WO2011065316A1 - ドーパントホスト及びその製造方法 - Google Patents

ドーパントホスト及びその製造方法 Download PDF

Info

Publication number
WO2011065316A1
WO2011065316A1 PCT/JP2010/070764 JP2010070764W WO2011065316A1 WO 2011065316 A1 WO2011065316 A1 WO 2011065316A1 JP 2010070764 W JP2010070764 W JP 2010070764W WO 2011065316 A1 WO2011065316 A1 WO 2011065316A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
boron component
dopant host
component volatile
laminate
Prior art date
Application number
PCT/JP2010/070764
Other languages
English (en)
French (fr)
Inventor
鈴木 良太
芳夫 馬屋原
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2010546171A priority Critical patent/JP5703753B2/ja
Priority to CN201080052777.2A priority patent/CN102668035B/zh
Priority to US13/510,725 priority patent/US8828550B2/en
Publication of WO2011065316A1 publication Critical patent/WO2011065316A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/064Oxidic interlayers based on alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates

Definitions

  • the present invention relates to a dopant host and a manufacturing method thereof.
  • the present invention relates to a dopant host used for obtaining a P-type semiconductor by diffusing boron in a silicon semiconductor and a method for manufacturing the same.
  • a dopant host method As a method of forming a P-type region in a silicon semiconductor substrate, a dopant host method, a counter BN method, a thermal decomposition method, and the like are known.
  • Dopant host method deposition (to be the B 2 O 3 volatilized from the glass ceramic wafer (dopant host) containing B 2 O 3, which are arranged in parallel keeping a semiconductor wafer a certain distance such as a silicon wafer on a semiconductor wafer
  • the boron component is thermally diffused into the semiconductor substrate (see, for example, Patent Document 1).
  • the counter BN method has substantially the same process as the dopant host method.
  • the counter BN method is different from the dopant host method in that a boron nitride wafer is activated instead of a glass ceramic wafer (processing for converting BN to B 2 O 3 ).
  • liquid BCl 3 , BBr 3, and the like are vaporized by bubbling, and deposited and decomposed on a preheated semiconductor wafer to obtain a B 2 O 3 deposition film. It is a method of diffusing.
  • the dopant host method In the counter BN method, it is necessary to perform activation treatment on the dopant host almost every time during doping. On the other hand, in the dopant host method, the activation process may be performed once at the beginning, and is hardly necessary thereafter. For this reason, the process cost of p-type region formation can be kept low by using the dopant host method. Further, in the pyrolysis method, since the gas is deposited on the semiconductor wafer, there is a problem that when the B 2 O 3 is diffused on the large-diameter semiconductor wafer, the variation in the deposition amount becomes large. On the other hand, the dopant host method has an advantage that variation in boron component diffusion can be suppressed because the glass ceramic wafer having the same area as the semiconductor wafer is subjected to heat treatment.
  • the dopant host disclosed in Patent Document 1 is inferior in heat resistance, there is a risk of bending when heat treatment is repeated.
  • deflection occurs in the dopant host there is a problem that the dopant host comes into contact with the semiconductor wafer, yield decreases, and variation in the amount of B 2 O 3 diffusion occurs.
  • the dopant host disclosed in Patent Document 1 because less B 2 O 3 volatilization amount in comparison with the opposite BN method, there is a problem of poor thermal diffusion efficiency of B 2 O 3 with respect to the semiconductor wafer.
  • an object of the present invention is to provide a dopant host that has a good B 2 O 3 volatility over a long period of time, with the B 2 O 3 volatilization amount being less likely to decrease over time.
  • the present inventors have solved the above problem by adjusting the B 2 O 3 content in each boron component volatile layer in a dopant host having a laminated structure composed of a boron component volatile layer and a heat-resistant layer.
  • the present invention has been found out and proposed as the present invention.
  • the dopant host according to the present invention has a laminate.
  • the laminate includes a boron component volatile layer and a heat-resistant layer.
  • the boron component volatile layer contains SiO 2 30-60%, Al 2 O 3 10-30%, B 2 O 3 15-50% and RO (R is an alkaline earth metal) 2-15% in terms of mol%. contains.
  • Heat-resistant layer, by mol%, SiO 2 8 ⁇ 40%, Al 2 O 3 40 ⁇ 85%, B 2 O 3 5 ⁇ 30% and RO (R is an alkaline earth metal) of 0.5 to 7% contains.
  • At least one outermost layer of the laminate is composed of a boron component volatile layer.
  • the laminate further includes a boron component volatile layer inside the laminate. The content rate of B 2 O 3 in the boron component volatile layer constituting at least one outermost layer of the laminate is lower than the content rate of B 2 O 3 in the boron component volatile layer inside the laminate.
  • the volatilization of the boron component occurs from the boron component contained in the boron component volatile layer.
  • the B 2 O 3 content in the boron component volatile layer is as high as 15 to 50 mol%.
  • the dopant host of the present invention has a high volatility of B 2 O 3 .
  • the Al 2 O 3 content in the heat-resistant layer is as high as 40 to 85 mol%.
  • the dopant host of this invention is equipped with the favorable heat resistance which can endure the temperature of 1200 degreeC or more, for example.
  • At least one outermost layer of the laminate is composed of a boron component volatile layer, and the B 2 O 3 content in the boron component volatile layer constituting the outermost layer of the laminate is It is lower than the B 2 O 3 content in the boron component volatile layer inside the laminate.
  • the boron component volatilization layer located outermost layer of the laminate the content of B 2 O 3 ratio is assumed relatively low, boron component vaporization layer constituting the outermost layer of the laminate There can function as B 2 O 3 volatilization amount of the adjustment valve, to suppress the B 2 O 3 volatilization amount per unit time.
  • the dopant host of the present invention B 2 O 3 content in the boron component volatilization layer located inside the laminated body is relatively high. Accordingly, B 2 O 3 content in the total dopant host is high. Therefore, the amount of B 2 O 3 that can be volatilized from the dopant host is large. Therefore, the dopant host of the present invention can stably volatilize a large amount of B 2 O 3 over a long period of time.
  • the B 2 O 3 content in the boron component volatile layer located in the outermost layer of the laminate is the laminate. It is preferably 1 mol% or more lower than the B 2 O 3 content in the internal boron component volatile layer, and more preferably 2 mol% or less.
  • the boron component volatile layer inside the laminate is provided adjacent to the boron component volatile layer constituting at least one outermost layer of the laminate.
  • the thickness of the boron component volatile layer constituting at least one outermost layer of the laminate is preferably larger than the thickness of the boron component volatile layer inside the laminate.
  • the B 2 O 3 volatilization amount per unit time can be more suitably suppressed.
  • the dopant host of this configuration can be volatilized over a longer period of time the B 2 O 3.
  • each of the outermost layers of the laminate is composed of a boron component volatile layer.
  • B 2 O 3 is easily volatilized from both surfaces of the dopant host. Therefore, even B 2 O 3 tends to be supplied to the silicon wafer placed on any surface side of the dopant host.
  • p-type regions can be efficiently formed in a plurality of semiconductor substrates by performing a doping process by alternately arranging a dopant host and a silicon wafer with a predetermined interval. Therefore, the productivity of the P-type semiconductor can be improved.
  • At least one of the boron component volatile layer and the heat-resistant layer may contain glass. Further, at least one of the boron component volatile layer and the heat-resistant layer may contain, for example, crystals such as Al 2 O 3 , ceramic particles, or the like in addition to glass. For example, when a boron component volatile layer consists of glass and components other than glass, it has the said composition as the whole boron component volatile layer. Moreover, when a heat-resistant layer consists of glass and components other than glass, it has the said composition as the whole heat-resistant layer.
  • the glass includes crystallized glass. That is, at least one of the boron component volatile layer and the heat-resistant layer may contain crystallized glass.
  • the crystallized glass is preferably crystallized glass containing Al 4 B 2 O 9 crystals.
  • the Al 4 B 2 O 9 crystals are acicular crystals, the Al 4 B 2 O 9 crystals are entangled three-dimensionally in the boron component volatile layer 2 and the heat-resistant layer 3. That is, Al 4 B 2 O 9 crystals are complicated. For this reason, the heat resistance of the dopant host 1 can be improved by making the dopant host 1 contain an Al 4 B 2 O 9 crystal.
  • the dopa and host manufacturing method according to the present invention relates to the dopant host manufacturing method according to the present invention.
  • the method for producing a dopant host according to the present invention includes a step of firing a green sheet laminate in which a first green sheet for forming a boron component volatile layer and a green sheet for forming a heat-resistant layer are laminated. A laminate including a component volatile layer and a heat-resistant layer is obtained.
  • the dopant host according to the present invention can be easily produced.
  • a dopant host having a desired size can be easily manufactured.
  • the dopant host can be manufactured at low cost.
  • FIG. 1 is a schematic cross-sectional view of a dopant host according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a dopant host according to the first embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the dopant host produced in Example 1.
  • 4 is a schematic cross-sectional view of a dopant host produced in Example 2.
  • FIG. 5 is a schematic cross-sectional view of a dopant host produced in Example 3.
  • FIG. 6 is a schematic cross-sectional view of the dopant host produced in Comparative Example 1.
  • FIG. 7 is a schematic cross-sectional view of a dopant host produced in Comparative Example 2.
  • FIG. 8 is a graph showing changes over time in the surface resistance values of silicon wafers doped with a boron component using the respective dopant hosts of Examples 1 to 3 and Comparative Examples 1 and 2.
  • FIG. 1 shows a schematic cross-sectional view of a dopant host according to a first embodiment of the present invention.
  • the dopant host 1 according to the first embodiment is composed of a laminate including a boron component volatile layer 2 and a heat-resistant layer 3.
  • the dopant host 1 is configured by a stacked body in which a plurality of boron component volatile layers 2 and a plurality of heat-resistant layers 3 are alternately stacked.
  • the number of boron component volatile layers 2 contained in the dopant host 1 is preferably 3 or more, and more preferably 5 or more. For this reason, when both the outermost layers of the dopant host 1 are comprised by the boron component volatile layer 2a, it is preferable that the number of the boron component volatile layers 2b inside a laminated body is three or more layers. This is because as the number of boron component volatile layers 2 contained in the dopant host 1 is larger, the amount of B 2 O 3 that can be volatilized from the dopant host 1 can be increased. However, if the number of boron component volatile layers 2 contained in the dopant host 1 is too large, the dopant host 1 becomes thick and the weight increases.
  • the number of layers of the boron component volatile layer 2 contained in the dopant host 1 is preferably 50 layers or less, and more preferably 40 layers or less.
  • the number of heat-resistant layers 3 included in the dopant host 1 is preferably 3 or more, and more preferably 5 or more. This is because the heat resistance of the dopant host 1 improves as the number of the heat-resistant layers 3 included in the dopant host 1 increases. However, if the number of the heat-resistant layers 3 included in the dopant host 1 is too large, the dopant host 1 becomes thick and the weight increases. For this reason, handling may become difficult, and the number of silicon wafers that can be put into the thermal diffusion furnace is reduced, which may reduce productivity. Therefore, the number of heat-resistant layers 3 included in the dopant host 1 is preferably 50 layers or less, and more preferably 40 layers or less. *
  • the thicknesses of the boron component volatile layer 2 and the heat-resistant layer 3 are not particularly limited.
  • the thickness of the boron component volatile layer 2 can be, for example, 50 ⁇ m to 1000 ⁇ m.
  • the thickness of the boron component volatile layer 2 is preferably 100 ⁇ m to 500 ⁇ m. If the boron component volatile layer 2a is too thin, it may be difficult to obtain desired B 2 O 3 volatility. On the other hand, if the boron component volatile layer 2 is too thick, the dopant host 1 may easily crack.
  • the thickness of the heat-resistant layer 3 can be set to 30 ⁇ m to 300 ⁇ m, for example.
  • the thickness of the heat-resistant layer 3 is preferably 50 ⁇ m to 100 ⁇ m. If the heat-resistant layer 3 is too thin, the heat resistance of the dopant host 1 may decrease. On the other hand, if the heat-resistant layer 3 is too thick, the dopant host 1 may easily crack. *
  • the boron component volatile layer 2a is located in the outermost layer of the dopant host 1 as in this embodiment, the boron component volatile layer 2a is preferably thicker than the other boron component volatile layers 2b. In this case, since the function as a control valve of the boron component volatile layer 2a can be enhanced, the dopant host can exhibit an excellent B 2 O 3 volatility over a longer period.
  • the boron component volatile layer 2 is expressed in mol%, SiO 2 30-60%, Al 2 O 3 10-30%, B 2 O 3 15-50%, and RO (R is an alkaline earth metal) 2-15% Containing.
  • the alkaline earth metal includes Mg, Ca, Sr, and Ba.
  • the boron component volatile layer 2 of the present embodiment includes glass and crystals such as Al 2 O 3 crystals and Al 4 B 2 O 9 crystals, and has the above composition as a whole.
  • SiO 2 is a component constituting a glass network contained in the boron component volatile layer 2.
  • the content of SiO 2 is 30 to 60%, preferably 35 to 45%. If the content of SiO 2 is too low, the chemical durability of the dopant host 1 may be lowered. On the other hand, if the content of SiO 2 is too high, the softening point of the glass may increase. For this reason, when the content rate of SiO 2 is too high, the meltability of the glass is deteriorated and it becomes difficult to form the glass, and as a result, the production of the dopant host 1 may be difficult.
  • SiO 2 may be contained in the component other than the glass of the boron component volatilization layer 2.
  • Al 2 O 3 is a component that forms a glass network contained in the boron component volatile layer 2 together with SiO 2 .
  • the content of Al 2 O 3 is 10 to 30%, preferably 15 to 25%. If the Al 2 O 3 content is too low, the chemical durability of the dopant host 1 may be lowered. On the other hand, if the content of Al 2 O 3 is too high, the porosity of the boron component volatile layer 2 may increase, and the strength of the boron component volatile layer 2 may decrease.
  • Al 2 O 3 may be contained in components other than the glass of the boron component volatile layer 2.
  • B 2 O 3 is a volatile component.
  • the content of B 2 O 3 is 15 to 50%, preferably 20 to 40%. If the content of B 2 O 3 is too low, the B 2 O 3 volatilization amount from the dopant host 1 may be insufficient. On the other hand, if the content of B 2 O 3 is too high, the chemical durability of the dopant host 1 may be lowered. Further, if the content of B 2 O 3 is too high, the amount of B 2 O 3 volatilized from the boron component volatile layer 2 becomes too large, and a BSi film is formed on the silicon wafer when the doping process is performed. May end up. Note that it is difficult to remove the BSi film by etching with hydrofluoric acid or the like, which causes a defect.
  • the boron component volatile layer 2 includes a boron component volatile layer 2a located in the outermost layer of the laminate constituting the dopant host 1, and a boron component volatile layer 2b located inside the laminate. . *
  • the content of B 2 O 3 is 15 to 50%.
  • the content rate of B 2 O 3 in the boron component volatile layer 2a located in the outermost layer is lower than the content rate of B 2 O 3 in the boron component volatile layer 2b located inside.
  • the content of B 2 O 3 in the boron component volatile layer 2a located in the outermost layer is 1 mol% or more lower than the content of B 2 O 3 in the boron component volatile layer 2b located inside.
  • it is more preferably 2 mol% or less.
  • the content of B 2 O 3 in the boron component volatile layer 2a located in the outermost layer is preferably 25 to 35%, more preferably 27 to 32%.
  • the content of B 2 O 3 in the boron component volatile layer 2b located inside is preferably 30 to 40%, and more preferably 30 to 38%.
  • RO is a component that promotes vitrification.
  • MgO, CaO, SrO, BaO can be selected, and these can be used alone or in combination of two or more.
  • the RO content (total amount) is 2 to 15%, preferably 2.5 to 10%. If the RO content is too low, vitrification may be difficult. On the other hand, if the RO content is too high, the chemical durability of the dopant host 1 may be lowered.
  • RO may be contained in components other than the glass of the boron component volatile layer 2.
  • the boron component volatile layer 2 can contain a total of 30% or less of components such as ZrO 2 and TiO 2 for the purpose of improving chemical durability.
  • the heat-resistant layer 3 contains SiO 2 8 to 40%, Al 2 O 3 40 to 85%, B 2 O 3 5 to 30%, and RO (R is an alkaline earth metal) 0.5 to 7%.
  • the heat-resistant layer 3 of the present embodiment includes glass and crystals such as Al 2 O 3 crystals and Al 4 B 2 O 9 crystals, and has the above composition as a whole.
  • SiO 2 is a component constituting a glass network contained in the heat-resistant layer 3.
  • the content of SiO 2 is 8 to 40%, preferably 20 to 30%. If the content of SiO 2 is too low, the chemical durability of the dopant host 1 may be lowered. On the other hand, if the content of SiO 2 is too high, the softening point of the glass becomes high, and the B 2 O 3 volatilization amount may become too small. This is because when the softening point of the glass is increased, the viscosity of the glass is increased, and movement of B 2 O 3 is limited, so that it is difficult to volatilize.
  • SiO 2 may be contained in the components other than the glass of the heat-resistant layer 3.
  • Al 2 O 3 is a main component for maintaining heat resistance.
  • the content of Al 2 O 3 is 40 to 85%, preferably 40 to 55%. If the Al 2 O 3 content is too low, the heat resistance of the dopant host 1 may deteriorate. On the other hand, if the content of Al 2 O 3 is too high, the porosity of the heat-resistant layer 3 increases, and the strength of the dopant host 1 may decrease.
  • Al 2 O 3 may be included as Al 2 O 3 crystals. Thereby, the heat resistance of the dopant host 1 can be further improved.
  • B 2 O 3 is a constituent component of glass contained in the heat-resistant layer 3.
  • the content of B 2 O 3 is 5 to 30%, preferably 10 to 30%. If the content of B 2 O 3 is too low, the mechanical strength of the dopant host 1 may be lowered. On the other hand, if the content of B 2 O 3 is too high, the heat resistance of the heat-resistant layer 3 becomes too low, and the dopant host 1 may be easily deformed even at a temperature lower than 1200 ° C., for example.
  • B 2 O 3 may be contained in components other than the glass of the heat-resistant layer 3.
  • RO is a component that promotes vitrification.
  • MgO, CaO, SrO, BaO can be selected, and these can be used alone or in combination of two or more.
  • the RO content (total amount) is 0.5 to 7%, preferably 2.5 to 6%. If the RO content is too low, vitrification may be difficult. On the other hand, if the RO content is too high, the heat resistance of the dopant host 1 may decrease.
  • RO may be contained in components other than the glass of the heat-resistant layer 3.
  • the heat-resistant layer 3 may contain a total amount of components such as ZrO 2 and TiO 2 of 30% or less.
  • the dopant host 1 preferably contains Al 4 B 2 O 9 crystals. Specifically, it is preferable that at least one of the boron component volatile layer 2 and the heat-resistant layer 3 contains Al 4 B 2 O 9 crystals. It is more preferable that both the boron component volatile layer 2 and the heat-resistant layer 3 contain Al 4 B 2 O 9 crystals. Since the Al 4 B 2 O 9 crystals are needle-like crystals, the Al 4 B 2 O 9 crystals are entangled three-dimensionally in the boron component volatile layer 2 and the heat-resistant layer 3. That is, Al 4 B 2 O 9 crystals are complicated. For this reason, the heat resistance of the dopant host 1 can be improved by making the dopant host 1 contain an Al 4 B 2 O 9 crystal. Further, by incorporating Al 4 B 2 O 9 crystal dopant host 1, it is possible to increase the B 2 O 3 volatilization amount.
  • the content of Al 4 B 2 O 9 in the dopant host 1 is preferably 20 to 50% by mass, more preferably 30 to 50% by mass.
  • the content of Al 4 B 2 O 9 in the boron component volatile layer 2 is preferably 10 to 30% by mass, more preferably 10 to 20% by mass.
  • the content of Al 4 B 2 O 9 in the heat-resistant layer 3 is preferably 30 to 60% by mass, more preferably 35 to 50% by mass. If the content of the Al 4 B 2 O 9 crystal is too low, the heat resistance of the dopant host 1 may be too low, or the B 2 O 3 volatilization amount may be too low. On the other hand, if the content of the Al 4 B 2 O 9 crystal is too high, the porosity of the dopant host 1 may be too high, and the strength of the dopant host 1 may be reduced.
  • At least one of the boron component volatile layer 2 and the heat-resistant layer 3 may contain Al 2 O 3 crystals ( ⁇ -corundum crystals) in addition to the Al 4 B 2 O 9 crystals.
  • the content of Al 2 O 3 crystals in each of the boron component volatile layer 2 and the heat-resistant layer 3 is preferably 0 to 60% by mass, and more preferably 10 to 50% by mass.
  • the Al 2 O 3 crystal ( ⁇ -corundum crystal) may be derived from an unreacted component of the raw material alumina powder.
  • the B 2 O 3 volatilization amount per unit time can be suppressed by relatively reducing the B 2 O 3 content in the boron component volatile layer 2a located in the outermost layer of the laminate.
  • B 2 O 3 content in the boron component vaporization layer 2b of the laminate part because relatively high, B 2 O 3 content of the whole dopant host 1 is high. Therefore, the amount of B 2 O 3 that can be volatilized from the dopant host 1 is large. Therefore, the dopant host 1 can volatilize a large amount of B 2 O 3 stably over a long period of time.
  • B 2 O 3 is contained in the boron component volatile layer 2a as the outermost layer and the boron component volatile layer 2b inside the laminate.
  • the difference in rate is preferably 1% or more, and more preferably 2% or more.
  • the boron component volatile layer 2a is thicker than the boron component volatile layer 2b.
  • the thickness of the boron component volatile layer 2a is preferably 50 ⁇ m or more, and more preferably 60 ⁇ m or more.
  • the boron component volatile layer 2 contained in the dopant host 1 is preferably three or less.
  • the stacking order of the boron component volatile layer 2 and the heat-resistant layer 3 is not particularly limited, but it is preferable that the boron component volatile layer 2 and the heat-resistant layer 3 are alternately stacked as shown in FIG. In this case, the B 2 O 3 volatility and heat resistance of the dopant host 1 can be further improved.
  • both outermost layers are composed of the boron component volatile layer 2a.
  • B 2 O 3 is suitably volatilized from both surfaces of the dopant host 1. Therefore, even when the silicon wafer is disposed on either side of both surfaces of the dopant host 1, the boron component can be doped into the silicon wafer.
  • a silicon wafer can be disposed on both sides of the dopant host 1 and a p-type region can be simultaneously formed on the two silicon wafers. Therefore, by using the dopant host 1 of this embodiment, a p-type semiconductor can be produced with high productivity.
  • FIG. 2 shows a schematic cross-sectional view of the dopant host of this embodiment.
  • the present invention is not limited to this configuration.
  • boron component volatile layers or heat-resistant layers may be provided adjacent to each other.
  • the dopant host of this embodiment As shown in FIG. 2, in the dopant host of this embodiment, the boron component volatile layer 2a located in the outermost layer is adjacent to the boron component volatile layer 2b having a higher B 2 O 3 content than the boron component volatile layer 2a. Yes. For this reason, the dopant host of this embodiment exhibits more stable B 2 O 3 volatility over a longer period. The reason that the effect is obtained is not clear, B 2 O 3 amount in the stack unit is greater, i.e. B by providing a concentration gradient of 2 O 3, B 2 O 3 is stable on the surface from the stack unit It is thought that it is because it is supplied.
  • the heat-resistant layer 3 is preferably disposed on the opposite side of the boron component volatile layer 2b from the boron component volatile layer 2a.
  • the manufacturing method of each dopant host of the said 1st and 2nd embodiment is not specifically limited. Hereinafter, an example of the manufacturing method of the dopant host 1 will be described.
  • a green sheet for a boron component volatile layer for forming the boron component volatile layer 2 is prepared.
  • the boron component volatile layer green sheet can be produced, for example, as follows.
  • a raw material powder containing SiO 2 , Al 2 O 3 , B 2 O 3 , and RO is prepared into a batch. For example, it is melted and vitrified at around 1600 ° C. for about 1 hour, and then molded, pulverized and classified. To obtain a glass powder.
  • a binder, a plasticizer, a solvent and the like are added to the glass powder and kneaded to obtain a slurry.
  • alumina powder may be mixed with the slurry to facilitate precipitation of Al 4 B 2 O 9 crystals.
  • thermoplastic resin is usually used as the binder.
  • the thermoplastic resin is a component that increases film strength after drying and imparts flexibility.
  • the content of the thermoplastic resin in the slurry is generally about 5 to 30% by mass in the slurry.
  • thermoplastic resin acrylic resins such as polybutyl methacrylate, polymethyl methacrylate and polyethyl methacrylate, polyvinyl butyral, ethyl cellulose and the like can be used, and these can be used alone or in combination.
  • the plasticizer is a component that controls the drying speed and imparts flexibility to the dry film.
  • the content of the plasticizer is generally about 0 to 10% by mass in the slurry.
  • the plasticizer butyl benzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate and the like can be used, and these can be used alone or in combination.
  • Solvent is a component for pasting raw materials.
  • the solvent content in the slurry is generally about 10 to 50% by mass.
  • the solvent for example, terpineol, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate and the like can be used, and these may be used alone or in combination. it can.
  • the obtained slurry is formed into a sheet shape on a film excellent in mechanical and thermal stability such as polyethylene terephthalate (PET) by, for example, a doctor blade method, and dried to obtain a solvent, a solvent, or the like. Remove. Thereby, the green sheet green sheet for boron component volatile layers can be completed.
  • PET polyethylene terephthalate
  • the proportion of the raw material powder in the green sheet is generally about 60 to 95% by mass.
  • Green sheet for boron component volatile layer The thickness of the green sheet is preferably 30 to 1500 ⁇ m, more preferably 50 to 1000 ⁇ m, still more preferably 100 to 500 ⁇ m, and more preferably 150 to 300 ⁇ m. Further preferred. If the boron component volatile layer green sheet is too thin, it may be difficult to produce or break during lamination. On the other hand, if the boron component volatile layer green sheet is too thick, cracks may easily occur during drying.
  • the viscosity of the slurry is preferably 1 to 50 Pa ⁇ s, more preferably 2 to 30 Pa ⁇ s, and 3 to 20 Pa ⁇ s. More preferably it is. If the slurry viscosity is too low, there may be a problem that craters are generated at the time of forming the green sheet, or that the variation in the thickness of the green sheet becomes large. On the other hand, if the slurry viscosity is too high, the fluidity of the slurry deteriorates, and unevenness and streaks enter the green sheet, making it difficult to obtain a uniform film. In addition, the amount of slurry attached to the pipes and containers increases, and the material loss tends to increase. The viscosity of the slurry can be adjusted by appropriately selecting the amount of binder, plasticizer and solvent added.
  • the green sheet for the heat-resistant layer is produced by the same method as the green sheet for the boron component volatile layer, using, for example, a mixture of glass powder containing SiO 2 , B 2 O 3 and RO and alumina powder as a raw material powder.
  • the total number of layers to be stacked may be appropriately selected within the range of 3 to 100 sheets, for example, depending on the thickness of the green sheet.
  • the number of laminated green sheets is more preferably 5 to 50.
  • the obtained green sheet is punched into a desired shape as necessary. It may be laminated after being punched into a desired shape, or may be punched after being laminated.
  • a boron-doped material for a semiconductor can be obtained by firing the laminate of green sheets.
  • the sintering temperature is preferably 1000 to 1300 ° C., more preferably 1100 to 1200 ° C.
  • the firing time is appropriately adjusted in the range of 0.5 to 100 hours, for example, depending on the firing temperature.
  • the firing time is preferably 50 to 100 hours.
  • Example 1 to 3 and Comparative Example 1 glass raw materials were prepared so as to have a predetermined glass composition, and then poured into a platinum crucible and melted at 1400 ° C. to 1650 ° C. for 3 hours. Molten glass was poured into a pair of water-cooled rollers and formed into a thin plate shape. Next, the obtained sheet-like molded body was roughly crushed by a ball mill, and then wet-pulverized by adding alcohol, so that the 50% particle diameter (D 50 ) was adjusted to 2.5 ⁇ m. The raw material glass powder was produced by the above process. This raw glass powder itself was used as a raw material for the boron component volatile layer. On the other hand, as the raw material powder for the heat-resistant layer, a material prepared by mixing the raw material glass powder and alumina powder so as to have a predetermined composition was used.
  • a binder (acrylic resin), a plasticizer (butylbenzyl phthalate) and a solvent (methyl ethyl ketone) were added to each raw material powder to prepare a slurry.
  • the obtained slurry was formed into a predetermined thickness by a doctor blade method to prepare a boron component volatile layer green sheet and a heat-resistant layer green sheet, respectively. After drying, it was cut into a disk shape having a predetermined dimension. Subsequently, a plurality of obtained boron component volatile layer green sheets and heat-resistant layer green sheets were laminated, integrated by thermocompression bonding, and then sintered at 900 to 1300 ° C. to obtain a dopant host.
  • Example 1 the boron component volatile layer green sheet and the heat resistant layer green sheet were laminated so that the boron component volatile layer 2 and the heat resistant layer 3 were laminated as shown in FIG. That is, the dopant host according to Example 1 has substantially the same configuration as the dopant host according to the second embodiment.
  • Example 2 as shown in FIG. 4, the boron component volatile layer green sheet and the heat resistant layer green sheet were laminated so that the boron component volatile layer 2 and the heat resistant layer 3 were laminated.
  • Example 3 as shown in FIG. 5, the boron component volatile layer green sheet and the heat resistant layer green sheet were laminated so that the boron component volatile layer 2 and the heat resistant layer 3 were laminated. That is, the dopant host according to Examples 2 and 3 has substantially the same configuration as the dopant host 1 according to the first embodiment.
  • Comparative Example 1 a boron component volatile layer green sheet and a heat resistant layer green sheet were laminated such that the boron component volatile layer 2 and the heat resistant layer 3 were laminated as shown in FIG. That is, the dopant host according to Comparative Example 1 has a configuration substantially similar to that of the first embodiment except that the boron component volatile layer 2b is replaced with the boron component volatile layer 2a. That is, in the dopant host according to Comparative Example 1, only one type of boron component volatile layer is provided.
  • the heat resistance is a temperature at which deformation is started by heating the entire sample in a state where a sintered body is processed into a 50 ⁇ 10 ⁇ 2 mm rectangular parallelepiped and placed on a support base with a span of 30 mm and a weight of 15 g is applied to the center ( Evaluation was made by determining the heat-resistant temperature. The results are shown in Table 1 below and FIG.
  • B 2 O 3 volatility was evaluated as follows. A silicon wafer and each of the dopant hosts of Examples 1 to 3 and Comparative Example 1 were placed on a quartz boat facing each other at a predetermined interval, and the carrier was allowed to flow at 1150 ° C. for 2 hours in an electric furnace. B 2 O 3 was deposited on the silicon wafer by firing. The surface layer of the treated silicon wafer was etched with hydrofluoric acid, an electrode was connected to the silicon wafer, a current was passed, and the change over time in the surface resistance value was measured. The results are shown in FIG. A small increase in the surface resistance value of the silicon wafer over time means that the amount of B 2 O 3 deposited on the silicon wafer is large and the volatility of B 2 O 3 from the dopant host is good. .
  • Comparative example 2 The glass raw material prepared so that it might become the composition shown in Table 1 was thrown into the platinum crucible, and it melted at 1600 degreeC for 1 hour, and was vitrified. Subsequently, molten glass was cast in a molded body and annealed to obtain a columnar glass having the same diameter as the dopant host of Example 1. The obtained columnar glass was heat-treated and crystallized, and cut so as to have the same thickness as the dopant host of Example 1. For this reason, the dopant host of Comparative Example 2 was composed of a single boron component volatile layer 2. The resulting dopant host, was measured 2 O 3 volatile heat resistance and B in the same manner as in Example 1. The results are shown in Table 1 below and FIG.
  • the silicon wafer can be used if the surface resistance value of the silicon wafer is 3 ⁇ / ⁇ .
  • the silicon wafer on which B 2 O 3 was deposited using the dopant hosts of Examples 1 to 3 had a good usable time of 20 hours or more.
  • the usable time of the dopant hosts of Comparative Examples 1 and 2 was as short as 10 hours.
  • the dopant host of Comparative Example 2 had a heat resistant temperature as low as 1100 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 経時的にB揮発量が低下しにくく、長期にわたって良好なB揮発能を有するドーパントホストを提供する。 ドーパントホストは、モル%表示で、SiO 30~60%、Al 10~30%、B 15~50%及びRO(Rはアルカリ土類金属) 2~15%を含有するホウ素成分揮発層と、SiO 8~40%、Al 40~85%、B 5~30%及びRO(Rはアルカリ土類金属) 0.5~7%を含有する耐熱層とを含む積層体を有する。積層体の少なくとも一方の最外層がホウ素成分揮発層により構成されている。積層体は、積層体内部にホウ素成分揮発層をさらに含む。積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層におけるBの含有率が、積層体内部のホウ素成分揮発層におけるBの含有率よりも低い。

Description

ドーパントホスト及びその製造方法
 本発明は、ドーパントホスト及びその製造方法に関する。特に、本発明は、シリコン半導体中にホウ素を拡散させてP型半導体を得るために使用されるドーパントホスト及びその製造方法に関する。
 従来、シリコン半導体基板にP型領域を形成する方法として、ドーパントホスト法、対向BN法、熱分解法等が知られている。
 ドーパントホスト法は、シリコンウエハー等の半導体ウエハーと一定の距離を保って並列させたBを含むガラスセラミックスウエハー(ドーパントホスト)より揮発したBを半導体ウエハー上にデポジション(被着)させ、ホウ素成分を半導体基板内に熱拡散させる方法である(例えば、特許文献1を参照)。
 対向BN法は、ドーパントホスト法とほぼ同じプロセスを有する方法である。対向BN法は、ガラスセラミックスウエハーの代わりに窒化ホウ素ウエハーを活性化処理(BNをBに変換する処理)したものを使用する点でドーパントホスト法と異なる。
 熱分解法は、液状のBCl、BBrなどをバブリングして気化し、それを予め加熱された半導体ウエハー上に被着、分解させ、Bのデポジション被膜を得た後、熱拡散させる方法である。
 対向BN法では、ドーピング時に概ね毎回ドーパントホストに対して活性化処理を施す必要がある。一方、ドーパントホスト法では、活性化処理は最初に1回行えばよく、その後はほとんど不要である。このため、ドーパントホスト法を用いることによりp型領域形成のプロセスコストを低く抑えることができる。また、熱分解法では、半導体ウエハー上にガスを被着させるので、大口径の半導体ウエハーにBを拡散させる場合、被着量のばらつきが大きくなるという問題がある。それに対し、ドーパントホスト法では、半導体ウエハーと同じ面積のガラスセラミックスウエハーを対向させて熱処理を行うため、ホウ素成分の拡散のばらつきを抑えられるという利点がある。
特開昭52-55861号公報
 しかしながら、特許文献1に開示されているドーパントホストは耐熱性に劣るため、熱処理を繰り返すとたわみが発生するおそれがある。ドーパントホストにたわみが発生すると、ドーパントホストが半導体ウエハーに接触し、歩留まりが低下したり、B拡散量のばらつきが生じたりするという問題がある。また、特許文献1に開示されているドーパントホストは、対向BN法と比較してB揮発量が少ないため、半導体ウエハーに対するBの熱拡散効率に劣るという問題がある。
 上記問題に鑑み、B成分の比較的多いホウ素成分揮発層とAl含有率が比較的多い耐熱層からなる積層構造を有するドーパントホストを用いることも考えられる。このドーパントホストであれば、耐熱性が高く、かつBの揮発量を多くすることができる。しかしながら、このドーパントホストは、経時的にB揮発量が低下しやすく、長期にわたる使用が困難である。
 したがって、本発明は、経時的にB揮発量が低下しにくく、長期にわたって良好なB揮発能を有するドーパントホストを提供することを目的とする。
 本発明者等は鋭意検討した結果、ホウ素成分揮発層および耐熱層から構成される積層構造を有するドーパントホストにおいて、各ホウ素成分揮発層におけるB含有率を調整することにより前記課題を解決できることを見いだし、本発明として提案するものである。
 すなわち、本発明に係るドーパントホストは、積層体を有する。積層体は、ホウ素成分揮発層と、耐熱層とを含む。ホウ素成分揮発層は、モル%表示で、SiO 30~60%、Al 10~30%、B 15~50%及びRO(Rはアルカリ土類金属) 2~15%を含有する。耐熱層は、モル%表示で、SiO 8~40%、Al 40~85%、B 5~30%及びRO(Rはアルカリ土類金属) 0.5~7%を含有する。積層体の少なくとも一方の最外層は、ホウ素成分揮発層により構成されている。積層体は、積層体内部にホウ素成分揮発層をさらに含む。積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層におけるBの含有率は、積層体内部のホウ素成分揮発層におけるBの含有率よりも低い。
 ホウ素成分の揮発は、ホウ素成分揮発層に含まれるホウ素成分より生じるところ、本発明のドーパントホストでは、ホウ素成分揮発層におけるB含有率が15~50モル%と多い。このため、本発明のドーパントホストは、高いBの揮発能を備えている。また、本発明のドーパントホストでは、耐熱層におけるAl含有率が40~85モル%と多い。このため、本発明のドーパントホストは、例えば1200℃以上の温度にも耐えうる良好な耐熱性を備えている。
 本発明のドーパントホストでは、積層体の少なくとも一方の最外層がホウ素成分揮発層により構成されており、かつ積層体の最外層を構成しているホウ素成分揮発層におけるB含有率が、積層体内部のホウ素成分揮発層におけるB含有率よりも低い。このように、積層体の最外層に位置しているホウ素成分揮発層をB含有率が相対的に低いものとすることにより、積層体の最外層を構成しているホウ素成分揮発層がB揮発量の調整弁として機能し、単位時間当たりのB揮発量を抑制することができる。また、本発明のドーパントホストでは、積層体内部に位置しているホウ素成分揮発層におけるB含有率が相対的に高い。このため、ドーパントホスト全体におけるB含有率が高くされている。よって、ドーパントホストから揮発し得るB量が多い。従って、本発明のドーパントホストは、多量のBを長期にわたって安定的に揮発させることができる。
 ドーパントホストを、より長期にわたってより安定的にBを揮発できるものとする観点からは、積層体の最外層に位置しているホウ素成分揮発層におけるB含有率は、積層体内部のホウ素成分揮発層におけるB含有率よりも1モル%以上低いことが好ましく、2モル%以上低いことがより好ましい。
 積層体内部のホウ素成分揮発層は、積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層と隣接して設けられていることが好ましい。
 この構成によれば、単位時間当たりのB揮発量をより好適に制御することが可能となり、長期にわたって安定したB揮発能が発揮されやすくなる。これは積層体内部のB量がより多い、すなわちBの濃度勾配を設けることにより、Bが積層体内部より表面に安定して供給されるからであると考えられる。
 積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層の厚みが、積層体内部のホウ素成分揮発層の厚みよりも大きいことが好ましい。
 最外層に位置しており、B含有率が低いホウ素成分揮発層を厚くすることによって、単位時間あたりのB揮発量をより好適に抑制することができる。従って、この構成のドーパントホストは、Bをより長期にわたって揮発させることができる。
 積層体の両最外層のそれぞれがホウ素成分揮発層により構成されていることが好ましい。
 この構成によれば、ドーパントホストの両表面のいずれからもBが揮発しやすくなる。このため、ドーパントホストのいずれの表面側に配置したシリコンウエハーにもBが供給されやすくなる。例えば、ドーパントホストとシリコンウエハーとを、一定間隔を空けて交互に並べてドーピング処理を行うことにより、複数の半導体基板にp型領域を効率的に形成していくことができる。従って、P型半導体の生産性を向上させることができる。
 なお、本発明のドーパントホストでは、ホウ素成分揮発層と、耐熱層とのうちの少なくとも一方は、ガラスを含んでいてもよい。また、ホウ素成分揮発層と、耐熱層とのうちの少なくとも一方は、ガラスに加えて、例えば、Alなどの結晶やセラミック粒子等を含んでいてもよい。例えば、ホウ素成分揮発層が、ガラスと、ガラス以外の成分とからなる場合は、ホウ素成分揮発層全体として、上記組成を有している。また、耐熱層が、ガラスと、ガラス以外の成分とからなる場合は、耐熱層全体として、上記組成を有している。
 なお、本発明において、ガラスには、結晶化ガラスが含まれるものとする。すなわち、ホウ素成分揮発層と、耐熱層とのうちの少なくとも一方は、結晶化ガラスを含んでいてもよい。ホウ素成分揮発層と、耐熱層とのうちの少なくとも一方が結晶化ガラスを含む場合は、その結晶化ガラスは、Al結晶を含む結晶化ガラスであることが好ましい。
 この場合、Al結晶は針状結晶であるため、ホウ素成分揮発層2や耐熱層3において、Al結晶同士が立体的に絡み合う。すなわち、Al結晶同士が錯綜する。このため、ドーパントホスト1にAl結晶を含有させることにより、ドーパントホスト1の耐熱性を改善することができる。
 本発明に係るドーパとホストの製造方法は、上記本発明に係るドーパントホストの製造方法に関する。本発明に係るドーパントホストの製造方法は、ホウ素成分揮発層を形成するための第1のグリーンシートと、耐熱層を形成するためのグリーンシートとを積層したグリーンシート積層体を焼成することによりホウ素成分揮発層と耐熱層とを含む積層体を得る。
 本発明に係るドーパントホストの製造方法によれば、上記本発明に係るドーパントホストを容易に製造することができる。また、グリーンシートの大きさを適宜選択することにより、所望の大きさのドーパントホストを容易に製造することが可能となる。また、ガラスセラミックスのインゴットを製造した後に、インゴットをウエハー状に切断加工するというプロセスを経る必要がないため、ドーパントホストを低コストに製造することができる。
図1は、本発明の第1の実施形態に係るドーパントホストの略図的断面図である。 図2は、本発明の第1の実施形態に係るドーパントホストの略図的断面図である。 図3は、実施例1において作製したドーパントホストの略図的断面図である。 図4は、実施例2において作製したドーパントホストの略図的断面図である。 図5は、実施例3において作製したドーパントホストの略図的断面図である。 図6は、比較例1において作製したドーパントホストの略図的断面図である。 図7は、比較例2において作製したドーパントホストの略図的断面図である。 図8は、実施例1~3および比較例1、2のそれぞれのドーパントホストを用いてホウ素成分をドープしたシリコンウエハーの表面抵抗値の経時変化を示すグラフである。
 (第1の実施形態)
 図1に本発明の第1の実施形態のドーパントホストの略図的断面図を示す。図1に示すように、第1の実施形態に係るドーパントホスト1は、ホウ素成分揮発層2と耐熱層3とを含む積層体からなる。具体的には、ドーパントホスト1は、複数のホウ素成分揮発層2と複数の耐熱層3とが交互に積層された積層体により構成されている。 
ドーパントホスト1に含まれるホウ素成分揮発層2の層数は、3層以上であることが好ましく、5層以上であることが好ましい。このため、ドーパントホスト1の両最外層がホウ素成分揮発層2aにより構成されている場合は、積層体内部のホウ素成分揮発層2bの層数は、3層以上であることが好ましい。ドーパントホスト1に含まれるホウ素成分揮発層2の層数が多いほど、ドーパントホスト1から揮発し得るのB量を多くできるためである。しかしながら、ドーパントホスト1に含まれるホウ素成分揮発層2の層数が多すぎると、ドーパントホスト1が厚くなって重量が大きくなる。このため、取扱いが困難になったり、熱拡散炉に投入できるシリコンウェハーの枚数が減少し、生産性が低下する場合がある。このため、ドーパントホスト1に含まれるホウ素成分揮発層2の層数は、50層以下であることが好ましく、40層以下であることがより好ましい。 
ドーパントホスト1に含まれる耐熱層3の層数は、3層以上であることが好ましく、5層以上であることがより好ましい。ドーパントホスト1に含まれる耐熱層3の層数が多いほど、ドーパントホスト1の耐熱性が向上するためである。しかしながら、ドーパントホスト1に含まれる耐熱層3の層数が多すぎると、ドーパントホスト1が厚くなって重量が大きくなる。このため、取扱いが困難になったり、熱拡散炉に投入できるシリコンウェハーの枚数が減少し、生産性が低下する場合がある。従って、ドーパントホスト1に含まれる耐熱層3の層数は、50層以下であることが好ましく、40層以下であることがより好ましい。 
ホウ素成分揮発層2及び耐熱層3のそれぞれの厚さは、特に限定されない。ホウ素成分揮発層2の厚さは、例えば、50μm~1000μmとすることができる。ホウ素成分揮発層2の厚さは、100μm~500μmであることが好ましい。ホウ素成分揮発層2aが薄すぎると、所望のB揮発能が得られにくくなる場合がある。一方、ホウ素成分揮発層2が厚すぎると、ドーパントホスト1にクラックが生じやすくなる場合がある。 
耐熱層3の厚さは、例えば、30μm~300μmとすることができる。耐熱層3の厚さは、50μm~100μmであることが好ましい。耐熱層3が薄すぎると、ドーパントホスト1の耐熱性が低下する場合がある。一方、耐熱層3が厚すぎると、ドーパントホスト1にクラックが生じやすくなる場合がある。 
本実施形態のように、ドーパントホスト1の最外層にホウ素成分揮発層2aが位置する場合は、ホウ素成分揮発層2aは、他のホウ素成分揮発層2bよりも厚いことが好ましい。この場合、ホウ素成分揮発層2aの調整弁としての機能を高めることができるため、ドーパントホストを、より長期にわたって優れたB揮発能を発揮するものとすることができる。
 ホウ素成分揮発層2は、モル%表示で、SiO 30~60%、Al 10~30%、B 15~50%及びRO(Rはアルカリ土類金属) 2~15%を含有する。なお、アルカリ土類金属には、Mg,Ca,Sr及びBaが含まれる。具体的には、本実施形態のホウ素成分揮発層2は、ガラスと、Al結晶やAl結晶等の結晶とを含んでおり、全体として、上記組成を有する。
 ホウ素成分揮発層2における各成分の含有率を上記のように制限した理由を説明する。なお、以下の説明で「%」は特に断りがない限り「モル%」を表す。
 SiOは、ホウ素成分揮発層2に含まれるガラスのネットワークを構成する成分である。SiOの含有率は、30~60%であり、好ましくは35~45%である。SiOの含有率が低すぎると、ドーパントホスト1の化学的耐久性が低くなる場合がある。一方、SiOの含有率が高すぎると、ガラスの軟化点が高くなる場合がある。このため、SiOの含有率が高すぎると、ガラスの溶融性が悪化してガラスの成形が困難となり、結果としてドーパントホスト1の作製が困難となる場合がある。なお、SiOは、ホウ素成分揮発層2のガラス以外の成分に含まれていてもよい。
 Alは、SiOとともにホウ素成分揮発層2に含まれるガラスのネットワークを構成する成分である。Alの含有率は、10~30%であり、好ましくは15~25%である。Alの含有率が低すぎると、ドーパントホスト1の化学的耐久性が低くなる場合がある。一方、Alの含有率が高すぎると、ホウ素成分揮発層2の気孔率が大きくなり、ホウ素成分揮発層2の強度が低下する場合がある。なお、Alは、ホウ素成分揮発層2のガラス以外の成分に含まれていてもよい。
 Bは、揮発成分である。Bの含有率は、15~50%であり、好ましくは20~40%である。Bの含有率が低すぎると、ドーパントホスト1からのB揮発量が不十分となる場合がある。一方、Bの含有率が高すぎると、ドーパントホスト1の化学的耐久性が低くなる場合がある。また、Bの含有率が高すぎると、ホウ素成分揮発層2からのB揮発量が多くなりすぎて、ドーピング処理を行った際にシリコンウエハー上にBSi膜が形成されてしまう場合がある。なお、BSi膜はフッ酸等によるエッチングによっても除去することが困難であり、不良の原因となる。
 ホウ素成分揮発層2には、ドーパントホスト1を構成している積層体の最外層に位置しているホウ素成分揮発層2aと、積層体内部に位置しているホウ素成分揮発層2bとが含まれる。 
ホウ素成分揮発層2a、2bのいずれにおいても、Bの含有率は、15~50%である。但し、最外層に位置しているホウ素成分揮発層2aにおけるBにおける含有率の方が、内部に位置しているホウ素成分揮発層2bにおけるBの含有率よりも低い。最外層に位置しているホウ素成分揮発層2aにおけるBにおける含有率の方が、内部に位置しているホウ素成分揮発層2bにおけるBの含有率よりも1モル%以上低いことが好ましく、2モル%以上低いことがより好ましい。最外層に位置しているホウ素成分揮発層2aにおけるBにおける含有率と、内部に位置しているホウ素成分揮発層2bにおけるBの含有率との差が小さすぎると、最外層のホウ素成分揮発層2aの調整弁としての機能が十分に得られず、ドーパントホストからBが揮発する期間が短くなってしまう場合がある。 
具体的には、最外層に位置しているホウ素成分揮発層2aにおけるBにおける含有率は、25~35%であることが好ましく、27~32%であることがより好ましい。一方、内部に位置しているホウ素成分揮発層2bにおけるBの含有率は、30~40%であることが好ましく、30~38%であることがより好ましい。
 ROはガラス化を促進する成分である。ROとしては、MgO、CaO、SrO、BaOを選択することができ、これらを単独または2種以上を組み合わせて用いることができる。ROの含有率(合量)は、2~15%であり、好ましくは2.5~10%である。ROの含有率が低すぎると、ガラス化しにくくなる場合がある。一方、ROの含有率が高すぎると、ドーパントホスト1の化学的耐久性が低くなる場合がある。なお、ROは、ホウ素成分揮発層2のガラス以外の成分に含まれていてもよい。
 ホウ素成分揮発層2には、その他にも、化学的耐久性を向上させることなどを目的として、ZrO、TiOなどの成分を合量で30%以下含有させることができる。
 耐熱層3は、SiO 8~40%、Al 40~85%、B 5~30%及びRO(Rはアルカリ土類金属)0.5~7%を含有する。具体的には、本実施形態の耐熱層3は、ガラスと、Al結晶やAl結晶等の結晶とを含んでおり、全体として、上記組成を有する。
 次に、耐熱層3における各成分の含有率を上記のように制限した理由を説明する。
 SiOは、耐熱層3に含まれるガラスのネットワークを構成する成分である。SiOの含有率は、8~40%であり、好ましくは20~30%である。SiOの含有率が低すぎると、ドーパントホスト1の化学的耐久性が低くなる場合がある。一方、SiOの含有率が高すぎるとガラスの軟化点が高くなり、B揮発量が少なくなりすぎる場合がある。これは、ガラスの軟化点が高くなるとガラスの粘度が高くなり、Bの移動が制限されて揮発しにくくなるからである。なお、SiOは、耐熱層3のガラス以外の成分に含まれていてもよい。
 Alは、耐熱性を保持するための主要成分である。Alの含有率は、40~85%であり、好ましくは40~55%である。Alの含有率が低すぎると、ドーパントホスト1の耐熱性が悪化する場合がある。一方、Alの含有率が高すぎると、耐熱層3の気孔率が大きくなり、ドーパントホスト1の強度が低下する場合がある。なお、Alは、Al結晶として含まれていてもよい。これにより、ドーパントホスト1の耐熱性をさらに向上することができる。
 Bは、耐熱層3に含まれるガラスの構成成分である。Bの含有率は、5~30%であり、好ましくは10~30%である。Bの含有率が低すぎると、ドーパントホスト1の機械的強度が低くなる場合がある。一方、Bの含有率が高すぎると、耐熱層3の耐熱性が低くなりすぎ、例えば1200℃より低い温度においてもドーパントホスト1に変形が生じやすくなる場合がある。なお、Bは、耐熱層3のガラス以外の成分に含まれていてもよい。
 ROは、ガラス化を促進する成分である。ROとしては、MgO、CaO、SrO、BaOを選択することができ、これらを単独または2種以上を組み合わせて用いることができる。ROの含有率(合量)は、0.5~7%であり、好ましくは2.5~6%である。ROの含有率が低すぎるとガラス化しにくくなる場合がある。一方、ROの含有率が高すぎるとドーパントホスト1の耐熱性が低下する場合がある。なお、ROは、耐熱層3のガラス以外の成分に含まれていてもよい。
 その他にも、耐熱層3の耐熱性を向上させることなどを目的として、耐熱層3に、ZrO、TiOなどの成分を合量で30%以下含有させてもよい。
 ドーパントホスト1はAl結晶を含有することが好ましい。具体的には、ホウ素成分揮発層2及び耐熱層3の少なくとも一方がAl結晶を含有していることが好ましい。ホウ素成分揮発層2及び耐熱層3の両方がAl結晶を含有していることがより好ましい。Al結晶は針状結晶であるため、ホウ素成分揮発層2や耐熱層3において、Al結晶同士が立体的に絡み合う。すなわち、Al結晶同士が錯綜する。このため、ドーパントホスト1にAl結晶を含有させることにより、ドーパントホスト1の耐熱性を改善することができる。また、ドーパントホスト1にAl結晶を含有させることにより、B揮発量を多くすることができる。
 ドーパントホスト1におけるAlの含有率は、好ましくは20~50質量%であり、より好ましくは30~50質量%である。ホウ素成分揮発層2におけるAlの含有率は、好ましくは10~30質量%であり、より好ましくは10~20質量%である。また、耐熱層3におけるAlの含有率は、好ましくは30~60質量%であり、より好ましくは35~50質量%である。Al結晶の含有率が低すぎると、ドーパントホスト1の耐熱性が低くなりすぎたり、B揮発量が少なくなりすぎたりする場合がある。一方、Al結晶の含有率が高すぎると、ドーパントホスト1の気孔率が大きくなりすぎて、ドーパントホスト1の強度が低下する場合がある。
 ホウ素成分揮発層2及び耐熱層3の少なくとも一方は、Al結晶以外にもAl結晶(α-コランダム結晶)を含有しても構わない。ホウ素成分揮発層2及び耐熱層3のそれぞれにおけるAl結晶の含有率は、0~60質量%であることが好ましく、10~50質量%であることがより好ましい。なお、Al結晶(α-コランダム結晶)は、原料アルミナ粉末の未反応成分由来のものであってもよい。
 以上説明したように、本実施形態では、積層体の最外層に位置するホウ素成分揮発層2aにおけるB含有率が、積層体内部のホウ素成分揮発層2bにおけるB含有率よりも低い。すなわち、積層体の最外層に位置するホウ素成分揮発層2aにおけるB含有率が相対的に高く、積層体内部のホウ素成分揮発層2bにおけるB含有率が相対的に高い。このように、積層体の最外層に位置するホウ素成分揮発層2aにおけるB含有率を相対的に低くすることにより、単位時間当たりのB揮発量を抑制することができる。また、積層体内部のホウ素成分揮発層2bにおけるB含有率が相対的に高いため、ドーパントホスト1全体としてのB含有率が高くされている。よって、ドーパントホスト1から揮発し得るBの量が多い。従って、ドーパントホスト1は、長期にわたって安定的に、多量のBを揮発させることができる。
 ドーパントホスト1から多量のBがより長期にわたって安定して揮発するようにする観点からは、最外層のホウ素成分揮発層2aと積層体内部のホウ素成分揮発層2bにおけるB含有率の差は、1%以上であることが好ましく、2%以上であることがより好ましい。
 なお、ホウ素成分揮発層2aが薄すぎると、ホウ素成分揮発層2aが有する弁機能が十分に発揮されない場合がある。このため、ホウ素成分揮発層2aは、ホウ素成分揮発層2bよりも厚いことが好ましい。ホウ素成分揮発層2aを、ホウ素成分揮発層2bよりも厚くすることにより、より長期にわたってBを揮発させることができる。具体的には、ホウ素成分揮発層2aの厚みは、50μm以上であることが好ましく、60μm以上であることがより好ましい。
 なお、ホウ素成分揮発層2の組成が異なると、ホウ素成分揮発層2を焼成により形成する際の収縮率も異なる。したがって、ドーパントホスト1に含まれるホウ素成分揮発層2の種類(異なる組成の数)が増えるほど、ホウ素成分揮発層2と耐熱層3との間に生じる歪みが大きくなりやすく、ドーパントホスト1の耐久性が低下する傾向にある。このような観点から、ドーパントホスト1に含まれるホウ素成分揮発層2は3種類以下であることが好ましい。
 ホウ素成分揮発層2と耐熱層3の積層順序は特に限定されないが、図1に示すように、ホウ素成分揮発層2と耐熱層3とが交互に積層されていることが好ましい。この場合、ドーパントホスト1のB揮発能および耐熱性をより向上し得るためである。 
本実施形態のドーパントホスト1では、両最外層がホウ素成分揮発層2aにより構成されている。このため、ドーパントホスト1の両表面のいずれにおいてからもBが好適に揮発する。したがって、ドーパントホスト1の両表面のいずれの側にシリコンウエハーを配置した場合であっても、シリコンウエハーへのホウ素成分のドーピングが可能である。例えば、ドーパントホスト1の両側にシリコンウエハーを配置し、それら2つのシリコンウエハーにp型領域を同時に形成することもできる。従って、本実施形態のドーパントホスト1を用いることにより、p型半導体を高い生産性で生産することができる。
 以下、本発明を実施した好ましい形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に同様の機能を有する部材を同様の符号で参照し、説明を省略する。
 (第2の実施形態)
 図2に、本実施形態のドーパントホストの略図的断面図を示す。 
上記第1の実施形態では、最外層のホウ素成分揮発層2aが耐熱層3と隣接している例について説明した。但し、本発明は、この構成に限定されない。本発明のドーパントホストでは、ホウ素成分揮発層同士または耐熱層同士が隣接して設けられていてもよい。 
図2に示すように、本実施形態のドーパントホストでは、最外層に位置するホウ素成分揮発層2aは、ホウ素成分揮発層2aよりB含有率の高いホウ素成分揮発層2bと隣接している。このため、本実施形態のドーパントホストは、より長期にわたってより安定したB揮発能を発揮する。この効果が得られる理由は定かではないが、積層体内部のB量がより多い、すなわちBの濃度勾配を設けることにより、Bが積層体内部より表面に安定して供給されるからであると考えられる。 
なお、最外層のホウ素成分揮発層2aの内側に、ホウ素成分揮発層2aよりもB含有率の高い複数のホウ素成分揮発層2bを連続して配置することも考えられる。しかしながら、この場合は、ホウ素成分揮発層2間に生じる歪みが大きくなり、ドーパントホスト1の耐久性が低下するおそれがある。従って、ホウ素成分揮発層2aに隣接してホウ素成分揮発層2bを配置する場合は、ホウ素成分揮発層2bのホウ素成分揮発層2aとは反対側には、耐熱層3を配置することが好ましい。
 (ドーパントホストの製造方法)
 上記第1及び第2の実施形態のそれぞれのドーパントホストの製造方法は、特に限定されない。以下、ドーパントホスト1の製造方法の一例について説明する。
 まず、ホウ素成分揮発層2を形成するためのホウ素成分揮発層用グリーンシートを作製する。ホウ素成分揮発層用グリーンシートは、例えば、以下のようにして作製することができる。
 まず、SiO、Al、B、ROを含有する原料粉末を調合してバッチとし、例えば1600℃前後で約1時間溶融してガラス化した後、成形、粉砕、分級することによってガラス粉末を得る。
 次に、ガラス粉末に結合剤、可塑剤、溶剤等を添加して混錬することによりスラリーとする。なお、Al結晶を析出させやすくするため、スラリーにアルミナ粉末を混合しても構わない。
 結合剤としては、通常、熱可塑性樹脂が用いられる。熱可塑性樹脂は、乾燥後の膜強度を高め、また柔軟性を付与する成分である。スラリーにおける熱可塑性樹脂の含有率は、一般的には、スラリー中に5~30質量%程度である。 
熱可塑性樹脂としては、ポリブチルメタアクリレート、ポリメチルメタアクリレート、ポリエチルメタアクリレートなどのアクリル樹脂、ポリビニルブチラール、エチルセルロース等が使用可能であり、これらを単独あるいは混合して使用することができる。
 可塑剤は、乾燥速度をコントロールするとともに、乾燥膜に柔軟性を与える成分である。可塑剤の含有率は、一般的には、スラリー中に0~10質量%程度である。可塑剤としては、ブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等が使用可能であり、これらを単独あるいは混合して使用することができる。
 溶剤は原料をペースト化するための成分である。スラリーにおける溶剤の含有率は、一般的に、10~50質量%程度である。溶剤としては、例えばターピネオール、メチルエチルケトン、ジエチレングリコールモノブチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレート等が使用可能であり、これらを単独または混合して使用することができる。
 次に、得られたスラリーを、例えばドクターブレード法によって、ポリエチレンテレフタレート(PET)等の機械的、熱的安定性に優れたフィルムの上にシート状に成形し、乾燥させることによって溶媒や溶剤等を除去する。これにより、ホウ素成分揮発層用グリーンシートグリーンシートを完成させることができる。
 ホウ素成分揮発層用グリーンシートグリーンシート中に占める原料粉末の割合は、一般的には、60~95質量%程度である。
 ホウ素成分揮発層用グリーンシートグリーンシートの厚さは、30~1500μmであることが好ましく、50~1000μmであることがより好ましく、100~500μmであることがさらに好ましく、150~300μmであることがなお好ましい。ホウ素成分揮発層用グリーンシートが薄すぎると、作製が困難になったり、積層中に破損しやすくなる場合がある。一方、ホウ素成分揮発層用グリーンシートが厚すぎると、乾燥中にクラックが生じやすくなる場合がある。
 ドクターブレードによりホウ素成分揮発層用グリーンシートを作製する場合は、スラリーの粘度は、1~50Pa・sであることが好ましく、2~30Pa・sであることがより好ましく、3~20Pa・sであることがさらに好ましい。スラリー粘度が低すぎると、グリーンシート成形時にクレーターが発生したり、グリーンシート膜厚のバラツキが大きくなるなどの問題が生じるおそれがある。一方、スラリー粘度が高すぎると、スラリーの流動性が悪化し、グリーンシート上にムラやスジが入ったりして均一な膜が得られにくくなる。また、配管や容器へのスラリーの付着量が多くなり、材料ロスが大きくなる傾向がある。なお、スラリーの粘度は、結合剤、可塑剤、溶剤の添加量を適宜選択することにより調整することができる。
 耐熱層用のグリーンシートは、例えば、SiO、B、ROを含むガラス粉末とアルミナ粉末の混合物を原料粉末として、ホウ素成分揮発層用のグリーンシートと同様の方法で作製する。
 得られた二種類のグリーンシートを積層し、圧着して一体化する。積層させる総枚数は、グリーンシートの厚さに応じて、例えば3~100枚の範囲で適宜選択すればよい。グリーンシートの積層枚数は、5~50枚であることがより好ましい。得られたグリーンシートは、必要に応じて所望の形状に打ち抜きされる。所望の形状に打ち抜き後に積層させてもよいし、積層させた後に打ち抜きを行ってもよい。
 その後、グリーンシートの積層体を焼成することにより半導体用ホウ素ドープ材を得ることができる。焼結温度は、1000~1300℃であることが好ましく、1100~1200℃であることがより好ましい。焼成時間は焼成温度に応じて、例えば0.5~100時間の範囲で適宜調整される。焼成時間は、50~100時間であることが好ましい。 (実施例)
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1~3および比較例1) まず、所定のガラス組成となるようにガラス原料を調合した後、白金坩堝に投入して1400℃~1650℃で3時間溶融した。溶融ガラスを一対の水冷ローラーに流し込み、薄板状に成形した。次いで、得られた薄板状成形体をボールミルにより粗砕した後、アルコールを加えて湿式粉砕し、50%粒子径(D50)が2.5μmとなるように調整した。以上の工程により、原料ガラス粉末を作製した。この原料ガラス粉末そのものをホウ素成分揮発層用の原料とした。一方、耐熱層用の原料粉末としては、上記原料ガラス粉末とアルミナ粉末とを混合し、所定の組成となるように調製したものを用いた。
 次に、各原料粉末に結合剤(アクリル樹脂)、可塑剤(ブチルベンジルフタレート)および溶剤(メチルエチルケトン)を添加してスラリーを調製した。得られたスラリーをドクターブレード法によって所定の厚みに成形し、ホウ素成分揮発層用グリーンシートと耐熱層用グリーンシートとをそれぞれ作製した。乾燥後、所定寸法を有する円盤状に切断した。続いて、得られたホウ素成分揮発層用グリーンシートと耐熱層用グリーンシートとを複数枚積層し、熱圧着によって一体化した後、900~1300℃で焼結してドーパントホストを得た。
 なお、実施例1においては、図3に示すようにホウ素成分揮発層2と耐熱層3とが積層されるようにホウ素成分揮発層用グリーンシートと耐熱層用グリーンシートとを積層した。すなわち、実施例1に係るドーパントホストは、上記第2の実施形態に係るドーパントホストと実質的に同様の構成を有する。
 実施例2においては、図4に示すようにホウ素成分揮発層2と耐熱層3とが積層されるようにホウ素成分揮発層用グリーンシートと耐熱層用グリーンシートとを積層した。実施例3においては、図5に示すようにホウ素成分揮発層2と耐熱層3とが積層されるようにホウ素成分揮発層用グリーンシートと耐熱層用グリーンシートとを積層した。すなわち、実施例2,3に係るドーパントホストは、上記第1の実施形態に係るドーパントホスト1と実質的に同様の構成を有する。
 比較例1においては、図6に示すようにホウ素成分揮発層2と耐熱層3とが積層されるようにホウ素成分揮発層用グリーンシートと耐熱層用グリーンシートとを積層した。すなわち、比較例1に係るドーパントホストは、ホウ素成分揮発層2bがホウ素成分揮発層2aに置き換えられたこと以外は、上記第1の実施形態と実質的に同様の構成を有する。つまり、比較例1に係るドーパントホストでは、ホウ素成分揮発層は、一種類のみ設けられている。
 実施例1~3及び比較例1の各ドーパントホストにおいて、ホウ素成分揮発層の積層枚数は同じにした。得られたドーパントホストのホウ素成分揮発層2と耐熱層3の組成は表1に示す通りであった。
 このようにして得られた実施例1~3及び比較例1のそれぞれのドーパントホストについて、耐熱性とB揮発性を評価した。
 耐熱性は、焼結体を50×10×2mmの直方体に加工し、スパン30mmの支持台にのせて中央に15gの加重をかけた状態で、試料全体を加熱して変形が開始する温度(耐熱温度)を求めることにより評価した。結果を下記の表1及び図8に示す。
 B揮発性は次のようにして評価した。シリコンウエハーと実施例1~3及び比較例1のそれぞれのドーパントホストとを、一定間隔を空けて対向させて石英ボート上に設置し、キャリアガスを流した電気炉内で1150℃にて2時間焼成することにより、シリコンウエハー上にBを被着させた。処理後のシリコンウエハーの表層をフッ酸でエッチングした後、シリコンウエハーに電極を接続して電流を流し、表面抵抗値の経時変化を測定した。結果を図8に示す。なお、シリコンウエハーの表面抵抗値の経時的な上昇が小さいことは、シリコンウエハーに被着したB量が多く、ドーパントホストからのB揮発性が良好であることを意味する。
 (比較例2) 表1に示す組成となるように調合したガラス原料を白金坩堝に投入し、1600℃で1時間溶融してガラス化した。続いて、溶融ガラスを成形体の中で鋳込み、アニールすることにより実施例1のドーパントホストと同じ直径を有する円柱状ガラスを得た。得られた円柱状ガラスに対して熱処理を行って結晶化させ、実施例1のドーパントホストと同じ厚みとなるように切断した。このため、比較例2のドーパントホストは、単一のホウ素成分揮発層2からなるものであった。得られたドーパントホストについて、実施例1と同様にして耐熱性とB揮発性を測定した。結果を下記の表1及び図8に示す。
Figure JPOXMLDOC01-appb-T000001
 一般に、シリコンウエハーの表面抵抗値が3Ω/□であれば使用可能と判断できる。実施例1~3のドーパントホストを用いてBを被着させたシリコンウエハーは使用可能時間が20時間以上と良好であった。一方、比較例1および2のドーパントホストは、使用可能時間が10時間と短かった。また、比較例2のドーパントホストは、耐熱温度が1100℃と低かった。
 1… ドーパントホスト 2… ホウ素成分揮発層 2a…最外層のホウ素成分揮発層 2b…積層体内部のホウ素成分揮発層 3… 耐熱層

Claims (8)

  1. モル%表示で、SiO 30~60%、Al 10~30%、B 15~50%及びRO(Rはアルカリ土類金属) 2~15%を含有するホウ素成分揮発層と、 SiO 8~40%、Al 40~85%、B 5~30%及びRO(Rはアルカリ土類金属) 0.5~7%を含有する耐熱層と、を含む積層体を有し、 前記積層体の少なくとも一方の最外層が前記ホウ素成分揮発層により構成されており、かつ、前記積層体は、前記積層体内部に前記ホウ素成分揮発層をさらに含み、 前記積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層におけるBの含有率が、前記積層体内部のホウ素成分揮発層におけるBの含有率よりも低いドーパントホスト。
  2. 前記積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層におけるBの含有率が、前記積層体内部のホウ素成分揮発層におけるBの含有率よりも1モル%以上低い請求項1に記載のドーパントホスト。
  3. 前記積層体内部のホウ素成分揮発層は、前記積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層と隣接して設けられている請求項1または2に記載のドーパントホスト。
  4. 前記積層体の少なくとも一方の最外層を構成しているホウ素成分揮発層が、前記積層体内部のホウ素成分揮発層よりも厚い請求項1~3のいずれかに記載のドーパントホスト。
  5. 前記積層体の両最外層のそれぞれが前記ホウ素成分揮発層により構成されている請求項1~4のいずれかに記載のドーパントホスト。
  6. 前記ホウ素成分揮発層と、前記耐熱層とのうちの少なくとも一方は、結晶化ガラスを含む請求項1~5のいずれかに記載のドーパントホスト。
  7. 前記結晶化ガラスは、Al結晶を含む請求項6に記載のドーパントホスト。
  8. 請求項1~7のいずれかに記載のドーパントホストの製造方法であって、 前記ホウ素成分揮発層を形成するための第1のグリーンシートと、前記耐熱層を形成するためのグリーンシートとを積層したグリーンシート積層体を焼成することにより前記前記ホウ素成分揮発層と前記耐熱層とを含む積層体を得るドーパントホストの製造方法。
PCT/JP2010/070764 2009-11-24 2010-11-22 ドーパントホスト及びその製造方法 WO2011065316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010546171A JP5703753B2 (ja) 2009-11-24 2010-11-22 ドーパントホスト及びその製造方法
CN201080052777.2A CN102668035B (zh) 2009-11-24 2010-11-22 掺杂物源及其制造方法
US13/510,725 US8828550B2 (en) 2009-11-24 2010-11-22 Dopant host and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-265916 2009-11-24
JP2009265916 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065316A1 true WO2011065316A1 (ja) 2011-06-03

Family

ID=44066421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070764 WO2011065316A1 (ja) 2009-11-24 2010-11-22 ドーパントホスト及びその製造方法

Country Status (4)

Country Link
US (1) US8828550B2 (ja)
JP (1) JP5703753B2 (ja)
CN (1) CN102668035B (ja)
WO (1) WO2011065316A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法
CN112340998B (zh) * 2020-09-30 2023-05-23 重庆鑫景特种玻璃有限公司 一种防护件及其制备方法、微晶玻璃和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244716A (ja) * 1988-08-05 1990-02-14 Matsushita Electric Ind Co Ltd 不純物導入方法
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325789B2 (ja) * 1974-01-07 1978-07-28
US4282282A (en) * 1977-10-03 1981-08-04 Owens-Illinois, Inc. Barium aluminosilicate glasses, glass-ceramics and dopant
US4846902A (en) * 1988-05-19 1989-07-11 Owens-Illinois Television Products Inc. Solid diffusion source of GD oxide/P205 compound and method of making silicon wafer
JP2009117729A (ja) 2007-11-09 2009-05-28 Nippon Electric Glass Co Ltd ドーパントホストおよびその製造方法
CN102176412B (zh) 2007-11-09 2013-12-25 日本电气硝子株式会社 掺杂剂源及其制造方法
JP5382606B2 (ja) 2007-12-25 2014-01-08 日本電気硝子株式会社 半導体用ホウ素ドープ材の製造方法
JP5476849B2 (ja) 2008-08-20 2014-04-23 日本電気硝子株式会社 ドーパントホスト

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244716A (ja) * 1988-08-05 1990-02-14 Matsushita Electric Ind Co Ltd 不純物導入方法
WO2009060761A1 (ja) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. ドーパントホストおよびその製造方法

Also Published As

Publication number Publication date
US20120237780A1 (en) 2012-09-20
CN102668035A (zh) 2012-09-12
CN102668035B (zh) 2014-11-26
US8828550B2 (en) 2014-09-09
JPWO2011065316A1 (ja) 2013-04-11
JP5703753B2 (ja) 2015-04-22

Similar Documents

Publication Publication Date Title
US9040177B2 (en) Dopant host
JP3240271B2 (ja) セラミック基板
JP5803700B2 (ja) 無機全固体二次電池
TW201209003A (en) Glass ceramic composition, substrate for light-emitting element, and light-emitting device
JP2009117729A (ja) ドーパントホストおよびその製造方法
JP4018839B2 (ja) SnO2系焼結体、薄膜形成用材料および導電膜
TWI405739B (zh) 摻雜劑源及其製造方法
TW201936530A (zh) 玻璃、玻璃之製造方法、導電糊及太陽能電池
CN101550002A (zh) 电介质陶瓷组合物、电子部件及其制造方法
JP5703753B2 (ja) ドーパントホスト及びその製造方法
JP5476849B2 (ja) ドーパントホスト
JP5382606B2 (ja) 半導体用ホウ素ドープ材の製造方法
TW201037797A (en) Ceramic substrate and method for fabricating the same
WO2019059641A2 (ko) 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물
TW200405889A (en) Dielectric material for a plasma display panel
JP2006156587A (ja) 積層型圧電素子
JP4930676B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
JP2007234625A (ja) 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
US20240239716A1 (en) Electrostatic chuck, electrostatic chuck heater comprising same, and semiconductor holding device
KR101303924B1 (ko) 알루미나 완충층을 포함하는 고밀도의 압전 후막 및 그 제조방법
JP4161102B2 (ja) プラズマディスプレイパネル用誘電体材料
JP3878790B2 (ja) 突起付基板とその製造方法、並びに平面型ディスプレイとその製造方法
JP2005126250A (ja) ガラスセラミックス組成物および電子回路基板
JP3878792B2 (ja) 突起付き基板およびその製造方法並びに平面型ディスプレイ
TW202122609A (zh) 蒸鍍用板與氧化物透明導電膜以及氧化錫系燒結體的製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010546171

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201080052777.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13510725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833162

Country of ref document: EP

Kind code of ref document: A1