WO2011068126A1 - 銅合金板材およびその製造方法 - Google Patents

銅合金板材およびその製造方法 Download PDF

Info

Publication number
WO2011068126A1
WO2011068126A1 PCT/JP2010/071499 JP2010071499W WO2011068126A1 WO 2011068126 A1 WO2011068126 A1 WO 2011068126A1 JP 2010071499 W JP2010071499 W JP 2010071499W WO 2011068126 A1 WO2011068126 A1 WO 2011068126A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
copper alloy
plane
alloy sheet
atomic
Prior art date
Application number
PCT/JP2010/071499
Other languages
English (en)
French (fr)
Inventor
洋 金子
佐藤 浩二
立彦 江口
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201080053384.3A priority Critical patent/CN102666889A/zh
Priority to EP20100834576 priority patent/EP2508633A4/en
Priority to JP2011514942A priority patent/JP5400877B2/ja
Priority to KR1020127014725A priority patent/KR101747475B1/ko
Publication of WO2011068126A1 publication Critical patent/WO2011068126A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper alloy sheet material and a method of manufacturing the same, and more particularly to a copper alloy sheet material applied to lead frames, connectors, terminal materials, relays, switches, sockets, etc. for automotive parts and electric / electronic devices .
  • Characteristic items required for copper alloy sheet materials used for applications such as lead frames for automotive parts and for electric and electronic devices, connectors, terminal materials, relays, switches, sockets, etc. include, for example, conductivity, proof stress (yield Stress, tensile strength, bending workability, stress relaxation resistance, etc.
  • proof stress yield Stress
  • tensile strength tensile strength
  • bending workability stress relaxation resistance
  • stress relaxation resistance etc.
  • Patent Document 1 in the case of a crystal orientation in which the crystal grain diameter and the X-ray diffraction intensity from the ⁇ 311 ⁇ , ⁇ 220 ⁇ , and ⁇ 200 ⁇ planes satisfy certain conditions in the Cu—Ni—Si copper alloy. , It has been found that bending workability is excellent. Further, in Patent Document 2, in the case of a crystal orientation that satisfies the condition that X-ray diffraction intensity from ⁇ 200 ⁇ and ⁇ 220 ⁇ planes is excellent in Cu-Ni-Si copper alloy, bending workability is excellent. Has been found.
  • Patent Document 3 it is found that in a Cu—Ni—Si-based copper alloy, bending workability is excellent by control of the proportion of Cube orientation ⁇ 100 ⁇ ⁇ 001>.
  • Patent Documents 4 to 8 also propose materials excellent in bending workability defined by X-ray diffraction intensities of various atomic planes.
  • the X-ray diffraction intensity from the ⁇ 200 ⁇ plane is from the ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ and ⁇ 311 ⁇ planes. It has been found that bending workability is excellent in the case of a crystal orientation that satisfies a certain condition for X-ray diffraction intensity.
  • Patent Document 5 it is seen that in a Cu-Ni-Si based copper alloy, bending workability is excellent in the case of a crystal orientation satisfying the condition that X-ray diffraction strength from the ⁇ 420 ⁇ plane and the ⁇ 220 ⁇ plane is present. It has been issued.
  • Patent Document 6 it is found that, in a Cu-Ni-Si-based copper alloy, in the case of a crystal orientation which satisfies a certain condition regarding the ⁇ 123 ⁇ ⁇ 412> orientation, bending workability is excellent.
  • Patent Document 7 in a Cu-Ni-Si based copper alloy, in the case of a crystal orientation that satisfies a condition that X-ray diffraction intensity from the ⁇ 111 ⁇ plane, ⁇ 311 ⁇ plane and ⁇ 220 ⁇ plane is satisfied, Bad Way ( It is found that the bending workability of the following item) is excellent. Further, in Patent Document 8, bending is performed in the case of a crystal orientation that satisfies the condition that X-ray diffraction intensity from the ⁇ 200 ⁇ plane, ⁇ 311 ⁇ plane and ⁇ 220 ⁇ plane is satisfied in the Cu—Ni—Si based copper alloy. It has been found that the processability is excellent.
  • the prescription by the X-ray diffraction intensity in patent documents 1, 2, 4, 5, 7, and 8 prescribes accumulation of a specific crystal plane to a plate surface direction (rolling normal direction, ND).
  • Patent Document 1 or Patent Document 2 is based on the measurement of crystal orientation by X-ray diffraction from a specific crystal plane, and it is very useful in the distribution of crystal orientation having a certain spread. It relates only to some specific aspects. Moreover, only the crystal plane in the plate surface direction (ND) is measured, and it can not be controlled which crystal plane is in the rolling direction (RD) or the plate width direction (TD). Therefore, it was still an insufficient method to completely control bending workability. Moreover, in the invention described in Patent Document 3, although the effectiveness of the Cube orientation is pointed out, other crystal orientation components are not controlled, and there are cases where improvement in bending workability is insufficient. The Further, in Patent Documents 4 to 8, studies have only been made to measure and control the above-mentioned specific crystal planes or orientations, respectively, and as in Patent Documents 1 to 3, there are cases where improvement in bending workability is insufficient. The
  • the present inventors repeated various studies, researched on copper alloys suitable for electric / electronic component applications, and bending processing by reducing the area where the (111) plane faces in the width direction (TD) of a rolled sheet. It was found that cracks at the time were suppressed, and further, it was found that bending workability can be remarkably improved by setting the area ratio of the area to a predetermined value or less. In addition, it has been found that by using a specific additive element in the present alloy system, the strength and the stress relaxation resistance can be improved without impairing the conductivity and the bending workability. The present invention has been made based on these findings.
  • the present invention provides the following solutions.
  • EBSD Electro Back Scatter Diffraction: electron backscattering diffraction
  • the angle between the normal of (111) plane and TD A copper alloy sheet material characterized in that the area ratio of the region having an atomic plane whose angle is within 20 ° is 50% or less, the proof stress is 500 MPa or more, and the conductivity is 30% IACS or more.
  • the alloy composition contains 0.5 to 5.0 mass% in total of one or two of Ni and Co, 0.1 to 1.5 mass% of Si, and the balance is copper and unavoidable impurities
  • the copper alloy sheet material according to (1) characterized in that (3) Furthermore, a total of 0.005 to 2.0 mass% of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf is contained in total
  • the copper alloy sheet material according to (1) or (2) characterized in that (4) The copper alloy sheet material according to any one of (1) to (3), which is a material for a connector.
  • the final solution heat treatment [Step 10] is (P + 10) ° C. or more and (P + 150) ° C. or less for 1 second to 10 ° C.
  • the copper alloy sheet material of the present invention is excellent in bending workability and has excellent strength, and lead frames, connectors, terminal materials, etc. for electric and electronic devices, connectors, terminal materials, relays, switches, etc. Preferred. Further, the method for producing a copper alloy sheet material of the present invention is excellent in the above-mentioned bending processability and has excellent strength, and lead frame, connector, terminal material for electric and electronic devices, etc. It is suitable as a method of manufacturing a copper alloy sheet suitable for terminal materials, relays, switches and the like.
  • 3A and 3B indicate regions where the angle with the normal to the (111) plane is within 20 °.
  • an atomic plane within a 20 ° angle between the normal to (111) plane and TD forms a rolled sheet width direction (TD)
  • Figure 6 illustrates an example of a texture orientation component that is oriented.
  • copper alloy material means one obtained by processing a copper alloy material into a predetermined shape (e.g., plate, strip, foil, bar, wire, etc.).
  • a plate material refers to a plate having a specific thickness, being stable in shape and having a spread in the surface direction, and in a broad sense, it includes a bar material.
  • material surface layer means “plate surface layer”
  • depth position of material means “position in the plate thickness direction”.
  • the thickness of the plate is not particularly limited, but is preferably 8 to 800 ⁇ m, more preferably 50 to 70 ⁇ m, in consideration of the fact that the effects of the present invention are more apparent and suitable for practical applications.
  • the copper alloy sheet material of the present invention defines its characteristic by the accumulation ratio of atomic planes in a predetermined direction of the rolled sheet, it is sufficient if it has such a characteristic as a copper alloy sheet material. That is, the shape of the copper alloy sheet is not limited to the sheet and the strip, and in the present invention, the pipe can be interpreted as a sheet and handled.
  • the present inventors investigated in detail the metallographic structure of the material after bending deformation in order to clarify the cause of cracking during bending of a copper alloy sheet. As a result, it was observed that the substrate material was not uniformly deformed, but the deformation was concentrated only in a region of a specific crystal orientation, and non-uniform deformation progressed. Then, due to the non-uniform deformation, wrinkles with a depth of several microns and fine cracks are generated on the surface of the base material after bending, but no solution has been found.
  • the inventors of the present invention are areas of atomic planes in which the (111) plane is oriented in the width direction (TD) of a rolled sheet specified by EBDS measurement (this area will be described in detail below). It has been found that, in the case of reducing the non-uniform deformation, non-uniform deformation is suppressed, wrinkles generated on the surface of the substrate material are reduced, and cracks are suppressed. As a mechanism of this phenomenon, the (111) plane is considered to be one of the orientations that are most likely to be work hardened against tensile stress, and the orientation in which dislocations are likely to grow even under stress during bending deformation.
  • the densified dislocations become sources of microvoids and cause cracks. It is considered that bending workability is improved, particularly in BW bending where the bending axis is parallel to the rolling direction, by reducing the ratio of the area of the atomic plane where the (111) plane faces TD.
  • FIG. P direction ⁇ 0 1 1 ⁇ ⁇ 1 1 1>, SB direction ⁇ 1 8 6 ⁇ ⁇ 2 1 1>, S direction ⁇ 1 3 2 ⁇ ⁇ 6 4 3>, Z direction ⁇ 1 1 1 ⁇ ⁇ 1 1 0 ⁇ , Cube orientation twin orientation ⁇ 1 2 2 ⁇ ⁇ 2 2 1>, Brass orientation ⁇ 1 1 0 ⁇ ⁇ 1 1 2>, etc. correspond.
  • a state in which the ratio of the texture orientation component in which the (111) plane is directed to the TD including the orientation components is totally suppressed is the texture having the predetermined area ratio defined in the present invention.
  • the above effect is obtained when the area ratio of the region having an atomic plane in which the angle between the normal to the (111) plane and the TD is within 20 ° is 50% or less in the width direction (TD) of the rolled sheet. can get. It is preferably 45% or less, more preferably 1% or more and 40% or less, and particularly preferably 30% or more and 35% or less.
  • the crystal orientation display method in this specification takes a Cartesian coordinate system in which the rolling direction (RD) of the material is X axis, the sheet width direction (TD) is Y axis, and the rolling normal direction (ND) is Z axis.
  • the ratio of the area where the (111) plane faces is defined by the area ratio.
  • a region having an atomic plane in which the angle formed by the normal to the (111) plane and the TD is within 20 ° is Regarding accumulation of atomic planes facing in the width direction (TD) of the rolled sheet, that is, facing the TD, the (111) plane itself with the width direction (TD) of the rolled sheet being an ideal orientation as a normal and (111) plane.
  • FIG. 3 (a) illustrates an example of an atomic plane in which the angle formed by the normal to the (111) plane and the TD is within 20 °, and in the present specification, the atomic plane shown in this example is shown.
  • FIG. 3 (b) illustrates an example of an atomic plane in which the angle formed by the normal of the (111) plane and the TD makes an angle of more than 20 °, and the atomic plane shown in this example is It is called an atomic plane that has an orientation in which the (111) plane does not face in the direction (TD).
  • Information obtained in orientation analysis by EBSD includes orientation information up to a depth of several tens of nm at which an electron beam penetrates into a sample, but is sufficiently small relative to the width being measured. It described as an area ratio.
  • EBSD Electron Back Scatter Diffraction
  • Electron Back Scatter Diffraction Electron Back Scatter Diffraction
  • Kikuchi pattern a reflection electron Kikuchi line diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a sample area of 500 ⁇ m square containing 200 or more crystal grains was scanned at 0.5 ⁇ m steps to analyze the orientation.
  • ⁇ Ni, Co, Si Copper or a copper alloy is used as the connector material of the present invention.
  • copper alloys such as phosphor bronze, brass, nickel-white, beryllium copper, Corson alloys (Cu-Ni-Si), etc., which have the electrical conductivity, mechanical strength and heat resistance required for connectors Is preferred.
  • a precipitation type alloy containing pure copper material, beryllium copper, or Corson alloy is preferable.
  • Precipitation type copper alloys are preferred. This is because, in a solid solution type alloy such as phosphor bronze or brass, a micro area having a Cube orientation in a cold-rolled material, which becomes a nucleus of Cube orientation grain growth in grain growth during heat treatment, is reduced. This is because shear bands easily develop during cold rolling in a system with low stacking fault energy such as phosphor bronze and brass.
  • Ni—Si and Co are controlled by controlling the respective addition amounts of nickel (Ni), cobalt (Co) and silicon (Si) which are the first additive element group to be added to copper (Cu).
  • the strength of the copper alloy can be improved by precipitating a compound of -Si and Ni-Co-Si.
  • the addition amount thereof is preferably 0.5 to 5.0 mass%, more preferably 0.6 to 4.5 mass%, more preferably 0.8 to 5.0 mass% in total of any one or two of Ni and Co. It is 4.0 mass%.
  • the addition amount of Ni is preferably 1.5 to 4.2 mass%, more preferably 1.8 to 3.9 mass%, while the addition amount of Co is preferably 0.3 to 1.8 mass%, more preferably Is 0.5 to 1.5 mass%.
  • the conductivity can be sufficiently secured by not making the total addition amount of these elements excessive, and the strength can be sufficiently secured by not making the total amount of these elements excessive.
  • the content of Si is preferably 0.1 to 1.5 mass%, more preferably 0.2 to 1.2 mass%.
  • the effects of the additional elements for improving the characteristics (secondary characteristics) such as stress relaxation resistance are shown.
  • Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf can be mentioned.
  • the total content is preferably 0.005 to 2.0 mass%, more preferably 0.01 to 1.5 mass%, and more preferably It is 0.03 to 0.8 mass%.
  • the conductivity can be sufficiently secured by not making the total amount of these additive elements excessive.
  • the effect which added these elements can fully be exhibited by not making these additive elements too much in total amount.
  • the stress relaxation resistance is improved.
  • the stress relaxation resistance is further improved by the synergetic effect when they are added together as compared to when each of them is added alone. In addition, it has the effect of significantly improving solder embrittlement.
  • the compound finely precipitates in a compound with Ni, Co, or Si, which is a main additive element, or a single substance, and contribute to precipitation hardening.
  • the compound precipitates in a size of 50 to 500 nm, and by suppressing grain growth, there is an effect of reducing the crystal grain size, and bending workability is improved.
  • a plate material (strip material) of precipitation type copper alloy is mentioned as an example and explained, it is possible to develop into a solid solution type alloy material, a dilute system alloy material, and a pure copper system material.
  • precipitation-type copper alloys were formed by homogenizing heat treatment and forming ingots in hot and cold steps, and subjected to final solution heat treatment in the temperature range of 700 to 1020 ° C. to resolute solute atoms. It is later manufactured to satisfy the required strength by aging precipitation heat treatment and finish cold rolling.
  • the conditions of aging precipitation heat treatment and finish cold rolling are adjusted according to the desired properties such as strength and conductivity.
  • the texture of the copper alloy is roughly determined by the recrystallization that occurs during the final solution heat treatment in this series of steps, and is ultimately determined by the rotation of the orientation that occurs during finish rolling.
  • a copper alloy material having a predetermined alloy component composition is melted in a high frequency melting furnace and cast to obtain an ingot [Step 1], the ingot Is subjected to homogenization heat treatment at 700 ° C to 1020 ° C for 10 minutes to 10 hours [Step 2], hot rolling at a processing temperature of 500 to 1020 ° C and a processing ratio of 30 to 98% [Step 3], water cooling [Step 4], Face milling [Step 5], 50 to 99% cold rolling [Step 6], Heat treatment to hold at 600 to 900 ° C.
  • Step 7 Cold processing ratio of 5 to 55%
  • Intermediate recrystallization heat treatment [Step 9] holding at 1 second to 20 hours at (P-200) ° C. or higher and (P-10) ° C. or lower, and 1 at (P + 10) ° C. or higher (P + 150)
  • Perform final solution heat treatment [Step 10] to hold for 10 seconds Aging precipitation heat treatment for 5 minutes to 20 hours at 350 to 600 ° C. [step 11], finish rolling for a working ratio of 2 to 45% [step 12], temper annealing for 10 seconds to 2 hours at 300 to 700 ° C.
  • Step 13 By carrying out [Step 13], there can be mentioned a method of obtaining the copper alloy sheet material of the present invention by carrying out the above [Step 1] to [Step 13] in this order.
  • the copper alloy sheet material of the present invention is preferably manufactured by the manufacturing method of the above embodiment, but in the crystal orientation analysis in EBSD measurement, if the predetermined area ratio is satisfied, the above [Step 1] to [Step 13] ] Is not necessarily bound by doing everything in this order.
  • [Step 11] may be completed as the final step.
  • one or more of the above [Step 11] to [Step 13] can be repeated twice or more. For example, cold rolling [process 12 '] of 2 to 45% may be performed before applying [process 11].
  • the following production method is effective to reduce the ratio of (111) faces directed in the sheet width direction in the final solution heat treatment.
  • recrystallization also occurs during solution heat treatment, so that the achievement of the two objectives of solid solution of solute atoms and recrystallization has been achieved.
  • the above two objects are achieved one by one, and the crystal orientation of the texture is controlled together. It is. That is, first, the intermediate recrystallization heat treatment [Step 9] is performed on the providing material, and then the final solution heat treatment [Step 10] is performed.
  • the temperatures of the intermediate recrystallization heat treatment and the final solution heat treatment are defined as a specific temperature range defined using P ° C. which is a temperature at which solute atoms are completely dissolved.
  • the temperature of the intermediate recrystallization heat treatment is (P-200) ° C. or more and (P-10) ° C. or less. When this temperature is too low, recrystallization is insufficient, and conversely, when it is too high, the proportion of (111) face to TD is not sufficiently reduced.
  • the temperature of the intermediate recrystallization heat treatment is preferably (P-170) ° C. to (P-20) ° C., more preferably (P-140) ° C. to (P-30) ° C.
  • the temperature of the final solution heat treatment is (P + 10) ° C. or more and (P + 150) ° C. or less. When this temperature is too low, solid solution of solute atoms is insufficient, and conversely, when it is too high, crystal grains are coarsened.
  • the temperature of the final solution heat treatment is preferably (P + 20) ° C. to (P + 130) ° C., more preferably (P + 30) ° C. to (P + 100) ° C.
  • the temperature P (° C.) at which solute atoms are completely dissolved was determined by the following general method. After homogenizing the ingot at 1000 ° C for 1 hour, hot rolling and cold rolling are applied to form a plate, and then water annealing is performed after holding at 10 ° C for 30 seconds in a salt bath at 700 ° C to 1000 ° C for 30 seconds. To freeze the state of solid solution and precipitation at each temperature, and measure the conductivity. The conductivity was used as a substitute characteristic for the amount of solid solution element, and the temperature at which the decrease in conductivity with the increase in heat treatment temperature was saturated was taken as the complete solution temperature P (° C.).
  • the complete solution temperature P (° C.) for a specific composition varies depending on the type of alloy, processing conditions and the like, but it is generally about 720 to 980 ° C. as a typical example.
  • the treatment time of the intermediate recrystallization heat treatment is 1 second to 20 hours, more preferably 5 seconds to 10 hours. If the processing time of the intermediate recrystallization heat treatment is too short, recrystallization does not proceed, and if it is too long, the crystal grains are coarsened to deteriorate formability.
  • the processing time of the final solution heat treatment is 1 second to 10 minutes, more preferably 5 seconds to 5 minutes. When the processing time of the final solution heat treatment is too short, the solid solution of the solute atoms is insufficient, and when it is too long, the crystal grains are coarsened to deteriorate the formability.
  • the intermediate heat treatment (step 7) also has a special technical meaning, so it will be described here.
  • the heat treatment at a temperature slightly lower than the complete solution temperature P ° C. and at a relatively low temperature results in a structure in which the entire surface is not recrystallized. That is, among the crystal orientations in the rolled material, since there are crystal orientations with fast recovery and crystal orientations with a slow recovery, the structure becomes unevenly recrystallized due to the difference.
  • This intentionally created inhomogeneity promotes preferential development of recrystallization texture in the intermediate recrystallization heat treatment [step 9].
  • Some of the slow recovery orientations have a recrystallized texture, but texture crystals orientations that are fast recovery do not recrystallize.
  • the copper alloy sheet material of the present invention can satisfy, for example, the characteristics required for a copper alloy sheet material for a connector.
  • the minimum bending radius (r: mm) that allows bending without cracks in a 90 ° W bending test is specified as 0.2% proof stress, preferably 500 MPa or more (preferably 600 MPa or more, more preferably 700 MPa or more).
  • the value (r / t) divided by the plate thickness (t: mm) is 1 or less, and the conductivity is 30% IACS or more (preferably 35% IACS or more, more preferably 40% IACS or more).
  • the stress relaxation resistance (SR) of 30% or less (preferably 25% or less) can be satisfied by the measurement method of maintaining stress relaxation resistance at 150 ° C. described below for 1000 hours. can do.
  • Example 1 As shown in the composition of the column of alloy components in Table 1-1, 0.5 to 5.0 mass% in total of at least one of Ni and Co, and 0.1 to 1.5 mass% of Si in total An alloy containing the remainder, Cu and incidental impurities, was melted in a high-frequency melting furnace, and this was cast to obtain an ingot.
  • Step A Heat treatment held at 600 to 900 ° C for 10 seconds to 5 minutes, Cold working at a working ratio of 5 to 55%, Intermediate held at (P-200) ° C or more and (P-10) ° C or less for 1 second to 20 hours
  • a recrystallization heat treatment is performed, and a final solution heat treatment is performed by holding at (P + 10) ° C. or more and (P + 150) ° C. or less for 1 second to 1 minute.
  • aging precipitation heat treatment is performed at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a working ratio of 2 to 45%, and temper annealing maintained at 300 to 700 ° C. for 10 seconds to 2 hours.
  • Step B Heat treatment held at 600 to 900 ° C for 10 seconds to 5 minutes, Cold working at a working ratio of 5 to 55%, Intermediate held at (P-200) ° C or more and (P-10) ° C or less for 1 second to 20 hours A recrystallization heat treatment is performed, and a final solution heat treatment is performed by holding at (P + 10) ° C. or more and (P + 150) ° C. or less for 1 second to 1 minute. Then, rolling at 2 to 40% working ratio, aging precipitation heat treatment at 350 to 600 ° C for 5 minutes to 20 hours, finishing rolling at 2 to 45% working ratio, holding at 300 to 700 ° C for 10 seconds to 2 hours Perform temper annealing.
  • Step C Heat treatment held at 600 to 900 ° C for 10 seconds to 5 minutes, Cold working at a working ratio of 5 to 55%, Intermediate held at (P-200) ° C or more and (P-10) ° C or less for 1 second to 20 hours
  • a recrystallization heat treatment is performed, and a final solution heat treatment is performed by holding at (P + 10) ° C. or more and (P + 150) ° C. or less for 1 second to 1 minute.
  • aging precipitation heat treatment is performed at 350 to 600 ° C. for 5 minutes to 20 hours.
  • Step D Heat treatment held at 600 to 900 ° C for 10 seconds to 5 minutes, Cold working at a working ratio of 5 to 55%, Intermediate held at (P-200) ° C or more and (P-10) ° C or less for 1 second to 20 hours
  • a recrystallization heat treatment is performed, and a final solution heat treatment is performed by holding at (P + 10) ° C. or more and (P + 150) ° C. or less for 1 second to 1 minute.
  • rolling at a working ratio of 2 to 45% and aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours are performed.
  • Step E Intermediate recrystallization heat treatment held at (P-200) ° C or more (P-10) ° C or less for 1 second to 20 hours, final solution heat treatment held at (P + 10) ° C or more (P + 150) ° C or less for 1 second to 1 minute I do. Thereafter, aging precipitation heat treatment is performed at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a working ratio of 2 to 45%, and temper annealing maintained at 300 to 700 ° C. for 10 seconds to 2 hours.
  • Step F Heat treatment held at 600 to 900 ° C for 10 seconds to 5 minutes, cold working at 5 to 55% working ratio, final solution heat treatment held at (P + 10) ° C or more and (P + 150) ° C. for 1 second to 1 minute . Thereafter, aging precipitation heat treatment is performed at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a working ratio of 2 to 45%, and temper annealing maintained at 300 to 700 ° C. for 10 seconds to 2 hours.
  • a. Area ratio of region of atomic plane where (111) plane faces to TD According to the EBSD method, measurement was performed under the condition of a scan step of 0.5 ⁇ m in a measurement area of about 500 ⁇ m. The measurement area was adjusted on the basis of containing 200 or more crystal grains. As described above, a region obtained by combining the (111) plane whose normal direction is the TD, which is the ideal orientation, with each atomic plane whose angle between the normal to the (111) plane and the TD is within 20 °. The area ratio of the total of these is calculated by the following equation for (these are combined and the region of the atomic plane to which the (111) plane faces the above-mentioned TD).
  • Area ratio (%) ⁇ (sum of the area of the atomic plane where the angle between the normal of (111) plane and TD makes an angle within 20 °) / total measured area ⁇ ⁇ 100 In each of the following tables, this is simply indicated as “area percentage (%)".
  • OIM 5.0 HIKARI manufactured by TSL company was used as an EBSD measuring device.
  • FIG. 1 is an explanatory view of a test method for stress relaxation resistance, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment.
  • FIG. 1A the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of ⁇ 0 from the reference is there. This is held in a thermostat at 150 ° C. for 1000 hours (heat treatment in the state of the test piece 1), and the position of the test piece 2 after removing the load is H t from the reference as shown in FIG. Distance. 3 is a test piece when no stress is applied, and its position is the distance of H 1 from the reference.
  • the stress relaxation rate (%) was calculated as (H t -H 1 ) / ( ⁇ 0 -H 1 ) ⁇ 100.
  • ⁇ 0 is the distance from the reference to the test specimen 1
  • H 1 is the distance from the reference to the test specimen 3
  • H t is the distance from the reference to the test specimen 2.
  • inventive examples 1-1 to 1-19 were excellent in bending workability, proof stress, conductivity, and stress relaxation resistance.
  • Table 1-2 when the conditions of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Example 1-1, since the total amount of Ni and Co was small, the density of the compound (precipitate) contributing to the precipitation hardening was lowered and the strength was inferior. In addition, Si which does not form a compound with Ni or Co excessively dissolves in the metal structure and the conductivity is inferior. In Comparative Example 1-2, the conductivity was inferior because the total amount of Ni and Co was large. Comparative Example 1-3 was inferior in strength due to the small amount of Si.
  • Comparative Example 1-4 the conductivity was inferior because of the large amount of Si.
  • Comparative Examples 1-5 to 1-9 the ratio of the (111) plane to TD was high, and the bending workability was inferior. A remarkable crack was seen especially in BW bending.
  • Example 2 Invention Examples 2-1 to 2-17 and Comparative Examples 2-1 to 2 in the same manner as in Example 1 with respect to a copper alloy having the composition shown in the column of alloy components in Table 2 and the balance being Cu and incidental impurities
  • a sample of a copper alloy sheet material of -3 was produced, and the characteristics were examined in the same manner as in Example 1. The results are shown in Table 2.
  • Inventive Example 2-1 to Inventive Example 2-17 were excellent in bending workability, proof stress, conductivity, and stress relaxation resistance. On the other hand, when the requirements of the present invention were not satisfied, the characteristics were inferior. That is, Comparative Examples 2-1, 2-2, and 2-3 (all, the comparative examples of the invention according to the item (3)) have a large amount of addition of elements other than Ni, Co and Si. , Conductivity was poor.
  • Example 3 After a homogenizing heat treatment at a temperature of 700 ° C. to 1020 ° C. for 10 minutes to 10 hours for a copper alloy having the composition shown in Table 3 and the balance being Cu and incidental impurities, after hot rolling as in Example 1 It was water-cooled, cold-rolled at 50 to 99%, heat treated at 600 to 900 ° C. for 10 seconds to 5 minutes, and cold worked at a working ratio of 5 to 55% in this order. Thereafter, an intermediate recrystallization heat treatment and a final solution heat treatment as shown in Table 4 were performed.
  • Inventive Example 3-1 to Inventive Example 3-6 were excellent in bending workability, proof stress, conductivity, and stress relaxation resistance. On the other hand, when the requirements of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Example 3-1, since the temperature of the intermediate recrystallization heat treatment was low, the region in which the (111) plane was oriented to the TD increased, and the bendability was inferior. In Comparative Example 3-2, the temperature at which the intermediate recrystallization heat treatment was performed was high, and the region in which the (111) plane turned to TD was increased, and the bendability was inferior.
  • Comparative Example 3-3 the solute atoms were coarse precipitates due to the long processing time of the intermediate recrystallization heat treatment, and were not sufficiently dissolved in the final solution heat treatment, and the proof stress was inferior.
  • Comparative Example 3-4 the solution temperature of the solute atoms was insufficient because the processing temperature of the final solution heat treatment was low, and the yield strength was inferior.
  • Comparative Example 3-5 since the processing temperature of the final solution heat treatment was high, the crystal grains were coarsened and the yield strength was inferior.
  • Comparative Example 3-6 since the processing time of the final solution heat treatment was long, the crystal grains were coarsened, and the yield strength was inferior. Further, in Comparative Examples 3-5 and 3-6, bending wrinkling was large because the crystal grain size was large, which was not good.
  • an on-vehicle component such as a connector material or a material of an electric / electronic device (especially its base material).
  • Comparative Example 101 Condition of JP 2009-007666 A metal element similar to that of the invention example 1-1 was blended, and an alloy composed of Cu and incidental impurities with the balance was melted in a high frequency melting furnace, This was cast at a cooling rate of 0.1 to 100 ° C./sec to obtain an ingot. After holding this at 900 ° C. to 1020 ° C. for 3 minutes to 10 hours, it was hot-worked and then water-quenched to carry out facing for oxide scale removal. In the subsequent steps, a copper alloy c01 was produced by the treatment of steps A-3 and B-3 described below.
  • the manufacturing process includes one or more solution heat treatment, in which the steps are classified before and after the last solution heat treatment, and the steps up to intermediate solution treatment are designated as A-3, It was designated as B-3 step in the step after intermediate solution treatment.
  • Step A-3 Cold work with a reduction in area of 20% or more, heat treatment for 5 minutes to 10 hours at 350 to 750 ° C., cold work with a reduction in area of 5 to 50%, 800 A solution heat treatment is performed at about 1000 ° C. for 5 seconds to 30 minutes.
  • Step B-3 Cold work with a reduction in area of 50% or less, heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, cold work with a reduction in area of 30% or less, Apply temper annealing at 550 ° C. for 5 seconds to 10 hours.
  • the obtained test body c01 is different from the above example in the presence or absence of intermediate recrystallization heat treatment [Step 9 in the present application] in terms of manufacturing conditions, and the area ratio at which the (111) plane faces TD is high, and the bending workability is about It resulted in not meeting the required characteristics.
  • Comparative Example 102 Condition of Japanese Patent Application Laid-Open No. 2006-283059
  • the copper alloy having the composition of the above-mentioned inventive example 1-1 was dissolved in the atmosphere with an electric furnace under charcoal coating, and the possibility of casting was judged. .
  • the molten ingot was hot-rolled and finished to a thickness of 15 mm.
  • cold rolling and heat treatment (cold rolling 1 ⁇ solution annealing continuous annealing ⁇ cold rolling 2 ⁇ aging treatment ⁇ cold rolling 3 ⁇ short time annealing) are applied to the hot-rolled material, and a predetermined thickness is obtained.
  • Copper alloy sheet (c04) was produced.
  • test body c02 is different from Example 1 in the presence or absence of the heat treatment [Step 7 in the present application] and the intermediate recrystallization heat treatment [Step 9 in the present application] under the production conditions, and the (111) plane is TD The area ratio which turns is high, and it became a result which does not satisfy bending workability.
  • Comparative Example 103 Condition of JP-A-2006-152392 The alloy having the composition of the above-mentioned invention example 1-1 is melted under charcoal covering in the atmosphere in a krypton furnace and cast in a cast iron book mold. Thus, an ingot having a thickness of 50 mm, a width of 75 mm and a length of 180 mm was obtained. Then, after the surface of the ingot was chamfered, it was hot rolled at a temperature of 950 ° C. to a thickness of 15 mm, and quenched into water from a temperature of 750 ° C. or more. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a predetermined thickness.
  • the obtained test body c03 differs from the above-mentioned Example 1 in the presence or absence of heat treatment [step 7 in the present application] and intermediate recrystallization heat treatment [step 9 in the present application] with respect to manufacturing conditions.
  • the area ratio which turns is high, and it became a result which does not satisfy bending workability.
  • Comparative Example 104 Condition of JP-A-2008-223136 The copper alloy shown in Example 1 was melted and cast using a vertical continuous casting machine. A sample of 50 mm in thickness was cut out from the obtained slab (180 mm in thickness), heated to 950 ° C., extracted, and hot rolling was started. At this time, the pass schedule was set so that the rolling reduction in the temperature range of 950 ° C. to 700 ° C. was 60% or more, and the rolling was performed in the temperature range of less than 700 ° C. The final pass temperature for hot rolling is between 600 ° C and 400 ° C. The total hot-rolling rate from the slab is about 90%. After hot rolling, the surface oxide layer was removed by mechanical polishing (face grinding).
  • the aging treatment temperature was set to 450 ° C., and the aging time was adjusted to a time at which the hardness peaked at 450 ° C. aging depending on the alloy composition.
  • the optimum solution treatment conditions and aging treatment time are grasped by preliminary experiments according to such alloy composition.
  • finish cold rolling was performed at a rolling ratio.
  • the final cold-rolled product was further subjected to low-temperature annealing for 5 minutes in a 400 ° C. furnace.
  • the test material c04 was obtained.
  • the main production conditions are described below.
  • test body c04 is different from the above Example 1 in the presence or absence of heat treatment [step 7 in the present application] and intermediate recrystallization heat treatment [step 9 in the present application] under manufacturing conditions, and the (111) plane is TD The area ratio which turns is high, and it became a result which does not satisfy bending workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材およびその製造方法を提供する。 【解決手段】EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上である銅合金板材、およびその製造方法。

Description

銅合金板材およびその製造方法
 本発明は銅合金板材およびその製造方法に関し、詳しくは車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。
 車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目としては、例えば、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性などがある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの要求特性のレベルが高まっている。
 そのため、銅合金板材が使用される状況には、以下の様な変化が挙げられる。
 一つ目に、自動車や電機・電子機器の高機能化とともに、コネクタの多極化が進行しているため、端子や接点部品の一つ一つの小型化が進行している。例えば、タブ幅が約1.0mmの端子を0.64mmへダウンサイズする動きが進んでいる。
 二つ目に、鉱物資源の低減や、部品の軽量化を背景に、基体材料の薄肉化が進行しており、なおかつバネ接圧を保つために、従来よりも高強度な基体材料が使用されている。
 三つ目に使用環境の高温化が進行している。例えば自動車部品では、二酸化炭素発生量の低減のために、車体軽量化が進められている。このため、従来、ドアに設置していた様なエンジン制御用のECUなどの電子機器をエンジンルーム内やエンジン付近に設置し、電子機器とエンジンの間のワイヤーハーネスを短くする動きが進んでいる。
 そして、上記の変化に伴い、銅合金材料には下記の様な問題が生じている。
 第一に、端子の小型化に伴い、接点部分やバネ部分に施される曲げ加工の曲げ半径は小さくなり、材料には従来よりも厳しい曲げ加工が施される。そのため、材料にクラックやシワが発生する問題が生じている。
 第二に、材料の高強度化に伴い、材料にクラックが発生する問題が生じている。これは、材料の曲げ加工性が、一般的に強度とトレードオフの関係にあるためである。
 第三に、接点部分やバネ部分に施される曲げ加工部にクラックが発生すると、接点部分の接圧が低下することにより、接点部分の接触抵抗が上昇し、電気的接続が絶縁され、コネクタとしての機能が失われるため、重大な問題となる。
 この曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。特許文献1では、Cu-Ni-Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度がある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献2では、Cu-Ni-Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献3では、Cu-Ni-Si系銅合金において、Cube方位{100}<001>の割合の制御によって曲げ加工性が優れることが見出されている。その他、特許文献4~8においても、種々の原子面についてのX線回折強度で規定された曲げ加工性に優れる材料が提案されている。特許文献4では、Cu-Ni-Co-Si系銅合金において、{200}面からのX線回折強度が、{111}面、{200}面、{220}面及び{311}面からのX線回折強度に対してある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献5では、Cu-Ni-Si系銅合金において、{420}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献6では、Cu-Ni-Si系銅合金において、{123}<412>方位に関してある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献7では、Cu-Ni-Si系銅合金において、{111}面、{311}面及び{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、Bad Way(後述)の曲げ加工性が優れることが見出されている。また、特許文献8では、Cu-Ni-Si系銅合金において、{200}面、{311}面及び{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。
 特許文献1、2、4、5、7、8におけるX線回折強度による規定は、板面方向(圧延法線方向、ND)への特定の結晶面の集積について規定したものである。
特開2006-009137号公報 特開2008-013836号公報 特開2006-283059号公報 特開2009-007666号公報 特開2008-223136号公報 特開2007-092135号公報 特開2006-016629号公報 特開平11-335756号公報
 ところで、特許文献1または特許文献2に記載された発明は、特定の結晶面からのX線回折による結晶方位の測定に基づくものであって、ある広がりを持った結晶方位の分布の中のごく一部の特定の面にのみ関するものである。しかも、板面方向(ND)の結晶面のみを測定しているに過ぎず、圧延方向(RD)や板幅方向(TD)にどの結晶面が向いているかについては制御できない。よって、曲げ加工性を完全に制御するには、なお不十分な方法であった。また、特許文献3に記載された発明においては、Cube方位の有効性が指摘されているが、その他の結晶方位成分については制御されておらず、曲げ加工性の改善が不十分な場合があった。また、特許文献4~8では、それぞれ上記特定の結晶面または方位について測定、制御する検討しかなされておらず、特許文献1~3と同様に、曲げ加工性の改善が不十分な場合があった。
 上記のような課題に鑑み、本発明の目的は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材およびその製造方法を提供することにある。
 本発明者らは、種々検討を重ね、電気・電子部品用途に適した銅合金について研究を行い、圧延板の幅方向(TD)に(111)面が向く領域を低減することにより、曲げ加工時のクラックが抑制されることを見出し、さらに、その領域の面積率を所定の値以下とすることで曲げ加工性を著しく良化できることを見出した。また、それに加えて、本合金系において特定の添加元素を用いることにより、導電率や曲げ加工性を損なうことなく、強度や耐応力緩和特性を向上させうることを見出した。本発明は、これらの知見に基づきなされるに至ったものである。
 すなわち、本発明は、以下の解決手段を提供する。
(1)EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材。
(2)合金組成が、NiとCoのいずれか1種または2種を合計で0.5~5.0mass%、Siを0.1~1.5mass%含有し、残部が銅及び不可避不純物からなることを特徴とする(1)に記載の銅合金板材。
(3)さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005~2.0mass%含有することを特徴とする(1)又は(2)に記載の銅合金板材。
(4)コネクタ用材料であることを特徴とする(1)~(3)のいずれか1項に記載の銅合金板材。
(5)(1)~(4)のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金組成の銅合金に、鋳造[工程1]、均質化熱処理[工程2]、熱間加工[工程3]、冷間圧延[工程6]、熱処理[工程7]、冷間圧延[工程8]、中間再結晶熱処理[工程9]、最終溶体化熱処理[工程10]をこの順に施し、その後に、時効析出熱処理[工程11]を施し、前記中間再結晶熱処理[工程9]は、溶質原子の完全固溶温度をP℃とした場合に、(P-200)℃以上で(P-10)℃以下の温度において1秒~20時間保持し、前記最終溶体化熱処理[工程10]は(P+10)℃以上で(P+150)℃以下において、1秒~10分間保持することを特徴とする銅合金板材の製造方法。
(6)前記時効析出熱処理[工程11]の後に、冷間圧延[工程12]、及び調質焼鈍[工程13]をこの順に施すことを特徴とする(5)項に記載の銅合金板材の製造方法。
 本発明の銅合金板材は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適である。
 また、本発明の銅合金板材の製造方法は、上記の曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適な銅合金板材を製造する方法として好適なものである。
耐応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態をそれぞれ示す。 熱処理温度の上昇にともなう導電率変化の典型例を示すグラフであり、それにより溶質原子が完全に固溶する温度(P)℃を決定する方法を模式的に示すものである。 (a)は、(111)面の法線とTDのなす角の角度が20°以内の原子面の例を図示するものであり、(b)は、(111)面の法線とTDのなす角の角度が20°を超える原子面の例を図示するものである。図3(a),(b)点線で示す円錐領域は、(111)面の法線とのなす角が20°以内の領域を示す。 FCC(面心立方格子)金属における代表的な集合組織方位成分の中で、(111)面の法線とTDのなす角の角度が20°以内の原子面が圧延板幅方向(TD)に向く集合組織方位成分の例を図示するものである。
 本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。ここで、板材において、「材料表層」とは、「板表層」を意味し、「材料の深さ位置」とは、「板厚方向の位置」を意味する。板材の厚さは特に限定されないが、本発明の効果が一層よく顕れ実際的なアプリケーションに適合することを考慮すると、8~800μmが好ましく、50~70μmがより好ましい。
 なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有していれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではなく、本発明では、管材も板材として解釈して取り扱うことができるものとする。
(EBSD測定による規定)
 銅合金板材の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後の材料の金属組織を詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中し、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数ミクロンの深さのシワや、微細なクラックが発生するがその解決方法が判らなかった。しかし、本発明者らは鋭意研究の結果、EBDS測定により規定される圧延板の幅方向(TD)に(111)面が向く原子面の領域(この領域については、以下に詳述する。)を低減させた場合に、不均一な変形が抑制され、基体材料の表面に発生するシワが低減され、クラックが抑制されることを見出した。
 この現象のメカニズムとして、(111)面は引張応力に対して最も加工硬化し易い方位の一つであり、曲げ変形中の応力下においても転位が増殖し易い方位と考えられる。高密化した転位はマイクロボイドの発生源となり、クラックの原因となる。この(111)面がTDを向く原子面の領域の割合を減らすことによって、特に圧延方向に対して曲げ軸が平行になるBW曲げにおいて、曲げ加工性が改善されたと考えられる。
 (111)面の法線とTDのなす角の角度が20°以内の原子面がTDに向く集合組織の方位成分の中から代表的なものを図4に示した。P方位{0 1 1}<1 1 1>、SB方位{1 8 6}<2 1 1>、S方位{1 3 2}<6 4 3>、Z方位{1 1 1}<1 1 0>、Cube方位の双晶方位{1 2 2}<2 2 1>、Brass方位{1 1 0}<1 1 2>などが該当する。これらの方位成分を含む、(111)面がTDに向く集合組織方位成分の割合が総合的に抑制された状態が、本発明で規定される所定の面積率を有する集合組織である。従来、これらの方位を有する原子面の面積率を同時に制御したものは知られていない。
 圧延板の幅方向(TD)に、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下のときに、上記の効果が得られる。好ましくは45%以下、更に好ましくは1%以上40%以下であり、特に好ましくは30%以上35%以下である。この面積率を定義し上記の範囲に特定することで、上述したように、曲げ加工性の改善を図ることができる。
 本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、TDに(111)面が向いている領域の割合を、その面積率で規定したものである。測定領域内の各結晶粒の(111)面の法線とTDの二つのベクトルのなす角の角度を計算し、この角度が20°以内の原子面を有するものについて面積を合計し、これを全測定面積で除して得た値を、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率(%)とした。
 すなわち、本発明において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域とは、圧延板の幅方向(TD)に向く、つまりTDに対向する原子面の集積に関して、理想方位である圧延板の幅方向(TD)を法線とする(111)面自体と、(111)面の法線とTDのなす角の角度が20°以内であるそれぞれの原子面を合わせた原子面が存在する面方位の領域の総和をいう。以下、これらの領域を、単に、TDに(111)面が向く原子面の領域ともいう。
 図3に上記の内容を図示した。図3(a)は、(111)面の法線とTDのなす角の角度が20°以内の原子面の例を図示するものであって、本明細書では、この例で示される原子面を、圧延板幅方向(TD)に(111)面が向く方位を有する原子面と簡略化した記載を併用するので、圧延板幅方向(TD)に(111)面が向く方位を有する原子面と記載されている場合でも、(111)面の法線とTDのなす角の角度が20°以内の原子面の面方位の総和を表すものとする。
 図3(b)は、(111)面の法線とTDのなす角の角度が20°を超える原子面の例を図示するものであって、この例で示される原子面を、圧延板幅方向(TD)に(111)面が向かない方位を有する原子面という。銅合金において(111)面は8個あるが、その中から法線ベクトルがTDに最も近い(111)面についてのみ、(111)面の法線となす角の角度が20°以内となるベクトルの領域を図中に円錐(点線)で示している。
 EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。
 本発明における上記結晶方位の解析には、EBSD法を用いた。EBSDとは、Electron Back Scatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。
 結晶方位の解析にEBSD測定を用いることにより、従来のX線回折法による板面方向(ND)に対する特定原子面の集積の測定とは大きく異なり、三次元方向のより完全に近い結晶方位情報がより高い分解能で得られるため、曲げ加工性を支配する結晶方位について全く新しい知見を獲得することができる。
 なお、EBSD測定にあたっては、鮮明な菊地線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。また、測定は板表面から行った。
(合金組成等)
・Ni,Co,Si
 本発明のコネクタ用材料としては、銅または銅合金が用いられる。コネクタに要求される導電性、機械的強度および耐熱性を有するものとして、銅の他に、リン青銅、黄銅、洋白、ベリリウム銅、コルソン系合金(Cu-Ni-Si系)などの銅合金が好ましい。特に、本発明の特定の結晶方位集積関係を満たす面積率を得たい場合には、純銅系の材料やベリリウム銅、コルソン系合金を含む析出型合金が好ましい。更に、最先端の小型端子材料に求められるような、高強度と高導電性を両立させるためには、Cu-Ni-Si系、Cu-Ni-Co-Si系、Cu-Co-Si系の析出型銅合金が好ましい。
 これは、りん青銅や黄銅などの固溶型合金では、熱処理中の結晶粒成長においてCube方位粒成長の核となる、冷間圧延材中のCube方位をもつ微少領域が減少するためである。これは、りん青銅や黄銅などの積層欠陥エネルギーが低い系では、冷間圧延中に剪断帯が発達し易いためである。
 本発明において、銅(Cu)に添加する第1の添加元素群であるニッケル(Ni)とコバルト(Co)とケイ素(Si)について、それぞれの添加量を制御することにより、Ni-Si、Co-Si、Ni-Co-Siの化合物を析出させて銅合金の強度を向上させることができる。その添加量は、NiとCoのいずれか1種または2種を合計で、好ましくは0.5~5.0mass%、さらに好ましくは0.6~4.5mass%、より好ましくは0.8~4.0mass%である。Niの添加量は好ましくは1.5~4.2mass%、さらに好ましくは1.8~3.9mass%であり、一方、Coの添加量は好ましくは0.3~1.8mass%、さらに好ましくは0.5~1.5mass%である。特に導電率を高めたい場合は、Coを必須とすることが好ましい。これらの元素の合計の添加量を過多としないことで導電率を十分に確保することができ、また、過少としないことで強度を十分に確保することができる。また、Siの含有量は好ましくは0.1~1.5mass%、さらに好ましくは0.2~1.2mass%である。
・その他の元素
 次に、耐応力緩和特性などの特性(二次特性)を向上させる添加元素の効果について示す。好ましい添加元素としては、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfが挙げられる。添加効果を充分に活用し、かつ導電率を低下させないためには、総量で0.005~2.0mass%であることが好ましく、さらに好ましくは0.01~1.5mass%、より好ましくは、0.03~0.8mass%である。これらの添加元素が総量を過多としないことで導電率を十分に確保することができる。なお、これらの添加元素を総量で過少としないことで、これらの元素を添加した効果を十分に発揮させることができる。
 以下に、各元素の添加効果を示す。Mg、Sn、Znは、Cu-Ni-Si系、Cu-Ni-Co-Si系、Cu-Co-Si系銅合金に添加することで耐応力緩和特性が向上する。それぞれを単独で添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。
 Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。
 Cr、Fe、Ti、Zr、Hfは、主な添加元素であるNiやCoやSiとの化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50~500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。
(製造方法等)
 次に、本発明の銅合金板材の製造方法(その結晶方位を制御する方法)について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明するが、固溶型合金材料、希薄系合金材料、純銅系材料に展開することが可能である。
 一般に、析出型銅合金は、均質化熱処理した鋳塊を熱間と冷間の各ステップで薄板化し、700~1020℃の温度範囲で最終溶体化熱処理を行って溶質原子を再固溶させた後に、時効析出熱処理と仕上げ冷間圧延によって必要な強度を満足させるように製造される。時効析出熱処理と仕上げ冷間圧延の条件は、所望の強度及び導電性などの特性に応じて、調整される。銅合金の集合組織については、この一連のステップにおける、最終溶体化熱処理中に起きる再結晶によってそのおおよそが決定し、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
 本発明の銅合金板材の製造方法としては、例えば、所定の合金成分組成から成る銅合金素材を高周波溶解炉により溶解し、これを鋳造して鋳塊を得て[工程1]、該鋳塊を700℃~1020℃で10分~10時間の均質化熱処理に施し[工程2]、加工温度が500~1020℃で加工率が30~98%の熱間圧延[工程3]、水冷[工程4]、面削[工程5]、50~99%の冷間圧延[工程6]、600~900℃で10秒~5分間保持する熱処理[工程7]、5~55%の加工率の冷間加工[工程8]、(P-200)℃以上(P-10)℃以下において、1秒~20時間保持する中間再結晶熱処理[工程9]、(P+10)℃以上(P+150)以下において1秒~10分間保持する最終溶体化熱処理[工程10]を行い、その後、350~600℃において5分間~20時間の時効析出熱処理[工程11]、2~45%の加工率の仕上げ圧延[工程12]、300~700℃で10秒~2時間保持する調質焼鈍[工程13]を行うことにより、前記[工程1]~[工程13]をこの順序で行なうことによって本発明の銅合金板材を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-T000001
 本発明の銅合金板材は上記の実施態様の製造方法により製造することが好ましいが、EBSD測定における結晶方位解析において、前記所定の面積率を満足するならば、上記[工程1]~[工程13]をこの順にすべて行うことに必ずしも拘束されるものではない。上記の方法に含まれるものではあるが、上記[工程1]~[工程13]の内、例えば、[工程11]を最終工程として終了してもよい。あるいは、上記[工程11]~[工程13]は、この内1つまたは2つ以上を2回以上繰り返して行うこともできる。例えば、[工程11]を施す前に、2~45%の加工率の冷間圧延[工程12’]を行なってもよい。
 熱間圧延[工程3]の終了温度が低い場合には、析出速度が遅くなるため、水冷[工程4]は必ずしも必要ではない。どの温度以下で熱間圧延を終了すれば、水冷が不要になるかは、合金濃度や熱間圧延中の析出量によって異なり、適宜選択すれば良い。面削[工程5]は、熱間圧延後の材料表面のスケールによっては、省かれる場合もある。また、酸洗浄などによる溶解によって、スケールを除去しても良い。
 動的再結晶温度以上で行う高温圧延を熱間圧延、室温以上の高温で動的再結晶温度以下の高温圧延を温間圧延と、用語を使い分ける場合もあるが、両者を含めて熱間圧延とするのが一般的である。本発明においても、両者を合わせて熱間圧延と呼ぶ。
 本発明の銅合金板材の製造方法においては、前記最終溶体化熱処理において、板幅方向に向く(111)面の割合を減少させるには、下記の様な製造方法が有効である。
 従来の析出型銅合金の一般的な製造方法として、溶体化熱処理時に再結晶も起きるため、溶質原子の固溶と再結晶の二つの目的の達成が兼ねられていた。一方、本発明の銅合金板材の製造方法においては、この二つの目的を一つ一つ達成し、合わせて集合組織の結晶方位を制御するものであり、このためにそれぞれ別々の熱処理によって行うものである。即ち、提供材に対して、第一に、中間再結晶熱処理[工程9]を行い、その後に最終溶体化熱処理[工程10]を行うものである。
 そして、この中間再結晶熱処理と最終溶体化熱処理の温度は、溶質原子が完全に固溶する温度であるP℃を用いて規定された特定の温度範囲として規定される。
 中間再結晶熱処理の温度は、(P-200)℃以上で(P-10)℃以下である。この温度が低すぎる場合は、再結晶が不十分であり、逆に高すぎる場合は、TDに向く(111)面の割合が充分に低下しない。中間再結晶熱処理の温度は、好ましくは、(P-170)℃~(P-20)℃、更に好ましくは、(P-140)℃~(P-30)℃である。
 最終溶体化熱処理の温度は、(P+10)℃以上で(P+150)℃以下である。この温度が低すぎる場合は、溶質原子の固溶が不十分であり、逆に高すぎる場合は、結晶粒が粗大化する。最終溶体化熱処理の温度は、好ましくは、(P+20)℃~(P+130)℃、更に好ましくは、(P+30)℃~(P+100)℃である。
 溶質原子が完全に固溶する温度P(℃)は、下記の様な一般的な方法によって求めた。鋳塊を1000℃で1時間の均質化後、熱間圧延と冷間圧延を施して板材とし、その後にソルトバスにて700~1000℃まで10℃おき30秒間保持する熱処理の後に水焼き入れを行い、各温度における固溶及び析出の状態を凍結し、導電率を測定した。導電率を固溶元素量の代用特性として使用し、熱処理温度の上昇にともなう導電率の低下が飽和する温度を、完全固溶温度P(℃)とした。典型的な導電率変化と、それによって前記温度P(℃)を決定する方法を模式的に図2に示す。特定な組成に対する完全固溶温度P(℃)は合金の種類や加工・処理の条件等によって異なるが、典型例として示すと、720~980℃程度であることが一般的である。
 中間再結晶熱処理の処理時間は1秒~20時間であり、更に好ましくは5秒~10時間である。中間再結晶熱処理の処理時間が短すぎる場合は再結晶が進行せず、また、これが長すぎる場合は結晶粒が粗大化して成形性が低下する。
 最終溶体化熱処理の処理時間は1秒~10分間であり、更に好ましくは5秒~5分間である。最終溶体化熱処理の処理時間が短すぎる場合は溶質原子の固溶が不十分であり、また、これが長すぎる場合は結晶粒が粗大化して成形性が低下する。
 本発明においては、中間熱処理(工程7)も特別な技術的意味を有するのでここで述べておく。完全固溶温度P℃に対してやや低い温度で、しかも比較的低温の条件の熱処理によって、全面が再結晶していない組織が得られる。即ち、圧延材中の結晶方位の中でも、回復の速い結晶方位と遅い結晶方位が存在するために、その差によって不均一に再結晶した組織となる。この意図的に作られる不均一性が、中間再結晶熱処理[工程9]における再結晶集合組織の優先発達を促す。回復が遅い方位の一部が再結晶組織となるが、回復が早い組織結晶方位は再結晶化しない。
 本発明の銅合金板材は、例えばコネクタ用銅合金板材に要求される特性を満足することができる。特に0.2%耐力については500MPa以上(好ましくは600MPa以上、更に好ましくは700MPa以上)、曲げ加工性については90°W曲げ試験においてクラックなく曲げ加工が可能な最小曲げ半径(r:mm)を板厚(t:mm)で割った値(r/t)が1以下、導電率については30%IACS以上(好ましくは35%IACS以上、更に好ましくは40%IACS以上)を満足するものであり、さらには、耐応力緩和特性については後述する150℃に1000時間保持する測定方法によって応力緩和率(SR)30%以下(好ましくは25%以下)を満たすこともできる、という良好な特性を実現することができる。
 以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
 実施例1
 表1-1の合金成分の欄の組成に示すように、少なくともNiとCoの中から1種または2種を合計で0.5~5.0mass%、Siを0.1~1.5mass%含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。その後に、700℃~1020℃で10分~10時間の均質化熱処理、加工温度が500~1020℃で加工率が30~98%の熱間圧延、水冷、50~99%の冷間圧延と、この順に施し、この状態を提供材とし、下記A~Fのいずれかの工程にて、本発明例1-1~1-19及び比較例1-1~1-9の銅合金板材の供試材を製造した。
(工程A)
 600~900℃で10秒~5分間保持する熱処理、5~55%の加工率の冷間加工、(P-200)℃以上(P-10)℃以下において、1秒~20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒~1分間保持する最終溶体化熱処理を行う。その後、350~600℃において5分間~20時間の時効析出熱処理、2~45%の加工率の仕上げ圧延、300~700℃で10秒~2時間保持する調質焼鈍を行う。
(工程B)
 600~900℃で10秒~5分間保持する熱処理、5~55%の加工率の冷間加工、(P-200)℃以上(P-10)℃以下において、1秒~20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒~1分間保持する最終溶体化熱処理を行う。その後、2~40%の加工率の圧延、350~600℃において5分間~20時間の時効析出熱処理、2~45%の加工率の仕上げ圧延、300~700℃で10秒~2時間保持する調質焼鈍を行う。
(工程C)
 600~900℃で10秒~5分間保持する熱処理、5~55%の加工率の冷間加工、(P-200)℃以上(P-10)℃以下において、1秒~20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒~1分間保持する最終溶体化熱処理を行う。その後、350~600℃において5分間~20時間の時効析出熱処理を行う。
(工程D)
 600~900℃で10秒~5分間保持する熱処理、5~55%の加工率の冷間加工、(P-200)℃以上(P-10)℃以下において、1秒~20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒~1分間保持する最終溶体化熱処理を行う。その後、2~45%の加工率の圧延、350~600℃において5分間~20時間の時効析出熱処理を行う。
(工程E)
 (P-200)℃以上(P-10)℃以下において、1秒~20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒~1分間保持する最終溶体化熱処理を行う。その後、350~600℃において5分間~20時間の時効析出熱処理、2~45%の加工率の仕上げ圧延、300~700℃で10秒~2時間保持する調質焼鈍を行う。
(工程F)
 600~900℃で10秒~5分間保持する熱処理、5~55%の加工率の冷間加工、(P+10)℃以上(P+150)℃以下において1秒~1分間保持する最終溶体化熱処理を行う。その後、350~600℃において5分間~20時間の時効析出熱処理、2~45%の加工率の仕上げ圧延、300~700℃で10秒~2時間保持する調質焼鈍を行う。
 なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。
Figure JPOXMLDOC01-appb-T000002
 この供試材について下記の特性調査を行った。ここで、供試材の厚さは0.15mmとした。本発明例の結果を表1-1に、比較例の結果を表1-2に、それぞれ示す。
a.TDに(111)面が向く原子面の領域の面積率:
 EBSD法により、約500μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。上述したように、各理想方位であるTDを法線とする(111)面と、(111)面の法線とTDのなす角の角度が20°以内である原子面各々とを合わせた領域(これらを併せて、前述のTDに(111)面が向く原子面の領域である)について、これらの合計の面積率を以下の式によって算出した。
面積率(%)={((111)面の法線とTDのなす角の角度が20°以内に向く原子面の面積の合計)/全測定面積}×100
 以下の各表中には、これを単に「面積率(%)」として示す。
 なお、EBSD測定装置として、TSL社製OIM5.0HIKARIを用いた。
b.曲げ加工性:
 圧延方向に垂直に幅10mm、長さ25mmに切出し、これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、曲げ部を50倍の光学顕微鏡で観察し、クラックの有無を調査した。
 曲げ加工部にクラックがなく、シワも軽微なものを「良(◎)」、クラックがないがシワが大きいものの実用上問題ないものを「可(○)」、クラックのあるものを「不可(×)」と判定した。各曲げ部の曲げ角度は90°、曲げ部の内側半径は0.15mmとした。
c.0.2%耐力 [YS]:
 圧延平行方向から切り出したJIS Z 2201-13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
d:導電率 [EC]:
 20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
e.応力緩和率 [SR]:
 日本伸銅協会 JCBA T309:2001(これは仮規格である。旧規格は「日本電子材料工業会標準規格 EMAS-3003」であった。)に準じ、以下に示すように、150℃で1000時間保持後の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
 図1は耐応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図1(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持(前記試験片1の状態での熱処理)し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。この関係から、応力緩和率(%)は(H-H)/(δ-H)×100と算出した。式中、δは、基準から試験片1までの距離であり、Hは、基準から試験片3までの距離であり、Hは、基準から試験片2までの距離である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1-1に示すように、本発明例1-1~1-19は、曲げ加工性、耐力、導電率、耐応力緩和特性に優れた。
 一方、表1-2に示すように、本発明の規定を満たさない場合は、特性が劣る結果となった。
 すなわち、比較例1-1は、NiとCoの総量が少ないために、析出硬化に寄与する化合物(析出物)の密度が低下し強度が劣った。また、NiまたはCoと化合物を形成しないSiが金属組織中に過剰に固溶し導電率が劣った。比較例1-2は、NiとCoの総量が多いために、導電率が劣った。比較例1-3は、Siが少ないために強度が劣った。比較例1-4は、Siが多いために導電率が劣った。
 比較例1-5~1-9はTDに(111)面が向く割合が高く、曲げ加工性が劣った。特にBW曲げにおいて、顕著なクラックが見られた。
 実施例2
 表2の合金成分の欄に示す組成で、残部がCuと不可避不純物からなる銅合金について、実施例1と同様にして、本発明例2-1~2-17および比較例2-1~2-3の銅合金板材の供試材を製造し、実施例1と同様に特性を調査した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、本発明例2-1~本発明例2-17は、曲げ加工性、耐力、導電率、耐応力緩和特性に優れた。
 一方、本発明の規定を満たさない場合は、特性が劣った。すなわち、比較例2-1、2-2、2-3(いずれも、前記(3)項に係る発明の比較例)は、Ni、CoおよびSi以外のその他の元素の添加量が多いために、導電率が劣った。
実施例3
 表3に示す組成で、残部がCuと不可避不純物からなる銅合金について、鋳塊を700℃~1020℃で10分~10時間の均質化熱処理後、実施例1と同様に熱間圧延の後に水冷し、50~99%の冷間圧延、600~900℃で10秒~5分間保持する熱処理、5~55%の加工率の冷間加工、をこの順に施した。
 その後に表4に示す様な、中間再結晶熱処理と最終溶体化熱処理を行った。その後、350~600℃において5分間~20時間の時効析出熱処理、2~45%の加工率の仕上げ圧延、300~700℃で10秒~2時間保持する調質焼鈍を行い、供試材を製造した。実施例1と同様に特性を調査した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、本発明例3-1~本発明例3-6は、曲げ加工性、耐力、導電率、耐応力緩和特性に優れた。
 一方、本発明の規定を満たさない場合は、特性が劣った。すなわち、比較例3-1は、中間再結晶熱処理の温度が低いためにTDに(111)面が向く領域が高まり、曲げ性が劣った。比較例3-2は、中間再結晶熱処理の温度が高いためにTDに(111)面が向く領域が高まり、曲げ性が劣った。比較例3-3は、中間再結晶熱処理の処理時間が長いために溶質原子が粗大な析出物となり、最終溶体化熱処理にて充分に固溶されず、耐力が劣った。比較例3-4は、最終溶体化熱処理の処理温度が低いために溶質原子の固溶が不十分で、耐力が劣った。比較例3-5は、最終溶体化熱処理の処理温度が高いために結晶粒が粗大化し、耐力が劣った。比較例3-6は、最終溶体化熱処理の処理時間が長いために結晶粒が粗大化し、耐力が劣った。また、比較例3-5、3-6は結晶粒径が大きいために曲げシワが大きく、良好ではなかった。
 この様に、本発明により、例えばコネクタ材などの車載部品や電気・電子機器の材料(特にその基体材料)として非常に好適な特性が実現可能である。
 つづいて、従来の製造条件により製造した銅合金板材について、本願発明に係る銅合金板材との相違を明確化するために、その条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。
(比較例101)・・・特開2009-007666号公報の条件
 上記本発明例1-1と同様の金属元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1~100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900~1020℃で3分から10時間の保持後、熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。この後の工程は、次に記載する工程A-3,B-3の処理を施すことによって銅合金c01を製造した。
 製造工程には、1回または2回以上の溶体化熱処理を含み、ここでは、その中の最後の溶体化熱処理の前後で工程を分類し、中間溶体化までの工程でA-3工程とし、中間溶体化より後の工程でB-3工程とした。
工程A-3:断面減少率が20%以上の冷間加工を施し、350~750℃で5分~10時間の熱処理を施し、断面減少率が5~50%の冷間加工を施し、800~1000℃で5秒~30分の溶体化熱処理を施す。
工程B-3:断面減少率が50%以下の冷間加工を施し、400~700℃で5分~10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200~550℃で5秒~10時間の調質焼鈍を施す。
 得られた試験体c01は、上記実施例とは製造条件について中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性について要求特性を満たさない結果となった。
(比較例102)・・・特開2006-283059号公報の条件
 上記本発明例1-1の組成の銅合金を、電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げた。つづいてこの熱間圧延材に対し、冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍)を施し、所定の厚さの銅合金薄板(c04)を製造した。
 得られた試験体c02は、上記実施例1とは製造条件について熱処理[本願における工程7]及び、中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性を満たさない結果となった。
(比較例103)・・・特開2006-152392号公報の条件
 上記本発明例1-1の組成をもつ合金について、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが15mmになるまで熱間圧延し、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、所定の厚さの板を得た。
 続いて、塩浴炉を使用し、温度で20秒間加熱する溶体化処理を行なった後に、水中に急冷した後、後半の仕上げ冷間圧延により、各厚みの冷延板にした。この際、下記に示すように、これら冷間圧延の加工率(%)を種々変えて冷延板(c03)にした。これらの冷延板を、下記に示すように、温度(℃)と時間(hr)とを種々変えて時効処理した。
 冷間加工率:         95%
 溶体化処理温度:       900℃
 人工時効硬化処理温度×時間: 450℃×4時間
 板厚:            0.6mm
 得られた試験体c03は、上記実施例1とは製造条件について熱処理[本願における工程7]及び、中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性を満たさない結果となった。
(比較例104)・・・特開2008-223136号公報の条件
 実施例1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片(厚さ180mm)から厚さ50mmの試料を切り出し、これを950℃に加熱したのち抽出して、熱間圧延を開始した。その際、950℃~700℃の温度域での圧延率が60%以上となり、かつ700℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。熱間圧延の最終パス温度は600℃~400℃の間にある。鋳片からのトータルの熱間圧延率は約90%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。
 次いで、冷間圧延を行った後、溶体化処理に供した。試料表面に取り付けた熱電対により溶体化処理時の温度変化をモニターし、昇温過程における100℃から700℃までの昇温時間を求めた。溶体化処理後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が10~60μmとなるように到達温度を合金組成に応じて700~850℃の範囲内で調整し、700~850℃の温度域での保持時間を10sec~10minの範囲で調整した。続いて、上記溶体化処理後の板材に対して、圧延率で中間冷間圧延を施し、次いで時効処理を施した。時効処理温度は材温450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、圧延率で仕上げ冷間圧延を行った。仕上げ冷間圧延を行ったものについては、その後さらに、400℃の炉中に5min装入する低温焼鈍を施した。このようにして供試材c04を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。主な製造条件は下記に記載してある。
 [特開2008-223136 実施例1の条件]
  700℃未満~400℃での熱間圧延率:  56%(1パス)
  溶体化処理前 冷間圧延率: 92%
  中間冷間圧延 冷間圧延率: 20%
  仕上げ冷間圧延 冷間圧延率: 30%
  100℃から700℃までの昇温時間: 10秒
 得られた試験体c04は、上記実施例1とは製造条件について熱処理[本願における工程7]及び、中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性を満たさない結果となった。
 1 初期応力を付与した時の試験片
 2 負荷を除いた後の試験片
 3 応力を負荷しなかった場合の試験片
 4 試験台

Claims (6)

  1.  EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材。
  2.  NiとCoのいずれか1種または2種を合計で0.5~5.0mass%、Siを0.1~1.5mass%含有し、残部が銅及び不可避不純物からなる合金組成を有し、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材。
  3.  NiとCoのいずれか1種または2種を合計で0.5~5.0mass%、Siを0.1~1.5mass%含有し、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005~2.0mass%含有し、残部が銅及び不可避不純物からなる合金組成を有し、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材。
  4.  コネクタ用材料であることを特徴とする請求項1~3のいずれか1項に記載の銅合金板材。
  5.  請求項1~請求項4のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金組成の銅合金に、鋳造[工程1]、均質化熱処理[工程2]、熱間加工[工程3]、冷間圧延[工程6]、熱処理[工程7]、冷間圧延[工程8]、中間再結晶熱処理[工程9]、最終溶体化熱処理[工程10]をこの順に施し、その後に、時効析出熱処理[工程11]を施し、前記中間再結晶熱処理[工程9]は、溶質原子の完全固溶温度をP℃とした場合に、(P-200)℃以上で(P-10)℃以下の温度において1秒~20時間保持し、前記最終溶体化熱処理[工程10]は(P+10)℃以上で(P+150)℃以下において、1秒~10分間保持することを特徴とする銅合金板材の製造方法。
  6.  前記時効析出熱処理[工程11]の後に、冷間圧延[工程12]、及び調質焼鈍[工程13]をこの順に施すことを特徴とする請求項5に記載の銅合金板材の製造方法。
PCT/JP2010/071499 2009-12-02 2010-12-01 銅合金板材およびその製造方法 WO2011068126A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080053384.3A CN102666889A (zh) 2009-12-02 2010-12-01 铜合金板材及其制造方法
EP20100834576 EP2508633A4 (en) 2009-12-02 2010-12-01 COPPER ALLOY FILM AND MANUFACTURING METHOD THEREFOR
JP2011514942A JP5400877B2 (ja) 2009-12-02 2010-12-01 銅合金板材およびその製造方法
KR1020127014725A KR101747475B1 (ko) 2009-12-02 2010-12-01 구리합금 판재 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-274995 2009-12-02
JP2009274995 2009-12-02

Publications (1)

Publication Number Publication Date
WO2011068126A1 true WO2011068126A1 (ja) 2011-06-09

Family

ID=44114972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071499 WO2011068126A1 (ja) 2009-12-02 2010-12-01 銅合金板材およびその製造方法

Country Status (5)

Country Link
EP (1) EP2508633A4 (ja)
JP (2) JP5400877B2 (ja)
KR (1) KR101747475B1 (ja)
CN (1) CN102666889A (ja)
WO (1) WO2011068126A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058083A1 (ja) * 2011-10-21 2013-04-25 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
WO2015034071A1 (ja) * 2013-09-06 2015-03-12 古河電気工業株式会社 銅合金線材及びその製造方法
JP2015183263A (ja) * 2014-03-25 2015-10-22 Dowaメタルテック株式会社 Cu−Ni−Co−Si系銅合金板材およびその製造方法並びに通電部品
JP6310538B1 (ja) * 2016-12-14 2018-04-11 古河電気工業株式会社 銅合金線棒材およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610358A4 (en) * 2010-08-27 2017-05-03 Furukawa Electric Co., Ltd. Copper alloy sheet and manufacturing method for same
JP6504868B2 (ja) * 2015-03-19 2019-04-24 Jx金属株式会社 圧延銅箔及びその製造方法、銅張積層板、並びにフレキシブルプリント基板及び電子機器
CN110998814B (zh) * 2017-08-09 2021-04-23 日铁化学材料株式会社 半导体装置用Cu合金接合线
CN108315579B (zh) * 2018-03-06 2019-12-06 北京科技大学 织构稀土CuNiSiCr合金材料及制备工艺和应用
JP6713074B1 (ja) * 2019-04-16 2020-06-24 Dowaメタルテック株式会社 銅合金板材およびその製造方法
CN112030030B (zh) * 2020-08-06 2021-09-10 国网江西省电力有限公司电力科学研究院 一种高强高导铜合金线材及其制备方法
CN115094258B (zh) * 2022-07-13 2023-02-17 浙江惟精新材料股份有限公司 一种高强高塑高折弯Cu-Ni-Si-Co合金及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335756A (ja) 1998-03-26 1999-12-07 Kobe Steel Ltd 電子部品用銅合金板
JP2000080428A (ja) * 1998-08-31 2000-03-21 Kobe Steel Ltd 曲げ加工性が優れた銅合金板
JP2006009137A (ja) 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The 銅合金
JP2006016629A (ja) 2004-06-30 2006-01-19 Nikko Metal Manufacturing Co Ltd BadWayの曲げ加工性が優れたCu−Ni−Si系銅合金条
JP2006152392A (ja) * 2004-11-30 2006-06-15 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板およびその製造方法
JP2006219733A (ja) * 2005-02-14 2006-08-24 Kobe Steel Ltd 異方性の小さい電気電子部品用銅合金板
JP2006283059A (ja) 2005-03-31 2006-10-19 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板及びその製造方法
JP2007092135A (ja) 2005-09-29 2007-04-12 Nikko Kinzoku Kk 強度と曲げ加工性に優れたCu−Ni−Si系合金
JP2007270171A (ja) * 2006-03-30 2007-10-18 Dowa Holdings Co Ltd 曲げ加工性に優れた高導電性銅基合金およびその製造法
JP2008013836A (ja) 2006-07-10 2008-01-24 Dowa Holdings Co Ltd 異方性の少ない高強度銅合金板材およびその製造法
JP2008223136A (ja) 2007-02-13 2008-09-25 Dowa Metaltech Kk Cu−Ni−Si系銅合金板材およびその製造法
JP2009007666A (ja) 2007-05-31 2009-01-15 Furukawa Electric Co Ltd:The 電気・電子機器用銅合金

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185847A (ja) * 1986-02-12 1987-08-14 Furukawa Electric Co Ltd:The 熱・電気高伝導用高力銅合金とその製造法
JP3510469B2 (ja) * 1998-01-30 2004-03-29 古河電気工業株式会社 導電性ばね用銅合金及びその製造方法
EP1967596B1 (en) * 2007-02-13 2010-06-16 Dowa Metaltech Co., Ltd. Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP4357536B2 (ja) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 強度と成形性に優れる電気電子部品用銅合金板
US8287669B2 (en) * 2007-05-31 2012-10-16 The Furukawa Electric Co., Ltd. Copper alloy for electric and electronic equipments
JP4303313B2 (ja) * 2007-09-28 2009-07-29 日鉱金属株式会社 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
US20090183803A1 (en) * 2007-12-21 2009-07-23 Mutschler Ralph A Copper-nickel-silicon alloys
JP4596490B2 (ja) 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
CN102105610B (zh) * 2008-06-03 2013-05-29 古河电气工业株式会社 铜合金板材及其制造方法
JP4563495B1 (ja) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 銅合金板材およびその製造方法
JP4809935B2 (ja) * 2009-12-02 2011-11-09 古河電気工業株式会社 低ヤング率を有する銅合金板材およびその製造法
JP5476149B2 (ja) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 強度異方性が小さく曲げ加工性に優れた銅合金

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335756A (ja) 1998-03-26 1999-12-07 Kobe Steel Ltd 電子部品用銅合金板
JP2000080428A (ja) * 1998-08-31 2000-03-21 Kobe Steel Ltd 曲げ加工性が優れた銅合金板
JP2006009137A (ja) 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The 銅合金
JP2006016629A (ja) 2004-06-30 2006-01-19 Nikko Metal Manufacturing Co Ltd BadWayの曲げ加工性が優れたCu−Ni−Si系銅合金条
JP2006152392A (ja) * 2004-11-30 2006-06-15 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板およびその製造方法
JP2006219733A (ja) * 2005-02-14 2006-08-24 Kobe Steel Ltd 異方性の小さい電気電子部品用銅合金板
JP2006283059A (ja) 2005-03-31 2006-10-19 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板及びその製造方法
JP2007092135A (ja) 2005-09-29 2007-04-12 Nikko Kinzoku Kk 強度と曲げ加工性に優れたCu−Ni−Si系合金
JP2007270171A (ja) * 2006-03-30 2007-10-18 Dowa Holdings Co Ltd 曲げ加工性に優れた高導電性銅基合金およびその製造法
JP2008013836A (ja) 2006-07-10 2008-01-24 Dowa Holdings Co Ltd 異方性の少ない高強度銅合金板材およびその製造法
JP2008223136A (ja) 2007-02-13 2008-09-25 Dowa Metaltech Kk Cu−Ni−Si系銅合金板材およびその製造法
JP2009007666A (ja) 2007-05-31 2009-01-15 Furukawa Electric Co Ltd:The 電気・電子機器用銅合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508633A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160148716A (ko) 2011-10-21 2016-12-26 제이엑스금속주식회사 코르손 합금 및 그 제조 방법
JP2013100591A (ja) * 2011-10-21 2013-05-23 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
KR20140075788A (ko) 2011-10-21 2014-06-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 코르손 합금 및 그 제조 방법
CN103890206A (zh) * 2011-10-21 2014-06-25 Jx日矿日石金属株式会社 科森合金及其制造方法
WO2013058083A1 (ja) * 2011-10-21 2013-04-25 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法
KR101967017B1 (ko) 2011-10-21 2019-04-08 제이엑스금속주식회사 코르손 합금 및 그 제조 방법
WO2015034071A1 (ja) * 2013-09-06 2015-03-12 古河電気工業株式会社 銅合金線材及びその製造方法
JPWO2015034071A1 (ja) * 2013-09-06 2017-03-02 古河電気工業株式会社 銅合金線材及びその製造方法
JP2020073722A (ja) * 2013-09-06 2020-05-14 古河電気工業株式会社 銅合金線材及びその製造方法
JP2015183263A (ja) * 2014-03-25 2015-10-22 Dowaメタルテック株式会社 Cu−Ni−Co−Si系銅合金板材およびその製造方法並びに通電部品
JP6310538B1 (ja) * 2016-12-14 2018-04-11 古河電気工業株式会社 銅合金線棒材およびその製造方法
JP2018095928A (ja) * 2016-12-14 2018-06-21 古河電気工業株式会社 銅合金線棒材およびその製造方法
WO2018110037A1 (ja) * 2016-12-14 2018-06-21 古河電気工業株式会社 銅合金線棒材およびその製造方法

Also Published As

Publication number Publication date
EP2508633A4 (en) 2014-07-23
CN102666889A (zh) 2012-09-12
JP5503791B2 (ja) 2014-05-28
JP2014029031A (ja) 2014-02-13
KR101747475B1 (ko) 2017-06-14
KR20120087985A (ko) 2012-08-07
JPWO2011068126A1 (ja) 2013-04-18
JP5400877B2 (ja) 2014-01-29
EP2508633A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011068135A1 (ja) 銅合金板材およびその製造方法
WO2011068126A1 (ja) 銅合金板材およびその製造方法
JP5170916B2 (ja) 銅合金板材及びその製造方法
JP4948678B2 (ja) 銅合金板材、これを用いたコネクタ、並びにこれを製造する銅合金板材の製造方法
JP5158910B2 (ja) 銅合金板材およびその製造方法
JP4934759B2 (ja) 銅合金板材及びこれを用いたコネクタ並びに銅合金板材の製造方法
KR101914322B1 (ko) 구리합금 재료 및 그 제조방법
WO2011068134A1 (ja) 低ヤング率を有する銅合金板材およびその製造法
JP5773929B2 (ja) 曲げ加工性及び耐応力緩和特性に優れる電気電子部品用銅合金板
JP5261619B2 (ja) 銅合金板材およびその製造方法
JP5117602B1 (ja) たわみ係数が低く、曲げ加工性に優れる銅合金板材
KR101967017B1 (ko) 코르손 합금 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053384.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011514942

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127014725

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010834576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010834576

Country of ref document: EP