WO2011065234A1 - ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール - Google Patents

ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール Download PDF

Info

Publication number
WO2011065234A1
WO2011065234A1 PCT/JP2010/070088 JP2010070088W WO2011065234A1 WO 2011065234 A1 WO2011065234 A1 WO 2011065234A1 JP 2010070088 W JP2010070088 W JP 2010070088W WO 2011065234 A1 WO2011065234 A1 WO 2011065234A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
mass
resin composition
film
inorganic pigment
Prior art date
Application number
PCT/JP2010/070088
Other languages
English (en)
French (fr)
Inventor
智夫 斉藤
小茂田 含
康次 中島
貴史 三俣
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to EP10833081.2A priority Critical patent/EP2508563B1/en
Priority to JP2011543205A priority patent/JP5763548B2/ja
Priority to KR1020127006724A priority patent/KR101752178B1/ko
Priority to CN201080054038.7A priority patent/CN102666715B/zh
Priority to US13/501,276 priority patent/US8722791B2/en
Publication of WO2011065234A1 publication Critical patent/WO2011065234A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/72Fillers; Inorganic pigments; Reinforcing additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a polyvinylidene fluoride resin composition, a polyvinylidene fluoride resin film, a back sheet for a solar cell module, and a solar cell module. More specifically, the present invention relates to a resin composition for forming a weather resistant film constituting a back sheet of a solar cell module and a weather resistant film formed using this resin composition.
  • PVDF Polyvinylidene fluoride
  • base materials such as plastic plates for interiors and exteriors of various buildings and automobiles, and metal plates, and as an insulating material for parts of electrical and electronic equipment. It is used.
  • PVDF has attracted attention as a weather-resistant film material constituting a back sheet of a photovoltaic power generation module (see, for example, Patent Document 1). Since solar cell modules are required to have long-term durability outdoors, generally, a transparent substrate made of glass or the like, a sealing material made of a thermoplastic resin sheet such as ethylene vinyl acetate copolymer (EVA), light, etc. A photovoltaic cell and a back sheet, which are electromotive elements, are laminated in this order, and laminated and integrated by a method such as pressure heating.
  • EVA ethylene vinyl acetate copolymer
  • This solar cell backsheet is used in the lowermost layer of the solar cell module for the purpose of protecting solar cells and wiring.
  • the solar cell backsheet increases the reflectance of sunlight and increases the power generation efficiency of the solar cell module. An effect is also required.
  • the white sheet is mainly used, and the white pigment is normally mix
  • a solar cell backsheet has been proposed in which a small amount of a colored inorganic pigment for toning is blended in addition to a white pigment in order to increase the hiding power of the film (see, for example, Patent Document 3).
  • the backsheet has long-term weather resistance, heat resistance, etc.
  • Other performances such as water vapor barrier properties and gas barrier properties are also required.
  • the above-described conventional white PVDF film has a problem in that the dispersibility of white pigments such as titanium oxide and inorganic pigments for toning is poor, and these are aggregates and defects are easily generated in the film. is there.
  • the present invention is a polyvinylidene fluoride resin composition, film having good dispersibility of inorganic pigments, hardly causing defects due to poor dispersion when a film is formed, and having practical mechanical strength characteristics,
  • the main object is to provide a backsheet and a solar cell module.
  • the present inventor has made the resin component a mixed system of PVDF and polymethyl methacrylate (hereinafter abbreviated as PMMA), and has relatively high melt fluidity.
  • PMMA polymethyl methacrylate
  • the polyvinylidene fluoride resin composition according to the present invention comprises 100 parts by mass of a resin component comprising two types of polyvinylidene fluoride: a total of 50 to 95% by mass and polymethyl methacrylate: 5 to 50% by mass; It contains 7 to 40 parts by weight of a white inorganic pigment and 0.01 to 7 parts by weight of an inorganic pigment for toning, and at least one of the two types of polyvinylidene fluoride is JIS K 7210 MFR (Melt Flow Rate) measured at a temperature of 230 ° C. and a load of 3.8 kg by method A is 3 to 35 g / 10 min. Polymethyl methacrylate is heated to 230 ° C.
  • JIS K 7210 MFR Melt Flow Rate
  • one of the two types of polyvinylidene fluoride may be a pellet and the other may be a powder.
  • the polyvinylidene fluoride in the pellet body for example, one having an average particle diameter (median diameter) of 1 to 6 mm measured by a dry sieving test method defined in JIS K 0069 is used.
  • the vinylidene for example, one having an average particle diameter (median diameter) of 3 to 30 ⁇ m measured by a laser diffractometer stipulated in JIS Z 8825-1 is used, and the ratio of pellets in the entire polyvinylidene fluoride is 40 to 97.
  • the mass% and the powder ratio can be 3 to 60 mass%.
  • the white inorganic pigment those having an average particle diameter (median diameter) of 0.1 to 2 ⁇ m as measured by a laser diffraction apparatus defined in JIS Z 8825-1, for example, can be used. Further, as the inorganic pigment for toning, for example, those having an average particle diameter (median diameter) of 0.1 to 2 ⁇ m measured by a laser diffractometer specified in JIS Z 8825-1 can be used.
  • the polyvinylidene fluoride-based resin film according to the present invention is obtained by melt-kneading the above-mentioned polyvinylidene fluoride-based resin composition in a temperature range of 150 to 260 ° C. and then extruding it.
  • the solar cell module backsheet according to the present invention is obtained by laminating the aforementioned polyvinylidene fluoride resin film and a polyethylene terephthalate resin film. Furthermore, the solar cell module according to the present invention uses the above-described back sheet.
  • two types of PVDF are used in combination, and at least one of them has a relatively high melt fluidity, so that the dispersibility of the inorganic pigment is improved, there are few defects due to poor dispersion, and the weather resistance is improved.
  • a polyvinylidene fluoride resin film having excellent and practical mechanical strength characteristics and suitable as a back sheet for a solar cell module can be obtained.
  • the polyvinylidene fluoride resin composition (hereinafter also simply referred to as a resin composition) according to the first embodiment of the present invention will be described.
  • a resin composition of the present embodiment at least a white inorganic pigment and a toning inorganic pigment are blended in a resin component composed of two types of PVDF and PMMA having different forms.
  • PVDF 50 to 95% by mass in total in resin components
  • PVDF is excellent in weather resistance and heat resistance, and is a main component of the resin composition of the present embodiment.
  • MFR MFR of less than 3 g / 10 min
  • the dispersion of the white inorganic pigment and the toning inorganic pigment with respect to PVDF is lowered, and defects when formed into a film are likely to occur.
  • both types of PVDF have an MFR exceeding 35 g / 10 min, the mechanical performance such as the tensile strength of the film is lowered and the moldability is also lowered.
  • one or both of PVDF has an MFR (Melt Flow Rate) measured at a temperature of 230 ° C. and a load of 3.8 kg according to A method of JIS K 7210 at 3 to 35 g / Use 10 min of resin.
  • the MFR of PVDF is preferably 5 to 30 g / 10 min, more preferably 10 to 25 g / 10 min.
  • one of the two types of PVDF is a pellet and the other is a powder.
  • a pellet body and powder together, it becomes possible to obtain a high shearing force necessary for highly dispersing the pigment in the melting process of the raw material resin in the melt-kneading (compound) step.
  • the powder one having an average particle diameter (median diameter) of 3 to 30 ⁇ m measured with a laser diffractometer of JIS Z 8825-1 “Particle size analysis—Laser diffraction method—Part 1: Measurement principle” is used. It is desirable to do. Thereby, the shear force in the melting process can be increased without deteriorating the handleability.
  • the ratio of the pellet body to the powder in the entire PVDF is 40 to 97 mass% for the pellet body and 3 to 60 mass% for the powder.
  • the proportion of the pellets is increased and the proportion of the powder is less than 3% by mass of the whole, dispersion and mixing of PVDF, the white inorganic pigment, and the inorganic pigment for toning may not be sufficient, resulting in a nonuniform composition.
  • the proportion of the pellet body is small and the powder exceeds 60% by mass, the melting of PVDF is completed in a short time during the heat-kneading, so that the dispersion mixing of the white inorganic pigment and the inorganic pigment for toning is performed. Insufficient progress may result in pigment aggregates.
  • a more preferable range of the ratio of the pellet body to the powder in the entire PVDF is 60 to 80% by mass for the pellet body and 20 to 40% by mass for the powder.
  • the PVDF blended in the resin composition of the present embodiment may be in the range of MFR as described above, and a commercially available resin can also be used. Specifically, a homopolymer of vinylidene fluoride is preferable. However, a copolymer obtained by copolymerizing vinylidene fluoride as a main component and other fluorine-containing monomers in a range of 50% by mass or less may be used. Examples of the fluorine-containing monomer that forms a copolymer with vinylidene fluoride include known fluorine-containing monomers such as hexafluoropropylene, tetrafluoroethylene, hexafluoroisobutylene, and various fluoroalkyl vinyl ethers.
  • the method for producing these resins is not particularly limited, and polymerization is performed by a general method such as suspension polymerization or emulsion polymerization.
  • a closed reactor is equipped with a solvent such as water, a polymerization initiator, a suspension.
  • the reactor is degassed by degassing to charge the gaseous vinylidene fluoride monomer, while controlling the reaction temperature, It can be produced by a method such as advancing polymerization.
  • inorganic peroxides and organic peroxides such as persulfate are usually used, and examples thereof include di-normal propyl peroxydicarbonate (NPP) and diisopropyl peroxydicarbonate. It is done.
  • Chain transfer agents include acetone, isopropyl acetate, ethyl acetate, diethyl carbonate, dimethyl carbonate, ethyl carbonate, propionic acid, trifluoroacetic acid, trifluoroethyl alcohol, formaldehyde dimethyl acetal, 1,3-butadiene epoxide, 1,4-dioxane. , ⁇ -butyl lactone, ethylene carbonate, vinylene carbonate and the like, and acetone, ethyl acetate and the like are preferably used because they are particularly easy to obtain and handle.
  • suspending agent examples include water-soluble cellulose ethers such as partially saponified polyvinyl alcohol, methyl cellulose, and hydroxyethyl cellulose, water-soluble polymers such as acrylic acid polymers, and gelatin.
  • the MFR of PVDF can be adjusted by the polymerization temperature, the type and amount of polymerization initiator, the type and amount of chain transfer agent, and the like. For example, when the polymerization initiator and the chain transfer agent are the same type, the MFR can be increased by increasing the polymerization temperature.
  • the proportion of PVDF in the resin component is 50 to 95% by mass in total of the pellet body and the powder.
  • the blending ratio of PVDF is less than 50% by mass, the dispersion of the pigment is lowered, and defects are easily generated when a film is formed.
  • the blending ratio of PVDF in the resin component exceeds 95% by mass, mechanical performance such as film strength is lowered.
  • the preferred range of the PVDF content in the resin component is 50 to 90% by mass (PMMA: 10 to 50% by mass), more preferably 60 to 85% by mass (PMMA: 15 to 40% by mass). .
  • PMMA 5 to 50% by mass in the resin component
  • the adhesiveness necessary for laminating with another substrate can be imparted.
  • the blending amount of PMMA in the resin component is less than 5% by mass, sufficient adhesiveness cannot be obtained, or mechanical properties such as film strength are deteriorated.
  • the blending amount of PMMA in the resin component exceeds 50% by mass, the weather resistance of the film itself is lowered, and the weather resistance required for the solar battery back sheet may not be obtained. Therefore, the PMMA content in the resin component is 5 to 50% by mass.
  • PMMA blended in the resin composition of the present embodiment is not particularly limited, but is preferably composed mainly of methyl methacrylate produced by ACH method, modified ACH method, direct method, ethylene method, or the like.
  • a resin excellent in weather resistance is preferred.
  • main monomers that can be copolymerized with methyl methacrylate include ethyl (meth) acrylate, 2-propyl (meth) acrylate, and n-propyl (meth) acrylate.
  • butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like can be mentioned.
  • the PMMA used in the resin composition of the present embodiment has an MFR (MeltMeflow rate) of 2 to 20 g / 10 min measured according to JIS K 7210 Method A at a temperature of 230 ° C. and a load of 10 kg. Since PMMA having an MFR in this range has good compatibility with PVDF, it can have appropriate strength and flexibility without generating defects due to segregation of the resin when formed into a film.
  • the MFR of PMMA is preferably 4 to 15 g / 10 min, more preferably 6 to 12 g / 10 min.
  • the white inorganic pigment is blended, for example, in order to ensure the concealability required for a film used for a solar cell module backsheet.
  • the amount of the white inorganic pigment is less than 7 parts by mass per 100 parts by mass of the resin component, sufficient concealability and visible light reflectance cannot be obtained.
  • the blending amount of the white inorganic pigment exceeds 40 parts by mass per 100 parts by mass of the resin component, the mechanical strength when formed into a film is reduced, or appearance defects due to poor dispersion increase. Accordingly, the blending amount of the white inorganic pigment is 7 to 40 parts by mass with respect to 100 parts by mass of the resin component composed of PVDF and PMMA.
  • the blending amount of the white inorganic pigment is preferably 10 to 35 parts by weight, more preferably 15 to 30 parts by weight, per 100 parts by weight of the resin component.
  • the white inorganic pigment preferably has an average particle diameter (median diameter) measured by a laser diffraction apparatus specified in JIS Z 8825-1 of 0.1 to 2 ⁇ m, more preferably 0.20 to 1 ⁇ m. Thereby, the dispersibility at the time of melt-kneading becomes favorable, and a film with few appearance defects can be obtained.
  • the material of the white inorganic pigment blended in the resin composition of the present embodiment is not particularly limited, and examples thereof include magnesium oxide, barium sulfate, titanium oxide, basic lead carbonate, and zinc oxide.
  • examples thereof include magnesium oxide, barium sulfate, titanium oxide, basic lead carbonate, and zinc oxide.
  • rutile crystal titanium dioxide having a large refractive index and coloring power and a small photocatalytic activity.
  • the white inorganic pigment is preferably titanium oxide whose particle surface is coated with alumina and / or silica.
  • the dispersion of the white inorganic pigment in the film is further improved, the PVDF is prevented from being thermally decomposed by catalytic action during the heat-kneading and film formation in the production of the resin composition, and when the film is used outdoors. It is possible to prevent deterioration of the light beam and ensure weather resistance.
  • Inorganic pigment for toning 0.01 to 7 parts by mass with respect to 100 parts by mass of resin component
  • the inorganic pigment for toning is blended in order to finely adjust the color tone when formed into a film and to improve heat resistance.
  • the blending amount of the inorganic pigment for toning is less than 0.01 parts by mass per 100 parts by mass of the resin component, the coloring power and the heat resistance improvement effect cannot be sufficiently obtained.
  • the blending amount of the inorganic pigment for toning exceeds 7 parts by mass per 100 parts by mass of the resin component, it becomes difficult to uniformly disperse in the resin, and the appearance defect of the film increases.
  • the blending amount of the inorganic pigment for toning is 0.01 to 7 parts by mass with respect to 100 parts by mass of the resin component composed of PVDF and PMMA.
  • the blending amount of the inorganic pigment for toning is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass per 100 parts by mass of the resin component.
  • the average particle diameter of the inorganic pigment for toning is preferably from 0.1 to 2 ⁇ m, more preferably from the viewpoint of having sufficient coloring power and concealing property and suppressing the formation of aggregated particles. 20 to 1 ⁇ m.
  • the average particle diameter is a median diameter measured by a laser diffractometer stipulated in JIS Z 8825-1.
  • the material of the inorganic pigment for toning blended in the resin composition of the present embodiment is not particularly limited, but for example, oxides of chromium, zinc, iron, nickel, aluminum, cobalt, manganese, copper and the like
  • a complex oxide pigment or the like in which several kinds selected from among them are solid-dissolved by firing can be used. Further, one or several complex oxide pigments can be mixed and used.
  • this toning inorganic pigment it is preferable to coat the surface of this toning inorganic pigment with a silane coupling agent before blending.
  • a silane coupling agent various silane coupling agents can be used.
  • n-hexylmethoxysilane having a reactive functional group as a hexyl group and a hydrolyzable group as a methoxy group has a drawback when a film is formed. It is effective in suppressing the occurrence.
  • the resin composition of the present embodiment can be obtained, for example, by melt-kneading the above-described pelletized PVDF and powdered PVDF, PMMA, white inorganic pigment, toning inorganic pigment, and the like by a general method.
  • the kneading method is not particularly limited, and various mixers or kneaders equipped with a heating device such as a twin-screw extruder, a continuous type and a batch type kneader can be used.
  • a twin-screw extruder a continuous type and a batch type kneader
  • the most suitable apparatus for melt kneading from the viewpoint of versatility is a twin screw extruder.
  • a polyvinylidene fluoride resin film can be obtained by melt-kneading the resin composition of this embodiment in the temperature range of 150 to 260 ° C. and then extrusion molding.
  • the film forming method is not particularly limited and can be formed by a general method, but a method of forming a film using a T-die for film by an extruder is preferable.
  • the raw material may be supplied by using the resin composition prepared by melt-kneading by the above-mentioned method, but the individual raw materials are mixed and directly fed to a single-screw or twin-screw extruder for melting.
  • the film may be formed by kneading and extrusion molding through a film T-die.
  • the temperature of the melt kneading is less than 150 ° C, the amount of heat necessary for melting the PDVF may be insufficient, and if it exceeds 260 ° C, the PDVF may be thermally decomposed. Therefore, the temperature during melt-kneading is in the range of 150 to 260 ° C.
  • the polyvinylidene fluoride resin film formed by the above-described method can be used as a back sheet for a solar cell module by laminating and bonding polyethylene terephthalate (PET) films. Bonding of these films can be performed using various adhesives.
  • PET polyethylene terephthalate
  • This back sheet can be suitably used for a solar cell module.
  • a sheet of thermoplastic resin such as EVA called a sealing material
  • the back sheet using a film made of the resin composition of the present embodiment is , And can be bonded by a hot press at 100 to 150 ° C.
  • the resin composition of the present embodiment two types of PDVF having different forms such as a pellet and a powder are used in combination, and one or both MFRs are set to 3 to 35 g / 10 min.
  • a high shear force necessary for highly dispersing the pigment can be obtained.
  • the dispersibility of the white inorganic pigment and the toning inorganic pigment can be improved, and there are few defects due to poor dispersion, and a film having excellent weather resistance and mechanical strength characteristics can be obtained.
  • the resin composition of the present embodiment is the same as the resin composition of the first embodiment described above except that two types of PVDF having different melt flow characteristics are blended.
  • PVDF 50 to 95% by mass in total in resin components
  • two types of PVDF PVDF1 and PVDF2 having different melt flow characteristics are used. These resins may be in the form of pellets or powders, and may be used by mixing them.
  • the melt flow characteristics of the respective raw resin components shown below are values measured by the MFR (Melt Flow Rate) measurement method defined in the A method of JIS K 7210 unless otherwise specified.
  • PVDF1 One of the two types of PVDF (PVDF1) has an MFR measured at a temperature of 230 ° C. and a load of 3.8 kg of 3 to 35 g / 10 min, preferably 5 to 30 g / 10 min, more preferably 10 to 25 g / 10 min. Use one.
  • the other (PDVF2) has an MFR of 2 to 30 g / 10 min, preferably 10 to 27 g / 10 min, more preferably 15 to 25 g / 10 min measured at a temperature of 230 ° C. and a load of 10 kg.
  • PVDF2 has a remarkably low MFR, and does not fall within the range described in the above-mentioned JIS under the same measurement conditions as PVDF1, so it is shown by a measurement value at a higher load.
  • PVDF1 with an MFR of 3 to 35 g / 10 min when the temperature is 230 ° C. and the load is 3.8 kg is measured at a temperature of 230 ° C. and a load of 10 kg.
  • MFR is 50 to 160 g / 10 min.
  • the dispersibility of the inorganic pigment when melt kneaded is improved.
  • the PVDF1 temperature is 230 ° C. and the MFR at a load of 3.8 kg is less than 3 g / 10 min
  • the dispersibility of the inorganic pigment in the resin composition is lowered, and defects in the film are likely to occur.
  • MFR on this condition in PVDF1 exceeds 35 g / 10min, while dispersibility of an inorganic pigment will fall, the tensile strength when it will be set as a film will fall.
  • the dispersion of the white inorganic pigment and the inorganic pigment for toning is dispersed. Can be improved. Thereby, there are few defects due to poor dispersion, and a film excellent in weather resistance and mechanical strength characteristics can be obtained.
  • the dispersibility of the pigment can be further improved by using one of two types of PDVFs having different melt flow characteristics as a pellet and the other as a powder, so that a film with extremely few defects can be realized. .
  • Example 1 (1) Preparation of inorganic pigment for toning: Black inorganic pigment powder made of chromium, manganese and copper oxide solid solution: 0.8 kg, brown pigment powder made of zinc, iron, nickel and aluminum oxide solid solution: An inorganic pigment for toning was produced by mixing 6 kg of blue pigment powder consisting of cobalt aluminate: 0.6 kg with a dry mixer. Next, 0.03 kg of n-hexyltrimethoxysilane was added to a mixed solution of 0.1 mass% acetic acid aqueous solution: 0.3 kg and ethanol: 0.3 kg to prepare a silane coupling agent solution.
  • the inorganic pigment for toning was prepared to the mixer, and the silane coupling agent solution was dripped and mixed, stirring. After mixing, the product was taken out, dried in a dryer, and then pulverized into a powder.
  • the average particle diameter (median diameter) of the obtained inorganic pigment for toning was 0.3 ⁇ m.
  • Resin component A resin having the following physical properties was used as the resin component.
  • MFR was measured by the measuring method prescribed
  • the average particle diameter (median diameter) is determined by the dry screening test method of JIS K 0069 “Chemical product screening test method” for pellets, and JIS Z 8825-1 “Particle size analysis-laser diffraction method- Measurement was performed with a laser diffraction apparatus of “Part 1: measurement principle”.
  • a pellet-shaped resin composition was obtained through a strand die having a hole diameter of 3 mm and 3 holes.
  • the composition of each component of the obtained resin composition is PVDF (A) 60 mass parts, PVDF (B) 20 mass parts, PMMA 20 mass parts, white inorganic pigment 20 mass parts, for toning
  • the inorganic pigment was 3 parts by mass.
  • Example 2 Comparative Examples 1, 2, 9 to 12 Evaluation was performed in the same manner as in Example 1 except that the supply amount of the quantitative feeder of each raw material component was adjusted to change the composition ratio of each component in the resin composition.
  • PVDF (A) for pellets and PVDF (B) for powder PVDF resins having MFR of 5 g / 10 min, 33 g / 10 min, 1 g / 10 min, and 40 g / 10 min at a temperature of 230 ° C. and a load of 3.8 kg, respectively. Evaluation was performed in the same manner as in Example 1 except that it was used.
  • Examples 6 and 7, Comparative Examples 5 and 6) As the PMMA resin, the same method as in Example 1 described above except that MFR at a temperature of 230 ° C. and a load of 10 kg is 4 g / 10 min, 18 g / 10 min, 1 g / 10 min, and 25 g / 10 min, respectively. Was evaluated.
  • Example 7 The PVDF resin was evaluated in the same manner as in Example 1 except that 80 parts by mass of powdered PVDF (B) was used without using pelletized PVDF (A).
  • Example 8 Evaluation was performed in the same manner as in Example 1 except that PVDF (B) in powder form was not used as PVDF resin but only 80 parts by mass of PVDF (A) in pellet form was used.
  • the resin compositions of Examples 1 to 14 have a significantly reduced number of film defects compared to the resin compositions of Comparative Examples 1 to 12 that are outside the scope of the present invention. It was. As a result, when two types of PVDF, a pellet body and a powder having an MFR within a specific range, are used in combination, there are few defects due to poor dispersion, excellent weather resistance, practical mechanical strength characteristics, It was confirmed that a polyvinylidene fluoride resin film suitable as a module back sheet was obtained.
  • a polyvinylidene fluoride resin composition using two types of PVDF having different melt flow characteristics was prepared, and the film characteristics were evaluated.
  • Example 21 (1) Preparation of pigment for toning: Black inorganic pigment powder composed of oxide solid solution of chromium, manganese and copper: 0.8 kg, Brown pigment powder composed of oxide solid solution of zinc, iron, nickel and aluminum: 1.6 kg A blue pigment powder composed of cobalt aluminate: 0.6 kg was mixed with a dry mixer to produce an inorganic pigment for toning. Next, 0.03 kg of n-hexyltrimethoxysilane was added to a mixed solution of 0.1 mass% acetic acid aqueous solution: 0.3 kg and ethanol: 0.3 kg to prepare a silane coupling agent solution.
  • the inorganic pigment for toning was prepared to the mixer, and the silane coupling agent solution was dripped and mixed, stirring. After mixing, the product was taken out, dried in a dryer, and then pulverized into a powder.
  • the average particle diameter (median diameter) of the obtained inorganic pigment for toning was 0.3 ⁇ m.
  • Resin component The following resin was used for the resin component.
  • MFR was measured by the measuring method prescribed
  • ⁇ PVDF1> A polyvinylidene fluoride resin having an MFR (temperature: 230 ° C., load: 3.8 kg) of 20 g / 10 min.
  • ⁇ PVDF2> A polyvinylidene fluoride resin having an MFR (temperature: 230 ° C., load: 10 kg) of 20 g / 10 min.
  • inorganic pigment for toning which was surface-coated with the silane coupling agent described above: 3 kg and titanium dioxide powder of rutile crystal as white inorganic pigment (median diameter: 0.3 ⁇ m): 20 kg Were mixed with a mixer.
  • composition of each component in the obtained resin composition is as follows: PVDF1 is 35 parts by mass (28% by mass), PVDF2 is 45 parts by mass (37% by mass), PMMA is 20 parts by mass (16% by mass), and the white inorganic pigment is 20 parts by mass (16% by mass) and 3 parts by mass (2% by mass) of the toning pigment were used.
  • Example 22 to 27 Comparative Examples 21 to 26 Evaluation was carried out in the same manner as in Example 21 described above, except that the feed rate of the quantitative feeder for each raw material component was adjusted to change the composition ratio of each component in the resin composition.
  • Example 28 and 29, Comparative Examples 27 and 28 The examples described above except that polyvinylidene fluoride resin having MFR at a temperature of 230 ° C. and a load of 3.8 kg of 5 g / 10 min, 33 g / 10 min, 2 g / 10 min, and 40 g / 10 min, respectively, was used for PVDF1. Evaluation was performed in the same manner as in No. 21.
  • Example 30 and 31 Comparative Examples 29 and 30
  • PVDF2 polyvinylidene fluoride resin having MFR at a temperature of 230 ° C. and a load of 10 kg of 4 g / 10 min, 30 g / 10 min, 1 g / 10 min, and 35 g / 10 min, respectively, as in Example 21 described above. Evaluation was performed in the same manner.
  • Example 21 As PMMA, Example 21 described above was used except that a polymethyl methacrylate resin having MFR of 2 g / 10 min, 20 g / 10 min, 1 g / 10 min, and 27 g / 10 min at a temperature of 230 ° C. and a load of 10 kg was used. Evaluation was performed in the same manner.
  • Examples 34 to 37, Comparative Examples 33 to 36 Evaluation was carried out in the same manner as in Example 21 except that the blending ratio of the white inorganic pigment or the toning inorganic pigment was changed.
  • the evaluation results of Examples 34 to 37 and Comparative Examples 33 to 36 are summarized in Table 7 below.
  • the resin compositions of Examples 21 to 37 had a greatly reduced number of film defects compared to the compositions of Comparative Examples 21 to 36 that were outside the scope of the present invention. .
  • the resin compositions of Examples 21 to 37 had a greatly reduced number of film defects compared to the compositions of Comparative Examples 21 to 36 that were outside the scope of the present invention.
  • the resin compositions of Examples 21 to 37 had a greatly reduced number of film defects compared to the compositions of Comparative Examples 21 to 36 that were outside the scope of the present invention.
  • two types of PVDF having different melt flow characteristics are used in combination, there are few defects due to poor dispersion, excellent weather resistance, practical mechanical strength characteristics, and suitable for use as a back sheet for solar cell modules. It was confirmed that a vinylidene resin film was obtained.
  • the polyvinylidene fluoride resin composition of the present invention has very few defects due to poor dispersion of the pigment, and a film having excellent weather resistance and total light reflectance of visible light can be obtained, it is particularly useful for backsheets of solar cell modules. As a material, it can be expected to contribute to the extension of the lifetime of solar cells. Moreover, since the film obtained from the resin composition of this invention has high heat resistance and insulation, it can also be utilized as a protective film in the electric / electronic field, an interior / exterior protective film for buildings and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

 無機顔料の分散性が良好で、フィルムを形成したときに、分散不良による欠点が発生ににくく、実用的な機械的強度特性を有するポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュールを提供する。 形態又は溶融流動特性が異なる2種類のポリフッ化ビニリデン:合計で50~95質量%及びポリメタクリル酸メチル:5~50質量%からなる樹脂成分100質量部に対して、白色無機顔料を7~40質量部と、調色用無機顔料を0.01~7質量部とを配合して樹脂組成物とする。その際、2種類のポリフッ化ビニリデンのうち少なくとも1種は、MFR(230℃、3.8kg荷重)が3~35g/10minのものを使用し、ポリメタクリル酸メチルには、MFR(230℃、10kg荷重)が2~20g/10minのものを使用する。

Description

ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール
 本発明は、ポリフッ化ビニリデン系樹脂組成物、ポリフッ化ビニリデン系樹脂フィルム、太陽電池モジュール用バックシート及び太陽電池モジュールに関する。より詳しくは、太陽電池モジュールのバックシートを構成する耐候性フィルムを製膜するための樹脂組成物及びこの樹脂組成物を用いて製膜した耐候性フィルムに関する。
 ポリフッ化ビニリデン(以下、PVDFと略す。)は、機械的強度及び耐薬品性に優れており、化学プラントの配管材料や貯槽、反応缶内面のライニング材料として用いられている。また、PVDFは、耐候性にも優れていることから、各種建築物や自動車の内外装用プラスチック板、金属板等の基材の表面保護用フィルム、及び電気・電子機器の部品の絶縁材料としても用いられている。
 更に、近年、太陽光発電モジュールのバックシートを構成する耐候性フィルム材料として、PVDFが注目されてきている(例えば、特許文献1参照。)。太陽電池モジュールは、屋外で長時間の耐久性を要求されるため、一般に、ガラス等からなる透明基板、エチレン酢酸ビニル共重合体(EVA)等の熱可塑性樹脂シート等からなる封止材、光起電力素子である太陽電池セル及びバックシートを、この順で積層し、加圧加熱等の方法でラミネートして一体化した構造となっている。
 この太陽電池用バックシートは、太陽電池セル及び配線の保護の目的で太陽電池モジュールの最下層に用いられるが、保護目的の他に太陽光の反射率を高め、太陽電池モジュールの発電効率を高める効果も求められる。このため、従来の太陽電池モジュールでは、主に、白色のシートが用いられており、太陽電池用のPVDFフィルムには、通常、白色顔料が配合されている(例えば、特許文献2参照。)。更に、従来、フィルムの隠蔽力を高めるため、白色顔料の他に調色用の有色無機顔料を若干量配合した太陽電池用バックシートも提案されている(例えば、特許文献3参照。)。
特開2000-294813号公報 特開2009-71236号公報 特開2008-28294号公報
 太陽電池モジュールでは、水蒸気や酸素及び他の腐食性の気体等が侵入すると配線の腐食や太陽電池セルの機能低下の原因となるため、そのバックシートには、長期の耐候性、耐熱性等の他に水蒸気バリア性、ガスバリア性等の性能も要求される。しかしながら、前述した従来の白色系PVDFフィルムは、酸化チタン等の白色顔料及び調色用の無機顔料の分散性が悪く、これらが凝集物となって、フィルムに欠点が生成しやすいという問題点がある。
 そして、バックシートに欠点があると、そこから大気中の水分や酸素、腐食性のガス等が太陽電池モジュール内に侵入し、配線の腐食、太陽電池セルの機能低下及び絶縁不良等の原因となる。更に、このような欠点部分は、機械的強度や柔軟性を低下させるため、欠点を起点にフィルムの裂けが発生するという問題点もある。
 そこで、本発明は、無機顔料の分散性が良好で、フィルムを形成したときに、分散不良による欠点が発生ににくく、実用的な機械的強度特性を有するポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュールを提供することを主目的とする。
 本発明者は、前述した課題を解決するために、鋭意検討した結果、樹脂成分を、PVDFとポリメタクリル酸メチル(以下、PMMAと略す。)の混合系とし、更に、溶融流動性が比較的高い2種類のPVDFを併用することにより、フィルム製膜したときの無機顔料の分散不良が著しく改善され、分散不良による欠点が大幅に減少することを見出し、本発明に至った。
 即ち、本発明に係るポリフッ化ビニリデン系樹脂組成物は、2種類のポリフッ化ビニリデン:合計で50~95質量%及びポリメタクリル酸メチル:5~50質量%からなる樹脂成分を100質量部と、白色無機顔料を7~40質量部と、調色用無機顔料を0.01~7質量部と、を含有するものであり、2種類のポリフッ化ビニリデンのうち少なくとも1種は、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR(Melt Flow Rate)が3~35g/10minであり、ポリメタクリル酸メチルは、JIS K 7210のA法により、温度を230℃、荷重を10kgにして測定したMFR(Melt flow rate)が2~20g/10minである。
 この組成物では、2種類のポリフッ化ビニリデンのうち、一方をペレット体とし、他方を粉体としてもよい。
 その場合、ペレット体のポリフッ化ビニリデンとして、例えばJIS K 0069で規定されている乾式ふるい分け試験法により測定した平均粒子径(メジアン径)が1~6mmのものを使用すると共に、粉体のポリフッ化ビニリデンとして、例えばJIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が3~30μmのものを使用し、ポリフッ化ビニリデン全体におけるペレット体の割合を40~97質量%、粉体の割合を3~60質量%とすることができる。
 又は、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR(Melt Flow Rate)が3~35g/10minであるポリフッ化ビニリデンと、JIS K 7210のA法により、温度を230℃、荷重を10kgとして測定したMFR(Melt Flow Rate)が2~30g/10minであるポリフッ化ビニリデンと、を含有させてもよい。
 また、白色無機顔料としては、例えばJIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が0.1~2μmのものを使用することができる。
 更に、調色用無機顔料としては、例えばJIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が0.1~2μmのものを使用することができる。
 本発明に係るポリフッ化ビニリデン系樹脂フィルムは、前述したポリフッ化ビニリデン系樹脂組成物を、150~260℃の温度範囲で溶融混練した後、押出成形して得たものである。
 また、本発明に係る太陽電池モジュール用バックシートは、前述したポリフッ化ビニリデン系樹脂フィルムと、ポリエチレンテレフタレート系樹脂フィルムとを積層したものである。
 更に、本発明に係る太陽電池モジュールは、前述したバックシートを用いたものである。
 本発明によれば、2種類のPVDFを併用し、少なくともその一方を比較的溶融流動性が高いものにしているため、無機顔料の分散性が向上し、分散不良による欠点が少なく、耐候性に優れ、実用的な機械的強度特性を有し、太陽電池モジュール用バックシートとして好適なポリフッ化ビニリデン系樹脂フィルムが得られる。
 以下、本発明を実施するための形態について、詳細に説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより発明の範囲が狭く解釈されることはない。
(第1の実施形態)
 先ず、本発明の第1の実施形態に係るポリフッ化ビニリデン系樹脂組成物(以下、単に樹脂組成物ともいう。)について説明する。本実施形態の樹脂組成物は、形態が異なる2種類のPVDFとPMMAとからなる樹脂成分に、少なくとも、白色無機顔料及び調色用無機顔料が配合されている。
[PVDF:樹脂成分中に合計で50~95質量%]
 PVDFは、耐候性及び耐熱性に優れており、本実施形態の樹脂組成物の主成分である。しかしながら、配合するPVDFを、2種類ともMFRが3g/10min未満のものにすると、PVDFに対する白色無機顔料及び調色用無機顔料の分散が低下し、フィルムとした時の欠点が発生しやすくなる。一方、PVDFを、2種類ともMFRが35g/10minを超えるものにすると、フィルムの引っ張り強度等の機械的性能が低下すると共に、成形性が低下する。
 よって、本実施形態の樹脂組成物では、PVDFの一方又は両方に、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR(Melt Flow Rate)が3~35g/10minの樹脂を使用する。なお、PVDFのMFRは、5~30g/10minが好ましく、より好ましくは10~25g/10minである。これにより、白色無機顔料及び調色用無機顔料の分散性が著しく向上し、フィルムにしたときの欠点発生がほとんどなく、更に、フィルムの機械的性能も向上させることができる。
 更に、本実施形態の樹脂組成物では、2種類のPVDFのうち一方をペレット体とし、他方を粉体とすることが望ましい。このように、ペレット体と粉体を併用することにより、溶融混練(コンパウンド)工程における原料樹脂の溶融過程で、顔料を高分散させるために必要な高いせん断力を得ることが可能となる。
 その際、ペレット体としては、JIS K 0069「化学製品のふるい分け試験方法」の乾式ふるい分け試験方法によって求めた平均粒子径(メジアン径)が1~6mmのものを使用することが望ましい。また、粉体としては、JIS Z 8825-1「粒子径解析-レーザー回折法-第1部:測定原理」のレーザー回折装置で測定した平均粒子径(メジアン径)が3~30μmのものを使用することが望ましい。これにより、取り扱い性を低下させることなく、溶融過程におけるせん断力を高めることができる。
 そして、本実施形態の樹脂組成物においては、PVDF全体に占めるペレット体と粉体の割合が、ペレット体が40~97質量%、粉体が3~60質量%であることが好ましい。ペレット体の割合が多くなり、粉体の割合が全体の3質量%未満になると、PVDFと白色無機顔料及び調色用無機顔料の分散混合が十分でなく、不均一組成となることがある。また、逆にペレット体の割合が少なく、粉体が全体の60質量%を超えると、加熱混練時にPVDFの溶融が短時間で完結するため、白色無機顔料及び調色用無機顔料の分散混合が十分進まず、顔料の凝集体となることがある。なお、PVDF全体に占めるペレット体と粉体の割合のより好ましい範囲は、ペレット体が60~80質量%、粉体が20~40質量%である。
 本実施形態の樹脂組成物に配合されるPVDFは、MFRが前述した範囲のものであればよく、市販の樹脂を用いることもできる。具体的には、フッ化ビニリデンのホモポリマ-が好ましいが、フッ化ビニリデンを主成分として、他の含フッ素モノマーを50質量%以下の範囲で共重合した共重合体であってもよい。このフッ化ビニリデンと共重合体を形成する含フッ素モノマーとしては、例えばヘキサフルオロプロピレン、テトラフルオロエチレン、ヘキサフルオロイソブチレン、各種のフルオロアルキルビニルエーテル等の公知の含フッ素モノマーが挙げられる。
 また、これらの樹脂を製造する方法も特に限定されるものではなく、一般的な懸濁重合又は乳化重合等の方法で重合され、通常、密閉反応器に水等の溶媒、重合開始剤、懸濁剤(又は乳化剤)、連鎖移動剤等を仕込んだ後、反応器を脱気により減圧してガス状のフッ化ビニリデン単量体を仕込み、反応温度を制御しながらフッ化ビニリデン単量体の重合を進める等の方法で製造することができる。
 その際、重合開始剤としては、通常、過硫酸塩のような無機過酸化物や有機過酸化物が用いられ、例えばジノルマルプロピルパーオキシジカーボネート(NPP)、ジイソプロピルパーオキシジカーボネート等が挙げられる。
 連鎖移動剤としては、アセトン、酢酸イソプロピル、酢酸エチル、炭酸ジエチル、炭酸ジメチル、炭酸エチル、プロピオン酸、トリフロロ酢酸、トリフロロエチルアルコール、ホルムアルデヒドジメチルアセタール、1,3-ブタジエンエポキサイド、1,4-ジオキサン、β-ブチルラクトン、エチレンカーボネート、ビニレンカーボネート等が挙げられ、特に入手や取り扱いの容易さ等からアセトン、酢酸エチル等が好適に用いられる。
 懸濁剤(乳化剤)としては、部分ケン化ポリビニルアルコール、メチルセルロース、ヒドロキシエチルセルロース等の水溶性セルロースエーテル、アクリル酸系重合体、ゼラチン等の水溶性ポリマーが挙げられる。
 なお、PVDFのMFRは、重合温度、重合開始剤の種類と量、連鎖移動剤の種類と量等によって調整することができる。例えば、重合開始剤と連鎖移動剤の種類が同一のときには重合温度を高くすれば、MFRを高くすることができる。
 更にまた、本実施形態の樹脂組成物では、樹脂成分中のPVDFの割合を、ペレット体と粉体との合計で50~95質量%とする。PVDFの配合割合が、50質量%未満の場合、顔料の分散が低下し、フィルムとした時に欠点が発生しやすくなる。一方、樹脂成分におけるPVDFの配合割合が95質量%を超えると、フィルム強度等の機械的性能が低下する。なお、樹脂成分におけるPVDFの配合割合の好適な範囲は50~90質量%(PMMA:10~50質量%)であり、更に好ましくは60~85質量%(PMMA:15~40質量%)である。
[PMMA:樹脂成分中に5~50質量%]
 PVDFにPMMA配合すると、フィルムなどに加工した際に、他の基材と積層するために必要な接着性を付与することができる。しかしながら、樹脂成分中のPMMAの配合量が5質量%未満の場合、十分な接着性が得られなかったり、フィルム強度等の機械的特性が低下したりする。一方、樹脂成分中のPMMAの配合量が50質量%超になると、フィルム自体の耐候性が低下し、太陽電池バックシートに必要な耐候性が得られない虞がある。よって、樹脂成分中のPMMA含有量は5~50質量%とする。
 本実施形態の樹脂組成物に配合されるPMMAは、特に限定されるものではないが、好ましくはACH法、改質ACH法、直接法、エチレン法等で製造したメタクリル酸メチルを主成分とする耐候性に優れた樹脂が好ましい。メタクリル酸メチルに共重合できる主なモノマーとしては、例えばエチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、n-プロピル(メタ)アクリレート等である。可撓性を付与する目的で、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。
 また、本実施形態の樹脂組成物で使用するPMMAは、JIS K 7210のA法により、温度を230℃、荷重を10kgにして測定したMFR(Melt flow rate)が2~20g/10minである。MFRがこの範囲のPMMAは、PVDFとの相溶性が良好であるため、フィルムとした時に樹脂の偏析による欠点を生成することなく、適度な強度、柔軟性とすることができる。なお、PMMAのMFRは、4~15g/10minであることが好ましく、より好ましくは6~12g/10minである。
[白色無機顔料:樹脂成分100質量部に対して7~40質量部]
 白色無機顔料は、例えば太陽電池モジュール用バックシートに使用されるフィルムに必要とされる隠蔽性を確保するために配合されている。しかしながら、白色無機顔料の配合量が樹脂成分100質量部あたり7質量部未満であると、十分な隠蔽性や可視光の光線反射率が得られない。一方、白色無機顔料の配合量が樹脂成分100質量部あたり40質量部を超えると、フィルムにしたときの機械的強度が低下したり、分散不良による外観欠陥の発生が多くなったりする。よって、白色無機顔料の配合量は、PVDFとPMMAからなる樹脂成分100質量部に対して7~40質量部とする。
 なお、白色無機顔料の配合量は、樹脂成分100質量部あたり、10~35質量部が好ましく、更に好ましくは15~30質量部である。これにより、可視光の全光線反射率が大きく、更に、機械的強度及び柔軟性が適正で、取り扱い性が良好なフィルムが得られる。
 また、白色無機顔料は、JIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が、0.1~2μmであることが好ましく、更に好ましくは0.20~1μmである。これにより、溶融混練時の分散性が良好となり、外観欠陥の少ないフィルムを得ることができる。
 本実施形態の樹脂組成物に配合される白色無機顔料の材質は、特に限定されるものではないが、例えば酸化マグネシウム、硫酸バリウム、酸化チタン、塩基性炭酸鉛、酸化亜鉛等が挙げられる。各種白色無機顔料の中でも、特に、屈折率と着色力が大きく、光触媒作用が少ないルチル型結晶の二酸化チタンを使用することが望ましい。
 また、この白色無機顔料は、粒子の表面をアルミナ及び/又はシリカでコートした酸化チタンであることが好ましい。これにより、白色無機顔料のフィルムへの分散が更に良好で、樹脂組成物製造の際の加熱混練時及び製膜時に触媒作用によりPVDFが加熱分解するのを防止し、更にフィルムを屋外使用した場合の光線劣化を防止し耐候性を確保することができる。
[調色用無機顔料:樹脂成分100質量部に対して0.01~7質量部]
 調色用無機顔料は、フィルムにしたときの色調を微調整すると共に、耐熱性を向上させるために配合されている。しかしながら、調色用無機顔料の配合量が樹脂成分100質量部あたり0.01質量部未満であると、着色力や耐熱性向上効果が十分に得られない。一方、調色用無機顔料の配合量が樹脂成分100質量部あたり7質量部を超えると、樹脂中に均一に分散させることが困難になり、フィルムの外観欠陥が増加する。よって、調色用無機顔料の配合量は、PVDFとPMMAからなる樹脂成分100質量部に対して0.01~7質量部とする。なお、調色用無機顔料の配合量は、樹脂成分100質量部あたり、0.1~5質量部であることが好ましく、更に好ましくは0.5~3質量部である。
 また、調色用無機顔料の平均粒子径は、十分な着色力や隠蔽性を有し、凝集粒子の生成を抑制するという観点から、0.1~2μmであることが好ましく、更に好ましくは0.20~1μmである。なお、ここでいう平均粒子径は、JIS Z 8825-1に規定されているレーザー回折装置により測定したメジアン径である。
 本実施形態の樹脂組成物に配合される調色用無機顔料の材質は、特に限定されるものではないが、例えばクロム、亜鉛、鉄、ニッケル、アルミニウム、コバルト、マンガン及び銅等の酸化物の中から選ばれた数種を、焼成により固溶させた複合酸化物系顔料等を用いることができる。更に、1種又は数種の複合酸化物顔料を混合して使用することもできる。
 また、この調色用無機顔料は、配合前にシランカップリング剤で表面をコートすることが好ましい。その際、各種のシランカップリング剤を使用することができるが、特に反応性官能基がヘキシル基、加水分解性基がメトキシ基のn-ヘキシルメトキシシランが、フィルムを製膜したときの欠点の発生を抑制するのに有効である。
[製造方法]
 本実施形態の樹脂組成物は、例えば前述したペレット体のPVDFと粉体のPVDF、PMMA、白色無機顔料及び調色用無機顔料等を一般的な方法で溶融混練することにより得られる。その混練方法は特に限定されるものではないが、二軸押出機、連続式及びバッチ式のニーダー等の加熱装置を備えた各種混合機又は混練機を使用することができる。なお、汎用性の面から溶融混練に最適な装置は、二軸押出機である。
[フィルム]
 本実施形態の樹脂組成物は、150~260℃の温度範囲で溶融混練した後、押出成形することにより、ポリフッ化ビニリデン系樹脂フィルムを得ることができる。その製膜方法は特に限定されるものではなく、一般的な方法で製膜できるが、押出機によりフィルム用Tダイを用いて製膜する方法が好ましい。その際、原料の供給は、前述した方法で溶融混練して作成した樹脂組成物を用いてもよいが、個々の原料を混合して、直接単軸又は二軸の押出機に供給して溶融混練し、フィルム用Tダイを通して押出成形することにより製膜してもよい。
 ただし、溶融混練の温度が150℃未満の場合、PDVFの溶融に必要な熱量が不足する可能性があり、また260℃を超えるとPDVFが熱分解する虞がある。よって、溶融混練の際の温度は、150~260℃の範囲とする。
[バックシート]
 前述した方法で形成されたポリフッ化ビニリデン系樹脂フィルムは、ポリエチレンテレフタレート(PET)系フィルムを積層し、貼り合わせることにより、太陽電池モジュール用のバックシートとすることができる。これらのフィルムの貼り合わせには、各種接着剤による接着が可能である。
 このバックシートは、太陽電池モジュールに好適に使用することができる。太陽電池モジュールのバックシートとして使用する場合は、封止材と呼ばれるEVA等の熱可塑性樹脂のシートとを貼り合わせる必要があるが、本実施形態の樹脂組成物からなるフィルムを使用したバックシートは、100~150℃の加熱プレスにより貼り合わせることが可能である。
 以上詳述したように、本実施形態の樹脂組成物では、ペレット体と粉体のように形態の異なる2種のPDVFを併用し、その一方又は両方のMFRを3~35g/10minとしているため、溶融混練工程において顔料を高分散させるために必要な高いせん断力を得ることができる。その結果、白色無機顔料及び調色用無機顔料の分散性を向上させることが可能となり、分散不良による欠点が少なく、耐候性及び機械的強度特性に優れたフィルムが得られる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係るポリフッ化ビニリデン系樹脂組成物について説明する。本実施形態の樹脂組成物は、溶融流動特性が異なる2種類のPVDFを配合している以外は、前述した第1の実施形態の樹脂組成物と同様である。
[PVDF:樹脂成分中に合計で50~95質量%]
 本実施形態の樹脂組成物では、溶融流動特性が異なる2種類のPVDF(PVDF1及びPVDF2)を使用する。これらの樹脂はペレット形状のものでも粉状のものであってもよく、これらを混合して用いてもよい。なお、以下に示す各原料樹脂成分の溶融流動特性は、特に断らない限り、JIS K 7210のA法に規定されたMFR(Melt Flow Rate)の測定法により測定した値である。
 2種類のPVDFのうちの一方(PVDF1)は、温度を230℃、荷重を3.8kgとして測定したMFRが3~35g/10min、好ましくは5~30g/10min、更に好ましくは10~25g/10minのものを用いる。また、他方(PDVF2)には、温度を230℃、荷重を10kgとして測定したMFRが2~30g/10min、好ましくは10~27g/10min、更に好ましくは15~25g/10minのものを用いる。
 PVDF2はそのMFRが著しく低く、PVDF1と同じ測定条件では、前述したJISに記載された範囲に入らないので、より高荷重での測定値で示している。ここで、同一条件での対比のため、温度を230℃、荷重を3.8kgにしたときのMFRが3~35g/10minであるPVDF1を、温度を230℃、荷重を10kgにして測定した場合、MFRは50~160g/10minとなる。
 このように、溶融流動特性の異なる2種類のPVDF樹脂を用いることにより、溶融混練したときの無機顔料の分散性が向上する。ただし、PVDF1の温度230℃、荷重3.8kgにおけるMFRが3g/10minの未満の場合、樹脂組成物中での無機顔料の分散性が低下し、フィルムとしたときの欠点が発生しやすくなる。また、PVDF1におけるこの条件でのMFRが35g/10minを超えると、無機顔料の分散性が低下すると共に、フィルムとしたときの引張り強度が低下する。
 一方、溶融流動特性の低い側のPVDF2の温度230℃、荷重10kgにおけるMFRが2g/10min未満の場合、無機顔料の分散が著しく低下し、フィルムに多数の欠点を生じる。また、PVDF2におけるこの条件のMFRが30g/10minを超えると、フィルムの引張り強度が低下する。
 更に、PVDF1、PVDF2及びPMMAのいずれかの比率が、前述した範囲から外れると、フィルムとしたとき欠点の生成が多くなる。更にまた、樹脂成分中のPMMA量が50質量%を超えると、耐候性フィルムとしての特徴を十分得ることができないばかりか、引張り強度が著しく低下する。
 前述したように、本実施形態の樹脂組成物では、溶融流動特性が異なる2種のPDVFを併用し、そのMFRを特定の範囲内にしているため、白色無機顔料及び調色用無機顔料の分散性を向上させることができる。これにより、分散不良による欠点が少なく、耐候性及び機械的強度特性に優れたフィルムが得られる。特に、溶融流動特性が異なる2種のPDVFの一方をペレット体、他方を粉体とすることにより、顔料の分散性を更に向上させることができるため、欠陥が極めて少ないフィルムを実現することができる。
 なお、本実施形態の樹脂組成物における上記以外の構成及び効果は、前述した第1の実施形態と同様である。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について説明する。なお、本発明はこれらの実施例に限定されるものではない。先ず、本発明の第1実施例として、形態が異なる2種類のPVDFを使用したポリフッ化ビニリデン系樹脂組成物を調製し、そのフィルム特性を評価した。
(実施例1)
(1)調色用無機顔料の調製
 クロム、マンガン及び銅の酸化物固溶体からなる黒色の無機顔料粉末:0.8kg、亜鉛、鉄、ニッケル及びアルミニウムの酸化物固溶体からなる茶色顔料粉末:1.6kg、アルミン酸コバルトからなる青色顔料粉末:0.6kgを、乾式の混合機で混ぜ合わせて、調色用無機顔料を製造した。次に、0.1質量%酢酸水溶液:0.3kgとエタノール:0.3kgの混合液に、n-ヘキシルトリメトキシシラン:0.03kgを添加し、シランカップリング剤溶液を調製した。そして、調色用無機顔料をミキサーに仕込み、攪拌しながら、シランカップリング剤溶液を滴下して混合した。混合後、取り出して、乾燥機にて乾燥した後、粉砕して粉末状にした。得られた調色用無機顔料の平均粒子径(メジアン径)は、0.3μmであった。
(2)樹脂成分
 樹脂成分には、下記の物性を有する樹脂を用いた。なお、MFRはJIS K 7210のA法に規定された測定法により測定した。また、平均粒子径(メジアン径)は、ペレット体はJIS K 0069「化学製品のふるい分け試験方法」の乾式ふるい分け試験方法で、粉体はJIS Z 8825-1「粒子径解析-レーザー回折法-第1部:測定原理」のレーザー回折装置により測定した。
<PVDF(A)>
 MFR(温度:230℃、荷重:3.8kg)が20g/10minで、平均粒子径(メジアン径)が3mmであるペレット体のポリフッ化ビニリデン樹脂。
<PVDF(B)>
 MFR(温度:230℃、荷重:3.8kg)が20g/10minで、平均粒子径(メジアン径)が10μmである粉体のポリフッ化ビニリデン樹脂。
<PMMA>
 MFR(温度:230℃、荷重:10kg)が9g/10minであるポリメタクリル酸メチル樹脂。
(3)樹脂組成物の調製
 先ず、前述したシランカップリング剤で表面コートした調色用無機顔料:3kgと、白色無機顔料としてルチル型結晶の二酸化チタン粉末(メジアン径:0.3μm):20kgをミキサーにて混合した。次に、樹脂組成物調製のための混練装置として、スクリュー径30mm、L/D=40の二軸押出機に、前述した調色用無機顔料、PVDF(A)、PVDF(B)及びPMMAを、それぞれ個別の定量フィーダーにて、各成分の配合比に対応する速度で供給して溶融混練した。その後、穴径3mm、3穴のストランドダイを通してペレット状の樹脂組成物を得た。そして、得られた樹脂組成物の各成分の組成は、PVDF(A)が60質量部、PVDF(B)が20質量部、PMMAが20質量部、白色無機顔料が20質量部、調色用無機顔料が3質量部であった。
(4)フィルムの製膜とフィルムの欠点評価
 得られた樹脂組成物を、スクリュー径40mm、L/D=30の単軸押出機に幅400mmのTダイを取り付けた製膜機にて、スクリュー回転数:35rpm、バレル設定温度:240℃で押出し、フィルム幅:300mm、平均厚さ:18μmのフィルムを製膜した。得られたフィルムの欠点の評価として、巻き取ったフィルム(幅300mm×長さ2000m)について、欠点検出器を用いて50m内の欠点数を評価した。なお、本実施例では、欠点数評価の目安として、フィルムの欠点サイズが0.05mm以上のものの個数を数えた。
(5)フィルムの特性評価
 得られたフィルムについて、JIS K 7127に規定されている方法で、引張り強度を測定した。なお、引張り強度の測定では、試料幅を10mm、チャック間距離を40mmとした。また、併せて、JIS K 7105に準拠して、可視光の全光線反射率を評価した。
(実施例2,3,8~14、比較例1,2,9~12)
 各原料成分の定量フィーダーの供給量を調整して、樹脂組成物中の各成分の組成比率を変更した以外は、実施例1と同様の方法で評価を行った。
(実施例4,5、比較例3,4)
 ペレット体のPVDF(A)及び粉体のPVDF(B)として、温度:230℃、荷重3.8kgにおけるMFRが、それぞれ5g/10min、33g/10min、1g/10min、40g/10minのPVDF樹脂を用いた以外は、前述した実施例1と同様の方法で評価を行った。
(実施例6,7、比較例5,6)
 PMMAの樹脂として、温度:230℃、荷重:10kgにおけるMFRが、それぞれ4g/10min、18g/10min、1g/10min、25g/10minのものを用いた以外は、前述した実施例1と同様の方法で評価を行った。
(比較例7)
 PVDF樹脂として、ペレット体のPVDF(A)を用いず、粉体のPVDF(B)のみを80質量部用いた以外は、前述した実施例1と同様の方法で評価を行った。
(比較例8)
 PVDF樹脂として、粉体のPVDF(B)を用いず、ペレット体のPVDF(A)のみを80質量部用いた以外は、前述した実施例1と同様の方法で評価を行った。
 これら実施例1~14の樹脂組成物の評価結果を下記表1に、比較例1~12の樹脂組成物の評価結果を下記表2に、それぞれまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1,2に示すように、実施例1~14の樹脂組成物は、本発明の範囲から外れる比較例1~12の樹脂組成物に比べて、フィルムの欠点数が大幅に低減していた。これにより、MFRが特定の範囲内にあるペレット体と粉体の2種類のPVDFを併用すると、分散不良による欠点が少なく、耐候性に優れ、実用的な機械的強度特性を有し、太陽電池モジュール用バックシートとして好適なポリフッ化ビニリデン系樹脂フィルムが得られることが確認された。
 次に、本発明の第2実施例として、溶融流動特性が異なる2種類のPVDFを使用したポリフッ化ビニリデン系樹脂組成物を調製し、そのフィルム特性を評価した。
(実施例21)
(1)調色用顔料の調製
 クロム、マンガン及び銅の酸化物固溶体からなる黒色の無機顔料粉末:0.8kg、亜鉛、鉄、ニッケル及びアルミニウムの酸化物固溶体からなる茶色顔料粉末:1.6kg、アルミン酸コバルトからなる青色顔料粉末:0.6kgを、乾式の混合機で混ぜ合わせて、調色用無機顔料を製造した。次に、0.1質量%酢酸水溶液:0.3kgとエタノール:0.3kgの混合液に、n-ヘキシルトリメトキシシラン:0.03kgを添加し、シランカップリング剤溶液を調製した。そして、調色用無機顔料をミキサーに仕込み、攪拌しながら、シランカップリング剤溶液を滴下して混合した。混合後、取り出して、乾燥機にて乾燥した後、粉砕して粉末状にした。得られた調色用無機顔料の平均粒子径(メジアン径)は、0.3μmであった。
(2)樹脂成分
 樹脂成分には、下記の樹脂を用いた。なお、MFRはJIS K 7210のA法に規定された測定法により測定した。
<PVDF1>
 MFR(温度:230℃、荷重:3.8kg)が20g/10minであるポリフッ化ビニリデン樹脂。
<PVDF2>
 MFR(温度:230℃、荷重:10kg)が20g/10minであるポリフッ化ビニリデン樹脂。
<PMMA>
 MFR(温度:230℃、荷重:10kg)が9g/10minであるポリメタクリル酸メチル樹脂。
(3)樹脂組成物の調製
 先ず、前述したシランカップリング剤で表面コートした調色用無機顔料:3kgと、白色無機顔料としてルチル型結晶の二酸化チタン粉末(メジアン径:0.3μm):20kgをミキサーにて混合した。次に、樹脂組成物調製のための混練装置として、スクリュー径30mm、L/D=40の二軸押出機に、前述した調色用無機顔料、PVDF1、PVDF2及びPMMAを、それぞれ個別の定量フィーダーにて、各成分の配合比に対応する速度で供給して溶融混練した。その後、穴径3mm、3穴のストランドダイを通してペレット状の樹脂組成物を得た。
 得られた樹脂組成物における各成分の組成は、PVDF1が35質量部(28質量%)、PVDF2が45質量部(37質量%)、PMMAが20質量部(16質量%)、白色無機顔料が20質量部(16質量%)、調色用顔料が3質量部(2質量%)であった。
(4)フィルムの製膜及びフィルムの欠点評価
 得られた樹脂組成物を、スクリュー径40mm、L/D=30の単軸押出機に幅400mmのTダイを取り付けた製膜機にて、スクリュー回転数:35rpm、バレル設定温度:240℃で押出し、フィルム幅:300mm、平均厚さ:18μmのフィルムを製膜した。得られたフィルムの欠点の評価として、巻き取ったフィルム(幅300mm×長さ2000m)について、欠点検出器を用いて50m内の欠点数を評価した。なお、本実施例では、欠点数評価の目安として、フィルムの欠点サイズが0.05mm以上のものの個数を数えた。
(5)フィルムの特性評価
 得られたフィルムについて、JIS K 7127に規定されている方法で、引張り強度を測定した。なお、引張り強度の測定では、試料幅を10mm、チャック間距離を40mmとした。また、併せて、JIS K 7105に準拠して、可視光の全光線反射率を評価した。
(実施例22~27、比較例21~26)
 各原料成分の定量フィーダーの供給量を調整して、樹脂組成物中の各成分の組成比率を変更した以外は、前述した実施例21と同様の方法で評価を行った。
 これら実施例21~27の樹脂組成物の評価結果を下記表3に、比較例21~26の樹脂組成物の評価結果を下記表4に、それぞれまとめて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例28,29、比較例27,28)
 PVDF1に、温度:230℃、荷重:3.8kgにおけるMFRが、それぞれ、5g/10min、33g/10min、2g/10min、40g/10minであるポリフッ化ビニリデン樹脂を用いた以外は、前述した実施例21と同様の方法で、評価を行った。
(実施例30,31、比較例29,30)
 PVDF2に、温度:230℃、荷重:10kgにおけるMFRが、それぞれ、4g/10min、30g/10min、1g/10min、35g/10minであるポリフッ化ビニリデン樹脂を用いた以外は、前述した実施例21と同様の方法で、評価を行った。
(実施例32,33、比較例31,32)
 PMMAとして、温度:230℃、荷重:10kgにおけるMFRが、それぞれ、2g/10min、20g/10min、1g/10min、27g/10minであるポリメチルメタクリレート樹脂を用いた以外は、前述した実施例21と同様の方法で、評価を行った。
 これら実施例28~33の樹脂組成物の評価結果を下記表5に、比較例27~32の樹脂組成物の評価結果を下記表6に、それぞれまとめて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例34~37、比較例33~36)
 白色無機顔料又は調色無機顔料の配合比率を変更した以外は、前述した実施例21と同様の方法で、評価を行った。これらの実施例34~37及び比較例33~36の評価結果を、下記表7にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 上記表3~7に示すように、実施例21~37の樹脂組成物は、本発明の範囲から外れる比較例21~36の組成物に比べて、フィルムの欠点数が大幅に低減していた。これにより、溶融流動特性が異なる2種類のPVDFを併用すると、分散不良による欠点が少なく、耐候性に優れ、実用的な機械的強度特性を有し、太陽電池モジュール用バックシートとして好適なポリフッ化ビニリデン系樹脂フィルムが得られることが確認された。
 本発明のポリフッ化ビニリデン系樹脂組成物は、顔料の分散不良による欠点が極めて少なく、かつ耐候性や可視光の全光線反射率の良好なフィルムが得られるので、特に太陽電池モジュールのバックシートの素材として、太陽電池の長寿命化に寄与することが期待できる。また、本発明の樹脂組成物から得られるフィルムは、耐熱性及び絶縁性が高いため、電気・電子分野における保護フィルム、建築物や自動車の内外装保護フィルムとして利用することもできる。

Claims (9)

  1.  2種類のポリフッ化ビニリデン:合計で50~95質量%及びポリメタクリル酸メチル:5~50質量%からなる樹脂成分を100質量部と、
     白色無機顔料を7~40質量部と、
     調色用無機顔料を0.01~7質量部と、を含有し、
     2種類のポリフッ化ビニリデンのうち少なくとも1種は、JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR(Melt Flow Rate)が3~35g/10minであり、
     ポリメタクリル酸メチルは、JIS K 7210のA法により、温度を230℃、荷重を10kgにして測定したMFR(Melt flow rate)が2~20g/10minであるポリフッ化ビニリデン系樹脂組成物。
  2.  2種類のポリフッ化ビニリデンは、一方がペレット体であり、他方が粉体であることを特徴とする請求項1に記載のポリフッ化ビニリデン系樹脂組成物。
  3.  ペレット体のポリフッ化ビニリデンは、JIS K 0069で規定されている乾式ふるい分け試験法により測定した平均粒子径(メジアン径)が1~6mmであり、
     粉体のポリフッ化ビニリデンは、JIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が3~30μmであり、
     ポリフッ化ビニリデン全体におけるペレット体の割合が40~97質量%、粉体の割合が3~60質量%であることを特徴とする請求項2に記載のポリフッ化ビニリデン系樹脂組成物。
  4.  JIS K 7210のA法により、温度を230℃、荷重を3.8kgとして測定したMFR(Melt Flow Rate)が3~35g/10minであるポリフッ化ビニリデンと、
     JIS K 7210のA法により、温度を230℃、荷重を10kgとして測定したMFR(Melt Flow Rate)が2~30g/10minであるポリフッ化ビニリデンと、
     を含有することを特徴とする請求項1乃至3のいずれか1項に記載のポリフッ化ビニリデン系樹脂組成物。
  5.  白色無機顔料は、JIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が0.1~2μmであることを特徴とする請求項1乃至4のいずれか1項に記載のポリフッ化ビニリデン系樹脂組成物。
  6.  調色用無機顔料は、JIS Z 8825-1に規定されているレーザー回折装置により測定した平均粒子径(メジアン径)が0.1~2μmであることを特徴とする請求項1乃至5のいずれか1項に記載のポリフッ化ビニリデン系樹脂組成物。
  7.  請求項1~6のいずれか1項に記載のポリフッ化ビニリデン系樹脂組成物を、150~260℃の温度範囲で溶融混練した後、押出成形して得たポリフッ化ビニリデン系樹脂フィルム。
  8.  請求項7に記載のポリフッ化ビニリデン系樹脂フィルムと、ポリエチレンテレフタレート系樹脂フィルムとを積層した太陽電池モジュール用バックシート。
  9.  請求項8に記載のバックシートを用いた太陽電池モジュール。
PCT/JP2010/070088 2009-11-30 2010-11-11 ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール WO2011065234A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10833081.2A EP2508563B1 (en) 2009-11-30 2010-11-11 Polyvinylidene fluoride resin composition, film, back sheet, and solar cell module
JP2011543205A JP5763548B2 (ja) 2009-11-30 2010-11-11 ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール
KR1020127006724A KR101752178B1 (ko) 2009-11-30 2010-11-11 폴리불화비닐리덴계 수지조성물, 필름, 백시트 및 태양전지 모듈
CN201080054038.7A CN102666715B (zh) 2009-11-30 2010-11-11 聚偏氟乙烯系树脂组合物、薄膜、背板及太阳能电池组件
US13/501,276 US8722791B2 (en) 2009-11-30 2010-11-11 Polyvinylidene fluoride resin composition, film, back sheet, and solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009271573 2009-11-30
JP2009271572 2009-11-30
JP2009-271572 2009-11-30
JP2009-271573 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011065234A1 true WO2011065234A1 (ja) 2011-06-03

Family

ID=44066338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070088 WO2011065234A1 (ja) 2009-11-30 2010-11-11 ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール

Country Status (7)

Country Link
US (1) US8722791B2 (ja)
EP (1) EP2508563B1 (ja)
JP (1) JP5763548B2 (ja)
KR (1) KR101752178B1 (ja)
CN (1) CN102666715B (ja)
TW (1) TWI490261B (ja)
WO (1) WO2011065234A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391596A (zh) * 2011-09-01 2012-03-28 苏州斯迪克电子胶粘材料有限公司 一种用于制备太阳能光伏背膜的改性含氟树脂切片及其制备方法
CN102690477A (zh) * 2012-06-13 2012-09-26 贵州省复合改性聚合物材料工程技术研究中心 太阳能电池背板材料及其制备方法及产品
WO2012147385A1 (ja) * 2011-04-28 2012-11-01 電気化学工業株式会社 フッ化ビニリデン系樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
JP2013064068A (ja) * 2011-09-16 2013-04-11 Idemitsu Kosan Co Ltd アダマンタン誘導体を用いたシート
WO2013069493A1 (ja) * 2011-11-10 2013-05-16 電気化学工業株式会社 フッ素系樹脂フィルム及び太陽電池モジュール
KR20130051891A (ko) * 2011-11-10 2013-05-21 덴끼 가가꾸 고교 가부시키가이샤 불소계 수지 필름 및 태양전지 모듈
CN103582671A (zh) * 2011-06-15 2014-02-12 株式会社吴羽 聚1,1-二氟乙烯树脂膜、多层膜、和太阳能电池模块用背板以及膜的制造方法
WO2015099059A1 (ja) * 2013-12-27 2015-07-02 電気化学工業株式会社 多層シート、太陽電池用バックシート及び太陽電池モジュール
CN108164889A (zh) * 2017-11-22 2018-06-15 山东华夏神舟新材料有限公司 高强度高韧性pvdf太阳能背板膜材料及其制备方法
JP2018138674A (ja) * 2014-12-01 2018-09-06 住友化学株式会社 樹脂組成物、膜及び表示装置
JPWO2018174260A1 (ja) * 2017-03-23 2020-01-16 三菱ケミカル株式会社 樹脂組成物、フッ素系フィルム、フッ素系積層フィルム及び積層成形体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502001B (zh) * 2011-01-27 2015-11-25 Lg化学株式会社 多层膜和包括该多层膜的光伏组件
KR20140036310A (ko) * 2011-07-13 2014-03-25 덴끼 가가꾸 고교 가부시키가이샤 불화비닐리덴계 수지 조성물, 수지 필름, 태양전지용 백시트 및 태양전지 모듈
KR20130054920A (ko) * 2011-11-17 2013-05-27 주식회사 엘지화학 수분산 조성물, 친환경 광전지 모듈용 백시트 및 이의 제조방법
CN104812810B (zh) * 2012-11-15 2018-07-10 电化株式会社 氟系树脂膜、其制造方法及太阳能电池组件
KR102194159B1 (ko) 2012-12-20 2020-12-22 쓰리엠 이노베이티브 프로퍼티즈 캄파니 자외선 흡수 기를 갖는 올리고머를 포함하는 플루오로중합체 조성물
JP6294513B2 (ja) 2014-06-25 2018-03-14 スリーエム イノベイティブ プロパティズ カンパニー 少なくとも1つのオリゴマーを含むフルオロポリマー組成物
KR20170026497A (ko) * 2014-06-25 2017-03-08 쓰리엠 이노베이티브 프로퍼티즈 캄파니 트라이아진 기를 포함하는 공중합체 및 이러한 공중합체를 포함하는 조성물
US11110689B2 (en) 2014-06-25 2021-09-07 3M Innovative Properties Company Pressure sensitive adhesive composition including ultraviolet light-absorbing oligomer
CN104151752B (zh) * 2014-08-28 2016-06-01 东莞市长安东阳光铝业研发有限公司 一种聚偏氟乙烯薄膜用色母粒的制备方法及应用
CN104403240B (zh) * 2014-11-13 2017-01-11 无锡中洁能源技术有限公司 高遮光性太阳能电池背膜材料及其制备方法
CN104393082B (zh) * 2014-11-14 2016-08-24 无锡中洁能源技术有限公司 一种绝缘型太阳能电池板背膜及其制备方法
US10519350B2 (en) 2015-06-25 2019-12-31 3M Innovative Properties Company Copolymer including ultraviolet light-absorbing group and compositions including the same
CN106009427A (zh) * 2016-07-20 2016-10-12 郑泓 一种白色聚偏氟乙烯流涎薄膜专用料
CN106366519A (zh) * 2016-09-19 2017-02-01 浙江凯阳新材料股份有限公司 一种聚偏氟乙烯薄膜及其制备方法
CN110494487A (zh) * 2017-04-14 2019-11-22 大金工业株式会社 树脂组合物和成型体
CN109265881A (zh) * 2018-09-20 2019-01-25 江苏膜斯宝环保科技有限公司 一种低表面光泽度的pvdf薄膜及其制备方法
CN109749313A (zh) * 2018-11-29 2019-05-14 常州回天新材料有限公司 太阳能电池板用背膜
JP7042377B1 (ja) * 2021-03-31 2022-03-25 大日精化工業株式会社 フッ素樹脂用マスターバッチ、その製造方法、フッ素樹脂組成物、及び成形体
CN115558224A (zh) * 2021-12-29 2023-01-03 嘉兴高正新材料科技股份有限公司 一种光伏用聚偏氟乙烯膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490733A (en) * 1987-10-01 1989-04-07 Denki Kagaku Kogyo Kk Colored fluorine resin film
JPH0222352A (ja) * 1988-07-11 1990-01-25 Dainichiseika Color & Chem Mfg Co Ltd 弗化ビニリデン樹脂組成物の製造方法
JPH0790152A (ja) * 1993-09-21 1995-04-04 Kureha Chem Ind Co Ltd 艶消しフッ化ビニリデン系樹脂フィルム
JPH11207887A (ja) * 1998-01-21 1999-08-03 Denki Kagaku Kogyo Kk 金属調の色合いを有するフッ化ビニリデン系樹脂フィルム
JP2000294813A (ja) 1999-04-07 2000-10-20 Bridgestone Corp 太陽電池用バックカバー材及び太陽電池
JP2008028294A (ja) 2006-07-25 2008-02-07 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2009071236A (ja) 2007-09-18 2009-04-02 Tomoegawa Paper Co Ltd 太陽電池用バックシート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181449A (ja) * 1984-09-28 1986-04-25 Toray Ind Inc 光記録媒体用ベ−スフイルム
GB2194539B (en) * 1986-09-01 1990-08-01 Labofina Sa Pvdf-based powder coatings
DE19859393A1 (de) * 1998-12-22 2000-06-29 Roehm Gmbh Verfahren zur Herstellung von Folien
DE102004024429A1 (de) * 2004-05-14 2005-12-08 Röhm GmbH & Co. KG Formkörper, enthaltend eine Polymermischung aus schlagzähmodifizierten Poly(meth)-acrylat und Fluorpolymer
US7479324B2 (en) * 2005-11-08 2009-01-20 Saint-Gobain Ceramics & Plastics, Inc. Pigments comprising alumina hydrate and a dye, and polymer composites formed thereof
WO2010092942A1 (ja) * 2009-02-13 2010-08-19 電気化学工業株式会社 フッ化ビニリデン系樹脂フィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490733A (en) * 1987-10-01 1989-04-07 Denki Kagaku Kogyo Kk Colored fluorine resin film
JPH0222352A (ja) * 1988-07-11 1990-01-25 Dainichiseika Color & Chem Mfg Co Ltd 弗化ビニリデン樹脂組成物の製造方法
JPH0790152A (ja) * 1993-09-21 1995-04-04 Kureha Chem Ind Co Ltd 艶消しフッ化ビニリデン系樹脂フィルム
JPH11207887A (ja) * 1998-01-21 1999-08-03 Denki Kagaku Kogyo Kk 金属調の色合いを有するフッ化ビニリデン系樹脂フィルム
JP2000294813A (ja) 1999-04-07 2000-10-20 Bridgestone Corp 太陽電池用バックカバー材及び太陽電池
JP2008028294A (ja) 2006-07-25 2008-02-07 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2009071236A (ja) 2007-09-18 2009-04-02 Tomoegawa Paper Co Ltd 太陽電池用バックシート

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147385A1 (ja) * 2011-04-28 2012-11-01 電気化学工業株式会社 フッ化ビニリデン系樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
JP2012233080A (ja) * 2011-04-28 2012-11-29 Denki Kagaku Kogyo Kk フッ化ビニリデン系樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
CN103582671A (zh) * 2011-06-15 2014-02-12 株式会社吴羽 聚1,1-二氟乙烯树脂膜、多层膜、和太阳能电池模块用背板以及膜的制造方法
EP2722362A4 (en) * 2011-06-15 2014-12-10 Kureha Corp POLYVINYLIDENE FLUORIDE RESIN FILM, MULTILAYER FILM, SOUND SHEET FOR SOLAR CELL MODULE, AND METHOD FOR MANUFACTURING FILM
EP2722362A1 (en) 2011-06-15 2014-04-23 Kureha Corporation Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process
CN102391596B (zh) * 2011-09-01 2013-05-15 苏州斯迪克新材料科技股份有限公司 一种用于制备太阳能光伏背膜的改性含氟树脂切片及其制备方法
CN102391596A (zh) * 2011-09-01 2012-03-28 苏州斯迪克电子胶粘材料有限公司 一种用于制备太阳能光伏背膜的改性含氟树脂切片及其制备方法
JP2013064068A (ja) * 2011-09-16 2013-04-11 Idemitsu Kosan Co Ltd アダマンタン誘導体を用いたシート
EP2778193A1 (en) * 2011-11-10 2014-09-17 Denki Kagaku Kogyo Kabushiki Kaisha Fluorine-containing resin film and solar cell module
US9373495B2 (en) 2011-11-10 2016-06-21 Denka Company Limited Fluorine-containing resin film and solar cell module
WO2013069493A1 (ja) * 2011-11-10 2013-05-16 電気化学工業株式会社 フッ素系樹脂フィルム及び太陽電池モジュール
KR102050603B1 (ko) 2011-11-10 2019-11-29 덴카 주식회사 불소계 수지 필름 및 태양전지 모듈
JPWO2013069493A1 (ja) * 2011-11-10 2015-04-02 電気化学工業株式会社 フッ素系樹脂フィルム及び太陽電池モジュール
KR20130051891A (ko) * 2011-11-10 2013-05-21 덴끼 가가꾸 고교 가부시키가이샤 불소계 수지 필름 및 태양전지 모듈
EP2778193A4 (en) * 2011-11-10 2015-07-29 Denki Kagaku Kogyo Kk FLUOROUS RESIN FOIL AND SOLAR CELL MODULE
CN102690477A (zh) * 2012-06-13 2012-09-26 贵州省复合改性聚合物材料工程技术研究中心 太阳能电池背板材料及其制备方法及产品
WO2015099059A1 (ja) * 2013-12-27 2015-07-02 電気化学工業株式会社 多層シート、太陽電池用バックシート及び太陽電池モジュール
JPWO2015099059A1 (ja) * 2013-12-27 2017-03-23 デンカ株式会社 多層シート、太陽電池用バックシート及び太陽電池モジュール
JP2018138674A (ja) * 2014-12-01 2018-09-06 住友化学株式会社 樹脂組成物、膜及び表示装置
JPWO2018174260A1 (ja) * 2017-03-23 2020-01-16 三菱ケミカル株式会社 樹脂組成物、フッ素系フィルム、フッ素系積層フィルム及び積層成形体
CN108164889A (zh) * 2017-11-22 2018-06-15 山东华夏神舟新材料有限公司 高强度高韧性pvdf太阳能背板膜材料及其制备方法
CN108164889B (zh) * 2017-11-22 2019-12-27 山东华夏神舟新材料有限公司 高强度高韧性pvdf太阳能背板膜材料及其制备方法

Also Published As

Publication number Publication date
US8722791B2 (en) 2014-05-13
EP2508563A4 (en) 2013-05-15
JPWO2011065234A1 (ja) 2013-04-11
CN102666715A (zh) 2012-09-12
US20120196971A1 (en) 2012-08-02
JP5763548B2 (ja) 2015-08-12
EP2508563B1 (en) 2017-04-26
CN102666715B (zh) 2014-06-25
KR20120102038A (ko) 2012-09-17
TW201129624A (en) 2011-09-01
EP2508563A1 (en) 2012-10-10
KR101752178B1 (ko) 2017-06-29
TWI490261B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5763548B2 (ja) ポリフッ化ビニリデン系樹脂組成物、フィルム、バックシート及び太陽電池モジュール
JP5952838B2 (ja) 多層シート、太陽電池用バックシート及び太陽電池モジュール
EP1980391A1 (en) Heat shield sheet
JP5937075B2 (ja) フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
JP5993236B2 (ja) 多層シート、太陽電池用バックシート及び太陽電池モジュール
EP1807457B1 (en) Vinyl chloride resin composition and method for preparation thereof
CN103703571B (zh) 用于太阳能电池的环保型背板及其制备方法
JP5628054B2 (ja) ポリフッ化ビニリデン樹脂組成物、着色樹脂フィルム、及び太陽電池モジュール用バックシート
CN104105749A (zh) 多层膜及其制备方法
CN102391596A (zh) 一种用于制备太阳能光伏背膜的改性含氟树脂切片及其制备方法
WO2012004849A1 (ja) コーティング組成物および積層体
CN106062131A (zh) 太阳能电池用密封膜及使用其的太阳能电池
WO2014057933A1 (ja) フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
JP6310858B2 (ja) フッ素系樹脂フィルム、その製造方法、及び太陽電池モジュール
JP2012097179A (ja) 耐候性フィルム
JP5744607B2 (ja) 粘着フィルム
WO2024113168A1 (en) Building panel
WO2012096215A1 (ja) 太陽電池用裏面保護シート
JP2003165912A (ja) 樹脂組成物、ならびにそれを用いた有機エレクトロルミネッセントディスプレイ、太陽電池、タッチパネルおよびプラズマディスプレイパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054038.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543205

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127006724

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010833081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010833081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13501276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE