
  • the bolts constituting the fastener 56 penetrate the wall plate 12, the holding plate 31, and the other wall plate 11 from the outer surface of the one wall plate 12 in the y-axis direction. It reaches the surface. A compressive force in the y-axis direction is applied to the wall plates 11 and 12 by the tightening portion 56.
  • the heat transfer rubber sheet 51 is elastically deformed by this compressive force, and the heat transfer plate 25 is pressed against the wall plates 11 and 12 through the heat transfer rubber sheet 51. Thereby, heat can be efficiently transferred from the heat transfer plate 25 to the wall plates 11 and 12.
  • the fastener 56 can apply a compressive force in the y-axis direction that presses the heat transfer plate 25 against the wall plates 11 and 12, and a compressive force in the z-axis direction that is applied to the laminated structure.
  • the heat transfer rubber sheet 51 is elastically deformed, and between the end surface perpendicular to the y-axis of the pressing plate 31 and the inner surfaces of the wall plates 11 and 12. It is preferable to set the dimension of the pressing plate 31 in the y-axis direction so that a gap is secured.
  • FIG. 11A shows a plan view of a power storage cell and a support frame used in the power storage module according to Example 12.
  • FIG. The configuration of the storage cell 20 and the electrode 21 is the same as that of the first embodiment.
  • a pair of electrodes 21 are drawn out from the opposite edges of the storage cell 20.
  • a support frame 60 is disposed so as to surround the storage cell 20 in plan view.
  • an insulating resin is used for the support frame 60.
  • the electrode 21 protrudes to the outside of the outer peripheral edge of the support frame 60.
  • FIG. 11B shows a cross-sectional view taken along one-dot chain line 11B-11B in FIG. 11A.
  • the electricity storage cell 20 has a thin portion 20 ⁇ / b> A where front and back laminate films are welded to each other on the outer periphery thereof.
  • the inner peripheral side surface of the support frame 60 has a two-step staircase shape.
  • the thin portion 20A is fixed to the tread surface 61 on the inner periphery of the support frame 60 with a double-sided adhesive tape or the like.
  • the support frame 60 is thinner than the storage cell 20. For this reason, when the storage cell 20 is stacked in the thickness direction together with the support frame 60, the support frame 60 does not hinder the application of compressive force to the storage cell 20.
  • FIG. 11C shows a cross-sectional view taken along one-dot chain line 11C-11C in FIG. 11A.
  • the electrode 21 is drawn out from the edge of the thin portion 20 ⁇ / b> A of the storage cell 20.
  • the tread surface 61 extends to the outer periphery of the support frame.
  • the electrode 21 is drawn out from the outer periphery of the support frame 60 via the tread surface 61.
  • Example 12 when the storage cells 20 are stacked in the thickness direction, the side surface on the outer peripheral side of the support frame 60 serves as a reference plane for alignment in the plane orthogonal to the stacking direction. For this reason, alignment can be performed easily. Further, the support frame 60 protects the storage cell 20 when the storage cell 20 is handled alone. For this reason, damage to the storage cell 20 can be prevented or reduced.
  • Example 13 illustrates an excavator on which at least one of the power storage modules of Examples 1 to 12 is mounted.
  • FIG. 12 is a schematic plan view of a hybrid excavator as a work machine according to the thirteenth embodiment.
  • a lower traveling body (traveling device) 71 is attached to the upper revolving body 70 via a swivel bearing 73.
  • An engine 74, a main pump 75, an electric motor 76, an oil tank 77, a cooling fan 78, a seat 79, a power storage module 80, and a motor generator 83 are mounted on the upper swing body 70.
  • the engine 74 generates power by burning fuel.
  • the engine 74, the main pump 75, and the motor generator 83 transmit and receive torque to and from each other via the torque transmission mechanism 81.
  • the main pump 75 supplies pressure oil to a hydraulic cylinder such as the boom 82.
  • the motor generator 83 is driven by the power of the engine 74 to generate power (power generation operation).
  • the generated power is supplied to the power storage module 80, and the power storage module 80 is charged.
  • the motor generator 83 is driven by the electric power from the power storage module 80 and generates power for assisting the engine 74 (assist operation).
  • the oil tank 77 stores oil of the hydraulic circuit.
  • the cooling fan 78 suppresses an increase in the oil temperature of the hydraulic circuit. The operator sits on the seat 79 and operates the hybrid excavator.
  • FIG. 13 shows a side view of a hybrid excavator according to the thirteenth embodiment.
  • An upper swing body 70 is mounted on the lower traveling body 71 via a swing bearing 73.
  • the upper turning body 70 turns clockwise or counterclockwise with respect to the lower traveling body 71 by the driving force from the electric motor 76 (FIG. 12).
  • a boom 82 is attached to the upper swing body 70.
  • the boom 82 swings up and down with respect to the upper swing body 70 by a hydraulically driven boom cylinder 107.
  • An arm 85 is attached to the tip of the boom 82.
  • the arm 85 swings in the front-rear direction with respect to the boom 82 by an arm cylinder 108 that is hydraulically driven.
  • a bucket 86 is attached to the tip of the arm 85.
  • the bucket 86 swings in the vertical direction with respect to the arm 85 by a hydraulically driven bucket cylinder 109.
  • a power storage module 80 is mounted on the upper swing body 70 via a power storage module mount 90 and a damper (vibration isolation device) 91.
  • the power storage module 80 the power storage modules according to Examples 1 to 12 are used.
  • the turning motor 76 (FIG. 12) is driven by the electric power supplied from the power storage module 80. Moreover, the turning motor 76 generates regenerative electric power by converting kinetic energy into electric energy.
  • the power storage module 80 is charged by the generated regenerative power.
  • FIG. 14 shows a block diagram of a hybrid excavator according to the thirteenth embodiment.
  • the mechanical power system is represented by a double line
  • the high-pressure hydraulic line is represented by a thick solid line
  • the electric system is represented by a thin solid line
  • the pilot line is represented by a broken line.
  • the drive shaft of the engine 74 is connected to the input shaft of the torque transmission mechanism 81.
  • an engine that generates a driving force by a fuel other than electricity for example, an internal combustion engine such as a diesel engine is used.
  • the engine 74 is always driven during operation of the work machine.
  • the drive shaft of the motor generator 83 is connected to the other input shaft of the torque transmission mechanism 81.
  • the motor generator 83 can perform both the electric (assist) operation and the power generation operation.
  • the motor generator 83 for example, an internal magnet embedded (IPM) motor in which magnets are embedded in the rotor is used.
  • the torque transmission mechanism 81 has two input shafts and one output shaft.
  • the output shaft is connected to the drive shaft of the main pump 75.
  • the motor generator 83 When the load applied to the engine 74 is large, the motor generator 83 performs an assist operation, and the driving force of the motor generator 83 is transmitted to the main pump 75 via the torque transmission mechanism 81. Thereby, the load applied to the engine 74 is reduced. On the other hand, when the load applied to the engine 74 is small, the driving force of the engine 74 is transmitted to the motor generator 83 via the torque transmission mechanism 81, so that the motor generator 83 is in a power generation operation. Switching between the assist operation and the power generation operation of the motor generator 83 is performed by an inverter 118 connected to the motor generator 83. The inverter 118 is controlled by the control device 130.
  • the control device 130 includes a central processing unit (CPU) 130A and an internal memory 130B.
  • the CPU 130A executes a drive control program stored in the internal memory 130B.
  • the control device 130 alerts the driver by displaying the deterioration state of various devices on the display device 135.
  • the main pump 75 supplies hydraulic pressure to the control valve 117 via the high pressure hydraulic line 116.
  • the control valve 117 distributes hydraulic pressure to the hydraulic motors 101A and 101B, the boom cylinder 107, the arm cylinder 108, and the bucket cylinder 109 in accordance with a command from the driver.
  • the hydraulic motors 101A and 101B drive the two left and right crawlers provided in the lower traveling body 71 shown in FIG.
  • the input / output terminal of the electric system of the motor generator 83 is connected to the storage circuit 190 via the inverter 118.
  • the inverter 118 performs operation control of the motor generator 83 based on a command from the control device 130.
  • a swing motor 76 is further connected to the storage circuit 190 via another inverter 120.
  • the power storage circuit 190 and the inverter 120 are controlled by the control device 130.
  • the swing motor 76 is AC driven by a pulse width modulation (PWM) control signal from the inverter 120, and can perform both a power running operation and a regenerative operation.
  • PWM pulse width modulation
  • As the turning motor 76 for example, an IPM motor is used.
  • An IPM motor generates a large induced electromotive force during regeneration.
  • the turning motor 76 turns the upper turning body 70 via the speed reducer 124.
  • the speed reducer 124 decreases the rotation speed.
  • the rotational force generated by the turning motor 76 increases.
  • the rotational motion of the upper swing body 70 is transmitted to the swing motor 76 via the speed reducer 124, whereby the swing motor 76 generates regenerative power.
  • the speed reducer 124 increases the rotation speed, contrary to the power running operation. Thereby, the rotation speed of the turning motor 76 can be increased.
  • the resolver 122 detects the position of the rotation shaft of the turning motor 76 in the rotation direction.
  • the detection result is input to the control device 130.
  • the control device 130 By detecting the position of the rotating shaft in the rotational direction before and after the operation of the turning motor 76, the turning angle and the turning direction are derived.
  • the mechanical brake 123 is connected to the rotating shaft of the turning motor 76 and generates a mechanical braking force.
  • the braking state and the release state of the mechanical brake 123 are switched by an electromagnetic switch under the control of the control device 130.
  • the pilot pump 115 generates a pilot pressure necessary for the hydraulic operation system.
  • the generated pilot pressure is supplied to the operating device 126 via the pilot line 125.
  • the operation device 126 includes a lever and a pedal and is operated by a driver.
  • the operating device 126 converts the primary side hydraulic pressure supplied from the pilot line 125 into a secondary side hydraulic pressure in accordance with the operation of the driver.
  • the secondary hydraulic pressure is transmitted to the control valve 117 via the hydraulic line 127 and to the pressure sensor 129 via the other hydraulic line 128.
  • the detection result of the pressure detected by the pressure sensor 129 is input to the control device 130.
  • the control apparatus 130 can detect the operation state of the lower traveling body 71, the turning motor 76, the boom 82, the arm 85, and the bucket 86.
  • the turning motor 76 drives the turning bearing 73. For this reason, it is desirable to detect the operation amount of the lever for controlling the turning motor 76 with high accuracy.
  • the control device 130 can detect the operation amount of the lever with high accuracy via the pressure sensor 129.
  • none of the lower traveling body 71, the swing motor 76, the boom 82, the arm 85, and the bucket 86 are operated, and the power supply to the power storage circuit 190 and the power from the power storage circuit 190 are not performed. It is possible to detect a state where no forced removal is performed (non-operating state).
  • FIG. 15 shows an equivalent circuit diagram of the power storage circuit 190.
  • the power storage circuit 190 includes a power storage module 80, a converter 200, and a DC bus line 210.
  • the power storage module 80 is connected to the pair of power supply connection terminals 203A and 203B of the converter 200, and the DC bus line 210 is connected to the pair of output terminals 204A and 204B.
  • One power connection terminal 203B and one output terminal 204B are grounded.
  • the power storage module 80 the power storage modules according to the first to tenth embodiments are used.
  • the DC bus line 210 is connected to the motor generator 83 and the turning motor 76 via the inverters 118 and 120.
  • the voltage generated in the DC bus line 210 is measured by the voltmeter 211, and the measurement result is input to the control device 130.
  • a series circuit in which the collector of the boosting insulated gate bipolar transistor (IGBT) 202A and the emitter of the step-down IGBT 202B are connected to each other is connected between the output terminals 204A and 204B.
  • the emitter of the step-up IGBT 202A is grounded, and the collector of the step-down IGBT 202B is connected to the output terminal 204A on the high voltage side.
  • An interconnection point between the step-up IGBT 202A and the step-down IGBT 202B is connected to the high-voltage side power connection terminal 203A via the reactor 201.
  • Diodes 202a and 202b are connected in parallel to the step-up IGBT 202A and the step-down IGBT 202B, respectively, such that the direction from the emitter to the collector is the forward direction.
  • a smoothing capacitor 205 is inserted between the output terminals 204A and 204B.
  • the voltmeter 206 connected between the power connection terminals 203A and 203B measures the voltage between the terminals of the power storage module 80.
  • An ammeter 207 inserted in series with the reactor 201 measures the charge / discharge current of the power storage module 80. The voltage and current measurement results are input to the control device 130.
  • the temperature detector 136 detects the temperature of the power storage module 80.
  • the detected temperature data is input to the control device 130.
  • the temperature detector 136 includes, for example, four thermometers prepared corresponding to four power storage cells selected from a plurality of power storage cells constituting the power storage module 80.
  • the control device 130 calculates the average of four pieces of temperature data acquired by four thermometers, and sets the average value as the temperature of the power storage module 80.
  • the highest temperature among the temperatures indicated by the four temperature data may be adopted as the temperature of the power storage module.
  • the lowest temperature among the temperatures indicated by the four temperature data may be employed as the temperature of the power storage module.
  • the control device 130 applies a control pulse width modulation (PWM) voltage to the gate electrodes of the step-up IGBT 202A and the step-down IGBT 202B.
  • PWM pulse width modulation
  • a PWM voltage is applied to the gate electrode of the boosting IGBT 202A.
  • an induced electromotive force is generated in the reactor 201 in a direction in which a current flows from the high-voltage power supply connection terminal 203A toward the collector of the boosting IGBT 202A.
  • This electromotive force is applied to the DC bus line 210 via the diode 202b. As a result, the DC bus line 210 is boosted.
  • a PWM voltage is applied to the gate electrode of the step-down IGBT 202B.
  • the step-down IGBT 202B is turned off, an induced electromotive force is generated in the reactor 201 in a direction in which a current flows from the emitter of the step-down IGBT 202B toward the high-voltage side power supply connection terminal 203A.
  • the storage module 80 is charged by the induced electromotive force.
  • the power storage modules 80 according to Examples 1 to 10 are used for the power storage module 80, destruction of the power storage module 80 due to vibration or impact is suppressed.
  • the destruction of the power storage module 80 due to vibrations that cannot be absorbed by the damper 91 (FIG. 13) is suppressed. can do. Further, efficient heat dissipation from the storage cell can be realized.
  • Example 14 an excavator on which at least one of the power storage modules in any of Examples 1 to 12 is mounted is illustrated.
  • 16 and 17 are a schematic plan view and a block diagram, respectively, of an electric excavator as a work machine according to the fourteenth embodiment.
  • attention is focused on differences from the thirteenth embodiment shown in FIGS. 12 and 14, and description of the same configuration is omitted.
  • the engine 74 (FIGS. 12 and 14) is not mounted.
  • a voltage converter 88 and an external power connection plug 87 for charging the power storage module 80 are prepared.
  • the power storage module 80 can be charged from an external power source via the external power connection plug 87 and the voltage converter 88.
  • the motor generator 83 does not operate as a generator, and operates only as a motor by the power supplied from the power storage module 80 (power storage circuit 190).
  • the voltage converter 88 performs voltage conversion for adapting the voltage of the external power source to the voltage of the power storage module 80.
  • the power storage modules according to Examples 1 to 10 can be applied not only to hybrid excavators but also to electric excavators.
  • Each is a plurality of plate-shaped storage cells stacked in the z-direction; A pair of pressing plates disposed at both ends of the stacked structure of the storage cell; A first tie rod that couples the pair of pressing plates and applies a compressive force in the z direction to the stacked structure of the storage cells; and at least one heat transfer plate sandwiched between the storage cells, the x direction
  • the pressing plate of the laminate disposed at one end in the x direction is fixed to the third wall plate, and the pressing plate of the laminate disposed at the other end is the fourth wall.
  • Fixed to the board A power storage module for work machines, wherein
  • Appendix 3 The power storage module for work machines according to appendix 1 or 2, An excavator having a motor that is driven by electric power supplied from the power storage module, generates regenerative power by converting kinetic energy into electric energy, and charges the power storage module.
  • Appendix 4 further, A lower traveling body, The excavator according to appendix 3, further comprising: an upper revolving body attached to the lower traveling body so as to be able to swivel, wherein the motor turns the upper revolving body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 下部走行体の上に、上部旋回体が旋回可能に取り付けられている。上部旋回体に蓄電モジュールが搭載されている。蓄電モジュールは、xyz直交座標系を定義したとき、z方向に積層された板状の複数の蓄電セルを有する。蓄電セルの間に少なくとも1枚の伝熱板が配置されている。蓄電セルの積層構造の両端に配置された押さえ板が、蓄電セルに積層方向の圧縮力を加える。第1の壁板及び第2の壁板が、積層体をy方向に挟み、押さえ板に固定されている。伝熱板の位置が、第1の壁板及び第2の壁板に対して拘束されている。

Description

ショベル
 本発明は、複数のセルを積層した作業機械用蓄電モジュールを用いたショベルに関する。
 充電可能な二次電池やキャパシタ等の蓄電セルを用いた自動車や作業機械の開発が進められている(特許文献4)。自動車や作業機械に採用される蓄電セルとして、蓄電要素をフィルムで包み込んだ扁平状(板状)の蓄電セル(バッテリパック)が提案されている。正電極端子及び負電極端子が、蓄電セルの外周部から導出される。
 複数の蓄電セルを積み重ねて、正電極端子、及び負電極端子に設けられた貫通孔にタイロッドを通すことにより、複数の蓄電セルが電気的に接続された蓄電モジュールが得られる(特許文献1)。積層された蓄電セルで発生した熱を外部に放熱する種々の構成が提案されている(特許文献2、3)。
米国特許公開公報2007/0207349 A1 特開平8-111244号公報 特開2003-133188号公報 特開2001-11889号公報
 作業機械は、自動車に比べて、路面の悪い砂利道での走行が多く、作業中における周囲の堆積物や構造物等への衝突も多い。このため、作業機械に搭載される蓄電モジュールには、振動や衝撃に耐え得る高い剛性が求められる。さらに、掘削を行う作業機械の場合、掘削時の衝撃による振動や衝撃も大きいため、蓄電モジュールに、特に高い剛性が求められる。従来の蓄電モジュールでは、十分な剛性を得ることが困難であった。また、十分な冷却効率を達成することが困難であった。
 特に、下部走行体、その上に搭載された上部旋回体、及びブーム等を有するショベルにおいては、上部旋回体を取り付ける旋回軸受のガタのため、作業中や走行中の衝撃により、上部旋回体が激しく上下に震動する。上部旋回体に取り付けても十分な信頼性を持つ蓄電モジュールが望まれている。
 本発明の一観点によると、
 下部走行体と、
 前記下部走行体の上に旋回可能に取り付けられた上部旋回体と、
 前記上部旋回体に搭載された蓄電モジュールと
を有し、
 前記蓄電モジュールは、
 xyz直交座標系を定義したとき、
 z方向に積層された板状の複数の蓄電セル、
 前記蓄電セルの間に配置された少なくとも1枚の伝熱板、及び
 前記蓄電セルの積層構造の両端に配置され、前記蓄電セルに、該蓄電セルの積層方向の圧縮力を加える一対の押さえ板
を含む積層体と、
 前記積層体をy方向に挟み、前記一対の押さえ板に固定されている第1の壁板及び第2の壁板と
を有し、
 前記伝熱板の位置が、前記第1の壁板及び前記第2の壁板に対して拘束されているショベルが提供される。
 本発明の他の観点によると、
 下部走行体と、
 前記下部走行体の上に旋回可能に取り付けられた上部旋回体と、
 前記上部旋回体に搭載された蓄電モジュールと
を有し、
 前記蓄電モジュールは、
 xyz直交座標系を定義したとき、
 各々が、
 z方向に積層された板状の複数の蓄電セル、
 前記蓄電セルの積層構造の両端に配置された一対の押さえ板、
 前記一対の押さえ板を連結し、前記蓄電セルの積層構造に積層方向の圧縮力を加える第1のタイロッド、及び
 前記蓄電セルの間に挟まれた少なくとも1枚の伝熱板
を含み、y方向に配列する複数の積層体と、
 前記積層体の各々に取り付けられ、前記積層体の各々をy方向に挟み、前記押さえ板に固定され、前記伝熱板に熱的に結合する第1の壁板及び第2の壁板と、
 複数の前記積層体をx方向に挟み、複数の前記積層体の前記押さえ板、複数の前記積層体に取り付けられた前記第1の壁板及び前記第2の壁板に固定された第3の壁板及び第4の壁板と
を有するショベルが提供される。
 一対の押さえ板、第1の壁板、及び第2の壁板が、高剛性の構造を構成する。このため、蓄電モジュールの剛性を高めることができる。この蓄電モジュールを、振動及び衝撃等が生じやすい上部旋回体に搭載しても、十分な信頼性を確保することができる。また、伝熱板、第1の壁板及び第2の壁板を通して、蓄電セルを効率的に冷却することができる。
図1A及び図1Bは、実施例1による蓄電モジュールの断面図である。 図1C及び図1Dは、実施例1による蓄電モジュールの断面図である。 図2A及び図2Bは、実施例1による蓄電モジュールの冷媒流路をしめす概略図である。 図3A及び図3Bは、実施例2による蓄電モジュールの断面図である。 図4は、実施例3による蓄電モジュールの断面図である。 図5Aは、実施例4による蓄電モジュールの断面図であり、図5Bは、実施例5による蓄電モジュールの断面図であり、図5Cは、実施例6による蓄電モジュールの断面図である。 図6A及び図6Bは、実施例7による蓄電モジュールの部分断面図である。 図7A及び図7Bは、実施例8による蓄電モジュールの断面図である。 図8A~図8Cは、実施例9による蓄電モジュールの部分断面図である。 図9は、実施例10による蓄電モジュールの断面図である。 図10は、実施例13による蓄電モジュールの断面図である。 図11Aは、実施例12による蓄電モジュールに用いられる蓄電セル及び支持枠の平面図であり、図11Bは、図11Aの一点鎖線11B-11Bにおける断面図であり、図11Cは、図11Aの一点鎖線11C-11Cにおける断面図である。 図12は、実施例13によるハイブリッド型ショベルの概略平面図である。 図13は、実施例13によるハイブリッド型ショベルの概略側面図である。 図14は、実施例13によるハイブリッド型ショベルのブロック図である。 図15は、実施例13によるハイブリッド型ショベルの蓄電回路の等価回路図である。 図16は、実施例14による電動ショベルの概略平面図である。 図17は、実施例14による電動ショベルのブロック図である。
 図面を参照しながら、本願発明の実施例について説明する。
 図1Aに、実施例1による蓄電モジュールの断面図を示す。理解を容易にするために、xyz直交座標系を定義する。
 板状の複数の蓄電セル20と、伝熱板25とが、その厚さ方向(z方向)に交互に積層されている。両端には、蓄電セル20が配置される。最も外側の蓄電セル20の各々に、押さえ板31が密着している。複数のタイロッド33が、一方の押さえ板31から他方の押さえ板31まで貫通し、蓄電セル20と伝熱板25とに、積層方向(z方向)の圧縮力を加えている。
 蓄電セル20の各々は、二次電池または電気二重層キャパシタ等の扁平状の蓄電要素を、一対のラミネートフィルムで挟み込んで封止したものである。蓄電セル20は、その外周部に、ラミネートフィルム同士を融着した領域(融着部)を含む。また、蓄電セル20は、一対の電極端子21を含む。電極端子21は、蓄電セル20の相互に対向する外周部から、外部に導出されている。電極端子21の一方は正電極であり、他方は負電極である。相互に隣り合う蓄電セル20の電極端子21を接続することにより、複数の蓄電セル20が直列接続されている。
 伝熱板25には、例えばアルミニウムが用いられ、タイロッド33及び押さえ板31には、例えばステンレス鋼が用いられる。蓄電セル20、伝熱板25、押さえ板31、及びタイロッド33を含む構造物を、積層体30と呼ぶこととする。x方向に関して積層体30の両側に、すなわち積層体30をx方向に挟むように、一対の壁板13、14が配置されている。壁板13及び14の各々は、ボルトで押さえ板31に固定されている。
 図1Bに、図1Aの一点鎖線1B-1Bにおける断面図を示す。図1Bの一点鎖線1A-1Aにおける断面図が、図1Aに相当する。蓄電セル20及び伝熱板25の平面形状は、ほぼ長方形である。相互に対向する辺(図1Bにおいて、上辺及び下辺)から、電極端子21が導出されている。伝熱板25は、平面視において、蓄電セル20の縁よりも外側まで張り出している。
 y方向に関して積層体30の両側に、すなわち積層体30をy方向に挟むように、一対の壁板11、12が配置されている。壁板11、12は、伝熱板25の端面に接触している。これにより、伝熱板25が、壁板11、12に熱的に結合する。壁板11及び12の各々は、壁板13及び14に、ボルトで固定されている。壁板11及び12の内部に、冷媒を流すための流路17が形成されている。
 図1Cに、図1Bの一点鎖線1C-1Cにおける断面図を示す。相互に隣り合う蓄電セル20から導出された電極端子21が、伝熱板25の縁よりも外側を通って、隣の蓄電セル20の電極端子21に接続されている。
 図1Dに、図1Bの一点鎖線1D-1Dにおける断面図を示す。伝熱板25が、その端面において、壁板11及び12に接触している。壁板11及び12の各々は、押さえ板31にボルトで固定されている。
 図1A及び図1Dに示した蓄電セル20の厚さには個体差がある。このため、一対の押さえ板31の間隔は、製品によってばらつく。このばらつきは、壁板11~14が、押さえ板31の端面に接触する構造とし、かつ壁板11~14に形成されているボルト用の穴を、z方向に長い長穴にすることによって吸収することができる。
 図2Aに、壁板11に形成された冷媒流路17の形状を示す。冷媒流路17は、導入路17A、複数の主経路17B、及び排出路17Cを含む。導入路17A及び排出路17Cの各々は、z方向に平行な1つの端面からx方向にそって壁板11の内部に延びる。主経路17Bの各々は、導入路17Aからz方向に延在し、排出路17Cまで至る。導入路17A、主経路17B、及び排出路17Cは、例えば壁板11の内部に配置され、表面に平行な方向に延在する細長い穴で構成される。導入路17A及び導入路17Cは、yz面に平行な端面からドリルで穴開け加工することにより形成される。主経路17Bは、xy面に平行な端面からドリルで穴開け加工した後、開口部を埋込プラグ17Dで埋め込むことにより形成される。なお、壁板11に冷媒が通る配管を密着させてもよい。
 図2Bに、冷媒流路17の他の例を示す。図2Aに示した例では、導入路17Aから排出路17Cに至る主経路17Bが複数本配置されていた。図2Bに示した例では、主経路17Bが、幅の広い1つの面状の流路で構成される。この壁板11は、1枚の金属板に、冷媒流路17に対応する凹部を形成した後、凹部を他の金属板で塞ぎ、2枚の金属板の外周を溶接することにより形成される。
 実施例1に示した蓄電モジュールにおいては、タイロッド33及び押さえ板31により、蓄電セル20及び伝熱板25の積層構造が維持される。押さえ板31、及び壁板11~14が、直方体状の平行六面体構造をなし、平行六面体構造の隣り合う壁面同士は、ボルトで固定されている。このため、高い剛性を確保することができ、伝熱板25の位置を、壁板11及び12に対して拘束することができる。蓄電セル20から発生した熱が、伝熱板25を経由して壁板11、12に伝わる。このため、蓄電セル20を効率的に冷却することができる。押さえ板31により蓄電セル20及び伝熱板25に圧縮力を加えているため、蓄電セル20と伝熱板25との密着状態を高めることができる。これにより、蓄電セル20と伝熱板25との間の熱伝達効率を高めることができる。
 蓄電セル20及び伝熱板25の積層構造を維持するための押さえ板31が、平行六面体構造の壁面を兼ねている。平行六面体構造の壁板11、12が、蓄電セル20を冷却するための吸熱板を兼ねている。このように、押さえ板31及び壁板11、12に複数の機能を持たせたため、部品点数の削減が図られる。
 実施例1では、蓄電セル20と伝熱板25とを交互に積層したが、伝熱板25の枚数を削減してもよい。例えば、2枚の蓄電セル20に対して1枚の伝熱板25を配置してもよい。また、積層された蓄電セル20のほぼ中央に、少なくとも1枚の伝熱板25を配置してもよい。
 ショベルは、ゴムタイヤで走行する自動車とは異なり、金属のクローラにより走行する。また、上部旋回体が下部走行体に、軸受けを介して支持されている。軸受けは、相対運動する金属部品を含み、ガタが皆無であるとはいえない。このため、走行時の下部走行体の振動が、上部旋回体に増幅して伝達される場合がある。従って、上部旋回体に搭載される蓄電モジュールには、共振を防止するために、高い固有振動数が要求される。
 実施例1では、平行六面体構造による高剛性の蓄電モジュールの例を示したが、作業機械に求められる剛性、若しくは固有振動数を満足することができる場合には、壁板13及び14を取り除いた構造としてもよい。
 実施例1では、蓄電セル20に電気二重層キャパシタ等を用いたが、リチウムイオンキャパシタを用いてもよい。リチウムイオンキャパシタは、電気的特性を維持するために、圧縮力を印加しておく必要はない。この場合には、圧縮力の印加は、蓄電セル20から伝熱板25への熱伝達効率を高めるという効果を有する。蓄電セルを機械的に支持するために必要な圧縮力、及び熱伝達効率を高めるために必要な圧縮力は、電気二重層キャパシタの電気的特性を維持するために必要な圧縮力よりも小さい。従って、蓄電セル20に電気二重層キャパシタを用いる場合には、電気二重層キャパシタを用いる場合に比べて、圧縮力を小さくしてもよい。
 図3A及び図3Bに実施例2による蓄電モジュールの断面図を示す。図3Bは、図3Aの一点鎖線3B-3Bにおける断面図であり、図3Aは、図3Bの一点鎖線3A-3Aにおける断面図である。以下、実施例1による蓄電モジュールとの相違点について説明する。
 実施例1では、壁板11及び壁板12は、その外周部近傍において、図1Bに示した壁板13、14、及び図1Dに示した押さえ板31に固定されている。壁板11、12と、伝熱板25とが接触する位置においては、壁板11、12の剛性により、壁板11、12が伝熱板25に押し付けられる。
 実施例2においては、壁板11から壁板12まで、複数のタイロッド40が貫通している。タイロッド40は、蓄電セル20及び伝熱板25と、空間的に干渉しない位置に取り付けられる。タイロッド40により、壁板11及び壁板12に、両者の間隔を狭める向きの力が加えられる。タイロッド40が貫通する穴は、壁板11、12が、押さえ板31及び壁板13、14に固定されている位置よりも内側に配置されている。このため、壁板11、12を、伝熱板25に、より大きな力で押し付けることができる。これにより、伝熱板25から壁板11、12への熱伝達率を高めることができる。
 図3A及び図3Bでは、複数のタイロッド40を取り付けた例を示したが、1本のタイロッド40を取り付けてもよい。
 実施例2では、平行六面体構造による高剛性の蓄電モジュールの例を示したが、実施例1と同様に、作業機械に求められる剛性、若しくは固有振動数を満足することができる場合には、壁板13及び14を取り除いた構造としてもよい。
 図4に、実施例3による蓄電モジュールの断面図を示す。以下、実施例1による蓄電モジュールとの相違点について説明する。
 実施例3においては、蓄電セル20の積層構造のほぼ中央の2枚の蓄電セル20の間に、伝熱板に代えて、中間板43が挿入されている。中間板43には、鉄またはステンレス鋼が用いられ、中間板43は、伝熱板25よりも高い剛性を有する。
 中間板43は、その端面において壁板11、12に接触し、ボルトによって壁板11、12に固定されている。タイロッド33は、中間板43に形成された貫通孔を通過する。蓄電モジュールに衝撃が加わったとき、中間板43は、タイロッド33の、x方向及びy方向への変位を禁止する。
 タイロッド33は、その両端で押さえ板31によって支持された梁構造と考えることができる。タイロッド33を、そのほぼ中央において中間板43で支持することは、梁の長さが約半分になったことと等価である。このため、蓄電モジュールのx方向及びy方向に関する振動の固有振動数を高くすることができる。また、中間板43は、それに接する蓄電セル20のz方向への変位を禁止する。このため、蓄電モジュールのz方向に関する振動の固有振動数を高めることができる。これにより、蓄電モジュールの耐衝撃性が高まる。
 図5Aに、実施例4による蓄電モジュールの断面図を示す。実施例4による蓄電モジュールでは、図1Bに示した実施例1による蓄電モジュールと同一構造の3個の蓄電モジュールがy方向に配列している。相互に隣り合う積層体30の間の壁板は、両側の蓄電モジュールで共有される。すなわち、一方の蓄電モジュールの壁板12が、隣の蓄電モジュールの壁板11を兼ねる。各積層体30の伝熱板25は、当該積層体30をy方向に挟む2枚の壁板11、12に接触している。3個の積層体30をx方向に挟む壁板13、14の各々は、連続した1枚の板部材で構成される。
 蓄電セル20に、内部で発生したガスを排出するためのガス抜き弁27が設けられる場合がある。ガス抜き弁27は、一般的に、蓄電セル20の厚さに比べて大きいため、蓄電セル20のz軸にほぼ垂直な端面に取り付けることは困難である。蓄電セル20の電極端子21が導出されている縁の近傍は、電極取り出しのためのリード線等が配置されるため、xy面に対して傾斜している。ガス抜き弁27は、この傾斜した部分に取り付けられる場合が多い。
 組み立て時には、y方向に並べられた3個の蓄電モジュールにy方向の圧縮力を加えることにより、各積層体30の伝熱板25を両側の壁板に接触させる。この状態で、壁板13と14とを、ボルトで壁板11、12、及び積層体30の押さえ板31(図1D)に固定する。
 相互に隣り合う積層体30A~30Cの間の壁板が、両者で共有されるため、部品点数の削減を図ることができる。図5Aでは3個の積層体30を組み込んだが、2個の積層体30を組み込んでもよいし、4個以上の積層体30を組み込んでもよい。
 蓄電セル20内で発生したガスは、蓄電セル20内の空間の上方に蓄積されるため、ガス抜き弁27が鉛直上方に配置される姿勢を維持することが好ましい。実施例4による蓄電モジュールは、x方向が鉛直方向に平行になる姿勢(yz面が水平になる姿勢)で作業機械に装着することが好ましい。実施例4による蓄電モジュールは、水平方向に広がっている装着スペースを持つ機器や作業機械への装着に適している。
 図5Bに、実施例5による蓄電モジュールの断面図を示す。実施例5による蓄電モジュールは、実施例1による蓄電モジュールと同一構造の3個の積層体30を含む。
 3個の積層体30は、各々の積層方向がz方向に平行になる姿勢で、x方向に配列している。壁板11、12が、3つの積層体30をy方向に挟む。壁板13、14が、3つの積層体30をx方向に挟む。相互に隣り合う積層体30の間に、隔壁15が配置されている。壁板13、14及び隔壁15は、ボルトによって壁板11、12に固定されている。また、積層体30の押さえ板31(図1D)は、実施例1の場合と同様に、ボルトによって壁板11、12に固定されている。さらに、押さえ板31と隔壁15も、ボルトによって相互に固定されている。積層体30の各々の伝熱板25は、壁板11、12に接触している。壁板11、12内に、冷媒流路17が形成されている。
 押さえ板31、壁板11~14が、平行六面体構造を構成する。このため、高い剛性を確保することができる。また、隔壁15が、さらに剛性を高める役割を果たす。
 実施例5においては、伝熱板25は、壁板11、12に接触するため、壁板11、12を固定する際に、x方向の圧縮力を加えておく必要はない。このため、実施例5による蓄電モジュールは、実施例4による蓄電モジュールに比べて、組み立て及びメンテナンスが容易である。
 ガス抜き弁27の配置を考慮すると、実施例5による蓄電モジュールも実施例4の場合と同様に、x方向が鉛直方向に平行になる姿勢(yz面が水平になる姿勢)で作業機械に装着することが好ましい。実施例5による蓄電モジュールは、厚さ方向がほぼ水平方向を向く平たい装着スペースを持つ機器や作業機械への装着に適している。
 図5Cに、実施例6による蓄電モジュールの断面図を示す。実施例6による蓄電モジュールでは、図1Bに示した実施例1による蓄電モジュールと同一構造の3個の蓄電モジュールがy方向に配列している。相互に隣り合う蓄電モジュールは、壁板11、12を共有しておらず、個別に壁板が設けられている。このため、隣り合う積層体30の間に、2枚の壁板11、12が配置される。
 実施例6では、積層体30の各々に、壁板11、12を取り付けた後、壁板11、12に壁板13、14を固定すればよい。このため、壁板13、14を固定する際に、蓄電モジュールにy方向の圧縮力を加えておく必要はない。実施例6による蓄電モジュールは、図5Aに示した実施例4の蓄電モジュールに比べて、部品点数は増加するが、組み立て及びメンテナンスは容易である。
 ガス抜き弁27の配置を考慮すると、実施例6による蓄電モジュールも実施例4の場合と同様に、x方向が鉛直方向に平行になる姿勢(yz面が水平になる姿勢)で作業機械に装着することが好ましい。実施例6による蓄電モジュールは、水平方向に広がっている装着スペースを持つ機器や作業機械への装着に適している。
 図6Aに、実施例7による蓄電モジュールの部分断面図を示す。以下、図1A~図1Dに示した実施例1による蓄電モジュールとの相違点について説明する。
 実施例1では、図1Dに示したように、伝熱板25が壁板11、12に接触することにより、両者を熱的に結合させた。実施例7においては、伝熱板25が壁板11、12に固着するように、接触個所において両者が熱伝導性接着剤45で接着されている。伝熱板25と壁板11、12との間に微小な隙間が形成されている場合には、この隙間が接着剤で埋め込まれる。このため、伝熱板25と壁板11、12との間の熱伝達率を高めることができる。このように、伝熱板25が壁板11、12に摺接しないように(伝熱板25が壁板11、12に対して接触した状態で動かないように)することで、接触箇所における熱抵抗を小さくすることができる。これにより、伝熱板25及び蓄電セル20の冷却効率を向上させ、蓄電セル20の温度の著しい上昇を抑制することができる。
 図6Bに示すように、壁板11、12の各々の内側の表面に溝46を形成してもよい。溝46内に、伝熱板25の縁が挿入されるとともに、熱伝導性接着剤46が充填される。
 実施例7では、平行六面体構造による高剛性の蓄電モジュールの例を示したが、実施例1と同様に、作業機械に求められる剛性、若しくは固有振動数を満足することができる場合には、壁板13及び14(図1A、図1B)を取り除いた構造としてもよい。
 図7A及び図7Bに、実施例8による蓄電モジュールの断面図を示す。図7Bは、図7Aの一点鎖線7B-7Bにおける断面図であり、図7Aは、図7Bの一点鎖線7A-7Aにおける断面図である。以下、図3A及び図3Bに示した実施例2による蓄電モジュールとの相違点について説明する。
 実施例1と同様に、押さえ板31が蓄電セル20に積層方向の圧縮力を加え、伝熱板25の位置が、壁板11、12に対して拘束されている。壁板11、12の内側の表面に、z方向に延在する3本の凹部50が形成されている。凹部50の各々は、深さ方向の寸法よりも幅方向の寸法の方が大きい。凹部50内に、熱伝導性を有する弾性部材51が装填されている。弾性部材51には、例えば伝熱ゴムシートが用いられる。伝熱板25の縁が、凹部50と交差するか、または凹部50と部分的に重なる。
 弾性部材51に外力が加わらない状態では、弾性部材51の一部が凹部50の開口面から突出している。例えば、弾性部材51として、凹部50の深さよりも厚い伝熱ゴムシートが用いられる。
 図7Aに示したように、凹部50が形成されていない領域では、伝熱板25が壁板11、12の内側の表面に接する。図7A及び図7Bに示したように、伝熱板25の縁が凹部50と交差する領域、及び伝熱板25の縁が凹部50と重なる領域では、伝熱板25が弾性部材51を押しつぶしている。
 伝熱部材25と壁板11、12とが、弾性部材51を介して熱的に結合する。このため、安定した熱的結合を確保することができる。このように、伝熱板25が壁板11、12に摺接しないようにすることで、接触箇所における熱抵抗を小さくすることができる。これにより、伝熱板25及び蓄電セル20の冷却効率を向上させ、蓄電セル20の著しい温度上昇を抑制することができる。
 弾性部材51のうち、凹部50の開口面から突出している部分がつぶし代になる。弾性部材51は、このつぶし代を越えて押しつぶされることはない。弾性部材51の寸法(厚さ)と、凹部50の深さとを調整することにより、つぶし代を所望の許容範囲内に納めることがができる。このため、クリープひずみによる弾性部材51の経年劣化を抑制することができる。
 実施例8では、平行六面体構造による高剛性の蓄電モジュールの例を示したが、実施例2と同様に、作業機械に求められる剛性、若しくは固有振動数を満足することができる場合には、壁板13及び14(図7A)を取り除いた構造としてもよい。
 図8Aに、実施例9による蓄電モジュールの部分断面図を示す。以下、図1A~図1Dに示した実施例1による蓄電モジュールとの相違点について説明する。
 実施例9では、伝熱板25の壁板11、12に接触する端部が、yz面に平行な断面においてほぼ直角に折り曲げられている。このため、伝熱板25と壁板11、12との接触面積が大きくなる。これにより、両者の間の熱伝達率を高めることができる。
 図8Bに示すように、折り曲げ部分にある程度の曲率を設けてもよい。また、図8Cに示すように、伝熱板25の端部の断面をT字状にしてもよい。
 図9に、実施例10による蓄電モジュールの断面図を示す。実施例10では、図1Bに示した実施例1の冷媒流路17に代えて、壁板11、12の外側の表面に放熱効率を高めるための凹凸55が形成されている。凹凸55の凹部が、例えば格子模様を構成している。他の構造は、実施例1による蓄電モジュールの構造と同一である。冷媒流路17に代えて放熱用の凹凸55を取り付けても、蓄電セル20で発生した熱を効率よく放熱することができる。
 実施例10では、平行六面体構造による高剛性の蓄電モジュールの例を示したが、実施例1と同様に、作業機械に求められる剛性、若しくは固有振動数を満足することができる場合には、壁板13及び14(図1A、図1B)を取り除いた構造としてもよい。
 図10に、実施例11による蓄電モジュールの断面図を示す。以下の説明では、図7A及び図7Bに示した実施例8との相違点に着目し、同一の構成については説明を省略する。
 実施例11においては、蓄電セル20と伝熱板25との積層構造に圧縮力を印加するために、タイロッド33(図7A、図7B)が用いられていた。実施例11では、タイロッドが用いられておらず、ウェッジにより圧縮力が印加される。
 図10に示したように、押さえ板31の、x軸に平行な端面と、外側の表面とを接続する部分が面取りされ、斜面11Aが形成されている。壁板11、12に、斜面11Aに平行な斜面31Aが形成されている。締付具56を構成するボルトが、一方の壁板12の外側の表面から、壁板12、押さえ板31、他方の壁板11内をy軸方向に貫通して、壁板11の外側の表面まで達している。締付部56により、壁板11と12とに、y軸方向の圧縮力が印加される。
 この圧縮力により、伝熱ゴムシート51が弾性変形し、伝熱板25が、伝熱ゴムシート51を介して壁板11、12に押し付けられる。これにより、伝熱板25から壁板11、12に、効率的に熱を伝達することが可能になる。
 さらに、壁板11と12とが近づくことにより、斜面11Aと斜面31Aとが接触し、一対の押さえ板31に、両者が近づく向きの力が印加される。これにより、蓄電セル20と伝熱板25との積層構造に、z軸方向の圧縮力が印加される。
 実施例11では、締付具56が、伝熱板25を壁板11、12に押し付けるy軸方向の圧縮力と、積層構造に印加するz軸方向の圧縮力とを印加することができる。z軸方向の十分な圧縮力を印加するために、伝熱ゴムシート51が弾性変形した状態で、押さえ板31のy軸に垂直な端面と、壁板11、12の内側の表面との間に隙間が確保されるように、押さえ板31のy軸方向の寸法を設定しておくことが好ましい。
 実施例11では、平行六面体構造による高剛性の蓄電モジュールの例を示したが、実施例1と同様に、作業機械に求められる剛性、若しくは固有振動数を満足することができる場合には、壁板13及び14(図7A)を取り除いた構造としてもよい。
 図11Aに、実施例12による蓄電モジュールに用いられる蓄電セル及び支持枠の平面図を示す。蓄電セル20及び電極21の構成は、実施例1のものと同一である。蓄電セル20の相互に反対側の縁から、一対の電極21が引き出されている。平面視において、蓄電セル20を取り囲むように、支持枠60が配置されている。支持枠60には、例えば絶縁性の樹脂が用いられる。電極21は、支持枠60の外周側の縁よりも外側まで張り出している。
 図11Bに、図11Aの一点鎖線11B-11Bにおける断面図を示す。蓄電セル20は、その外周部に、表裏のラミネートフィルム同士が溶着された薄い部分20Aを有する。支持枠60の内周側の側面は、2段の階段状形状を有する。薄い部分20Aが、両面粘着テープ等により、支持枠60の内周の踏み面61に固定されている。支持枠60は、蓄電セル20よりも薄い。このため、支持枠60と共に蓄電セル20を厚さ方向に積層したとき、支持枠60が、蓄電セル20への圧縮力の印加を妨げることはない。
 図11Cに、図11Aの一点鎖線11C-11Cにおける断面図を示す。電極21が、蓄電セル20の薄い部分20Aの縁から外部に引き出されている。図11Aに示すように、平面視において、支持枠60のうち電極21と重なる領域においては、踏み面61が支持枠の外周まで延在している。この踏み面61上を経由して、電極21が支持枠60の外周よりも外側まで引き出されている。
 実施例12では、蓄電セル20を厚さ方向に積み重ねる際に、支持枠60の外周側の側面が、積層方向に直交する面内に関する位置合わせの基準面となる。このため、位置合わせを容易に行うことができる。また、蓄電セル20を単体で取り扱う際に、支持枠60が蓄電セル20を保護する。このため、蓄電セル20の損傷を防止または軽減することができる。
 実施例13では、実施例1~実施例12のいずれかの蓄電モジュールの少なくとも1つが搭載されるショベルが例示される。
 図12は、実施例13による作業機械としてのハイブリッド型ショベルの概略平面図である。
 上部旋回体70に、旋回軸受け73を介して、下部走行体(走行装置)71が取り付けられている。上部旋回体70に、エンジン74、メインポンプ75、電動モータ76、油タンク77、冷却ファン78、座席79、蓄電モジュール80、及び電動発電機83が搭載されている。エンジン74は、燃料の燃焼により動力を発生する。エンジン74、メインポンプ75、及び電動発電機83が、トルク伝達機構81を介して相互にトルクの送受を行う。メインポンプ75は、ブーム82等の油圧シリンダに圧油を供給する。
 電動発電機83は、エンジン74の動力によって駆動され、発電を行う(発電運転)。発電された電力は、蓄電モジュール80に供給され、蓄電モジュール80が充電される。また、電動発電機83は、蓄電モジュール80からの電力によって駆動され、エンジン74をアシストするための動力を発生する(アシスト運転)。油タンク77は、油圧回路の油を貯蔵する。冷却ファン78は、油圧回路の油温の上昇を抑制する。操作者は、座席79に着座して、ハイブリッド型ショベルを操作する。
 図13に、実施例13によるハイブリッド型ショベルの側面図を示す。下部走行体71に、旋回軸受け73を介して上部旋回体70が搭載されている。上部旋回体70は、電動モータ76(図12)からの駆動力により、下部走行体71に対して、時計回り、または反時計周りに旋回する。上部旋回体70に、ブーム82が取り付けられている。ブーム82は、油圧駆動されるブームシリンダ107により、上部旋回体70に対して上下方向に揺動する。ブーム82の先端に、アーム85が取り付けられている。アーム85は、油圧駆動されるアームシリンダ108により、ブーム82に対して前後方向に揺動する。アーム85の先端にバケット86が取り付けられている。バケット86は、油圧駆動されるバケットシリンダ109により、アーム85に対して上下方向に揺動する。
 蓄電モジュール80が、蓄電モジュール用マウント90及びダンパ(防振装置)91を介して、上部旋回体70に搭載されている。蓄電モジュール80には、上記実施例1~12による蓄電モジュールが用いられる。蓄電モジュール80から供給される電力によって、旋回モータ76(図12)が駆動される。また、旋回モータ76は、運動エネルギを電気エネルギに変換することによって回生電力を発生する。発生した回生電力によって、蓄電モジュール80が充電される。
 図14に、実施例13によるハイブリッド型ショベルのブロック図を示す。図14において、機械的動力系を二重線で表し、高圧油圧ラインを太い実線で表し、電気系統を細い実線で表し、パイロットラインを破線で表す。
 エンジン74の駆動軸がトルク伝達機構81の入力軸に連結されている。エンジン74には、電気以外の燃料によって駆動力を発生するエンジン、例えばディーゼルエンジン等の内燃機関が用いられる。エンジン74は、作業機械の運転中は、常時駆動されている。
 電動発電機83の駆動軸が、トルク伝達機構81の他の入力軸に連結されている。電動発電機83は、電動(アシスト)運転と、発電運転との双方の運転動作を行うことができる。電動発電機83には、例えば磁石がロータ内部に埋め込まれた内部磁石埋込型(IPM)モータが用いられる。
 トルク伝達機構81は、2つの入力軸と1つの出力軸とを有する。この出力軸には、メインポンプ75の駆動軸が連結されている。
 エンジン74に加わる負荷が大きい場合には、電動発電機83がアシスト運転を行い、電動発電機83の駆動力がトルク伝達機構81を介してメインポンプ75に伝達される。これにより、エンジン74に加わる負荷が軽減される。一方、エンジン74に加わる負荷が小さい場合には、エンジン74の駆動力がトルク伝達機構81を介して電動発電機83に伝達されることにより、電動発電機83が発電運転される。電動発電機83のアシスト運転と発電運転との切り替えは、電動発電機83に接続されたインバータ118により行われる。インバータ118は、制御装置130により制御される。
 制御装置130は、中央処理装置(CPU)130A及び内部メモリ130Bを含む。CPU130Aは、内部メモリ130Bに格納されている駆動制御用プログラムを実行する。制御装置130は、表示装置135に、各種装置の劣化状態等を表示することにより、運転者の注意を喚起する。
 メインポンプ75は、高圧油圧ライン116を介して、コントロールバルブ117に油圧を供給する。コントロールバルブ117は、運転者からの指令により、油圧モータ101A、101B、ブームシリンダ107、アームシリンダ108、及びバケットシリンダ109に油圧を分配する。油圧モータ101A及び101Bは、それぞれ図13に示した下部走行体71に備えられた左右の2本のクローラを駆動する。
 電動発電機83の電気系統の入出力端子が、インバータ118を介して蓄電回路190に接続されている。インバータ118は、制御装置130からの指令に基づき、電動発電機83の運転制御を行う。蓄電回路190には、さらに、他のインバータ120を介して旋回モータ76が接続されている。蓄電回路190及びインバータ120は、制御装置130により制御される。
 電動発電機83がアシスト運転されている期間は、必要な電力が、蓄電回路190から電動発電機83に供給される。電動発電機83が発電運転されている期間は、電動発電機83によって発電された電力が、蓄電回路190に供給される。
 旋回モータ76は、インバータ120からのパルス幅変調(PWM)制御信号により交流駆動され、力行動作及び回生動作の双方の運転を行うことができる。旋回モータ76には、例えばIPMモータが用いられる。IPMモータは、回生時に大きな誘導起電力を発生する。
 旋回モータ76の力行動作中は、旋回モータ76が、減速機124を介して、上部旋回体70を旋回させる。この際、減速機124は、回転速度を遅くする。これにより、旋回モータ76で発生した回転力が増大する。また、回生運転時には、上部旋回体70の回転運動が、減速機124を介して旋回モータ76に伝達されることにより、旋回モータ76が回生電力を発生する。この際、減速機124は、力行運転の時とは逆に、回転速度を速める。これにより、旋回モータ76の回転数を上昇させることができる。
 レゾルバ122が、旋回モータ76の回転軸の回転方向の位置を検出する。検出結果は、制御装置130に入力される。旋回モータ76の運転前と運転後における回転軸の回転方向の位置を検出することにより、旋回角度及び旋回方向が導出される。
 メカニカルブレーキ123が、旋回モータ76の回転軸に連結されており、機械的な制動力を発生する。メカニカルブレーキ123の制動状態と解除状態とは、制御装置130からの制御を受け、電磁的スイッチにより切り替えられる。
 パイロットポンプ115が、油圧操作系に必要なパイロット圧を発生する。発生したパイロット圧は、パイロットライン125を介して操作装置126に供給される。操作装置126は、レバーやペダルを含み、運転者によって操作される。操作装置126は、パイロットライン125から供給される1次側の油圧を、運転者の操作に応じて、2次側の油圧に変換する。2次側の油圧は、油圧ライン127を介してコントロールバルブ117に伝達されると共に、他の油圧ライン128を介して圧力センサ129に伝達される。
 圧力センサ129で検出された圧力の検出結果が、制御装置130に入力される。これにより、制御装置130は、下部走行体71、旋回モータ76、ブーム82、アーム85、及びバケット86の操作の状況を検知することができる。特に、実施例13によるハイブリッド型ショベルでは、旋回モータ76が旋回軸受け73を駆動する。このため、旋回モータ76を制御するためのレバーの操作量を高精度に検出することが望まれる。制御装置130は、圧力センサ129を介して、このレバーの操作量を高精度に検出することができる。
 さらに、制御装置130は、下部走行体71、旋回モータ76、ブーム82、アーム85、及びバケット86のいずれも運転されておらず、蓄電回路190への電力の供給及び蓄電回路190からの電力の強制的な取り出しのいずれも行われていない状態(非運転状態)を検出することができる。
 図15に、蓄電回路190の等価回路図を示す。蓄電回路190は、蓄電モジュール80、コンバータ200、及びDCバスライン210を含む。コンバータ200の一対の電源接続端子203A、203Bに蓄電モジュール80が接続されており、一対の出力端子204A、204BにDCバスライン210が接続されている。一方の電源接続端子203B、及び一方の出力端子204Bは接地されている。蓄電モジュール80には、上記実施例1~実施例10による蓄電モジュールが用いられる。
 DCバスライン210は、インバータ118、120を介して、電動発電機83及び旋回モータ76に接続されている。DCバスライン210に発生している電圧が、電圧計211により測定され、測定結果が制御装置130に入力される。
 昇圧用の絶縁ゲートバイポーラトランジスタ(IGBT)202Aのコレクタと、降圧用のIGBT202Bのエミッタとが相互に接続された直列回路が、出力端子204Aと204Bとの間に接続されている。昇圧用IGBT202Aのエミッタが接地され、降圧用IGBT202Bのコレクタが、高圧側の出力端子204Aに接続されている。昇圧用IGBT202Aと降圧用IGBT202Bの相互接続点が、リアクトル201を介して、高圧側の電源接続端子203Aに接続されている。
 昇圧用IGBT202A及び降圧用IGBT202Bに、それぞれダイオード202a、202bが、エミッタからコレクタに向かう向きが順方向になる向きで並列接続されている。出力端子204Aと204Bとの間に、平滑用のコンデンサ205が挿入されている。
 電源接続端子203Aと203Bとの間に接続された電圧計206が、蓄電モジュール80の端子間電圧を測定する。リアクトル201に直列に挿入された電流計207が、蓄電モジュール80の充放電電流を測定する。電圧及び電流の測定結果は、制御装置130に入力される。
 温度検出器136が、蓄電モジュール80の温度を検出する。検出された温度データは、制御装置130に入力される。温度検出器136は、例えば蓄電モジュール80を構成する複数の蓄電セルから選択された4個の蓄電セルに対応して準備された4個の温度計を含む。制御装置130は、例えば、4個の温度計で取得された4個の温度データの平均を算出し、平均値を蓄電モジュール80の温度とする。なお、キャパシタの過熱状態を判定する際には、4個の温度データが示す温度のうち最も高い温度を、蓄電モジュールの温度として採用してもよい。逆に、蓄電モジュールの温度が低下し過ぎた状態の判定には、4個の温度データが示す温度のうち最も低い温度を、蓄電モジュールの温度として採用してもよい。
 制御装置130が、昇圧用IGBT202A及び降圧用IGBT202Bのゲート電極に、制御用のパルス幅変調(PWM)電圧を印加する。
 以下、昇圧動作(放電動作)について説明する。昇圧用IGBT202Aのゲート電極にPWM電圧を印加する。昇圧用IGBT202Aのオフ時に、リアクトル201に、高圧側の電源接続端子203Aから昇圧用IGBT202Aのコレクタに向かって電流を流す向きの誘導起電力が発生する。この起電力が、ダイオード202bを介してDCバスライン210に印加される。これにより、DCバスライン210が昇圧される。
 次に、降圧動作(充電動作)について説明する。降圧用IGBT202Bのゲート電極に、PWM電圧を印加する。降圧用IGBT202Bのオフ時に、リアクトル201に、降圧用IGBT202Bのエミッタから高圧側の電源接続端子203Aに向かって電流を流す向きの誘導起電力が発生する。この誘導起電力により、蓄電モジュール80が充電される。
 蓄電モジュール80に、上記実施例1~10による蓄電モジュールが用いられているため、振動や衝撃による蓄電モジュール80の破壊が抑制される。特に、旋回軸受け73(図12、図13)のガタに起因して上部旋回体70が上下に震動する際に、ダンパ91(図13)で吸収しきれない振動による蓄電モジュール80の破壊を抑制することができる。さらに、蓄電セルからの効率的な放熱を実現することができる。
 実施例14では、実施例1~実施例12のいずれかの蓄電モジュールの少なくとも1つが搭載されるショベルが例示される。
 図16及び図17は、それぞれ実施例14による作業機械としての電動ショベルの概略平面図、及びブロック図である。以下の説明では、図12、図14に示した実施例13との相違点に着目し、同一の構成については説明を省略する。
 実施例14による電動ショベルでは、エンジン74(図12、図14)が搭載されていない。蓄電モジュール80を充電するための電圧コンバータ88及び外部電源接続プラグ87が準備されている。外部電源から、外部電源接続プラグ87及び電圧コンバータ88を介して、蓄電モジュール80を充電することができる。電動発電機83は、発電機として動作せず、蓄電モジュール80(蓄電回路190)から供給される電力ににより、電動機としてのみ動作する。
 電圧コンバータ88は、外部電源の電圧を蓄電モジュール80の電圧に適合させるための電圧変換を行う。
 実施例1~10による蓄電モジュールは、ハイブリッド型ショベルのみならず、電動ショベルにも適用することが可能である。
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
 上記実施例に基づいて、さらに、以下の付記を開示する。
 (付記1)
 xyz直交座標系を定義したとき、
 各々が、
 z方向に積層された板状の複数の蓄電セル、
 前記蓄電セルの積層構造の両端に配置された一対の押さえ板、
 前記一対の押さえ板を連結し、前記蓄電セルの積層構造にz方向の圧縮力を加える第1のタイロッド、及び
 前記蓄電セルの間に挟まれた少なくとも1枚の伝熱板
を含み、x方向に配列する複数の積層体と、
 複数の前記積層体をy方向に挟み、前記積層体の押さえ板に固定された第1の壁板及び第2の壁板と、
 複数の前記積層体をx方向に挟み、前記第1の壁板及び前記第2の壁板に固定された第3の壁板及び第4の壁板と
を有し、
 x方向に関して一方の端に配置された前記積層体の前記押さえ板が、前記第3の壁板に固定され、他方の端に配置された前記積層体の前記押さえ板が、前記第4の壁板に固定されており、
 前記伝熱板が、前記第1の壁板及び前記第2の壁板に熱的に結合している作業機械用蓄電モジュール。
 (付記2)
 さらに、x方向に隣り合う前記積層体の間に配置された隔壁を有し、
 前記隔壁は、前記第1の壁板、前記第2の壁板、及び該隔壁の両側の前記積層体の前記押さえ板に固定されている付記1に記載の作業機械用蓄電モジュール。
 (付記3)
 付記1または2に記載の作業機械用蓄電モジュールと、
 前記蓄電モジュールから供給される電力で駆動されるとともに、運動エネルギを電気エネルギに変換することによって回生電力を発生し、前記蓄電モジュールを充電するモータを有するショベル。
 (付記4)
 さらに、
 下部走行体と、
 前記下部走行体に旋回可能に取り付けられた上部旋回体と
を有し、前記モータは、前記上部旋回体を旋回させる付記3に記載のショベル。
11、12、13、14 壁板
15 隔壁
17 冷媒流路
20 蓄電セル
20A 薄い部分
21 電極
25 伝熱板
27 ガス抜き弁
30 積層体
31 押さえ板
33 タイロッド(第1のタイロッド)
40 タイロッド(第2のタイロッド)
43 中間板
45 熱伝導性接着剤
46 溝
50 溝
51 伝熱ゴムシート
55 凹凸
56 締付具
60 支持枠
61 踏み面
70 上部旋回体
71 下部走行体(基体)
73 旋回軸受け
74 エンジン
75 メインポンプ
76 旋回モータ
77 油タンク
78 冷却ファン
79 座席
80 蓄電モジュール
81 トルク伝達機構
82 ブーム
83 電動発電機
85 アーム
86 バケット
87 外部電源接続プラグ
88 電圧コンバータ
90 蓄電モジュールマウント
91 ダンパー(防振装置)
101A、101B 油圧モータ
107 ブームシリンダ
108 アームシリンダ
109 バケットシリンダ
114 メインポンプ
115 パイロットポンプ
116 高圧油圧ライン
117 コントロールバルブ
118 インバータ
119 キャパシタ
120 インバータ
122 レゾルバ
123 メカニカルブレーキ
124 減速機
125 パイロットライン
126 操作装置
127、128 油圧ライン
129 圧力センサ
130 制御装置
135 表示装置
136 温度検出器
200 コンバータ
201 リアクトル
202A 昇圧用IGBT
202B 降圧用IGBT
202a、202b ダイオード
203A、203B 電源接続端子
204A、204B 出力端子
205 平滑用コンデンサ
206 電圧計
207 電流計
211 電圧計

Claims (11)

  1.  下部走行体と、
     前記下部走行体の上に旋回可能に取り付けられた上部旋回体と、
     前記上部旋回体に搭載された蓄電モジュールと
    を有し、
     前記蓄電モジュールは、
     xyz直交座標系を定義したとき、
     z方向に積層された板状の複数の蓄電セル、
     前記蓄電セルの間に配置された少なくとも1枚の伝熱板、及び
     前記蓄電セルの積層構造の両端に配置され、前記蓄電セルに、該蓄電セルの積層方向の圧縮力を加える一対の押さえ板
    を含む積層体と、
     前記積層体をy方向に挟み、前記一対の押さえ板に固定されている第1の壁板及び第2の壁板と
    を有し、
     前記伝熱板の位置が、前記第1の壁板及び前記第2の壁板に対して拘束されているショベル。
  2.  前記伝熱板が、前記第1の壁板及び前記第2の壁板に熱的に結合している請求項1に記載のショベル。
  3.  さらに、
     前記第1の壁板及び前記第2の壁板を冷却するための冷媒流路または放熱用の凹凸を有する請求項1または2に記載のショベル。
  4.  前記伝熱板は、前記第1の壁板及び前記第2の壁板に固着されている請求項1乃至3のいずれか1項に記載のショベル。
  5.  前記伝熱板と前記第1の壁板との間、及び前記伝熱板と前記第2の壁板との間に、熱伝導性を有する接着剤が配置されている請求項1乃至4のいずれか1項に記載のショベル。
  6.  前記積層体は、さらに、前記一対の押さえ板を連結し、前記蓄電セルの積層構造に積層方向の圧縮力を加える第1のタイロッドを含み、
     さらに、
     前記積層体をx方向に挟み、前記一対の押さえ板、前記第1の壁板、及び前記第2の壁板に固定されている第3の壁板及び第4の壁板を有する請求項1乃至5のいずれか1項に記載のショベル。
  7.  前記積層体が、さらに、前記蓄電セルの間に配置された中間板を含み、
     前記中間板は、その外周において前記第1の壁板及び第2の壁板に固定されている請求項1乃至6のいずれか1項に記載のショベル。
  8.  さらに、
     前記第1の壁板及び前記第2の壁板の内側の表面に形成された凹部と、
     前記凹部内に配置された熱伝導性を有する弾性部材であって、該弾性部材に外力が加わらない状態では、該弾性部材の一部が前記凹部の開口面から突出している前記弾性部材とを有し、
     前記伝熱板の縁は、前記凹部と交差するように配置され、前記第1及び第2の壁板の内側の表面に接触するとともに、前記弾性部材を押しつぶしている請求項1乃至3のいずれか1項に記載のショベル。
  9.  下部走行体と、
     前記下部走行体の上に旋回可能に取り付けられた上部旋回体と、
     前記上部旋回体に搭載された蓄電モジュールと
    を有し、
     前記蓄電モジュールは、
     xyz直交座標系を定義したとき、
     各々が、
     z方向に積層された板状の複数の蓄電セル、
     前記蓄電セルの積層構造の両端に配置された一対の押さえ板、
     前記一対の押さえ板を連結し、前記蓄電セルの積層構造に積層方向の圧縮力を加える第1のタイロッド、及び
     前記蓄電セルの間に挟まれた少なくとも1枚の伝熱板
    を含み、y方向に配列する複数の積層体と、
     前記積層体の各々に取り付けられ、前記積層体の各々をy方向に挟み、前記押さえ板に固定され、前記伝熱板に熱的に結合する第1の壁板及び第2の壁板と、
     複数の前記積層体をx方向に挟み、複数の前記積層体の前記押さえ板、複数の前記積層体に取り付けられた前記第1の壁板及び前記第2の壁板に固定された第3の壁板及び第4の壁板と
    を有するショベル。
  10.  さらに、
     前記蓄電モジュールから供給される電力で駆動されるとともに、運動エネルギを電気エネルギに変換することによって回生電力を発生し、前記蓄電モジュールを充電するモータを有する請求項9に記載のショベル。
  11.  前記モータは、前記上部旋回体を旋回させる請求項11に記載のショベル。
PCT/JP2010/007065 2009-12-07 2010-12-03 ショベル WO2011070758A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE201011004703 DE112010004703T5 (de) 2009-12-07 2010-12-03 Schaufelbagger
US13/514,068 US9200428B2 (en) 2009-12-07 2010-12-03 Shovel
KR1020127014207A KR101361375B1 (ko) 2009-12-07 2010-12-03 쇼벨
CN201080054333.2A CN102640347B (zh) 2009-12-07 2010-12-03 挖土机
JP2011545077A JP5102902B2 (ja) 2009-12-07 2010-12-03 ショベル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009277926 2009-12-07
JP2009-277926 2009-12-07

Publications (1)

Publication Number Publication Date
WO2011070758A1 true WO2011070758A1 (ja) 2011-06-16

Family

ID=44145320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007065 WO2011070758A1 (ja) 2009-12-07 2010-12-03 ショベル

Country Status (6)

Country Link
US (1) US9200428B2 (ja)
JP (2) JP5102902B2 (ja)
KR (1) KR101361375B1 (ja)
CN (1) CN102640347B (ja)
DE (1) DE112010004703T5 (ja)
WO (1) WO2011070758A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148641A1 (ja) * 2010-05-26 2011-12-01 住友重機械工業株式会社 ショベル
JP2013030275A (ja) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd 蓄電装置、及び蓄電装置を搭載した作業機械
WO2013061869A1 (ja) * 2011-10-26 2013-05-02 住友重機械工業株式会社 ショベル
CN103247445A (zh) * 2012-02-14 2013-08-14 住友重机械工业株式会社 蓄电模块及其制造方法以及工作机械
WO2013118874A1 (ja) * 2012-02-10 2013-08-15 住友重機械工業株式会社 ショベル
WO2013121947A1 (ja) * 2012-02-14 2013-08-22 住友重機械工業株式会社 ショベル
JP2014165003A (ja) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd 電池拘束構造体及び電池の製造方法
CN104094445A (zh) * 2012-02-29 2014-10-08 住友重机械工业株式会社 挖土机
US20140370340A1 (en) * 2011-12-09 2014-12-18 Honda Motor Co., Ltd. Battery cooling structure
JP2015158069A (ja) * 2014-02-24 2015-09-03 住友重機械工業株式会社 ショベル
WO2015186501A1 (ja) * 2014-06-05 2015-12-10 株式会社 豊田自動織機 電池モジュール及び電池パック
WO2016037714A1 (de) * 2014-09-12 2016-03-17 Bayerische Motoren Werke Aktiengesellschaft Energiebereitstellungsmodul für eine in einem fahrzeug angeordnete spannungsversorgungsvorrichtung
US9552933B2 (en) 2013-06-20 2017-01-24 Sumitomo Heavy Industries, Ltd. Storage module and method for manufacturing storage module
JP2017134952A (ja) * 2016-01-26 2017-08-03 株式会社デンソー 電池パック
JP2019109968A (ja) * 2017-12-15 2019-07-04 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー
JP2020080218A (ja) * 2018-11-12 2020-05-28 トヨタ自動車株式会社 組電池
JP2020187853A (ja) * 2019-05-10 2020-11-19 トヨタ自動車株式会社 蓄電装置
JP2022541009A (ja) * 2019-08-02 2022-09-21 エルジー エナジー ソリューション リミテッド バッテリーパック及びそれを含む自動車

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669917A4 (en) * 2011-01-26 2018-04-04 Sumitomo Heavy Industries, Ltd. Shovel
JP6084513B2 (ja) * 2013-05-22 2017-02-22 住友重機械工業株式会社 蓄電モジュール用電圧均等化装置、蓄電装置及び作業機械
JP5954258B2 (ja) * 2013-05-24 2016-07-20 株式会社デンソー 電池パック及びその製造方法
JP2015026424A (ja) * 2013-07-24 2015-02-05 株式会社オートネットワーク技術研究所 蓄電モジュール
DE102013013291A1 (de) * 2013-08-08 2015-02-12 Compact Dynamics Gmbh Energiespeichermodul mit Superkondensatoren
WO2015023278A1 (en) 2013-08-15 2015-02-19 Otis Elevator Company Sensors for conveyance control
DE102013216941B4 (de) * 2013-08-26 2016-06-09 Siemens Aktiengesellschaft Gekühlte Kondensatoranordnung und Verwendung einer solchen
CN103840234A (zh) * 2014-03-14 2014-06-04 吉林大学 电池组液流叠层换热扁管束结构及方法
CN105940162B (zh) * 2014-03-31 2019-08-16 住友建机株式会社 挖土机
JP6075338B2 (ja) * 2014-07-15 2017-02-08 コベルコ建機株式会社 ハイブリッド建設機械
US11302973B2 (en) * 2015-05-19 2022-04-12 Ford Global Technologies, Llc Battery assembly with multi-function structural assembly
JP2017076526A (ja) * 2015-10-15 2017-04-20 株式会社豊田自動織機 電池モジュール
JP6737577B2 (ja) * 2015-10-22 2020-08-12 株式会社エンビジョンAescジャパン 組電池
KR102081396B1 (ko) 2015-12-14 2020-02-25 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
JP6561849B2 (ja) * 2016-01-08 2019-08-21 株式会社豊田自動織機 電池モジュール
DE102016213142A1 (de) * 2016-07-19 2018-01-25 Robert Bosch Gmbh Batteriezelle, Batteriemodul und Verfahren zur Herstellung
EP3514850A4 (en) * 2016-09-13 2020-09-16 Kabushiki Kaisha Toshiba STORAGE AND VEHICLE BATTERY DEVICE
DE102016221817A1 (de) * 2016-11-08 2018-05-09 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen und Batterie
DE102017212745A1 (de) * 2017-07-25 2019-01-31 Mahle International Gmbh Energiespeicheranordnung
DE102017222771A1 (de) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Speichereinrichtung zum Speichern von elektrischer Energie für ein Kraftfahrzeug
JP7022343B2 (ja) * 2018-11-06 2022-02-18 トヨタ自動車株式会社 組電池
JP7161673B2 (ja) 2018-11-12 2022-10-27 トヨタ自動車株式会社 組電池
KR20200058136A (ko) 2018-11-19 2020-05-27 주식회사 엘지화학 배터리 모듈
CN111430625B (zh) * 2020-04-21 2024-06-11 福建飞毛腿动力科技有限公司 一种实验型快速组成模块的便捷结构及其安装方法
DE102021201093A1 (de) 2021-02-05 2022-08-11 Vitesco Technologies Germany Gmbh Batterie für ein Kraftfahrzeug und Kraftfahrzeug mit einer Batterie
US20220352588A1 (en) 2021-04-30 2022-11-03 Caterpillar Inc. Housing for securing battery cells in a battery module
US11901574B2 (en) 2021-09-30 2024-02-13 Caterpillar Inc. Apparatus for compressing battery cells in a battery module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127938A (ja) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd 蓄電体セルのパッケージ構造
JP2008187047A (ja) * 2007-01-30 2008-08-14 Komatsu Ltd 電子部品用冷却装置および電子部品モジュール
JP2008204816A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 組電池、この組電池を搭載した車両、及び、この組電池を搭載した電池搭載機器

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006924A (en) * 1989-12-29 1991-04-09 International Business Machines Corporation Heat sink for utilization with high density integrated circuit substrates
US5429643A (en) * 1993-06-02 1995-07-04 Gnb Battery Technologies Inc. Method of assembling a bipolar lead-acid battery and the resulting bipolar battery
JPH08111244A (ja) 1994-10-12 1996-04-30 Nissan Motor Co Ltd 積層型バッテリ装置
JP2000348781A (ja) 1999-06-04 2000-12-15 Japan Storage Battery Co Ltd 非水電解質電池
US6666022B1 (en) * 1999-06-28 2003-12-23 Kobelco Construction Machinery Co., Ltd. Drive device of working machine
JP2001011889A (ja) 1999-06-30 2001-01-16 Kobelco Contstruction Machinery Ltd 建設機械
JP2003133188A (ja) 2001-10-29 2003-05-09 Nissan Diesel Motor Co Ltd 電気二重層キャパシタ
JP3882818B2 (ja) * 2004-01-15 2007-02-21 ソニー株式会社 電池パック
KR100612305B1 (ko) * 2004-06-25 2006-08-11 삼성에스디아이 주식회사 전지 모듈
JP4513451B2 (ja) 2004-07-27 2010-07-28 日産自動車株式会社 組電池
JP2006236826A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 電池パック
JP2006339032A (ja) 2005-06-02 2006-12-14 Toshiba Corp 電池パック
US8192857B2 (en) 2006-03-04 2012-06-05 Enerdel, Inc. Battery assembly and method of forming the same
JP4921340B2 (ja) 2006-03-28 2012-04-25 株式会社キャプテックス 電池モジュール
US7971671B2 (en) * 2006-06-20 2011-07-05 Mitsuru Suematsu Drive unit, hydraulic working machine, and electric vehicle
JP5196876B2 (ja) 2007-06-01 2013-05-15 三洋電機株式会社 組電池
JP5334420B2 (ja) * 2008-01-16 2013-11-06 三洋電機株式会社 バッテリシステム
JP2009252553A (ja) 2008-04-07 2009-10-29 Furukawa Battery Co Ltd:The 組電池モジュール
DE102008031175A1 (de) * 2008-07-03 2010-01-07 Johnson Controls Hybrid And Recycling Gmbh Rundzellenakkumulator
KR20110024954A (ko) * 2009-09-03 2011-03-09 삼성전자주식회사 냉각용 유로를 갖는 이차 전지 모듈
US9203065B2 (en) * 2010-08-10 2015-12-01 Samsung Sdi Co., Ltd. Battery module
JP5308430B2 (ja) * 2010-11-18 2013-10-09 本田技研工業株式会社 電池モジュールの接続構造、電池モジュールおよび電池モジュール端子の組付方法
EP2669917A4 (en) * 2011-01-26 2018-04-04 Sumitomo Heavy Industries, Ltd. Shovel
US9050898B2 (en) * 2011-10-19 2015-06-09 GM Global Technology Operations LLC Wave fin battery module
US9761850B2 (en) * 2011-10-28 2017-09-12 Nucleus Scientific, Inc. Multi-cell battery assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127938A (ja) * 2004-10-29 2006-05-18 Fuji Heavy Ind Ltd 蓄電体セルのパッケージ構造
JP2008187047A (ja) * 2007-01-30 2008-08-14 Komatsu Ltd 電子部品用冷却装置および電子部品モジュール
JP2008204816A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 組電池、この組電池を搭載した車両、及び、この組電池を搭載した電池搭載機器

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570592B2 (ja) * 2010-05-26 2014-08-13 住友重機械工業株式会社 ショベル
US20130065103A1 (en) * 2010-05-26 2013-03-14 Sumitomo Heavy Industries, Ltd. Shovel
WO2011148641A1 (ja) * 2010-05-26 2011-12-01 住友重機械工業株式会社 ショベル
JPWO2011148641A1 (ja) * 2010-05-26 2013-07-25 住友重機械工業株式会社 ショベル
US9318768B2 (en) 2010-05-26 2016-04-19 Sumitomo Heavy Industries, Ltd. Shovel
JP2013030275A (ja) * 2011-07-26 2013-02-07 Sumitomo Heavy Ind Ltd 蓄電装置、及び蓄電装置を搭載した作業機械
WO2013061869A1 (ja) * 2011-10-26 2013-05-02 住友重機械工業株式会社 ショベル
KR101956645B1 (ko) * 2011-10-26 2019-03-11 스미도모쥬기가이고교 가부시키가이샤 쇼벨
KR20140097128A (ko) * 2011-10-26 2014-08-06 스미도모쥬기가이고교 가부시키가이샤 쇼벨
US9945098B2 (en) 2011-10-26 2018-04-17 Sumitomo Heavy Industries, Ltd. Shovel including power storage device with housing having coolant flow path
JPWO2013061869A1 (ja) * 2011-10-26 2015-04-02 住友重機械工業株式会社 ショベル
CN104247143A (zh) * 2011-10-26 2014-12-24 住友重机械工业株式会社 挖土机
US9647304B2 (en) * 2011-12-09 2017-05-09 Honda Motor Co., Ltd. Battery cooling structure including heat transfer sheet
US20140370340A1 (en) * 2011-12-09 2014-12-18 Honda Motor Co., Ltd. Battery cooling structure
US9186999B2 (en) 2012-02-10 2015-11-17 Sumitomo Heavy Industries, Ltd. Shovel
CN104067407A (zh) * 2012-02-10 2014-09-24 住友重机械工业株式会社 挖土机
CN104067407B (zh) * 2012-02-10 2016-08-24 住友重机械工业株式会社 挖土机
JPWO2013118874A1 (ja) * 2012-02-10 2015-05-11 住友重機械工業株式会社 ショベル
WO2013118874A1 (ja) * 2012-02-10 2013-08-15 住友重機械工業株式会社 ショベル
CN103247445A (zh) * 2012-02-14 2013-08-14 住友重机械工业株式会社 蓄电模块及其制造方法以及工作机械
US9088027B2 (en) 2012-02-14 2015-07-21 Sumitomo Heavy Industries, Ltd. Power storage module, manufacturing method thereof, and working machine
WO2013121947A1 (ja) * 2012-02-14 2013-08-22 住友重機械工業株式会社 ショベル
JPWO2013121947A1 (ja) * 2012-02-14 2015-05-11 住友重機械工業株式会社 ショベル
US9340115B2 (en) 2012-02-14 2016-05-17 Sumitomo Heavy Industries, Ltd. Shovel
CN104067406A (zh) * 2012-02-14 2014-09-24 住友重机械工业株式会社 挖土机
CN104094445A (zh) * 2012-02-29 2014-10-08 住友重机械工业株式会社 挖土机
US9359742B2 (en) 2012-02-29 2016-06-07 Sumitomo Heavy Industries, Ltd. Shovel
JP2014165003A (ja) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd 電池拘束構造体及び電池の製造方法
US9552933B2 (en) 2013-06-20 2017-01-24 Sumitomo Heavy Industries, Ltd. Storage module and method for manufacturing storage module
JP2015158069A (ja) * 2014-02-24 2015-09-03 住友重機械工業株式会社 ショベル
WO2015186501A1 (ja) * 2014-06-05 2015-12-10 株式会社 豊田自動織機 電池モジュール及び電池パック
JP2017535022A (ja) * 2014-09-12 2017-11-24 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト 車両内に設けられた電圧供給装置のためのエネルギー供給モジュール
WO2016037714A1 (de) * 2014-09-12 2016-03-17 Bayerische Motoren Werke Aktiengesellschaft Energiebereitstellungsmodul für eine in einem fahrzeug angeordnete spannungsversorgungsvorrichtung
JP2017134952A (ja) * 2016-01-26 2017-08-03 株式会社デンソー 電池パック
JP2019109968A (ja) * 2017-12-15 2019-07-04 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー
US11217835B2 (en) 2017-12-15 2022-01-04 Shin-Etsu Polymer Co., Ltd. Heat dissipating structure and battery comprising the same
JP2020080218A (ja) * 2018-11-12 2020-05-28 トヨタ自動車株式会社 組電池
JP7161672B2 (ja) 2018-11-12 2022-10-27 トヨタ自動車株式会社 組電池
JP2020187853A (ja) * 2019-05-10 2020-11-19 トヨタ自動車株式会社 蓄電装置
JP7172842B2 (ja) 2019-05-10 2022-11-16 トヨタ自動車株式会社 蓄電装置
JP2022541009A (ja) * 2019-08-02 2022-09-21 エルジー エナジー ソリューション リミテッド バッテリーパック及びそれを含む自動車
JP7334326B2 (ja) 2019-08-02 2023-08-28 エルジー エナジー ソリューション リミテッド バッテリーパック及びそれを含む自動車

Also Published As

Publication number Publication date
KR20120088807A (ko) 2012-08-08
JP5102902B2 (ja) 2012-12-19
DE112010004703T5 (de) 2012-11-08
US20120234613A1 (en) 2012-09-20
CN102640347B (zh) 2015-12-02
US9200428B2 (en) 2015-12-01
JP5791578B2 (ja) 2015-10-07
CN102640347A (zh) 2012-08-15
JP2013038439A (ja) 2013-02-21
JPWO2011070758A1 (ja) 2013-04-22
KR101361375B1 (ko) 2014-02-11

Similar Documents

Publication Publication Date Title
JP5791578B2 (ja) 蓄電モジュール
US9318768B2 (en) Shovel
WO2012029270A1 (ja) ショベル
JP5318844B2 (ja) 蓄電モジュール及び作業機械
US9340115B2 (en) Shovel
JP5968228B2 (ja) ショベル
JP6114041B2 (ja) 蓄電モジュール及び蓄電モジュールを搭載した作業機械
JP5484301B2 (ja) 蓄電モジュール及び作業機械
JP6112987B2 (ja) 蓄電モジュール、及び蓄電モジュールの製造方法
JP6112988B2 (ja) 蓄電モジュール
JP6021737B2 (ja) 蓄電装置及び作業機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054333.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545077

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127014207

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13514068

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010004703

Country of ref document: DE

Ref document number: 1120100047030

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 5915/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10835684

Country of ref document: EP

Kind code of ref document: A1