WO2017038926A1 - 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体 - Google Patents

抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体 Download PDF

Info

Publication number
WO2017038926A1
WO2017038926A1 PCT/JP2016/075620 JP2016075620W WO2017038926A1 WO 2017038926 A1 WO2017038926 A1 WO 2017038926A1 JP 2016075620 W JP2016075620 W JP 2016075620W WO 2017038926 A1 WO2017038926 A1 WO 2017038926A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
antibody
fluorescent
antigen
variable region
Prior art date
Application number
PCT/JP2016/075620
Other languages
English (en)
French (fr)
Inventor
上田 宏
熙陳 鄭
金華 董
亮二 阿部
Original Assignee
国立大学法人東京工業大学
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, ウシオ電機株式会社 filed Critical 国立大学法人東京工業大学
Publication of WO2017038926A1 publication Critical patent/WO2017038926A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • the present invention relates to a method for fluorescently labeling an antibody using a nucleotide binding site of the antibody, and a labeled antibody for fluorescent immunoassay that is fluorescently labeled by the method.
  • a method has been developed in which a fluorescent molecule is bound to the N-terminal part of an antibody, whereby the binding of an antigen can be detected by a change in fluorescence (see Patent Documents 1 and 2).
  • An antibody that binds a fluorescent molecule used in this technique and whose fluorescence intensity changes due to antigen binding is called Quenchbody (Q-body (registered trademark)).
  • Q-body registered trademark
  • the conventional methods are not limited to these examples, and there are problems in that it takes time and effort to synthesize an antibody to which a fluorescent molecule is bound, and the amount of synthesis is low. This is because a step of introducing an amino acid having a fluorescent molecule bound thereto into the N-terminal portion of the antibody using a cell-free translation system is necessary for the synthesis.
  • N-terminus of the antibody may be modified after being translated into a protein, and there is a restriction that a label cannot be applied to the N-terminus after modification.
  • the present invention provides a method for producing a Q-body that is an antibody whose fluorescence intensity changes due to antigen binding by photochemical modification using nucleotide binding sites present in the variable regions of many antibodies, and obtained The purpose is to provide a Q-body.
  • Q-body is a fluorescence that is located in the vicinity of a site with many tryptophan residues (hereinafter referred to as an antigen pocket) that exists from the antigen-binding site of the antibody to the inside of the variable region when no antigen is bound to the antibody.
  • the antigen is detected by utilizing the fact that the dye becomes fluorescent when the antigen is bound or is more quenched and the fluorescence intensity changes.
  • Q-body uses a genetic recombination technique to label the amino acid in the peptide added to the N-terminus of the light chain variable region and / or heavy chain variable region of the antibody with a fluorescent dye. It was over.
  • the present inventors have examined a method for producing Q-body more simply, utilizing the fact that an indole group binds to a nucleotide binding site (NBS) present in the variable region of an antibody by photochemical modification, It was found that it can be labeled with a fluorescent dye. By using this method, antibody variable regions prepared in advance could be easily labeled with a fluorescent dye without using a genetic recombination technique.
  • NSS nucleotide binding site
  • the present inventors have found that the antigen can be detected with higher sensitivity than the conventional Q-body, and have completed the present invention.
  • the present invention is as follows.
  • R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof.
  • a labeled antibody for fluorescent immunoassay in which a compound for labeling a nucleotide binding site (NBS) of an antibody in which butyric acid (IBA) and a fluorescent group are bound is conjugated to a nucleotide binding site in the antibody.
  • the fluorescent group may be rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, EVOblue and
  • the labeled antibody for fluorescent immunoassay according to [1] which is at least one selected from the group consisting of these derivatives.
  • R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to An indole represented by a C10 heteroaryl group, an arylene group, an ether group, an ester group, a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group, and combinations thereof.
  • a method for producing a labeled antibody for fluorescent immunoassay comprising a step of causing a photocrosslinking reaction between nucleotide binding sites and conjugating the compound with an antibody.
  • the fluorescent group includes rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy, EVOblue, and The production method of [5], which is at least one selected from the group consisting of these derivatives.
  • the method according to [6], wherein the fluorescent group includes at least one selected from the group consisting of tetramethylrhodamine, rhodamine 110, and ATTO655 (registered trademark).
  • a method for detecting an antigen comprising contacting a labeled antibody for fluorescent immunoassay according to any one of [1] to [4] with an antigen, and measuring a change in fluorescence intensity.
  • the reagent for fluorescent immunoassay of the present invention uses a pre-synthesized antibody, and a nucleotide binding site that is a site in the vicinity of an antigen pocket that is not subjected to post-translational modification by ultraviolet irradiation in a short time in a short time. Since it can be specifically modified by a quencher, it can be applied to any antibody. Therefore, it is easy to obtain the antibody as a material, and genetic analysis is not necessary. As a result, it becomes possible to simplify the production of an antibody capable of detecting the binding of an antigen by a change in fluorescence and to improve the production efficiency.
  • a nucleotide binding site labeling compound containing a fluorescent dye or a quencher binds to a nucleotide binding site close to the antigen pocket. Therefore, compared to the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, the fluorescent dye or quencher is located closer to the antigen pocket and easily enters the antigen pocket. It becomes easier to be quenched when not. Therefore, since the change in fluorescence intensity when the antigen is bound is larger than when using the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, the antigen is measured with higher sensitivity. be able to.
  • the present invention relates to a fluorescent immunoassay antibody labeled with a fluorescent dye, which is used in a method for measuring a test substance, which is an antigen contained in a test sample, using an antigen-antibody reaction using an antibody labeled with a fluorescent dye. And a fluorescent immunoassay antibody labeled with a fluorescent dye.
  • a fluorescent dye is bound by a photochemical modification method or the like via an indole group having affinity for a nucleotide binding site (NBS) of the antibody.
  • NBS nucleotide binding site
  • the antibody light chain variable region is not particularly limited as long as it contains an amino acid sequence specific to the antibody light chain variable region encoded by exons of the V region and J region of the antibody light chain gene.
  • An arbitrary amino acid sequence may be further added to the N-terminal and / or C-terminal side of the amino acid sequence specific to the light chain variable region.
  • the amino acid sequence specific to the antibody light chain variable region is preferably an amino acid sequence in which the 35th amino acid is tryptophan in the Kabat numbering system.
  • a polypeptide containing an antibody light chain variable region only needs to contain an antibody light chain variable region, and can include an antibody light chain and a peptide consisting of any amino acid sequence in the antibody light chain.
  • the chain variable region can be an antibody light chain constant region (C ⁇ ) or a polypeptide further having a hinge portion. Among them, a polypeptide having an antibody light chain variable region with C ⁇ is preferred. Depending on the antigen to be detected, a polypeptide comprising an antibody light chain variable region capable of recognizing the antigen can be appropriately prepared.
  • the antibody heavy chain variable region is not particularly limited as long as it contains an amino acid sequence specific to the antibody heavy chain variable region encoded by exons of the V region, D region, and J region of the antibody heavy chain gene.
  • an arbitrary amino acid sequence may be added to the N-terminal and / or C-terminal side of the amino acid sequence specific to the antibody heavy chain variable region.
  • the amino acid sequence specific to the antibody heavy chain variable region is an amino acid sequence in which the 36th, 47th, or 103rd amino acid is tryptophan in the Kabat numbering system. preferable.
  • the polypeptide including the antibody heavy chain variable region only needs to contain the antibody heavy chain variable region, and can include an antibody heavy chain or a peptide consisting of any amino acid sequence in the antibody heavy chain.
  • a polypeptide having an antibody heavy chain constant region (CH1) added to the chain variable region and a hinge region or Fc region can be used, and a polypeptide having CH1 added to the antibody heavy chain variable region is preferred.
  • a polypeptide containing an antibody heavy chain variable region capable of recognizing the antigen can be appropriately prepared.
  • the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region form a complex, and the amino acids that form a complex in the antibody light chain variable region and the antibody heavy chain variable region, respectively.
  • the peptide containing the sequence is bound thereto.
  • a peptide that forms a complex in addition to the antibody constant region (CH1 and C ⁇ , etc.), one that forms a dimer can be imparted to the antibody light chain variable region and the other can be imparted to the antibody heavy chain variable region. It is also possible to select two types of proteins that interact to contribute to the formation of these complexes.
  • a complex consisting of a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region, which specifically binds to an antigen, is called an antibody.
  • the complex since the complex has the property of an antibody that binds to an antigen, it can also be called an antigen-binding protein.
  • the antibodies of the present invention include VH + VL type antibodies, scFv type antibodies (single chain antibody: single chain variable fragment), Fab type antibodies, F (ab ′) type 2 antibodies, complete type antibodies (complete antibodies), etc. Including.
  • the antibody of the present invention is not limited as long as it comprises a polypeptide containing an antibody light chain variable region and a polypeptide containing an antibody heavy chain variable region as components and forms a complex. As long as the function of the antibody is not impaired, in addition to the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region, it may further contain a peptide, protein, lipid, metal or other compound as a constituent element. .
  • the antibody of the present invention may be a structure that can function as a combination of the polypeptides, and the presence or absence of a chemical bond between the polypeptides is not particularly problematic.
  • the bond include a disulfide bond between the polypeptides, a bond formed using a cross-linking agent, and the like. These bonds may be used in combination in a single complex. Among these, a disulfide bond can be preferably exemplified.
  • the antibody of the present invention preferably forms a complex in which the polypeptides are close to each other. A polypeptide containing an antibody light chain variable region containing a peptide having such a function and an antibody heavy chain variable region A complex comprising the polypeptide comprising is preferred.
  • the antibody light chain constant region and the antibody heavy chain constant region interact with each other to make the antibody light chain variable region and the antibody heavy chain variable region closer to each other, thereby forming a strong antigen-binding pocket.
  • a polypeptide comprising an antibody light chain variable region and an antibody light chain constant region and a polypeptide comprising an antibody heavy chain variable region and an antibody heavy chain constant region are disulfide bonds.
  • coupling 1 and Fab type antibody is a molecule of the antibody protein, one 2 Fab type antibody has been bound by disulfide bonds through a hinge F (ab ') 2 type antibodies or intact antibodies are preferred.
  • the polypeptide consisting of the antibody light chain variable region and the antibody light chain constant region is a polypeptide containing the antibody light chain variable region
  • the polypeptide consisting of the antibody heavy chain variable region and the antibody heavy chain constant region is anti-antibody.
  • the antibody of the present invention may be a VH + VL type antibody or scFv type antibody (single chain antibody: single chain variable region fragment) comprising an antibody light chain variable region and an antibody heavy chain variable region.
  • VH + VL antibody, scFv antibodies and Fab type antibody consists polypeptide one comprising a polypeptide with one antibody heavy chain variable region comprising an antibody light chain variable region, F (ab ') 2 type antibodies and full
  • the somatic antibody consists of two polypeptides containing an antibody light chain variable region and two polypeptides containing an antibody heavy chain variable region.
  • the complex part comprising the antibody light chain variable region and the antibody heavy chain variable region is labeled with one fluorescent dye.
  • a single label for example, Fab type single label
  • the complex part composed of the antibody light chain variable region and the antibody heavy chain variable region may be labeled with two fluorescent dyes, may be labeled with the same type of fluorescent dye, or another type of fluorescent dye. It may be labeled with a dye.
  • the complex part composed of the antibody light chain variable region and the antibody heavy chain variable region may be labeled with two dyes, one fluorescent dye and one quencher (quenching dye) for the fluorescent dye.
  • a fluorescent dye for example, Fab type same color double label
  • quencher quenching dye
  • FIG. 1 shows the antibody structure as an antibody pattern.
  • FIG. 1 shows the structures of VH + VL type antibody, scFv type antibody, Fab type antibody, F (ab ′) type 2 antibody and complete type antibody.
  • the complex part consisting of the antibody light chain variable region and the antibody heavy chain variable region of each type of antibody is a single label labeled with one dye.
  • a polypeptide containing an antibody light chain variable region a polypeptide containing an antibody heavy chain variable region, an antibody that is a complex composed of these polypeptides, its constituents, etc. are known chemical synthesis. It can be prepared using a method, a gene recombination technique, a method for degrading antibody molecules with proteolytic enzymes, and the like. As a complete antibody, a monoclonal antibody produced by a hybridoma can be used as it is. Further, Fab-type antibodies and scFv-type antibodies can be obtained by degrading complete antibodies with proteolytic enzymes such as papain and pepsin. In addition, antibodies may be prepared by gene recombination techniques.
  • a recombinant vector is prepared by introducing DNA containing a base sequence encoding such a polypeptide into a suitable expression vector, so that bacteria, yeast, insects, animal and plant cells
  • the target polypeptide can be expressed by an expression system using the above as a host or a cell-free translation system.
  • a target polypeptide in a cell-free translation system for example, in a reaction solution in which nucleotide triphosphates and various amino acids are added to a cell-free extract such as E. coli, wheat germ, rabbit reticulocyte, etc. Of the polypeptide can be expressed.
  • a polypeptide containing the antibody light chain variable region or a polypeptide containing the antibody heavy chain variable region may be added with a tag such as a ProX tag, a FLAG tag, or a His tag. It can be used for purification and the like.
  • the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region thus obtained can form a complex in an appropriate solvent before and after labeling with a fluorescent dye.
  • An example of forming a complex by bonding with a disulfide bond or a crosslinking agent can be given.
  • the gene encoding the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region is co-expressed in an E.
  • the crosslinking agent may be any compound that can crosslink and bond polypeptides together. Examples thereof include aldehydes (for example, glutaraldehyde), carbodiimides, imide esters, and the like. It can be obtained and used in a conventional manner.
  • the complex of the present invention can also be prepared by cleaving an antibody with an enzyme or the like. For example, by treating the antibody with papain or pepsin, an Fab type antibody or F (ab ′) 2 Type antibodies can also be produced.
  • the antibody labeled with the fluorescent dye of the present invention is designed so that the presence or absence of fluorescence and the fluorescence intensity change when the antibody binds to the antigen, compared to when the antibody does not bind to the antigen. ing. That is, when the labeled antibody is not bound to the antigen, the fluorescent dye used for labeling is quenched (quenched) and does not emit fluorescence, or is in a state of generating fluorescence of a specific wavelength, and the antigen is bound to the antibody. In some cases, the fluorescence generation state of the fluorescent dye changes.
  • a fluorescent dye that has been in a quenched state when the antibody and the antigen are not bound to emit fluorescence when the antibody and the antigen are bound, or emits fluorescence when the antibody and the antigen are not bound.
  • the wavelength of the fluorescence generated by the binding of the fluorescent dye and the antibody to the antigen shifts.
  • antibodies include antibodies that cause a change in fluorescence intensity due to a quencher (quenching dye), and antibodies that change the emission state of the fluorescence dye due to fluorescence resonance energy transfer (FRET). That is, in the present invention, an antibody that can change the fluorescence intensity when an antigen as a detection target substance and an antibody against the detection target substance form a complex is used.
  • the concentration of the antigen to be detected and the fluorescence intensity of the fluorescent dye have a positive correlation
  • the concentration of the antigen to be detected and the fluorescence intensity of the fluorescent dye have a positive correlation
  • the antigen can be detected using as an indicator that the concentration of the antigen as the detection target substance in the test sample and the fluorescence intensity emitted when the antibody binds to the antigen are positively correlated.
  • the antigen concentration to be detected and the fluorescence intensity of the fluorescent dye have a negative correlation
  • the antigen concentration to be detected and the fluorescence intensity of the fluorescent dye have a negative correlation. It is called an antibody.
  • the antigen can be detected by using as an indicator that the concentration of the antigen as the detection target substance in the test sample and the fluorescence intensity emitted when the antibody binds to the antigen have a negative correlation.
  • fluorescently labeled antibodies that use a tryptophan residue present in the VH region of the antibody as a quencher (quenching dye) can be mentioned.
  • tryptophan (W) residues at the 36th, 47th, and 103rd positions of the antibody VH region (according to the Kabat numbering system), and these tryptophan residues act as quenchers ( Patent No. 5043237).
  • W tryptophan residues at the 36th, 47th, and 103rd positions of the antibody VH region (according to the Kabat numbering system)
  • these tryptophan residues act as quenchers ( Patent No. 5043237).
  • the fluorescent dye When an antibody labeled with a fluorescent dye binds to an antigen, the fluorescent dye is located in or near the antigen pocket, so that the fluorescent dye is located near the tryptophan residue and interacts with the tryptophan residue to fluoresce. Designed to quench the dye. That is, when the fluorescently labeled antibody is not
  • the antigen When the antigen is bound to the antibody, the three-dimensional structure of the antibody changes, the quencher and the fluorescent dye of the fluorescently labeled antibody are separated and do not interact, the quench is released, and fluorescence is emitted. By measuring this fluorescence, the presence of the antigen can be detected, and the antigen can also be quantified by the fluorescence intensity.
  • the antigen concentration is measured using an antibody having a positive correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye, or when detecting the antigen, the more the antigen bound to the antigen-binding protein, the more the fluorescence intensity becomes. To increase.
  • the complex of the antigen and antibody acts as a quencher on the fluorescent dye, and the fluorescent dye is further quenched to generate a fluorescent dye.
  • the fluorescence intensity of the fluorescence to be weakened.
  • the fluorescent dye used to label the antibody is located in the antigen-binding pocket of the antibody and is located closer to the tryptophan of the heavy chain variable region, resulting in stronger interaction with tryptophan and quenching. Is done.
  • both fluorescent dyes enter the antigen-binding pocket of the antibody, causing an interaction between the two fluorescent dyes, and the quenching effect between the fluorescent dyes (H-dimer formation) ) Is obtained.
  • the antibody is labeled using two fluorescent dyes, the two fluorescent dyes are different fluorescent dyes, and a donor dye and an energy acceptor (acceptor) that serve as an energy donor (donor) for fluorescence resonance energy transfer.
  • the orientation of both fluorescent dyes ie the energy donor and the energy acceptor, changes from the energy emitted by the energy donor to the energy acceptor.
  • Fluorescence resonance energy transfer no longer occurs, and the fluorescence intensity of the generated fluorescence is weakened.
  • An antibody comprising an antibody light chain variable region polypeptide and an antibody heavy chain variable region polypeptide, wherein the antibody light chain variable region polypeptide and the antibody heavy chain variable region polypeptide are labeled with one or two fluorescent dyes
  • FRET fluorescence resonance energy transfer
  • the antigen concentration is measured using an antibody having a negative correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye, or when the antigen is detected, the more antigen bound to the antigen binding protein, the more The generated fluorescence is quenched and the fluorescence intensity decreases. That is, when the antibody binds to the antigen to be detected to form a complex, the antigen-antibody complex becomes a quencher of the fluorescent dye, and the antigen concentration in the liquid phase and the fluorescence intensity of the fluorescent dye Are negatively correlated, and when the complex of antigen and antibody is formed, the fluorescent dye is more strongly quenched, thereby reducing the fluorescence intensity.
  • An example of an antibody having a negative correlation between the antigen concentration and the fluorescence intensity of the fluorescent dye is a monoclonal antibody produced by hybridoma A-04.
  • the polypeptide containing the antibody light chain variable region and the polypeptide containing the antibody heavy chain variable region constituting the antibody of the present invention may be those derived from a monoclonal antibody. That is, a polypeptide containing an antibody light chain variable region of a monoclonal antibody produced by the hybridoma using a antigen to be tested as an immunogen using an antigen as an immunogen, and an antibody heavy chain variable region produced by the hybridoma Polypeptides containing can be utilized. In addition, a monoclonal antibody produced by the hybridoma can be used as a complete antibody.
  • DNA encoding the antibody light chain variable region and DNA encoding the antibody heavy chain variable region are obtained from the hybridoma, and the polypeptide and antibody heavy chain containing the antibody light chain variable region are used as recombinant proteins using the DNA.
  • Antibodies consisting of a polypeptide containing a chain variable region can also be produced.
  • an antibody comprising a polypeptide containing an antibody light chain variable region (VL) and a polypeptide containing an antibody heavy chain variable region (VH) is labeled with one or two fluorescent dyes. Trademark).
  • VL antibody light chain variable region
  • VH antibody heavy chain variable region
  • NBS nucleotide binding site
  • the antibody is labeled with a fluorescent dye by a binding method to produce an antibody for fluorescence immunoassay (Q-body).
  • the nucleotide binding site in the variable region of the antibody is formed by four aromatic amino acids of the light chain variable region and the heavy chain variable region.
  • the four aromatic amino acids are tyrosine or phenylalanine at position 42 of the light chain variable region, tyrosine or phenylalanine at position 103 of the light chain variable region, tyrosine at position 103 of the heavy chain variable region, and position 118 of the heavy chain variable region. It is tryptophan (position is numbered IMGT® (numbered by the international International ImmunoGeneTics database) (Alves, N, Jet et al., Biomaterials, 34, 5700-5710 (2013)).
  • the nucleotide binding site of an antibody is located near the antigen pocket to which the antigen binds.
  • the fluorescent dye may be bound to the antibody via an indole group having affinity for the nucleotide binding site.
  • a fluorescent dye is bound to indolebutyric acid (IBA) to prepare a compound for labeling the nucleotide binding site of the antibody, the compound for labeling the nucleotide binding site and the antibody are mixed, and the antibody is prepared by a photochemical modification method.
  • IBA indolebutyric acid
  • An indole group may be bonded to the nucleotide binding site. Further, even if not using a photochemical modification method, both can be bound by the interaction between the nucleotide binding site and the indole group.
  • a fluorescent dye to be bonded to a compound for labeling a nucleotide binding site is also called a fluorescent group.
  • 1 molecule of the nucleotide binding site labeling compound may have one fluorescent dye or a plurality of fluorescent dyes. Moreover, you may have one fluorescent dye and one quencher.
  • a labeling pattern when a compound for labeling a nucleotide binding site having one fluorescent dye is bound to a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region of an antibody is called a single label, and two fluorescent dyes are The labeling pattern in the case where the compound for labeling a nucleotide binding site is bound to a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region is called a double label.
  • the labeling pattern when a compound for labeling a nucleotide binding site having one fluorescent dye and one quencher is bound to a complex part consisting of an antibody light chain variable region and an antibody heavy chain variable region of the antibody is fluorescence + quencher. This is called a char double label.
  • FIG. 2 shows each labeling pattern when a Fab type antibody is used as the antibody.
  • NBS represents a nucleotide binding site
  • IBA represents indolebutyric acid.
  • each label pattern of a single label, the same color double label, a different color double label, and a fluorescence + quencher double label is shown.
  • the distance between the fluorescent dye and indolebutyric acid can be adjusted by the presence of a linker between indolebutyric acid and the fluorescent dye.
  • a linker between indolebutyric acid and the fluorescent dye.
  • there is one linker there is one fluorescent dye that binds to the nucleotide binding site labeling compound.
  • two fluorescent dyes or one fluorescent dye and 1 fluorescent dye can be added to the nucleotide binding site labeling compound by branching the linker. Two quenchers can be combined. Binding of indolebutyric acid and the fluorescent dye can be performed by a known chemical synthesis method.
  • the fluorescent dye or quencher of the compound for labeling the nucleotide binding site is hydrophobic. It is located in a certain antigen pocket or in the vicinity of the antigen pocket and is structurally stabilized. As a result, the tryptophan constituting the antigen pocket and the fluorescent dye come close to each other, and the fluorescent dye is quenched. In addition, when there are a plurality of fluorescent dyes, they gather in the antigen pocket or in the vicinity thereof, and therefore are quenched by the interaction of fluorescent dyes such as H-dimer formation. Further, in the case of a combination of a fluorescent dye and a quencher, the fluorescent dye and the quencher are collected in the antigen pocket or in the vicinity thereof, so that the fluorescent dye is quenched by the quencher.
  • the antibody is an scFv type antibody.
  • NBS nucleotide binding site
  • the fluorescent dye of the compound for labeling the nucleotide binding site is located within the nucleotide binding site of the antibody. And quenched.
  • the fluorescent dye is released from the nucleotide binding site, the quench is released, and fluorescence is emitted.
  • a nucleotide binding site labeling compound containing a fluorescent dye or a quencher binds to a nucleotide binding site close to the antigen pocket. Therefore, compared to the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, since the fluorescent dye or quencher is located closer to the antigen pocket, the antigen is more likely to enter the antigen pocket. The quenching effect when not bonded is increased. Therefore, since the change in fluorescence intensity when the antigen is bound is larger than when using the labeled antibody described in Japanese Patent No. 5043237 and International Publication No. 2013/065314, the antigen is measured with higher sensitivity. be able to.
  • the length from the nucleotide binding site of the nucleotide binding site labeling compound to the fluorescent dye or quencher so that the fluorescent dye is located in or near the antigen pocket Need to be adjusted.
  • the length from the indole group moiety bound to the nucleotide binding site in the compound for labeling the nucleotide binding site to the fluorescent dye or quencher may be adjusted by the length of the linker.
  • linker a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to C10 heteroaryl group, arylene group, ether group
  • a linker group selected from the group consisting of ester groups, PEG groups, sulfide groups, amide groups, ketone groups, sulfamide groups and combinations thereof can be used.
  • Examples of the compound for labeling a nucleotide binding site in which a fluorescent dye and indolebutyric acid are combined and a compound in which one fluorescent dye is combined include the following compounds.
  • F is a fluorescent dye
  • R is a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, C4 to C10 cycloalkyl group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to C4
  • Examples of the compound for labeling a nucleotide binding site, in which a fluorescent dye and indolebutyric acid are combined, and the compound in which two fluorescent dyes are combined include the following compounds.
  • F1 and F2 are fluorescent dyes
  • F1 and F2 may be the same type of fluorescent dyes or different types of fluorescent dyes
  • R, R ′ and R ′′ are independently Substituted or unsubstituted alkyl, alkenyl, alkynyl, C4 to C10 cycloalkyl, C4 to C10 heterocyclyl, C4 to C10 aryl, C4 to C10 heteroaryl, arylene, ether, ester
  • Compound for binding site (NBS) labeling is represented by a PEG group, a sulfide group, an amide group, a ketone group, a sulfamide group,
  • Examples of the compound for labeling a nucleotide binding site in which a fluorescent dye and indolebutyric acid are combined and in which one fluorescent dye and one quencher are combined include the following compounds.
  • F is a fluorescent dye
  • Q is a quencher
  • R, R ′ and R ′′ are independently substituted or unsubstituted alkyl, alkenyl, alkynyl, C4 to C10 cycloalkyl Group, C4 to C10 heterocyclyl group, C4 to C10 aryl group, C4 to C10 heteroaryl group, arylene group, ether group, ester group, PEG group, sulfide group, amide group, ketone group, sulfamide group and combinations thereof
  • NBS nucleotide binding site
  • IBA indolebutyric acid
  • fluorescent dyes used for fluorescent labeling of antibodies rhodamine, coumarin, oxazine, carbopyronine, cyanine, pyromesene, naphthalene, biphenyl, anthracene, phenanthrene, pyrene, carbazole, Cy
  • EVOblue-based fluorescent dyes and derivatives of the fluorescent dyes.
  • a rhodamine-based fluorescent dye refers to a fluorescent dye having a rhodamine skeleton.
  • TAMRA carbocytetremethlrhodamine
  • CR6G carbboxyrhodamine 6G: Carboxyrhodamine 6G
  • ATTO655 trade name
  • CR110 carboxyrhodamine 110
  • Rhodamine Green trade name
  • BODIPY FL trade name
  • BODIPY 493/503 trade name
  • 4 4-difluoro-1,3,5,7-tetramethyl-4-bora-3a, 4a-diaza-s-indancene-8-propionicacid
  • BODIPY R6G trade name
  • the combination of TAMRA and TAMRA is particularly preferable for the same color double label, and the combination of TAMRA and CR110 and the combination of TAMRA and ATTO 655 are particularly preferable for the different color double label.
  • Some fluorescent dyes have polarity sensitivity that changes the fluorescence intensity according to the polarity (M. Renard et al., J. Mol. Biol. (2002) 318, 429-442).
  • IANBD, CNBD, Acrylodan, 5-IAF and the like can be mentioned.
  • the binding of the antigen shields the fluorescent dye from the solvent and further reduces the chance of the fluorescent dye contacting the quencher. The quench progresses.
  • the fluorescent dye having polarity sensitivity as described above is excluded, and the antigen is measured or detected by the quench principle not based on polarity sensitivity.
  • quenching dyes examples include quenching dyes having a basic skeleton such as NBD: 7-nitrobenzofurazan, DABCYL, BHQ, ATTO, QXL, QSY, Cy, Lowa Black, IRDYE, and derivatives of the quenching dyes.
  • NBD NBD
  • DABCYL BHQ-1 (trademark), BHQ-2 (trademark), BHQ-3 (trademark), ATTO540Q (trademark), ATTO580Q (trademark), ATTO612Q (trademark), QXL490 (trademark), QXL520 (TM), QXL570 (TM), QXL610 (TM), QXL670 (TM), QXL680 (TM), QSY-35 (TM), QSY-7 (TM), QSY-9 (TM), QSY-21 ( (Trademark), Cy5Q (trademark), Cy7Q (trademark), Lowa Black FQ TM, LowaBlack RQ (trademark), IRDYE QC-1 (trademark) and the like can be used.
  • NBD is preferable.
  • examples of combinations of fluorescent dyes and quenchers of antibodies whose labeling pattern is fluorescence + quencher double label include a combination of TAMRA and NBD.
  • the linkage between the compound for labeling the nucleotide binding site and the nucleotide binding site of the antibody via the indole group is performed using a photochemical modification method.
  • a compound for labeling a nucleotide binding site and an antibody may be mixed and irradiated with ultraviolet light having a central wavelength of 254 nm to cause a photocrosslinking reaction between the compound and the antibody.
  • an ultraviolet light source having a peak wavelength of 254 nm may be used.
  • a UV irradiation apparatus such as a UV crosslinker CL-1000 series (UVP LLC) may be used.
  • the amount of light to be irradiated depends on the amount of the compound to be treated, but is, for example, about 0.5 to 10 J / cm 2 on the irradiated surface. Further, the required irradiation time is not limited, but it may be irradiated for several tens of seconds to several minutes.
  • the present invention relates to a nucleotide binding site labeling compound having one fluorescent dye, a nucleotide binding site labeling compound having two fluorescent dyes, and a nucleotide binding site labeling compound having one fluorescent dye and one quencher. Is included.
  • the present invention includes antibodies (V + L type antibody, scFv type antibody, Fab type antibody, F (ab ') type 2 antibody and complete type antibody) labeled with these nucleotide binding site labeling compounds.
  • An antibody labeled with a nucleotide binding site labeling compound is also referred to as a labeled antibody for fluorescent immunoassay in which a nucleotide binding site (NBS) labeling compound is conjugated to a nucleotide binding site in the antibody.
  • conjugate the binding of a compound for labeling a nucleotide binding site having a fluorescent dye or a quencher to an antibody.
  • An antibody labeled with a compound for labeling a nucleotide binding site may be combined with a compound for labeling a nucleotide binding site and an antibody.
  • Conjugation includes binding by a covalent bond and non-covalent binding by an interaction such as electrostatic interaction.
  • An antibody whose fluorescence intensity decreases when a complex of a polypeptide comprising the antigen and the antibody heavy chain variable region and a polypeptide comprising the antibody light chain variable region is formed and the fluorescent dye is more strongly quenched. When used, the fluorescence intensity decreases as the antigen binds to the antibody.
  • a calibration curve in advance by bringing a test sample containing a labeled antibody for fluorescence immunoassay and a known amount of antigen into contact with each other and measuring a change in fluorescence at that time.
  • a control sample containing a plurality of known amounts of antigen may be prepared, and a calibration curve may be created by simultaneously measuring the control sample. The amount of antigen in the test sample can be calculated from the measured fluorescence and calibration curve.
  • a light source or a measurement device usually used for fluorescence detection can be used. Any light source may be used as long as it can irradiate an excitation light wavelength. Specific examples include a mercury lamp, a xenon lamp, an LED (light emitting diode), and a laser beam. At this time, excitation light having a specific wavelength can be obtained using an appropriate fluorescent filter.
  • a fluorescence measuring apparatus for example, a fluorescence microscope equipped with a light source of excitation light and its irradiation system, a fluorescence image acquisition system, and the like can be used.
  • MF20 / FluoroPoint-Light manufactured by Olympus
  • FMBIO- III manufactured by Hitachi Software Engineering
  • the fluorescence detection may be a fluorescence spectrum detection or a fluorescence intensity detection at a specific wavelength.
  • the excitation light to be irradiated and the wavelength of the fluorescence to be measured and / or detected can be appropriately selected according to the type of fluorescent dye used.
  • the fluorescent dye an excitation light wavelength of 480 nm and a fluorescence wavelength of 530 nm are used
  • TAMRA an excitation light wavelength of 530 nm and a fluorescence wavelength of 580 nm
  • ATTO655 an excitation light wavelength of 630 nm and fluorescence are used.
  • a wavelength of 680 nm may be used.
  • a combination of excitation light wavelength and fluorescence wavelength that can measure the antigen concentration and / or detect the antigen may be appropriately selected and used.
  • the detection target substance in the detection of an antigen using the labeled antibody for fluorescent immunoassay of the present invention is an antigen that can be detected by an antigen-antibody reaction, and the antigen includes a polypeptide containing an antibody heavy chain variable region and the above antibody light chain variable.
  • the antigen is not particularly limited as long as it is an antigen specifically recognized by a polypeptide containing a region, and examples thereof include proteins, peptides, carbohydrates, lipids, glycolipids, low molecular compounds, and the like. That is, in the method of the present invention, the antigen to be detected is an antigen or antibody that can be measured by an immunoassay, that is, an assay utilizing an antigen-antibody reaction.
  • the antigen may be any antigen that can produce an antibody, and examples thereof include proteins, polysaccharides, lipids, glycolipids and the like. Protozoa, fungi, bacteria, mycoplasma, rickettsia, chlamydia, viruses, animal tissues and the like containing these substances can also be detected. In addition, chemical substances including low-molecular compounds such as narcotics, explosives, agricultural chemicals, fragrances, and pollutants can also be measured.
  • cannabinoids such as tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THC-A), cannabinol (CBN), and cannabidiol (CBD), amphetamine, methamphetamine, morphine, Stimulants and narcotics such as heroin and codeine; mold toxins such as aflatoxin, sterigmatocystin, neosolaniol, nivalenol, fumonisin, ochratoxin, and endophyte-producing toxin; sex hormones such as testosterone and estradiol; clenbuterol and ractopamine Additives illegally used in animal feeds; harmful substances such as PCB, gossypol, histamine, benzpyrene, melamine, acrylamide, dioxin; acetamiprid, imidacloprid, chlorfenapyr,
  • Tetrahydrocannabinol has double bond regioisomers, ⁇ 8 -THC and ⁇ 9 -THC.
  • Reference to THC includes ⁇ 8 -THC and ⁇ 9 -THC.
  • the above substances also include derivatives of each substance.
  • test sample is also not limited, biological fluid samples such as blood, serum, plasma, urine, saliva, spinal fluid, culture supernatant, cell extract, fungal extract, waste water, animal tissue derived substances such as allergen, Examples include a sample obtained by wiping with a paper or the like a substance to which a drug or the like may adhere.
  • the sample may be detected by suspending, dissolving or immersing the sample in a physiological saline or a buffer as appropriate.
  • the present invention includes a method for detecting an antigen using the above labeled antibody for fluorescent immunoassay.
  • the present invention also includes a kit for detecting an antigen containing the above labeled antibody for fluorescent immunoassay.
  • Example 1 Preparation of Qbody by Photocrosslinking Method (1) Preparation of 5 (6) -TAMRA-C8-IBA (TAMRA-IBA) (i) Synthesis of Boc-C8-NH 2
  • Diaminooctane (Sigma-Aldrich) (500 mg, 3.5 mmol) was dissolved in 5 mL of Methylene chloride, and a Boc anhydride (151 mg, 0.69 mmol, 1 mL in CH 2 Cl 2 ) solution was added dropwise at 4 ° C. After standing at 4 ° C. for 30 minutes, the reaction was continued overnight at room temperature. After the reaction, the solvent was dried by an evaporator, washed with a saturated aqueous Na 2 CO 3 solution, and dehydrated with NaSO 4 to obtain Boc-C8-NH 2 (formula I).
  • Boc-C8-IBA (30 mg) was mixed with TFA (200 ⁇ L) on ice, allowed to stand for 15 minutes, and dried by an evaporator to obtain NH 2 —C8-IBA (formula III).
  • TCEP-immobilized TCEP disulfide reducing gel and Zeba spin desalting column were obtained from Thermo Pierce. His Mag Sepharose Ni was obtained from GE Healthcare.
  • Anti-DYKDDDDK tag antibody magnetic beads, DYKDDDDK (SEQ ID NO: 1) peptide, Supersep PAGE gel and silver staining kit were obtained from Wako Pure Chemical Industries.
  • the Nanosep centrifugal-3K ultrafiltration device was obtained from Pall Corporation.
  • the ligated gene was amplified with primers KTMAgeBack and pROXHis6Bamfor (5'-GTCGGATCCGCCATGATGATGATGATGATGATAAC-3 ') (SEQ ID NO: 4), then digested with AgeI and BamHI, then digested with AgeI and EagI Ligation with pUQ1H (KTM219) gave pSQ (KTM219).
  • the resulting plasmid was prepared with the PureYield plasmid miniprep system and the entire sequence of the coding region was identified.
  • SEQ ID NO: 5 The amino acid sequence of the scFv with a tag in pSQ (KTM219) is shown in SEQ ID NO: 5.
  • SEQ ID NO: 5 the sequence represented by GGSHHHHHHGGSDYKDDDDK (SEQ ID NO: 6) is the tag portion sequence.
  • the mixed solution of anti-BGP antibody and TAMRA-IBA was irradiated with UV light having a wavelength of 254 nm for 2 minutes and 40 seconds so as to obtain a light amount of 1 J / cm 2 on the irradiated surface.
  • the irradiation apparatus used was UVP CL-1000 (manufactured by UVP LLC).
  • the protein was purified using His-tag, the buffer was exchanged by Ultrafiltration (membrane filter), and the protein was further purified using Flag-tag.
  • FIG. 5 shows the use of an anti-BGP antibody (scFv) labeled with TAMRA by the amber suppression method (Ellman J et al., (1991) Methods Enzymol. 202: 301-36; International Publication No. 2011/061944). Is the result of In the experiment whose results are shown in FIG. 5, a TAMRA-labeled anti-BGP antibody (scFv) with or without a spacer was reacted with BGP-C7.
  • scFv anti-BGP antibody
  • the spacer sequences of G3S (1), G3S (2) and G3S (3) were GGGS (SEQ ID NO: 8), GGGSGGGS (SEQ ID NO: 9) and GGGSGGGSGGGS (SEQ ID NO: 10), respectively.
  • the fluorescence intensity increased as the concentration of BGP-C7 increased.
  • the antibody (scFv) labeled by the photocrosslinking method showed a significant increase in fluorescence as compared with the antibody (scFv) labeled by the amber suppression method. This result indicates that the antibody (scFv) labeled by the photocrosslinking method is a labeled antibody for fluorescence immunoassay capable of analyzing the presence of BGP-C7 with high sensitivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Peptides Or Proteins (AREA)

Abstract

抗体の可変領域内部に存在するヌクレオチド結合部位を利用して、光化学修飾法により、抗原の結合により蛍光強度が変化する蛍光標識抗体を作製する方法、及び得られた蛍光標識抗体の提供。 下記式(1):(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物が抗体内のヌクレオチド結合部位にコンジュゲートされている蛍光免疫測定用標識抗体。

Description

抗体のヌクレオチド結合部位(NBS)を利用して蛍光標識された抗体
 本発明は、抗体のヌクレオチド結合部位を利用して、抗体を蛍光標識する方法、及び該方法により蛍光標識された蛍光免疫測定用標識抗体に関する。
 抗体のN末端部分に蛍光分子を結合させることで、抗原の結合を蛍光の変化により検出できる手法が開発されている(特許文献1及び特許文献2を参照)。この手法に用いる蛍光分子を結合させた、抗原の結合により蛍光強度が変化する抗体をQuenchbody(Q-body(登録商標))と呼ぶ。その開示においては、一例として無細胞翻訳系を用いて、蛍光分子を結合させたアミノ酸を抗体のN末端部分に導入することで、蛍光分子を結合させた抗体の合成を行っている。
 これらの例に限らず、従来の手法においては、蛍光分子を結合させた抗体を合成する際に、手間と時間が掛かり、合成量も低いという問題点があった。それは、その合成に無細胞翻訳系を用いて蛍光分子を結合させたアミノ酸を抗体のN末端部分に導入する、という工程が必要となるためである。
 また、抗体のN末端はタンパク質に翻訳された後に修飾を受ける可能性があり、もし修飾を受けた後はN末端に標識を適用できないという制約がある。
 一方、別の抗体特異的化学修飾法として紫外線照射による光化学修飾(UVクロスリンク)によって抗体のNBS(Nucleotide binding site)とインドール酪酸(IBA, indolebutyric acid)誘導体を結合させる方法が報告されている(特許文献3及び非特許文献1を参照)。抗体中の主にリジン残基に存在するアミノ基をターゲットとしてランダムに標識する従来の方法では抗体の機能を損ねることもあったが、光化学修飾を利用する方法では抗体の機能を損ねることなく、部位特異的に機能基(ビオチン、蛍光色素、iRGDペプチドや抗癌剤など)を結合することができるようになると報告されている。
特許第5043237号公報 国際公開第2013/065314号 国際公開第2014/152801号
Alves,N,J et al.,Biomaterials, 34, 5700~5710(2013)
 抗原の結合により蛍光強度が変化する抗体であるQ-bodyを合成するためには、組換え抗体技術の利用が一般的であった。本発明は、多くの抗体の可変領域内部に存在するヌクレオチド結合部位を利用して、光化学修飾法により、抗原の結合により蛍光強度が変化する抗体であるQ-bodyを作製する方法、及び得られたQ-bodyの提供を目的とする。
 本発明者らは、特許第5043237号公報及び国際公開第2013/065314号に記載のQ-bodyを開発し、抗原検出に利用していた。Q-bodyは抗体に抗原が結合していないときに、抗体の抗原結合部位から可変領域内部にわたり存在するトリプトファン残基の多い部位(以下抗原ポケットと呼ぶ)の近傍に位置しクエンチされている蛍光色素が、抗原が結合したときに蛍光を発するようになるか、あるいはよりクエンチされ、蛍光強度が変化することを利用して抗原を検出する。
 Q-bodyは遺伝子組換えの手法を利用して、抗体の軽鎖可変領域及び/又は重鎖可変領域のN末端に付加したペプチド中のアミノ酸を蛍光色素により標識するため、製造にコストと時間がかかっていた。
 本発明者らは、より簡便にQ-bodyを製造する方法について検討を行い、抗体の可変領域に存在するヌクレオチド結合部位(NBS)にインドール基が光化学修飾により結合することを利用し、抗体を蛍光色素で標識できることを見出した。この方法を利用することにより遺伝子組換えの手法によることなくあらかじめ作製された抗体可変領域を蛍光色素で簡便に標識することができた。
 また、抗体のヌクレオチド結合部位と抗原ポケットは近接して存在するため、光化学修飾を利用して製造したQ-bodyは、抗原が結合していないときによりクエンチされ、その結果、抗原が結合したときの蛍光強度の変化が大きくなり、従来のQ-bodyよりも、より高感度で抗原を検出することができることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
 [1]
 下記式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物が抗体内のヌクレオチド結合部位にコンジュゲートされている蛍光免疫測定用標識抗体。
[2] 前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、[1]の蛍光免疫測定用標識抗体。
[3] 前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、[2]の蛍光免疫測定用標識抗体。
[4] 抗体がscFv型抗体、Fab型抗体及び完全型抗体からなる群から選択される、[1]~[3]のいずれかの蛍光免疫測定用標識抗体。
 [5] 蛍光免疫測定用標識抗体の製造方法であって、
 下記式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物と抗体を含む溶液に、中心波長254nmの紫外線を照射することにより、前記化合物のインドール基と抗体のヌクレオチド結合部位の間で光架橋反応を生じさせ、前記化合物と抗体をコンジュゲートする工程を含む、蛍光免疫測定用標識抗体の製造方法。
[6] 前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、[5]の製造方法。
[7] 前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、[6]の製造方法。
[8] 抗体がscFv型抗体、Fab型抗体及び完全抗体からなる群から選択される、[5]~[7]のいずれかの製造方法。
[9] [1]~[4]のいずれかの蛍光免疫測定用標識抗体と抗原を接触させ、蛍光強度の変化を測定することを含む、抗原の検出方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-174075号の開示内容を包含する。
 本発明の蛍光免疫測定用試薬は、あらかじめ合成された抗体を用いて、短工程で短時間のうちに紫外線照射により翻訳後修飾を受けない抗原ポケット近傍の部位であるヌクレオチド結合部位を蛍光色素やクエンチャーにより特異的に修飾することができるので、あらゆる抗体に適用可能になる。そのため、材料である抗体の入手が容易になり、遺伝子解析も不要となる。これにより、抗原の結合を蛍光の変化により検出できる抗体の作成の簡便化と生産の効率化が可能になる。
 さらに、本発明においては、蛍光色素又はクエンチャーを含むヌクレオチド結合部位標識用化合物が抗原ポケットに近接したヌクレオチド結合部位に結合する。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体に比べ、蛍光色素又はクエンチャーはより抗原ポケットに近い位置に存在し、抗原ポケット内に入り易いので、抗原が結合していないときによりクエンチされやすくなる。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体を用いた場合よりも、抗原が結合したときの蛍光強度の変化が大きくなるので、より高感度で抗原を測定することができる。
本発明の蛍光標識抗体の構造のパターンを示す図である。 本発明の蛍光標識抗体の標識パターンを示す図である。 本発明の蛍光標識抗体の蛍光が変化する原理を示す図である。 本発明の蛍光標識抗体とBGPペプチドとを反応させ、蛍光を検出した結果を示す図である。 アンバーサプレッション法で蛍光標識した蛍光標識抗体とBGPペプチドとを反応させ、蛍光を検出した結果を示す図である。
 以下、本発明を詳細に説明する。
 本発明は、蛍光色素で標識した抗体を用いて抗原抗体反応を利用して、検査試料中に含まれる抗原である検査対象物質を測定する方法において用いる、蛍光色素で標識した蛍光免疫測定用抗体を作製する方法、及び蛍光色素で標識した蛍光免疫測定用抗体である。
 本発明の抗体を作製する方法においては、蛍光色素を抗体のヌクレオチド結合部位(Nucleotide binding site; NBS)に対して親和性を有するインドール基を介して光化学修飾法等により結合させる。
1.本発明で用いる抗体
 本発明においては、抗体として、抗体軽鎖可変領域(VL)を含むポリペプチドと抗体重鎖可変領域(VH)を含むポリペプチドの複合体を用いる。
 抗体軽鎖可変領域は、抗体軽鎖遺伝子のV領域及びJ領域のエクソンによりコードされる抗体軽鎖可変領域に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、上記抗体軽鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであってもよい。また、上記抗体軽鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第35番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましい。抗体軽鎖可変領域を含むポリペプチドは、抗体軽鎖可変領域を含有していればよく、抗体軽鎖や、抗体軽鎖に任意のアミノ酸配列からなるペプチドを含むことができ、例えば、抗体軽鎖可変領域に、抗体軽鎖定常領域(Cκ)や、さらにヒンジ部分を付与したポリペプチドとすることができ、中でも抗体軽鎖可変領域にCκを付与したポリペプチド等が好ましい。検出対象の抗原に応じて、抗原を認識し得る抗体軽鎖可変領域を含むポリペプチドを適宜作製することができる。
 抗体重鎖可変領域は、抗体重鎖遺伝子のV領域、D領域、及びJ領域のエクソンによりコードされる抗体重鎖可変領域に特異的なアミノ酸配列を含むものであれば特に制限されるものではなく、上記抗体重鎖可変領域に特異的なアミノ酸配列のN末端及び/又はC末端側に、さらに任意のアミノ酸配列が付加されたものであってもよい。また、上記抗体重鎖可変領域に特異的なアミノ酸配列としては、カバット(Kabat)の番号付け系で第36番目、第47番目、又は第103番目のアミノ酸がトリプトファンであるアミノ酸配列であることが好ましい。抗体重鎖可変領域を含むポリペプチドは、抗体重鎖可変領域を含有していればよく、抗体重鎖や、抗体重鎖に任意のアミノ酸配列からなるペプチドを含むことができ、例えば、抗体重鎖可変領域に、抗体重鎖定常領域(CH1)や、さらにヒンジ部分やFc領域を付与したポリペプチドとすることができ、中でも抗体重鎖可変領域にCH1を付与したポリペプチド等が好ましい。検出対象の抗原に応じて、抗原を認識し得る抗体重鎖可変領域を含むポリペプチドを適宜作製することができる。
 抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドは、複合体を形成することが好ましく、抗体軽鎖可変領域及び抗体重鎖可変領域に、それぞれ複合体を形成するアミノ酸配列を含むペプチドが結合されたものであれば特に制限されるものではない。複合体を形成するペプチドとしては、上記抗体定常領域(CH1やCκなど)の他、2量体を形成する一方を抗体軽鎖可変領域に他方を抗体重鎖可変領域に付与することもできる。また、相互作用してこれらの複合体形成に寄与する2種類のタンパク質を選択することもできる。
 本発明において、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる、抗原と特異的に結合する複合体を抗体と呼ぶ。また、該複合体は抗原に結合するという抗体が有する特性を有しているので、抗原結合タンパク質と呼ぶこともできる。本発明の抗体は、後述のVH+VL型の抗体、scFv型抗体(一本鎖抗体:single chain variable fragment)、Fab型抗体、F(ab')2型抗体、完全体型抗体(完全抗体)等を含む。
 本発明の抗体は、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドとを構成要素として含み、複合体を形成するものであればよく、本発明の蛍光標識された抗体の機能を損なわない限りは、前記抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドに加え、さらにペプチドやタンパク質、脂質、金属その他化合物等を構成要素として含んでもよい。
 また、本発明の抗体は、前記ポリペプチド同士が組み合わさって一体として機能し得る構造体であればよく、前記ポリペプチド間の化学結合の有無は特に問題とされない。前記結合としては、前記ポリペプチド同士による、ジスルフィド結合や、架橋剤を用いて形成された結合等を挙げることができ、これらの結合は1つの複合体において複数組み合わせて使用されてもよい。これらの中でもジスルフィド結合を好適に例示することができる。本発明の抗体は前記ポリペプチド同士が互いに近い距離となる複合体を形成することが好ましく、このような機能をもつペプチドを含む、抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる複合体が好ましい。抗体分子において抗体軽鎖定常領域と抗体重鎖定常領域はその相互作用により抗体軽鎖可変領域と抗体重鎖可変領域をより近い距離とし、強固な抗原結合ポケットを形成する補助的役割を果たしている。このことから、本発明の抗原結合タンパク質としては、抗体軽鎖可変領域と抗体軽鎖定常領域からなるポリペプチドと、抗体重鎖可変領域と抗体重鎖定常領域からなるポリペプチドが、ジスルフィド結合で結合した1分子の抗体タンパク質であるFab型抗体や、Fab型抗体2つがヒンジを介してジスルフィド結合で結合したF(ab')2型抗体や、完全型抗体が好ましい。この場合、抗体軽鎖可変領域と抗体軽鎖定常領域からなるポリペプチドは、抗体軽鎖可変領域を含むポリペプチドであり、抗体重鎖可変領域と抗体重鎖定常領域からなるポリペプチドは、抗体重鎖可変領域を含むポリペプチドである。また、本発明の抗体は、抗体軽鎖可変領域と抗体重鎖可変領域とからなるVH+VL型抗体又はscFv型抗体(一本鎖抗体:single chain variable region fragment)であってもよい。
 VH+VL型抗体、scFv型抗体及びFab型抗体は、抗体軽鎖可変領域を含むポリペプチド1つと抗体重鎖可変領域を含むポリペプチド1つからなり、F(ab')2型抗体及び完全体型抗体は、抗体軽鎖可変領域を含むポリペプチド2つと抗体重鎖可変領域を含むポリペプチド2つからなる。
 本発明の抗体軽鎖可変領域を含むポリペプチドと抗体重鎖可変領域を含むポリペプチドからなる抗体において、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分が1つの蛍光色素で標識されている場合をシングルラベル(例えば、Fab型シングルラベル等)と呼ぶ。また、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分が2つの蛍光色素で標識されていてもよく、同じ種類の蛍光色素で標識されていてもよいし、別の種類の蛍光色素で標識されていてもよい。本発明において、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分が2つの蛍光色素により標識され、両方の蛍光色素が同じ種類である場合を同色ダブルラベル(例えば、Fab型同色ダブルラベル)と呼び、異なる場合を異色ダブルラベル(例えば、Fab型異色ダブルラベル)と呼ぶ。さらに、抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分を、1つの蛍光色素と該蛍光色素に対する1つのクエンチャー(消光色素)の2つの色素で標識してもよく、このような抗体を蛍光+クエンチャーダブルラベルと呼ぶ。
 図1に抗体の構造を抗体パターンとして示す。図1においては、VH+VL型抗体、scFv型抗体、Fab型抗体、F(ab')2型抗体及び完全型抗体の構造を示す。各型の抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分は1つの色素で標識されているシングルラベルである。
 本発明においては、抗体軽鎖可変領域を含むポリペプチドや、抗体重鎖可変領域を含むポリペプチドや、これらのポリペプチドからなる複合体である抗体や、その構成要素等は、公知の化学合成法、遺伝子組換え技術、抗体分子のタンパク質分解酵素による分解方法等を用いて調製することができる。完全型抗体は、ハイブリドーマが産生したモノクローナル抗体をそのまま用いることができる。また、完全型抗体をパパインやペプシン等のタンパク質分解酵素で分解することにより、Fab型抗体やscFv型抗体を得ることができる。また、抗体を遺伝子組換え技術により調製してもよい。遺伝子組換え技術により前記ポリペプチドを調製する場合には、かかるポリペプチドをコードする塩基配列を含むDNAを好適な発現ベクターに導入して組換えベクターを作製し、バクテリア、酵母、昆虫、動植物細胞などを宿主として用いた発現系や、無細胞翻訳系により目的のポリペプチドを発現させることができる。無細胞翻訳系において目的のポリペプチドの発現を行う場合は、例えば、大腸菌、小麦胚芽、ウサギ網状赤血球等の無細胞抽出液に、ヌクレオチド3リン酸や各種アミノ酸を加えた反応液中で、目的のポリペプチドを発現させることができる。この際、抗体軽鎖可変領域を含むポリペプチドや、抗体重鎖可変領域を含むポリペプチドはProXタグやFLAGタグ、Hisタグ等のタグが付加されていてもよく、これらのタグはポリペプチドの精製等に利用することができる。このようにして得た抗体軽鎖可変領域を含むポリペプチドや、抗体重鎖可変領域を含むポリペプチド同士は、蛍光色素による標識の前後に、適当な溶媒中で複合体を形成させることができ、ジスルフィド結合又は架橋剤により結合させ、複合体を形成させる例を挙げることができる。例えば、前記抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドをコードする遺伝子を、大腸菌無細胞合成系で共発現後、4℃で16時間インキュベーションすることによりジスルフィド結合を形成させ複合体を形成することができる。また、大腸菌無細胞合成反応系にタンパク質ジスルフィドイソメラーゼやプロリンシストランスイソメラーゼなどの分子シャペロンを添加することによりジスルフィド結合を促進することができる。また、前記架橋剤としては、ポリペプチド同士を架橋し結合させうる化合物であればよく、例えば、アルデヒド類(例えば、グルタルアルデヒド)、カルボジイミド類、イミドエステル類など挙げることができ、適宜市販品を入手し常法により使用することができる。また、本発明の複合体は、抗体を酵素などで切断して作製することもでき、例えばパパインや、ペプシンを用いて抗体を処理することにより、それぞれFab型抗体や、F(ab’)2型抗体を作製することもできる。
 本発明の蛍光色素で標識された抗体は、抗体が抗原に結合したときに、抗体が抗原に結合していないときに対して、蛍光の発生の有無や、蛍光強度が変化するように設計されている。すなわち、標識抗体が抗原に結合していないときには、標識に用いた蛍光色素がクエンチ(消光)されて蛍光を発しないか、特定の波長の蛍光を発生する状態にあり、抗体に抗原が結合した場合に、蛍光色素の蛍光の発生状態が変化する。例えば、抗体と抗原が結合していない状態でクエンチ状態にあった蛍光色素が抗体と抗原が結合することにより蛍光を発するようになるか、あるいは抗体と抗原が結合していない状態で蛍光を発していた蛍光色素が抗体と抗原が結合することにより発生する蛍光の波長がシフトする。このような抗体として、クエンチャー(消光色素)により蛍光強度の変化が生じる抗体、蛍光共鳴エネルギー移動(FRET)により蛍光色素の発光状態が変化する抗体が挙げられる。すなわち、本発明においては、検出対象物質である抗原と該検出対象物質に対する抗体が複合体を形成したときの蛍光強度が変化し得る抗体を用いる。
 蛍光強度が変化し得る抗体として、(1)抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドからなる抗体が抗原と結合して複合体を形成したときにクエンチが解消されて蛍光強度が増加する抗体と(2)前記抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドからなる抗体が抗原と結合して複合体を形成したときに、該抗原と抗体の複合体が前記蛍光色素のクエンチャーとなり、該抗原と前記抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドの複合体が形成したときに前記蛍光色素がより強くクエンチされることにより蛍光強度が減少する抗体が挙げられる。前者の抗体を用いた場合、検出対象である抗原濃度と蛍光色素の蛍光強度が正の相関関係にあり、該抗体を検出対象である抗原濃度と蛍光色素の蛍光強度が正の相関関係にある抗体という。該抗体により、検査試料中の検出対象物質である抗原の濃度と前記抗体が抗原に結合したときに発する蛍光強度とが正の相関にあることを指標として、抗原を検出することができる。後者の抗体を用いた場合、検出対象である抗原濃度と蛍光色素の蛍光強度が負の相関関係にあり、該抗体を検出対象である抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体という。該抗体により、検査試料中の検出対象物質である抗原の濃度と前記抗体が抗原に結合したときに発する蛍光強度とが負の相関にあることを指標として、抗原を検出することができる。
 特に抗体のVH領域に存在するトリプトファン残基をクエンチャー(消光色素)として利用する蛍光標識抗体が挙げられる。抗体のVH領域の第36番目、第47番目、第103番目(Kabatの番号付け系による)にはトリプトファン(W)残基が存在し、これらのトリプトファン残基はクエンチャーとして作用している(特許第5043237号公報)。蛍光色素で標識した抗体が抗原に結合したときに、蛍光色素は抗原ポケット内に位置するか近傍に位置することにより蛍光色素がトリプトファン残基の近傍に位置しトリプトファン残基と相互作用して蛍光色素がクエンチするように設計されている。すなわち、該蛍光標識抗体は抗原に結合していない状態では、クエンチされており、蛍光を発しない。
 抗原濃度と蛍光色素の蛍光強度が正の相関関係にある抗体を用いた場合、抗体に抗原が結合すると、抗体の立体構造が変化し、トリプトファンの近傍に位置していた蛍光色素はトリプトファンから離れ、トリプトファンと相互作用しなくなり、クエンチが解除され、蛍光を発するようになる。さらに、抗体が2つの蛍光色素で標識されている場合、(おそらく両方の蛍光色素が抗体の抗原結合ポケットに入り込み、)2つの蛍光色素の間でも相互作用が生じ、蛍光色素間のクエンチング効果(H-dimer形成)が得られるが、抗体に抗原が結合すると、抗体の立体構造が変化し、2つの蛍光色素が離れ、クエンチング効果が消失する。すなわち、抗原が存在する場合、抗体と抗原が結合し、抗体の立体構造が変化し、蛍光色素のクエンチが解除され、蛍光を発するようになる。さらに、抗体が1つの蛍光色素と1つのクエンチャーで標識されている場合、抗原がない場合には蛍光色素とクエンチャーが相互作用し、クエンチャーにより蛍光色素がクエンチされる。抗体に抗原が結合すると、抗体の立体構造が変化し、クエンチャーと蛍光標識抗体の蛍光色素が離れて相互作用しなくなり、クエンチが解除され、蛍光を発するようになる。この蛍光を測定することにより、抗原の存在を検出することができ、また蛍光強度により抗原を定量することもできる。
 このように、抗原濃度と蛍光色素の蛍光強度が正の相関関係にある抗体を用いて抗原濃度を測定し、又は抗原を検出する場合、抗原結合タンパク質に結合する抗原が多くなるほど、蛍光強度が増加する。
 一方、抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体を用いた場合、抗原と抗体の複合体が蛍光色素にクエンチャーとして作用し、蛍光色素はさらにクエンチされ、蛍光色素が発生する蛍光の蛍光強度は弱くなる。この際、抗体の標識に用いられた蛍光色素は、抗体の抗原結合ポケット中に位置し、重鎖可変領域のトリプトファンとより近接した位置に存在し、トリプトファンとの相互作用がより強くなり、クエンチされる。抗体が2つの蛍光色素で標識されている場合、両方の蛍光色素が抗体の抗原結合ポケットに入り込み、2つの蛍光色素の間でも相互作用が生じ、蛍光色素間のクエンチング効果(H-dimer形成)が得られる。この際、2つの蛍光色素を用いて抗体を標識しており、2つの蛍光色素が異なる蛍光色素であり、蛍光共鳴エネルギー移動のエネルギー供与体(ドナー)となる供与体色素とエネルギー受容体(アクセプター)となる受容体色素の組み合わせとなる場合、抗体が抗原と結合したとき、両方の蛍光色素すなわちエネルギー供与体とエネルギー受容体の向きが変化し、エネルギー供与体が発するエネルギーからのエネルギー受容体への蛍光共鳴エネルギー移動(FRET)が生じなくなり、発生する蛍光の蛍光強度が弱くなる。すなわち、抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドからなり、前記抗体軽鎖可変領域ポリペプチドと抗体重鎖可変領域ポリペプチドが1つ又は2つの蛍光色素により標識されている抗体を用いて抗原を測定、検出する場合、トリプトファン残基によるクエンチング、蛍光色素間のクエンチングに加え、蛍光共鳴エネルギー転移(FRET)効果によるクエンチングの効果が得られ、クエンチがより大きくなる。蛍光色素は抗原と抗体の複合体と疎水的相互作用や静電的相互作用等により相互作用し、クエンチの程度が強くなる。
 このように、抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体を用いて抗原濃度を測定し、又は抗原を検出する場合、抗原結合タンパク質に結合する抗原が多くなるほど、蛍光色素から発生する蛍光がクエンチされ、蛍光強度が低下する。すなわち、前記抗体が検出対象の抗原と結合して複合体を形成したときに、抗原と抗体の複合体が前記蛍光色素のクエンチャーとなり、液相中の抗原濃度と上記蛍光色素の蛍光強度とが負の相関関係にあり、抗原と抗体の複合体が形成したときに前記蛍光色素がより強くクエンチされることにより蛍光強度が減少する。
 抗原濃度と蛍光色素の蛍光強度が負の相関関係にある抗体の例として、ハイブリドーマA-04が産生するモノクローナル抗体が挙げられ、該ハイブリドーマA-04は、2014年11月20日付で、独立行政法人製品評価技術基盤機構(NITE) 特許微生物寄託センター(NITE Patent Microorganisms Depository)(〒292-0818日本国 千葉県木更津市かずさ鎌足2-5-8 122号室)に受託番号NITE BP-01970(「識別の表示」は、「A-04」)で国際寄託されている。
 本発明の抗体を構成する抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドは、モノクローナル抗体由来のものを用いることができる。すなわち、検査対象物質である抗原を免疫原として用いて常法でモノクローナル抗体を産生するハイブリドーマを得て該ハイブリドーマが産生するモノクローナル抗体の抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドを利用することができる。また、前記ハイブリドーマが産生したモノクローナル抗体を完全体型抗体として用いることもできる。さらに、前記ハイブリドーマより、抗体軽鎖可変領域をコードするDNA及び抗体重鎖可変領域をコードするDNAを得て、該DNAを用いてリコンビナントタンパク質として、抗体軽鎖可変領域を含むポリペプチド及び抗体重鎖可変領域を含むポリペプチドからなる抗体を製造することもできる。
 本発明において抗体軽鎖可変領域(VL)を含むポリペプチドと抗体重鎖可変領域(VH)を含むポリペプチドからなり、1つ又は2つの蛍光色素により標識されている抗体をQ-body(登録商標)と呼ぶ。
2.光化学修飾法等による抗体の蛍光標識
 本発明においては、抗体の可変領域の内部に存在する、芳香族アミノ酸により形成されたヌクレオチド結合部位(Nucleotide binding site; NBS)を利用し、光化学修飾法等の結合方法により抗体を蛍光色素で標識し、蛍光免疫測定用抗体(Q-body)を作製する。
 抗体の可変領域中のヌクレオチド結合部位は、軽鎖可変領域と重鎖可変領域の4つの芳香族アミノ酸により形成されている。4つの芳香族アミノ酸は、軽鎖可変領域の位置42のチロシン又はフェニルアラニン、軽鎖可変領域の位置103のチロシン又はフェニルアラニン、重鎖可変領域の位置103のチロシン、及び重鎖可変領域の位置118のトリプトファンである(位置は、IMGT(登録商標)(the international ImmunoGeneTics database)の番号付による)(Alves,N,J et al.,Biomaterials, 34, 5700~5710(2013))。抗体のヌクレオチド結合部位は、抗原が結合する抗原ポケットの近傍に位置する。
 蛍光色素による抗体の標識は、ヌクレオチド結合部位に親和性を有するインドール基を介して抗体に蛍光色素を結合させればよい。具体的には、インドール酪酸(Indolebutyric acid; IBA)に蛍光色素を結合させ、抗体のヌクレオチド結合部位標識用化合物を作製し、該ヌクレオチド結合部位標識用化合物と抗体を混合し、光化学修飾法により抗体のヌクレオチド結合部位にインドール基を結合させればよい。また、光化学修飾法によらなくても、ヌクレオチド結合部位とインドール基の相互作用により両者は結合し得る。
 ヌクレオチド結合部位標識用化合物に結合させる蛍光色素を蛍光基ともいう。
 1分子のヌクレオチド結合部位標識用化合物は、1つの蛍光色素を有していてもよいし、複数の蛍光色素を有していてもよい。また、1つの蛍光色素と1つのクエンチャーを有していてもよい。1つの蛍光色素を有するヌクレオチド結合部位標識用化合物を抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分に結合させた場合の標識パターンをシングルラベルといい、2つの蛍光色素を有するヌクレオチド結合部位標識用化合物を抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分に結合させた場合の標識パターンをダブルラベルという。2つの蛍光色素が同じ種類である場合、同色ダブルラベルといい、2つの蛍光色素が異なる種類である場合、異色ダブルラベルという。さらに、1つの蛍光色素と1つのクエンチャーを有するヌクレオチド結合部位標識用化合物を抗体の抗体軽鎖可変領域と抗体重鎖可変領域からなる複合体部分に結合させた場合の標識パターンを蛍光+クエンチャーダブルラベルという。
 図2に抗体としてFab型抗体を用いた場合の各標識パターンを示す。図中、NBSはヌクレオチド結合部位を示し、IBAはインドール酪酸を示す。図には、シングルラベル、同色ダブルラベル、異色ダブルラベル及び蛍光+クエンチャーダブルラベルの各標識パターンを示してある。
 インドール酪酸と蛍光色素との間にはリンカーを存在させることにより、蛍光色素とインドール酪酸との間の距離を調節することができる。リンカーが1本である場合、ヌクレオチド結合部位標識用化合物に結合する蛍光色素は1つであるが、リンカーを分岐させることによりヌクレオチド結合部位標識用化合物に2つの蛍光色素あるいは1つの蛍光色素と1つのクエンチャーを結合させることができる。インドール酪酸と蛍光色素との結合は公知の化学合成法により行うことができる。
 ヌクレオチド結合部位標識用化合物を抗体に結合させた場合、ヌクレオチド結合部位標識用化合物の蛍光色素やクエンチャーは疎水的であるため、蛍光色素やクエンチャーは自発的に抗体内の疎水的な環境である抗原ポケット内に位置するか、あるいは抗原ポケットの近傍に位置するようになり、構造的に安定化する。この結果、抗原ポケットを構成しているトリプトファンと蛍光色素が近接し、蛍光色素がクエンチされる。また、蛍光色素が複数ある場合、それらが抗原ポケット内又はその近傍に集まるため、H-dimer形成等の蛍光色素どうしの相互作用によりクエンチされる。さらに、蛍光色素とクエンチャーの組合せの場合、蛍光色素とクエンチャーが抗原ポケット内又はその近傍に集まるために、クエンチャーにより蛍光色素がクエンチされる。
 抗原の結合により蛍光色素からの蛍光の強度が変化する原理を図3に示す。図では抗体がscFv型抗体の場合を示してある。インドール酪酸と蛍光色素が結合したヌクレオチド結合部位標識用化合物を抗体と混合するとインドール基がヌクレオチド結合部位(NBS)に結合し、ヌクレオチド結合部位標識用化合物の蛍光色素が抗体のヌクレオチド結合部位内に位置し、クエンチされる。抗原が抗体に結合すると、蛍光色素がヌクレオチド結合部位から離れクエンチが解除され、蛍光を発するようになる。
 本発明においては、蛍光色素又はクエンチャーを含むヌクレオチド結合部位標識用化合物が抗原ポケットに近接したヌクレオチド結合部位に結合する。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体に比べ、蛍光色素又はクエンチャーはより抗原ポケットに近い位置に存在するため、抗原ポケット内に入り易いので、抗原が結合していないときのクエンチ効果が大きくなる。そのため、特許第5043237号公報や国際公開第2013/065314号に記載の標識抗体を用いた場合よりも、抗原が結合したときの蛍光強度の変化が大きくなるので、より高感度で抗原を測定することができる。
 抗体の種類により、ヌクレオチド結合部位から抗原ポケットまでの距離には違いがある。従って、蛍光色素が抗原ポケット内又はその近傍に位置するように、ヌクレオチド結合部位と抗原ポケットまでの距離に応じて、ヌクレオチド結合部位標識用化合物のヌクレオチド結合部位から蛍光色素又はクエンチャーまでの長さを調節する必要がある。このためには、ヌクレオチド結合部位標識用化合物中のヌクレオチド結合部位に結合するインドール基部分から蛍光色素又はクエンチャーまでの長さをリンカーの長さにより調節すればよい。リンカーとしては、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基を用いることができる。
 蛍光色素とインドール酪酸を結合させたヌクレオチド結合部位標識用化合物であって、1つの蛍光色素を結合させた化合物としては、以下の化合物が挙げられる。
 下記式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、Fは蛍光色素であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光色素が結合した、抗体のヌクレオチド結合部位(NBS)標識用化合物。
 蛍光色素とインドール酪酸を結合させたヌクレオチド結合部位標識用化合物であって、2つの蛍光色素を結合させた化合物としては、以下の化合物が挙げられる。
 下記式(2):
Figure JPOXMLDOC01-appb-C000006
(式中、F1及びF2は蛍光色素であり、F1とF2は同じ種類の蛍光色素であっても、異なる種類の蛍光色素であってもよく、R、R’及びR’’は、独立に置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光色素が結合した、抗体のヌクレオチド結合部位(NBS)標識用化合物。
 蛍光色素とインドール酪酸を結合させたヌクレオチド結合部位標識用化合物であって、1つの蛍光色素と1つのクエンチャーを結合させた化合物としては、以下の化合物が挙げられる。
 下記式(3):
Figure JPOXMLDOC01-appb-C000007
(式中、Fは蛍光色素であり、Qはクエンチャーであり、R、R’及びR’’は、独立に置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光色素が結合した、抗体のヌクレオチド結合部位(NBS)標識用化合物。
 抗体の蛍光標識に用いる蛍光色素としては、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系の蛍光色素やその蛍光色素の誘導体を例示することができる。ここで、例えば、ローダミン系の蛍光色素とは、ローダミン骨格を有する蛍光色素をいう。具体的には、TAMRA(カルボキシテトラメチルローダミン:carbocytetremethlrhodamine)、CR6G(カルボキシローダミン6G:Carboxyrhodamine 6G)、ATTO655(商標名)、CR110(カルボキシローダミン110:carboxyrhodamine 110)(ローダミン110)、Rhodamine Green(商標名)、BODIPY FL(商標名)、4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 493/503(商標名)、4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indancene-8-propionicacid、BODIPY R6G(商標名)、4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 558/568(商標名)、4,4-difluoro-5-(2-thienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 564/570(商標名)、4,4-difluoro-5-styryl-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 576/589(商標名)、4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、BODIPY 581/591(商標名)、4,4-difluoro-5-(4-phenyl-1, 3-butadienyl)-4-bora-3a,4a-diaza-s-indancene-3-propionic acid、Cy3(商標名)、Cy3B(商標名)、Cy3.5(商標名)、Cy5(商標名)、Cy5.5(商標名)、EvoBlue10(商標名)、EvoBlue30(商標名)、MR121、ATTO 390(商標名)、ATTO 425(商標名)、ATTO 465(商標名)、ATTO488(商標名)、ATTO 495(商標名)、ATTO 520(商標名)、ATTO 532(商標名)、ATTO Rho6G(商標名)、ATTO 550(商標名)、ATTO 565(商標名)、ATTO Rho3B(商標名)、ATTO Rho11(商標名)、ATTO Rho12(商標名)、ATTO Thio12(商標名)、ATTO 610(商標名)、ATTO 611X(商標名)、ATTO 620(商標名)、ATTO Rho14(商標名)、ATTO 633(商標名)、ATTO 647(商標名)、ATTO 647N(商標名)、ATTO 655(商標名)、ATTO Oxa12(商標名)、ATTO 700(商標名)、ATTO 725(商標名)、ATTO 740(商標名)、Alexa Fluor 350(商標名)、Alexa Fluor 405(商標名)、Alexa Fluor 430(商標名)、Alexa Fluor 488(商標名)、Alexa Fluor 532(商標名)、Alexa Fluor 546(商標名)、Alexa Fluor 555(商標名)、Alexa Fluor 568(商標名)、Alexa Fluor 594(商標名)、Alexa Fluor 633(商標名)、Alexa Fluor 647(商標名)、Alexa Fluor 680(商標名)、Alexa Fluor 700(商標名)、Alexa Fluor 750(商標名)、Alexa Fluor 790(商標名)、Rhodamine Red-X(商標名)、Texas Red-X(商標名)、5(6)-TAMRA-X(商標名)、5TAMRA(商標名)、SFX(商標名)を挙げることができるが、中でも、Cy3、EvoBlue10、ローダミン系蛍光色素であるTAMRAやCR110、及びオキサジン系蛍光色素であるATTO655を特に好適に例示することができる。
 上記蛍光色素中、同色ダブルラベルに対しては、TAMRAとTAMRAの組合せが特に好ましく、異色ダブルラベルに対しては、TAMRAとCR110の組合せ及びTAMRAとATTO 655の組合せが特に好ましい。
 なお、蛍光色素によっては、極性に応じ蛍光強度を変化させる極性感受性を有するものがある(M. Renard et al., J. Mol. Biol. (2002) 318, 429-442)。例えば、IANBD、CNBD、Acrylodan、5-IAF等が挙げられる。これらの蛍光色素で標識した抗体を用いて蛍光クエンチングに基づく測定を行う場合、抗原が結合することにより蛍光色素が溶媒から遮蔽され、蛍光色素がクエンチャーと接触する機会が減少することによりさらにクエンチが進む。本発明においては、上記のような極性感受性を有する蛍光色素は除外され、極性感受性に基づかないクエンチの原理により抗原を測定し又は検出する。
 消光色素(クエンチャー)としては、NBD:7-nitrobenzofurazan、DABCYL、BHQ、ATTO、QXL、QSY、Cy、Lowa Black、IRDYE等を基本骨格とする消光色素やその消光色素の誘導体が挙げられる。具体的には、NBD、DABCYL、BHQ-1(商標)、BHQ-2(商標)、BHQ-3(商標)、ATTO540Q(商標)、ATTO580Q(商標)、ATTO612Q(商標)、QXL490(商標)、QXL520(商標)、QXL570(商標)、QXL610(商標)、QXL670(商標)、QXL680(商標)、QSY-35(商標)、QSY-7(商標)、QSY-9(商標)、QSY-21(商標)、Cy5Q(商標)、Cy7Q(商標)、Lowa Black FQ(商標)、LowaBlack RQ(商標)、IRDYE QC-1(商標)等を用いることできる。これらの中でも、NBDが好ましい。
 本発明の標識抗体のうち、標識パターンが蛍光+クエンチャーダブルラベルである抗体の蛍光色素とクエンチャーの組み合わせとして、例えば、TAMRAとNBDの組み合わせを挙げることができる。
 ヌクレオチド結合部位標識用化合物と抗体のヌクレオチド結合部位とのインドール基を介した結合は、光化学修飾法を利用して行う。具体的には、ヌクレオチド結合部位標識用化合物と抗体を混合し、中心波長254nmの紫外線を照射し、前記化合物と抗体の間で光架橋反応を生じさせればよい。
 光化学修飾法には、ピーク波長が254nmの紫外光光源を用いればよく、例えば、UVクロスリンカーCL-1000シリーズ(UVP LLC社)等のUV照射装置を用いることができる。
 照射する光量は、処理する化合物の量にもよるが、例えば、照射面で0.5~10J/cm2程度である。また、所要照射時間も限定されないが、数十秒~数分程度照射すればよい。
 本発明は、上記の1つの蛍光色素を有するヌクレオチド結合部位標識用化合物、2つの蛍光色素を有するヌクレオチド結合部位標識用化合物、及び1つの蛍光色素と1つのクエンチャーを有するヌクレオチド結合部位標識用化合物を包含する。
 さらに、本発明はこれらのヌクレオチド結合部位標識用化合物により標識された抗体(V+L型抗体、scFv型抗体、Fab型抗体、F(ab')2型抗体及び完全型抗体)を包含する。ヌクレオチド結合部位標識用化合物により標識された抗体をヌクレオチド結合部位(NBS)標識用化合物を抗体内のヌクレオチド結合部位にコンジュゲートされた蛍光免疫測定用標識抗体ともいう。
 なお、蛍光色素又はクエンチャーを有するヌクレオチド結合部位標識用化合物を抗体に結合させることをコンジュゲートするともいい、ヌクレオチド結合部位標識用化合物により標識された抗体をヌクレオチド結合部位標識用化合物と抗体とのコンジュゲートともいう。ここでコンジュゲートするとは共有結合により結合させることも、静電相互作用等の相互作用により非共有的に結合させることも含む。
3.蛍光免疫測定用標識抗体を用いた抗原の測定
 本発明の蛍光免疫測定用標識抗体と抗原を接触させ、抗原を接触させる前と接触させた後の蛍光色素が発する蛍光強度の変化を測定することにより、抗原を検出することができる。抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドからなる抗体が抗原と結合して複合体を形成したときにクエンチが解消されて蛍光強度が増加する抗体を用いた場合、抗原が抗体に結合することにより、蛍光強度は増加する。一方、抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドが抗原と結合して複合体を形成したときに、該抗原と抗体の複合体が前記蛍光色素のクエンチャーとなり、該抗原と前記抗体重鎖可変領域を含むポリペプチド及び抗体軽鎖可変領域を含むポリペプチドの複合体が形成したときに前記蛍光色素がより強くクエンチされることにより蛍光強度が減少する抗体を用いた場合、抗原が抗体に結合することにより、蛍光強度は減少する。
 この際、予め蛍光免疫測定用標識抗体と既知の量の抗原が含まれる被験試料を混合接触させ、その際の蛍光の変化を測定し、検量線を作成しておくことが好ましい。あるいは、検出を行う際に、複数の既知の量の抗原を含むコントロール試料を準備しておき、コントロール試料についても同時に測定を行い検量線を作成してもよい。測定された蛍光と検量線から被験試料中の抗原の量を算出することができる。
 本発明の蛍光免疫測定用標識抗体を用いた抗原の検出方法における蛍光の測定には、通常、蛍光検出に用いる光源や測定装置を用いることができる。光源としては励起光波長を照射できるものであればよく、具体的には水銀ランプ、キセノンランプ、LED(発光ダイオード)、レーザー光等が挙げられる。この際、適当な蛍光フィルターを用いて特定の波長の励起光を得ることができる。蛍光測定装置としては、例えば、励起光の光源及びその照射システム、蛍光画像取得システム等を備えた蛍光顕微鏡等を利用することができ、例えば、MF20/FluoroPoint-Light(オリンパス社製)やFMBIO-III(日立ソフトウェアエンジニアリング社製)等が挙げられる。また、光源、照射システム、測定システムを備えた小型で持ち運び可能な蛍光検出装置を用いてもよい。このような小型の装置を用いることにより、被験試料を採取して実験室に運んで測定することなく、採取現場で抗原を検出することが可能になる。なお蛍光の検出は、蛍光スペクトルの検出であっても、特定の波長の蛍光強度の検出であってもよい。
 また、本発明の蛍光免疫測定用標識抗体を用いた抗原の検出方法において、照射する励起光及び、測定及び/又は検出する蛍光の波長は、使用する蛍光色素の種類に応じて適宜選択すればよい。例えば蛍光色素にCR110を用いた場合は励起光波長480nmと蛍光波長530nmを用い、TAMRAを用いた場合は励起光波長530nmと蛍光波長580nmを用い、ATTO655を用いた場合は励起光波長630nmと蛍光波長680nmを用いればよい。また、2種類の異なる蛍光色素を用いる場合も、抗原濃度を測定及び/又は抗原を検出することができる、励起光波長及び蛍光波長の組み合わせを適宜選択して使用すればよい。
 本発明の蛍光免疫測定用標識抗体を用いた抗原の検出における検出対象物質は抗原抗体反応により検出し得る抗原であり、抗原としては、抗体重鎖可変領域を含むポリペプチド及び上記抗体軽鎖可変領域を含むポリペプチドにより特異的に認識される抗原であれば特に制限されず、例えば、タンパク質、ペプチド、糖質、脂質、糖脂質、低分子化合物等を挙げることができる。すなわち、本発明の方法において、検出対象物質である抗原はイムノアッセイ、すなわち抗原抗体反応を利用したアッセイで測定し得る抗原又は抗体である。抗原としては抗体を作製し得るものなら如何なる抗原でもよく、例えば、タンパク質、多糖類、脂質、糖脂質等が挙げられる。これらの物質を含む原生動物、真菌、細菌、マイコプラズマ、リケッチア、クラミジア、ウイルス、動物組織等も検出し得る。また、麻薬、爆薬、農薬、香料、公害物質等の低分子化合物を含む化学物質も測定対象となり得る。このような物質として、例えば、テトラヒドロカンナビノール(THC)、テトラヒドロカンナビノール酸(THC-A)、カンナビノール(CBN)、カンナビジオール(CBD)等のカンナビノイドと呼ばれる大麻成分、アンフェタミン、メタンフェタミン、モルヒネ、ヘロイン、コデインなどの覚せい剤や麻薬類;アフラトキシン、ステリグマトシスチン、ネオソラニオール、ニバレノール、フモニシン、オクラトキシン、エンドファイト産生毒素などのカビ毒;テストステロンやエストラジオールなどの性ホルモン;クレンブテロールやラクトパミンなどの飼料に不正に用いられる添加物;PCB、ゴシポール、ヒスタミン、ベンツピレン、メラミン、アクリルアミド、ダイオキシンなどの有害物質;アセタミプリド、イミダクロプリド、クロルフェナピル、マラチオン、カルバリル、クロチアニジン、トリフルミゾール、クロロタロニル、スピノサド、ランネート、メタミドホス、クロルピリホスなどの残留農薬;ビスフェノールAなどの環境ホルモンなどが挙げることができる。テトラヒドロカンナビノール(THC)には、二重結合の位置異性体があり、Δ8-THCとΔ9-THCがある。THCという場合、Δ8-THCもΔ9-THCも含まれる。上記の物質は各物質の誘導体も含む。
 検査試料も限定されず、血液、血清、血漿、尿、唾液、髄液等の生体由来体液試料、培養上清、細胞抽出液、菌体抽出液、廃水や、アレルゲン等の動物組織由来物質、麻薬等が付着している可能性がある物質を紙等で拭った試料等が挙げられる。
 本発明の検出は液系で行うので、上記試料は適宜生理食塩水や緩衝液に懸濁、溶解又は液浸させて検出すればよい。
 本発明は、上記の蛍光免疫測定用標識抗体を用いて抗原を検出する方法を包含する。
 さらに、本発明は上記の蛍光免疫測定用標識抗体を含む抗原を検出するためのキットも包含する。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1 光架橋法によるQbodyの調製
(1) 5(6)-TAMRA-C8-IBA(TAMRA-IBA)の作製
 (i) Boc-C8-NH2合成
Figure JPOXMLDOC01-appb-C000008
 Diaminooctane(Sigma-Aldrich)(500mg, 3.5mmol)をMethylene chloride 5mLに溶解させ、さらに4℃にてBoc anhydride(151mg, 0.69mmol, 1mL in CH2Cl2)溶液を滴下混合した。4℃で30分間放置後に、室温にて終夜反応を続けた。反応後エバポレーターにて溶媒を乾燥後に、飽和Na2CO3水溶液で洗浄し、NaSO4にて脱水することでBoc-C8-NH2(式I)を得た。
 (ii) Boc-C8-IBAの合成
Figure JPOXMLDOC01-appb-C000009
 Indole-3-butanoic acid, IBA(43mg, 0.24mmol)と1,1'-Carbonyldiimidazole, CDI(59mg, 0.36mmol)をanhydrous THF (150mL)で溶解させ、1.5h, 室温にて放置した後に、Boc-C8-NH2(119mg, 049mmol)を混合し、室温にて終夜反応させた。反応後にエバポレーターにて溶媒を乾燥後、酢酸エチルに溶かし、4% NaHCO3及び5% KHSO4にてそれぞれ洗浄を行い、NaSO4にて脱水し、エバポレーターにて乾燥させることでBoc-C8-IBA(式II)を得た。
 (iii) NH2-C8-IBAの合成
Figure JPOXMLDOC01-appb-C000010
 Boc-C8-IBA 30mgにTFA200μLを氷上で混合し15分間放置し、エバポレーターにより乾燥させることでNH2-C8-IBA(式III)を得た。
 (iv) 5(6)-TAMRA-C8-IBAの合成
Figure JPOXMLDOC01-appb-C000011
 20μL NH2-C8-IBA/DMSO(100mM)、20μL 5(6)-TAMRA-SE(Setareh biotech)/DMSO、40μLの100mM NaHCO3水溶液を1.5mLチューブに加え、氷上で混和することで反応させた。この溶液から高速液体クロマトグラフィー(HPLC)により合成物を分取し、乾燥させることで5(6)-TARMAR-C8-IBA(式IV)を得た。この乾燥物を所定の濃度となるようにDMSOに溶かした。
(2) 抗BGP(ヒトオステオカルシン:human Bone Gla Protein)抗体(scFv)の作製
(i) 材料
 KOD-Plus、T4 DNAポリメラーゼ及びLigation-high ligationキットは、東洋紡社から入手した。制限酵素及びE coli SHuffle T7 Express lysYは、New England Biolabs社から入手した。オリゴヌクレオチドは、Operon-Eurofins社から入手した。PureYield plasmid miniprepキットは、プロメガ社から入手した。タロン金属親和性樹脂とタロンディスポーザブル重力カラムは、タカラバイオ社から入手した。限外濾過装置(遠心フィルターチューブ Ultra-4、MWCO 3 k)はMillipore社から入手した。TCEP固定化TCEPジスルフィド還元ゲル及びZebaスピン脱塩カラム(MWCO 7 k)はThermo Pierce社から入手した。His Mag Sepharose Niは、GEヘルスケアから入手した。アンチDYKDDDDKタグ抗体磁気ビーズ、DYKDDDDK(配列番号1)ペプチド、Supersep PAGEゲル及び銀染色キットは、和光純薬工業から入手した。Nanosep centrifugal-3K限外濾過装置は、ポール・コーポレーション社から入手した。
 (ii) scFv型Q-体遺伝子の構築
 抗BGP抗体の重鎖可変領域及び軽鎖可変領域をコードするDNAを含むFab型Q-body発現ベクターpUQ1H(KTM219)(Abe R. et al., SCientific Reports, 4: 4640)をEcoRV及びBamHIで消化し、T4 DNAポリメラーゼで平滑化した後、ライゲーションを行いL鎖フラグメントを削除した。H鎖フラグメントを削除するために、AgeI及びEagIによって消化し、Ligation-high ligationキットを用いてAgeI及びEagIで消化したKTM219のscFvフラグメントとライゲーションした。次いで、プライマーKTMAgeBack(5'-GGAATTCACCGGTCAAGTAAAGCTGCAGCAGTC-3')(配列番号2)及びT7term(5'-TGCTAGTTATTGCTCAGCGG-3')(配列番号3)により、鋳型としてのPROX-FL92.1amber(KTM219)及びKOD plus DNAポリメラーゼを用いて増幅した。Flagタグを挿入するために、ライゲーションした遺伝子を、プライマーKTMAgeBackとpROXHis6Bamfor(5'-GTCGGATCCGCCATGATGATGATGATGATGATAAC-3')(配列番号4)で増幅し、次いでAgeI及びBamHIにより消化し、その後AgeI及びEagIで消化したpUQ1H(KTM219)とライゲーションし、pSQ(KTM219)を得た。得られたプラスミドをPureYield plasmid miniprepシステムで調製し、コード領域の全体の配列を同定した。
 (iii) 合成及びタンパク質の精製
 SHuffle T7 Express lysY細胞をPSQ(KTM219)で形質転換し、LBA培地(100μg/mLのアンピシリンを含むLB培地)及び1.5%寒天中で30℃、16時間培養した。単一コロニーをとり、OD600が0.9に達するまで、4mLのLBA培地中で30℃で増殖させ、1.6mlを100mlのLBA培地に接種した。細胞をOD600が0.6に達するまで30℃で培養し、0.4mMのガラクトピラノシドイソプロピルを添加した。溶液をさらに16℃で16時間インキュベートし、次いで遠心分離(8,000×gで、20分間、4℃)した。ペレットを10mlのTalon洗浄緩衝液(50mMリン酸、0.3 M塩化ナトリウム(NaCl)、5mMイミダゾール、pH7.4)中に懸濁し、次いで、超音波処理した。遠心分離(8,000×gで、20分間、4℃)後、上清を25℃で30分間、回転ホイール上で0.2 mLのTalon金属樹脂と共にインキュベートした。ビーズを、8mLのTalon洗浄緩衝液で3回洗浄した。4mLのTalon溶出緩衝液(50mMリン酸塩、0.3M NaCl、0.5Mイミダゾール、pH7.4)を添加し30分間25℃でインキュベーションした後、溶離液をTalonディスポーザブル重力カラムを使用して回収した。溶離液を限外濾過装置にかけ、PBST(10mMリン酸塩、137mM塩化ナトリウム、2.7mM塩化カリウム、0.05%Tween 20、pH7.4)で平衡化し、250μLに濃縮した。タンパク質の発現及び精製は、SDS-PAGE分析を用いて確認し、タンパク質濃度を、標準として様々な濃度のウシ血清アルブミン(BSA)を用いて、ImageJソフトウェア(国立衛生研究所、ベセスダ、MD)を用いて決定した。
 pSQ(KTM219)中のタグのついたscFvのアミノ酸配列を配列番号5に示す。配列番号5中、GGSHHHHHHGGSDYKDDDDK(配列番号6)で表される配列がタグ部分の配列である。
(3) 光架橋法による蛍光免疫測定用標識抗体の調製及び該抗体の検定
 (1)で調製した3nmolのTAMRA-IBAと(2)で調製した0.2nmol(5μg)の抗BGP抗体(scFv)を10μLのPBSに入れ、25℃で1時間インキュベーションした。次いで、抗BGP抗体とTAMRA-IBAの混合溶液に波長254nmのUVを照射面で1J/cm2の光量となるよう2分40秒間照射した。この際、使用した照射装置はUVP CL-1000(UVP LLC社製)であった。
 次いで、His-tagを用いてタンパク質を精製し、Ultra filtration(メンブレンフィルタ)によりバッファー交換を行い、さらにFlag-tagを用いてタンパク質精製を行った。
 抗原ペプチドBGP-C7(BGPのC末端アミノ酸配列NH2-RRFYGPV-COOH)(配列番号7)の濃度を0M~1×10-5Mまで8段階に変えた抗原溶液と、精製した抗体を混合し、励起波長546nmで照射し、蛍光強度の変化を調べた。
 結果を図4に示す。図5には、アンバーサプレッション法(Ellman J et al., (1991) Methods Enzymol. 202: 301-36; 国際公開第2011/061944号)によりTAMRAで標識した抗BGP抗体(scFv)を用いたときの結果である。図5に結果を示す実験においては、スペーサーを含む又は含まないTAMRA標識抗BGP抗体(scFv)をBGP-C7と反応させた。G3S(1)、G3S(2)及びG3S(3)のスペーサー配列は、それぞれGGGS(配列番号8)、GGGSGGGS(配列番号9)及びGGGSGGGSGGGS(配列番号10)であった。図4に示すように、BGP-C7の濃度が増加するにつれて、蛍光強度が増加した。また、図5の結果と比較すると、光架橋法により標識した抗体(scFv)はアンバーサプレッション法により標識した抗体(scFv)よりも、蛍光の上昇が著しかった。この結果は、光架橋法により標識した抗体(scFv)はBGP-C7の存在を高感度で分析できる蛍光免疫測定用標識抗体であることを示す。
 本発明の蛍光免疫測定用標識抗体を用いることにより、各種抗体を高感度で検出することができる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (9)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物が抗体内のヌクレオチド結合部位にコンジュゲートされている蛍光免疫測定用標識抗体。
  2.  前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、請求項1に記載の蛍光免疫測定用標識抗体。
  3.  前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、請求項2に記載の蛍光免疫測定用標識抗体。
  4.  抗体がscFv型抗体、Fab型抗体及び完全抗体からなる群から選択される、請求項1~3のいずれか1項に記載の蛍光免疫測定用標識抗体。
  5.  蛍光免疫測定用標識抗体の製造方法であって、
     下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Fは蛍光基であり、Rは、置換又は未置換の、アルキル基、アルケニル基、アルキニル基、C4~C10シクロアルキル基、C4~C10ヘテロシクリル基、C4~C10アリール基、C4~C10ヘテロアリール基、アリーレン基、エーテル基、エステル基、PEG基、スルフィド基、アミド基、ケトン基、スルファミド基及びそれらの組合せからなる群より選択されるリンカー基である)で表される、インドール酪酸(IBA)と蛍光基が結合している、抗体のヌクレオチド結合部位(NBS)標識用化合物と抗体を含む溶液に、中心波長254nmの紫外線を照射することにより、前記化合物のインドール基と抗体のヌクレオチド結合部位の間で光架橋反応を生じさせ、前記化合物と抗体をコンジュゲートする工程を含む、蛍光免疫測定用標識抗体の製造方法。
  6.  前記蛍光基が、ローダミン系、クマリン系、オキサジン系、カルボピロニン系、シアニン系、ピロメセン系、ナフタレン系、ビフェニル系、アントラセン系、フェナントレン系、ピレン系、カルバゾール系、Cy系、EVOblue系及びこれらの誘導体からなる群より選択される少なくとも1種である、請求項5に記載の製造方法。
  7.  前記蛍光基が、テトラメチルローダミン、ローダミン110及びATTO655(登録商標)からなる群より選択される少なくとも1種を含む、請求項6に記載の製造方法。
  8.  抗体がscFv型抗体、Fab型抗体及び完全抗体からなる群から選択される、請求項5~7のいずれか1項に記載の製造方法。
  9.  請求項1~4のいずれか1項に記載の蛍光免疫測定用標識抗体と抗原を接触させ、蛍光強度の変化を測定することを含む、抗原の検出方法。
PCT/JP2016/075620 2015-09-03 2016-09-01 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体 WO2017038926A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-174075 2015-09-03
JP2015174075A JP2017049184A (ja) 2015-09-03 2015-09-03 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体

Publications (1)

Publication Number Publication Date
WO2017038926A1 true WO2017038926A1 (ja) 2017-03-09

Family

ID=58188769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075620 WO2017038926A1 (ja) 2015-09-03 2016-09-01 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体

Country Status (2)

Country Link
JP (1) JP2017049184A (ja)
WO (1) WO2017038926A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713545B (zh) * 2019-09-11 2021-10-22 潍坊医学院 一种人源程序性细胞死亡因子受体蛋白-1及其生产方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043237B2 (ja) * 2009-11-19 2012-10-10 株式会社プロテイン・エクスプレス 蛍光免疫測定方法
WO2013065314A1 (ja) * 2011-11-02 2013-05-10 ウシオ電機株式会社 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
WO2014152801A1 (en) * 2013-03-14 2014-09-25 University Of Notre Dame Du Lac Selective uv crosslinking of peptides and functional moieties to immunoglobulins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043237B2 (ja) * 2009-11-19 2012-10-10 株式会社プロテイン・エクスプレス 蛍光免疫測定方法
WO2013065314A1 (ja) * 2011-11-02 2013-05-10 ウシオ電機株式会社 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定方法
WO2014152801A1 (en) * 2013-03-14 2014-09-25 University Of Notre Dame Du Lac Selective uv crosslinking of peptides and functional moieties to immunoglobulins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALVES NATHAN J ET AL.: "Selective photocrosslinking of functional ligands to antibodies via the conserved nucleotide binding site", BIOMATERIALS, vol. 34, no. 22, 16 April 2013 (2013-04-16), pages 5700 - 5710, XP028535323 *
MUSTAFAOGLU NUR ET AL.: "Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection", LANGMUIR, vol. 31, no. 35, 8 September 2015 (2015-09-08), pages 9728 - 9736, XP055367801, [retrieved on 20150814] *

Also Published As

Publication number Publication date
JP2017049184A (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6070769B2 (ja) 蛍光標識抗体可変領域含有ポリペプチド複合体を用いた蛍光免疫測定キット
Gruber et al. Anomalous fluorescence enhancement of Cy3 and Cy3. 5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin
US9849196B2 (en) Methods and compositions for altering photophysical properties of fluorophores via proximal quenching
JP2014156428A (ja) 抗体結合タンパク質
Qin et al. Polarity-based fluorescence probes: properties and applications
WO2013176625A1 (en) A microparticle assembly
WO2016104549A1 (ja) 蛍光標識された抗体可変領域を含むポリペプチドを含む抗原結合タンパク質を用いた蛍光免疫測定方法
Kumar et al. Covalent and non-covalent chemical engineering of actin for biotechnological applications
Yi et al. Direct immobilization of oxyamine-modified proteins from cell lysates
EP1310795A1 (en) Chemical sensor and method of detecting chemical
Jahns et al. In vivo self-assembly of fluorescent protein microparticles displaying specific binding domains
WO2017038926A1 (ja) 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体
JP2016200545A (ja) 検査対象物質を識別して検出する方法
JP6983419B2 (ja) 抗原検出又は測定用キット
WO2016208466A1 (ja) 検出対象物質の検出方法
WO2020246495A1 (ja) 複数の蛍光色素を結合させたペプチドを用いるホモジニアス免疫測定法
JP2017020896A (ja) N末端標識剤、これを用いた蛍光標識タンパク質及びその製造方法
JP2006329976A (ja) 蛍光標識体
WO2022118862A1 (ja) 生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法
KR101473954B1 (ko) 형광 공명 에너지 전이 면역 분석법을 이용한 항원 검출 방법
Seetharam et al. Long term storage of virus templated fluorescent materials for sensing applications
Bae Development of Functional Protein-based Target-specific Labeling Nanoplatforms for Biological Applications
WO2023215514A2 (en) Bioluminescence-triggered photocatalytic labeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841955

Country of ref document: EP

Kind code of ref document: A1