WO2013065314A1 - 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法 - Google Patents

蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法 Download PDF

Info

Publication number
WO2013065314A1
WO2013065314A1 PCT/JP2012/007025 JP2012007025W WO2013065314A1 WO 2013065314 A1 WO2013065314 A1 WO 2013065314A1 JP 2012007025 W JP2012007025 W JP 2012007025W WO 2013065314 A1 WO2013065314 A1 WO 2013065314A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable region
chain variable
antibody
polypeptide
antigen
Prior art date
Application number
PCT/JP2012/007025
Other languages
English (en)
French (fr)
Inventor
上田 宏
亮二 阿部
広明 高木
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to IN3968CHN2014 priority Critical patent/IN2014CN03968A/en
Priority to JP2013541635A priority patent/JP5817838B2/ja
Priority to US14/355,705 priority patent/US20140329228A1/en
Priority to KR1020147013914A priority patent/KR101603456B1/ko
Priority to CN201280053916.2A priority patent/CN103917872B/zh
Priority to CA2854432A priority patent/CA2854432A1/en
Priority to EP12846408.8A priority patent/EP2775305A4/en
Publication of WO2013065314A1 publication Critical patent/WO2013065314A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/946CNS-stimulants, e.g. cocaine, amphetamines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/948Sedatives, e.g. cannabinoids, barbiturates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
    • G01N33/9486Analgesics, e.g. opiates, aspirine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/6857Antibody fragments

Definitions

  • the present invention relates to an antigen concentration measurement / detection kit and an antigen concentration measurement / detection method capable of detecting a low molecular weight compound with high sensitivity without requiring a solid phase step and a washing step.
  • An immunoassay method using the binding between an antibody and an antigen is widely used for detecting a substance in a sample and measuring its concentration.
  • the most widely used measurement methods for clinical diagnosis, basic research and environmental research are two types of monoclonal antibodies that recognize different epitopes of the same antigen, or monoclonal antibodies.
  • a monoclonal or polyclonal antibody called a primary antibody is immobilized on a measurement plate, a specimen containing an antigen is poured into the plate, and a reaction is performed for a predetermined time to bind the antibody and the antigen.
  • contaminants bound to the antibody and antigens non-specifically bound to the plate are removed by washing with a washing solution.
  • a labeled secondary antibody solution to which a reporter molecule such as an enzyme, a fluorescent dye or a radioisotope is previously bound is poured, reacted for a certain period of time, and further the labeled secondary antibody is bound to the antigen captured by the primary antibody. .
  • the excess labeled antibody is removed with a washing solution, and the amount of the reporter molecule bound to the measurement plate is measured by enzyme activity, fluorescence, radioisotope or the like to measure the amount of antigen in the sample.
  • the normal sandwich ELISA method requires two types of antibodies with different epitopes.
  • a low molecular weight compound is used as an antigen, a plurality of antibodies that recognize different epitopes are prepared. It is difficult. Therefore, Ueda et al. Established a highly accurate immunoassay method for low molecular weight compounds called the open sandwich method using the light chain variable region (VL) and heavy chain variable region (VH) of one type of antibody.
  • VL light chain variable region
  • VH heavy chain variable region
  • a VH region polypeptide and a VL region polypeptide of an antibody that specifically recognizes an antigen are prepared, one polypeptide is labeled with a reporter molecule to form a labeled polypeptide, and the other polypeptide is immobilized on a solid phase.
  • An antigen concentration measurement method comprising measuring an amount of a reporter molecule of a labeled polypeptide bound to the immobilized polypeptide by contacting the antigen-containing sample and the labeled polypeptide with the immobilized polypeptide, and immobilizing the immobilized polypeptide to the immobilized polypeptide It is.
  • immunoassays there are liquid chromatographic methods as methods for measuring low molecular weight compounds. However, high-precision measuring instruments are required, and the amount of analyte required is large. There was a problem that it took time and the versatility was low.
  • an immunoassay method for measuring the concentration of an antigen using a fluorescent dye-labeled antibody the antibody and the antigen are labeled with different fluorescent dyes, and the efficiency of fluorescence resonance energy transfer (FRET) occurring between the fluorescent dyes is improved.
  • An immunoassay method using changes as an index Non-patent Documents 3 and 4
  • a phenomenon in which fluorescence of an antibody that has been quenched by mixing a quencher in advance with a fluorescently labeled antibody increases due to the introduction of a target detection substance.
  • the immunoassay of the “homogeneous fluorescence immunoassay” is a measurement method using a technique utilizing a quenching phenomenon, and (1) antibody light chain variable region (region called VL) poly
  • a kit comprising a peptide and an antibody heavy chain variable region (region referred to as VH) polypeptide, wherein either one of the antibody light chain variable region polypeptide and the antibody heavy chain variable region polypeptide is labeled with a fluorescent dye.
  • the present invention relates to the antigen concentration measurement / detection kit according to (1) above, which is a single-chain antibody in which a VL polypeptide and a VH polypeptide are bound.
  • An object of the present invention is to enable rapid and simple detection and / or quantitative measurement of a target substance in a liquid phase, which does not require a solid phase step and a washing step, and to visualize an antigen. It is a possible immunoassay method, which is to provide a fluorescence immunoassay method having a wider dynamic range of such measurement results and a higher sensitivity.
  • the fluorescence intensity of an antibody obtained by denaturing a fluorescently labeled single-chain antibody (scFv) that has been quenched in a solution containing no antigen with guanidine hydrochloride is approximately the same as the fluorescence intensity when the antigen reaches saturation. Therefore, we considered that increasing the quenching efficiency in the absence of antigen is an effective means of expanding the dynamic range, and conducted the following studies.
  • the main cause of quenching is due to the contact between tryptophan residues highly conserved in VL and VH polypeptides and labeled fluorescent dyes, and structural stabilization of the variable region accompanying antigen binding.
  • the fluorescent dye was driven out of the antigen-binding pocket, so that the quenching state was eliminated and the fluorescence intensity increased.
  • VL polypeptide and VH polypeptide exist as two types of proteins, since the VL polypeptide and VH polypeptide are dissociated and the interaction is weak, the contact efficiency between the fluorescent dye and the tryptophan residue is low. Along with this, the extinction state was expected to be low.
  • the interaction between the VL polypeptide and the VH polypeptide is achieved by binding the VL polypeptide and the VH polypeptide as a single chain antibody using an artificial peptide linker.
  • an artificial peptide linker there was a possibility that the function of the antibody such as the binding activity and stability with the inherent antigen was reduced by the addition of an artificial peptide linker.
  • the present invention [1] A polypeptide containing an antibody light chain variable region and an antibody heavy chain, wherein either or both of a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region are labeled with a fluorescent dye
  • a kit comprising a complex consisting of a polypeptide containing a variable region, wherein the antigen concentration is measured or antigen is measured using the positive correlation between the antigen concentration in the liquid phase and the fluorescence intensity of the fluorescent dye.
  • Antigen concentration measurement / detection kit characterized by enabling visualization of [2] Antigen concentration measurement / detection according to [1] above, wherein the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region are each labeled with the same fluorescent dye Kit for; [3] The antigen concentration measurement method according to [1], wherein the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region are labeled with different types of fluorescent dyes, respectively.
  • the polypeptide comprising an antibody light chain variable region and a polypeptide comprising an antibody heavy chain variable region, wherein one is labeled with a fluorescent dye and the other is labeled with a quencher that quenches the fluorescent dye.
  • Antigen concentration measurement / detection kit according to any one of [7] The antigen concentration measurement / detection kit according to any one of [1] to [6], wherein the fluorescent dye is selected from rhodamine fluorescent dyes and oxazine fluorescent dyes; [8] The antigen concentration measurement / detection kit according to [7], wherein the fluorescent dye is selected from carboxyrhodamine 110, carboxytetramethylrhodamine, and ATTO655 (trade name); [9] The antigen concentration measurement / detection kit according to any one of [4] to [8] above, wherein the quencher is 7-nitrobenzofurazan (NBD); About.
  • NBD 7-nitrobenzofurazan
  • the present invention also provides [10] The following steps (a) to (c), (A) A polypeptide containing an antibody light chain variable region and an antibody heavy chain, wherein either or both of a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region are labeled with a fluorescent dye Contacting a complex comprising a polypeptide containing a variable region with an antigen in a measurement sample; (B) detecting the fluorescence of the fluorescent dye or measuring the fluorescence intensity of the fluorescent dye; (C) calculating the amount of antigen contained in the specimen or visualizing the antigen using as an index that the antigen concentration and the fluorescence intensity of the fluorescent dye have a positive correlation; A method for measuring and detecting an antigen concentration, comprising: [11] Antigen concentration measurement / detection according to [10] above, wherein the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region are each labeled with the same fluorescent dye Method; [12] The
  • the antigen concentration measurement / detection method according to any one of [16] The antigen concentration measurement / detection method according to any one of [10] to [15] above, wherein the antigen is a low molecular compound; [17] The above-mentioned [10], wherein the antigen is human osteocalcin, bisphenol A, serum albumin, clenbuterol, ractopamine, cotinine, influenza A virus hemagglutinin, morphine, methamphetamine, cocaine, tetrahydrocannabinol, ketamine ] The antigen concentration measurement / detection method according to any one of [15] to [15]; About.
  • a highly sensitive immunoassay method capable of detecting a target substance and / or quantitatively measuring it quickly and easily in a liquid phase system and measuring a low molecular weight compound, and the measurement A kit for measuring an antigen by a method can be provided.
  • the measurement method of the present invention includes a polypeptide containing an antibody light chain variable region (hereinafter also referred to as “VL-containing polypeptide”) and an antibody heavy chain variable region, either or both of which are labeled with a fluorescent dye.
  • fluorescent label complex of the present invention composed of a polypeptide (hereinafter also referred to as “VH-containing polypeptide”) and an antigen is determined based on the fluorescence intensity of the fluorescent dye. It can be detected and / or measured as an indicator.
  • VH-containing polypeptide a polypeptide
  • the fluorescent dye is effectively quenched (quenched), so that the antigen can be detected and / or measured with high sensitivity.
  • a polypeptide comprising an antibody light chain variable region and a polypeptide comprising an antibody light chain variable region, wherein either or both of a polypeptide comprising an antibody light chain variable region and a polypeptide comprising an antibody heavy chain variable region are labeled with a fluorescent dye
  • a fluorescent dye It is a figure which represents typically the composite_body
  • FIG. 2 schematically shows Q-body used in Examples and the single-label Fab type complex, the same-color double-label Fab-type complex, and the different-color double-label Fab-type complex of the present invention (lower figure). It is a figure which represents typically the preparation methods of the fluorescent labeling Fab type composite_body
  • a ProX tag (TAG), VH, CH 1 , a plasmid containing a gene having a linker and a His tag DNA sequence attached to the C-terminus, and a ProX tag (TTT) , VL, C ⁇ , a plasmid containing a gene to which a linker and a FLAG tag DNA sequence are added at the C-terminus, and TAMRA-AF-tRNAamber (CloverDirect) are added to an E. coli cell-free synthesis kit (RYTS) for 2 hours at 20 ° C.
  • TAMRA-labeled VH-containing polypeptide and VL-containing polypeptide were synthesized by co-expression.
  • the protein was purified using the FLAG and His tag attached to the C-terminal.
  • it was synthesized and purified in the same manner as the single-label Fab type complex using a plasmid in which a N-terminal side of the VH-containing gene and VL-containing gene was added with a ProX tag (TAG).
  • the antigen concentration measurement / detection kit of the present invention comprises a complex comprising a polypeptide containing an antibody light chain variable region (VL-containing polypeptide) and a polypeptide containing an antibody heavy chain variable region (VH-containing polypeptide).
  • a kit comprising the complex, wherein either or both of the VL-containing polypeptide and the VH-containing polypeptide are labeled with a fluorescent dye, wherein the concentration of the antigen in the liquid phase and the fluorescence intensity of the fluorescent dye Is not particularly limited as long as it is an antigen concentration measurement / detection kit characterized in that antigen concentration measurement or antigen visualization is possible using as an index that there is a positive correlation with Is used as a standard substance, except that a complex composed of a VL-containing polypeptide and a VH-containing polypeptide, which is labeled with a fluorescent dye.
  • Antigen and that, reagents and the like normally used for this type of immunoassay kits, instruments, may be provided to the manual.
  • the antigen is not particularly limited as long as it is an antigen that is specifically recognized by the VH-containing polypeptide, the VL-containing polypeptide, or a complex composed of these polypeptides.
  • protein modifications such as phosphorylation and methylation, and proteins that have undergone these modifications can also be mentioned.
  • the antigen concentration measurement / detection kit of the present invention provides detection sensitivity. Since it is excellent, it is particularly useful in the detection of low molecular weight compounds.
  • either or both of the VL-containing polypeptide and the VH-containing polypeptide constituting the complex consisting of the VL-containing polypeptide and the VH-containing polypeptide are fluorescent dyes.
  • a complex in which either one is labeled with a fluorescent dye (ii) a complex in which each is labeled with the same fluorescent dye, (iii) each with a different type of fluorescent dye A labeled complex, or (iv) one of which can be a fluorescent dye and the other is a complex labeled with a quencher that quenches the fluorescent dye.
  • the fluorescent dye When added to any one of the VH-containing polypeptide and the VL-containing polypeptide, the fluorescent dye may be added to any polypeptide, but it is preferably added to the one that can obtain high detection sensitivity. When two different fluorescent dyes are added to the VH-containing polypeptide and the VL-containing polypeptide, any fluorescent dye may be added to either polypeptide, and a fluorescent dye that provides high detection sensitivity and A combination of polypeptides is preferred.
  • a protein comprising any amino acid sequence, ProX tag (SEQ ID NO: 1), FLAG tag, His Tag, peptide tag such as HA tag, Ni tag, linker consisting of any amino acid sequence, stable radioisotope, enzyme, in addition to labeling with a fluorescent dye of a different type from the fluorescent dye, sugar chain addition or phosphorylation, You may receive modification, such as methylation.
  • the antibody light chain variable region (VL) is particularly limited as long as it contains an amino acid sequence specific to the antibody light chain variable region (VL) encoded by exons of the V region and J region of the antibody light chain gene.
  • VL antibody light chain variable region
  • the affinity between the VL-containing polypeptide or the fluorescent labeling complex of the present invention and the antigen is not impaired, the N-terminus and / or C of the amino acid sequence specific to the antibody light chain variable region is not used. Even if an arbitrary amino acid sequence is further added to the terminal side, one or more amino acids may be deleted, substituted, or inserted.
  • the affinity with such an antigen can be appropriately determined by a conventional method such as ELISA or FACS.
  • the amino acid sequence specific to the antibody light chain variable region is preferably an amino acid sequence in which the 35th amino acid is tryptophan in the Kabat numbering system.
  • the antibody heavy chain variable region includes an amino acid sequence specific to the antibody heavy chain variable region (VH) encoded by exons of the V region, D region, and J region of the antibody heavy chain gene.
  • VH antibody heavy chain variable region
  • the N-terminus of the amino acid sequence specific for the antibody heavy chain variable region is not limited.
  • an arbitrary amino acid sequence may be further added to the C-terminal side, or one or more amino acids may be deleted, substituted, or inserted.
  • the affinity with such an antigen can be appropriately determined by a conventional method such as ELISA or FACS.
  • the amino acid sequence specific for the antibody heavy chain variable region is an amino acid sequence in which the 36th, 47th, or 103rd amino acid is tryptophan in the Kabat numbering system. preferable.
  • the VL-containing polypeptide only needs to contain an antibody light chain variable region (VL), and can include an antibody light chain and a peptide consisting of any amino acid sequence in the antibody light chain.
  • the variable region (VL) can be an antibody light chain constant region (C ⁇ ) or a polypeptide further having a hinge portion, and among them, a polypeptide in which VL is C ⁇ is preferable.
  • VL-containing polypeptide examples include SEQ ID NO: 5 with SEQ ID NO: 4, SEQ ID NO: 7 with SEQ ID NO: 4, SEQ ID NO: 10 with SEQ ID NO: 4, SEQ ID NO: 15 SEQ ID NO: 4 added to SEQ ID NO: 17, SEQ ID NO: 4 added, SEQ ID NO: 19 added SEQ ID NO: 4, SEQ ID NO: 21 added SEQ ID NO: 4, SEQ ID NO: 23 sequenced It consists of an amino acid sequence represented by the addition of SEQ ID NO: 4, the addition of SEQ ID NO: 4 to SEQ ID NO: 25, the addition of SEQ ID NO: 27 to SEQ ID NO: 27, and the addition of SEQ ID NO: 4 to SEQ ID NO: 29
  • a polypeptide can be preferably exemplified, and a VL-containing polypeptide capable of recognizing an antigen can be appropriately prepared according to the antigen to be measured.
  • the VH-containing polypeptide only needs to contain an antibody light heavy variable region (VH), and can include an antibody heavy chain and a peptide consisting of any amino acid sequence in the antibody heavy chain. in the region (VH), an antibody heavy chain constant region (CH 1) and, further can be applied to polypeptides of the hinge portion and an Fc region, such as a polypeptide is preferably imparted with CH 1 inter alia VH.
  • VH antibody light heavy variable region
  • CH 1 antibody heavy chain constant region
  • the VH-containing polypeptide includes SEQ ID NO: 3 added with SEQ ID NO: 6, SEQ ID NO: 9 added with SEQ ID NO: 6, SEQ ID NO: 12 added with SEQ ID NO: 6, SEQ ID NO: 16 SEQ ID NO: 6 added to SEQ ID NO: 18, SEQ ID NO: 6 added, SEQ ID NO: 20 added SEQ ID NO: 6, SEQ ID NO: 22 added SEQ ID NO: 6, SEQ ID NO: 24 sequenced It consists of the amino acid sequence shown by adding SEQ ID NO: 6, adding SEQ ID NO: 6 to SEQ ID NO: 26, adding SEQ ID NO: 6 to SEQ ID NO: 28, and adding SEQ ID NO: 6 to SEQ ID NO: 30
  • a polypeptide can be preferably exemplified, and a VH-containing polypeptide capable of recognizing an antigen can be appropriately prepared according to the antigen to be measured.
  • the VL-containing polypeptide and the VH-containing polypeptide preferably form a complex, and the peptide includes an amino acid sequence that forms a complex in each of the antibody light chain variable region (VL) and the antibody heavy chain variable region (VH).
  • VL antibody light chain variable region
  • VH antibody heavy chain variable region
  • a peptide forming a complex in addition to the antibody constant region (CH 1 , C ⁇ , etc.), one forming a dimer can be added to VL and the other to VH. It is also possible to select two types of proteins that interact to contribute to the formation of these complexes.
  • the “complex” in the fluorescent labeling complex of the present invention is not limited as long as it contains a VL-containing polypeptide and a VH-containing polypeptide as components and forms a complex. As long as the function is not impaired, in addition to the VL-containing polypeptide and the VH-containing polypeptide, a peptide, protein, lipid, metal or other compound may be included as a constituent element.
  • the complex of the present invention may be a structure that can function as a single body by combining the polypeptides, and the presence or absence of a chemical bond between the polypeptides is not particularly problematic.
  • the bond include a disulfide bond between the polypeptides, a bond formed using a cross-linking agent, and the like. These bonds may be used in combination in a single complex. Among these, a disulfide bond can be preferably exemplified.
  • the complex of the present invention preferably forms a complex in which the polypeptides are close to each other, and is preferably a complex composed of a VL-containing polypeptide or a VH-containing polypeptide containing a peptide having such a function. .
  • a polypeptide comprising an antibody light chain variable region and an antibody light chain constant region and a polypeptide chain comprising an antibody heavy chain variable region and an antibody heavy chain constant region are disulfide bonds.
  • a Fab antibody which is a single molecule antibody protein bound, an F (ab ′) 2 antibody in which two Fab antibodies are bound by a disulfide bond via a hinge, and a complete antibody are preferable, and the Fab antibody is most preferable.
  • the fluorescent labeling complex of the present invention that forms a Fab antibody, comprising such a VL-containing polypeptide and a VH-containing polypeptide, is sometimes referred to as “fluorescent labeled Fab-type complex of the present invention”.
  • fluorescent labeled Fab-type complex of the present invention the fluorescently labeled Fab complex of the present invention in which either one of the VL-containing polypeptide or the VH-containing polypeptide is fluorescently labeled is sometimes referred to as “the single-label Fab complex of the present invention”.
  • the fluorescence-labeled Fab complex of the present invention in which both the VL-containing polypeptide and the VH-containing polypeptide are fluorescently labeled is the same as the double-label Fab complex of the present invention when the two fluorescent dyes are the same.
  • the two kinds of fluorescent dyes are different from each other, it may be referred to as “the different color double-label Fab type complex of the present invention”.
  • a VL-containing polypeptide, a VH-containing polypeptide, a complex containing these polypeptides, and components thereof are known chemical synthesis methods, gene recombination techniques, and degradation of antibody molecules by proteolytic enzymes. Although it can be prepared using a method or the like, it is particularly preferable to prepare by a gene recombination technique that can be prepared in a large amount by a relatively easy operation.
  • a recombinant vector is prepared by introducing DNA containing a base sequence encoding such a polypeptide into a suitable expression vector, so that bacteria, yeast, insects, animal and plant cells
  • the target polypeptide can be expressed by an expression system using such as a host or a cell-free translation system (FIG. 5).
  • a cell-free translation system for example, in a reaction solution in which nucleotide triphosphates and various amino acids are added to a cell-free extract such as E. coli, wheat germ, rabbit reticulocyte, etc. Of the polypeptide can be expressed.
  • tags such as ProX tag, FLAG tag, and His tag may be added to VL-containing polypeptides and VH-containing polypeptides, and these tags are used for addition of fluorescent dyes, purification of polypeptides, etc. can do.
  • the VL-containing polypeptide thus obtained and the VH-containing polypeptides can form a complex in an appropriate solvent during labeling with a fluorescent dye or before and after labeling. Examples of bonding and forming a complex can be given.
  • the gene encoding the VL-containing polypeptide and the VH-containing polypeptide can be co-expressed in an E. coli cell-free synthesis system and then incubated at 4 ° C.
  • the crosslinking agent may be any compound that can crosslink and bond polypeptides together. Examples thereof include aldehydes (for example, glutaraldehyde), carbodiimides, imide esters, and the like. It can be obtained and used in a conventional manner.
  • the complex of the present invention can also be prepared by cleaving an antibody with an enzyme or the like. For example, by treating the antibody with papain or pepsin, a Fab antibody or F (ab ′) 2 antibody, respectively. Can also be produced.
  • the method for labeling a VL-containing polypeptide or a VH-containing polypeptide with a fluorescent dye is not particularly limited, and it is directly or indirectly via a cross-linking agent using functional groups at both ends or side chains of the polypeptide.
  • a method of labeling a site-specific labeling method while synthesizing a polypeptide using a cell-free translation system, and the like can be used.
  • a method of labeling using a cell-free translation system an amber suppression method (Ellman J et al. (1991) Methods Enzymol. 202: 301-36), a 4-base codon method (Hohsaka T., et al., J Am. Chem.
  • a protein in which the labeled amino acid is introduced at the site substituted with the amber codon can be synthesized.
  • a codon is mainly expanded to CGGG, a DNA or mRNA in which a codon encoding an amino acid is replaced with CGGG is prepared, and a protein is synthesized from the DNA or mRNA using a cell-free translation system.
  • a protein in which the labeled amino acid is introduced at the site substituted with the 4-base codon can be synthesized.
  • the different color double label in the present invention is labeled with a different fluorescent dye on the VH-containing polypeptide and the VL-containing polypeptide by co-expressing the amber suppression method and the 4-base codon method using a cell-free translation system. A complex can be formed.
  • a protein with a label introduced specifically is synthesized by translating DNA or mRNA into protein in a cell-free translation system to which labeled puromycin is added at an optimal concentration. can do.
  • a method of introducing a fluorescent dye in a site-specific manner by genetic recombination technology using E. coli or animal cells as a host can be used.
  • an aminoacyl-tRNA synthetase that recognizes azidotyrosine and Escherichia coli into which a suppressor azidotyrosyl-tRNA is introduced as a host azidotyrosine can be introduced site-specifically and a fluorescent dye can be bound to the introduced azido group. it can.
  • the fluorescent dye complex of the present invention is formed and quenched in the absence of an antigen ( There is no particular limitation as long as it is a fluorescent dye that is quenched, and the fluorescent dye emits fluorescence when the complex is bound to an antigen and the quenching function is released.
  • an antigen There is no particular limitation as long as it is a fluorescent dye that is quenched, and the fluorescent dye emits fluorescence when the complex is bound to an antigen and the quenching function is released.
  • the same or different types of fluorescent dyes are added to each of the VH-containing polypeptide and the VL-containing polypeptide, in addition to the quenching described above, quenching between dyes or FRET effect in the absence of antigen. It is preferable to select a combination in which quenching occurs effectively.
  • fluorescent dyes used for fluorescent labels include rhodamine, coumarin, Cy, EvoBlue, oxazine, Carbopyronin, naphthalene, biphenyl, anthracene, phenenthrene, pyrene, carbazole, etc.
  • CR110 carboxyrhodamine® 110: Rhodamine® Green (trade name)
  • TAMRA carbocyte tremethlrhodamine: TMR
  • Carboxyrhodamine® 6G CR6G, ATTO655 (trade name)
  • BODIPY® FL trade name: 4,4-difluoro- 5,7-dimethyl-4-bora-3a, 4a-diaza-s-indancene-3-propionic acid
  • BODIPY 493/503 trade name: 4,4-difluoro-1,3,5,7-tetramethyl- 4-bora-3a, 4a-diaza-s-indancene-8-propionicacid
  • BODIPY R6G (trade name): 4,4-difluoro-5- (4-phenyl-1,3-butadienyl) -4-bora-3a , 4a-diaza-s-s-
  • the quencher in the present invention in the fluorescent labeling complex of the present invention in the absence of an antigen, the fluorescence of the fluorescent dye labeled on either one of the VL-containing polypeptide or the VH-containing polypeptide, which is a component thereof,
  • the quencher added to the other peptide is a quencher capable of quenching, and when such a complex is bound to an antigen, the quencher is released and the quencher is particularly limited so long as it emits fluorescence. Not.
  • quenchers can be exemplified by quenching dyes having a basic skeleton such as NBD: 7-nitrobenzofurazan, DABCYL, BHQ, ATTO, QXL, QSY, Cy, Lowa Black, IRDYE, and derivatives of the quenching dyes.
  • NBD DABCYL, BHQ-1 (trade name), BHQ-2 (trade name), BHQ-3 (trade name), ATTO 540Q (trade name), ATTO 580Q (trade name), ATTO 612Q (trade name), QXL490 (Trade name), QXL520 (trade name), QXL 570 (trade name), QXL 610 (trade name), QXL 670 (trade name), QXL 680 (trade name), QSY-35 (trade name), QSY-7 (trade name) QSY-9 (trade name), QSY-21 (trade name), Cy5Q (trade name), Cy7Q (trade name), Low Black FQ (trade name), LowaBlack RQ (trade name), can be exemplified IRDYE QC-1 (trade name), among others, NBD is preferred.
  • the combination of the fluorescent dye and the quencher in the complex of the present invention is appropriately selected as a combination in which the quencher effectively quenches the fluorescent dye in the absence of the antigen and does not inhibit the emission of the fluorescent dye in the presence of the antigen.
  • the combination of the fluorescent dyes TAMRA and NBD can be exemplified.
  • the fluorescent labeling complex of the present invention that is, a complex composed of a VL-containing polypeptide and a VH-containing polypeptide, wherein one or both of the VL-containing polypeptide and the VH-containing polypeptide are labeled with a fluorescent dye.
  • the complex undergoes quenching of the fluorescent dye due to the interaction between the aforementioned fluorescent dye and the tryptophan residue conserved in the antibody variable region.
  • the fluorescent labeling complex of the present invention in which the same color fluorescent dye is labeled on each of the polypeptides, a quenching effect between the fluorescent dyes is obtained.
  • the fluorescent labeling complex of the present invention in which a different color fluorescent dye is labeled on each of the polypeptides, in addition to quenching by the tryptophan residue and quenching between the fluorescent dyes, the fluorescence resonance energy transfer (FRET) effect is used. Quenching effect is obtained. Furthermore, in the fluorescent labeling complex of the present invention in which a fluorescent dye and a quencher that quenches the dye are labeled on each polypeptide, the dynamic range can be increased by the quenching effect between the fluorescent dye and the quencher. .
  • FRET fluorescence resonance energy transfer
  • a polypeptide containing an antibody light chain variable region and an antibody heavy chain wherein either or both of a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region are labeled with a fluorescent dye
  • a complex comprising a polypeptide containing a variable region with an antigen in a measurement sample
  • B detecting the fluorescence of the fluorescent dye or measuring the fluorescence intensity of the fluorescent dye
  • C calculating the amount of antigen contained in the specimen or visualizing the antigen using as an index that the antigen concentration and the fluorescence intensity of the fluorescent dye have a positive correlation
  • Steps (a) to (c) of the present invention may be used as long as the method is an antigen concentration measurement and / or detection method, and the complex may be the fluorescent label complex of the present invention.
  • Illustrative examples include fluorescently labeled Fab-type complexes, more preferably the single-label Fab-type complex of the present invention, the same-color double-label Fab-type complex of the present invention, and the different-color double-label Fab-type complex of the present invention.
  • the antigen concentration measurement / detection method of the present invention can be performed using the fluorescent labeling complex of the present invention or the antigen concentration measurement and / or detection kit of the present invention.
  • the use of the antigen concentration measurement / detection kit of the present invention and the antigen concentration measurement / detection method of the present invention preferably involve contacting the fluorescently labeled complex of the present invention with the antigen in the liquid phase, and therefore the sample to be measured Is preferably prepared as a measurement sample appropriately containing a liquid or a liquid, or immersed in a liquid, and used for the step (a) or the antigen concentration measurement / detection method of the present invention.
  • the use of the antigen concentration measurement and / or detection kit of the present invention and the origin of the specimen in the antigen concentration measurement and / or detection method of the present invention are not particularly limited. can do.
  • a liquid sample is used as a measurement sample as it is, or diluted or concentrated with a buffer solution, physiological saline, or the like unless the antigen is damaged or the antigen concentration measurement / detection is not inhibited. It is also possible to prepare a measurement sample by appropriately adjusting the salt concentration and the like. Examples of such liquid specimens include serum, plasma, saliva, spinal fluid, urine and other body fluids that may contain the target antigen to be measured, culture supernatants, cell extracts, fungus body extracts, industrial wastewater, etc. Can be mentioned.
  • Specimens other than liquids such as solids may be divided, shredded, pulverized, ground, tissue sections, or specimens identified as they are or as long as they do not damage the antigen or interfere with antigen concentration measurement / detection
  • the fluorescent-labeled complex of the present invention is brought into contact with the antigen by performing treatment such as removing or extracting only the components and then dissolving, suspending, or immersing in a liquid such as a buffer solution or physiological saline. Ready to be used as a measurement sample.
  • fixation treatment can be performed using paraformaldehyde, glutaraldehyde or the like as long as the antigen is not impaired, and further, blocking treatment can be performed using BSA (bovine serum albumin), skim milk, or the like.
  • BSA bovine serum albumin
  • solid specimens include tissues, cells collected from living bodies, nitrocellulose membranes and PVDF membranes on which components such as proteins and sugars are blotted, foods, and soils.
  • the sample for measurement contains antiseptics, fungicides, pH adjusters, surfactants, anticoagulants, chelating agents, etc., as long as they do not damage the antigen or inhibit antigen concentration measurement / detection. But you can.
  • body fluid such as blood and cerebrospinal fluid, tissue, and the like in a living body can be used as a measurement sample. That is, by administering the fluorescent labeling complex of the present invention to a non-human animal such as a laboratory animal, the fluorescent labeling complex of the present invention and the antigen in vivo can be brought into contact.
  • non-human animals may be animals other than humans, and examples thereof include vertebrates, especially mammals, fish, birds, reptiles, amphibians, and the like. Among these, mammals are preferred, and mice, rats More preferred are hamsters, monkeys, pigs and the like.
  • the above administration method is not particularly limited, and is appropriately selected from parenteral local administration methods such as intramuscular injection, intraperitoneal injection, intravenous injection, subcutaneous injection, implantation, and application, and oral administration methods. can do.
  • other drugs or the like may be administered simultaneously with or before or after administration of the fluorescent label complex of the present invention.
  • specimens such as body fluids and tissues are collected over time to prepare a measurement sample, and fluorescence intensity measurement and fluorescence localization observation are performed, or fluorescence intensity in the living body, changes in the fluorescence intensity, fluorescence It is also possible to detect and observe the location and movement of the object in real time.
  • the reaction conditions for bringing the fluorescent labeling complex of the present invention into contact with the antigen in the measurement sample are the conditions that can be generally used for the antigen-antibody reaction by adding the fluorescent labeling complex of the present invention to the measurement sample.
  • the temperature condition is, for example, 1 to 30 ° C., preferably 18 to 25 ° C.
  • the reaction time is, for example, instantaneous to 180 minutes, preferably 1 to 90 minutes. it can.
  • the reaction is carried out in a non-human animal body, it is incubated for 5 to 180 minutes, preferably 60 to 120 minutes after administration, and, if necessary, tissue, blood, cells, etc. are removed or the observation site is exposed.
  • the measurement sample to which the fluorescent labeling complex is added can be directly used for antigen concentration measurement and / or detection without passing through a step such as washing, and this is the antigen concentration measurement / detection kit of the present invention. And one of the major features of the antigen concentration measurement / detection method of the present invention.
  • the method for detecting fluorescence in the measurement sample in the present invention is not particularly limited as long as fluorescence emitted from the fluorescent dye can be detected, and the fluorescence intensity of the fluorescent dye is measured by irradiating the measurement sample after the reaction with excitation light. And what is necessary is just to detect.
  • the wavelength of the excitation light to be irradiated and the fluorescence to be measured and / or detected can be appropriately selected according to the type of fluorescent dye used. For example, when CR110 is used as the fluorescent dye, the excitation light wavelength is 480 nm and the fluorescence wavelength. When 530 nm and TAMRA are used, an excitation light wavelength of 530 nm and a fluorescence wavelength of 580 nm can be used.
  • a combination of an excitation light wavelength of 630 nm and a fluorescence wavelength of 680 nm can be used.
  • a combination of excitation light wavelength and fluorescence wavelength that can measure the antigen concentration and / or detect the antigen may be appropriately selected and used.
  • the measurement sample reacted with the fluorescent labeling complex of the present invention is irradiated with light having an excitation wavelength suitable for any one of the fluorescent dyes contained in the fluorescent labeling complex, and a fluorescence spectrum is acquired.
  • the combination of the excitation light wavelength and the fluorescence wavelength can include a combination of the excitation light wavelength and the fluorescence wavelength suitable for any one of the fluorescent dyes, and more preferably, the fluorescence having the shorter excitation light wavelength and the fluorescence wavelength.
  • a combination of excitation light wavelength and fluorescence wavelength suitable for the dye can be mentioned. Fluorescence may be detected as a fluorescence spectrum or as light intensity at a specific wavelength. For example, when a combination of CR110 and TAMRA is used, the excitation light wavelength is 480 nm, and fluorescence with a wavelength of 530 nm is detected. It can also be detected as a fluorescence spectrum having a wavelength of 515 nm to 650 nm.
  • a combination of excitation light wavelength and fluorescence wavelength suitable for one of two different fluorescent dyes can efficiently detect background reduction due to FRET (Fluorescence Resonance Energy Transfer) effect in the absence of antigen. Can be measured with higher sensitivity.
  • FRET Fluorescence Reson
  • the light source and measurement device used for fluorescence detection can be selected as appropriate, and the light source may be any light source that can irradiate the excitation light wavelength.
  • the excitation light having a specific wavelength can be obtained using an appropriate filter.
  • a device usually used for fluorescence observation can be used, and a light source of excitation light and its irradiation system, a microscope equipped with a fluorescence image acquisition system, etc. can be used as appropriate, and MF20 / FluoroPoint-Light ( Olympus) and FMBIO-III (Hitachi Software Engineering) can be exemplified.
  • a standard curve showing the relationship between antigen concentration and fluorescence intensity is created by measuring fluorescence intensity when using a test substance containing an antigen with a known concentration. From this standard curve, the antigen concentration with unknown concentration can be calculated. For the calculation of the antigen concentration, the amount of the antigen can be automatically calculated by a conversion formula or the like prepared based on a standard curve.
  • the fluorescence detection may be a fluorescence spectrum detection or a fluorescence intensity detection at a specific wavelength.
  • the detection target region of the non-human animal is irradiated with excitation light, and the fluorescence of the fluorescent dye 2 Measurement and / or detection can be performed three-dimensionally or three-dimensionally.
  • examples using a fluorescence microscope, a fluorescence image analyzer, an endoscope equipped with a light source, and the like can be given.
  • an image showing the structure of an individual, tissue, or cell of a non-human animal can also be acquired using an endoscope, X-ray, CT, MRI, ultrasound, a microscope, or the like. preferable.
  • the localization (position) and / or amount of the antigen can be determined based on a two-dimensional or three-dimensional image of the detected fluorescence. And can be compared with an image showing the structure.
  • the amount of antigen can be measured using a fluorescence intensity ratio obtained by dividing the fluorescence measurement value in the negative control by the fluorescence measurement value in the measurement sample.
  • the fluorescence intensity and the antigen amount are positively correlated, it is possible to determine that the antigen is present in the measurement sample when a fluorescence intensity exceeding an appropriately set threshold is obtained.
  • ELISA immunoassay methods
  • a competitive ELISA method is generally used as an immunoassay method for a low molecular substance, but a low molecular substance detection measurement according to the present invention is performed by a competitive ELISA due to the simplicity of the technique, measurement sensitivity, SN ratio, and the like. It is superior to the law, and can demonstrate its ability most.
  • stimulants such as amphetamine, methamphetamine, morphine, heroin, codeine, narcotics, aflatoxin, sterigmatocystin, neosolaniol, nivalenol, fumonisin, ochratoxin, mold toxins such as endophyte-producing toxins, testosterone and estradiol, etc.
  • Sex hormones additives illegally used in feed such as clenbuterol and ractopamine, harmful substances such as PCB, gossypol, histamine, benzpyrene, melamine, acrylamide, dioxin, acetamiprid, imidacloprid, chlorfenapyr, malathion, carbaryl, clothianidin, triflumi Residual pesticides such as sol, chlorothalonil, spinosad, lannate, methamidophos, chlorpyrifos, and environmental compounds such as bisphenol A Or the like can be mentioned Mont.
  • the measurement result can be obtained instantaneously and the detection method can be simplified, so that the detection device can be reduced in size and price.
  • influenza infectious diseases such as infectious diseases and viruses
  • clinical diagnostic fields including drug blood levels and POCT
  • simple health measurement fields at work, school, nursery school and home simple health measurement fields at work, school, nursery school and home
  • anthrax botulinum toxin
  • sarin we will fully demonstrate its capabilities in safe and secure fields such as terrorism countermeasures such as VX gas, environmental pollutants and house dust that require measurement on the site side, and R & D fields that require immunoassay. be able to.
  • a ProX tag containing an amber codon at the N-terminal in a DNA sequence encoding a polypeptide containing an antibody heavy chain variable region (VH; SEQ ID NO: 3) and antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6) against BGP The base sequence corresponding to the 9th amino acid is TAG.
  • VH antibody heavy chain variable region
  • CH 1 antibody heavy chain constant region
  • SEQ ID NO: 6 The base sequence corresponding to the 9th amino acid is TAG.
  • the DNA sequence of MSKQIEVNXSNET X is a fluorescently labeled amino acid
  • SEQ ID NO: 2 is linked to the linker (SEQ ID NO: 14) and His tag of C tag.
  • the gene to which the DNA sequence was assigned was incorporated into a pIVEX2.3d vector (Roche Diagnostics) (FIG. 5).
  • a ProX tag (VH is labeled when translated and VL is unlabeled) is added to the N-terminus of the inserted VL or VH, and a His tag or FLAG tag is added to the C-terminus. It is designed as follows.
  • a DNA sequence encoding a polypeptide comprising a light chain variable region (VL; SEQ ID NO: 7) of an antibody against bisphenol A and an antibody light chain constant region (C ⁇ ; SEQ ID NO: 4), and a ProX tag (N-terminal) SEQ ID NO: 1) and GGGS5 spacer (GGGSGGGSGGGSGGGSGGGS; SEQ ID NO: 8), C-terminal linker (SEQ ID NO: 14) and FLAG tag DNA sequence were added to the pIVEX2.3d vector (Roche Diagnostics) Incorporated into the company).
  • VH antibody heavy chain variable region
  • CH 1 antibody heavy chain constant region
  • SEQ ID NO: 6 antibody heavy chain constant region
  • SEQ ID NO: 8 DNA sequence, a linker (SEQ ID NO: 14) and a His tag DNA sequence added to the C-terminus, and a pIVEX2.3d vector (Roche Diagnostics) (Fig. 5).
  • a ProX tag (VH is labeled when translated and VL is unlabeled) is added to the N-terminus of the inserted VL or VH, and a His tag or FLAG tag is added to the C-terminus. It is designed as follows.
  • a DNA sequence encoding a polypeptide containing the antibody heavy chain variable region (VH; SEQ ID NO: 12) and antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6) against serum albumin (SA) has an amber codon at the N-terminus.
  • a gene containing ProX tag (SEQ ID NO: 2) and GGGS5 spacer (SEQ ID NO: 8) containing a linker, SEQ ID NO: 14 and His tag DNA sequence at the C-terminus was added to the pIVEX2.3d vector (Roche (Fig. 5).
  • a ProX tag (VH is labeled when translated and VL is unlabeled) is added to the N-terminus of the inserted VL or VH, and a His tag or FLAG tag is added to the C-terminus. It is designed as follows.
  • VH antibody heavy chain variable region
  • CH 1 antibody heavy chain constant region
  • a gene having a DNA sequence of (SEQ ID NO: 2 when translated) and a linker (SEQ ID NO: 14) and His tag DNA sequence added to the C-terminus was incorporated into the pIVEX2.3d vector.
  • These constructed expression vectors are designed such that a ProX tag (amber) is added to the N-terminus of the inserted VL or VH, and a His tag or FLAG tag is added to the C-terminus.
  • a DNA sequence encoding a polypeptide comprising an antibody light chain variable region (VL; SEQ ID NO: 10) and antibody light chain constant region (C ⁇ ; SEQ ID NO: 4) against serum albumin (SA) contains an amber codon at the N-terminus
  • the DNA sequence of the ProX tag (SEQ ID NO: 2 when translated) and the GGGS2 spacer (SEQ ID NO: 11), the linker (SEQ ID NO: 14) and the FLAG tag DNA sequence at the C-terminus were added to the pIVEX2.3d vector ( (Roche Diagnostics).
  • a ProX tag containing an amber codon at the N-terminus in a DNA sequence encoding a polypeptide containing an antibody heavy chain variable region (VH; SEQ ID NO: 12) and antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6) against SA (Translated SEQ ID NO: 2) and GGGS2 spacer (SEQ ID NO: 11) DNA sequence, C-terminal added linker (SEQ ID NO: 14) and His tag DNA sequence were incorporated into pIVEX2.3d vector .
  • These constructed expression vectors are designed such that a ProX tag (amber) is added to the N-terminus of the inserted VL or VH, and a His tag or FLAG tag is added to the C-terminus.
  • VH antibody heavy chain variable region
  • CH 1 antibody heavy chain constant region
  • SEQ ID NO: 14 gene having a linker
  • His tag DNA sequence at the C-terminus were incorporated into the pIVEX2.3d vector (FIG. 5).
  • These constructed expression vectors are designed such that a ProX tag is added to the N-terminus of the inserted VL or VH, and a His tag or FLAG tag is added to the C-terminus.
  • a DNA sequence encoding a polypeptide comprising an antibody light chain variable region (VL; SEQ ID NO: 10) and antibody light chain constant region (C ⁇ ; SEQ ID NO: 4) against serum albumin (SA) has a CGGG 4-base codon at the N-terminus.
  • a pIVEX2.3d vector containing a ProX tag (translationally SEQ ID NO: 2 when translated) and a GGGS2 spacer (SEQ ID NO: 11) DNA sequence, a linker (SEQ ID NO: 14) and a FLAG tag DNA sequence at the C-terminus (Roche Diagnostics).
  • a ProX tag containing an amber codon at the N-terminus in a DNA sequence encoding a polypeptide comprising an antibody heavy chain variable region (VH; SEQ ID NO: 12) and antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6) against SA (Translated SEQ ID NO: 2) and GGGS2 spacer (SEQ ID NO: 11) DNA sequence, C-terminal added linker (SEQ ID NO: 14) and His tag DNA sequence were incorporated into pIVEX2.3d vector .
  • Fluorescently labeled aminoacyl-tRNAs (TAMRA-X-AF-tRNAamber, CR110-X-AF-tRNAamber, and ATTO655-X-AF-tRNAamber) for producing fluorescently labeled proteins are CloverDirect TM tRNA Reagents for Site -Directed Protein Functionalization (manufactured by Protein Express) was used. The reaction solution was allowed to stand at 20 ° C. for 2 hours for reaction to synthesize the protein, and then complex formation was completed by reaction at 4 ° C. for 16 hours.
  • reaction solution 60 ⁇ L is 3 ⁇ L Enzyme Mix, 0.6 ⁇ L Methionine, 30 ⁇ L 2 ⁇ Reaction Mix, 20 ⁇ L E-coli Lysate, 2 ⁇ L of two types of plasmid DNA (200 ng each) 1.5 ⁇ L of two kinds of fluorescently labeled aminoacyl-tRNAamber and CGGG (480 nmol each) and 1.4 ⁇ L of Nuclease Free Water were added.
  • Fluorescently labeled aminoacyl-tRNA (TAMRA-X-AF-tRNAamber or CGGG, CR110-X-AF-tRNAamber or CGGG, and ATTO655-X-AF-tRNAamber or CGGG) for making fluorescently labeled proteins are CloverDirect TM Name)
  • tRNA Reagents for Site-Directed Protein Functionalization (manufactured by Protein Express) was used.
  • tRNA amber and tRNA CGGG are used, respectively. The reaction solution was allowed to stand at 20 ° C.
  • NBD-X-AF-tRNACGGG is obtained from TAMRA-X and SE of Abe et al. (Abe R, et al., J. Biosci. Bioeng. 110 (1): 32-38 (2010)), respectively. It was synthesized by changing to SE (Anspec).
  • the reaction solution (60 ⁇ L) was 3 ⁇ L Enzyme Mix, 0.6 ⁇ L Methionine, 30 ⁇ L 2 ⁇ Reaction Mix, 20 ⁇ L E-coli Lysate, 2 ⁇ L of two types of plasmid DNA (200 ng each), 1.5 ⁇ L TAMRA-X- AF-tRNAamber and NBD-X-AF-tRNACGGG (480 nmol each) and 1.4 ⁇ L of Nuclease Free Water were added.
  • tRNA amber and tRNA CGGG are used, respectively.
  • the reaction solution was allowed to stand at 20 ° C.
  • the synthesized fluorescently labeled Fab complex was purified by anti-FLAG M2 affinity gel (Sigma Aldrich) or His-Spin Trap Column (GE Healthcare). The reaction solution (60 ⁇ L) was applied to a column containing an anti-FLAG M2 affinity gel, incubated at room temperature for 15 minutes, and then washed with a wash buffer (20 mM Phosphate buffer (pH 7.4) /0.5 M NaCl / 0.1% Polyoxyethylene). (23) Washing was performed 3 times with Lauryl Ether).
  • TAMRA single-label anti-BGP antibody Fab type complex or TAMRA-labeled anti-BGPscFv (70 nM, 6.25 ⁇ L), or TAMRA-labeled anti-BGP antibody VH + anti-BGP antibody VL (70 nM / mL, 6.25 ⁇ L), and antigen BGP -C7 (SEQ ID NO: 13) (0, 1, 3, 10, 25, 100, or 1,000 nM) was prepared with PBS containing 1% BSA (+ 0.05% Tween 20) to a total volume of 50 ⁇ L. . The solution was allowed to stand at 25 ° C.
  • the single-label Fab type complex of the present invention can obtain a high fluorescence intensity ratio as compared with conventional scFv type Q-body and VH + VL type Q-body, It was confirmed that low molecular weight compounds and proteins can be detected and quantified with high sensitivity.
  • the Fab type complex of the present invention forms a complex in which the constituent polypeptides are close to each other compared to scFv type Q-body and VH + VL type Q-body. It is considered that the quenching effect of the fluorescent dye by tryptophan occurs effectively.
  • the excitation wavelength (Ex) was set to 480 nm, and the fluorescence intensity at the fluorescence wavelength (Em) of 530 nm was measured.
  • the excitation wavelength was set at 530 nm, and the fluorescence intensity at the fluorescence wavelength of 580 nm was measured.
  • the excitation wavelength was set to 630 nm, and the fluorescence intensity at the fluorescence wavelength of 680 nm was measured.
  • the ratio of the fluorescence intensity at each antigen concentration to the fluorescence intensity in the absence of antigen is defined as the fluorescence intensity ratio, and is shown in the graph of FIG.
  • the ratio of the fluorescence intensity when BGP-C7 is 1,000 nM or 10,000 nM is shown in the table of FIG.
  • a polypeptide comprising a light chain variable region (VL; SEQ ID NO: 10) of an antibody against serum albumin (SA) and an antibody light chain constant region (C ⁇ ; SEQ ID NO: 4) and SA labeled with the same dye The same color double-label Fab-type complex consisting of a polypeptide comprising a heavy chain variable region (VH; SEQ ID NO: 12) and an antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6), and HSA (0 to 100 ⁇ M) was reacted, and the fluorescence intensity was measured. The fluorescence intensity ratio is shown in the graph of FIG. 8, and the ratio of fluorescence intensity when HSA is 100 ⁇ M is shown in the table of FIG.
  • the same-color double-label Fab type complex of the present invention can measure the amount of antigen at a higher fluorescence intensity ratio than the single-label Fab type complex regardless of the type of fluorescent dye or antigen. did it.
  • the quenching effect (H-dimer) between fluorescent dyes can be added to reduce the background. It is considered that the dynamic range is enhanced.
  • Double label Fab type complex (70 nM, 6.25 ⁇ L) and antigen BGP-C7 (0 to 1,000 nM) to a total of 50 ⁇ L with PBS containing 1% BSA (+ 0.05% Tween20) Prepared.
  • a sample of the same color double-label Fab type complex was prepared.
  • the fluorescence intensity was assumed, and the ratio of the fluorescence intensity at each antigen concentration to the fluorescence intensity in the case of no antigen was obtained.
  • the excitation wavelength was set to 480 nm, and the fluorescence intensity at a fluorescence wavelength of 530 nm was measured (left graph in FIG. 9).
  • the excitation wavelength was set to 530 nm, and the fluorescence intensity at the fluorescence wavelength of 580 nm was measured (the central graph in FIG. 9).
  • the excitation wavelength was set to 630 nm, and the fluorescence intensity at a fluorescence wavelength of 680 nm was measured (right graph in FIG. 9).
  • the ratios of fluorescence intensity when BGP-C7 is 1,000 nM are shown in each table of FIG.
  • the heavy chain variable region (VH; SEQ ID NO: 12) and antibody heavy chain constant region (CH 1 ; sequence) of the antibody against SA labeled with a CR110, TAMRA, or ATTO655 fluorescent dye prepared in Example 1 From a polypeptide comprising a polypeptide comprising number 6) and a light chain variable region (VL; SEQ ID NO: 10) of an antibody against SA labeled with a dye different from the above and an antibody light chain constant region (C ⁇ ; SEQ ID NO: 4)
  • the SA antibody different color double-label Fab-type complex was reacted with HSA (0 to 100 ⁇ M) as an antigen, and the fluorescence intensity was measured.
  • the ratio of the fluorescence intensity at each antigen concentration to the fluorescence intensity in the case of no antigen is defined as the fluorescence intensity ratio, and is shown in the graph of FIG.
  • the fluorescence intensity ratio when HSA is 100 ⁇ M is shown in the table of FIG.
  • an anti-SA antibody heterogeneous double-label Fab-type complex (also referred to as CR110_TAMRA), comprising a polypeptide comprising a chain variable region (VL; SEQ ID NO: 10) and an antibody light chain constant region (C ⁇ ; SEQ ID NO: 4);
  • Antigen HSA (1 ⁇ 10 ⁇ 4 , 1 ⁇ 10 ⁇ 5 , 1 ⁇ 10 ⁇ 6 , 1 ⁇ 10 ⁇ 7 M) was reacted, and wavelength 480 nm (upper left graph in FIG.
  • the SA antibody TAMRA single-label Fab type complex (no_TAMRA) and the antigen HSA (1 ⁇ 10 ⁇ 4 , 1 ⁇ 10 ⁇ 5 , 1 ⁇ 10 ⁇ 6 , 1 ⁇ 10 ⁇ 7 M) are reacted, Excitation light with a wavelength of 530 nm was irradiated, and a fluorescence spectrum was measured using a fluorescence spectrophotometer (FluoroMax-4) (lower right graph in FIG. 11).
  • the curves in the graph are data of samples having HSA concentrations of 1 ⁇ 10 ⁇ 4 M, 1 ⁇ 10 ⁇ 5 M, 1 ⁇ 10 ⁇ 6 M, 1 ⁇ 10 ⁇ 7 M, and 0M from the upper side.
  • CR110_TAMRA was able to detect an antigen with a fluorescence increase of up to 75 times, indicating the usefulness of the present invention.
  • the solution was allowed to stand at 25 ° C. for 70 minutes, and then the fluorescence spectrum was measured using a fluorescence spectrophotometer (FluoroMax-4; manufactured by Horiba Joban Yvon).
  • the excitation wavelength was set at 530 nm, and the fluorescence intensity at a fluorescence wavelength of 580 nm was measured.
  • the ratio of the fluorescence intensity at each antigen concentration to the fluorescence intensity in the case of no antigen is defined as the fluorescence intensity ratio, and is shown in the graph of FIG.
  • the ratio of fluorescence intensity when BGP-C7 is 1,000 nM is shown in the table of FIG.
  • the Fab-type complex TAMRA_NBD can detect BGP at a concentration of 1 nM, which is comparable to that of the single-label Fab-type complex (TAMRA_No) (FIG. 7), and is higher than the double label (TAMRA_TAMRA) (FIG. 7). Antigens could be detected by a double fluorescence increase, demonstrating the utility of the present invention.
  • the Tm value (temperature causing heat denaturation) of the TAMRA label scFv was 61 ° C., but the Tm value of the TAMRA single label Fab complex of the present invention increased by 73 ° C. to 12 ° C.
  • This thermal stability enables the reagent to be stored for a long period of time, and can greatly contribute to industrial advantages such as distribution temperature, storage temperature, and storage period.
  • An anti-double-label Fab-type complex consisting of a polypeptide comprising a heavy chain variable region (VH; SEQ ID NO: 16) and an antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6) against clenbuterol labeled with A certain clenbuterol (0 to 16 ⁇ g / mL) was reacted, and the fluorescence intensity was measured by the method of Example 4.
  • Table 1 shows the ratio of fluorescence intensity when clenbuterol was 16 ⁇ g / mL. As a result, 16 ⁇ g / mL of clenbuterol could be measured.
  • VH antibody heavy chain variable region
  • CH 1 antibody heavy chain constant region
  • VH light chain variable region
  • CH 1 antibody heavy chain constant region
  • VH light chain variable region
  • CH 1 antibody heavy chain constant region
  • a polypeptide comprising a TAMRA-labeled light chain variable region (VL; SEQ ID NO: 25) and an antibody light chain constant region (C ⁇ ; SEQ ID NO: 4) of an antibody against methamphetamine, and an antibody against methamphetamine labeled with TAMRA The same-color double-label Fab-type complex consisting of a polypeptide comprising the heavy chain variable region (VH; SEQ ID NO: 26) and the antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6), a TAMRA-labeled antibody against cocaine
  • the same color double-label Fab type complex consisting of a polypeptide containing the antibody heavy chain constant region (CH 1 ; S
  • Example 1 a single-chain antibody (scFv) in which VL and VH of an antimorphine antibody labeled with TAMRA are linked by a linker (GGGGSGGGGGGGGS), and VH and VL of an antimethamphetamine antibody are linked (GGGGSGGGGGGGGS)
  • scFv single chain antibody conjugated with was prepared.
  • the constructed TAMRA double-labeled Fab complex and TAMRA-labeled scFv were reacted with various morphines, methamphetamines, cocaine, and ketamine, and the fluorescence intensity was measured by the method of Example 3 or Example 1. The results are shown in Table 4.
  • the three types of fluorescently labeled Fab complexes specifically recognize their respective antigens, and the fluorescence-labeled morphine Fab complex and scFv are compared, and the fluorescence increase ratios of the fluorescently labeled methamphetamine Fab complex and scFv are all Fab complexes.
  • the dynamic range is greatly increased.
  • the same color double-label Fab type complex comprising a polypeptide comprising a heavy chain variable region (VH; SEQ ID NO: 30) of an antibody against Cannabis component THC labeled with TAMRA and an antibody heavy chain constant region (CH 1 ; SEQ ID NO: 6) Synthesized.
  • VH heavy chain variable region
  • CH 1 antibody heavy chain constant region
  • each antigen THC (100 ⁇ g / mL) or ketamine (1.0 mg / mL) was reacted, and the fluorescence intensity was measured by the method of Example 4. As shown in Table 5, the fluorescence increase ratio fluorescence intensity ratio could be measured at 1.3 and 2.0.
  • the present invention can be usefully used in the field of sample analysis and drug testing, the field of portable sample analysis kits, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pain & Pain Management (AREA)
  • Emergency Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Anesthesiology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 固相化工程と洗浄工程とを必要としない、液相において迅速かつ簡便に目的の物質の定量的な測定を可能とし、かつ、抗原を可視化することが可能で、検出感度の高い免疫測定法を提供することを課題とした。かかる課題を、(a)液相中で、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を、測定用試料中の抗原に接触させる工程;(b)前記蛍光色素の蛍光を検出、又は蛍光強度を測定する工程;(c)抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、検体に含まれる抗原量を算出、又は抗原を可視化する工程;を順次行い、被検物質中に存在する目的とする抗原の濃度を測定することにより解決した。

Description

蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
 本発明は、固相化工程及び洗浄工程を必要とせず高感度で低分子化合物の検出が可能な抗原濃度測定・検出用キットや、抗原濃度測定・検出方法に関する。
 抗体と抗原の結合を利用した免疫測定法は、試料中の物質の検出や濃度測定に広く用いられている。これら抗原や抗体の濃度を測定する方法のうち、臨床診断、基礎研究や環境調査などに最も広く用いられている測定方法は、同一の抗原の異なるエピトープを認識する2種類のモノクローナル抗体、あるいはモノクローナル抗体とポリクローナル抗体を使用する、サンドイッチELISA法(あるいはサンドイッチRIA法)と呼ばれる免疫測定法である。サンドイッチ法の詳細は以下に述べる通りである。第一段階として一次抗体と呼ばれるモノクローナル又はポリクローナル抗体を測定用プレートに固定化し、そこに抗原を含む検体を注ぎ、一定時間反応させて抗体と抗原を結合させる。次に、第二段階として、抗体に結合した夾雑物や、プレートに非特異的に結合した抗原を洗浄液で洗浄して取り除く。第三段階として、予め酵素、蛍光色素あるいはラジオアイソトープなどのレポーター分子を結合させた標識二次抗体溶液を注ぎ、一定時間反応させ、一次抗体によって補足された抗原にさらに標識二次抗体を結合させる。反応後に、洗浄液で余分の標識抗体を取り除き、測定用プレートに結合したレポーター分子の量を酵素活性、蛍光あるいはラジオアイソトープなどで測定することにより検体中の抗原量を測定する。
 前述のように、通常のサンドイッチELISA法では、エピトープの異なる2種類の抗体が必要となるが、例えば、低分子化合物などを抗原とする場合には、異なるエピトープを認識する複数の抗体を作製することは困難である。このため、上田らは、1種類の抗体の軽鎖可変領域(VL)と重鎖可変領域(VH)とを用いた、オープンサンドイッチ法と呼ばれる、精度の高い低分子化合物の免疫測定法を確立した(特許文献1及び2、非特許文献1及び2)。この方法は、抗原を特異的に認識する抗体のVH領域ポリペプチド及びVL領域ポリペプチドを調製し、一方のポリペプチドをレポーター分子で標識して標識化ポリペプチドとし、他方のポリペプチドを固相に固定して固定化ポリペプチドとし、抗原含有試料及び標識化ポリペプチドを固定化ポリペプチドに接触させ、固定化ポリペプチドに結合した標識化ポリペプチドのレポーター分子の量を測定する抗原濃度測定方法である。また、低分子化合物を測定するための測定法としては、免疫測定法の他にも液体クロマトグラフ法等があるが、高精度な測定機器が必要な上、被検体の必要量も多く、測定時間もかかり、しかも汎用性が低いという問題があった。
 また、蛍光色素標識した抗体を用いて抗原の濃度を測定する免疫測定方法としては、抗体と抗原とをそれぞれ異なる蛍光色素により標識し、蛍光色素間で起こる蛍光共鳴エネルギー転移(FRET)の効率の変化を指標とした免疫測定方法や(非特許文献3及び4)、蛍光標識した抗体にあらかじめ消光物質を混合することにより消光されていた抗体の蛍光が、目的検出物質の導入により増大する現象を用いるクエンチングによる効率の変化を指標とした免疫測定方法や、蛍光色素で標識した抗体を用いて、標識抗体と測定対象物が凝集することにより起こる蛍光強度の減少を測定する免疫測定方法(特許文献3)が知られている。
 しかしながら、免疫測定方法の多くは、抗体又は抗原を固相化する工程と、非特異的な標識化合物の吸着を除去するための洗浄工程とを必要とするものであった。これらの工程は作業が煩雑で時間が掛かる上に、測定結果のばらつきの原因となることから、固相化工程や洗浄工程を必要としない液相系免疫測定方法の開発が求められていた。そこで、本発明者らは、固相化工程と洗浄工程とを必要としない液相系であって、迅速かつ簡便に目的物質の定量的な測定を可能とし、かつ、抗原を可視化することが可能な免疫測定法である「均一系蛍光免疫測定法(「均一系蛍光免疫アッセイ法」や「Quenchbody測定法」や「Q-body測定法」ともいう。)」を開発した(特許文献4、非特許文献5、図1~3)。
 前記「均一系蛍光免疫測定法」の免疫測定法は、消光(クエンチング)現象を利用した技術を用いた測定方法であり、(1)抗体軽鎖可変領域(VLと称される領域)ポリペプチドと抗体重鎖可変領域(VHと称される領域)ポリペプチドとを備え、前記抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドのいずれか一方が蛍光色素により標識されたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とする抗原濃度測定・検出用キットや、(2)VLポリペプチドとVHポリペプチドとが結合した一本鎖抗体である前記(1)記載の抗原濃度測定・検出用キットに関するものである。すなわち、VLポリペプチドとVHポリペプチドのどちらか一方を蛍光標識した2本の抗体断片、又は蛍光標識したVLポリペプチドとVHポリペプチドとが結合した一本鎖抗体(scFv)(これら(1)及び(2)を「Quenchbody」又は「Q-body」ともいい、(1)をVH+VL型Q-body、(2)をscFv型Q-bodyともいう。)を、抗原が含まれているか否かを検査する被検試料溶液に混合し、上記蛍光色素の蛍光強度と抗原濃度が正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とする蛍光免疫測定方法である(図1~3)。かかる測定方法の原理は、抗体分子内の保存性の高いトリプトファン残基と蛍光色素が相互作用して蛍光色素を消光し、抗原が加わることによって抗原依存的にかかる消光が解消されることにある。
 前記Q-bodyを用いた「均一系蛍光免疫測定法」の手法の利点は、1)洗浄工程が不要で、少量のサンプルと混合して蛍光強度を測定するだけで測定が完了する極めて簡便な測定技術であること、2)抗体中に存在する保存性の高いトリプトファンを消光に利用するため、抗体の種類を変えても消光効果が得られ、様々な抗体を用いて種々の物質の検出にも広く適用が可能な点で汎用性に優れていること、3)抗原部位が1ヶ所でよいため、原理的に低分子化合物に対しても適用可能であることなどがあげられる(特許文献4参照、図1)。そして、洗浄工程がなく、簡便な測定方法であることから、測定デバイスを非常にコンパクトに設計し、携帯可能な手のひらサイズまで小型化することが可能であり、専門教育を受けていない一般の人が現場で測定することも可能であると想定される。しかしながら、前述のとおり非常に有用な蛍光免疫測定方法であるが、抗原が存在しないときの蛍光強度と抗原が飽和に達したときの蛍光強度の比は、大きいもので6倍、小さいものでは1.2倍程度であったため、測定結果のダイナミックレンジをより広げて感度を上げ、性能をさらに向上させることが期待されていた。
特開平10-78436号公報 特許第3784111号公報 特開平10-282098号公報 WO2011/061944号公報
上田宏,薬学雑誌 27:71-80 (2007) Lim SL, et al., Anal Chem. 79(16):6193-200 (2007) Iijima I. and Hohsaka T., Chembiochem. 17;10(6) :999-1006 (2009) Kajihara D, et al., Nat Methods. 3(11):923 (2006) Abe R, et al., J. Am. Chem. Soc. 133(43):17386-17394 (2011)
 本願発明の課題は、固相化工程と洗浄工程とを必要としない、液相において迅速かつ簡便に目的の物質の検出及び/又は定量的な測定を可能とし、かつ、抗原を可視化することが可能な免疫測定法であって、かかる測定結果のダイナミックレンジがさらに広く、感度が高い蛍光免疫測定方法を提供することにある。
 抗原が存在しない溶液中で消光している蛍光標識一本鎖抗体(scFv)をグアニジン塩酸で変性させた抗体の蛍光強度と、抗原が飽和に達したときの蛍光強度は、ほぼ同程度であったことから、抗原非存在時の消光効率を高めることがダイナミックレンジを広げる有効な手段であると考え、以下の検討を行なった。
 すなわち、消光の主たる要因は、VLポリペプチドやVHポリペプチドに高度に保存されたトリプトファン残基と、標識した蛍光色素とが接触することによるものであり、抗原結合に伴う可変領域の構造安定化により蛍光色素が抗原結合ポケットから追い出されることで、消光状態が解消され、蛍光強度が増加すると推測した。そして、VLポリペプチドやVHポリペプチドが2種類のタンパク質として存在する場合は、VLポリペプチドやVHポリペプチドが解離しており相互作用が弱いため、蛍光色素とトリプトファン残基との接触効率が低くそれに伴い消光状態も低いものであったと予想した。また、一本鎖抗体(scFv)においては、VLポリペプチドとVHポリペプチドとを人工的なペプチドリンカーにて一本鎖抗体として結合させたことで、VLポリペプチドとVHポリペプチドとの相互作用を高めることができるが、人工的なペプチドリンカーの付加により本来的に有する抗原との結合活性や安定性などの抗体の機能を低下させている可能性が考えられた。抗体軽鎖可変領域(VL)及び抗体軽鎖定常領域からなるポリペプチドと、抗体重鎖可変領域(VH)及び抗体重鎖定常領域からなるポリペプチドとが、ジスルフィド結合で結合した1分子のヘテロダイマータンパク質からなるFab抗体(Fragment, antigen binding )であれば、本来的に有する抗体の機能を保持していると推測し、Fab抗体のVH含有ポリペプチド又はVL含有ポリペプチドのいずれか一方を蛍光標識したところ、抗原非存在下でかかる蛍光色素はより強く消光し、バックグラウンドを下げられることを見いだした。さらに、Fab抗体のVH含有ポリペプチド及びVL含有ポリペプチドのそれぞれに同色の蛍光色素を標識したところ、蛍光色素とトリプトファン残基との接触による消光に加え、色素間の消光効果(H-dimer)が加わりさらに高い検出感度を得られることを見いだした。また、Fab抗体のVH含有ポリペプチド及びVL含有ポリペプチドのそれぞれに異色の蛍光色素を標識したところ、蛍光色素とトリプトファン残基との接触による消光と色素間の消光効果に加えてFRET効果による消光効果も得られ、さらに高い検出感度を得られることを見いだした。さらに、Fab抗体のVH含有ポリペプチド及びVL含有ポリペプチドのそれぞれに蛍光色素と該蛍光色素を消光するクエンチャーを標識したところ、蛍光色素とトリプトファン残基との接触による消光と蛍光色素とクエンチャー間の消光効果も得られ、高い検出感度を得られることを見いだした。
 従来の蛍光標識一本鎖抗体(scFv)と本発明の蛍光標識Fab型複合体の熱安定性を測定したところ、蛍光標識一本鎖抗体(scFv)が変性する温度は61℃であったが、蛍光標識Fab型複合体が変性する温度は73℃と耐熱性に優れ、保存性にも優れていることを見いだした。本発明はこれら知見に基づいて完成するに至ったものである(図4)。
 すなわち本発明は、
〔1〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を備えたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とすることを特徴とする抗原濃度測定・検出用キット;
〔2〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが同一の蛍光色素により標識されたことを特徴とする前記〔1〕記載の抗原濃度測定・検出用キット;
〔3〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが異なる種類の蛍光色素により標識されたことを特徴とする前記〔1〕記載の抗原濃度測定・検出用キット;
〔4〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識されたことを特徴とする前記〔1〕記載の抗原濃度測定・検出用キット;
〔5〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方が、蛍光色素により標識されたことを特徴とする前記〔1〕記載の抗原濃度測定・検出用キット;
〔6〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体が、Fab抗体(Fragment, antigen binding)であることを特徴とする前記〔1〕~〔5〕のいずれか記載の抗原濃度測定・検出用キット;
〔7〕蛍光色素が、ローダミン系蛍光色素及びオキサジン系蛍光色素から選ばれることを特徴とする前記〔1〕~〔6〕のいずれか記載の抗原濃度測定・検出用キット;
〔8〕蛍光色素が、カルボキシローダミン110、カルボキシテトラメチルローダミン及びATTO655(商標名)から選ばれることを特徴とする前記〔7〕記載の抗原濃度測定・検出用キット;
〔9〕クエンチャーが、7-ニトロベンゾフラザン(NBD)であることを特徴とする前記〔4〕~〔8〕のいずれか記載の抗原濃度測定・検出用キット;
に関する。
 また本発明は、
〔10〕以下の工程(a)~(c)、
(a)抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を、測定用試料中の抗原に接触させる工程;
(b)蛍光色素の蛍光を検出、又は蛍光色素の蛍光強度を測定する工程;
(c)抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、検体に含まれる抗原量を算出、又は抗原を可視化する工程;
を順次備えることを特徴とする抗原濃度測定・検出方法;
〔11〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが同一の蛍光色素により標識されたことを特徴とする前記〔10〕記載の抗原濃度測定・検出方法;
〔12〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが異なる種類の蛍光色素により標識されたことを特徴とする前記〔10〕記載の抗原濃度測定・検出方法;
〔13〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識されたことを特徴とする前記〔10〕記載の抗原濃度測定・検出方法;
〔14〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方が、蛍光色素により標識されたことを特徴とする前記〔10〕記載の抗原濃度測定・検出方法;
〔15〕抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体が、Fab抗体(Fragment, antigen binding)であることを特徴とする前記〔10〕~〔14〕のいずれか記載の抗原濃度測定・検出方法;
〔16〕抗原が、低分子化合物であることを特徴とする前記〔10〕~〔15〕のいずれか記載の抗原濃度測定・検出方法;
〔17〕抗原が、ヒトオステオカルシン、ビスフェノールA、血清アルブミン、クレンブテロール、ラクトパミン、コチニン、インフルエンザA型ウィルスヘマグルチニン、モルヒネ類、メタンフェタミン類、コカイン、テトラヒドロカンナビノール、ケタミンであることを特徴とする前記〔10〕~〔15〕のいずれか記載の抗原濃度測定・検出方法;
に関する。
 本発明によれば、液相系において迅速かつ簡便に目的物質の検出及び/又は定量的な測定が可能であり、低分子化合物をも測定することができる高感度な免疫測定方法や、該測定方法による抗原の測定を行うためのキットを提供することができる。本発明の測定方法は、いずれか一方又はそれぞれ両方が蛍光色素により標識された抗体軽鎖可変領域を含むポリペプチド(以下、「VL含有ポリペプチド」ともいう。)と抗体重鎖可変領域を含むポリペプチド(以下、「VH含有ポリペプチド」ともいう。)からなる複合体(以下、「本発明の蛍光標識複合体」ともいう。)と、抗原との結合を、前記蛍光色素の蛍光強度を指標として検出及び/又は測定することができる。本発明の蛍光標識複合体は抗原と結合していないときは、前記蛍光色素が効果的に消光(クエンチ)された状態にあるため、抗原を感度よく検出及び/又は測定することができる。
Q-body測定法の特徴を表す図である。抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドのいずれか一方に蛍光標識した2種類のポリペプチド(VH+VL)、又は、抗体重鎖可変領域ポリペプチドと抗体軽鎖可変領域ポリペプチドとを結合した蛍光標識一本鎖抗体(scFv)は、抗原と混ぜるだけで、迅速、高感度に抗原濃度を測定することができる(WO2011/061944号公報参照)。 Q-bodyの原理を表す図である。蛍光色素と、抗体可変領域に広く保存されているアミノ酸、すなわち抗体重鎖可変領域のTrp33,Trp47,Trp36,Trp106や抗体軽鎖可変領域のTrp40との相互作用により、抗原非存在下では蛍光が消光されているが、抗原濃度依存的に消光が解除され蛍光が増加する。蛍光標識(VH+VL)及び蛍光標識scFvをQuenchbody(Q-body)と呼ぶ。 Q-bodyを利用して抗原濃度を測定した、均一系蛍光免疫アッセイ法の実施の一例を示す図である。Q-bodyであるTAMRA標識抗BGP一本鎖抗体(scFv)に抗原濃度を変化させ、蛍光分光光度計(FluoroMax-4)を用いて蛍光スペクトルおよび蛍光イメージアナライザー(FM-BIOIII)を用いて蛍光強度を測定した結果を示した。 抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を模式的に表す図である。すなわち本発明の蛍光ラベル複合体を模式的に示した(上図)。また、実施例に用いたQ-body、及び、本発明のシングルラベルFab型複合体、同色ダブルラベルFab型複合体、異色ダブルラベルFab型複合体を模式的に表す図である(下図)。 本発明の蛍光標識Fab型複合体の作製方法を模式的に表す図である。本発明のシングルラベルFab型複合体を作製する場合は、ProXタグ(TAG)、VH、CH、C末端にリンカー及びHisタグのDNA配列を付与した遺伝子を含むプラスミドと、ProXタグ(TTT)、VL、Cκ、C末端にリンカー及びFLAGタグのDNA配列を付与した遺伝子を含むプラスミドと、TAMRA-AF-tRNAamber(CloverDirect)とを大腸菌無細胞合成キット(RYTS)に加え、20℃で2時間反応させTAMRA標識VH含有ポリペプチドとVL含有ポリペプチドを共発現にて合成した。その後、4℃16時間静置し複合体を形成した。C末に付与したFLAGとHisタグを用いてタンパク質を精製した。同色ダブルラベルとする場合は、VH含有遺伝子およびVL含有遺伝子のN末側にProXタグ(TAG)を付与したプラスミドを用いて、シングルラベルFab型複合体と同様の方法で合成、精製した。また異色ダブルラベルとする場合は、ProXタグ(TAG)とProXタグ(CGGG)を、それぞれどちらかの遺伝子のN末側に付与したプラスミドを用いて、色素A-AF-tRNAamber、色素B-AF-tRNACGGG(CloverDirect)を添加した上記の方法により合成、精製した。枠欄に4塩基コドンによる蛍光標識アミノ酸導入の模式図を示した。 本発明のシングルラベルFab型複合体が、VH+VL型Q-bodyやscFv型Q-bodyよりも高い蛍光強度比でBGPやビスフェノールAを測定することができたことを示す図である。 本発明の同色ダブルラベルFab型複合体が、本発明のシングルラベルFab型複合体よりも高い蛍光強度比でBGPを測定することができたことを示す図である。 本発明の同色ダブルラベルFab型複合体が、本発明のシングルラベルFab型複合体よりも高い蛍光強度比でHSAを測定することができたことを示す図である。 本発明の異色ダブルラベルFab型複合体が、本発明のシングルラベルFab型複合体よりも高い蛍光強度比でBGPを測定することができたことを示す図である。 本発明の異色ダブルラベルFab型複合体が、本発明のシングルラベルFab型複合体よりも高い蛍光強度比でHSAを測定することができたことを示す図である。 CR110で標識した抗SA抗体の重鎖可変領域(VH)と抗体重鎖定常領域(CH)を含むポリペプチドと、TAMRAで標識した抗SA抗体の軽鎖可変領域(VL)と抗体軽鎖定常領域(Cκ)を含むポリペプチドからなる、抗SA抗体の異色ダブルラベルFab型複合体が、本発明のシングルラベルFab型複合体よりも高い蛍光強度比でHSAを測定することができたことを示す図である。 本発明の一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識されたFab型複合体が高い蛍光強度比でBGPを測定し得たことを示す図である。いずれも、 Ex/Em= 530/ 580で測定した。 本発明の蛍光ラベルFab型複合体の熱変性を起す温度は、蛍光ラベルscFvの熱変性を起す温度より12℃高く、温度安定性に優れていることを示す図である。
 本発明の抗原濃度測定・検出用キットとしては、抗体軽鎖可変領域を含むポリペプチド(VL含有ポリペプチド)と抗体重鎖可変領域を含むポリペプチド(VH含有ポリペプチド)からなる複合体を備え、前記VL含有ポリペプチドとVH含有ポリペプチドのいずれか一方又は両方が蛍光色素により標識されている、前記複合体を備えたキットであって、液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とすることを特徴とする抗原濃度測定・検出用キットであれば特に制限されないが、いずれか一方又は両方が蛍光色素により標識されている、VL含有ポリペプチドとVH含有ポリペプチドからなる複合体を構成要素として含む他は、標準物質として使用できる抗原や、通常この種の免疫測定キットに用いられる試薬等、器具、取扱説明書等を備えていてもよい。
 上記抗原としては、上記VH含有ポリペプチドや上記VL含有ポリペプチド、これらのポリペプチドからなる複合体により特異的に認識される抗原であれば特に制限されず、例えば、タンパク質、ペプチド、糖質、脂質、糖脂質、低分子化合物の他、リン酸化、メチル化等のタンパク質修飾等やこれらの修飾を受けたタンパク質等を挙げることができ、本発明の抗原濃度測定・検出用キットは検出感度に優れることから、低分子化合物の検出において特に有用である。
 本発明の抗原濃度測定・検出用キットにおける、VL含有ポリペプチドとVH含有ポリペプチドからなる複合体を構成する、VL含有ポリペプチドとVH含有ポリペプチドは、そのいずれか一方又は両方が蛍光色素により標識されていればよく、(i)いずれか一方が蛍光色素により標識された複合体、(ii)それぞれが同一の蛍光色素により標識された複合体、(iii)それぞれが異なる種類の蛍光色素により標識された複合体、又は(iv)いずれか一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識された複合体とすることができる。VH含有ポリペプチド及びVL含有ポリペプチドのいずれか一方に付加される場合、蛍光色素はいずれのポリペプチドに付加されてもよいが、高い検出感度を得られる方に付加することが好ましい。それぞれが異なる2種の蛍光色素がVH含有ポリペプチド及びVL含有ポリペプチドに付加される場合は、いずれの蛍光色素がどちらのポリペプチドに付加されてもよく、高い検出感度を得られる蛍光色素とポリペプチドの組み合わせとすることが好ましい。VL含有ポリペプチドとVH含有ポリペプチドは、いずれも前記蛍光色素の発光や検出、クエンチングが阻害されない限りは、任意のアミノ酸配列からなるタンパク質や、ProXタグ(配列番号1)、FLAGタグ、Hisタグ、HAタグ、Niタグ等のペプチドタグ、任意のアミノ酸配列からなるリンカー、安定放射性同位体、酵素、前記蛍光色素と異なる種類の蛍光色素等により標識される他、糖鎖付加やリン酸化、メチル化等の修飾を受けていてもよい。
 抗体軽鎖可変領域(VL)は、抗体軽鎖遺伝子のV領域及びJ領域のエクソンによりコードされる抗体軽鎖可変領域(VL)に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、前記VL含有ポリペプチド、又は本発明の蛍光標識複合体と抗原との親和性が損なわれない限りは、上記抗体軽鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであっても、1又は2以上のアミノ酸が欠失、置換、挿入されていてもよい。かかる抗原との親和性は、ELISA法やFACS等の常法により適宜調べることができる。また、上記抗体軽鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第35番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましい。
 抗体重鎖可変領域(VH)は、抗体重鎖遺伝子のV領域、D領域、及びJ領域のエクソンによりコードされる抗体重鎖可変領域(VH)に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、前記VH含有ポリペプチド又は本発明の蛍光標識複合体と、抗原との親和性が損なわれない限りは、上記抗体重鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであっても、1又は2以上のアミノ酸が欠失、置換、挿入されていてもよい。かかる抗原との親和性は、ELISA法やFACS等の常法により適宜調べることができる。また、上記抗体重鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第36番目、第47番目、又は第103番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましい。
 VL含有ポリペプチドとしては、抗体軽鎖可変領域(VL)を含有していればよく、抗体軽鎖や、抗体軽鎖に任意のアミノ酸配列からなるペプチドを含むことができ、例えば、抗体軽鎖可変領域(VL)に、抗体軽鎖定常領域(Cκ)や、さらにヒンジ部分を付与したポリペプチドとすることができ、中でもVLにCκを付与したポリペプチド等が好ましい。前記VL含有ポリペプチドとして具体的には、配列番号5に配列番号4を付加したもの、配列番号7に配列番号4を付加したもの、配列番号10に配列番号4を付加したもの、配列番号15に配列番号4を付加したもの、配列番号17に配列番号4を付加したもの、配列番号19に配列番号4を付加したもの、配列番号21に配列番号4を付加したもの、配列番号23に配列番号4を付加したもの、配列番号25に配列番号4を付加したもの、配列番号27に配列番号4を付加したもの、及び配列番号29に配列番号4を付加したもので示されるアミノ酸配列からなるポリペプチドを好適に例示することができる他、測定対象の抗原に応じて、抗原を認識しうるVL含有ポリペプチドを適宜作製することができる。
 VH含有ポリペプチドとしては、抗体軽重可変領域(VH)を含有していればよく、抗体重鎖や、抗体重鎖に任意のアミノ酸配列からなるペプチドを含むことができ、例えば、抗体重鎖可変領域(VH)に、抗体重鎖定常領域(CH)や、さらにヒンジ部分やFc領域を付与したポリペプチドとすることができ、中でもVHにCHを付与したポリペプチド等が好ましい。前記VH含有ポリペプチドとして具体的には、配列番号3に配列番号6を付加したもの、配列番号9に配列番号6を付加したもの、配列番号12に配列番号6を付加したもの、配列番号16に配列番号6を付加したもの、配列番号18に配列番号6を付加したもの、配列番号20に配列番号6を付加したもの、配列番号22に配列番号6を付加したもの、配列番号24に配列番号6を付加したもの、配列番号26に配列番号6を付加したもの、配列番号28に配列番号6を付加したもの、及び配列番号30に配列番号6を付加したもので示されるアミノ酸配列からなるポリペプチドを好適に例示することができる他、測定対象の抗原に応じて、抗原を認識しうるVH含有ポリペプチドを適宜作製することができる。
 VL含有ポリペプチドとVH含有ポリペプチドは、複合体を形成することが好ましく、抗体軽鎖可変領域(VL)及び抗体重鎖可変領域(VH)に、それぞれ複合体を形成するアミノ酸配列を含むペプチドが結合されたものであれば特に制限されるものではない。複合体を形成するペプチドとしては、上記抗体定常領域(CHやCκなど)の他、2量体を形成する一方をVLに他方をVHに付与することもできる。また、相互作用してこれらの複合体形成に寄与する2種類のタンパク質を選択することもできる。
 本発明の蛍光標識複合体における「複合体」としては、VL含有ポリペプチドとVH含有ポリペプチドとを構成要素として含み、複合体を形成するものであればよく、本発明の蛍光標識複合体の機能を損なわない限りは、前記VL含有ポリペプチドとVH含有ポリペプチドに加え、さらにペプチドやタンパク質、脂質、金属その他化合物等を構成要素として含んでもよい。
 また、本発明の複合体は、前記ポリペプチド同士が組み合わさって一体として機能しうる構造体であればよく、前記ポリペプチド間の化学結合の有無は特に問題とされない。前記結合としては、前記ポリペプチド同士による、ジスルフィド結合や、架橋剤を用いて形成された結合等を挙げることができ、これらの結合は1つの複合体において複数組み合わせて使用されてもよい。これらの中でもジスルフィド結合を好適に例示することができる。本発明の複合体は前記ポリペプチド同士が互いに近い距離となる複合体を形成することが好ましく、このような機能をもつペプチドを含む、VL含有ポリペプチドやVH含有ポリペプチドからなる複合体が好ましい。抗体分子において抗体軽鎖定常領域と抗体重鎖定常領域はその相互作用により抗体軽鎖可変領域と抗体重鎖可変領域をより近い距離とし、強固な抗原結合ポケットを形成する補助的役割を果たしている。このことから、本発明の複合体としては、抗体軽鎖可変領域と抗体軽鎖定常領域からなるポリペプチドと、抗体重鎖可変領域と抗体重鎖定常領域からなるポリペプチド鎖が、ジスルフィド結合で結合した1分子の抗体タンパク質であるFab抗体や、Fab抗体2つがヒンジを介してジスルフィド結合で結合したF(ab’)抗体や、完全体の抗体が好ましく、中でもFab抗体が最も好ましい。かかるVL含有ポリペプチド及びVH含有ポリペプチドからなる、Fab抗体を形成する本発明の蛍光標識複合体は、「本発明の蛍光標識Fab型複合体」ということもある。中でもVL含有ポリペプチド又はVH含有ポリペプチドのいずれか一方が蛍光標識された本発明の蛍光標識Fab型複合体は、「本発明のシングルラベルFab型複合体」ということもある。また、VL含有ポリペプチド及びVH含有ポリペプチドがいずれも蛍光標識された本発明の蛍光標識Fab型複合体は、その2種の蛍光色素が同一の場合は「本発明の同色ダブルラベルFab型複合体」、2種の蛍光色素が異なる場合は「本発明の異色ダブルラベルFab型複合体」ということもある。
 本発明において、VL含有ポリペプチドや、VH含有ポリペプチドや、これらのポリペプチドを含む複合体やその構成要素等は、公知の化学合成法、遺伝子組換え技術、抗体分子のタンパク質分解酵素による分解方法等を用いて調製することができるが、中でも、比較的容易な操作でかつ大量に調製することが可能な遺伝子組換え技術により調製することが好ましい。遺伝子組換え技術により前記ポリペプチドを調製する場合には、かかるポリペプチドをコードする塩基配列を含むDNAを好適な発現ベクターに導入して組換えベクターを作製し、バクテリア、酵母、昆虫、動植物細胞などを宿主として用いた発現系や、無細胞翻訳系により目的のポリペプチドを発現させることができる(図5)。無細胞翻訳系において目的のポリペプチドの発現を行う場合は、例えば、大腸菌、小麦胚芽、ウサギ網状赤血球等の無細胞抽出液に、ヌクレオチド3リン酸や各種アミノ酸を加えた反応液中で、目的のポリペプチドを発現させることができる。この際、VL含有ポリペプチドや、VH含有ポリペプチドはProXタグやFLAGタグ、Hisタグ等のタグが付加されていてもよく、これらのタグは蛍光色素の付加や、ポリペプチドの精製等に利用することができる。このようにして得たVL含有ポリペプチドや、VH含有ポリペプチド同士は、蛍光色素による標識中又は標識の前後に、適当な溶媒中で複合体を形成させることができ、ジスルフィド結合又は架橋剤により結合させ、複合体を形成させる例を挙げることができる。例えば、前記VL含有ポリペプチド及びVH含有ポリペプチドをコードする遺伝子を、大腸菌無細胞合成系で共発現後、4℃で16時間インキュベーションすることによりジスルフィド結合を形成させ複合体を形成することができる。また、大腸菌無細胞合成反応系にタンパク質ジスルフィドイソメラーゼやプロリンシストランスイソメラーゼなどの分子シャペロンを添加することによりジスルフィド結合を促進することができる。また、前記架橋剤としては、ポリペプチド同士を架橋し結合させうる化合物であればよく、例えば、アルデヒド類(例えば、グルタルアルデヒド)、カルボジイミド類、イミドエステル類など挙げることができ、適宜市販品を入手し常法により使用することができる。また、本発明の複合体は、抗体を酵素などで切断して作製することもでき、例えばパパインや、ペプシンを用いて抗体を処理することにより、それぞれFab抗体や、F(ab’)抗体を作製することもできる。
 本発明において、蛍光色素により、VL含有ポリペプチドやVH含有ポリペプチドを標識する方法は特に制限されず、ポリペプチドの両端又は側鎖の官能基を利用して直接又は架橋剤等を介して間接的に標識する方法や、無細胞翻訳系を利用してポリペプチドを合成しながら部位特異的に標識する手法等を用いることができる。無細胞翻訳系を利用して標識する方法としては、アンバーサプレッション法(Ellman J et al.(1991)Methods Enzymol.202:301-36)、4塩基コドン法(Hohsaka T., et al., J. Am. Chem. Soc., 118, 9778-9779, 1996)、C末端標識法(特開2000-139468号公報)、N末端標識法(米国特許第5,643,722号公報、Olejnik et al.(2005)Methods 36:252-260)等が知られており、アンバーサプレッション法では、標識のターゲット部位のアミノ酸をコードするコドンを終止コドンの一つであるアンバーコドンに置き換えたDNA又はmRNAを作製し、無細胞翻訳系を用いて該DNA又はmRNAからタンパク質を合成する。その際、タンパク質合成反応液に標識された非天然アミノ酸を結合させたサプレッサーtRNAを添加することで、アンバーコドンに置換した部位に標識アミノ酸が導入されたタンパク質を合成することができる。4塩基コドン法ではコドンを主にCGGGに拡張し、アミノ酸をコードするコドンをCGGGに置き換えたDNA又はmRNAを作製し、無細胞翻訳系を用いて該DNA又はmRNAからタンパク質を合成する。その際、タンパク質合成反応液に標識された非天然アミノ酸を結合させたtRNACGGGを添加することで、4塩基コドンに置換した部位に標識アミノ酸が導入されたタンパク質を合成することができる。本発明における異色ダブルラベルには、無細胞翻訳系を用い、アンバーサプレッション法と4塩基コドン法を組み合わせて共発現させることにより、VH含有ポリペプチド及びVL含有ポリペプチドに異なる蛍光色素で標識を行い、複合体を形成することができる。また、C末端標識法では、標識したピューロマイシンを最適濃度で添加した無細胞翻訳系において、DNA又はmRNAからタンパク質への翻訳を行うことにより、C末端特異的に標識が導入されたタンパク質を合成することができる。
 また、大腸菌や動物細胞を宿主とする遺伝子組み換え技術により部位特異的に蛍光色素を導入する手法を用いることもできる。アジドチロシンを認識するアミノアシルtRNA合成酵素と、サプレッサーアジドチロシル-tRNAを導入した大腸菌を宿主として、部位特異的にポリペプチドにアジドチロシンを導入し、導入したアジド基に蛍光色素を結合することができる。また、古細菌由来ピロリジルtRNA合成酵素と、サプレッサーピロリジル-tRNAを導入した動物細胞を宿主として、部位特異的にポリペプチドにアジドZリジンを導入し、導入したアジド基に蛍光色素を結合することができる。
 本発明において、蛍光標識に用いる蛍光色素としては、VH含有ポリペプチド及び/又はVL含有ポリペプチドを標識した場合、本発明の蛍光標識複合体を形成した状態で、抗原の非存在下でクエンチ(消光)される蛍光色素であって、かかる複合体と抗原が結合したときには消光機能が解除され蛍光が発せられる蛍光色素であれば特に制限されない。また、同一又は異なる種類の蛍光色素を、VH含有ポリペプチドとVL含有ポリペプチドのそれぞれに付加する場合は、前記のクエンチングに加え、抗原の非存在下で色素間のクエンチングやFRET効果によるクエンチングが効果的に起こる組み合わせを選択することが好ましい。蛍光標識に用いる蛍光色素としては、ローダミン、クマリン、Cy、EvoBlue、オキサジン、Carbopyronin、naphthalene、biphenyl、anthracene、phenenthrene、pyrene、carbazole等を基本骨格として有する蛍光色素やその蛍光色素の誘導体を例示することができ、具体的には、CR110:carboxyrhodamine 110:Rhodamine Green(商標名)、TAMRA:carbocytetremethlrhodamine:TMR、Carboxyrhodamine 6G:CR6G、ATTO655(商標名)、BODIPY FL(商標名):4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 493/503(商標名):4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indancene-8-propionicacid、BODIPY R6G(商標名):4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 558/568(商標名):4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 564/570(商標名):4,4-difluoro-5-styryl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 576/589(商標名):4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 581/591(商標名):4,4-difluoro-5-(4-phenyl-1, 3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、Cy3(商標名)、Cy3B(商標名)、Cy3.5(商標名)、Cy5(商標名)、Cy5.5(商標名)、EvoBlue10(商標名)、EvoBlue30(商標名)、MR121、ATTO 390(商標名)、ATTO 425(商標名)、ATTO 465(商標名)、ATTO488(商標名)、ATTO 495(商標名)、ATTO 520(商標名)、ATTO 532(商標名)、ATTO Rho6G(商標名)、ATTO 550(商標名)、ATTO 565(商標名)、ATTO Rho3B(商標名)、ATTO Rho11(商標名)、ATTO Rho12(商標名)、ATTO Thio12(商標名)、ATTO 610(商標名)、ATTO 611X(商標名)、ATTO 620(商標名)、ATTO Rho14(商標名)、ATTO 633(商標名)、ATTO 647(商標名)、ATTO 647N(商標名)、ATTO 655(商標名)、ATTO Oxa12(商標名)、ATTO 700(商標名)、ATTO 725(商標名)、ATTO 740(商標名)、Alexa Fluor 350(商標名)、Alexa Fluor 405(商標名)、Alexa Fluor 430(商標名)、Alexa Fluor 488(商標名)、Alexa Fluor 532(商標名)、Alexa Fluor 546(商標名)、Alexa Fluor 555(商標名)、Alexa Fluor 568(商標名)、Alexa Fluor 594(商標名)、Alexa Fluor 633(商標名)、Alexa Fluor 647(商標名)、Alexa Fluor 680(商標名)、Alexa Fluor 700(商標名)、Alexa Fluor 750(商標名)、Alexa Fluor 790(商標名)、Rhodamine Red-X(商標名)、Texas Red-X(商標名)、5(6)-TAMRA-X(商標名)、5TAMRA(商標名)、SFX(商標名)を挙げることができるが、中でも、ローダミン系蛍光色素であるCR110やTAMRA、及びオキサジン系蛍光色素であるATTO655を特に好適に例示することができる。
 本発明におけるクエンチャーとしては、抗原非存在下の本発明の蛍光標識複合体において、その構成要素であるVL含有ポリペプチドとVH含有ポリペプチドのいずれか一方に標識された蛍光色素の蛍光を、もう一方のペプチドに付加されたクエンチャーが消光することができるクエンチャーであって、かかる複合体と抗原が結合した場合にはかかる消光機能が解除され蛍光が発せられるクエンチャーであれば特に制限されない。かかるクエンチャーは、NBD:7-nitrobenzofurazan、DABCYL、BHQ、ATTO、QXL、QSY、Cy、Lowa Black、IRDYE等を基本骨格とする消光色素やその消光色素の誘導体を例示することができ、具体的には、NBD、DABCYL、BHQ-1(商標名)、BHQ-2(商標名)、BHQ-3(商標名)、ATTO540Q(商標名)、ATTO580Q(商標名)、ATTO612Q(商標名)、QXL490(商標名)、QXL520(商標名)、QXL570(商標名)、QXL610(商標名)、QXL670(商標名)、QXL680(商標名)、QSY-35(商標名)、QSY-7(商標名)、QSY-9(商標名)、QSY-21(商標名)、Cy5Q(商標名)、Cy7Q(商標名)、Lowa Black FQ(商標名)、LowaBlack RQ(商標名)、IRDYE QC-1(商標名)を挙げることができるが、中でも、NBDが好ましい。また、本発明の複合体における蛍光色素とクエンチャーの組み合わせは、抗原非存在下でクエンチャーが蛍光色素を効果的に消光し、抗原存在下においては蛍光色素の発光を阻害しない組み合わせを適宜選択することができ、蛍光色素TAMRAとNBDの組み合わせを例示することができる。
 本発明の蛍光標識複合体、すなわちVL含有ポリペプチドとVH含有ポリペプチドからなる複合体であって、前記VL含有ポリペプチドとVH含有ポリペプチドのいずれか一方又は両方が蛍光色素により標識されている複合体は、抗原の非存在下では、前述の蛍光色素と抗体可変領域において保存されたトリプトファン残基との相互作用による蛍光色素の消光が起こる。それに加えて、同色の蛍光色素が前記ポリペプチドそれぞれに標識された本発明の蛍光標識複合体では、蛍光色素間のクエンチング効果が得られる。また、異色の蛍光色素が前記ポリペプチドそれぞれに標識された本発明の蛍光標識複合体では、前記トリプトファン残基によるクエンチング、蛍光色素間のクエンチングに加え、蛍光共鳴エネルギー転移(FRET)効果によるクエンチングの効果が得られる。さらに、蛍光色素とその色素を消光するクエンチャーが前記ポリペプチドそれぞれに標識された本発明の蛍光標識複合体では、蛍光色素とクエンチャー間のクエンチング効果により、ダイナミックレンジを増大することができる。
 本発明の抗原濃度測定・検出方法としては、
(a)抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を、測定用試料中の抗原に接触させる工程;
(b)蛍光色素の蛍光を検出、又は蛍光色素の蛍光強度を測定する工程;
(c)抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、検体に含まれる抗原量を算出、又は抗原を可視化する工程;
の工程(a)~(c)を順次備えることを特徴とする抗原濃度測定及び/又は検出方法であればよく、前記複合体は本発明の蛍光標識複合体であればよく、中でも本発明の蛍光標識Fab型複合体、より好ましくは本発明のシングルラベルFab型複合体、本発明の同色ダブルラベルFab型複合体、本発明の異色ダブルラベルFab型複合体を例示することができる。また本発明の抗原濃度測定・検出方法は、本発明の蛍光標識複合体や本発明の抗原濃度測定及び/又は検出用キットを用いて行うことができる。
 本発明の抗原濃度測定・検出用キットの使用、及び本発明の抗原濃度測定・検出方法は、液相中で本発明の蛍光標識複合体と抗原の接触を行うことが好ましく、そのため測定対象試料である検体は、適宜液体あるいは液体を含む、又は液体に浸された測定用試料として調製して前記工程(a)や本発明の抗原濃度測定・検出方法に供することが好ましい。本発明の抗原濃度測定及び/又は検出用キットの使用、及び本発明の抗原濃度測定及び/又は検出方法における検体の由来等は特に制限されず、適宜前処理等を施して前記測定用試料とすることができる。液体の検体は、そのまま測定用試料として測定に供することも、あるいは抗原を損なうことや抗原濃度測定・検出を阻害することもない限り、緩衝液や生理食塩水等で希釈、あるいは濃縮、又はpHや塩濃度等を適宜調整して測定用試料とすることもできる。かかる液体の検体としては、例えば測定対象となるターゲット抗原を含む可能性がある血清、血漿、唾液、髄液、尿等の体液、培養上清、細胞抽出液、菌体抽出液、工業廃水等を挙げることができる。
 固体等の液体以外の検体は、そのまま、あるいは抗原を損なうことや抗原濃度測定・検出を阻害することがない限り、適宜分割、細断、粉砕、すりつぶす、組織切片を作製する、あるいは検体の特定成分のみを除去あるいは抽出する、等の処理を施した上で、緩衝液や生理食塩水等の液体に溶解、懸濁、又は液浸することにより、本発明の蛍光標識複合体が抗原に接触できる状態とし、測定用試料とすることができる。前記組織切片の作製においては、抗原を損なわない範囲でパラホルムアルデヒドやグルタルアルデヒド等を用いて固定処理を施すことができ、さらにBSA(ウシ血清アルブミン)やスキムミルク等によりブロッキング処理を行うこともできる。かかる固体等の検体としては、例えば生体より採取された組織、細胞、タンパク質や糖等の成分がブロットされたニトロセルロース膜やPVDF膜、食品、土壌等を挙げることができる。また、測定用試料は、抗原を損なうことも抗原濃度測定・検出を阻害することもない限り、適宜防腐剤、防カビ剤、pH調整剤、界面活性剤、凝固防止剤、キレート剤等を含んでもよい。
 本発明においては、さらに、生体内の血液や髄液等の体液、組織等をも測定用試料とすることができる。すなわち、実験動物等の非ヒト動物に本発明の蛍光標識複合体を投与することにより、本発明の蛍光標識複合体と生体内の抗原とを接触させることができる。かかる非ヒト動物としては、ヒト以外の動物であればよく、例えば、脊椎動物、中でも哺乳類、魚類、鳥類、爬虫類、両生類等の非ヒト動物を挙げることができ、中でも哺乳類が好ましく、マウス、ラット、ハムスター、サル、ブタ等がより好ましい。また、上記投与方法も特に制限されず、筋肉内注射、腹腔内注射、静脈内注射、皮下注射、埋込み、塗布等の非経口的な局所投与方法や、経口的な投与方法の中から適宜選択することができる。また、本発明の蛍光標識複合体投与と同時、あるいはその前後に他の薬剤等を投与してもよい。非ヒト動物に本発明の蛍光標識複合体を投与することにより、生体内における抗原の位置やその移動、抗原量やその変化を観察することも可能である。かかる観察においては、経時的に体液や組織等の検体を採取して測定用試料を調製し、蛍光強度測定や蛍光の局在観察を行うことも、あるいは生体中の蛍光強度やその変化、蛍光の局在やその移動をリアルタイムに検出し観察することもできる。
 本発明の蛍光標識複合体と測定用試料中の抗原とを接触させる反応条件としては、測定用試料に本発明の蛍光標識複合体を添加し、抗原抗体反応に一般的に用いることのできる条件でインキュベートするものであれば特に制限されず、温度条件は、例えば1~30℃、好ましくは18~25℃、反応時間は、例えば、瞬時~180分、好ましくは1~90分とすることができる。また、非ヒト動物体内において反応を行う場合は、投与後例えば5~180分、好ましくは60~120分インキュベートし、必要に応じて、組織、血液、細胞等を摘出、又は観察対象部位を露出させる等の処理を適宜行うことができる。インキュベート終了後の試料においては、抗原を認識した本発明の蛍光標識複合体におけるクエンチングが解消され、励起光の照射により蛍光が発せられるが、抗原を認識していない本発明の蛍光標識複合体は、クエンチングされたままで、励起光の照射によっても蛍光を発しない。したがって前記蛍光標識複合体を添加した測定用試料は、洗浄などの工程を経ることなく、そのまま抗原濃度測定及び/又は検出に供することができ、このことが本発明の抗原濃度測定・検出用キット及び本発明の抗原濃度測定・検出方法の大きな特徴の一つである。
 本発明における測定用試料中の蛍光の検出方法は、蛍光色素から発せられる蛍光を検出できる限り特に制限されず、前記反応後の測定用試料に励起光を照射して蛍光色素の蛍光強度を測定及び/又は検出するものであればよい。照射する励起光及び、測定及び/又は検出する蛍光の波長は、使用する蛍光色素の種類に応じて適宜選択することができ、例えば蛍光色素にCR110を用いた場合は励起光波長480nmと蛍光波長530nm、TAMRAを用いた場合は励起光波長530nmと蛍光波長580nm、ATTO655を用いた場合は励起光波長630nmと蛍光波長680nmの組み合わせとすることができる。また、2種類の異なる蛍光色素を用いる場合も、抗原濃度を測定及び/又は抗原を検出することができる、励起光波長及び蛍光波長の組み合わせを適宜選択して使用すればよい。例えば、本発明の蛍光標識複合体と反応させた測定用試料に、前記蛍光標識複合体に含まれる蛍光色素のうちいずれか1つに適した励起波長の光を照射し、蛍光スペクトルを取得することを2種両方の蛍光色素について行うことにより、抗原濃度測定・検出に最適な励起光波長及び蛍光波長の組み合わせを特定することができる。例えば、励起光波長と蛍光波長の組み合わせとして、いずれか一方の蛍光色素に適した励起光波長及び蛍光波長の組み合わせを挙げることができ、より好ましくは、励起光波長及び蛍光波長が短い方の蛍光色素に適した、励起光波長及び蛍光波長の組み合わせを挙げることができる。なお蛍光は、蛍光スペクトルとして検出しても、特定の波長における光強度として検出してもよく、例えば、CR110とTAMRAの組み合わせを使用する場合は、励起光波長を480nmとし、波長530nmの蛍光を検出することも、波長515nm~650nmの蛍光スペクトルとして検出することもできる。2種類の異なる蛍光色素いずれか一方に適した励起光波長及び蛍光波長の組み合わせは、抗原非存在時のFRET(蛍光共鳴エネルギー移動:Fluorescence resonance energy transfer)効果によるバックグラウンドの低減を効率よく検出でき、より高感度に測定できる。
 本発明において蛍光検出に用いる光源や測定装置は適宜選択することができ、光源は励起光波長を照射できるものであればよく、光源としては水銀ランプ、キセノンランプ、LED、レーザー光等を挙げることができ、適当なフィルターを用いて特定の波長の励起光を得ることができる。蛍光測定装置は、蛍光観察に通常用いられるデバイスを用いることができ、励起光の光源及びその照射システム、蛍光画像取得システムを備えた顕微鏡等を適宜利用することができ、MF20/FluoroPoint-Light(オリンパス社製)やFMBIO-III(日立ソフトウェアエンジニアリング社製)等を例示することができる。蛍光強度と抗原の濃度とは正の相関関係にあるので、濃度既知の抗原を含む被検物質を用いたときの蛍光強度を測定して抗原濃度と蛍光強度との関係を示す標準曲線を作成し、この標準曲線から、濃度未知の抗原濃度を算出することができる。かかる抗原濃度の算出は、あらかじめ作成されたに標準曲線に基づいて設定された変換式等により自動的に抗原量を算出することもできる。なお蛍光の検出は、蛍光スペクトルの検出であっても、特定の波長の蛍光強度の検出であってもよい。
 また、本発明の蛍光標識複合体を非ヒト動物に投与した場合は、その体液や組織等を採取する他、非ヒト動物の検出対象領域に励起光を照射して、蛍光色素の蛍光を2次元又は3次元的に測定及び/又は検出することもでき、この場合、蛍光顕微鏡や蛍光イメージアナライザー、光源を備えた内視鏡等を使用する例を挙げることができる。また、検出の際には、内視鏡、X線、CT、MRI、超音波、顕微鏡等を用いて、非ヒト動物の個体、組織、又は細胞の構造を示す画像も合わせて取得することが好ましい。測定及び/又は検出された蛍光強度と抗原量とは正の相関関係にあるので、検出された蛍光の2次元又は3次元的画像に基づいて、抗原の局在(位置)及び/又は量を知ることができ、この際前記構造を示す画像と比較することもできる。これらの蛍光の検出に際しては、本発明の蛍光標識複合体を含まない、又は検体を含まない測定用試料等をネガティブコントロールとして調製し、合わせて測定及び/又は検出することが好ましい。また、前記ネガティブコントロールにおける蛍光測定値で、測定用試料における蛍光測定値を除した、蛍光強度比を用いて、抗原量の測定等を行うこともできる。あるいは、本発明において蛍光強度と抗原量とは正の相関関係にあるので、適宜設定した閾値を越える蛍光強度が得られた場合に、測定試料中に抗原が存在すると判定することもできる。
 以上のように、本発明によると、ELISA法、免疫拡散法、ラテックス凝集法、イムノクロマト法、表面プラズモン共鳴法などの免疫測定法で測定することのできるすべての抗原類を検出することができる。例えば、低分子物質に対する免疫測定法は、一般的には競合ELISA法が用いられているが、本発明による低分子物質の検出測定は、手法の簡便さ、測定感度やSN比などで競合ELISA法より優れており、最もその能力を発することができる。例えば、アンフェタミン、メタンフェタミン、モルヒネ、ヘロイン、コデインなどの覚せい剤や麻薬類、アフラトキシン、ステリグマトシスチン、ネオソラニオール、ニバレノール、フモニシン、オクラトキシン、エンドファイト産生毒素などのカビ毒、テストステロンやエストラジオールなどの性ホルモン、クレンブテロールやラクトパミンなどの飼料に不正に用いられる添加物、PCB、ゴシポール、ヒスタミン、ベンツピレン、メラミン、アクリルアミド、ダイオキシンなどの有害物質、アセタミプリド、イミダクロプリド、クロルフェナピル、マラチオン、カルバリル、クロチアニジン、トリフルミゾール、クロロタロニル、スピノサド、ランネート、メタミドホス、クロルピリホスなどの残留農薬、ビスフェノールAなどの環境モルモンなどを挙げることができる。
 また本発明によると、測定結果が瞬時に得られる上に、検出方法が単純なため検出機器を小型化かつ低価格化することが可能となる。これらの利点は、低分子物質に限定されず、現場に出向き測定するオンサイト分析に威力を発揮することができる。しかも、測定が容易なため、専門家でなくても測定することができる。たとえば、インフルエンザ、伝染病や感染症などの原因ウイルスや細菌、薬物血中濃度やPOCTを含む臨床診断分野や職場、学校、保育園や家庭での簡易健康測定分野、炭疸菌、ボツリヌス毒素、サリンやVXガスなどテロ対策などの安心安全分野、現場サイドで測定が必要となる環境汚染物質やハウスダストなどの環境分野、免疫測定を必要とする研究開発分野などで、その能力を遺憾なく発揮することができる。
 以下に示す実施例において、本発明を具体的且つ更に詳細に説明するが、これらの実施例により本発明の技術的範囲が限定されるものではない。
1.本発明の蛍光標識複合体を用いた均一系蛍光免疫測定法の確立
(発現ベクターの構築)
1)シングルラベルFab型複合体
 ヒトオステオカルシン(human Bone Gla Protein;BGP)に対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にProX(商標名)タグ(9番目のアミノ酸に対応する塩基配列はTTTであり、翻訳されるとMSKQIEVNFSNET;配列番号1)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ。またBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(9番目のアミノ酸に対応する塩基配列はTAGであり、翻訳されるとMSKQIEVNXSNET(Xは蛍光標識アミノ酸);配列番号2)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ(図5)。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグ(翻訳されるとVHは標識され、VLは非標識)が、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
 ビスフェノールA(bisphenol A)に対する抗体の軽鎖可変領域(VL;配列番号7)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にProXタグ(配列番号1)及びGGGS5スペーサー(GGGSGGGSGGGSGGGSGGGS;配列番号8)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ。またビスフェノールAに対する抗体の重鎖可変領域(VH;配列番号9)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(配列番号2)及びGGGS5スペーサー(配列番号8)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ(図5)。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグ(翻訳されるとVHは標識され、VLは非標識)が、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
 血清アルブミン(SA)に対する抗体の軽鎖可変領域(VL;配列番号10)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にProXタグ(配列番号1)及びGGGS2スペーサー(GGGSGGGS;配列番号11)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ。また血清アルブミン(SA)に対する抗体の重鎖可変領域(VH;配列番号12)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(配列番号2)及びGGGS5スペーサー(配列番号8)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ(図5)。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグ(翻訳されるとVHは標識され、VLは非標識)が、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
2)同色ダブルラベルFab型複合体
 BGPに対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(翻訳されると配列番号2)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクターへ組み込んだ。またBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(翻訳されると配列番号2)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクターへ組み込んだ。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグ(アンバー)が、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
 血清アルブミン(SA)に対する抗体の軽鎖可変領域(VL;配列番号10)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(翻訳されると配列番号2)及びGGGS2スペーサー(配列番号11)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ。またSAに対する抗体の重鎖可変領域(VH;配列番号12)と抗体重鎖定常領域(CH; 配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(翻訳されると配列番号2)及びGGGS2スペーサー(配列番号11)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクターへ組み込んだ。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグ(アンバー)が、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
3)異色ダブルラベルFab型複合体
 BGPに対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にCGGG4塩基コドンを含むProXタグ(9番目のアミノ酸に対応する塩基配列はCGGGであり、翻訳されると配列番号2)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクターへ組み込んだ。またBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(翻訳されると配列番号2)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクターへ組み込んだ(図5)。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグが、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
 血清アルブミン(SA)に対する抗体の軽鎖可変領域(VL;配列番号10)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドをコードするDNA配列に、N末端にCGGG4塩基コドンを含むProXタグ(翻訳されると配列番号2)及びGGGS2スペーサー(配列番号11)のDNA配列を、C末端にリンカー(配列番号14)及びFLAGタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクター(ロシュ・ダイアグノスティックス社製)へ組み込んだ。またSAに対する抗体の重鎖可変領域(VH;配列番号12)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドをコードするDNA配列に、N末端にアンバーコドンを含むProXタグ(翻訳されると配列番号2)及びGGGS2スペーサー(配列番号11)のDNA配列を、C末端にリンカー(配列番号14)及びHisタグのDNA配列を付与した遺伝子を、pIVEX2.3dベクターへ組み込んだ。これらの構築した発現ベクターは、挿入したVL又はVHのN末端にProXタグが、C末端にHisタグ又はFLAGタグが、それぞれ付加されるよう設計されている。
(蛍光標識Fab型複合体の合成)
 RYTS(商品名)大腸菌無細胞合成キット(プロテイン・エクスプレス社製)を用いて、無細胞翻訳系による抗体可変領域含有ペプチド及び/又は抗体可変領域含有ペプチドのN末端領域への蛍光標識アミノ酸の導入を行った。
1)シングルラベル又は同色ダブルラベルFab型複合体
 反応液(60μL)は、3μLのEnzyme Mix、0.6μLのMethionine、30μLの2×Reaction Mix、20μLのE-coli Lysate、2μLの2種類のplasmid DNA(各200ng)、3μLの蛍光標識アミノアシル-tRNAamber(480pmol)、1.4μLのNuclease Free Waterを加えた。蛍光標識タンパク質を作製するための蛍光標識アミノアシル-tRNA(TAMRA-X-AF-tRNAamber、CR110-X-AF-tRNAamber、及びATTO655-X-AF-tRNAamber)は、CloverDirect(商標名)tRNA Reagents for Site-Directed Protein Functionalization(プロテイン・エクスプレス社製)を用いた。反応液は、20℃、2時間で静置して反応させタンパク質合成を行なった後、さらに、4℃、16時間の反応により複合化形成を完成させた。反応終了後、反応液0.5μLを用いてSDS-PAGE(15%)を行い、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)でタンパク質発現を観察した。さらに、抗Hisタグ抗体又は抗FLAGタグ抗体を用いてウエスタンブロットを行い、目的の蛍光標識抗体可変領域含有ペプチドが合成されていることを確認した。
2)異色ダブルラベルFab型複合体
 反応液(60μL)は、3μLのEnzyme Mix、0.6μLのMethionine、30μLの2xReaction Mix、20μLのE-coli Lysate、2μLの2種類のplasmid DNA(各200ng)、1.5μLの2種類の蛍光標識アミノアシル-tRNAamber及びCGGG(各々480nmol)、1.4μLのNuclease Free Waterを加えた。蛍光標識タンパク質を作製するための蛍光標識アミノアシル-tRNA(TAMRA-X-AF-tRNAamber又はCGGG、CR110-X-AF-tRNAamber又はCGGG、及びATTO655-X-AF-tRNAamber又はCGGG)は、CloverDirect(商標名)tRNA Reagents for Site-Directed Protein Functionalization(プロテイン・エクスプレス社製)を用いた。VH領域含有ポリペプチドやVL領域含有ポリペプチドの標識には、それぞれtRNAamber、tRNACGGGが使用される。反応液は、20℃,2時間で静置して反応させタンパク質合成を行なった後、さらに、4℃、16時間の反応により複合化形成を完成させた。反応終了後、反応液0.5μLを用いてSDS-PAGE(15%)を行い、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)でタンパク質発現を観察した。さらに、抗Hisタグ抗体又は抗FLAGタグ抗体を用いてウエスタンブロットを行い、目的の蛍光標識抗体可変領域含有ペプチドが合成されていることを確認した。
3)一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識されたFab型複合体
 蛍光色素としてTAMRA,クエンチャーとしてNBD-X,SE(Anspec社)を使用した。NBD-X-AF-tRNACGGGは阿部らの方法(Abe R, et al., J. Biosci. Bioeng. 110(1):32-38 (2010))のTAMRA-X,SEをそれぞれNBD-X,SE(Anspec社)に変えて合成した。反応液(60μL)は、3μLのEnzyme Mix、0.6μLのMethionine、30μLの2xReaction Mix、20μLのE-coli Lysate、2μLの2種類のplasmid DNA(各200ng)、1.5μLのTAMRA-X-AF-tRNAamber及びNBD-X-AF-tRNACGGG(各々480nmol)、1.4μLのNuclease Free Waterを加えた。VH領域含有ポリペプチドやVL領域含有ポリペプチドの標識には、それぞれtRNAamber、tRNACGGGが使用される。反応液は、20℃,2時間で静置して反応させタンパク質合成を行なった後、さらに、4℃、16時間の反応により複合化形成を完成させた。反応終了後、反応液0.5μLを用いてSDS-PAGE(15%)を行い、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)にてタンパク質発現を観察した。さらに、抗Hisタグ抗体又は抗FLAGタグ抗体を用いてウエスタンブロットを行い、目的の蛍光標識抗体可変領域含有ペプチドが合成されていることを確認した。
(蛍光標識Fab型複合体の精製)
 合成した蛍光標識Fab型複合体は、抗FLAG M2アフィニティーゲル(シグマアルドリッチ社製)やHis-Spin Trap Column(GEヘルスケア社製)により精製を行った。上記反応液(60μL)を、抗FLAG M2アフィニティーゲルを入れたカラムへアプライし、室温で15分間インキュベートした後にWash buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/0.1%Polyoxyethylene(23)Lauryl Ether)で3回洗浄を行った。次に200μLのElute buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/100μg FLAG peptide/0.1%Polyoxyethylene(23)Lauryl Ether)で3回溶出させた。次に溶出液は、His-Spin Trap Columnへアプライした。室温で15分間インキュベートした後にWash buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/60mM imidazole/0.1%Polyoxyethylene(23)Lauryl Ether)で3回洗浄を行った。次に200μLのElute buffer(20mM Phosphate buffer(pH7.4)/0.5M NaCl/0.5Mimidazole/0.1%Polyoxyethylene(23)Lauryl Ether)で3回溶出させた。さらに溶出液は、アミコンウルトラ-0.5遠心式フィルター10kDa(ミリポア社製)を使用し、PBS(+0.05%Tween20)でバッファー交換、濃縮を行った。精製後のサンプルの濃度は、蛍光イメージアナライザー(FMBIO-III;日立ソフトウェアエンジニアリング社製)を用いて測定した。
(Q-bodyの作製)
 TAMRAで標識した抗BGP抗体のVHとVL(VHを標識しVLは未標識)、及びTAMRAで標識した抗BGP抗体と抗ビスフェノールA抗体のVHとVLとをリンカー(GGGGSGGGGSGGGGS)により結合させた一本鎖抗体(scFv)の作製は、国際公開公報WO2011/061944に記載の方法によった。
2.本発明の蛍光標識複合体を用いた均一系蛍光免疫測定法による測定
(シングルラベルFab型複合体を用いた蛍光スペクトル測定)
 実施例1で作製した、BGP(ヒトオステオカルシン)に対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRA蛍光で標識したBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる、TAMRAシングルラベル抗BGP抗体Fab型複合体、又はTAMRA標識抗BGP抗体scFv、又はTAMRA標識抗BGP抗体VH+抗BGP抗体VLを用いて、BGP濃度を測定した。TAMRAシングルラベル抗BGP抗体Fab型複合体、又はTAMRA標識抗BGPscFv(70nM、6.25μL)、又はTAMRA標識抗BGP抗体VH+抗BGP抗体VL(70nM/mL、6.25μL)と、抗原であるBGP-C7(配列番号13)(0、1、3、10、25、100、又は1,000nM)とを、1%BSAを含むPBS(+0.05%Tween20)で計50μLになるように調製した。この溶液を25℃、70分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行った。543nmのHe-Neレーザーを用い、励起波長は530nmにセットし580nmでの蛍光強度を測定した。抗原なしの場合の蛍光強度に対する、各抗原濃度における蛍光強度の比を図6左上のグラフに、BGP-C7が1,000nMの場合の蛍光強度の比を図6左下の表に示す。同様にして、TAMRA蛍光で標識したビスフェノールAに対する抗体のVL(配列番号7)とCκ(配列番号4)を含むポリペプチドと、ビスフェノールAに対する抗体のVH(配列番号9)とCH(配列番号6)を含むポリペプチドからなる、TAMRAシングルラベル抗ビスフェノールA抗体Fab型複合体又は、TAMRA標識抗ビスフェノールA抗体scFvと、ビスフェノールA(0、1、3、10、30、100、又は1,000nM)とを反応させ、蛍光強度を測定した。抗原なしの場合の蛍光強度に対する、各抗原濃度における蛍光強度の比を図6右上のグラフに、ビスフェノールAが1,000nMの場合の蛍光強度の比を図6右下の表に示す。蛍光色素の種類や抗原濃度によらず、本発明のシングルラベルFab型複合体は、従来のscFv型Q-bodyやVH+VL型Q-bodyと比較して高い蛍光強度比を得ることができ、高感度に低分子化合物及びタンパク質を検出及び定量できることが確認できた。本発明のFab型複合体は、scFv型Q-bodyやVH+VL型Q-bodyと比較してその構成要素であるポリペプチド同士が互いに近い距離となる複合体を形成するため、抗体の可変領域のトリプトファンによる蛍光色素のクエンチング効果が効果的に起こるものと考えられる。
(同色ダブルラベルFab型複合体を用いた蛍光スペクトル測定)
 実施例1で作製した、CR110、TAMRA、又はATTO655の蛍光色素で標識したBGPに対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、同じ色素で標識されたBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる、同色ダブルラベルFab型複合体(70nM、6.25μL)と、抗原であるBGP-C7(0~10,000nM)とを、1%BSAを含むPBS(+0.05%Tween20)で計50μLになるように調製した。コントロールとして、BGPに対する抗体VL(配列番号5)とCκ(配列番号4)を含むポリペプチド又はBGPに対する抗体VH(配列番号3)とCH(配列番号6)を含むポリペプチドのいずれか一方が蛍光標識されたシングルラベルFab型複合体のサンプルを用意した。これらの溶液を25℃、70分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行った。CR110蛍光色素標識同色ダブルラベルFab型複合体を使用した場合は、励起波長(Ex)は480nmにセットし、蛍光波長(Em)530nmでの蛍光強度を測定した。TAMRA蛍光色素標識同色ダブルラベルFab型複合体を使用した場合は、励起波長は530nmにセットし、蛍光波長580nmでの蛍光強度を測定した。ATTO655蛍光色素標識同色ダブルラベルFab型複合体を使用した場合は、励起波長は630nmにセットし、蛍光波長680nmでの蛍光強度を測定した。抗原なしの場合の蛍光強度に対する、各抗原濃度における蛍光強度の比を蛍光強度比とし、図7のグラフに示す。BGP-C7が1,000nM、又は10,000nMの場合の蛍光強度の比を図7の表に示す。
 また同様にして、血清アルブミン(SA)に対する抗体の軽鎖可変領域(VL;配列番号10)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、同じ色素で標識されたSAに対する抗体の重鎖可変領域(VH;配列番号12)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体と、抗原であるHSA(0~100μM)を反応させ、蛍光強度を測定した。蛍光強度比を図8のグラフに、HSAが100μMの場合の蛍光強度の比を図8の表に示す。以上の結果から、蛍光色素や抗原の種類によらず、本発明の同色ダブルラベルFab型複合体は、シングルラベルFab型複合体よりも高い蛍光強度比で抗原量を測定することができると確認できた。同色ダブルラベルFab型複合体では、抗体の可変領域のトリプトファンによる蛍光色素のクエンチング効果に加え、蛍光色素間でのクエンチング効果(H-dimer)が加わることで、バックグラウンドを低減することができ、ダイナミックレンジが増強されると考えられる。
(異色ダブルラベルFab型複合体を用いた蛍光スペクトル測定)
 実施例1で作製した、CR110、TAMRA、又はATTO655の蛍光色素で標識したBGPに対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、前記と異なる色素で標識したBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる、BGP抗体の異色ダブルラベルFab型複合体(70nM、6.25μL)と、抗原であるBGP-C7(0~1,000nM)とを、1%BSAを含むPBS(+0.05%Tween20)で計50μLになるように調製した。コントロールとして、同色ダブルラベルFab型複合体のサンプルを用意した。実施例3と同様に蛍光強度を想定し、抗原なしの場合の蛍光強度に対する、各抗原濃度における蛍光強度の比を得た。なお、CR110及びTAMRAを用いた場合は、励起波長は480nmにセットし、蛍光波長530nmでの蛍光強度を測定した(図9左グラフ)。CR110、TAMRA、及びATTO655を用いた場合は、励起波長は530nmにセットし、蛍光波長580nmでの蛍光強度を測定した(図9中央グラフ)。TAMRA及びATTO655を用いた場合は、励起波長は630nmにセットし、蛍光波長680nmでの蛍光強度を測定した(図9右グラフ)。BGP-C7が1,000nMの場合の蛍光強度の比を図9の各表に示す。
 また同様にして、実施例1で作製した、CR110、TAMRA、又はATTO655の蛍光色素で標識したSAに対する抗体の重鎖可変領域(VH;配列番号12)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドと、前記と異なる色素で標識されたSAに対する抗体の軽鎖可変領域(VL;配列番号10)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドからなる、SA抗体の異色ダブルラベルFab型複合体と、抗原であるHSA(0~100μM)とを反応させ、蛍光強度を測定した。抗原なしの場合の蛍光強度に対する、各抗原濃度における蛍光強度の比を蛍光強度比とし、図10のグラフに示す。HSAが100μMにおける蛍光強度比を図10の表に示す。
 さらに、CR110で標識した抗SA抗体の重鎖可変領域(VH;配列番号12)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドと、TAMRAで標識した抗SA抗体の軽鎖可変領域(VL;配列番号10)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドからなる、抗SA抗体の異色ダブルラベルFab型複合体(CR110_TAMRAとも表記する。)と、抗原であるHSA(1×10-4、1×10-5、1×10-6、1×10-7M)とを反応させ、波長480nm(図11左上グラフ)又は波長530nm(図11右上グラフ)の励起光を照射し、蛍光スペクトルを測定した。また、CR110で標識した抗SA抗体VH(配列番号12)とCH(配列番号6)を含むポリペプチドと、抗SA抗体VL(配列番号10)とCκ(配列番号4)を含むポリペプチドからなる、抗SA抗体のCR110シングルラベルFab型複合体(CR110_no)と、抗原であるHSA(1×10-4、1×10-5、1×10-6、1×10-7M)とを反応させ、波長480nmの励起光を照射し、蛍光スペクトルを測定した(図11左下グラフ)。抗SA抗体VH(配列番号12)とCH(配列番号6)を含むポリペプチドと、TAMRAで標識した抗SA抗体VL(配列番号10)とCκ(配列番号4)を含むポリペプチドからなる、SA抗体のTAMRAシングルラベルFab型複合体(no_TAMRA)と、抗原であるHSA(1×10-4、1×10-5、1×10-6、1×10-7M)とを反応させ、波長530nmの励起光を照射し、蛍光分光光度計(FluoroMax-4)を用いて蛍光スペクトルを測定した(図11右下グラフ)。グラフにおける曲線は、上側からHSA濃度が1×10-4M、1×10-5M、1×10-6M、1×10-7M、0Mのサンプルのデータである。
 この結果から、異色ダブルラベルFab型複合体CR110_TAMRAでは、波長480nmの励起光を照射した場合に抗原非存在下での約530nmの波長の蛍光がFRET効果により抑えられており、そのため約530nmの波長において高い蛍光強度の比を得られることがわかった。また、波長530nmの励起光を照射した場合にも、蛍光色素間でのクエンチング効果により、蛍光波長約530nmにおいて、CR110_TAMRAはno_TAMRAと比べて高い蛍光強度の比を得られることがわかった。したがって、抗体の可変領域のトリプトファンによる蛍光色素のクエンチング効果に加え、蛍光色素間でのクエンチング効果、さらにFRET効果が加わることでバックグラウンドを低減することができ、ダイナミックレンジが増強されると考えられる。本実験系においてCR110_TAMRAは最大で75倍もの蛍光増加により抗原を検出することができ、本発明の有用性が示された。
(蛍光標識とクエンチャー標識からなるFab型複合体を用いた蛍光スペクトル測定)
 実施例1で作製した、TAMRA標識したBGPに対する抗体の重鎖可変領域(VH;配列番号3)と抗体重鎖定常領域(CH;配列番号6)とNBDで標識したBGPに対する抗体の軽鎖可変領域(VL;配列番号5)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドからなるFab型複合体(70nM、6.25μL)と、抗原であるBGP-C7(0~10,000nM)とを、1%BSAを含むPBS(+0.05%Tween20)で計50μLになるように調製した。この溶液を25℃、70分間放置した後に、蛍光分光光度計(FluoroMax-4;ホリバ・ジョバンイボン社製)を用いて蛍光スペクトル測定を行った。励起波長は530nmにセットし、蛍光波長580nmでの蛍光強度を測定した。抗原なしの場合の蛍光強度に対する、各抗原濃度における蛍光強度の比を蛍光強度比とし、図12のグラフに示す。BGP-C7が1,000nMの場合の蛍光強度の比を図12の表に示す。
 この結果から、Fab型複合体TAMRA_NBDは、シングルラベルFab型複合体(TAMRA_No)(図7)と同程度の1nMの濃度でBGPを検出でき、かつダブルラベル(TAMRA_TAMRA)(図7)より高い27倍の蛍光増加により抗原を検出することができ、本発明の有用性が示された。
(温度安定性の測定)
 実施例1で作製した抗BGP_TAMRAシングルラベルFab複合体と抗BGP_TAMRAラベルscFvの熱安定性を測定するために、サーマルシフトアッセイを行った。StepOne リアルタイムPCRシステム(アプライドバイオシステムズ社)を用いて1分間に1℃ずつ温度を上昇させ、各温度での蛍光強度を測定した。それぞれの抗体が熱変性を起すと、その構造が崩れ消光状態が解消し蛍光強度が増加する原理に基づき、熱安定性を測定した。図13に示すように、TAMRAラベルscFvのTm値(熱変性を起す温度)は61℃であったが、本発明であるTAMRAシングルラベルFab複合体のTm値は73℃と12℃上昇した。この熱安定性は、試薬の長期保存が可能となり流通温度、保存温度、保存期間など産業上のメリットに大きく貢献できる。
(蛍光ラベルFab型複合体によるクレンブテロールの測定)
 実施例1に示した方法で合成したクレンブテロールに対する抗体のCR110で標識された軽鎖可変領域(VL;配列番15)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたクレンブテロールに対する抗体の重鎖可変領域(VH;配列番号16)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる異色ダブルラベルFab型複合体と、抗原であるクレンブテロール(0~16μg/mL)を反応させ、実施例4の方法で蛍光強度を測定した。クレンブテロールが16μg/mLの場合の蛍光強度の比を表1に示す。この結果、16μg/mLのクレンブテロールを測定することができた。
Figure JPOXMLDOC01-appb-T000001
(蛍光ラベルFab型複合体によるラクトパミン、コチニンの測定)
 実施例1に示した方法で、ラクトパミンに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号17)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたラクトパミンに対する抗体の重鎖可変領域(VH;配列番号18)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体を合成した。また、コチニンに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号19)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたコチニンに対する抗体の重鎖可変領域(VH;配列番号20)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体を合成した。次いで、それぞれ抗原であるラクトパミン3.4μg/mLまたはコチニン3.5μg/mLを反応させ、実施例4の方法で蛍光強度を測定した。その結果を表2に示す。表2に示すように、蛍光増加比蛍光強度比を2.3および1.9で測定することができた。
Figure JPOXMLDOC01-appb-T000002
(蛍光ラベルFab型複合体によるインフルエンザA型ウィルスヘマグルチニン(HA)の測定)
 実施例1に示した方法で合成したインフルエンザA型H5N1,H1N1のヘマグルチニン(HA)に対する抗体のCR110で標識された軽鎖可変領域(VL;配列番号21)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたインフルエンザA型H5N1,H1N1のヘマグルチニン(HA)に対する抗体の重鎖可変領域(VH;配列番号22)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる異色ダブルラベルFab型複合体と、それぞれの抗原30μg/mLを反応させ、実施例4の方法で蛍光強度を測定した。その結果を表3に示す。表3に示すように、H5N1 HA、及びH1N1 HAそれぞれの抗原に対し、蛍光増加比はそれぞれ6.1及び7.1で測定することができた。
Figure JPOXMLDOC01-appb-T000003
(蛍光ラベルFab型複合体によるモルヒネ類、メタンフェタミン類、コカインの測定)
 実施例1に示した方法で合成したモルヒネに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号23)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたモルヒネに対する抗体の重鎖可変領域(VH;配列番号24)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体を合成した。同様に、メタンフェタミンに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号25)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたメタンフェタミンに対する抗体の重鎖可変領域(VH;配列番号26)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体、コカインに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号27)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたコカインに対する抗体の重鎖可変領域(VH;配列番号28)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体を合成した。また、実施例1に従い、TAMRAで標識した抗モルヒネ抗体のVLとVHとをリンカー(GGGGSGGGGSGGGGS)により結合させた一本鎖抗体(scFv)と、抗メタンフェタミン抗体のVHとVLとをリンカー(GGGGSGGGGSGGGGS)により結合させた一本鎖抗体(scFv)を作製した。構築したTAMRAダブルラベルFab複合体およびTAMRAラベルscFvと種々のモルヒネ類、メタンフェタミン類、コカイン、ケタミンを反応させ、実施例3または実施例1の方法で蛍光強度を測定した。その結果を表4に示す。3種類の蛍光標識Fab複合体は特異的にそれぞれの抗原を認識し、かつ蛍光標識モルヒネFab複合体とscFvの比較、蛍光標識メタンフェタミンFab複合体とscFvの蛍光増加比は、いずれもFab複合体が高く、ダイナミックレンジが大きく増大した。
Figure JPOXMLDOC01-appb-T000004
(蛍光ラベルFab型複合体による大麻成分THCとケタミンの測定)
 実施例1に示した方法で、大麻成分THCに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号29)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識された大麻成分THCに対する抗体の重鎖可変領域(VH;配列番号30)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体を合成した。同様に、ケタミンに対する抗体のTAMRAで標識された軽鎖可変領域(VL;配列番号31)と抗体軽鎖定常領域(Cκ;配列番号4)を含むポリペプチドと、TAMRAで標識されたケタミンに対する抗体の重鎖可変領域(VH;配列番号32)と抗体重鎖定常領域(CH;配列番号6)を含むポリペプチドからなる同色ダブルラベルFab型複合体を合成した。次いで、それぞれ抗原であるTHC(100μg/mL)またはケタミン(1.0mg/mL)を反応させ、実施例4の方法で蛍光強度を測定した。表5に示すように、蛍光増加比蛍光強度比を1.3および2.0で測定することができた。
Figure JPOXMLDOC01-appb-T000005
 本発明は、試料分析や薬物検査の分野や、携帯型試料分析キットの分野等において有用に利用することができる。

Claims (17)

  1.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を備えたキットであって、
    液相中の抗原濃度と上記蛍光色素の蛍光強度とが正の相関関係にあることを指標として、抗原濃度の測定又は抗原の可視化を可能とすることを特徴とする抗原濃度測定・検出用キット。
  2.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが同一の蛍光色素により標識されたことを特徴とする請求項1記載の抗原濃度測定・検出用キット。
  3.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが異なる種類の蛍光色素により標識されたことを特徴とする請求項1記載の抗原濃度測定・検出用キット。
  4.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識されたことを特徴とする請求項1記載の抗原濃度測定・検出用キット。
  5.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方が、蛍光色素により標識されたことを特徴とする請求項1記載の抗原濃度測定・検出用キット。
  6.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体が、Fab抗体(Fragment, antigen binding)であることを特徴とする請求項1~5のいずれか記載の抗原濃度測定・検出用キット。
  7.  蛍光色素が、ローダミン系蛍光色素及びオキサジン系蛍光色素から選ばれることを特徴とする請求項1~6のいずれか記載の抗原濃度測定・検出用キット。
  8.  蛍光色素が、カルボキシローダミン110、カルボキシテトラメチルローダミン及びATTO655(商標名)から選ばれることを特徴とする請求項7記載の抗原濃度測定・検出用キット。
  9.  クエンチャーが、7-ニトロベンゾフラザン(NBD)であることを特徴とする請求項4~8のいずれか記載の抗原濃度測定・検出用キット。
  10.  以下の工程(a)~(c)を順次備えることを特徴とする抗原濃度測定・検出方法。
    (a)抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方又は両方が蛍光色素により標識された、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体を、測定用試料中の抗原に接触させる工程;
    (b)蛍光色素の蛍光を検出、又は蛍光色素の蛍光強度を測定する工程;
    (c)抗原濃度と前記蛍光色素の蛍光強度とが、正の相関関係にあることを指標として、検体に含まれる抗原量を算出、又は抗原を可視化する工程;
  11.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが同一の蛍光色素により標識されたことを特徴とする請求項10記載の抗原濃度測定・検出方法。
  12.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、それぞれが異なる種類の蛍光色素により標識されたことを特徴とする請求項10記載の抗原濃度測定・検出方法。
  13.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドが、一方が蛍光色素、他方が該蛍光色素を消光するクエンチャーにより標識されたことを特徴とする請求項10記載の抗原濃度測定・検出方法。
  14.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドのいずれか一方が、蛍光色素により標識されたことを特徴とする請求項10記載の抗原濃度測定・検出方法。
  15.  抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体が、Fab抗体(Fragment, antigen binding)であることを特徴とする請求項10~14のいずれか記載の抗原濃度測定・検出方法。
  16.  抗原が、低分子化合物であることを特徴とする請求項10~15のいずれか記載の抗原濃度測定・検出方法。
  17.  抗原が、ヒトオステオカルシン、ビスフェノールA、血清アルブミン、クレンブテロール、ラクトパミン、コチニン、インフルエンザA型ウィルスヘマグルチニン、モルヒネ類、メタンフェタミン類、コカイン、テトラヒドロカンナビノール、ケタミンであることを特徴とする請求項10~15のいずれか記載の抗原濃度測定・検出方法。
PCT/JP2012/007025 2011-11-02 2012-11-01 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法 WO2013065314A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IN3968CHN2014 IN2014CN03968A (ja) 2011-11-02 2012-11-01
JP2013541635A JP5817838B2 (ja) 2011-11-02 2012-11-01 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
US14/355,705 US20140329228A1 (en) 2011-11-02 2012-11-01 Fluorescence immunoassay using polypeptide complex containing fluoro-labeled antibody variable region
KR1020147013914A KR101603456B1 (ko) 2011-11-02 2012-11-01 형광 표지 항체 가변 영역 함유 폴리펩티드 복합체를 이용한 형광 면역 측정 방법
CN201280053916.2A CN103917872B (zh) 2011-11-02 2012-11-01 使用含荧光标记抗体可变区域的多肽复合体的荧光免疫测定方法
CA2854432A CA2854432A1 (en) 2011-11-02 2012-11-01 Fluorescence immunoassay using polypeptide complex containing fluoro-labeled antibody variable region
EP12846408.8A EP2775305A4 (en) 2011-11-02 2012-11-01 FLUORO-IMMUNOLOGY ASSAY METHOD USING A POLYPEPTIDE COMPLEX CONTAINING A VARIABLE FLUOROMARCATED ANTIBODY REGION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-241402 2011-11-02
JP2011241402 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065314A1 true WO2013065314A1 (ja) 2013-05-10

Family

ID=48191686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007025 WO2013065314A1 (ja) 2011-11-02 2012-11-01 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法

Country Status (8)

Country Link
US (1) US20140329228A1 (ja)
EP (1) EP2775305A4 (ja)
JP (2) JP5817838B2 (ja)
KR (1) KR101603456B1 (ja)
CN (1) CN103917872B (ja)
CA (1) CA2854432A1 (ja)
IN (1) IN2014CN03968A (ja)
WO (1) WO2013065314A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045535A1 (ja) * 2013-09-25 2015-04-02 Necソリューションイノベータ株式会社 ラクトパミンに結合する核酸分子およびその用途
WO2015045536A1 (ja) * 2013-09-25 2015-04-02 Necソリューションイノベータ株式会社 クレンブテロールに結合する核酸分子およびその用途
WO2015122484A1 (ja) * 2014-02-13 2015-08-20 ウシオ電機株式会社 大麻成分の抽出方法、大麻成分の検査用デバイス及び大麻成分の検査方法
WO2016104549A1 (ja) * 2014-12-24 2016-06-30 ウシオ電機株式会社 蛍光標識された抗体可変領域を含むポリペプチドを含む抗原結合タンパク質を用いた蛍光免疫測定方法
JP2016191587A (ja) * 2015-03-31 2016-11-10 シスメックス株式会社 温度判定方法、標的ペプチドの検出方法および温度判定試薬
WO2016208466A1 (ja) * 2015-06-22 2016-12-29 ウシオ電機株式会社 検出対象物質の検出方法
WO2017010381A1 (ja) * 2015-07-10 2017-01-19 ウシオ電機株式会社 N末端標識剤、これを用いた蛍光標識タンパク質及びその製造方法
WO2017038926A1 (ja) * 2015-09-03 2017-03-09 国立大学法人東京工業大学 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体
JP2017514128A (ja) * 2014-04-15 2017-06-01 セザンヌ ソシエテ パ アクシオンス シンプリフィエ クロモグラニンaを検出するための免疫アッセイ法および抗体
JP2018522819A (ja) * 2015-05-11 2018-08-16 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. ペプチド模倣化合物を中和するインフルエンザウイルス
WO2020026733A1 (ja) * 2018-07-30 2020-02-06 国立大学法人東京工業大学 蛍光標識抗体又は抗体断片
WO2020246495A1 (ja) 2019-06-05 2020-12-10 国立大学法人東京工業大学 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法
JP2021141892A (ja) * 2015-12-04 2021-09-24 国立大学法人 東京大学 リガンド蛍光センサータンパク質とその使用
US11630106B2 (en) 2017-05-19 2023-04-18 Philip Morris Products S.A. Diagnostic test for distinguishing the smoking status of a subject

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034925A1 (en) * 2015-08-25 2017-03-02 Bio-Rad Laboratories, Inc. Digital immunoassay
CN105647918A (zh) * 2016-02-20 2016-06-08 深圳市圣必智科技开发有限公司 抗乙肝e抗原的红色荧光抗体的制备方法
KR101847264B1 (ko) * 2016-03-29 2018-04-10 국립암센터 항원 반응형 항체-형광염료 결합체 및 이를 이용한 표적 세포의 형광영상 검출방법
CN107044888B (zh) * 2017-03-17 2019-03-01 同济大学 基于荧光染料ThT、RET基因的温度计的构建方法
CN114057881B (zh) * 2021-12-28 2023-10-13 杭州贤至生物科技有限公司 抗氯胺酮特异性抗体、质粒载体及方法
CN117659201B (zh) * 2022-08-23 2024-09-24 东莞市朋志生物科技有限公司 抗可卡因抗体或其功能性片段、检测可卡因的试剂和试剂盒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195256A (ja) * 1989-01-24 1990-08-01 Matsushita Electric Ind Co Ltd 免疫的検出方法および装置
US5643722A (en) 1994-05-11 1997-07-01 Trustees Of Boston University Methods for the detection and isolation of proteins
JPH1078436A (ja) 1996-07-31 1998-03-24 Boehringer Mannheim Corp 抗原濃度測定方法
JPH10282098A (ja) 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd 蛍光免疫測定法
JP2000139468A (ja) 1998-11-11 2000-05-23 Mitsubishi Chemicals Corp C末端がラベル化されたタンパク質の製造方法
WO2004027424A1 (ja) * 2002-09-19 2004-04-01 Hamamatsu Photonics K.K. 蛍光化抗体を用いた蛍光分析方法
WO2011061944A1 (ja) 2009-11-19 2011-05-26 株式会社プロテイン・エクスプレス 蛍光免疫測定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153701B1 (en) * 2000-02-17 2006-12-26 Hamamatsu Photonics K.K. Method for quantitatively detecting antigen
CN100473988C (zh) * 2004-07-08 2009-04-01 厦门大学 具有荧光共振能量转移特点的蛋白组合及其用途
WO2007033514A1 (fr) * 2005-09-19 2007-03-29 Xiamen University Combinaison de protéines caractérisée dans le transfert d'énergie entre molécules fluorescentes et utilisation de cette combinaison de protéines
WO2009021026A1 (en) * 2007-08-06 2009-02-12 University Of Kentucky Research Foundation Semi-synthetic antibodies as recognition elements
US8410251B2 (en) * 2008-06-20 2013-04-02 National University Corporation Okayama University Antibody against calcified globule and use of the same
JP2011095085A (ja) * 2009-10-29 2011-05-12 Hipep Laboratories プリオンの測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195256A (ja) * 1989-01-24 1990-08-01 Matsushita Electric Ind Co Ltd 免疫的検出方法および装置
US5643722A (en) 1994-05-11 1997-07-01 Trustees Of Boston University Methods for the detection and isolation of proteins
JPH1078436A (ja) 1996-07-31 1998-03-24 Boehringer Mannheim Corp 抗原濃度測定方法
JP3784111B2 (ja) 1996-07-31 2006-06-07 ロシュ ダイアグノスティックス コーポレーション 抗原濃度測定方法
JPH10282098A (ja) 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd 蛍光免疫測定法
JP2000139468A (ja) 1998-11-11 2000-05-23 Mitsubishi Chemicals Corp C末端がラベル化されたタンパク質の製造方法
WO2004027424A1 (ja) * 2002-09-19 2004-04-01 Hamamatsu Photonics K.K. 蛍光化抗体を用いた蛍光分析方法
WO2011061944A1 (ja) 2009-11-19 2011-05-26 株式会社プロテイン・エクスプレス 蛍光免疫測定方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
ABE R ET AL., J. AM. CHEM. SOC., vol. 133, no. 43, 2011, pages 17386 - 17394
ABE R ET AL., J. BIOSCI. BIOENG., vol. 110, no. 1, 2010, pages 32 - 38
ABE RYOJI ET AL.: "''Quenchbodies'': Quench- Based Antibody Probes That Show Antigen-Dependent Fluorescence", J AM CHEM SOC, vol. 133, no. 43, 6 October 2011 (2011-10-06), pages 17386 - 17394, XP055057266 *
ARAI R ET AL.: "Fluorolabeling of antibody variable domains with green fluorescent protein variants: application to an energy transfer- based homogeneous immunoassay", PROTEIN ENG (OXF), vol. 13, no. 5, 2000, pages 369 - 376, XP001035160 *
ELLMAN J ET AL., METHODS ENZYMOL., vol. 202, 1991, pages 301 - 36
HIROSHI UEDA ET AL.: "Keiko Label-ka Kotai Danpen no Shoko Kaisho o Genri to suru Shinki Men'eki Sokuteiho no Kaihatsu", ABSTRACTS OF ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, vol. 75, 2010, pages D309, XP008173545 *
HIROSHI UEDA ET AL.: "Kogen Ketsugo ni yori Hikaru Kotai Danpen: Fab-gata Quenchbody ni yoru Kakushu Kogen no Ko Kando Kenshutsu", ABSTRACTS OF ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, vol. 77TH, 15 February 2012 (2012-02-15), pages ROMBUNNO.A103, XP008173802 *
HIROSHI UEDA, YAKUGAKU ZASSHI, vol. 27, 2007, pages 71 - 80
HOHSAKA T. ET AL., J. AM. CHEM. SOC., vol. 118, 1996, pages 9778 - 9779
IIJIMA 1; HOHSAKA T., CHEMBIOCHEM., vol. 10, no. 6, 2009, pages 999 - 1006
KAJIHARA D ET AL., NAT METHODS., vol. 3, no. 11, 2006, pages 923
LIM SL ET AL., ANAL CHEM., vol. 79, no. 16, 2007, pages 6193 - 200
OLEJNIK ET AL., METHODS, vol. 36, 2005, pages 252 - 260
RYOJI ABE ET AL.: "Kogen Tenka ni yori sono Keiko Kyodo o Zodai saseru Keiko Hyoshiki Kotai Danpen Q-body", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, 2010, pages 1P-1278, XP008173082 *
See also references of EP2775305A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045536A1 (ja) * 2013-09-25 2015-04-02 Necソリューションイノベータ株式会社 クレンブテロールに結合する核酸分子およびその用途
WO2015045535A1 (ja) * 2013-09-25 2015-04-02 Necソリューションイノベータ株式会社 ラクトパミンに結合する核酸分子およびその用途
WO2015122484A1 (ja) * 2014-02-13 2015-08-20 ウシオ電機株式会社 大麻成分の抽出方法、大麻成分の検査用デバイス及び大麻成分の検査方法
JPWO2015122484A1 (ja) * 2014-02-13 2017-03-30 ウシオ電機株式会社 大麻成分の抽出方法、大麻成分の検査用デバイス及び大麻成分の検査方法
JP2017514128A (ja) * 2014-04-15 2017-06-01 セザンヌ ソシエテ パ アクシオンス シンプリフィエ クロモグラニンaを検出するための免疫アッセイ法および抗体
WO2016104549A1 (ja) * 2014-12-24 2016-06-30 ウシオ電機株式会社 蛍光標識された抗体可変領域を含むポリペプチドを含む抗原結合タンパク質を用いた蛍光免疫測定方法
JP2016121919A (ja) * 2014-12-24 2016-07-07 ウシオ電機株式会社 蛍光標識された抗体可変領域を含むポリペプチドを含む抗原結合タンパク質を用いた蛍光免疫測定方法
JP2016191587A (ja) * 2015-03-31 2016-11-10 シスメックス株式会社 温度判定方法、標的ペプチドの検出方法および温度判定試薬
JP2018522819A (ja) * 2015-05-11 2018-08-16 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. ペプチド模倣化合物を中和するインフルエンザウイルス
WO2016208466A1 (ja) * 2015-06-22 2016-12-29 ウシオ電機株式会社 検出対象物質の検出方法
WO2017010381A1 (ja) * 2015-07-10 2017-01-19 ウシオ電機株式会社 N末端標識剤、これを用いた蛍光標識タンパク質及びその製造方法
WO2017038926A1 (ja) * 2015-09-03 2017-03-09 国立大学法人東京工業大学 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体
JP2021141892A (ja) * 2015-12-04 2021-09-24 国立大学法人 東京大学 リガンド蛍光センサータンパク質とその使用
JP7098196B2 (ja) 2015-12-04 2022-07-11 国立大学法人 東京大学 リガンド蛍光センサータンパク質とその使用
US11630106B2 (en) 2017-05-19 2023-04-18 Philip Morris Products S.A. Diagnostic test for distinguishing the smoking status of a subject
WO2020026733A1 (ja) * 2018-07-30 2020-02-06 国立大学法人東京工業大学 蛍光標識抗体又は抗体断片
WO2020246495A1 (ja) 2019-06-05 2020-12-10 国立大学法人東京工業大学 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法

Also Published As

Publication number Publication date
KR20140084266A (ko) 2014-07-04
IN2014CN03968A (ja) 2015-10-23
JP5817838B2 (ja) 2015-11-18
KR101603456B1 (ko) 2016-03-14
US20140329228A1 (en) 2014-11-06
JP6070769B2 (ja) 2017-02-01
CN103917872B (zh) 2016-05-18
JP2015193631A (ja) 2015-11-05
EP2775305A1 (en) 2014-09-10
CN103917872A (zh) 2014-07-09
CA2854432A1 (en) 2013-05-10
EP2775305A4 (en) 2015-06-24
JPWO2013065314A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6070769B2 (ja) 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定キット
Peltomaa et al. Homogeneous quenching immunoassay for fumonisin B1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein
JP5043237B2 (ja) 蛍光免疫測定方法
Jameson et al. Fluorescence polarization/anisotropy in diagnostics and imaging
JP5949890B2 (ja) 蛍光標識された抗体可変領域を含むポリペプチドを含む抗原結合タンパク質を用いた蛍光免疫測定方法
JP2022543618A (ja) 多重化のための化学発光化合物
JP2024124545A (ja) 蛍光偏光免疫分析法および蛍光標識物質
JP6983419B2 (ja) 抗原検出又は測定用キット
JP2022509200A (ja) 反応性ペプチド標識付け
Jeong et al. Synthesis of Quenchbodies for one-pot detection of stimulant drug methamphetamine
WO2017010381A1 (ja) N末端標識剤、これを用いた蛍光標識タンパク質及びその製造方法
WO2017038926A1 (ja) 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体
WO2020246495A1 (ja) 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法
JP2008298610A (ja) リン酸化タンパク質免疫測定用試薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541635

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2854432

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012846408

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147013914

Country of ref document: KR

Kind code of ref document: A