WO2011061944A1 - 蛍光免疫測定方法 - Google Patents

蛍光免疫測定方法 Download PDF

Info

Publication number
WO2011061944A1
WO2011061944A1 PCT/JP2010/006809 JP2010006809W WO2011061944A1 WO 2011061944 A1 WO2011061944 A1 WO 2011061944A1 JP 2010006809 W JP2010006809 W JP 2010006809W WO 2011061944 A1 WO2011061944 A1 WO 2011061944A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable region
chain variable
region polypeptide
antibody
antigen
Prior art date
Application number
PCT/JP2010/006809
Other languages
English (en)
French (fr)
Other versions
WO2011061944A8 (ja
Inventor
上田 宏
亮二 阿部
正喜 伊原
広明 高木
Original Assignee
株式会社プロテイン・エクスプレス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテイン・エクスプレス filed Critical 株式会社プロテイン・エクスプレス
Priority to US13/510,105 priority Critical patent/US20120270338A1/en
Priority to JP2011541820A priority patent/JP5043237B2/ja
Priority to KR1020127015314A priority patent/KR101335560B1/ko
Priority to CN201080057171.8A priority patent/CN102667480B/zh
Priority to CA2780845A priority patent/CA2780845C/en
Priority to EP10831343.8A priority patent/EP2515110B1/en
Publication of WO2011061944A1 publication Critical patent/WO2011061944A1/ja
Publication of WO2011061944A8 publication Critical patent/WO2011061944A8/ja
Priority to US15/183,974 priority patent/US20160349266A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/6857Antibody fragments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the present invention relates to a novel antigen concentration measurement method that does not require an immobilization step and a washing step, a kit for performing such an antigen concentration measurement method, and the like.
  • a mono / polyclonal antibody called a primary antibody is immobilized on a measurement plate, a specimen containing an antigen is poured into the plate, and a reaction is performed for a certain period of time to bind the antibody and the antigen.
  • a labeled secondary antibody solution to which a reporter molecule such as an enzyme, a fluorescent dye or a radioisotope is previously bound is poured, reacted for a certain period of time, and the labeled secondary antibody is further bound to the antigen captured by the primary antibody. .
  • the excess labeled antibody is removed with a washing solution, and the amount of the reporter molecule bound to the measurement plate is measured by enzyme activity, fluorescence, radioisotope or the like to measure the amount of antigen in the sample.
  • the normal sandwich ELISA method requires two types of antibodies with different epitopes.
  • a low molecular weight compound is used as an antigen
  • a plurality of antibodies that recognize different epitopes are prepared. It is difficult. For this reason, Ueda et al.
  • Established a highly accurate immunoassay method for low molecular weight compounds called the open sandwich method using the heavy chain variable region (VH) and light chain variable region (VL) of one type of antibody.
  • VH heavy chain variable region
  • VL light chain variable region
  • a VH region polypeptide and a VL region polypeptide of an antibody that specifically recognizes an antigen are prepared, one polypeptide is labeled with a reporter molecule to form a labeled polypeptide, and the other polypeptide is immobilized on a solid phase.
  • An antigen concentration measurement method comprising measuring an amount of a reporter molecule of a labeled polypeptide bound to the immobilized polypeptide by contacting the antigen-containing sample and the labeled polypeptide with the immobilized polypeptide, and immobilizing the immobilized polypeptide to the immobilized polypeptide It is.
  • immunoassays there are liquid chromatographic methods as methods for measuring low molecular weight compounds. However, high-precision measuring instruments are required, and the amount of analyte required is large. It takes time and is less versatile.
  • the antibody and the antigen are labeled with different fluorescent dyes, and the efficiency of fluorescence resonance energy transfer (FRET) occurring between the fluorescent dyes is improved.
  • FRET fluorescence resonance energy transfer
  • Immunoassay using the change in efficiency due to quenching as an indicator or a fluorescence immunoassay method that measures the decrease in fluorescence intensity caused by aggregation of labeled antibody and measurement object using an antibody labeled with a fluorescent dye ( Patent Document 3) is known.
  • the subject of the present invention is an immunoassay that does not require a solid phase step and a washing step, enables quantitative measurement of a target substance quickly and easily in a liquid phase, and can visualize an antigen. To provide a law.
  • the present inventors first tried to establish an antibody / antigen binding activity evaluation system using fluorescence resonance energy transfer (FRET) efficiency as an index, using antibodies VH and VL labeled with different fluorescent dyes.
  • FRET fluorescence resonance energy transfer
  • an anti-BGP antibody light chain region (CR110-VL) labeled with a fluorescent dye CR110 and an anti-BGP antibody heavy chain region (TAMRA-VH) labeled with a fluorescent dye TAMRA are used, and no antigen is present. Does not cause FRET from CR110 to TAMAR, but in the presence of antigen, VH and VL form a ternary complex via the antigen, and it is expected that FRET from CR110 to TAMRA will be caused.
  • CR110-VL and TAMRA-VH or unlabeled VH were incubated with different concentrations of BGP antigen peptide, and changes in the fluorescence intensity of CR110 were analyzed by fluorescence intensity distribution analysis (FIDA).
  • FIDA fluorescence intensity distribution analysis
  • CR110-VL and TAMRA-VH were reacted, the fluorescence intensity of CR110 decreased depending on the concentration of the BGP antigen peptide. Therefore, CR110-VL and TAMRA-VH were mediated by the antigen peptide. Binding to form a complex, confirming that FRET from CR110 to TAMRA was expected as expected.
  • the present inventors tried to establish a new measurement method utilizing the quenching phenomenon (hereinafter, sometimes referred to as “homogenous fluorescent ⁇ based immunoassay ”).
  • TAMRA-VH and a different concentration of BGP peptide were reacted in the presence or absence of unlabeled VL, and the fluorescence intensity was measured.
  • the fluorescence intensity of TAMRA-VH increased depending on the concentration of BGP peptide, and the ratio of the fluorescence intensity of TAMRA-VH in the presence / absence of VL (+ VL / ⁇ VL) was analyzed.
  • the present inventors have mutated VH in which four tryptophans (hereinafter also referred to as Trp or W) present in VH are mutated to phenylalanine (hereinafter also referred to as Phe or F), respectively.
  • Trp or W tryptophans
  • Phe or F phenylalanine
  • the measurement method of the present invention is a method for detecting / measuring the binding between an antigen and the antibodies VL and VH, using the fluorescence intensity of a fluorescent dye labeled with the antibody VL or VH as an index.
  • the fluorescent dye is in a quenched state when is not bound, and the quenching of the fluorescent dye is eliminated when the antibodies VL and VH are bound via an antigen.
  • the solid phase immobilization step and the washing step which are indispensable in the conventional immunoassay method, are not required, measurement results with little variation and high accuracy can be obtained in a short time.
  • the present invention comprises (1) an antibody light chain variable region polypeptide and an antibody heavy chain variable region polypeptide, wherein either the antibody light chain variable region polypeptide or the antibody heavy chain variable region polypeptide is a fluorescent dye.
  • the present invention relates to an antigen concentration measurement / detection kit.
  • the present invention also provides the antigen concentration measurement / detection kit according to (1) or (2), wherein the fluorescent dye is a rhodamine fluorescent dye or an oxazine fluorescent dye,
  • Peptide relates antigen concentration measurement and detection kit according to any one of the above (1) to (4), characterized in that it comprises a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 7.
  • the present invention further provides (7) (a) an antibody heavy chain variable region polypeptide labeled with an antibody light chain variable region polypeptide and a fluorescent dye, or an antibody labeled with an antibody heavy chain variable region polypeptide and a fluorescent dye. (A1) contacting a light chain variable region polypeptide with an antigen in a test substance in a liquid phase; or (a2) antibody heavy chain variable labeled with an antibody light chain variable region polypeptide and a fluorescent dye.
  • the present invention also provides (8) a method for measuring and detecting an antigen concentration according to (7) above, which is a single-chain antibody in which an antibody heavy chain variable region polypeptide and an antibody light chain variable region polypeptide are bound.
  • the antigen concentration measurement / detection method according to (7) or (8) above wherein the fluorescent dye is a rhodamine fluorescent dye or an oxazine fluorescent dye;
  • the antigen concentration measurement / detection method according to (9) above which is CR110, TAMRA, or ATTO655, or (11) a polypeptide comprising the antibody heavy chain variable region polypeptide having the amino acid sequence shown in SEQ ID NO: 1
  • the antibody light chain variable region polypeptide comprises a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • An antigen concentration measurement / detection method and (12) an antibody heavy chain variable region polypeptide comprising a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 6, wherein the antibody light chain variable region polypeptide is represented by SEQ ID NO: 7
  • CR110-labeled anti-BGP antibody light chain variable region polypeptide (CR110-VL), TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide (TAMRA-VH) of the present invention, and complexes thereof (CR110-VL / TAMRA- It is the figure which showed typically VH). It is a figure which shows the result of having reacted with CR110-VL and TAMRA-VH in presence of a BGP peptide of a different density
  • CR110-labeled anti-BGP antibody light chain variable region polypeptide of the present invention and the TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide are reacted in the presence of different concentrations of BGP peptide, and a 488 nm laser and a 510 to 560 nm fluorescent filter are used. It is a figure which shows the result analyzed using the fluorescence intensity distribution analysis method (FIDA).
  • FIDA fluorescence intensity distribution analysis method
  • CR110-VL represents CR110-labeled anti-BGP antibody light chain variable region polypeptide
  • TAMRA-VH represents TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide, w. t.
  • -VH represents an unlabeled anti-BGP antibody heavy chain variable region polypeptide, respectively.
  • the CR110-labeled anti-BGP antibody light chain variable region polypeptide of the present invention and the TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide are reacted in the presence of different concentrations of BGP peptide, and a 543 nm laser and a 560 to 620 nm fluorescent filter are used. It is a figure which shows the result analyzed using the fluorescence intensity distribution analysis method (FIDA).
  • FIDA fluorescence intensity distribution analysis method
  • CR110-VL represents CR110-labeled anti-BGP antibody light chain variable region polypeptide
  • TAMRA-VH represents TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide
  • w. t. -VL indicates an unlabeled anti-BGP antibody light chain variable region polypeptide.
  • the TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide of the present invention is reacted with different concentrations of BGP peptide in the presence or absence of an unlabeled anti-BGP antibody light chain variable region polypeptide to obtain 543 nm He It is a figure which shows the result of having measured fluorescence intensity using -Ne laser.
  • + VL represents the reaction result in the presence of an unlabeled anti-BGP antibody light chain variable region polypeptide
  • ⁇ VL represents the reaction in the absence of an unlabeled anti-BGP antibody light chain variable region polypeptide.
  • the results of measuring the fluorescence intensity are shown respectively.
  • the TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide of the present invention is reacted with different concentrations of BGP peptide in the presence or absence of unlabeled anti-BGP antibody light chain variable region polypeptide, It is a figure which shows the result of having analyzed ratio (+ VL / -VL).
  • FIG. 2 is a diagram showing a schematic diagram of a one-dimensional structure of a fluorescently labeled single chain antibody in which a fluorescently labeled antibody heavy chain variable region polypeptide and an antibody light chain variable region polypeptide of the present invention are bound. It is a figure which shows the result of having reacted the ATTO655 labeled anti-BGP single chain antibody with or without a spacer and a different concentration of BGP peptide, and measuring the fluorescence intensity. It is a figure which shows the ratio of the fluorescence intensity measured by making the ATTO655 labeled anti-BGP single chain antibody with or without a spacer react with a different concentration of BGP peptide.
  • FL92 represents a spacer sequence composed of the amino acid sequence shown in SEQ ID NO: 3
  • 2TAG represents a spacer sequence composed of MX (X is a fluorescently labeled amino acid).
  • FL92 represents a spacer sequence composed of the amino acid sequence shown in SEQ ID NO: 3
  • 2TAG represents a spacer sequence composed of MX (X is a fluorescently labeled amino acid).
  • FL92 represents a spacer sequence composed of the amino acid sequence shown in SEQ ID NO: 3
  • 2TAG represents a spacer sequence composed of MX (X is a fluorescently labeled amino acid).
  • a fluorescent-labeled anti-BGP single chain antibody containing an FL92 spacer (SEQ ID NO: 3) is reacted with a different concentration of BGP peptide to obtain a fluorescence image analyzer (FMBIO-III; manufactured by Hitachi Software Engineering) and MF20 / FluoroPoint-Light (Olympus). It is a figure which shows ratio of the fluorescence intensity measured using the company make. It is a figure which shows the result of having reacted TAMRA labeled anti-BGP single chain antibody with or without a spacer and a different concentration of BGP peptide and detecting fluorescence.
  • FMBIO-III fluorescence image analyzer
  • MF20 / FluoroPoint-Light FluoroPoint-Light
  • G3S (1) indicates GGGS
  • G3S (2) indicates GGGSGGGGS (SEQ ID NO: 4)
  • G3S (3) indicates a spacer (linker) sequence of GGGSGGGSGGGS (SEQ ID NO: 10).
  • the ATTO655-labeled anti-bisphenol A (BPA) antibody heavy chain variable region polypeptide of the present invention and different concentrations of BPA are reacted in the presence or absence of unlabeled anti-BPA antibody light chain variable region polypeptide to obtain fluorescence intensity.
  • BPA bisphenol A
  • G3S (2) includes GGGSGGGGS (SEQ ID NO: 4)
  • G3S (3) includes GGGSGGGSGGGGS (SEQ ID NO: 10)
  • G3S (5) includes a spacer (linker) sequence of GGGSGGGSGGGSGGGS (SEQ ID NO: 11). Show. It is a figure which shows the result of having reacted TAMRA label
  • Trp106 in the amino acid sequence of VH corresponds to the 103rd position in the Kabat numbering system.
  • the antigen concentration measurement / detection kit of the present invention comprises an antibody light chain variable region polypeptide and an antibody heavy chain variable region polypeptide, and any of the antibody light chain variable region polypeptide and the antibody heavy chain variable region polypeptide.
  • Either one is a kit labeled with a fluorescent dye, and it is possible to measure the antigen concentration or visualize the antigen using the positive correlation between the concentration of the antigen in the liquid phase and the fluorescence intensity of the fluorescent dye.
  • a kit for antigen concentration measurement / detection characterized by: (1) a kit comprising an antibody light chain variable region polypeptide and an antibody heavy chain variable region polypeptide labeled with a fluorescent dye An antigen concentration measurement kit capable of measuring the antigen concentration using as an indicator that the antigen concentration in the liquid phase and the fluorescence intensity of the fluorescent dye have a positive correlation; (2) A kit comprising a light chain variable region polypeptide and an antibody heavy chain variable region polypeptide labeled with a fluorescent dye, wherein the amount of antigen in the test subject and the fluorescence intensity of the fluorescent dye are positively correlated An antigen detection kit capable of visualizing an antigen using the relationship as an index, and (3) a kit comprising an antibody heavy chain variable region polypeptide and an antibody light chain variable region polypeptide labeled with a fluorescent dye An antigen concentration measurement kit capable of measuring the antigen concentration using as an indicator that the antigen concentration in the liquid phase and the fluorescence intensity of the fluorescent dye are positively correlated, and (4) antibody weight A kit comprising a chain variable
  • the antigen is not particularly limited as long as it is an antigen specifically recognized by the antibody heavy chain variable region polypeptide and the antibody light chain variable region polypeptide.
  • proteins, peptides, carbohydrates, lipids , Glycolipids, low molecular weight compounds and the like are examples of proteins, peptides, carbohydrates, lipids , Glycolipids, low molecular weight compounds and the like.
  • the antigen concentration measurement / detection method of the present invention includes (a) an antibody heavy chain variable region polypeptide labeled with an antibody light chain variable region polypeptide and a fluorescent dye, or an antibody heavy chain variable region polypeptide and a fluorescent dye. (A1) contacting a labeled antibody light chain variable region polypeptide with an antigen in a test substance in a liquid phase; or (a2) an antibody labeled with an antibody light chain variable region polypeptide and a fluorescent dye.
  • measurement method [I] a method for measuring an antigen concentration
  • a step of contacting a region polypeptide and an antibody light chain variable region polypeptide labeled with a fluorescent dye with an antigen in a test substance (a1-2); a step of measuring the fluorescence intensity of the fluorescent dye (b)
  • measurement method [II] an antigen concentration method
  • Antibody heavy chain variable region polypeptide (A2-1); (b) detecting the fluorescence of the fluorescent dye; (c) the amount of antigen in the test non-human animal subject and the step An antigen detection method (hereinafter referred to as “non-human animal detection”) comprising sequentially visualizing an antigen contained in a test subject using as an index that the fluorescence intensity of the fluorescent dye has a positive correlation Method [I] ”), or a step of contacting an antigen in a test non-human animal subject to which an antibody heavy chain variable region polypeptide and an antibody light chain variable region polypeptide labeled with a fluorescent dye are administered ( a2-2); detecting the fluorescence of the fluorescent dye (b); using as an index that the amount of antigen in the subject non-human animal subject and the fluorescence intensity of the fluorescent dye have a positive correlation Visualization of antigens contained in the test object (C); an antigen detection method (hereinafter sometimes referred to as “non-human animal detection method [II]”), or an in
  • an antigen detection method (hereinafter, “ In vitro detection method [I] ”or in vitro contact of an antibody heavy chain variable region polypeptide and an antibody light chain variable region polypeptide labeled with a fluorescent dye with an antigen in a test subject Step (a3 2); the step of detecting the fluorescence of the fluorescent dye (b); the amount of antigen in the test object and the fluorescence intensity of the fluorescent dye are included in the test object, using as an indicator that there is a positive correlation
  • the antibody light chain variable region is not particularly limited as long as it is an antigen detection method (hereinafter sometimes referred to as “in vitro detection method [II]”), which comprises
  • the polypeptide and the antibody heavy chain variable region polypeptide may be prepared as two independent polypeptide fragments as long as they can form a complex via the same antigen molecule. It may also be prepared as a single chain antibody fused via a linker or the like.
  • the antigen is not particularly limited as long as it is an antigen specifically recognized by the antibody heavy chain variable region polypeptide and the antibody light chain variable region polypeptide.
  • proteins, peptides, carbohydrates, lipids , Glycolipids, low molecular weight compounds and the like are examples of proteins, peptides, carbohydrates, lipids , Glycolipids, low molecular weight compounds and the like.
  • the antibody heavy chain variable region polypeptide is not particularly limited as long as it contains an amino acid sequence specific to the antibody heavy chain variable region encoded by exons of the V region, D region, and J region of the antibody heavy chain gene.
  • an arbitrary amino acid sequence may be further added to the N-terminal and / or C-terminal side of the amino acid sequence specific to the antibody heavy chain variable region.
  • the amino acid sequence specific for the antibody heavy chain variable region is an amino acid sequence in which the 36th, 47th, or 103rd amino acid is tryptophan in the Kabat numbering system.
  • specific examples include the amino acid sequence shown in SEQ ID NO: 1 and the amino acid sequence shown in SEQ ID NO: 6.
  • the antibody light chain variable region polypeptide is not particularly limited as long as it contains an amino acid sequence specific to the antibody light chain variable region encoded by exons of the V region and J region of the antibody light chain gene.
  • an arbitrary amino acid sequence may be added to the N-terminal and / or C-terminal side of the amino acid sequence specific to the antibody light chain variable region.
  • the amino acid sequence specific to the antibody light chain variable region is preferably an amino acid sequence in which the 35th amino acid is tryptophan in the Kabat numbering system.
  • the amino acid sequence shown in 2 and the amino acid sequence shown in SEQ ID NO: 7 can be preferably exemplified.
  • Antibody light chain variable region polypeptides, antibody light chain variable region polypeptides, and single chain antibody polypeptides comprising both antibody light chain variable regions and antibody light chain variable regions are known chemical synthesis methods, genetic recombination Although it can be prepared using a technique, a method for degrading antibody molecules with a proteolytic enzyme, etc., among them, it is preferable to prepare by a gene recombination technique that can be prepared in a large amount by a relatively easy operation.
  • the desired polypeptide can be expressed by an expression system using bacteria, yeast, insects, animal or plant cells as a host, or a cell-free translation system.
  • a cell-free translation system for example, in a reaction solution in which nucleotide triphosphate and various amino acids are added to a cell-free extract such as Escherichia coli, wheat germ, rabbit reticulocyte, etc., the polypeptide is used. Can be expressed.
  • the fluorescent dye is not particularly limited as long as it is quenched (quenched) in a state labeled with the antibody heavy chain variable region polypeptide or antibody light chain variable region polypeptide.
  • Rhodamine, coumarin, Cy, EvoBlue examples thereof include fluorescent dyes having a basic skeleton such as oxazine, Carbopyronin, naphthalene, biphenyl, anthracene, phenenthrene, pyrene, carbazole, and derivatives of the fluorescent dyes.
  • CR110 carboxyrhodamine 110: Rhodamine Green Name
  • TAMRA carbocytetremethlrhodamine: TMR
  • ATTO655 trade name
  • BODIPY FL trade name: 4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indancene-3- propionic acid
  • BODIPY 493/503 trade name: 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a, 4a-diaza-s-indancene-8-propionicacid
  • BODIPY R6G (trademark) Name): 4,4-difluo ro-5- (4-phenyl-1,3-butadienyl) -4-bora-3a, 4a-diaza-s-indancene-3-propionic acid
  • BODIPY 558/568 trade name: 4,4-difluoro-
  • the method for labeling the antibody light chain variable region polypeptide and the antibody heavy chain variable region polypeptide with a fluorescent dye is not particularly limited, and is used directly or via a cross-linking agent using functional groups at both ends or side chains of the polypeptide.
  • Indirect labeling methods site-specific labeling methods while synthesizing polypeptides using an in vitro transcription / translation system, and the like can be used.
  • Examples of labeling methods using an in vitro transcription / translation system include an amber suppression method (Ellman J et al. (1991) Methods Enzymol. 202: 301-36), and a C-terminal labeling method (Japanese Patent Laid-Open No. 2000-139468). ), N-terminal labeling method (US Pat. No.
  • the amino acid at the target site of the label is known.
  • a DNA or mRNA in which the codon encoding is replaced with an amber codon, which is one of the stop codons, is prepared, and a protein is synthesized from the DNA or mRNA using an in vitro transcription / translation system.
  • a suppressor tRNA to which a labeled unnatural amino acid is bound is added to the protein synthesis reaction solution, a protein in which the labeled amino acid is introduced at the site substituted with the amber codon can be synthesized.
  • a protein in which a label is specifically introduced by translating DNA or mRNA into protein in an in vitro transcription / translation system to which labeled puromycin is added at an optimal concentration. Can be synthesized.
  • the antigen concentration measurement / detection kit of the present invention may contain reagents and instruments usually used in this type of immunoassay kit, such as a buffer, a measurement tube or plate, and an antigen that can be used as a standard substance. .
  • reagents and instruments usually used in this type of immunoassay kit such as a buffer, a measurement tube or plate, and an antigen that can be used as a standard substance.
  • Such an antigen concentration measurement / detection kit of the present invention can be suitably used for the antigen concentration measurement / detection method of the present invention.
  • the antibody heavy chain variable region polypeptide labeled with an antibody light chain variable region polypeptide and a fluorescent dye in a solution such as a buffer solution or physiological saline In the step (a1-1) in the measurement method [I] of the present invention, the antibody heavy chain variable region polypeptide labeled with an antibody light chain variable region polypeptide and a fluorescent dye in a solution such as a buffer solution or physiological saline. Antigen specifically recognized by antibody heavy chain variable region polypeptide / antibody labeled with antibody light chain variable region polypeptide / fluorescent dye in solution after adding each of the peptides and incubating with test substance To form a tripartite complex consisting of In the step (a1-2) in the above measurement method [II], the antibody light chain variable region polypeptide labeled with the antibody heavy chain variable region polypeptide and the fluorescent dye in a solution such as a buffer solution or physiological saline.
  • test substance After each addition, the test substance is added and incubated, and the antigen specifically recognized by the antibody light chain variable region polypeptide / antibody labeled with the antibody heavy chain variable region polypeptide / fluorescent dye in solution
  • test substance include serum, plasma, saliva, urine and other body fluids that may contain the target antigen to be measured, culture supernatant, cell extract, fungus body extract, and industrial wastewater.
  • the incubation conditions are not particularly limited as long as they can be generally used for antibody-antigen reaction.
  • the temperature conditions are, for example, 1 to 30 ° C., preferably 18 to 25 ° C., and the reaction time is, for example, The time can be 5 to 180 minutes, preferably 60 to 120 minutes.
  • the solution after completion of the incubation can be directly used for the following step (b) without undergoing a step such as washing. This is one of the major features of the antigen concentration measurement / detection method of the present invention.
  • the solution prepared in the step (a1-1) or (a1-2) is irradiated with excitation light in the solution.
  • the fluorescence intensity of the fluorescent dye can be measured.
  • the fluorescence measuring apparatus used for the measurement is not particularly limited, and preferred examples include MF20 / FluoroPoint-Light (Olympus) and FMBIO-III (Hitachi Software Engineering).
  • the amount of antigen contained in the test substance is calculated from the measured fluorescence intensity obtained in the step (b). be able to. That is, since the antigen concentration in the solution prepared by the above step (a1-1) or (a1-2) and the fluorescence intensity measured by the step (b) are positively correlated, A standard curve showing the relationship between antigen concentration and fluorescence intensity is measured by measuring the fluorescence intensity when using a test substance containing, and when using a test substance containing an antigen of unknown concentration from this standard curve By calculating the antigen concentration corresponding to the measured value of the fluorescence intensity, the amount of antigen contained in the test substance can be determined. Further, “calculating the antigen amount” in the step (c) includes a case where the antigen amount is automatically calculated by a conversion equation or the like set in advance based on a standard curve.
  • the antibody light chain variable region polypeptide and the antibody heavy chain variable region polypeptide labeled with a fluorescent dye are used as the test non-human animal.
  • a ternary complex consisting of an antigen that is administered to a subject and specifically recognized by the antibody heavy chain variable region polypeptide / antibody labeled with the antibody light chain variable region polypeptide / fluorescent dye in the subject non-human animal subject To form.
  • the antibody heavy chain variable region polypeptide and the antibody light chain variable region polypeptide labeled with a fluorescent dye are coated systemically or locally.
  • Consisting of an antigen that is administered to a test non-human animal subject and that is specifically recognized by the antibody light chain variable region polypeptide / antibody labeled with the antibody heavy chain variable region polypeptide / fluorescent dye in the test non-human animal subject A tripartite complex is formed.
  • the subject non-human animal subject is not particularly limited as long as it is an animal other than a human, and examples thereof include mice, rats, hamsters, monkeys, pigs and the like.
  • the “administration” method is appropriately selected from parenteral local administration methods such as intramuscular injection, intraperitoneal injection, intravenous injection, subcutaneous injection, implantation, and application, and oral administration methods. Can do.
  • step (b) of the non-human animal detection method [I] or non-human animal detection method [II] of the present invention either one of the steps (a2-1) and (a2-2) is a fluorescent dye.
  • a fluorescent dye Non-invasively detecting the fluorescence of the fluorescent dye in the subject non-human animal administered with the antibody light chain variable region polypeptide and antibody heavy chain variable region polypeptide labeled with Fluorescence of a fluorescent dye in a tissue or cell collected from a non-human animal subject is detected.
  • the “detecting” method is not particularly limited as long as it can detect the fluorescence of the fluorescent dye two-dimensionally or three-dimensionally by irradiating the individual, tissue, or cell of the subject non-human animal subject with excitation light. Is not to be done.
  • an image showing the structure of an individual, tissue, or cell of a non-human animal subject to be examined is simultaneously created using an endoscope, X-ray, CT, MRI, ultrasound, a microscope, or the like. It is preferable.
  • a test is performed based on the result of detecting the fluorescence of the fluorescent dye obtained in the step (b).
  • Visualize antigens in non-human animal subjects That is, since the amount of antigen in the test non-human animal subject and the fluorescence intensity of the fluorescence detected in step (b) are positively correlated, the structure of the individual, tissue, or cell of the test non-human animal subject Is compared with the two-dimensional or three-dimensional image of the fluorescence detected in the step (b), whereby the localization (position) of the antigen can be known.
  • a visible light image is created by irradiating a tissue of a subject non-human animal with visible light, and one of the tissues is labeled.
  • a fluorescent image is created by irradiating excitation light to the labeled fluorescent dye, and the above-mentioned visible light image and fluorescent image To know the localization of the antigen in the tissue.
  • step (a3-1) of the above in vitro detection method [I] of the present invention in vitro, the antibody heavy chain variable region polypeptide labeled with the antibody light chain variable region polypeptide and the fluorescent dye, and the test subject to form a ternary complex consisting of an antibody light chain variable region polypeptide / antibody specifically recognized by an antibody heavy chain variable region polypeptide / antibody labeled with a fluorescent dye.
  • the test subject in addition to cultured cells, tissue sections, tissues or cells collected from living bodies that may contain the target antigen to be measured, cell extraction blotted on nitrocellulose membrane, PVDF membrane, etc. A liquid etc. can be mentioned.
  • the incubation conditions are not particularly limited as long as they are conditions generally used for antibody-antigen reactions.
  • the temperature conditions are, for example, 1 to 30 ° C., preferably 18 to 25 ° C., and the reaction time is For example, it can be 5 to 180 minutes, preferably 60 to 120 minutes.
  • the solution after completion of the incubation can be directly used for the following step (b) without undergoing a step such as washing. This is one of the major features of the antigen concentration measurement / detection method of the present invention.
  • step (b) of the in vitro detection method [I] and the in vitro detection method [II] either one of the steps (a3-1) and (a3-2) is labeled with an antibody light chain.
  • the fluorescence of the fluorescent dye in the test subject incubated with the variable region polypeptide and the antibody heavy chain variable region polypeptide is detected two-dimensionally or three-dimensionally.
  • Examples of the “detecting” method include a fluorescence microscope and a fluorescence image analyzer.
  • step (c) of the in vitro detection method [I] or in vitro detection method [II] the antigen in the test subject is visualized from the result of detecting the fluorescence of the fluorescent dye obtained in the step (b). Can do. That is, since the antigen amount in the test subject and the fluorescence intensity of the fluorescence detected in the step (b) are positively correlated, the two-dimensional or three-dimensional image of the fluorescence detected in the step (b) Based on this, the localization (position) of the antigen can be known.
  • FIG. 1 shows CR110-labeled anti-BGP antibody light chain variable region polypeptide (CR110-VL), TAMRA-labeled anti-BGP antibody heavy chain variable region polypeptide (TAMRA-VH), and complexes thereof (CR110-VL / TAMRA).
  • -VH CR110-labeled anti-BGP antibody light chain variable region polypeptide
  • -VH complexes thereof
  • mutant VL (W33F, W36F, W47F, W106F) expression vectors in which four tryptophan codons (TGG; Trp33, Trp36, Trp47, Trp106) contained in the VH gene are replaced with phenylalanine codons (TTT), ProXtag and VH
  • Fluorescently labeled aminoacyl-tRNAs (TAMRA-X-AF-tRNAamber, CR110-X-AF-tRNAamber, and ATTO655-X-AF-tRNAamber) for producing fluorescently labeled proteins are CloverDirect TM tRNA Reagents for Site-Derected Protein Functionalization (manufactured by Protein Express) was used. The reaction solution was reacted at 20 ° C., 600 rpm, 2 h, and further reacted at 4 ° C., 16 h.
  • the synthesized V region protein was purified by His-Spin Trap Column (manufactured by GE Healthcare). To the above reaction solution (50 ⁇ L), add Wash buffer (20 mM Phosphate buffer (pH 7.4) /0.5 M NaCl / 60 mM imidazole / 0.1% Polyoxyethylene (23) Lauryl® Ether) to 400 ⁇ L, and put it into His-Spin® Trap column. Applied. After incubating at room temperature for 15 minutes, washing was performed 3 times with a Wash buffer.
  • the excitation wavelength was set to 490 nm for a mixture of CR110-VL and TAMRA-VH and 550 nm for TAMRA-VH.
  • the fluorescence intensity ratio I A / ID was calculated for a mixture of CR110-VL and TAMRA-VH.
  • I A and I D was used as the fluorescent intensity at 575nm and 525nm, respectively.
  • the dissociation constant (Kd) value was calculated by the fluorescence intensity ratio (I A / ID ) or curve fitting of the fluorescence intensity at the maximum fluorescence wavelength.
  • a sigmoidal dose-response model of Graphpad Prism manufactured by Graphpad
  • FIG. 2 shows the change in fluorescence intensity at 525 nm and 575 nm.
  • FIG. 3 shows the results of analyzing the change in the fluorescence intensity ratio (F575 / F525) at 525 nm and 575 nm, respectively.
  • TAMRA-labeled anti-BGP antibody scFv protein (2 ⁇ g / mL, 25 ⁇ L) with or without a spacer and antigenic BGP peptide so as to be a total of 200 ⁇ L of PBS (+ 0.05% Tween 20, 0.2% BSA) Samples were prepared. Thereafter, the sample was allowed to stand at 25 ° C. for 70 minutes, and then the fluorescence spectrum was measured using a fluorescence spectrophotometer (FluoroMax-4; manufactured by Horiba Joban Yvon), and the fluorescence intensity was calculated by curve fitting.
  • FluoroMax-4 fluorescence spectrophotometer
  • a sigmoidal dose-response model of ImageJ software http://rsbweb.nih.gov/ij/ was used as statistical analysis software. Measurement was performed at an excitation wavelength of 550 nm and a measurement wavelength of 580 nm.
  • fluorescence intensity distribution analysis method The fluorescence-labeled VH protein and the fluorescence-labeled VL protein (1 ⁇ g / mL and 7.5 ⁇ L, respectively) prepared in Example 1 or the fluorescence-labeled scFv (1 ⁇ g / mL and 7.5 ⁇ L) were added to PBS (+0.05) together with the BGP peptide. % Tween 20) to 50 ⁇ L, added to 384-well Glass Bottom Microplate (Olympus), and incubated at 25 ° C. for 90 minutes. The measurement by the fluorescence intensity distribution analysis method (Fluorescence Intensity Multiple Distribution Analysis; FIDA) was performed at 25 ° C.
  • FIDA Fluorescence Intensity Multiple Distribution Analysis
  • TAMRA and ATTO655 were excited with 543 nm and 633 nm lasers, respectively. Data was acquired for 10 seconds in one measurement, and 10 measurements were performed on one sample. An average value and a standard deviation were calculated from the measured values.
  • VL acts as a quencher for CR110, and when CR110-VL is present alone, the fluorescence of CR110 is quenched by VL, but CR110-VL, VH and antigen peptide are It was speculated that this quenching effect could be eliminated when a tripartite complex was formed.
  • TAMRA-VH and CR110-VL or unlabeled VL were incubated with different concentrations of BGP antigen peptide (1 to 10,000 ng), and changes in TAMRA fluorescence intensity were measured by fluorescence intensity distribution analysis (FIDA). Analyzed. Measurement was performed using a 543 nm laser as excitation light and a 560 to 620 nm fluorescent filter. The results are shown in FIG. When TAMRA-VH and CR110-VL were reacted, the fluorescence intensity of TAMRA increased in a BGP antigen peptide concentration-dependent manner.
  • FIG. 7 shows the results of measurement of fluorescence intensity using TAMRA-VH and a different concentration of BGP peptide in the presence or absence of unlabeled VL and using a 543 nm He—Ne laser.
  • VL the fluorescence intensity of TAMRA-VH
  • the fluorescence intensity of TAMRA-VH increased in a BGP peptide concentration-dependent manner.
  • the fluorescence intensity of TAMRA-VH remained low when any concentration of BGP peptide was reacted.
  • TAMRA is a rhodamine dye
  • studies so far have reported that rhodamine dyes are quenched (quenched) by amino acids such as tryptophan (Trp). Therefore, the inventors presume that the Trp residue present in VH is involved in TAMRA quenching, and when TAMRA-VH is present alone, TAMRA fluorescence is present in the vicinity thereof.
  • Trp residue has four Trp residues (Trp33, Trp36, Trp47, Trp106).
  • Trp33, Trp36, and Trp106 are involved in hydrophobic interaction with VL, and Trp33 is involved in interaction with BGP peptide.
  • Trp33 is involved in interaction with BGP peptide.
  • Wild type or mutant anti-BGP antibody heavy chain variable region polypeptide (W33F, W36F, W47F, W106F) and VL are reacted in the presence of different concentrations of BGP peptide, and fluorescence intensity is measured using a 543 nm He-Ne laser. Was measured. The results are shown in FIG. As a result of measuring the fluorescence intensity of the mutant fluorescently labeled VH alone, W106F and W36F showed an increase in fluorescence of 31% and 29%, respectively, as compared to the wild type (WT). W47F showed an 11% increase in fluorescence. On the other hand, W33F showed a 9% decrease.
  • Trp36, Trp47, and Trp106 are mainly involved in the fluorescence quenching of TAMRA.
  • W33F, W36F, and W106F exhibited an antigen concentration-dependent increase in fluorescence that was 1.5-fold, 1.3-fold, and 1.5-fold when reacted with VL and BGP peptides, respectively.
  • Trp to Phe mutation reduced the resolution of antigen-dependent quenching suggest that Trp33, Trp36, and Trp106 are partially involved in the quench.
  • W47F was reacted with the BGP peptide and VL, no increase in fluorescence was observed.
  • the analysis result of diffusion time by FCS measurement (FIG. 11) shows that the binding activity of the antibody disappears due to the mutation of Trp47. Therefore, Trp47 of VH is essential for the binding of the antibody and the antigen. It was shown that.
  • Trp33 and Trp106 are important Trps for quenching from the two points of an increase in fluorescence of the fluorescence-labeled VH alone and a decrease in the increase in fluorescence depending on the antigen concentration.
  • Trp47 is not known to be involved in antigen concentration-dependent quenching, but has been found to be a very important site for complex formation of VH and VL via antigen.
  • Trp106 in the amino acid sequence of VH corresponds to the 103rd position in the Kabat numbering system. (Kabat, E. et al., "Sequences of proteins of immunological interest, 5th edn.," U. S. Department of Health and Human Service, Public Service, National Institute of Health, DC, 1991.)
  • ATTO655-VH (+ spacer) was prepared by adding GGGSGGGS (SEQ ID NO: 4) as a spacer between ATTO655 and VH, and the influence of the presence or absence of the spacer on the quenching effect was examined.
  • FIG. 12 shows a complex of fluorescently labeled anti-BGP antibody heavy chain variable region polypeptide (Fluorescent labeled BGP-VH) and anti-BGP antibody light chain variable region polypeptide (BGP-VL) (Fluorescent labeled BGP-VH / VL) shows a three-dimensional structure prediction model.
  • FIG. 15 shows a three-dimensional structure prediction model of a fluorescent-labeled single-chain antibody in which a fluorescent-labeled antibody heavy chain variable region polypeptide and an antibody light-chain variable region polypeptide of the present invention are bound.
  • ProX TM tag (MSKQIEVNXSNET (X is a fluorescently labeled amino acid); SEQ ID NO: 3) containing an amber codon at the N-terminus of the inserted VH is added, and His-tag is added at the C-terminus. Designed. Similarly, a DNA sequence in which the amino acid X of the N-terminal ProX TM tag is substituted with F is added to the gene encoding the anti-BPA antibody VL (SEQ ID NO: 7), and the pIVEX 2.3d vector (Roche Diagnostics) is added. (Styx) NcoI and HindIII sites.
  • the constructed expression vector is designed such that a sequence in which the amino acid X of the inserted VL N-terminal ProX TM tag is substituted with F is added with His-tag at the C-terminal.
  • a single chain antibody (scFv) expression vector in which a VH gene and a VL gene are linked by a linker (GGGGSGGGGSGGGGS; SEQ ID NO: 9), a spacer (GGGSGGGS; SEQ ID NO: 4) between the ProX TM tag and the scFv N-terminus.
  • GGGSGGGSGGGS; SEQ ID NO: 10 or GGGSGGGSGGGSGGGSGGGS; SEQ ID NO: 11) were also produced in combination with three types of single chain antibody (scFv) expression vectors.
  • CloverDirect TM tRNA Reagents for Site-Derected Protein Functionalization (manufactured by Protein Express) was used as ATTO655-X-AF-tRNAamber for preparing fluorescently labeled proteins.
  • the reaction solution was reacted at 20 ° C., 600 rpm, 2 hours, and then reacted at 4 ° C., 16 hours.
  • SDS-PAGE (15%) was performed using 1 ⁇ L of the reaction solution, and protein expression was observed with a fluorescence image analyzer (FMBIO-III; manufactured by Hitachi Software Engineering Co., Ltd.).
  • FMBIO-III fluorescence image analyzer
  • Western blotting was performed using a His-tag antibody, and it was confirmed that the target protein was synthesized.
  • the synthesized V region protein was purified using His Spin Trap Column (manufactured by GE Healthcare).
  • Wash buffer (20 mM Phosphate buffer (pH 7.4) /0.5 M NaCl / 60 mM imidazole / 0.1% Polyoxyethylene (23) Lauryl® Ether) is added to 400 ⁇ L, and His-Spin® Trap. Applied to Column. After 15 minutes of incubation at room temperature, washing was performed 3 times with Wash buffer.
  • a sigmoidal dose-response model of Graphpad Prism (manufactured by Graphpad) was used as statistical analysis software.
  • TAMRA-labeled anti-BPA antibody scFv protein (2 ⁇ g / mL, 25 ⁇ L) with or without a spacer and antigen BPA in a total of 200 ⁇ L of PBS (+ 0.05% Tween 20, 0.2% BSA, 1% MeOH) Samples were prepared so that Thereafter, the sample was allowed to stand at 25 ° C.
  • each single chain antibody is as follows; anti-hen egg lysozyme (HEL) antibody scFv is a linker sequence of anti-HEL antibody VH (SEQ ID NO: 12) and VL (SEQ ID NO: 13) sequentially. (GGGGSGGGGSGGGGS; SEQ ID NO: 9); Estradiol (estradiol) antibody scFv is obtained by sequentially binding VH (SEQ ID NO: 14) and VL (SEQ ID NO: 15) of anti-estradiol antibodies with a linker sequence (GGGGSGGGGSGGGS; SEQ ID NO: 9).
  • the SA (Serum Albumin) antibody scFv is a sequence in which the anti-SA antibody VH (SEQ ID NO: 16) and VL (SEQ ID NO: 17) are sequentially linked by a linker sequence (GGGGSGGGGSGGGS; SEQ ID NO: 9).
  • CloverDirect TM tRNA Reagents for Site-Derected Protein Functionalization (manufactured by Protein Express) was used as a fluorescence-labeled aminoacyl-tRNA (TAMRA-X-AF-tRNAamber) for preparing a fluorescence-labeled protein.
  • the reaction solution was reacted at 20 ° C., 600 rpm, 2 h, and further reacted at 4 ° C., 16 h. After completion of the reaction, SDS-PAGE (15%) was performed using 1 ⁇ L of the reaction solution, and protein expression was observed with a fluorescence image analyzer (FMBIO-III; manufactured by Hitachi Software Engineering Co., Ltd.). Further, Western blotting was performed using a His-tag antibody to confirm that the target protein was synthesized.
  • FMBIO-III fluorescence image analyzer
  • the synthesized V region protein was purified by His-Spin Trap Column (manufactured by GE Healthcare). To the above reaction solution (50 ⁇ L), add Wash buffer (20 mM Phosphate buffer (pH 7.4) /0.5 M NaCl / 60 mM imidazole / 0.1% Polyoxyethylene (23) Lauryl® Ether) to 400 ⁇ L, and put it into His-Spin® Trap column. Applied. After incubating at room temperature for 15 minutes, washing was performed 3 times with a Wash buffer.
  • a sample was prepared such that the TAMRA-labeled anti-HEL antibody scFv protein (2 ⁇ g / mL, 25 ⁇ L) and the antigen HEL protein were in a total of 200 ⁇ L of PBS (+ 0.05% Tween 20, 1% BSA).
  • a sample was prepared so that the TAMRA-labeled anti-estradiol antibody scFv protein (2 ⁇ g / mL, 25 ⁇ L) and the antigen estradiol total 200 ⁇ L of PBS (+ 0.05% Tween 20, 1% BSA).
  • TAMRA-labeled anti-SA antibody scFv protein (2 ⁇ g / mL, 25 ⁇ L) and antigen BSA (bovine serum albumin) or HSA (human serum albumin) in a total of 200 ⁇ L of PBS (+ 0.05% Tween 20, 0.2%
  • BSA bovine serum albumin
  • HSA human serum albumin
  • Trp residues in mouse antibody VH As shown in Example 4, FIG. 9, and Table 1, the quenching of the fluorescent dye labeled with anti-BGP antibody requires Kabat number in the amino acid sequence of VH. It is clear that the 33rd, 36th and 106th Trps play an important role in the attachment system, and that the 47th Trp is essential for the binding of the antibody (VH and VL) to the antigen. (Note that Trp106 in the amino acid sequence of VH corresponds to the 103rd position in the Kabat numbering system). Therefore, whether or not these tryptophan residues are conserved in the mouse antibody VH region other than the anti-BGP antibody was also confirmed.
  • the Abysis database (Dr.
  • Table 2 shows the results of numbering according to Kabat sequence notation.
  • Table 3 shows the results obtained by numbering the numbers according to the Kabat sequence notation.
  • the homogeneous fluorescent immunoassay method of the present invention does not require the immobilization or washing of an antibody or antigen, and directly monitors the fluorescence intensity of a mixed solution in which an antibody and a test substance are mixed, thereby concentrating the concentration of the target substance. Therefore, it is expected that low-molecular compounds can be detected more easily and quickly.
  • the homogeneous fluorescent immunoassay method of the present invention can be used for measurement of various antigen concentrations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

固相化工程と洗浄工程とを必要としない、液相において迅速かつ簡便に目的の物質の定量的な測定を可能とし、かつ、抗原を可視化することが可能な免疫測定法を提供することを課題とした。かかる課題を、(a)液相中で、抗体軽鎖可変領域ポリペプチドと、蛍光色素により標識された抗体重鎖可変領域ポリペプチドとを、被検物質中の抗原に接触させる工程;又は液相中で、抗体重鎖可変領域ポリペプチドと、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドとを、被検物質中の抗原に接触させる工程;(b)前記蛍光色素の蛍光強度を測定する工程;(c)液相中の抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検物質に含まれる抗原量を算出する工程;を順次行い、被検物質中に存在する目的とする抗原の濃度を測定することにより解決した。

Description

蛍光免疫測定方法
 本発明は、固相化工程及び洗浄工程を必要としない新規の抗原濃度測定方法や、かかる抗原濃度測定方法を行うためのキット等に関する。
 抗原や抗体の濃度を測定する方法のうち、臨床診断、基礎研究や環境調査などに最も広く用いられている測定方法は、同一の抗原の異なるエピトープを認識する2種類のモノクローナル抗体、あるいはモノクローナル抗体とポリクローナル抗体を使用する、サンドイッチELISA法(あるいはサンドイッチRIA法)と呼ばれる免疫測定法である。サンドイッチ法の詳細は以下に述べる通りである。第一段階として一次抗体と呼ばれるモノ/ポリクローナル抗体を測定用プレートに固定化し、そこに抗原を含む検体を注ぎ、一定時間反応させて抗体と抗原を結合させる。次に、第二段階として、抗体に結合した夾雑物や、プレートに非特異的に結合した抗原を洗浄液で洗浄して取り除く。第三段階として、予め酵素、蛍光色素あるいはラジオアイソトープなどのレポーター分子を結合させた標識二次抗体溶液を注ぎ、一定時間反応させ、一次抗体によって補足された抗原にさらに標識二次抗体を結合させる。反応後に、洗浄液で余分の標識抗体を取り除き、測定用プレートに結合したレポーター分子の量を酵素活性、蛍光あるいはラジオアイソトープなどで測定することにより検体中の抗原量を測定する。
 前述のように、通常のサンドイッチELISA法では、エピトープの異なる2種類の抗体が必要となるが、例えば、低分子化合物などを抗原とする場合には、異なるエピトープを認識する複数の抗体を作製することは困難である。このため、上田らは、1種類の抗体の重鎖可変領域(VH)と軽鎖可変領域(VL)とを用いた、オープンサンドイッチ法と呼ばれる、精度の高い低分子化合物の免疫測定法を確立した(特許文献1及び2、非特許文献1及び2)。この方法は、抗原を特異的に認識する抗体のVH領域ポリペプチド及びVL領域ポリペプチドを調製し、一方のポリペプチドをレポーター分子で標識して標識化ポリペプチドとし、他方のポリペプチドを固相に固定して固定化ポリペプチドとし、抗原含有試料及び標識化ポリペプチドを固定化ポリペプチドに接触させ、固定化ポリペプチドに結合した標識化ポリペプチドのレポーター分子の量を測定する抗原濃度測定方法である。また、低分子化合物を測定するための測定法としては、免疫測定法の他にも液体クロマトグラフ法等があるが、高精度な測定機器が必要な上、被検体の必要量も多く、測定時間もかかり、しかも汎用性が低い。
 また、蛍光色素標識した抗体を用いて抗原の濃度を測定する免疫測定方法としては、抗体と抗原とをそれぞれ異なる蛍光色素により標識し、蛍光色素間で起こる蛍光共鳴エネルギー転移(FRET)の効率の変化を指標とした免疫測定法や(非特許文献3及び4)、蛍光標識した抗体にあらかじめ消光物質を混合することにより消光されていた抗体の蛍光が、目的検出物質の導入により増大する現象を用いるクエンチングによる効率の変化を指標とした免疫測定法や、蛍光色素で標識した抗体を用いて、標識抗体と測定対象物が凝集することにより起こる蛍光強度の減少を測定する蛍光免疫測定方法(特許文献3)が知られている。
特開平10-78436号公報 特許第3784111号公報 特開平10-282098号公報
上田宏,薬学雑誌 27:71-80(2007) Lim SL, et al., Anal Chem. 79(16): 6193-200(2007) Iijima I. and Hohsaka T., Chembiochem. 17;10(6): 999-1006 (2009) Kajihara D, et al., Nat Methods. 3(11): 923(2006)
 現在までに知られている免疫測定法は、上述したように、いずれも抗体又は抗原を固相化する工程と、非特異的な標識化合物の吸着を除去するための洗浄工程とを必要とするものであった。これらの工程は作業が煩雑で時間が掛かる上に、結果のばらつきの原因となることから、固相化工程や洗浄工程を必要としない液相系免疫測定方法の開発が求められていた。本願発明の課題は、固相化工程と洗浄工程とを必要としない、液相において迅速かつ簡便に目的の物質の定量的な測定を可能とし、かつ、抗原を可視化することが可能な免疫測定法を提供することにある。
 本発明者らはまず、異なる蛍光色素により標識された抗体VH及びVLを用いて、蛍光共鳴エネルギー転移(FRET)効率を指標とした抗体/抗原結合活性評価系の確立を試みた。FRET測定には、蛍光色素CR110により標識した抗BGP抗体軽鎖領域(CR110-VL)と、蛍光色素TAMRAにより標識した抗BGP抗体重鎖領域(TAMRA-VH)とを用い、抗原が存在しない場合はCR110からTAMARへFRETが生じないのに対して、抗原が存在する場合には、VHとVLは抗原を介して三者複合体を形成し、CR110からTAMRAへのFRETが引き起こされると予想して、CR110-VLと、TAMRA-VH又は標識していないVHとを、異なる濃度のBGP抗原ペプチドとともにインキュベートし、CR110の蛍光強度の変化を蛍光強度分布解析法(FIDA)により解析した。その結果、CR110-VLとTAMRA-VHとを反応させた場合には、CR110の蛍光強度はBGP抗原ペプチドの濃度依存的に低下したことから、CR110-VL及びTAMRA-VHが、抗原ペプチドを介して結合して複合体を形成し、予想されたようなCR110からTAMRAへのFRETが引き起こされることが確認された。
 一方、意外なことに、CR110-VLと標識していないVHとを反応させた場合には、CR110の蛍光強度はBGP抗原ペプチドの濃度依存的に増加した。本発明者らは、同様の現象が標識したVHを用いた場合にも認められるかどうかを確認する目的で、TAMRA-VHと、CR110-VL又は標識していないVLとを、異なる濃度のBGP抗原ペプチドとともにインキュベートし、TAMRAの蛍光強度の変化を解析した。その結果、TAMRA-VHと標識していないVLとを反応させた場合にも、TAMRA-VHの蛍光強度はBGP抗原ペプチドの濃度依存的に増加することが明らかとなった。これらの結果は全く予想外のものであり、VL及びVHが蛍光色素(CR110、TAMRA)に対してクエンチャーとして作用しており、VH及びVLが抗原ペプチドを介して複合体を形成したときのみ、このクエンチが解消されて蛍光強度が増加するのではないかとの仮説を立てた。
 上記の仮説を基に、本発明者らは、クエンチング現象を利用した新たな測定方法(以後、「均一系蛍光免疫測定法(homogenous fluorescent based immunoassay)」と称することもある)の確立を試み、TAMRA-VHと異なる濃度のBGPペプチドとを、標識されていないVLの存在又は非存在下で反応させ、蛍光強度を測定した。その結果、VLの存在下では、TAMRA-VHの蛍光強度はBGPペプチドの濃度依存的に増加し、VLの存在/非存在下におけるTAMRA-VHの蛍光強度の比(+VL/-VL)を解析した結果から、高感度の均一系蛍光免疫測定法が構築できることを見い出した。さらに、発明者らは、蛍光色素としてATTO655を使用すること、スペーサーを介して蛍光色素をVHに標識することにより、上記「均一系蛍光免疫測定法」の感度が増加することを確認した。
 さらに、本発明者らは、VHに存在する4つのトリプトファン(以下、Trp又はWと表記することもある)をそれぞれフェニルアラニン(以下、Phe又はFと表記することもある)に変異させた変異VHを用いてクエンチ効果を確認する実験を行い、VHのアミノ酸配列における第36番目、第47番目、第106番目(Kabatの番号付け系においては第103番目に対応)のトリプトファンが蛍光色素のクエンチャーとして作用していることを明らかにした。これらのトリプトファンは、マウス抗体VHにおいて高度に保存されていることから、本発明の「均一系蛍光免疫測定法」を適用することにより、様々な抗体を用いた抗原の測定を行うことが可能であることがわかった。
 本発明は、以上の知見に基づき完成するに至ったものである。
 本発明によると、液相において迅速かつ簡便に目的物質の定量的な測定が可能な免疫測定方法や、該測定方法による抗原の測定を行うためのキットを提供することができる。本発明の測定方法は、抗原と、抗体VL及びVHとの結合を、上記抗体VL又はVHに標識した蛍光色素の蛍光強度を指標として検出/測定する方法であって、上記抗体VLとVHとが結合していない時、上記蛍光色素はクエンチされた状態にあり、上記抗体VL及びVHが抗原を介して結合した時、上記蛍光色素のクエンチが解消される、という新たな知見に基づいたものであって、従来の免疫測定法では不可欠であった固相化工程と洗浄工程とを必要としないため、ばらつきが少なく精度の高い測定結果を短時間で得ることができる。
 すなわち本発明は、(1)抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドとを備え、前記抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドのいずれか一方が蛍光色素により標識されたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とすることを特徴とする抗原濃度測定・検出用キットや、(2)抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとが結合した一本鎖抗体であることを特徴とする上記(1)記載の抗原濃度測定・検出用キットに関する。
 また本発明は、(3)蛍光色素が、ローダミン系蛍光色素又はオキサジン系蛍光色素であることを特徴とする上記(1)又は(2)記載の抗原濃度測定・検出用キットや、(4)蛍光色素が、CR110、TAMRA、又はATTO655であることを特徴とする上記(3)記載の抗原濃度測定・検出用キットや、(5)抗体重鎖可変領域ポリペプチドが配列番号1に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号2に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする上記(1)~(4)のいずれかに記載の抗原濃度測定・検出用キットや、(6)抗体重鎖可変領域ポリペプチドが配列番号6に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号7に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする上記(1)~(4)のいずれかに記載の抗原濃度測定・検出用キットに関する。
 さらに本発明は、(7)(a)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチド、又は、抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを、(a1)液相中で、被検物質中の抗原に接触させる工程;又は、(a2)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチド、又は、抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを投与した被検非ヒト動物対象中の抗原に接触させる工程;又は(a3)インビトロで、被検対象中の抗原に接触させる工程;(b)前記(a1)の場合には、蛍光色素の蛍光強度を測定し、前記(a2)及び(a3)の場合には、前記蛍光色素の蛍光を検出する工程;(c)液相中の抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、前記(a1)の場合には、被検物質に含まれる抗原量を算出し、前記(a2)及び(a3)の場合には、被検対象に含まれる抗原を可視化する工程;の工程(a)~(c)を順次備えることを特徴とする抗原濃度測定・検出方法に関する。
 また本発明は、(8)抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとが結合した一本鎖抗体であることを特徴とする上記(7)記載の抗原濃度測定・検出方法や、(9)蛍光色素が、ローダミン系蛍光色素又はオキサジン系蛍光色素であることを特徴とする上記(7)又は(8)記載の抗原濃度測定・検出方法や、(10)蛍光色素が、CR110、TAMRA、又はATTO655であることを特徴とする上記(9)記載の抗原濃度測定・検出方法や、(11)抗体重鎖可変領域ポリペプチドが配列番号1に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号2に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする上記(7)~(10)のいずれかに記載の抗原濃度測定・検出方法や、(12)抗体重鎖可変領域ポリペプチドが配列番号6に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号7に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする上記(7)~(10)のいずれかに記載の抗原濃度測定・検出方法に関する。
本発明のCR110標識抗BGP抗体軽鎖可変領域ポリペプチド(CR110-VL)、TAMRA標識抗BGP抗体重鎖可変領域ポリペプチド(TAMRA-VH)、及び、それらの複合体(CR110-VL/TAMRA-VH)を模式的に示した図である。 異なる濃度のBGPペプチドの存在下で、CR110-VL及びTAMRA-VHを反応させて、490nmの励起光を用いて蛍光スペクトルを測定した結果を示す図である。 異なる濃度のBGPペプチドの存在下で、CR110-VL及びTAMRA-VHを反応させて、525nm(F525)及び575nm(F575)の蛍光強度の変化を測定した結果を示す図である。 異なる濃度のBGPペプチドの存在下で、CR110-VL及びTAMRA-VHを反応させて525nm及び575nmの蛍光強度を測定し、蛍光強度の比(F575/F525)の変化を解析した結果を示す図である。 本発明のCR110標識抗BGP抗体軽鎖可変領域ポリペプチド、及び、TAMRA標識抗BGP抗体重鎖可変領域ポリペプチドを、異なる濃度のBGPペプチド存在下で反応させ、488nmレーザーと510~560nm蛍光フィルターを用いて蛍光強度分布解析法(FIDA)により解析した結果を示す図である。図中、CR110-VLはCR110標識抗BGP抗体軽鎖可変領域ポリペプチドを、TAMRA-VHはTAMRA標識抗BGP抗体重鎖可変領域ポリペプチドを、w.t.-VHは標識されていない抗BGP抗体重鎖可変領域ポリペプチドをそれぞれ示す。 本発明のCR110標識抗BGP抗体軽鎖可変領域ポリペプチド、及び、TAMRA標識抗BGP抗体重鎖可変領域ポリペプチドを、異なる濃度のBGPペプチド存在下で反応させ、543nmレーザーと560~620nm蛍光フィルターを用いて蛍光強度分布解析法(FIDA)により解析した結果を示す図である。図中、CR110-VLはCR110標識抗BGP抗体軽鎖可変領域ポリペプチドを、TAMRA-VHはTAMRA標識抗BGP抗体重鎖可変領域ポリペプチドを、w.t.-VLは標識されていない抗BGP抗体軽鎖可変領域ポリペプチドを示す。 本発明のTAMRA標識抗BGP抗体重鎖可変領域ポリペプチドと、異なる濃度のBGPペプチドとを、標識されていない抗BGP抗体軽鎖可変領域ポリペプチドの存在又は非存在下で反応させ、543nmのHe-Neレーザーを用いて蛍光強度を測定した結果を示す図である。図中、+VLは標識されていない抗BGP抗体軽鎖可変領域ポリペプチドの存在下で反応させた結果を、-VLは標識されていない抗BGP抗体軽鎖可変領域ポリペプチドの非存在下で反応させ蛍光強度を測定した結果をそれぞれ示す。 本発明のTAMRA標識抗BGP抗体重鎖可変領域ポリペプチドと、異なる濃度のBGPペプチドとを、標識されていない抗BGP抗体軽鎖可変領域ポリペプチドの存在又は非存在下で反応させ、蛍光強度の比(+VL/-VL)を解析した結果を示す図である。 本発明の抗BGP抗体重鎖可変領域ポリペプチド中に存在するトリプトファン残基について示した図である。抗BGP抗体重鎖可変領域ポリペプチドと抗BGP抗体軽鎖可変領域ポリペプチドとの複合体(VH/VL complex)、及び単独の抗BGP抗体重鎖可変領域ポリペプチド(VH)の3次元構造予測モデルにおけるトリプトファン残基(W33、W36、W47、W106)の位置を示す図である。なお、これらのトリプトファン残基の位置は、カバット(Kabat)の番号付け系ではそれぞれVHの第33番目、第36番目、第47番目、第103番目のアミノ酸に対応する。 野生型(WT)又は変異型抗BGP抗体重鎖可変領域ポリペプチド(W33F、W36F、W47F、W106F)と抗BGP抗体軽鎖可変領域ポリペプチドとを、異なる濃度のBGPペプチド存在下で反応させ、543nmのHe-Neレーザーを用いて蛍光強度を測定した結果を示す図である。 野生型(WT)又は変異型抗BGP抗体重鎖可変領域ポリペプチド(W33F、W36F、W47F、W106F)と抗BGP抗体軽鎖可変領域ポリペプチドとを、異なる濃度のBGPペプチド存在下で反応させ、蛍光相関分光法(Fluorescence Correlation Spectroscopy;FCS)により拡散時間(diffusion time)の変化を解析した結果を示す図である。 スペーサー付加蛍光標識抗BGP抗体重鎖可変領域ポリペプチド(Fluorescentlabeled BGP-VH)と、抗BGP抗体軽鎖可変領域ポリペプチド(BGP-VL)との複合体(Fluorescentlabeled BGP-VH/VL)の3次元構造予測モデルを示す図である。 スペーサー(GGGSGGGS;配列番号4)を含む又は含まないATTO655標識抗BGP抗体重鎖可変領域ポリペプチドと、抗BGP抗体軽鎖可変領域ポリペプチドとを、異なる濃度のBGPペプチド存在下で反応させ、蛍光強度を測定した結果を示す図である。 スペーサー(GGGSGGGS;配列番号4)を含む又は含まないATTO655標識抗BGP抗体重鎖可変領域ポリペプチドと、抗BGP抗体軽鎖可変領域ポリペプチドとを、異なる濃度のBGPペプチド存在下で反応させ、測定した蛍光強度の比を示す図である。 本発明の蛍光標識抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとを結合させた蛍光標識一本鎖抗体の3次元構造予測モデルを示す図である。 本発明の蛍光標識抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとを結合させた蛍光標識一本鎖抗体の1次元構造の模式図を示す図である。 スペーサーを含む又は含まないATTO655標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、蛍光強度を測定した結果を示す図である。 スペーサーを含む又は含まないATTO655標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、測定した蛍光強度の比を示す図である。 本発明のATTO655標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)を用いて蛍光を検出した結果を示す図である。図中、FL92は配列番号3に示されるアミノ酸配列からなるスペーサー配列を、2TAGはMX(Xは蛍光標識アミノ酸)からなるスペーサー配列をそれぞれ示す。 スペーサーを含む又は含まない蛍光標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)を用いて蛍光を定量した結果を示す図である。図中、FL92は配列番号3に示されるアミノ酸配列からなるスペーサー配列を、2TAGはMX(Xは蛍光標識アミノ酸)からなるスペーサー配列をそれぞれ示す。 スペーサーを含む又は含まない蛍光標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)を用いて蛍光を検出した結果を示す図である。図中、FL92は配列番号3に示されるアミノ酸配列からなるスペーサー配列を、2TAGはMX(Xは蛍光標識アミノ酸)からなるスペーサー配列をそれぞれ示す。 FL92スペーサー(配列番号3)を含む蛍光標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)及びMF20/FluoroPoint-Light(オリンパス社製)を用いて測定した蛍光強度の比を示す図である。 スペーサーを含む又は含まないTAMRA標識抗BGP一本鎖抗体と異なる濃度のBGPペプチドとを反応させ、蛍光を検出した結果を示す図である。G3S(1)はGGGSを、G3S(2)はGGGSGGGS(配列番号4)を、G3S(3)はGGGSGGGSGGGS(配列番号10)のスペーサー(リンカー)の配列をそれぞれ含むことを示す。 TAMRA標識抗BGP一本鎖抗体タンパク質と、異なる濃度のBGPとを、PBST緩衝液および終濃度50%ヒト血漿存在下で反応させ、蛍光強度を測定した結果を示す図である。 本発明のATTO655標識抗ビスフェノールA(BPA)抗体重鎖可変領域ポリペプチド及び異なる濃度のBPAを、標識されていない抗BPA抗体軽鎖可変領域ポリペプチドの存在又は非存在下で反応させ、蛍光強度を測定した結果を示す図である。 ATTO655標識抗BPA抗体重鎖可変領域ポリペプチド及び異なる濃度のBPAを、標識されていない抗BPA抗体軽鎖可変領域ポリペプチドの存在又は非存在下で反応させ、測定した蛍光強度の比を示す図である。 スペーサーを含む又は含まないTAMRA標識抗BPA一本鎖抗体と異なる濃度のBPAペプチドとを反応させ、蛍光を検出した結果を示す図である。G3S(2)はGGGSGGGS(配列番号4)を、G3S(3)はGGGSGGGSGGGS(配列番号10)を、G3S(5)はGGGSGGGSGGGSGGGSGGGS(配列番号11)ののスペーサー(リンカー)の配列をそれぞれ含むことを示す。 TAMRA標識抗HEL一本鎖抗体と異なる濃度のHELタンパク質とを反応させ、蛍光を検出した結果を示す図である。 TAMRA標識抗エストラジオール一本鎖抗体と異なる濃度のエストラジオールとを反応させ、蛍光を検出した結果を示す図である。 TAMRA標識抗SA一本鎖抗体と、異なる濃度のBSA又はHSAとを反応させ、蛍光を検出した結果を示す図である。 マウス抗体重鎖可変領域のアミノ酸配列において、カバット(Kabat)の番号付け系で第36番目、第47番目、又は第103番目のトリプトファンが保存されていることを示す図である。A)抗BGPマウス抗体重鎖可変領域の3次元構造予測モデル、及び、該抗BGPマウス抗体重鎖可変領域に含まれるトリプトファン残基のうちW36、W47、W106が特にクエンチングに関与している可能性を示す図である。 多くの種類のマウス抗体重鎖可変領域において、W33が高度に保存されていることを示す図である。 多くの種類のマウス抗体重鎖可変領域において、W36が高度に保存されていることを示す図である。 多くの種類のマウス抗体重鎖可変領域において、W47が高度に保存されていることを示す図である。 多くの種類のマウス抗体重鎖可変領域において、W106が高度に保存されていることを示す図である。なお、上記のVHのアミノ酸配列におけるTrp106は、カバット(Kabat)の番号付け系においては第103番目の位置に対応するものである。
 本発明の抗原濃度測定・検出用キットとしては、抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドとを備え、前記抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドのいずれか一方が蛍光色素により標識されたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とすることを特徴とする抗原濃度測定・検出用キット、すなわち、(1)抗体軽鎖可変領域ポリペプチドと、蛍光色素により標識された抗体重鎖可変領域ポリペプチドとを備えたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として抗原濃度を測定することができる抗原濃度測定用キットや、(2)抗体軽鎖可変領域ポリペプチドと、蛍光色素により標識された抗体重鎖可変領域ポリペプチドとを備えたキットであって、被検対象中の抗原量と上記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として抗原を可視化することができる抗原検出用キットや、(3)抗体重鎖可変領域ポリペプチドと、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドとを備えたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として抗原濃度を測定することができる抗原濃度測定用キットや、(4)抗体重鎖可変領域ポリペプチドと、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドとを備えたキットであって、被検対象中の抗原量と上記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として抗原を可視化することができる抗原検出用キットであれば特に制限されず、上記抗体軽鎖可変領域ポリペプチド及び上記抗体重鎖可変領域ポリペプチドは、同一の抗原分子を介して複合体を形成することが可能であれば、それぞれ独立した2つポリペプチド断片として調製されたものであってもよいし、リンカー等を介して融合した一本鎖抗体として調製されたであってもよい。また、上記抗原としては、上記抗体重鎖可変領域ポリペプチド及び上記抗体軽鎖可変領域ポリペプチドにより特異的に認識される抗原であれば特に制限されず、例えば、タンパク質、ペプチド、糖質、脂質、糖脂質、低分子化合物等を挙げることができる。
 本発明の抗原濃度測定・検出方法としては、(a)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチド、又は、抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを、(a1)液相中で、被検物質中の抗原に接触させる工程;又は(a2)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチド、又は、抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを投与した被検非ヒト動物対象中の抗原に接触させる工程;又は(a3)インビトロで、被検対象中の抗原に接触させる工程;(b)前記(a1)の場合には、蛍光色素の蛍光強度を測定し、前記(a2)及び(a3)の場合には、前記蛍光色素の蛍光を検出する工程;(c)液相中の抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、前記(a1)の場合には、被検物質に含まれる抗原量を算出し、前記(a2)及び(a3)の場合には、被検対象に含まれる抗原を可視化する工程;の(a)~(c)を順次備えることを特徴とする抗原濃度測定・検出方法、すなわち、液相中で、抗体軽鎖可変領域ポリペプチドと、蛍光色素により標識された抗体重鎖可変領域ポリペプチドとを、被検物質中の抗原に接触させる工程(a1-1);前記蛍光色素の蛍光強度を測定する工程(b);被検物質に含まれる抗原量を算出する工程、すなわち液相中の抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検物質に含まれる抗原量を算出する工程(c);を順次備えることを特徴とする抗原濃度測定方法(以下、「測定方法[I]」ということがある)や、液相中で、抗体重鎖可変領域ポリペプチドと、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドとを、被検物質中の抗原に接触させる工程(a1-2);前記蛍光色素の蛍光強度を測定する工程(b);被検物質に含まれる抗原量を算出する工程、すなわち液相中の抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検物質に含まれる抗原量を算出する工程(c);を順次備えることを特徴とする抗原濃度測定方法(以下、「測定方法[II]」ということがある)や、抗体軽鎖可変領域ポリペプチド及び蛍光色素により標識された抗体重鎖可変領域ポリペプチドを投与した被検非ヒト動物対象中の抗原に接触させる工程(a2-1);(b)前記蛍光色素の蛍光を検出する工程;(c)被検非ヒト動物対象中の抗原量と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検対象に含まれる抗原を可視化する工程;を順次備えることを特徴とする抗原検出方法(以下、「非ヒト動物検出方法[I]」ということがある)や、抗体重鎖可変領域ポリペプチド及び蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを投与した被検非ヒト動物対象中の抗原に接触させる工程(a2-2);前記蛍光色素の蛍光を検出する工程(b);被検非ヒト動物対象中の抗原量と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検対象に含まれる抗原を可視化する工程(c);を順次備えることを特徴とする抗原検出方法(以下、「非ヒト動物検出方法[II]」ということがある)や、インビトロで、抗体軽鎖可変領域ポリペプチドと、蛍光色素により標識された抗体重鎖可変領域ポリペプチドとを、被検対象中の抗原に接触させる工程(a3-1);前記蛍光色素の蛍光を検出する工程(b);被検対象中の抗原量と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検対象に含まれる抗原を可視化する工程(c);を順次備えることを特徴とする抗原検出方法(以下、「インビトロ検出方法[I]」ということがある)や、インビトロで、抗体重鎖可変領域ポリペプチドと、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドとを、被検対象中の抗原に接触させる工程(a3-2);前記蛍光色素の蛍光を検出する工程(b);被検対象中の抗原量と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、被検対象に含まれる抗原を可視化する工程(c);を順次備えることを特徴とする抗原検出方法(以下、「インビトロ検出方法[II]」ということがある)であれば特に制限されず、上記抗体軽鎖可変領域ポリペプチド及び上記抗体重鎖可変領域ポリペプチドは、同一の抗原分子を介して複合体を形成することが可能であれば、それぞれ独立した2つポリペプチド断片として調製されたものであってもよいし、リンカー等を介して融合した一本鎖抗体として調製されたものであってもよい。また、上記抗原としては、上記抗体重鎖可変領域ポリペプチド及び上記抗体軽鎖可変領域ポリペプチドにより特異的に認識される抗原であれば特に制限されず、例えば、タンパク質、ペプチド、糖質、脂質、糖脂質、低分子化合物等を挙げることができる。
 上記抗体重鎖可変領域ポリペプチドとしては、抗体重鎖遺伝子のV領域、D領域、及びJ領域のエクソンによりコードされる抗体重鎖可変領域に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、上記抗体重鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであってもよい。また、上記抗体重鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第36番目、第47番目、又は第103番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましく、具体的には、配列番号1に示されるアミノ酸配列や、配列番号6に示されるアミノ酸配列を好適に例示することができる。
 上記抗体軽鎖可変領域ポリペプチドとしては、抗体軽鎖遺伝子のV領域及びJ領域のエクソンによりコードされる抗体軽鎖可変領域に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、上記抗体軽鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであってもよい。また、上記抗体軽鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第35番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましく、具体的には、配列番号2に示されるアミノ酸配列や、配列番号7に示されるアミノ酸配列を好適に例示することができる。
 抗体軽鎖可変領域ポリペプチド、抗体軽鎖可変領域ポリペプチド、及び、抗体軽鎖可変領域と抗体軽鎖可変領域の両方を含む一本鎖抗体ポリペプチドは、公知の化学合成法、遺伝子組換え技術、抗体分子のタンパク質分解酵素による分解方法等を用いて調製することができるが、中でも、比較的容易な操作でかつ大量に調製することが可能な遺伝子組換え技術により調製することが好ましい。遺伝子組換え技術により上記ポリペプチドを調製する場合には、抗体軽鎖可変領域又は抗体軽鎖可変領域に特異的なアミノ酸配列をコードする塩基配列を含むDNAを好適なベクターに導入して発現ベクターを作製し、バクテリア、酵母、昆虫、動植物細胞などを宿主として用いた発現系や、無細胞翻訳系により目的のポリペプチドを発現させることができる。無細胞翻訳系においてポリペプチドの発現を行う場合は、例えば、大腸菌、小麦胚芽、ウサギ網状赤血球等の無細胞抽出液に、ヌクレオチド3リン酸や各種アミノ酸を加えた反応液中で、ポリペプチドを発現させることができる。
 上記蛍光色素としては、抗体重鎖可変領域ポリペプチド又は抗体軽鎖可変領域ポリペプチドに標識された状態でクエンチ(消光)されるものであれば特に制限されず、ローダミン、クマリン、Cy、EvoBlue、オキサジン、Carbopyronin、naphthalene、biphenyl、anthracene、phenenthrene、pyrene、carbazole等を基本骨格として有する蛍光色素やその蛍光色素の誘導体を例示することができ、具体的には、CR110:carboxyrhodamine 110:Rhodamine Green(商標名)、TAMRA: carbocytetremethlrhodamine:TMR、ATTO655(商標名)、BODIPY FL(商標名):4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 493/503(商標名):4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indancene-8-propionicacid、BODIPY R6G(商標名):4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 558/568(商標名):4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 564/570(商標名):4,4-difluoro-5-styryl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 576/589(商標名):4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 581/591(商標名):4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、Cy3(商標名)、Cy3B(商標名)、Cy3.5(商標名)、Cy5(商標名)、Cy5.5(商標名)、EvoBlue10(商標名)、EvoBlue30(商標名)、MR121、ATTO 390(商標名)、ATTO 425(商標名)、ATTO 465(商標名)、ATTO 488(商標名)、ATTO 495(商標名)、ATTO 520(商標名)、ATTO 532(商標名)、ATTO Rho6G(商標名)、ATTO 550(商標名)、ATTO 565(商標名)、ATTO Rho3B(商標名)、ATTO Rho11(商標名)、ATTO Rho12(商標名)、ATTO Thio12(商標名)、ATTO 610(商標名)、ATTO 611X(商標名)、ATTO 620(商標名)、ATTO Rho14(商標名)、ATTO 633(商標名)、ATTO 647(商標名)、ATTO 647N(商標名)、ATTO 655(商標名)、ATTO Oxa12(商標名)、ATTO 700(商標名)、ATTO 725(商標名)、ATTO 740(商標名)、Alexa Fluor 350(商標名)、Alexa Fluor 405(商標名)、Alexa Fluor 430(商標名)、Alexa Fluor 488(商標名)、Alexa Fluor 532(商標名)、Alexa Fluor 546(商標名)、Alexa Fluor 555(商標名)、Alexa Fluor 568(商標名)、Alexa Fluor 594(商標名)、Alexa Fluor 633(商標名)、Alexa Fluor 647(商標名)、Alexa Fluor 680(商標名)、Alexa Fluor 700(商標名)、Alexa Fluor 750(商標名)、Alexa Fluor 790(商標名)、Rhodamine Red-X(商標名)、Texas Red-X(商標名)、5(6)-TAMRA-X(商標名)、5TAMRA(商標名)、SFX(商標名)を挙げることができるが、中でも、ローダミン系蛍光色素であるCR110やTAMRA、及びオキサジン系蛍光色素であるATTO655を特に好適に挙げることができる。
 蛍光色素により、抗体軽鎖可変領域ポリペプチド及び抗体重鎖可変領域ポリペプチドを標識する方法としては特に制限されず、ポリペプチドの両端又は側鎖の官能基を利用して直接又は架橋剤を介して間接的に標識する方法や、in vitro転写・翻訳系を利用してポリペプチドを合成しながら部位特異的に標識する手法等を用いることができる。in vitro転写・翻訳系を利用して標識する方法としては、アンバーサプレッション法(Ellman J et al.(1991)Methods Enzymol.202:301-36)、C末端標識法(特開2000-139468号公報)、N末端標識法(米国特許第5,643,722号公報、Olejnik et al.(2005)Methods 36:252-260)等が知られており、アンバーサプレッション法では、標識のターゲット部位のアミノ酸をコードするコドンを、終止コドンの一つであるアンバーコドンに置き換えたDNA又はmRNAを作製し、in vitro転写・翻訳系を用いて該DNA又はmRNAからタンパク質を合成する。その際、タンパク質合成反応液に標識された非天然アミノ酸を結合させたサプレッサーtRNAを添加することで、アンバーコドンに置換した部位に標識アミノ酸が導入されたタンパク質を合成することができる。また、C末端標識法では、標識したピューロマイシンを最適濃度で添加したin vitro転写・翻訳系において、DNA又はmRNAからタンパク質への翻訳を行うことにより、C末端特異的に標識が導入されたタンパク質を合成することができる。
 上記本発明の抗原濃度測定・検出用キットは、緩衝液、測定用のチューブ又はプレート、標準物質として使用できる抗原等、通常この種の免疫測定キットに用いられる試薬や器具を含んでいてもよい。かかる本発明の抗原濃度測定・検出用キットは、本発明の抗原濃度測定・検出方法に好適に用いることができる。
 上記本発明の測定方法[I]における工程(a1-1)においては、緩衝液や生理食塩水等の溶液に、抗体軽鎖可変領域ポリペプチド及び蛍光色素により標識された抗体重鎖可変領域ポリペプチドをそれぞれ加えた後に、被検物質を加えてインキュベートし、溶液中で抗体軽鎖可変領域ポリペプチド/蛍光色素により標識された抗体重鎖可変領域ポリペプチド/抗体により特異的に認識される抗原からなる三者複合体を形成させる。また、上記測定方法[II]における工程(a1-2)においては、緩衝液や生理食塩水等の溶液に、抗体重鎖可変領域ポリペプチド及び蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを、それぞれ加えた後に、被検物質を加えてインキュベートし、溶液中で抗体重鎖可変領域ポリペプチド/蛍光色素により標識された抗体軽鎖可変領域ポリペプチド/抗体により特異的に認識される抗原からなる三者複合体を形成させる。上記被検物質としては、測定対象となるターゲット抗原を含む可能性がある血清、血漿、唾液、尿等の体液、培養上清、細胞抽出液、菌体抽出液、工業廃水を挙げることができる。また、上記インキュベート条件としては、抗体抗原反応に一般的に用いることのできる条件であれば特に制限されず、温度条件は、例えば1~30℃、好ましくは18~25℃、反応時間は、例えば、5~180分、好ましくは60~120分とすることができる。インキュベート終了後の溶液は、洗浄などの工程を経ることなく、そのまま以下の工程(b)に供することができる。このことが本発明の抗原濃度測定・検出方法の大きな特徴の一つである。
 上記本発明の測定方法[I]や測定方法[II]における工程(b)においては、上記工程(a1-1)又は(a1-2)により調製された溶液に励起光を照射して溶液中の蛍光色素の蛍光強度を測定することができる。測定に用いる蛍光測定装置は特に制限されないが、例えば、MF20/FluoroPoint-Light(オリンパス社製)やFMBIO-III(日立ソフトウエアエンジニアリング社製)等を好適に挙げることができる。また、測定の際には、上記工程(a1-1)により調製された溶液のネガティブコントロールとして、1)抗体軽鎖可変領域ポリペプチドを含まない、蛍光色素により標識された抗体重鎖可変領域ポリペプチドのみを含む溶液、2)抗体軽鎖可変領域ポリペプチドを含まない、蛍光色素により標識された抗体重鎖可変領域ポリペプチドと被検物質のみを含む溶液、3)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチドを含み、被検物質を含まない溶液、4)抗体軽鎖可変領域ポリペプチドと標識されていない抗体重鎖可変領域ポリペプチドと被検物質を含む溶液、等を測定することが好ましく、上記工程(a1-2)により調製された溶液のネガティブコントロールとして、1)抗体重鎖可変領域ポリペプチドを含まない、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドのみを含む溶液、2)抗体重鎖可変領域ポリペプチドを含まない、蛍光色素により標識された抗体軽鎖可変領域ポリペプチドと被検物質のみを含む溶液、3)抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを含み、被検物質を含まない溶液、4)抗体重鎖可変領域ポリペプチドと標識されていない抗体軽鎖可変領域ポリペプチドと被検物質を含む溶液、等を測定することが好ましい。
 上記本発明の測定方法[I]や測定方法[II]における工程(c)においては、上記工程(b)により得られた蛍光強度の測定値から、被検物質に含まれる抗原量を算出することができる。すなわち、上記工程(a1-1)又は(a1-2)により調製された溶液中の抗原濃度と、工程(b)により測定された蛍光強度とは正の相関関係にあるので、濃度既知の抗原を含む被検物質を用いたときの蛍光強度を測定して抗原濃度と蛍光強度との関係を示す標準曲線を作成し、この標準曲線から濃度未知の抗原を含む被検物質を用いたときの蛍光強度の測定値に対応する抗原濃度を算出することにより、被検物質に含まれる抗原量を求めることができる。また、工程(c)における「抗原量を算出する」には、標準曲線に基づいてあらかじめ設定された変換式等により自動的に抗原量が算出される場合も含まれる。
 上記本発明の非ヒト動物検出方法[I]における工程(a2-1)においては、抗体軽鎖可変領域ポリペプチド及び蛍光色素により標識された抗体重鎖可変領域ポリペプチドを、被検非ヒト動物対象に投与し、被検非ヒト動物対象中で抗体軽鎖可変領域ポリペプチド/蛍光色素により標識された抗体重鎖可変領域ポリペプチド/抗体により特異的に認識される抗原からなる三者複合体を形成させる。また、上記非ヒト動物検出方法[II]における工程(a2-2)においては、抗体重鎖可変領域ポリペプチド及び蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを、全身又は局所的に被検非ヒト動物対象に投与し、被検非ヒト動物対象中で抗体重鎖可変領域ポリペプチド/蛍光色素により標識された抗体軽鎖可変領域ポリペプチド/抗体により特異的に認識される抗原からなる三者複合体を形成させる。上記被検非ヒト動物対象としては、ヒト以外の動物であれば特に制限されず、例えば、マウス、ラット、ハムスター、サル、ブタ等を好適に挙げることができる。また、上記「投与」方法としては筋肉内注射、腹腔内注射、静脈内注射、皮下注射、埋込み、塗布等の非経口的な局所投与方法や、経口的な投与方法の中から適宜選択することができる。
 上記本発明の非ヒト動物検出方法[I]や非ヒト動物検出方法[II]における工程(b)においては、上記工程(a2-1)又は(a2-2)において、いずれか一方が蛍光色素により標識された抗体軽鎖可変領域ポリペプチド及び抗体重鎖可変領域ポリペプチドを投与された被検非ヒト動物対象中の蛍光色素の蛍光を個体のまま非侵襲的に検出したり、上記被検非ヒト動物対象から採取した組織又は細胞中の蛍光色素の蛍光を検出する。上記「検出する」方法としては、被検非ヒト動物対象の個体、組織、又は細胞に励起光を照射して、蛍光色素の蛍光を2次元又は3次元的に検出できる方法であれば特に制限されるものではない。また、検出の際には、内視鏡、X線、CT、MRI、超音波、顕微鏡等を用いて、被検非ヒト動物対象の個体、組織、又は細胞の構造を示す画像を同時に作成することが好ましい。
 上記本発明の非ヒト動物検出方法[I]や非ヒト動物検出方法[II]における工程(c)においては、上記工程(b)により得られた蛍光色素の蛍光を検出した結果から、被検非ヒト動物対象における抗原を可視化する。すなわち、被検非ヒト動物対象における抗原量と、工程(b)により検出された蛍光の蛍光強度とは正の相関関係にあるので、被検非ヒト動物対象の個体、組織、又は細胞の構造を示す画像データと、工程(b)により検出された蛍光の2次元又は3次元的画像とを比較することにより、抗原の局在(位置)を知ることができる。例えば、内視鏡を用いて検出する場合には、被検非ヒト動物対象の組織に可視光線を照射して観察可能な可視光画像を作成するとともに、該組織にどちらか一方が標識された抗体軽鎖可変領域ポリペプチド及び抗体重鎖可変領域ポリペプチドを塗布等により接触させた後に、標識された蛍光色素に対する励起光を照射して蛍光画像を作成し、上記化視光画像と蛍光画像とを比較することにより、組織中の抗原の局在を知ることができる。
 上記本発明のインビトロ検出方法[I]における工程(a3-1)においては、インビトロで、抗体軽鎖可変領域ポリペプチド及び蛍光色素により標識された抗体重鎖可変領域ポリペプチドと、被検対象中の抗原とをインキュベートし、抗体軽鎖可変領域ポリペプチド/蛍光色素により標識された抗体重鎖可変領域ポリペプチド/抗体により特異的に認識される抗原からなる三者複合体を形成させる。また、上記インビトロ検出方法[II]における工程(a3-2)においては、インビトロで、抗体重鎖可変領域ポリペプチド及び蛍光色素により標識された抗体軽鎖可変領域ポリペプチドと、被検対象中の抗原とをインキュベートし、抗体重鎖可変領域ポリペプチド/蛍光色素により標識された抗体軽鎖可変領域ポリペプチド/抗体により特異的に認識される抗原からなる三者複合体を形成させる。上記被検対象としては、測定対象となるターゲット抗原を含む可能性がある培養細胞、組織切片、生体より採取された組織又は細胞等の他、ニトロセルロース膜やPVDF膜等にブロットされた細胞抽出液等を挙げることができる。また、上記インキュベート条件としては、抗体抗原反応に一般的に用いるこのとのできる条件であれば特に制限されず、温度条件は、例えば1~30℃、好ましくは18~25℃、反応時間は、例えば、5~180分、好ましくは60~120分とすることができる。インキュベート終了後の溶液は、洗浄などの工程を経ることなく、そのまま以下の工程(b)に供することができる。このことが本発明の抗原濃度測定・検出方法の大きな特徴の一つである。
 上記インビトロ検出方法[I]やインビトロ検出方法[II]における工程(b)においては、上記工程(a3-1)又は(a3-2)において、いずれか一方が蛍光色素により標識された抗体軽鎖可変領域ポリペプチド及び抗体重鎖可変領域ポリペプチドとインキュベートさせた被検対象における蛍光色素の蛍光を2次元又は3次元的に検出する。上記「検出する」方法としては、蛍光顕微鏡や蛍光イメージアナライザー等を挙げることができる。
 上記インビトロ検出方法[I]やインビトロ検出方法[II]における工程(c)においては、上記工程(b)により得られた蛍光色素の蛍光を検出した結果から、被検対象における抗原を可視化することができる。すなわち、被検対象における抗原量と、工程(b)により検出された蛍光の蛍光強度とは正の相関関係にあるので、工程(b)により検出された蛍光の2次元又は3次元的画像に基づいて、抗原の局在(位置)を知ることができる。
 以下に示す実施例において、本発明を具体的且つ更に詳細に説明する。下記実施例は本発明の説明のためのものであり、これらの実施例により本発明の技術的範囲が限定されるものではない。
1.抗BGP抗体由来のVH及びVLを用いた均一系蛍光免疫測定法の確立
(抗BGP抗体V領域遺伝子発現ベクターの構築)
 ヒトオステオカルシン(human Bone Gla Protein;BGP)に対する抗体の重鎖可変領域(VH;配列番号1)又は軽鎖可変領域(VL:配列番号2)領域をコードするDNA配列に、N末端にamberコドンを含むProXTMtag(MSKQIEVNXSNET(Xは蛍光標識アミノ酸);配列番号3)のDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)のNcoIとHindIIIサイトへ組み込んだ。この構築した発現ベクターは、挿入したVH又はVLのN末端にProXTMtag(MSKQIEVNXSNET(Xは蛍光標識アミノ酸);配列番号3)が、C末端にHis-tagが、それぞれ付加されるよう設計されている。図1に、CR110標識抗BGP抗体軽鎖可変領域ポリペプチド(CR110-VL)、TAMRA標識抗BGP抗体重鎖可変領域ポリペプチド(TAMRA-VH)、及び、それらの複合体(CR110-VL/TAMRA-VH)を模式的に示す。同様にして、TAGコドンをTTTコドンに置換し、蛍光標識アミノ酸残基をフェニルアラニン残基に置換した野生型VH及びVL発現ベクターを作製した。
 さらに、上記VH遺伝子に含まれる4つのトリプトファンコドン(TGG;Trp33,Trp36,Trp47,Trp106)をそれぞれフェニルアラニンコドン(TTT)に置換した変異VL(W33F、W36F、W47F、W106F)発現ベクター、ProXtagとVH遺伝子のN末端との間にスペーサー(GGGSGGGS;配列番号4)を付加したスペーサー付加VH発現ベクター、VH遺伝子とVL遺伝子とをリンカー(LVTVSSGGGGSGGGGSGGGGS;配列番号5、又はGGGGSGGGGSGGGGS;配列番号9)により結合させた一本鎖抗体(scFv)発現ベクター、ProXTMtagとscFvのN末端との間にスペーサー(GGGS、GGGSGGGS;配列番号4又はGGGSGGGSGGGS;配列番号10)配列を有する一本鎖抗体(scFv)発現ベクター、MX(Xは蛍光標識アミノ酸)をN末端に有するscFvの発現ベクターもあわせて作製した。
(標識抗BGP抗体V領域タンパク質の作製)
 RTS100 E.coli Disulfide Kit(ロシュ・ダイアグノスティックス社製)を用いて、無細胞翻訳系によるV領域タンパク質N末端領域への蛍光標識アミノ酸の導入を行った。反応液(50μL)は、7μLのamino acid mix、1μLのMethionine、7μLのReactionmix、25μLのactivated E-coli Lysate、5μLのplasmid DNA(500ng)、5μLの蛍光標識アミノアシル-tRNAamber(0.8nmol)を加えた。蛍光標識タンパク質を作製するための蛍光標識アミノアシル-tRNA(TAMRA-X-AF-tRNAamber,CR110-X-AF-tRNAamber,及びATTO655-X-AF-tRNAamber)は、CloverDirectTM tRNA Reagents for Site-Derected Protein Functionalization(プロテインエクスプレス社製)を用いた。反応液は、20℃,600rpm,2hで反応させた後、さらに、4℃、16hの反応を行った。反応終了後、反応液1μLを用いてSDS-PAGE(15%)を行い、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)でタンパク質発現を観察した。さらに、His-tag抗体を用いてウエスタンブロットを行い、目的のタンパク質が合成されていることを確認した。
 合成したV領域タンパク質は、His-Spin Trap Column(GEヘルスケア社製)により精製を行った。上記反応液(50μL)に、Wash buffer(20mM Phosphatebuffer(pH7.4)/0.5M NaCl/60mM imidazole/0.1%Polyoxyethylene(23)Lauryl Ether)を加えて400μLとし、His-Spin Trap Columnへアプライした。室温で15分間インキュベートした後にWash bufferで3回洗浄を行った。次に200uLのElute buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/0.5M imidazole/0.1%Polyoxyethylene(23)Lauryl Ether)で2回溶出させた。さらに溶出液は、UltraFree-0.5 centrifugaldevices(ミリポア社製)を使用し、PBS(+0.05%Tween20)でバッファー交換、濃縮を行った。精製後のサンプルの濃度は、SDS-PAGE及びFCS(MF20;オリンパス社製)を用いて測定した。
(蛍光スペクトル測定)
 実施例1で作製したTAMRA標識抗BGP抗体VHタンパク質及びCR110標識抗BGP抗体VLタンパク質(それぞれ1μg/mL、30μL)と、抗原となる7残基のBGPのC末端ペプチド(RRFYGPV;配列番号8)とを、PBS(+0.05%tween20)で計200μLになるように調製した。25℃、90分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行った。励起波長は、CR110-VLとTAMRA-VHの混合物に対しては490nm、TAMRA-VHに対しては550nmにセットした。CR110-VLとTAMRA-VHの混合物に対しては蛍光強度比I/Iを算出した。IとIは、それぞれ575nmと525nmでの蛍光強度とした。解離定数(Kd)値は、蛍光強度比(I/I)もしくは最大蛍光波長の蛍光強度のカーブフィッテングにて算出した。その際、統計解析ソフトとしてGraphpad Prism(Graphpad社製)のsigmoidal dose-response modelを使用した。異なる濃度のBGPペプチドの存在下で、CR110-VL及びTAMRA-VHを反応させて、490nmの励起光を用いて蛍光スペクトルを測定した結果を図2に、525nm及び575nmの蛍光強度の変化を測定した結果を図3に、525nm及び575nmの蛍光強度の比(F575/F525)の変化を解析した結果を図4にそれぞれ示す。スペーサーを含む又は含まないTAMRA標識抗BGP抗体scFvタンパク質(2μg/mL、25μL)と、抗原であるBGPペプチドとを、計200μLのPBS(+0.05%Tween20、0.2%BSA)となるようにサンプルを調製した。その後、サンプルを25℃、70分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行い、蛍光強度をカーブフィッテングにて算出した。その際、統計解析ソフトとしてImageJ software(http://rsbweb.nih.gov/ij/)のsigmoidal dose-response modelを使用した。励起波長は550nm、測定波長は580nmで測定を行った。
(蛍光強度分布解析法)
 実施例1で作製した蛍光標識VHタンパク質及び蛍光標識VLタンパク質(それぞれ1μg/mL、7.5μL)、又は、蛍光標識scFv(1μg/mL、7.5μL)を、BGPペプチドともにPBS(+0.05%Tween20)で50μLになるように調製し、384-well Glass Bottom Microplate(オリンパス社製)に加え、25℃で90間インキュベートした。蛍光強度分布解析法(Fluorescence Intensity Multiple Distribution Analysis;FIDA)による測定は、25℃でMF20/FluoroPoint-Light(オリンパス社製)を用いて測定した。TAMRAとATTO655は、それぞれ543nmと633nmのレーザーで励起した。1測定で10秒間データを取得し、1サンプルに対して10回測定を行った。この測定値より平均値及び標準偏差を算出した。
(TAMRA-VH及びCR110-VLのBGPペプチドへの結合活性評価)
 まず、蛍光共鳴エネルギー転移法(FRET)を利用した抗体/抗原結合活性評価系の確立を試みた。FRET測定には、CR110とTAMRAをそれぞれドナー、アクセプターとして使用した。ドナー(CR110)の蛍光とアクセプター(TAMRA)の吸収は、十分な重なりを持っておりFRETペアとして用いることができる。配向因子(κ)を2/3とした際フェルスター距離(R)は62Åと計算され、この値はタンパク質の分子間相互作用を検出するのに適している。抗原が存在しない場合、VLとVH間の相互作用は弱いため、CR110からTAMARへFRETは起きないのに対して、抗原が存在する場合には、VHとVLは抗原と三者複合体を形成し、その結果、CR110からTAMRAへのFRETが引き起こされると予測される。
 抗原を介してCR110-VLとTAMRA-VHとが結合することにより、CR110からTAMRAへのFRETが検出されるかどうかを確認する目的で、以下の実験を行った。CR110-VLと、TAMRA-VH又は標識されていないVHとを、異なる濃度のBGP抗原ペプチド(1~10,000ng)とともにインキュベートし、CR110の蛍光強度の変化を蛍光強度分布解析法(FIDA)により解析した。測定は、励起光として488nmレーザーを用い、510~560nm蛍光フィルターを用いて検出を行った。結果を図5に示す。CR110-VLとTAMRA-VHとを反応させた場合には、CR110の蛍光強度はBGP抗原ペプチドの濃度依存的に低下した。この結果から、CR110-VL及びTAMRA-VHが、抗原ペプチドを介して結合して複合体を形成することにより、予想されたようなCR110からTAMRAへのFRETが引き起こされることが確認された。一方、意外なことに、CR110-VLと標識していないVHとを反応させた場合には、CR110の蛍光強度はBGP抗原ペプチドの濃度依存的に増加した。この結果から、VLがCR110に対してクエンチャーとして作用しており、CR110-VLが単独で存在する場合にはCR110の蛍光はVLによりクエンチされているが、CR110-VLとVH及び抗原ペプチドが三者複合体を形成した場合にはこのクエンチ効果が解消される可能性が推測された。
 このようなVLによるクエンチ効果が、VHにおいても認められるかどうかを確認する目的で以下の実験を行った。TAMRA-VHと、CR110-VL又は標識していないVLとを、異なる濃度のBGP抗原ペプチド(1~10,000ng)とともにインキュベートし、TAMRAの蛍光強度の変化を蛍光強度分布解析法(FIDA)により解析した。測定は、励起光として543nmレーザーを用い、560~620nm蛍光フィルターを用いて検出を行った。結果を図6に示す。TAMRA-VHとCR110-VLとを反応させた場合には、TAMRAの蛍光強度はBGP抗原ペプチドの濃度依存的に増加した。また同様に、TAMRA-VHと標識していないVLとを反応させた場合にも、TAMRA-VHの蛍光強度はBGP抗原ペプチドの濃度依存的に増加した。これらの結果から、VLと同様に、VHもTAMRAに対してクエンチャーとして作用しており、TAMRA-VHが単独で存在する場合にはTAMRAの蛍光はクエンチされているが、TAMRA-VHとVL及び抗原ペプチドが三者複合体を形成した場合にはこのクエンチ効果が解消される可能性が推測された。以上の結果から、VH及びVLが蛍光色素に対してクエンチ効果を有すること、さらに、その効果はVH/VL/抗原の三者複合体の形成に伴い解消されることが示唆された(図9)。
(クエンチング現象を利用した抗原濃度の均一系蛍光免疫測定法の確立)
 発明者らは、実施例3で明らかとなったクエンチ現象を利用することにより、新たな免疫測定法を確立することができるのではないかと考え、以下の実験を行った。TAMRA-VHと異なる濃度のBGPペプチドとを、標識されていないVLの存在又は非存在下で反応させ、543nmのHe-Neレーザーを用いて蛍光強度を測定した結果を図7に示す。VLの存在下では、TAMRA-VHの蛍光強度はBGPペプチドの濃度依存的に増加した。一方、VLの非存在下では、TAMRA-VHの蛍光強度はいずれの濃度のBGPペプチドを反応させた場合にも低いままであった。また、VLの存在/非存在下におけるTAMRA-VHの蛍光強度の比(+VL/-VL)を解析した結果、解離定数Kd=1.2x10-7[M]であった(図8)。以上の結果から、VH及びVLタンパク質によるクエンチ現象を利用した、全く新しい均一系蛍光免疫測定法が確立できたことが示された。
(VH中のTrpによるクエンチ効果の検討)
 実施例3の結果から、抗原の滴定に対してCR110の蛍光減少量よりもTAMRAの蛍光増加量が高いことが明らかとなった。TAMRAはローダミン(Rhodamine)系色素であり、これまでの研究によりローダミン系色素はトリプトファン(Trp)等のアミノ酸によりクエンチ(消光)されることが報告されている。そこで、発明者らは、VH中に存在するTrp残基がTAMRAのクエンチングに関与していると推測し、TAMRA-VHが単独で存在する場合には、TAMRAの蛍光はその近傍に存在するTrp残基によりクエンチされているが、TAMRA-VHがVL及び抗原と複合体を形成することにより、TAMRA/Trp間の相互位置を変化させてクエンチを解消しているとの仮説を立てた。図9に示すように、VHは4つのTrp残基(Trp33、Trp36、Trp47、Trp106)を持つ。予想分子モデルによる解析では、Trp33、Trp36及びTrp106はVLとの疎水相互作用に関与しており、Trp33はBGPペプチドとの相互作用に関与していると予想された。これらのTrp残基がクエンチに影響を及ぼすかを検討する目的で、TrpをPheに置換した4種の変異型VHを用いて以下の実験を行った。
 野生型又は変異型抗BGP抗体重鎖可変領域ポリペプチド(W33F、W36F、W47F、W106F)とVLとを、異なる濃度のBGPペプチド存在下で反応させ、543nmのHe-Neレーザーを用いて蛍光強度を測定した。結果を図10及び表1に示す。変異体の蛍光標識VH単独の蛍光強度を測定した結果、野生型(WT)に比べW106FとW36Fはそれぞれ31%と29%の蛍光の増加を示した。W47Fは11%の蛍光の増加を示した。一方でW33Fは9%の減少を示した。これらの結果より、TAMRAの蛍光クエンチングに、主にTrp36、Trp47、及びTrp106が関与していることが明らかとなった。また、W33F、W36F、W106Fは、VL及びBGPペプチドとともに反応させることにより、1.5倍、1.3倍、1.5倍の抗原濃度依存的な蛍光の増加をそれぞれ示した。TrpからPheへの変異により、抗原依存的なクエンチの解消が減少したというこれらの結果は、Trp33、Trp36、及びTrp106が部分的にクエンチに関与していることを示唆している。一方、W47FはBGPペプチド及びVLと反応させた場合にも全く蛍光の増加が認められなかった。FCS測定による拡散時間(diffusion time)の解析結果(図11)は、Trp47の変異により抗体の結合活性が消失することを示していることから、VHのTrp47は抗体と抗原の結合に必須であることが示された。
 以上の結果から、Trp33及びTrp106は、蛍光標識VH単独の蛍光の増加及び抗原濃度依存的な蛍光の増加量の減少の2つの点から、クエンチに重要なTrpであることが確認できた。また、Trp47は抗原濃度依存的なクエンチへの関与は不明であるが、抗原を介したVH及びVLの複合体形成には非常に重要な部位であることが明らかとなった。なお、上記のVHのアミノ酸配列におけるTrp106は、カバット(Kabat)の番号付け系においては第103番目の位置に対応するものである。(Kabat, E. et al.,"Sequences of proteins of immunological interest, 5th edn.," U. S. Department of Health and Human Service, Public Service, National Institute of Health, Washington, DC, 1991.)
Figure JPOXMLDOC01-appb-T000001
(オキサジン系蛍光色素及びスペーサー付加によるクエンチング効果の検討)
 均一系蛍光免疫測定法の感度に及ぼす蛍光色素及びスペーサーの影響について検討した。クエンチングの効率は蛍光色素の種類に依存して大きく変化し、ローダミン系の色素よりも、オキサジン(Oxazin)系の色素は効果的にクエンチされることが報告されている。そこで、発明者らは、オキサジン系蛍光色素であるATTO655を標識物質として使用したATTO655-VHを作製して実施例4と同様の実験を行った。さらに、ATTO655とVHとの間にGGGSGGGS(配列番号4)をスペーサーとして付加したATTO655-VH(+spacer)を作製し、スペーサーの有無がクエンチ効果に及ぼす影響について検討した。図12にスペーサー付加蛍光標識抗BGP抗体重鎖可変領域ポリペプチド(Fluorescent labeled BGP-VH)と、抗BGP抗体軽鎖可変領域ポリペプチド(BGP-VL)との複合体(Fluorescent labeled BGP-VH/VL)の3次元構造予測モデルを示す。
 スペーサーを付加又は付加していないATTO655-VHを用いて、実施例4と同様の実験を行った結果(図13)、いずれの場合でもATTO655-VHの蛍光強度はBGPペプチドの濃度依存的に増加した。また、スペーサーを付加していないATTO655-VHにより得られた蛍光強度は、TAMRA-VHを使用した時と比較して3倍であった。さらに、スペーサーの付加することにより、スペーサーを付加しないものと比較して蛍光強度が2倍程度増加することが明らかとなった。GGGSスペーサーを付加することによりクエンチャーであるTrpと蛍光色素間の距離が近づいたことが、このような蛍光強度の増加に影響したと考えられる。
 また、VLの存在/非存在下におけるATTO655-VHの蛍光強度の比(+VL/-VL)を解析した結果(図14)、スペーサーを付加しない場合は解離定数Kd=8.4x10-8[M]、スペーサーを付加した場合は解離定数Kd=1.8x10-7[M]であった。解離定数が高いほど測定系の感度は高いと考えられるので、以上の結果は、蛍光色素とVHの間にスペーサーを設けることにより、より感度の高い測定系が確立できたことを意味している。
(一本鎖抗体を用いた均一系蛍光免疫測定法の確立)
 VHとVLとを配列番号5又は配列番号9に示されるアミノ酸配列からなるリンカーにより結合させた一本鎖抗体(scFv)を用いた均一系蛍光免疫測定法を確立する目的で以下の実験を行った。本発明の蛍光標識抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとを結合させた蛍光標識一本鎖抗体の3次元構造予測モデルを図15に、1次元構造を図16に示す。VH及びVLのそれぞれのペプチド断片を用いた場合と同様に、蛍光標識scFvを用いた場合にも、BGPペプチドの濃度依存的な蛍光強度の増加が認められた。配列番号5のリンカーにより結合させたATTO655標識抗BGP抗体scFvの結果を図17~22に、配列番号9のリンカーにより結合させたTAMRA標識抗BGP抗体scFvの結果を図23に示す。
(ヒト血漿中での蛍光免疫測定)
 TAMRA標識抗BGP抗体scFvタンパク質(2μg/mL、6.25μL)と、抗原であるBGPペプチドを、50%ヒト血漿を含むサンプルとなるよう、PBS(+0.05%Tween20、0.2%BSA)で計50uLに調製した。その後、25℃、90分間放置した後に、蛍光イメージアナライザー(FMBIO-III;日立ソフトウエアエンジニアリング社製)で観察した。励起波長は532nm、測定波長は580nmで測定を行った。結果を図24に示す。50%のヒト血漿を含むサンプル中でもBGPペプチドの濃度依存的な蛍光強度の増加が認められた。
2.抗BPA抗体由来のVH及びVLを用いた均一系蛍光免疫測定法の確立
(抗BPA抗体由のV領域遺伝子発現ベクターの構築)
 抗ビスフェノールA(BPA)抗体のVH(配列番号6)をコードする遺伝子に、N末端にamberコドンを含むProXTMtag(MSKQIEVNXSNET(Xは蛍光標識アミノ酸);配列番号3)のDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)のNcoIとHindIIIサイトへ組み込んだ。この構築した発現ベクターは、挿入したVHのN末端にamberコドンを含むProXTMtag(MSKQIEVNXSNET(Xは蛍光標識アミノ酸);配列番号3)が、C末端にHis-tagが、それぞれ付加されるよう設計されている。また、同様にして抗BPA抗体のVL(配列番号7)をコードする遺伝子に、N末端ProXTMtagのアミノ酸XがFに置換されたDNA配列を付与し、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)のNcoIとHindIIIサイトへ組み込まれた。この構築した発現ベクターは、挿入したVLのN末端ProXTMtagのアミノ酸XがFに置換された配列が、C末端にHis-tagが、付加されるよう設計されている。さらに、VH遺伝子とVL遺伝子とをリンカー(GGGGSGGGGSGGGGS;配列番号9)により結合させた一本鎖抗体(scFv)発現ベクター、ProXTMtagとscFvのN末端との間にスペーサー(GGGSGGGS;配列番号4、GGGSGGGSGGGS;配列番号10又はGGGSGGGSGGGSGGGSGGGS;配列番号11)を有する3種類の一本鎖抗体(scFv)発現ベクターもあわせて作製した。
(無細胞翻訳系による蛍光標識タンパク質の作製)
 RTS100 E.coli Disulfide Kit(ロシュ・ダイアグノスティックス社製)を用いて、無細胞翻訳系によるV領域タンパク質のN末端領域への蛍光標識アミノ酸の導入を行った。反応液(50μL)は、7μLのamino acid mix、1μLのMethionine、7μLのReaction mix、25μLのactivated E-coli Lysate、5μLのplasmid DNA(500ng)、5μLのATTO655-X-AF-tRNAamber(0.8nmol)を加えた。蛍光標識タンパク質を作製するためのATTO655-X-AF-tRNAamberは、CloverDirectTM tRNA Reagents for Site-Derected Protein Functionalization(プロテインエクスプレス社製)を用いた。反応液は、20℃、600rpm、2hで反応を行い、その後4℃、16h反応を行った。反応終了後、反応液1μLを用いて、SDS-PAGE(15%)を行い、蛍光イメージアナライザー(FMBIO-III;日立ソフトウエアエンジニアリング社製)でタンパク質発現を観察した。さらにHis-tag抗体を用いてウエスタンブロットを行い、目的のタンパク質が合成されていることを確認した。
 次に、His Spin Trap Column(GEヘルスケア社製)を用いて、合成したV領域タンパク質の精製を行った。上記反応液(50μL)に、Wash buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/60 mM imidazole/0.1% Polyoxyethylene(23)Lauryl Ether)を加えて400μLにし、His-Spin Trap Columnへアプライした。室温で15分間インキュベートした後、Wash bufferで3回洗浄を行った。続いて、200μLのElute buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/0.5M imidazole/0.1% Polyoxyethylene(23)Lauryl Ether)で2回溶出させた。さらに、UltraFree-0.5 centrifugal devices(ミリポア社製)を使用して、溶出液のバッファーをPBS(+0.05%Tween20)に交換するとともに濃縮を行った。サンプルは、SDS-PAGE及びFCS(MF20;オリンパス社製)を用いて濃度測定を行った。
 (蛍光スペクトル測定)
 実施例9で作製したATTO655標識抗BPA抗体VHタンパク質及び標識されていない抗BPA抗体VLタンパク質(それぞれ1μg/mL、7.5μL)と、抗原であるBPAとを、Total 50uLの10%MeOH in PBS(+0.05%Tween20)となるように調製し、25℃、90分間放置した後に、蛍光イメージアナライザー(FMBIO-III;日立ソフトウエアエンジニアリング社製)で観察した。励起波長は635nm、測定波長は670nmで測定を行った。解離定数(Kd)値は、蛍光測定値のカーブフィッテングにて算出した。その際、統計解析ソフトとしてGraphpad Prism(Graphpad社製)のsigmoidal dose-response modelを使用した。
 スペーサーを含む又は含まないTAMRA標識抗BPA抗体scFvタンパク質(2μg/mL、25μL)と、抗原であるBPAとを、計200μLのPBS(+0.05%Tween20、0.2%BSA、1%MeOH)となるようにサンプルを調製した。その後、サンプルを25℃、10分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行い、蛍光強度をカーブフィッテングにて算出した。その際、統計解析ソフトとしてImageJ software(http://rsbweb.nih.gov/ij/)のsigmoidal dose-response modelを使用した。励起波長は550nm、測定波長は580nmで測定を行った。
(標識抗BPA抗体由V領域タンパク質を用いた均一系蛍光免疫測定法の確立)
 ATTO655-VH及び蛍光標識されていないVLを用いた均一系蛍光免疫測定法の確立を目的として以下の実験を行った。ATTO655-VHと異なる濃度のBPAとを、標識されていないVLの存在下又は非存在下で反応させ、蛍光強度を測定した(図25)。VLの存在下では、ATTO655-VHの蛍光強度はBPAの濃度依存的に増加した。一方、VLの非存在下では、ATTO655-VHの蛍光強度はいずれの濃度のBPAを反応させた場合にも低いままであった。また、VLの存在/非存在下におけるATTO655-VHの蛍光強度の比(+VL/-VL)を解析した結果、解離定数(Kd)は2.4x10-8[M]であった(図26)。また、実施例7と同様に、一本鎖抗体(scFv)を用いた蛍光免疫測定法の確立を目的として以下の実験を行った。TAMRA標識抗BPA抗体scFvを用いた場合も、VH及びVLのそれぞれのペプチド断片を用いた場合と同様に、BPAの濃度依存的な蛍光強度の増加が認められた(図27)。
3.様々な抗体由来の一本鎖抗体を用いた均一系蛍光免疫測定法の確立
(抗HEL抗体、抗エストラジオール抗体、抗SA抗体由のV領域遺伝子発現ベクターの構築)
 一本鎖抗体(scFv)のDNA配列のN末端にamberコドンを含むProXTMtag(MSKQIEVNXSNET(Xは蛍光標識アミノ酸);配列番号3)を、C末端にHis-tagを有し、ProXTMtagとscFvのN末端との間にスペーサー(GGGSGGGS;配列番号4)を有するDNA配列を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)のNcoIとHindIIIサイトへ組み込み、発現ベクターを構築した。各一本鎖抗体(scFv)のDNA配列は、以下のとおりである;抗鶏卵リゾチーム(HEL)抗体scFvは、抗HEL抗体のVH(配列番号12)とVL(配列番号13)を順次リンカー配列(GGGGSGGGGSGGGGS;配列番号9)で結合した配列;エストラジオール(estradiol)抗体scFvは、抗エストラジオール抗体のVH(配列番号14)とVL(配列番号15)を順次リンカー配列(GGGGSGGGGSGGGGS;配列番号9)で結合した配列;SA(Serum Albumin)抗体scFvは、抗SA抗体のVH(配列番号16)とVL(配列番号17)を順次リンカー配列(GGGGSGGGGSGGGGS;配列番号9)で結合した配列。
(蛍光標識抗HEL抗体、抗エストラジオール抗体、抗SA抗体V領域タンパク質の作製)
 RTS100 E.coli Disulfide Kit(ロシュ・ダイアグノスティックス社製)を用いて、無細胞翻訳系によるV領域タンパク質N末端領域への蛍光標識アミノ酸の導入を行った。反応液(50μL)は、7μLのamino acid mix、1μLのMethionine、7μLのReactionmix、25μLのactivated E-coli Lysate、5μLのplasmid DNA(500ng)、5μLの蛍光標識アミノアシル-tRNAamber(0.8nmol)を加えた。蛍光標識タンパク質を作製するための蛍光標識アミノアシル-tRNA(TAMRA-X-AF-tRNAamber)は、CloverDirectTM tRNA Reagents for Site-Derected Protein Functionalization(プロテインエクスプレス社製)を用いた。反応液は、20℃,600rpm,2hで反応させた後、さらに、4℃、16hの反応を行った。反応終了後、反応液1μLを用いてSDS-PAGE(15%)を行い、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)でタンパク質発現を観察した。さらに、His-tag抗体を用いてウエスタンブロットを行い、目的のタンパク質が合成されていることを確認した。
 合成したV領域タンパク質は、His-Spin Trap Column(GEヘルスケア社製)により精製を行った。上記反応液(50μL)に、Wash buffer(20mM Phosphatebuffer(pH7.4)/0.5M NaCl/60mM imidazole/0.1%Polyoxyethylene(23)Lauryl Ether)を加えて400μLとし、His-Spin Trap Columnへアプライした。室温で15分間インキュベートした後にWash bufferで3回洗浄を行った。次に200uLのElute buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/0.5M imidazole/0.1%Polyoxyethylene(23)Lauryl Ether)で2回溶出させた。さらに溶出液は、UltraFree-0.5 centrifugaldevices(ミリポア社製)を使用し、PBS(+0.05%Tween20)でバッファー交換、濃縮を行った。精製後のサンプルの濃度は、SDS-PAGE及びFCS(MF20;オリンパス社製)を用いて測定した。
(蛍光スペクトル測定)
 TAMRA標識抗HEL抗体scFvタンパク質(2μg/mL、25μL)と、抗原であるHELタンパク質とを、計200μLのPBS(+0.05%Tween20、1%BSA)となるようにサンプルを調製した。TAMRA標識抗エストラジオール抗体scFvタンパク質(2μg/mL、25μL)と、抗原であるエストラジオールとを、計200μLのPBS(+0.05%Tween20、1%BSA)となるようにサンプルを調製した。TAMRA標識抗SA抗体scFvタンパク質(2μg/mL、25μL)と、抗原であるBSA(ウシ血清アルブミン)又はHSA(ヒト血清アルブミン)とを、計200μLのPBS(+0.05%Tween20、0.2%ゼラチン)となるようにサンプルを調製した。その後、サンプルを25℃、5分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行い、蛍光強度をカーブフィッテングにて算出した。その際、統計解析ソフトとしてImageJ software(http://rsbweb.nih.gov/ij/)のsigmoidal dose-response modelを使用した。励起波長は550nm、測定波長は580nmで測定を行ったところ、抗原の濃度依存的な蛍光強度の増加が認められた(図28~30)。以上のように、様々な種類の抗体の蛍光標識一本鎖抗体(scFv)を用いて、蛍光免疫測定法を行うことができることが示された。
4.マウス抗体VHにおけるTrp残基の保存
 実施例4、図9、及び表1に示すように、抗BGP抗体において標識された蛍光色素のクエンチングには、VHのアミノ酸配列においカバット(Kabat)の番号付け系で第33番目、第36番目及び第106番目のTrpが重要な役割を果たしていること、また、第47番目のTrpは抗体(VH及びVL)と抗原の結合に必須であることが明らかとなった(なお、上記のVHのアミノ酸配列におけるTrp106は、カバット(Kabat)の番号付け系においては第103番目の位置に対応するものである)。そこで、抗BGP抗体以外のマウス抗体VH領域においても、これらのトリプトファン残基が保存されているかどうかを確認した。マウス抗体のアミノ酸残基分布の解析にはAbysisデータベース(Dr. Andrew C.R. Martin's Group;http://www.bioinf.org.uk/abs/index.html)を用いた。また、上記データベースにおける、各抗体残基のKabat配列表記による残基番号についても、AbCheck(Dr. Andrew C.R. Martin's Group;Martin, A.C.R. Accessingthe Kabat Antibody Sequence Database by Computer PROTEINS: Structure, Function and Genetics, 25 (1996), 130-133;http://www.bioinf.org.uk/abs/seqtest.html)により調べた。図31~35に結果を示すように、マウス抗体のVH領域における4つのTrp残基の保存率は、Trp33は40%、Trp36は98%、Trp47は94%、Trp103は95%であった。これらの結果は、均一系蛍光免疫測定法を行う際に重要なVHの4つのTrp残基が多くのマウス抗体VHで保存されていることを示している。
 上記実施例において用いた抗BGP抗体のVH(配列番号1)及びVL(配列番号2)、抗BPA抗体のVH(配列番号6)及びVL(配列番号7)に含まれるトリプトファン残基の位置を、カバット(Kabat)配列表記法により番号付けした結果を表2に、抗BGP抗体scFv、抗BPA抗体scFv、抗HEL抗体scFv、抗SA抗体scFv、抗エストラジオール抗体scFvに含まれるトリプトファン残基の位置を、カバット(Kabat)配列表記法により番号付けした結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、蛍光色素により標識された抗体(断片)を用いて、該蛍光色素のクエンチの解消を指標とした均一系蛍光免疫測定法を提供することができる。本発明の均一系蛍光免疫測定法は、抗体又は抗原の固定化や洗浄の必要がなく、抗体と被検物質とを混合させた混合液の蛍光強度を直接モニターすることにより目的の物質の濃度を測定することができるため、より簡便で迅速な低分子化合物の検出が可能になると予想される。また、クエンチに影響している抗体VH領域のTrp残基は多くの種類の抗体において保存されていることから、本発明の均一系蛍光免疫測定法は様々の抗原濃度の測定に利用できる。

Claims (12)

  1.  抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドとを備え、前記抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドのいずれか一方が蛍光色素により標識されたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とすることを特徴とする抗原濃度測定・検出用キット。
  2.  抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとが結合した一本鎖抗体であることを特徴とする請求項1記載の抗原濃度測定・検出用キット。
  3.  蛍光色素が、ローダミン系蛍光色素又はオキサジン系蛍光色素であることを特徴とする請求項1又は2記載の抗原濃度測定・検出用キット。
  4.  蛍光色素が、CR110、TAMRA、又はATTO655であることを特徴とする請求項3記載の抗原濃度測定・検出用キット。
  5.  抗体重鎖可変領域ポリペプチドが配列番号1に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号2に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする請求項1~4のいずれかに記載の抗原濃度測定・検出用キット。
  6.  抗体重鎖可変領域ポリペプチドが配列番号6に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号7に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする請求項1~4のいずれかに記載の抗原濃度測定・検出用キット。
  7.  以下の工程(a)~(c)を順次備えることを特徴とする抗原濃度測定・検出方法。
    (a)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチド、又は、抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを、
     (a1)液相中で、被検物質中の抗原に接触させる工程;又は
     (a2)抗体軽鎖可変領域ポリペプチドと蛍光色素により標識された抗体重鎖可変領域ポリペプチド、又は、抗体重鎖可変領域ポリペプチドと蛍光色素により標識された抗体軽鎖可変領域ポリペプチドを投与した被検非ヒト動物対象中の抗原に接触させる工程;又は
     (a3)インビトロで、被検対象中の抗原に接触させる工程;
    (b)前記(a1)の場合には、蛍光色素の蛍光強度を測定し、
    前記(a2)及び(a3)の場合には、前記蛍光色素の蛍光を検出する工程;
    (c)液相中の抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、前記(a1)の場合には、被検物質に含まれる抗原量を算出し、前記(a2)及び(a3)の場合には、被検対象に含まれる抗原を可視化する工程;
  8.  抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとが結合した一本鎖抗体であることを特徴とする請求項7記載の抗原濃度測定・検出方法。
  9.  蛍光色素が、ローダミン系蛍光色素又はオキサジン系蛍光色素であることを特徴とする請求項7又は8記載の抗原濃度測定・検出方法。
  10.  蛍光色素が、CR110、TAMRA、又はATTO655であることを特徴とする請求項9記載の抗原濃度測定・検出方法。
  11.  抗体重鎖可変領域ポリペプチドが配列番号1に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号2に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする請求項7~10のいずれかに記載の抗原濃度測定・検出方法。
  12.  抗体重鎖可変領域ポリペプチドが配列番号6に示されるアミノ酸配列からなるポリペプチドを含み、抗体軽鎖可変領域ポリペプチドが配列番号7に示されるアミノ酸配列からなるポリペプチドを含むことを特徴とする請求項7~10のいずれかに記載の抗原濃度測定・検出方法。
PCT/JP2010/006809 2009-11-19 2010-11-19 蛍光免疫測定方法 WO2011061944A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/510,105 US20120270338A1 (en) 2009-11-19 2010-11-19 Fluoroimmunoassay method
JP2011541820A JP5043237B2 (ja) 2009-11-19 2010-11-19 蛍光免疫測定方法
KR1020127015314A KR101335560B1 (ko) 2009-11-19 2010-11-19 형광 면역 측정 방법
CN201080057171.8A CN102667480B (zh) 2009-11-19 2010-11-19 荧光免疫测定方法
CA2780845A CA2780845C (en) 2009-11-19 2010-11-19 Fluoroimmunoassay method
EP10831343.8A EP2515110B1 (en) 2009-11-19 2010-11-19 Fluoroimmunoassay method
US15/183,974 US20160349266A1 (en) 2009-11-19 2016-06-16 Fluoroimmunoassay Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-264420 2009-11-19
JP2009264420 2009-11-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/510,105 A-371-Of-International US20120270338A1 (en) 2009-11-19 2010-11-19 Fluoroimmunoassay method
US15/183,974 Division US20160349266A1 (en) 2009-11-19 2016-06-16 Fluoroimmunoassay Method

Publications (2)

Publication Number Publication Date
WO2011061944A1 true WO2011061944A1 (ja) 2011-05-26
WO2011061944A8 WO2011061944A8 (ja) 2012-06-07

Family

ID=44059430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006809 WO2011061944A1 (ja) 2009-11-19 2010-11-19 蛍光免疫測定方法

Country Status (7)

Country Link
US (2) US20120270338A1 (ja)
EP (1) EP2515110B1 (ja)
JP (1) JP5043237B2 (ja)
KR (1) KR101335560B1 (ja)
CN (1) CN102667480B (ja)
CA (1) CA2780845C (ja)
WO (1) WO2011061944A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065314A1 (ja) 2011-11-02 2013-05-10 ウシオ電機株式会社 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
WO2014021055A1 (ja) 2012-08-02 2014-02-06 ウシオ電機株式会社 光誘起蛍光測定器
JP2014029278A (ja) * 2012-07-31 2014-02-13 Ushio Inc 蛍光測定方法及び蛍光測定キット
JP2014085294A (ja) * 2012-10-26 2014-05-12 Ushio Inc 蛍光測定方法、蛍光測定キット及び蛍光光度計
JP2014156428A (ja) * 2013-02-15 2014-08-28 Univ Of Tokyo 抗体結合タンパク質
JP2020076673A (ja) * 2018-11-08 2020-05-21 国立大学法人埼玉大学 蛍光プローブ及びそのプローブを用いた迅速蛍光測定方法
JP2020527696A (ja) * 2017-06-23 2020-09-10 ナノテンパー・テクノロジーズ・ゲーエムベーハー 分子間及び/又は分子内相互作用を測定するための方法
WO2020246495A1 (ja) 2019-06-05 2020-12-10 国立大学法人東京工業大学 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法
US11630106B2 (en) 2017-05-19 2023-04-18 Philip Morris Products S.A. Diagnostic test for distinguishing the smoking status of a subject

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160144416A (ko) * 2014-04-04 2016-12-16 오토텔릭 엘엘씨 파클리탁셀의 약물동태-유도된 투여를 위해 혈장 중의 파클리탁셀 농도를 모니터링하는 방법, 장치 및 시약
US9714953B2 (en) 2014-04-04 2017-07-25 Autotelic Llc Methods, devices, and reagents for monitoring paclitaxel concentration in plasma for pharmacokinetic-guided dosing of paclitaxel
WO2017034925A1 (en) * 2015-08-25 2017-03-02 Bio-Rad Laboratories, Inc. Digital immunoassay
JP2017049184A (ja) * 2015-09-03 2017-03-09 国立大学法人東京工業大学 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体
EP4200341A1 (en) * 2020-08-19 2023-06-28 The Regents of the University of California Diagnostic methods and compositions
IL311928A (en) * 2021-10-07 2024-06-01 Intelligent optical systems inc Improved transverse particle flow assay and devices for the detection of analytes in blood samples

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643722A (en) 1994-05-11 1997-07-01 Trustees Of Boston University Methods for the detection and isolation of proteins
JPH1078436A (ja) 1996-07-31 1998-03-24 Boehringer Mannheim Corp 抗原濃度測定方法
JPH10282098A (ja) 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd 蛍光免疫測定法
JPH10319017A (ja) * 1997-05-20 1998-12-04 Toyobo Co Ltd 蛍光エネルギー転移を利用した物質の測定方法およびそのための試薬
JP2000139468A (ja) 1998-11-11 2000-05-23 Mitsubishi Chemicals Corp C末端がラベル化されたタンパク質の製造方法
JP2006506634A (ja) * 2002-11-18 2006-02-23 ヴァルション テクニリネン ツッキムスケスクス 小さな分析物のための非競合的な免疫アッセイ法
JP2007526750A (ja) * 2003-07-09 2007-09-20 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト 放出体のスペクトル発光特性を変化させる放出体結合性ペプチド
WO2008051762A2 (en) * 2006-10-26 2008-05-02 Abbott Laboratories Immunoassay of analytes in samples containing endogenous anti-analyte antibodies
JP2008187936A (ja) * 2007-02-02 2008-08-21 Fujifilm Corp トランススプライシング法による融合タンパク質作製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981199A (en) * 1996-06-14 1999-11-09 Boehringer Mannheim Corporation Method for measuring antigen concentration
US20020192721A1 (en) * 2001-03-28 2002-12-19 Engeneos, Inc. Modular molecular clasps and uses thereof
DE10331054A1 (de) * 2003-07-09 2005-02-03 Schering Ag Emitter-bindende Peptide die eine Veränderung der spektralen Emissionseigenschaften des Emitters bewirken
WO2005116234A2 (en) * 2004-04-16 2005-12-08 University Of Massachusetts Detection and quantification of intracellular pathogens
CN100473988C (zh) * 2004-07-08 2009-04-01 厦门大学 具有荧光共振能量转移特点的蛋白组合及其用途
JPWO2006033413A1 (ja) * 2004-09-22 2008-05-15 協和メデックス株式会社 ペプチドの定量方法
JP4694889B2 (ja) * 2005-05-24 2011-06-08 株式会社ハイペップ研究所 バイオチップ用基板及びバイオチップ
US20070254276A1 (en) * 2006-04-26 2007-11-01 Seng Enterprises Ltd. Method and system for measuring membrane potential based on fluorescence polarization
WO2008023689A1 (fr) * 2006-08-21 2008-02-28 National University Corporation Kobe University Procédé de production d'une protéine de fusion
US20080188007A1 (en) * 2007-02-06 2008-08-07 Meridian Life Science, Inc. Fluorescent single chain antibody and its use in detection of analytes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643722A (en) 1994-05-11 1997-07-01 Trustees Of Boston University Methods for the detection and isolation of proteins
JPH1078436A (ja) 1996-07-31 1998-03-24 Boehringer Mannheim Corp 抗原濃度測定方法
JP3784111B2 (ja) 1996-07-31 2006-06-07 ロシュ ダイアグノスティックス コーポレーション 抗原濃度測定方法
JPH10282098A (ja) 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd 蛍光免疫測定法
JPH10319017A (ja) * 1997-05-20 1998-12-04 Toyobo Co Ltd 蛍光エネルギー転移を利用した物質の測定方法およびそのための試薬
JP2000139468A (ja) 1998-11-11 2000-05-23 Mitsubishi Chemicals Corp C末端がラベル化されたタンパク質の製造方法
JP2006506634A (ja) * 2002-11-18 2006-02-23 ヴァルション テクニリネン ツッキムスケスクス 小さな分析物のための非競合的な免疫アッセイ法
JP2007526750A (ja) * 2003-07-09 2007-09-20 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト 放出体のスペクトル発光特性を変化させる放出体結合性ペプチド
WO2008051762A2 (en) * 2006-10-26 2008-05-02 Abbott Laboratories Immunoassay of analytes in samples containing endogenous anti-analyte antibodies
JP2008187936A (ja) * 2007-02-02 2008-08-21 Fujifilm Corp トランススプライシング法による融合タンパク質作製方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
DR. ANDREW C.R. MARTIN'S GROUP, MARTIN, A.C.R. ACCESSING THE KABAT ANTIBODY SEQUENCE DATABASE BY COMPUTER PROTEINS: STRUCTURE, FUNCTION AND GENETICS, vol. 25, 1996, pages 130 - 133, Retrieved from the Internet <URL:http://www.bioinf.org.uk/abs/seqtest.html>
ELLMAN J ET AL., METHODS ENZYMOL., vol. 202, 1991, pages 301 - 36
HIROSHI UEDA, JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 27, 2007, pages 71 - 80
IIJIMA I.; HOHSAKA T., CHEMBIOCHEM., vol. 10, no. 6, 2009, pages 999 - 1006
KABAT, E. ET AL.: "Sequences of proteins of immunological interest", 1991, NATIONAL INSTITUTE OF HEALTH
KAJIHARA D ET AL., NAT METHODS, vol. 3, no. 11, 2006, pages 923
LIM SL ET AL., ANAL CHEM., vol. 79, no. 16, 2007, pages 6193 - 200
OLEJNIK ET AL., METHODS, vol. 36, 2005, pages 252 - 260
See also references of EP2515110A4
SHEAN-LEE LIM ET AL.: "Noncompetitive Detection of Low Molecular Weight Peptides by Open Sandwich Immunoassay", ANALYTICAL CHEMISTRY, vol. 79, no. 16, 2007, pages 6193 - 6200, XP008156568 *
TOMOICHI YOKOZEKI ET AL.: "A Homogeneous Noncompetitive Immunoassay for the Detection of Small Haptens", ANALYTICAL CHEMISTRY, vol. 74, no. 11, 2002, pages 2500 - 2504, XP008156580 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101603456B1 (ko) * 2011-11-02 2016-03-14 우시오덴키 가부시키가이샤 형광 표지 항체 가변 영역 함유 폴리펩티드 복합체를 이용한 형광 면역 측정 방법
WO2013065314A1 (ja) 2011-11-02 2013-05-10 ウシオ電機株式会社 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
KR20140084266A (ko) 2011-11-02 2014-07-04 우시오덴키 가부시키가이샤 형광 표지 항체 가변 영역 함유 폴리펩티드 복합체를 이용한 형광 면역 측정 방법
JPWO2013065314A1 (ja) * 2011-11-02 2015-04-02 ウシオ電機株式会社 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
JP2014029278A (ja) * 2012-07-31 2014-02-13 Ushio Inc 蛍光測定方法及び蛍光測定キット
WO2014021055A1 (ja) 2012-08-02 2014-02-06 ウシオ電機株式会社 光誘起蛍光測定器
US9683936B2 (en) 2012-08-02 2017-06-20 Ushio Denki Kabushiki Kaisha Light-induced fluorescent measuring device
JP2014085294A (ja) * 2012-10-26 2014-05-12 Ushio Inc 蛍光測定方法、蛍光測定キット及び蛍光光度計
JP2014156428A (ja) * 2013-02-15 2014-08-28 Univ Of Tokyo 抗体結合タンパク質
US11630106B2 (en) 2017-05-19 2023-04-18 Philip Morris Products S.A. Diagnostic test for distinguishing the smoking status of a subject
JP2020527696A (ja) * 2017-06-23 2020-09-10 ナノテンパー・テクノロジーズ・ゲーエムベーハー 分子間及び/又は分子内相互作用を測定するための方法
JP7144461B2 (ja) 2017-06-23 2022-09-29 ナノテンパー・テクノロジーズ・ゲーエムベーハー 分子間及び/又は分子内相互作用を測定するための方法
US11994521B2 (en) 2017-06-23 2024-05-28 Nanotemper Technologies Gmbh Methods for measuring inter- and/or intra-molecular interactions
JP2020076673A (ja) * 2018-11-08 2020-05-21 国立大学法人埼玉大学 蛍光プローブ及びそのプローブを用いた迅速蛍光測定方法
WO2020246495A1 (ja) 2019-06-05 2020-12-10 国立大学法人東京工業大学 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法

Also Published As

Publication number Publication date
CA2780845C (en) 2014-12-30
EP2515110A4 (en) 2013-05-01
EP2515110A1 (en) 2012-10-24
JP5043237B2 (ja) 2012-10-10
CN102667480A (zh) 2012-09-12
CA2780845A1 (en) 2011-05-26
WO2011061944A8 (ja) 2012-06-07
US20120270338A1 (en) 2012-10-25
KR101335560B1 (ko) 2013-12-31
KR20120086346A (ko) 2012-08-02
EP2515110B1 (en) 2015-03-25
CN102667480B (zh) 2014-08-20
US20160349266A1 (en) 2016-12-01
JPWO2011061944A1 (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5043237B2 (ja) 蛍光免疫測定方法
Chen et al. Profiling of exosomal biomarkers for accurate cancer identification: Combining DNA‐PAINT with machine‐learning‐based classification
JP6070769B2 (ja) 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定キット
US7741128B2 (en) Cooperative reporter systems, components, and methods for analyte detection
CN113366317A (zh) 用于囊泡货物标记和检测的系统和方法
De Picciotto et al. Design principles for SuCESsFul biosensors: Specific fluorophore/analyte binding and minimization of fluorophore/scaffold interactions
WO2018148489A1 (en) Analyte detection immunoassay
Inoue et al. Evaluation and selection of potent fluorescent immunosensors by combining fluorescent peptide and nanobodies displayed on yeast surface
JP2008298743A (ja) 蛍光分析による分子間相互作用検出方法
Islam et al. Wavelength-dependent fluorescent immunosensors via incorporation of polarity indicators near the binding interface of antibody fragments
Kim et al. Homogeneous one-step immunoassay based on switching peptides for detection of the influenza virus
Zhang et al. Lateral Flow Immunoassay Strip Based on Confocal Raman Imaging for Ultrasensitive and Rapid Detection of COVID-19 and Bacterial Biomarkers.
WO2018147018A1 (ja) 抗原検出又は測定用キット
CN101278194A (zh) 用于分析物检测的协同指示系统、组分以及方法
Jeong Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective
KR101551925B1 (ko) T7 박테리오파지를 이용한 표적-특이적 프로브 및 이를 이용한 바이오마커의 탐지
Ueda et al. Generation of a Recombinant scFv against Deoxycholic Acid and Its Conversion to a Quenchbody for One-Step Immunoassay
Miyafusa et al. Local disorder of the C-terminal segment of the heavy chain as a common sign of stressed antibodies evidenced with a peptide affinity probe specific to non-native IgG
Cater et al. Development of a generalisable tryptophan-optimised quenchbody biosensor based on a synthetic nanobody library
WO2020246495A1 (ja) 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法
Bartoschik Development and validation of new approaches for quantitative intermolecular interaction analysis by MicroScale Thermophoresis under near-native experimental conditions
Ma et al. Bead-based spontaneous Raman codes for multiplex immunoassay
Kim et al. Generation of Q-bead against bone Gla protein with simplified preparation steps
Yi et al. One-step detection of procollagen type III N-terminal peptide as a fibrosis biomarker using fluorescent immunosensor (Quenchbody)
JP5576585B2 (ja) リン酸化タンパク質免疫測定用試薬

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057171.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541820

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2780845

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010831343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4323/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015314

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13510105

Country of ref document: US