WO2022118862A1 - 生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法 - Google Patents

生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法 Download PDF

Info

Publication number
WO2022118862A1
WO2022118862A1 PCT/JP2021/043986 JP2021043986W WO2022118862A1 WO 2022118862 A1 WO2022118862 A1 WO 2022118862A1 JP 2021043986 W JP2021043986 W JP 2021043986W WO 2022118862 A1 WO2022118862 A1 WO 2022118862A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomolecular structure
detecting
probe
specific binding
biomolecular
Prior art date
Application number
PCT/JP2021/043986
Other languages
English (en)
French (fr)
Inventor
恭行 大川
航佑 富松
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2022566947A priority Critical patent/JPWO2022118862A1/ja
Priority to EP21900614.5A priority patent/EP4239335A1/en
Priority to US18/038,653 priority patent/US20240044906A1/en
Publication of WO2022118862A1 publication Critical patent/WO2022118862A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label

Definitions

  • the present invention relates to a probe for detecting a biomolecular structure, a kit for detecting a biomolecular structure, and a method for detecting a biomolecular structure.
  • Fluorescent immunostaining is a method for detecting the expression status of antigens in tissue samples.
  • a plurality of types of antigens in the same sample a plurality of types of fluorescent labels having different maximum fluorescence wavelengths have been used.
  • the types of fluorescent labels that can be used are limited. Even when fluorescent labels having different maximum fluorescence wavelengths are used, the leakage of fluorescence that is not the detection target into the wavelength range of the fluorescence to be detected hinders the analysis of the accurate expression status of the antigen to be detected. There is.
  • Patent Document 1 reports an antibody labeled with a photocleavable label.
  • Patent Document 1 describes a method of performing immunostaining with an antibody labeled with a photocleavable label, detecting the photocleavable label, and then irradiating with ultraviolet rays to cut off the label.
  • Patent Document 1 a photocleavable label is used, and the label is separated by irradiation with ultraviolet rays.
  • the photocleavable label is applied to fluorescent multiplex staining, there is a risk that the photocleavable portion is cleaved by the excitation light for detecting the fluorescent label, and the fluorescent label is unintentionally separated.
  • the present invention provides a probe for detecting a biomolecular structure, a kit for detecting a biomolecular structure, and a method for detecting a biomolecular structure, which can repeatedly use the same labeling substance without using a photocleavable label.
  • the purpose is to do.
  • the present invention includes the following aspects.
  • a probe for detecting a biomolecular structure wherein a specific binding substance having a specific binding property to a biomolecular structure and a labeling substance are linked via a linker containing a disulfide bond.
  • a biomolecular structure detection kit comprising the biomolecular structure detection probe according to any one of [1] to [3] and a disulfide bond cleavage reagent.
  • a kit for detecting a biomolecular structure which comprises a labeling substance and a reagent for cleaving a disulfide bond.
  • the labeling substance is a fluorescent dye.
  • the step (A) of detecting the first biomolecular structure in the sample containing cells and the disulfide bond in the first biomolecular structure detection probe are cleaved to obtain the above.
  • a method for detecting a biomolecular structure which comprises a step (B) of releasing a first labeling substance.
  • the specific binding substance having specific binding property to the second biomolecular structure and the second labeling substance are linked via a linker containing a disulfide bond.
  • Any of [8] to [10], wherein the first biomolecular structure is a biomolecular structure contained in a first primary probe that specifically binds to a third biomolecular structure contained in the cell.
  • the first biomolecular structure is a biomolecular structure contained in a first primary probe that specifically binds to a third biomolecular structure contained in the cell
  • the second biomolecular structure is: The method for detecting a biomolecular structure according to [9] or [10], which is a biomolecular structure contained in a second primary probe that specifically binds to the fourth biomolecular structure contained in the cell.
  • a probe for detecting a biomolecular structure a probe for detecting a biomolecular structure
  • a kit for detecting a biomolecular structure a method for detecting a biomolecular structure, which can repeatedly use the same labeling substance without using a photocleavable label. Will be done.
  • Example 1 It is a figure which shows typically the biomolecular structure detection method of one Embodiment. It is a figure which shows typically the biomolecular structure detection method of one Embodiment.
  • the outline of the immunostaining method of Example 1 is schematically shown.
  • 6 is a fluorescent image showing the result of immunostaining of Example 1.
  • 6 is a fluorescent image showing the result of immunostaining of Example 2.
  • the outline of the immunostaining method of Example 3 and Comparative Example 1 is schematically shown.
  • 3 is a fluorescent image showing the result of immunostaining of Example 3.
  • 6 is a fluorescent image showing the result of immunostaining of Comparative Example 1.
  • 6 is a fluorescent image showing the result of immunostaining of Reference Example 1.
  • 6 is a fluorescent image showing the result of continuous immunostaining of Example 4.
  • the data of FIG. 11 is dimensionally compressed (UMAP) to show the results of classifying the cells into five groups.
  • UMAP dimensionally compressed
  • the figure which showed the position of the cell existing in the fluorescent image of continuous immunostaining as a point it is the figure which showed the position of a cell by the point of the color corresponding to each group.
  • the result of superimposing the quantitative value of the expression of a specific protein on the cell position information obtained in FIG. 13 is shown.
  • the term “comprise” means that components other than the target component may be included.
  • the term “consist of” means that it does not include any component other than the target component.
  • the term “consentually of” does not include components other than the target component in a mode in which a component other than the target component exerts a special function (such as a mode in which the effect of the invention is completely lost). means.
  • the term “comprise” includes a "consist of" mode and a “consentially of” mode.
  • Proteins, peptides, nucleic acids, cells, etc. can be isolated. "Isolated” means the native state or the state separated from other components. What is “isolated” can be substantially free of other components. “Substantially free of other components” means that the content of other components contained in the isolated component is negligible. The content of other components contained in the isolated component is, for example, 10% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0. It can be 5% by mass or less, or 0.1% by mass or less.
  • the proteins, peptides, nucleic acids, and cells described herein can be isolated proteins, isolated peptides, isolated nucleic acids, and isolated cells.
  • the first aspect of the present invention is for detecting a biomolecular structure in which a specific binding substance having a specific binding property to a biomolecular structure and a labeling substance are linked via a linker containing a disulfide bond. It is a probe.
  • Probe means a molecule or molecular complex used to detect a specific biomolecular structure.
  • a specific binding substance having a specific binding property to the biomolecular structure to be detected and a labeling substance are linked via a linker containing a disulfide bond. It has a structure.
  • Biomolecule means an organic compound contained in a living body.
  • the biomolecule may be a molecule that functions in a biological phenomenon.
  • the biomolecule may be a molecule artificially synthesized by imitating a natural biomolecule. Examples of biomolecules include peptides, proteins, nucleic acids, lipids, sugars, glycolipids, vitamins, hormones, amino acids, nucleotides and the like.
  • Biomolecular structure means a structure contained in a biomolecule.
  • the biomolecular structure may be a partial structure of a biomolecule, a partial structure of a primary structure, a partial structure of a secondary structure, or a partial structure of a tertiary structure.
  • the biomolecular structure may be a partial structure of a three-dimensional structure composed of a plurality of biomolecules.
  • the biomolecule is a peptide or protein
  • the biomolecular structure may be, for example, a partial region containing a partial amino acid sequence of the protein, or may be a partial structure of the three-dimensional structure of the protein.
  • the structure of the modified amino acid residues may be used.
  • the biomolecule is a nucleic acid
  • the biomolecular structure may be, for example, a partial nucleotide sequence of the nucleic acid.
  • Specific binding substance means a substance having specific binding property to a specific biomolecular structure. "Having specific binding” means having a high binding affinity for a particular biomolecular structure, but very low binding affinity for other biomolecular structures. .. The specific binding substance preferably has high binding property to a specific biomolecular structure, but has little binding property to other biomolecular structures.
  • the combination of the biomolecular structure and the specific binding substance is, for example, a combination of a partial structure of a peptide or protein and an antibody, an antibody fragment or an antibody mimic; a partial sequence region of nucleic acid and complementary to the partial sequence.
  • the antibody may be in any class or subclass of immunoglobulin.
  • the species from which the antibody is derived is not particularly limited, and the antibody may be derived from any organism.
  • the antibody is preferably a monoclonal antibody.
  • the antibody may be a modified antibody such as a chimeric antibody.
  • the antibody fragment means a fragment of an antibody that retains antigen-binding property.
  • Examples of the antibody fragment include, but are not limited to, scFv, Fab, F (ab') 2, Fv and the like.
  • An antibody mimetic means a non-immunoglobulin molecule having specific binding property to an antigen, similar to an antibody.
  • antibody mimetics include, for example, an affibody molecule, affiliin, affimer, affitin, alphabody, antibody, avimer, DARPin. , Finomer, Kunitz domain peptide, monobody, and the like, but are not limited thereto.
  • Aptamers are substances that have specific binding properties to target substances.
  • the aptamer include nucleic acid aptamers, peptide aptamers and the like.
  • Nucleic acid aptamers can be selected, for example, by the systematic evolution of ligand by exponential conduction (SELEX) method or the like.
  • Peptide aptamers can be selected by, for example, the Two-hybrid method using yeast.
  • the specific binding substance a substance having specific binding property to any biomolecular structure in the cell can be used.
  • the specific binding substance has specific binding property to them.
  • Antibodies, antibody fragments, antibody mimetics, aptamers and the like can be used.
  • a nucleic acid containing a nucleotide sequence complementary to the partial nucleotide sequence, an aptamer, or the like can be used as a specific binding substance.
  • the specific binding substance may have specific binding property to the primary probe.
  • a "primary probe” is a probe that first binds to the biomolecular structure to be detected.
  • the primary probe for example, a biopolymer such as an antibody, an antibody fragment, or a nucleic acid can be used.
  • the primary probe is an antibody (primary antibody)
  • the specific binding substance may be, for example, an antibody having specific binding property to the constant region of the primary antibody (antibody, antibody fragment, antibody mimetic, aptamer, etc.). ) Can be used.
  • labeling substance means a substance that directly or indirectly produces a signal that can be detected by chemical means or physical means.
  • Labeling substances include, for example, enzyme labeling such as peroxidase (eg, western wasabi peroxidase), alkaline fluorescein; carboxyfluorescein (FAM), 6-carboxy-4', 5'-dichloro2', 7'-dimethoxyfluorescein (JOE).
  • Fluorescein isothiocyanate FITC
  • TET tetrachlorofluorescein
  • HEX 5'-hexachloro-fluorescein-CE phosphoroamidite
  • Cy3, Cy5, Alexa488, Alexa555, Alexa568, Alexa647 and other fluorescent labels FITC
  • FITC Fluorescein isothiocyanate
  • TET tetrachlorofluorescein
  • HEX 5'-hexachloro-fluorescein-CE phosphoroamidite
  • Cy3, Cy5, Alexa488, Alexa555, Alexa568, Alexa647 and other fluorescent labels cycl3, Cy5, Alexa488, Alexa555, Alexa568, Alexa647 and other fluorescent labels
  • Radioisotope labels electrochemically luminescent labels such as fluorescein complexes; metal nanoparticles and the like, but are not limited thereto.
  • Preferred labeling substances include fluorescent labels (fluorescent dyes).
  • Linker means a linking portion that connects two substances or a molecule that is used to connect two substances.
  • the specific binding substance and the labeling substance are linked via a linker containing a disulfide bond.
  • the probe for detecting the biomolecular structure of the present embodiment can be represented by, for example, the following formula (P1).
  • Y 1 and Y 2 each independently represent a divalent linking group; L represents a labeling substance; A represents a specific binding substance. ]
  • Y 1 and Y 2 each independently represent a divalent linking group.
  • the divalent linking group preferably contains a bonding structure.
  • the bonded structure means a structure formed by bonding two functional groups by a chemical reaction or an intramolecular interaction. Examples of the chemical reaction forming the bond structure include, but are not limited to, a dehydration condensation reaction and an addition cyclization reaction. It is preferable that the bond structure contained in Y 1 and Y 2 does not contain a disulfide bond.
  • the bond structure includes, for example, an amide bond (-CO-NH-), an ester bond (-CO-O-), a thioester bond (-CO-S-), and a phosphate ester bond (-PO 2 -O-). , Urethane bond (-NH-CO-O-), bond containing 1,2,3-triazole ring, etc., but is not limited thereto.
  • the binding structure may be an intermolecular interaction such as an avidin-biotin bond.
  • the probe for detecting the biomolecular structure of the present embodiment may be represented by the following formula (P1-1), for example.
  • Y 11 and Y 12 each independently represent a divalent linking group containing a binding structure; R 11 and R 12 each independently represent a divalent linking group; L is a labeling substance. Represents; A represents a specific binding agent.
  • Y 11 and Y 12 each independently represent a divalent linking group containing a binding structure.
  • Examples of the bonding structure include those similar to those mentioned in Y 1 and Y 2 above.
  • R 11 and R 12 each independently represent a divalent linking group.
  • the divalent linking group include a hydrocarbon group which may have a substituent.
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be saturated or unsaturated, but is preferably saturated.
  • Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group and an aliphatic hydrocarbon group having a ring in its structure.
  • the linear aliphatic hydrocarbon group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • a linear alkylene group is preferable.
  • the branched aliphatic hydrocarbon group preferably has 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 3 to 6 carbon atoms.
  • a branched-chain alkylene group is preferable.
  • a cyclic aliphatic hydrocarbon group which may contain a substituent containing a hetero atom in the ring structure (a group obtained by removing two hydrogen atoms from the aliphatic hydrocarbon ring).
  • the cyclic aliphatic hydrocarbon group preferably has 3 to 20 carbon atoms, and more preferably 3 to 12 carbon atoms.
  • the cyclic aliphatic hydrocarbon group may be a polycyclic group or a monocyclic group.
  • the cyclic aliphatic hydrocarbon group may be substituted with a substituent containing a hetero atom (oxygen atom, nitrogen atom, sulfur atom, etc.) as a part of the carbon atom constituting the ring structure.
  • the divalent linking group in R 11 and R 12 is an aromatic hydrocarbon group
  • the number of carbon atoms is more preferably 6 to 15, and the number of carbon atoms is particularly preferably 6 to 12.
  • the aromatic hydrocarbon group is a hydrocarbon group containing an aromatic ring. Examples of the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene and phenanthrene; and aromatic heterocycles such as triazole ring, pyridine ring and thiophene ring.
  • the aromatic hydrocarbon group is a group obtained by removing two hydrogen atoms from the aromatic hydrocarbon ring or aromatic heterocycle (arylene group or heteroarylene group); an aromatic compound containing two or more aromatic rings.
  • a group from which two hydrogen atoms have been removed from for example, biphenyl, fluorene, etc.
  • one of the hydrogen atoms of the group (aryl group or heteroaryl group) from which one hydrogen atom has been removed from the aromatic hydrocarbon ring or aromatic heterocyclic ring examples thereof include a group in which one is substituted with an alkylene group (a group obtained by removing one hydrogen atom from an aryl group or a heteroaryl group) and the like.
  • the alkylene group that replaces the hydrogen atom is preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
  • a part of the hydrogen atom of the hydrogen chain may be substituted with a monovalent group, and the methylene group ( -CH2- ) constituting the hydrocarbon chain may be substituted. It may be partially substituted with a divalent group containing a hetero atom.
  • the monovalent group for substituting the hydrogen atom include, but are not limited to, an acyl group, an alkoxy group, a hydroxy group, a carboxy group, an amino group, a thiol group and the like.
  • probe for detecting the biomolecular structure of the present embodiment include, but are not limited to, those represented by the following (P1-1-1).
  • n1 and n2 each independently represent an integer of 1 to 10; Avi represents avidin or a derivative thereof; L represents a labeling substance; A represents a specific binding substance. ]
  • Avi represents avidin or a derivative thereof.
  • the avidin derivative include streptavidin, neutral avidin and the like.
  • Avidin represented by Avi or a derivative thereof is bound to the biotin moiety by an intramolecular interaction.
  • n1 and n2 are independently integers of 1 to 10.
  • an integer of 1 to 6 is preferable, an integer of 1 to 3 is more preferable, and 2 or 3 is further preferable.
  • Avi represents avidin or a derivative thereof; L represents a labeling substance; A represents a specific binding substance.
  • the probe for detecting the biomolecular structure of the present embodiment contains a disulfide bond in the linker portion between the specific binding substance and the labeling substance, the labeling substance can be separated at any timing by cleaving the disulfide bond.
  • the disulfide bond can be easily cleaved with a reducing agent such as tris (2-carboxyethyl) phosphine (TCEP), 2-mercaptoethanol, dithiothreitol (DTT). Since the disulfide bond is not cleaved by light, it does not cleave when irradiated with the excitation light required for fluorescence observation.
  • a second aspect of the present invention is a kit for detecting a biomolecular structure, which comprises the probe for detecting a biomolecule according to the above-mentioned aspect and a reagent for cleaving a disulfide bond.
  • the biomolecule detection probe is the same as the biomolecule detection probe of the above-described embodiment.
  • the specific binding substance is, for example, a specific binding substance (antibody, antibody fragment, antibody) having specific binding property to a primary probe (for example, a primary antibody). It may be a mimic, an aptamer, etc.).
  • the primary probe is an antibody derived from a specific species of animal (for example, a mouse antibody)
  • the specific binding substance of the probe for detecting a biological molecule may have specific binding property to a constant region of the antibody.
  • An antibody derived from a species of animal for example, a goat anti-mouse antibody
  • an antibody fragment thereof can be used.
  • the biomolecular structure detection kit of the present embodiment contains a reagent for cleaving a disulfide bond in addition to the above-mentioned biomolecule detection probe.
  • the reagent for cleaving the disulfide bond is not particularly limited as long as it can cleave the disulfide bond.
  • Examples of the cleaving reagent include reducing agents such as TCEP, 2-mercaptoethanol, and DTT. TCEP is preferred as the cleavage reagent because of its high stability and selectivity.
  • a third aspect of the present invention is a linker for linking a specific binding substance having specific binding property to a biomolecular structure and a labeling substance, and the linker containing a disulfide bond and the linker are bound to the linker.
  • a kit for detecting a biomolecular structure which comprises a labeling substance that can be bonded or bonded and a reagent for cleaving the disulfide bond.
  • the kit of this embodiment contains a linker for linking a specific binding substance having specific binding property to a biomolecular structure and a labeling substance.
  • the linker may have, for example, a functional group that reacts with a functional group contained in a specific binding substance or a labeling substance.
  • the linker may have an amine-reactive group.
  • An amine-reactive group is a functional group that reacts with an amine.
  • the amine-reactive group is not particularly limited, and known ones can be used.
  • amine-reactive group examples include an N-hydroxy ester (NHS-ester) group, a carboxy group, an isocyanate group, an isothiocyanate group, a sulfonyl chloride group, an aldehyde group, a carbodiimide group, an acylazide group, an epoxy group and an imide ester group.
  • NHS-ester N-hydroxy ester
  • linkage between the linker and the specific binding substance or labeling substance may be carried out by an avidin-biotin bond.
  • the linker may contain a group derived from biotin.
  • linker examples include those represented by the following formula (L1).
  • V 1 and V 2 each independently represent a functional group or a group derived from biotin; R 11 and R 12 each independently represent a divalent linking group. ]
  • V 1 and V 2 each independently represent a functional group or a group derived from biotin.
  • the functional groups in V 1 and V 2 are functional groups capable of reacting with the functional groups of the specific binding substance or the labeling substance to form a bonded structure.
  • the functional group in V 1 and V 2 includes an amine-reactive group as described above.
  • R 11 and R 12 each independently represent a divalent linking group.
  • R 11 and R 12 are the same as R 11 and R 12 in the above formula (P1-1).
  • the labeling substance may be bound to the linker.
  • the labeling substance may be provided in a state where it is not bound to the linker.
  • the labeling substance has a structure capable of binding to the linker.
  • the labeling substance may have a functional group capable of reacting with the functional group of the linker to form a bonded structure.
  • the linker contains a group derived from biotin, avidin or an avidin derivative may be added. Examples of the avidin derivative include the same as above. If the labeling substance is provided unbound to the linker, the user may perform a ligation reaction between the linker and the labeling substance before use.
  • Cutting reagent As the cutting reagent, the same ones as those mentioned in the kit of the first embodiment can be used.
  • the kit of this embodiment does not contain a specific binding substance, and the user can select any specific substance.
  • the user can prepare a probe for detecting a biomolecule by carrying out a binding reaction between an arbitrary specific binding substance and a linker before use.
  • the kit according to the second aspect or the third aspect may include other elements in addition to the above elements.
  • Other elements include, for example, labeling reagent detection reagents, sample preparation reagents, diluents, buffers (blocking buffer, washing buffer, etc.), instruction manuals, and the like.
  • the kit of this embodiment can be used for the biomolecular structure detection method described later.
  • the specific binding substance having specific binding property to the first biomolecular structure and the first labeling substance are linked via a linker containing a disulfide bond.
  • This is a method for detecting a biomolecular structure which comprises a step (B) of cleaving the above-mentioned first labeling substance to release the labeling substance.
  • the method of this embodiment is a method of detecting a target biomolecular structure in a sample containing cells.
  • the "sample containing cells” is not particularly limited as long as it is a sample containing cells.
  • the sample containing cells may be a tissue section, a cell suspension, a body fluid sample containing cells, or the like.
  • the cell may be a cell of any organism.
  • FIG. 1 is a diagram schematically showing an example of the method of the present embodiment. The method of this embodiment can be carried out using the probe for detecting the biomolecular structure of the first aspect.
  • 1 is a sample containing cells.
  • Sample 1 contains biomolecules 10a and 10b. Each of the biomolecule 10a and the biomolecule 10b is a biomolecule containing a biomolecular structure to be detected.
  • Reference numeral 20a is a specific binding substance that specifically binds to the biomolecular structure contained in the biomolecule 10a.
  • 30a is a labeling substance.
  • the specific binding substance 20a and the labeling substance 30a are linked via a linker 40a containing a disulfide bond, and form a probe P1 for detecting a biomolecular structure.
  • Reference numeral 20b is a specific binding substance that specifically binds to the biomolecular structure contained in the biomolecule 10b.
  • 30b is a labeling substance.
  • the specific binding substance 20b and the labeling substance 30b are linked via a linker 40b containing a disulfide bond, and form a probe P2 for detecting a biomolecular structure.
  • biomolecules 10a and 10b are the same as those exemplified in the above [Probe for detecting biomolecular structure].
  • the biomolecules 10a and 10b are, for example, peptides or proteins.
  • Examples of the specific binding substances 20a and 20b include the same as those exemplified in the above [Probe for detecting biomolecular structure].
  • the specific binding substances 20a and 20b are, for example, an antibody or an antibody fragment.
  • labeling substances 30a and 30b include those similar to those exemplified in the above [Probe for detecting biomolecular structure].
  • the labeling substances 30a and 30b are, for example, fluorescent dyes.
  • Examples of the linkers 40a and 40b are the same as those exemplified in the above [Probe for detecting biomolecular structure].
  • the labeling substances 30a and 30b may be the same or different.
  • the labeling substance 30a is a fluorescent dye
  • the labeling substance 30b is also a fluorescent dye.
  • the fluorescent dyes of the labeling substances 30a and 30b may be the same or different.
  • the specific binding substance (specific binding substance 20a) having specific binding property to the first biomolecular structure and the first labeling substance (labeling substance 30a) form a disulfide bond.
  • the first biomolecular structure detection probe (biomolecular structure detection probe P1) linked via the inclusion linker (linker 40a) the first biomolecule in the sample (sample 1) containing cells is used.
  • the molecular structure (biomolecular structure contained in the biomolecule 10a) is detected (see FIG. 1 (A)).
  • the biomolecular structure detection probe P1 is the first biomolecular structure detection probe.
  • the sample 1 is treated with the biomolecular structure detection probe P1.
  • the probe P1 for detecting the biomolecular structure binds to the biomolecule 10a via the specific binding substance 20a.
  • the method for treating the sample 1 with the biomolecular structure detection probe P1 can be appropriately selected according to the type of the specific binding substance 20a.
  • a solution of the biomolecular structure detection probe P1 in which the biomolecular structure detection probe P1 is dissolved in an appropriate buffer for example, phosphate buffer, Tris hydrochloride buffer, PBS, etc.
  • an appropriate buffer for example, phosphate buffer, Tris hydrochloride buffer, PBS, etc.
  • the probe P1 for detecting the biomolecular structure can be bound to the biomolecule 10a.
  • the incubation temperature and the incubation time can be appropriately selected depending on the type of the specific binding substance 20a.
  • the specific binding substance 20a is an antibody or an antibody fragment
  • the incubation temperature may be 20 to 40 ° C (preferably 30 to 40 ° C).
  • the incubation time may be about 30 to 120 minutes.
  • the sample 1 may be washed with a washing buffer or the like. As a result, the unbound biomolecular structure detection probe P1 can be removed.
  • the sample 1 may be blocked with a blocking agent before the treatment with the biomolecular structure detection probe P1.
  • a blocking agent include, but are not limited to, bovine serum albumin, skim milk, casein, gelatin and the like.
  • the signal of the labeling substance 30a of the biomolecular structure detection probe P1 is detected.
  • the biomolecular structure to which the specific binding substance 20a is bound can be indirectly detected.
  • the method for detecting the signal of the labeling substance 30a can be appropriately selected depending on the type of the labeling substance 30a.
  • the labeling substance 30a is a fluorescent dye
  • the signal of the labeling substance 30a can be detected by irradiating light with the excitation wavelength of the fluorescent dye and detecting the fluorescence using a fluorescence microscope.
  • the disulfide bond in the biomolecular structure detection probe P1 can be cleaved by using a disulfide bond cleavage reagent.
  • the cleavage reagent include the same as those mentioned in the above [Biomolecular structure detection kit].
  • the concentration of the cleaving reagent is not particularly limited, and can be appropriately selected depending on the type of the cleaving reagent.
  • the concentration of the cleavage reagent may be an amount sufficient for cleavage of the disulfide bond in the probe P1 for detecting the biomolecular structure.
  • the concentration of the reducing agent can be, for example, 5 mM or more, 10 mM or more, 20 mM or more, or 30 mM or more.
  • the upper limit of the concentration of the reducing agent is not particularly limited, but may be, for example, 100 mM or less, 80 mM or less, 70 mM or less, 60 mM or less, or 50 mM or less.
  • the treatment time with the reducing agent can be, for example, 10 minutes or more, 15 minutes or more, 20 minutes or more, 25 minutes or more, or 30 minutes or more.
  • the upper limit of the treatment time with the reducing agent is not particularly limited, but may be, for example, 200 minutes or less, 150 minutes or less, or 120 minutes or less from the viewpoint of not denaturing the biomolecule.
  • the concentration can be 5 to 50 mM and the treatment time can be about 20 to 40 minutes.
  • the processing temperature may be 20 to 40 ° C.
  • the labeling substance 30a is separated from the biomolecular structure detection probe P1 and released. Therefore, the signal of the labeling substance 30a in the sample 1 disappears.
  • the sample After the treatment with the cutting reagent, the sample may be washed with a washing buffer or the like. Thereby, the liberated labeling substance 30a can be removed.
  • the method of the present embodiment may include other steps in addition to the above steps (A) and (B).
  • a specific binding substance having specific binding property to the second biomolecular structure and the second labeling substance are linked via a linker containing a disulfide bond.
  • Steps of detecting the second biomolecular structure in the sample using the second biomolecular structure detection probe (C) (see FIG. 1 (C)); and in the biomolecular structure detection probe P2. Examples thereof include a step (D) (see FIG. 1 (D)) of cleaving the disulfide bond to release the second labeling substance.
  • the method of the present embodiment can further include the step (C) after the step (B).
  • the biomolecular structure detection probe P2 is the second biomolecular structure detection probe.
  • the sample 1 after the step (B) is treated with the biomolecular structure detection probe P2.
  • the probe P2 for detecting the biomolecular structure binds to the biomolecule 10b via the specific binding substance 20b.
  • the step (C) can be performed in the same manner as the above step (A) except that the biomolecular structure detection probe P2 is used instead of the biomolecular structure detection probe P1.
  • the signal of the labeling substance 30b of the biomolecular structure detection probe P2 is detected.
  • the biomolecular structure to which the specific binding substance 20b is bound can be indirectly detected.
  • the method for detecting the signal of the labeling substance 30b can be appropriately selected depending on the type of the labeling substance 30b.
  • the labeling substance 30b is a fluorescent dye
  • the signal of the labeling substance 30b can be detected by irradiating light with the excitation wavelength of the fluorescent dye and detecting the fluorescence using a fluorescence microscope.
  • the labeling substance 30b may be the same as or different from the labeling substance 30a.
  • the labeling substance 30a disappears in the sample 1 by the step (B). Therefore, even if the labeling substance 30b is the same as the labeling substance 30a, in the step (C), only the labeling substance 30b bound to the biomolecule 10b can be detected.
  • Step (D) The method of the present embodiment can further include the step (D) after the step (C). By performing the step (D), the signal of the labeling substance 30b in the sample 1 can be extinguished.
  • the step (D) can be performed in the same manner as the above step (B).
  • the method of the present embodiment may further include a step (E) in which the step (C) and the step (D) are repeated by changing the type of the specific binding substance in the probe for detecting the biomolecular structure. .. It is preferable to use different specific binding substances for each cycle of step (C) and step (D).
  • the labeling substance in the probe for detecting the biomolecular structure may or may not be changed every cycle.
  • the number of repetitions of the step (C) and the step (D) is not particularly limited and may be any number.
  • the number of repetitions of the step (C) and the step (D) is, for example, 1 time or more, 2 times or more, 3 times or more, 5 times or more, 10 times or more, 20 times or more, 30 times or more, 40 times or more, or 50 times. It may be more than once.
  • the upper limit of the number of repetitions of the step (C) and the step (D) is not particularly limited, but may be, for example, 500 times or less, 400 times or less, 300 times or less, 200 times or less, or 100 times or less.
  • the number of repetitions of the step (C) and the step (D) is, for example, 1 to 100 times, 1 to 90 times, 1 to 80 times, 1 to 70 times, 1 to 60 times, 1 to 50 times, 1 to 40 times. It can be 1 to 30 times, 1 to 20 times, 1 to 10 times, 1 to 5 times, and the like.
  • the disulfide bond in the first biomolecular structure detection probe is cleaved to carry out the labeling substance. Is released. Therefore, when the second biomolecular structure is detected by using the second biomolecular structure detection probe, the labeling substance of the first biomolecular structure detection probe does not interfere with each other. Therefore, the biomolecular structure detection operation can be repeated using the same sample. In the method of the present embodiment, since the same labeling substance can be used repeatedly, the number of repetitions of the detection operation is not limited to the type of labeling substance.
  • the labeling substance since a disulfide bond is used for the cleavage structure of the labeling substance, the labeling substance is not separated by the excitation light even when a fluorescent dye is used for the labeling substance.
  • the labeling substance can be cleaved under reducing conditions to the extent that the biomolecule is not denatured. Therefore, after identifying a cell having a desired biomolecular structure by the method of the present embodiment, RNA or the like can be extracted from the cell and suitably used for transcriptome analysis or the like.
  • the method of this embodiment can also be performed using a primary probe.
  • the biomolecular structure to which the biomolecular structure detection probe is bound may be the biomolecular structure included in the primary probe.
  • the first biomolecular structure to which the first biomolecular structure detecting probe is bound may be the biomolecular structure contained in the first primary probe.
  • the first primary probe may be specifically bound to a third biomolecular structure contained in the cells in the sample.
  • the second biomolecular structure to which the second biomolecular structure detecting probe is bound may be the biomolecular structure contained in the second primary probe.
  • the second primary probe may be specifically bound to the fourth biomolecular structure contained in the cells in the sample.
  • FIG. 2 is a diagram schematically showing an example of a method using a primary probe.
  • the specific binding substance 20a is used as a first primary probe for binding to the biomolecular structure contained in the biomolecule 10a.
  • 21a is a specific binding substance having a specific binding activity on the biomolecular structure of the specific binding substance 20a (first primary probe).
  • the specific binding substance 21a and the labeling substance 30a are linked via a linker 40a containing a disulfide bond, and form a probe P3 for detecting a biomolecular structure.
  • the biomolecular structure detection probe P3 is used as the first biomolecular structure detection probe.
  • the specific binding substances 20a and 21a are, for example, an antibody or an antibody fragment.
  • the specific binding substance 20b is used as a second primary probe for binding to the biomolecular structure contained in the biomolecule 10b.
  • 21b is a specific binding substance having a specific binding activity on the biomolecular structure of the specific binding substance 20b (second primary probe).
  • the specific binding substance 21b and the labeling substance 30b are linked via a linker 40b containing a disulfide bond, and form a probe P4 for detecting a biomolecular structure.
  • the biomolecular structure detection probe P4 is used as a second biomolecular structure detection probe.
  • Specific binding substances 20b, 21b are, for example, antibodies or antibody fragments.
  • the method of this modification includes step (A').
  • a cell is subjected to a first primary probe (specific binding substance 20a) having specific binding property to a third biomolecular structure (biomolecular structure contained in the biomolecule 10a).
  • a first biomolecule in which a specific binding substance having a property (specific binding substance 21a) and a first labeling substance (labeling substance 30a) are linked via a linker (linker 40a) containing a disulfide bond.
  • the sample 1 is treated with the specific binding substance 20a as the first primary probe.
  • the specific binding substance 20a binds to the biomolecule 10a in the sample 1.
  • the sample 1 is treated with the biomolecular structure detection probe P3.
  • the probe P3 for detecting the biomolecular structure binds to the specific binding substance 20a via the specific binding substance 21a.
  • a complex of the biomolecule 10a, the first primary probe (specific binding substance 20a), and the probe P3 for detecting the biomolecular structure is formed.
  • the method for treating the sample 1 with the specific binding substance 20a and the biomolecular structure detection probe P3 can be carried out in the same manner as the treatment of the sample 1 with the biomolecular structure detection probe P1 in the above step (A).
  • the sample 1 After the treatment with the first primary probe (specific binding substance 20a), the sample 1 may be washed with a washing buffer or the like. Thereby, the unbound specific binding substance 20a can be removed. Further, after the treatment with the biomolecular structure detection probe P3, the sample 1 may be washed with a washing buffer or the like. As a result, the unbound biomolecular structure detection probe P3 can be removed.
  • the sample 1 may be blocked with a blocking agent before the treatment with the first primary probe (specific binding substance 20a). By performing blocking, the non-specific binding of the specific binding substance 20a can be reduced.
  • the sample 1 may be blocked with a blocking agent before the treatment with the biomolecular structure detection probe P3. By blocking, the non-specific binding of the biomolecular structure detection probe P3 can be reduced. Examples of the blocking agent include the same as above.
  • the signal of the labeling substance 30a of the biomolecular structure detection probe P3 is detected.
  • the biomolecular structure of the biomolecule 10a bound via the specific binding substance 20a and the specific binding substance 21a can be indirectly detected.
  • the method for detecting the signal of the labeling substance 30a can be carried out in the same manner as in the above step (A).
  • Step (B') See FIG. 2 (B')
  • the disulfide bond in the first biomolecular structure detection probe biomolecular structure detection probe P3
  • the first labeling substance labeling substance 30a.
  • the step (B') can be performed in the same manner as the above step (B).
  • the method of this modification may include a step (C') in addition to the above steps (A') and (B').
  • the step (C') uses a second primary probe (specific binding substance 20b) having specific binding property to the fourth biomolecular structure (biomolecular structure contained in the biomolecule 10b) to generate cells. Processing the containing sample (Sample 1) and binding the second primary probe to the second biomolecular structure in the sample; and specific to the second biomolecular structure contained in the second primary probe.
  • a second labeling substance (specific binding substance 21b) having a binding property and a second labeling substance (labeling substance 30b) are linked via a linker (linker 40b) containing a disulfide bond.
  • the sample 1 after the step (B') is treated with the specific binding substance 20b as the second primary probe.
  • the specific binding substance 20b binds to the biomolecule 10b in the sample 1.
  • the sample 1 is treated with the biomolecular structure detection probe P4.
  • the probe P4 for detecting the biomolecular structure binds to the specific binding substance 20b via the specific binding substance 21b.
  • a complex of the biomolecule 10b, the second primary probe (specific binding substance 20b), and the biomolecular structure detection probe P4 is formed.
  • the method for treating the sample 1 with the specific binding substance 20b can be carried out in the same manner as in the above step (A') except that the specific binding substance 20b is used instead of the specific binding substance 20a.
  • the method for processing the sample 1 by the biomolecular structure detection probe P4 may be the same as the above step (A') except that the biomolecular structure detection probe P4 is used instead of the biomolecular structure detection probe P3. can.
  • the signal of the labeling substance 30b of the biomolecular structure detection probe P4 is detected.
  • the biomolecular structure of the biomolecule 10b bound via the specific binding substance 20b and the specific binding substance 21b can be indirectly detected.
  • the method for detecting the signal of the labeling substance 30b can be carried out in the same manner as in the above step (A).
  • the method of this modification may include a step (D') after the above step (C').
  • the disulfide bond in the second biomolecular structure detection probe biomolecular structure detection probe P4
  • the step (D') can be performed in the same manner as the above step (D).
  • the method of the present embodiment further changes the type of the primary probe and the type of the specific binding substance in the probe for detecting the biomolecular structure, and repeats the step (C') and the step (D') (E). ') May be included. It is preferable to use different specific binding substances in the primary probe and the probe for detecting the biomolecular structure for each step (C') and step (D') cycle.
  • the labeling substance in the probe for detecting the biomolecular structure may or may not be changed every cycle.
  • the number of repetitions of the step (C') and the step (D') is not particularly limited and may be any number.
  • the number of repetitions of the step (C') and the step (D') is, for example, 1 time or more, 2 times or more, 3 times or more, 5 times or more, 10 times or more, 20 times or more, 30 times or more, 40 times or more, Alternatively, it may be 50 times or more.
  • the upper limit of the number of repetitions of the step (C') and the step (D') is not particularly limited, but may be, for example, 500 times or less, 400 times or less, 300 times or less, 200 times or less, or 100 times or less. ..
  • the number of repetitions of the step (C') and the step (D') is, for example, 1 to 100 times, 1 to 90 times, 1 to 80 times, 1 to 70 times, 1 to 60 times, 1 to 50 times, 1 to 1 to It can be 40 times, 1 to 30 times, 1 to 20 times, 1 to 10 times, 1 to 5 times, and the like.
  • the biomolecular structure detection probe is bound to the biomolecular structure in the sample to be detected via the primary probe. Therefore, any biomolecular structure can be detected by using a primary probe having specific binding property to any biomolecular structure.
  • a probe containing a specific binding substance for the specific biomolecular structure may be used as the probe for detecting the biomolecular structure. ..
  • a probe prepared in advance according to the type of the primary probe can be used as the probe for detecting the biomolecular structure.
  • linker a commercially available EZ-link Sulfo-NHS-SS-Biotin (Thermo Fisher) was used.
  • Binding of linker and specific binding substance As the first specific binding substance, a rat anti-mouse IgG antibody (Rat anti-mouse IgG, Jackson Immuno Research) was used. Binding of the linker to the first specific binding agent was performed according to the instructions attached to the linker.
  • FITC-labeled avidin As the labeling substance, FITC-labeled avidin (Avidin-FITC, Funakoshi) or Alexa 555-labeled avidin (Streptavidin, Alexa Fluor 555 conjugate, Thermo Fisher) was used.
  • the linker and the labeling substance were combined by reacting in 0.1 M aqueous sodium hydrogen carbonate solution (pH 8.3) at room temperature for 30 minutes.
  • the second method is the same as the method for producing the first biomolecular structure detection probe, except that a goat anti-rabbit IgG antibody (Goat anti-rabbit IgG, Jackson Immuno Research) was used as the specific binding substance.
  • a probe for detecting the biomolecular structure was prepared.
  • Example 1 The outline of the immunostaining method of Example 1 is schematically shown in FIG.
  • a mouse anti- ⁇ -actin antibody (Anti- ⁇ Actin, Abcam) was reacted with the sample as the primary antibody (first primary probe), and then the first biomolecular structure detection probe was reacted as the secondary antibody. Then, it was treated with 50 mM TCEP-HCl for 30 minutes. Then, a rabbit anti-H2AZ antibody (Anti-H2AZ, Abcam) was reacted with the sample as a primary antibody (second primary probe), and then the second biomolecular structure detection probe was reacted as a secondary antibody. Specifically, the procedure was as follows.
  • the cells were fixed by adding 4% paraformaldehyde (paraformaldehyde, Nacalai Tesque) to the cells cultured in the cell culture dish and reacting for 15 minutes. 0.5% Triton X-100 was added to the immobilized cells and allowed to react for 5 minutes for permeation treatment. Then, a blocking solution (Blocking One-P, Nacalai Tesque) was added and reacted for 10 minutes to perform blocking. The primary antibody (Anti- ⁇ Actin, Anti-H2AZ, etc.) was then diluted with a 10% blocking solution to the appropriate concentration and reacted with the cells at room temperature for 45 minutes.
  • paraformaldehyde paraformaldehyde, Nacalai Tesque
  • the cells were then washed with PBS for 5 minutes x 3 times and reacted with linker-labeled rat anti-mouse IgG antibody or goat anti-rabbit IgG antibody (diluted 500-fold with 10% blocking solution) at room temperature for 45 minutes. .. After the reaction, the cells were washed with PBS for 5 minutes x 3 times, and fluorescently labeled avidin diluted 1000-fold with a 10% blocking solution was reacted at room temperature for 45 minutes. After the reaction, the cells were washed with PBS for 5 minutes x 3 times, and fluorescence observation was performed. After fluorescence observation, 50 mM TCEP was added to the cells and treated at room temperature for 30 minutes. After the reaction, the cells were washed with PBS for 5 minutes x 3 times, and fluorescence observation was performed again.
  • ⁇ -actin can be detected based on the fluorescence of FITC by reacting the mouse anti- ⁇ -actin antibody as a primary antibody and then reacting with the first biomolecular structure detection probe. (1st stage image). Then, by treating with 50 mM TCEP for 30 minutes, FITC was liberated and the fluorescence of FITC disappeared (second stage, rightmost image).
  • H2AZ could be detected based on the fluorescence of FITC (third stage image). .. Then, by treating with 50 mM TCEP for 30 minutes, FICT was liberated and the fluorescence of FITC disappeared (4th stage, rightmost image).
  • the labeled substance can be released at any timing by using a probe for detecting the biomolecular structure in which the specific binding substance and the labeled substance are linked via a linker containing a disulfide bond. It was also confirmed that immunostaining can be repeated.
  • Example 2 As the probe for detecting the biomolecular structure, the second probe for detecting the biomolecular structure prepared in Example 1 was used. A rabbit anti-H2AZ antibody was used as the primary antibody, and the sample was reacted in the same manner as described above, and then the probe for detecting the biomolecular structure was reacted as the secondary antibody (Staining). It was then treated with 0 mM, 1 mM, 5 mM, 20 mM, or 50 mM TCEP-HCl (TCEP). In addition, TCEP-treated samples were reacted with Alexa555-labeled goat anti-rabbit antibody (Goat anti-Rabbit IgG, Thermo Fisher) or avidin-labeled FITC (Re-steining).
  • Alexa555-labeled goat anti-rabbit antibody Goat anti-Rabbit IgG, Thermo Fisher
  • avidin-labeled FITC Re-steining
  • H2AZ could be detected based on the fluorescence of FITC by reacting the rabbit anti-H2AZ antibody as a primary antibody and then reacting with the probe for detecting the biomolecular structure (FIG. 5, FIG. 5). 1st stage image). Then, by treating with TCEP of 0 to 50 mM for 30 minutes, FICT was released depending on the concentration of TCEP, and the fluorescence of FITC disappeared (FIG. 5, 2nd stage image). Furthermore, when the biotin-labeled FITC was reacted with the sample after TCEP treatment, almost no fluorescence of FITC could be detected.
  • Example 3 Comparative Example 1
  • the outline of the immunostaining method of Example 3 and Comparative Example 1 is schematically shown in FIG.
  • Alexa555-labeled mouse anti-histone H3.1 antibody was used as the primary antibody
  • Al2xa488-labeled goat anti-mouse antibody was used as the secondary antibody.
  • the Alexa555-labeled antibody used as the primary antibody contains a disulfide bond or a 2-nitrobenzyl group at the linker site between the antibody and Alexa555.
  • Example 3 A mouse anti-histon H3.1 antibody (Anti-H3.1 antibody, prepared by Okawa Laboratory, Institute of Biodefense Medicine, Kyushu University) was used as a specific binding substance, and Avidin-labeled Alexa555 (Streptavidin, Alexa Fluor 555 conjugate) was used as a labeling substance.
  • a probe for detecting a biomolecular structure was produced by the same method as that for producing the above-mentioned first probe for detecting a biomolecular structure, except that the Thermo Fisher) was used.
  • the probe for detecting the biomolecular structure was used as the primary antibody and the Alexa488-labeled goat anti-mouse antibody (Goat antibody-Mouse IgG Alexa Fluor 488, Thermo Fisher) was used as the secondary antibody. Immunostaining was performed. In addition, Hoechst staining was performed and imaging was performed at a wavelength of 405 nm.
  • the photocleaving linker one containing a 2-nitrobenzyl group as a photocleaving group was used (PC-Biotin-PEG4-NHS carbonate, Funakoshi).
  • Immunostaining was performed in the same manner as in Example 1 except that the Alexa555-labeled mouse anti-histone H3.1 antibody containing the photocleaving linker was used as the primary antibody. In addition, Hoechst staining was performed and imaging was performed at a wavelength of 405 nm.
  • Fig. 8 The results are shown in Fig. 8. As shown in FIG. 8, the fluorescence of Alexa555 faded from the start of irradiation at the excitation wavelength, and it was difficult to detect the fluorescence of Alexa555 30 seconds and 60 seconds later. On the other hand, since the fluorescence of Alexa488 was detected, it was confirmed that the primary antibody remained. Therefore, it was considered that the fading of Alexa555 was due to the cleavage of the photocleaving group by the excitation light irradiation and the release of Alexa555.
  • Example 4 ⁇ Preparation of probe for biomolecular structure detection> Each biomolecular structure detection probe was prepared by the same method as in Example 1 except that an antibody specific to each protein shown in FIG. 10 was used as a specific binding substance.
  • the sample after TCEP treatment was immunostained in the same manner as above except that a linker-labeled anti-CD68 mouse IgG antibody was used, and fluorescence observation was performed. Then, TCEP treatment was performed in the same manner as above. The same treatment was repeated using a mouse IgG antibody that specifically binds to each protein shown in FIG. 10.
  • Example 5 ⁇ Preparation of probe for biomolecular structure detection> Each biomolecular structure detection probe was prepared by the same method as in Example 1 except that an antibody specific to each protein shown in FIG. 11 was used as a specific binding substance.
  • Continuous immunostaining was performed in the same manner as in Example 10 except that an antibody specific for each protein shown in FIG. 11 was used.
  • FIG. 14 shows the result of superimposing the quantitative value of the expression of a specific protein on the cell position information obtained in FIG. 13. From the results shown in FIG. 14, it was shown that cells with high expression of a specific protein were spatially biased.
  • proteome analysis is possible by performing continuous staining using a probe for biomolecular structure detection containing a disulfide bond at the linker site.
  • a probe for detecting a biomolecular structure a probe for detecting a biomolecular structure
  • a kit for detecting a biomolecular structure a method for detecting a biomolecular structure, which can repeatedly use the same labeling substance without using a photocleavable label. Will be done.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

生体分子構造に対して特異的結合性を有する特異的結合物質と、標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、生体分子構造検出用プローブ。また、前記生体分子検出用プローブと、前記ジスルフィド結合の切断試薬と、を含む、生体分子構造検出用キット。また、生体分子構造に対して特異的結合性を有する特異的結合物質と標識物質とを連結するためのリンカーであって、ジスルフィド結合を含むリンカーと、前記リンカーに結合可能な標識物質と、前記ジスルフィド結合の切断試薬と、を含む、生体分子構造検出用キット。また、前記生体分子構造検出用プローブを用いた生体分子構造の検出方法。

Description

生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法
 本発明は、生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法に関する。
 本願は、2020年12月1日に、日本に出願された特願2020-199800号に基づき優先権を主張し、その内容をここに援用する。
 蛍光免疫染色法は、組織試料中の抗原の発現状況を検出する手法である。従来、同一試料中で複数種類の抗原を検出する場合には、互いに異なる極大蛍光波長を有する複数種類の蛍光標識が用いられてきた。しかしながら、使用可能な蛍光標識の種類には限りがある。互いに異なる極大蛍光波長を有する蛍光標識を用いた場合でも、検出対象の蛍光の波長域に、検出対象ではない蛍光が漏れ込むことで、検出対象の抗原の正確な発現状況の解析が妨げられる場合がある。
 特許文献1では、光開裂可能標識で標識した抗体が報告されている。特許文献1では、光開裂可能標識で標識した抗体で免疫染色を行い、光開裂可能標識を検出した後、紫外線を照射して標識を切り離す方法が記載されている。
特表2018-523826号公報
 特許文献1では、光開裂可能標識を用い、紫外線照射により標識を切り離している。しかしながら、光開裂可能標識を蛍光多重染色に応用した場合、蛍光標識を検出するための励起光により光開裂部が開裂し、意図せず、蛍光標識が切り離されるリスクがある。
 そこで、本発明は、光開裂可能標識を用いることなく、同じ標識物質を繰り返し使用することが可能な、生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法を提供することを目的とする。
 本発明は以下の態様を含む。
[1]生体分子構造に対して特異的結合性を有する特異的結合物質と、標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、生体分子構造検出用プローブ。
[2]前記特異的結合物質が抗体である、[1]に記載の生体分子構造検出用プローブ。
[3]前記標識物質が蛍光色素である、[1]又は[2]に記載の生体分子構造検出用プローブ。
[4][1]~[3]のいずれか1つに記載の生体分子構造検出用プローブと、ジスルフィド結合の切断試薬と、を含む、生体分子構造検出用キット。
[5]生体分子構造に対して特異的結合性を有する特異的結合物質と標識物質とを連結するためのリンカーであって、ジスルフィド結合を含むリンカーと、前記リンカーに結合している若しくは結合可能な標識物質と、ジスルフィド結合の切断試薬と、を含む、生体分子構造検出用キット。
[6]前記特異的結合物質が抗体である、[5]に記載の生体分子構造検出用キット。
[7]前記標識物質は蛍光色素である、[5]又は[6]に記載の生体分子構造検出用キット。
[8]第1の生体分子構造に対して特異的結合性を有する特異的結合物質と、第1の標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、第1の生体分子構造検出用プローブを用いて、細胞を含む試料中の第1の生体分子構造を検出する工程(A)と、前記第1の生体分子構造検出用プローブ中の前記ジスルフィド結合を切断して、前記第1の標識物質を遊離させる工程(B)と、を含む、生体分子構造の検出方法。
[9]前記工程(B)後、第2の生体分子構造に対して特異的結合性を有する特異的結合物質と、第2の標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、第2の生体分子構造検出用プローブを用いて、前記試料中の前記第2の生体分子構造を検出する工程(C)、をさらに含む、[8]に記載の生体分子構造の検出方法。
[10]前記第1の標識物質と前記第2の標識物質とが、同一の標識物質である、[9]に記載の生体分子構造の検出方法。
[11]前記第1の生体分子構造が、前記細胞が含む第3の生体分子構造に特異的に結合する第1の一次プローブが含む生体分子構造である、[8]~[10]のいずれか1つに記載の生体分子構造の検出方法。
[12]前記第1の生体分子構造が、前記細胞が含む第3の生体分子構造に特異的に結合する第1の一次プローブが含む生体分子構造であり、前記第2の生体分子構造が、前記細胞が含む第4の生体分子構造に特異的に結合する第2の一次プローブが含む生体分子構造である、[9]又は[10]に記載の生体分子構造の検出方法。
 本発明によれば、光開裂可能標識を用いることなく、同じ標識物質を繰り返し使用することが可能な、生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法が提供される。
一実施形態の生体分子構造検出方法を模式的に示す図である。 一実施形態の生体分子構造検出方法を模式的に示す図である。 実施例1の免疫染色方法の概略を模式的に示す。 実施例1の免疫染色の結果を示す蛍光画像である。 実施例2の免疫染色の結果を示す蛍光画像である。 実施例3及び比較例1の免疫染色方法の概略を模式的に示す。 実施例3の免疫染色の結果を示す蛍光画像である。 比較例1の免疫染色の結果を示す蛍光画像である。 参考例1の免疫染色の結果を示す蛍光画像である。 実施例4の連続免疫染色の結果を示す蛍光画像である。 約60種の生体分子構造検出用プローブを用いて連続免疫染色を行った各蛍光画像のシグナルを、単一細胞レベルで定量化したプロテオームデータである。 図11のデータを次元圧縮(UMAP)して、細胞を5つのグループに分類した結果を示す。 連続免疫染色の蛍光画像に存在する細胞の位置を点として示した図において、細胞の位置を各グループに対応する色の点で示した図である。 図13で得られた細胞の位置情報に、特定のタンパク質の発現の定量値を重ね合わせた結果を示す。
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。
 「を含む」(comprise)という用語は、対象となる構成要素以外の構成要素を含んでいてもよいことを意味する。「からなる」(consist of)という用語は、対象となる構成要素以外の構成要素を含まないことを意味する。「から本質的になる」(consist essentially of)という用語は、対象となる構成要素以外の構成要素を特別な機能を発揮する態様(発明の効果を完全に喪失させる態様など)では含まないことを意味する。本明細書において、「を含む」(comprise)と記載する場合、「からなる」(consist of)態様、及び「から本質的になる」(consist essentially of)態様を包含する。
 タンパク質、ペプチド、核酸、及び細胞等は、単離されたものであり得る。「単離された」とは、天然状態又は他の成分から分離された状態を意味する。「単離された」ものは、他の成分を実質的に含まないものであり得る。「他の成分を実質的に含まない」とは、単離された成分に含まれる他の成分の含有量が無視できる程度であることを意味する。単離された成分に含まれる他の成分の含有量は、例えば、10質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、又は0.1質量%以下であり得る。本明細書に記載されるタンパク質、ペプチド、核酸、及び細胞は、単離されたタンパク質、単離されたペプチド、単離された核酸、及び単離された細胞であり得る。
[生体分子構造検出用プローブ]
 本発明の第1の態様は、生体分子構造に対して特異的結合性を有する特異的結合物質と、標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、生体分子構造検出用プローブである。
 「プローブ」とは、特定の生体分子構造を検出するために用いられる分子又は分子複合体を意味する。本実施形態の生体分子構造検出用プローブは、検出対象である生体分子構造に対して特異的結合性を有する特異的結合物質と、標識物質とが、ジスルフィド結合を含むリンカーを介して連結された構造を有している。
 「生体分子」とは、生体に含まれる有機化合物を意味する。生体分子は、生命現象において機能する分子であってもよい。生体分子は、天然の生体分子を模して人工合成された分子であってもよい。生体分子としては、例えば、ペプチド、タンパク質、核酸、脂質、糖、糖脂質、ビタミン、ホルモン、アミノ酸、ヌクレオチド等が挙げられる。
 「生体分子構造」とは、生体分子に含まれる構造を意味する。生体分子構造は、生体分子の部分構造であってよく、一次構造の部分構造であってもよく、二次構造の部分構造であってもよく、三次構造の部分構造であってもよい。生体分子構造は、複数の生体分子から構成される立体構造の部分構造であってもよい。生体分子がペプチド又はタンパク質である場合、生体分子構造は、例えば、当該タンパク質の部分アミノ酸配列を含む部分領域であってもよく、当該タンパク質の立体構造の部分構造であってもよい。当該タンパク質中のアミノ酸残基の一部が、リン酸化、グリコシル化、ユビキチン化、メチル化、アセチル化等の修飾を受けている場合、当該修飾アミノ酸残基の構造であってもよい。また、生体分子が核酸である場合、生体分子構造は、例えば、当該核酸の部分ヌクレオチド配列であってもよい。
 「特異的結合物質」とは、特定の生体分子構造に対して、特異的結合性を有する物質を意味する。「特異的結合性を有する」とは、特定の生体分子構造に対して高い結合親和性を有するが、他の生体分子構造に対しては、極めて低い結合親和性しか有さないことを意味する。特異的結合物質は、好ましくは、特定の生体分子構造に高い結合性を有するが、他の生体分子構造にはほとんど結合性を有しない。
 生体分子構造と特異的結合物質との組合せとしては、例えば、ペプチド若しくはタンパク質の部分構造と、抗体、抗体断片若しくは抗体模倣物との組合せ;核酸の部分配列領域と、当該部分配列に相補的な配列を含む核酸との組合せ;リガンドと、その受容体との組合せ;酵素と、その基質、阻害剤若しくは補因子との組合せ;糖鎖と、レクチンとの組合せ;ペプチド、タンパク質若しくは核酸と、アプタマーとの組合せ;核酸の転写制御配列部分と、その転写制御因子との組合せ;等が挙げられるがこれらに限定されない。
 抗体は、免疫グロブリンのいずれのクラス及びサブクラスであってもよい。抗体が由来する生物種は特に限定されず、いずれの生物由来の抗体であってもよい。抗体は、好ましくはモノクローナル抗体である。抗体は、キメラ抗体等の改変抗体であってもよい。
 抗体断片は、抗原結合性を保持した抗体の断片を意味する。抗体断片としては、例えば、scFv、Fab、F(ab')2、Fv等が挙げられるが、これらに限定されない。
 抗体模倣物は、抗体と同様に、抗原に対する特異的結合性を有する非免疫グロブリン分子を意味する。抗体模倣物の例としては、例えば、アフィボディ(affibody)分子、アフィリン(affilin)、アフィマー(affimer)、アフィチン(affitin)、アルファボディ(alphabody)、アンチカリン(anticalin)、アビマー(avimer)、DARPin、フィノマー(fynomer)、Kunitzドメインペプチド、及びモノボディ(monobody)等が挙げられるが、これらに限定されない。
 アプタマーは、標的物質に対する特異的結合性を有する物質である。アプタマーとしては、例えば、核酸アプタマー、ペプチドアプタマー等が挙げられる。核酸アプタマーは、例えば、systematic evolution of ligand by exponentialenrichment(SELEX)法等により選別することができる。ペプチドアプタマーは、例えば酵母を用いたTwo-hybrid法等により選別することができる。
 特異的結合物質としては、細胞中の任意の生体分子構造に対して特異的結合性を有するものを用いることができる。例えば、生体分子構造として、特定のペプチド若しくはタンパク質が有する部分アミノ酸配列領域、修飾アミノ酸残基、若しくは部分立体構造等を検出したい場合、特異的結合物質として、それらに対して特異的結合性を有する抗体、抗体断片、抗体模倣体、若しくはアプタマー等を用いることができる。生体分子構造として、特定のmRNA若しくはゲノムDNAが有する部分ヌクレオチド配列領域を検出したい場合、特異的結合物質として前記部分ヌクレオチド配列に相補的なヌクレオチド配列を含む核酸、若しくはアプタマー等を用いることができる。
 特異的結合物質は、一次プローブに対して特異的結合性を有するものであってもよい。「一次プローブ」とは、検出対象とする生体分子構造に最初に結合させるプローブである。一次プローブとしては、例えば、抗体、抗体断片、核酸等の生体高分子を用いることができる。一次プローブが抗体(一次抗体)である場合、特異的結合物質としては、例えば、当該一次抗体の定常領域に対して特異的結合性を有する抗体等(抗体、抗体断片、抗体模倣体、アプタマー等)を用いることができる。
 「標識物質」とは、化学的手段又は物理的手段により検出可能なシグナルを直接的又は間接的に生成する物質を意味する。標識物質としては、例えば、ペルオキシダーゼ(例、西洋ワサビペルオキシダーゼ)、アルカリホスファターゼなどの酵素標識;カルボキシフルオレセイン(FAM)、6-カルボキシ-4’,5’-ジクロロ2’ ,7’-ジメトキシフルオレセイン(JOE)、フルオレセインイソチオシアネート(FITC)、テトラクロロフルオレセイン(TET)、5'-ヘキサクロロ-フルオレセイン-CEホスホロアミダイト(HEX)、Cy3、Cy5、Alexa488、Alexa555、Alexa568、Alexa647などの蛍光標識;ヨウ素125などの放射性同位体標識;ルテニウム錯体などの電気化学発光標識;金属ナノ粒子等が挙げられるが、これらに限定されない。好ましい標識物質としては、蛍光標識(蛍光色素)が挙げられる。
 「リンカー」とは、2つの物質を連結する連結部分、又は2つの物質を連結するために用いられる分子を意味する。本実施形態の生体分子構造検出用プローブにおいて、特異的結合物質と、標識物質とは、ジスルフィド結合を含むリンカーを介して連結されている。
 本実施形態の生体分子構造検出用プローブは、例えば、下記式(P1)で表すことができる。
Figure JPOXMLDOC01-appb-C000001
[式中、Y及びYは、それぞれ独立に、2価の連結基を表し;Lは標識物質を表し;Aは特異的結合物質を表す。]
 式(P1)中、Y及びYは、それぞれ独立に、2価の連結基を表す。前記2価の連結基は、結合構造を含んでいることが好ましい。結合構造とは、化学反応又は分子間相互作用により、2つの官能基が結合して形成される構造を意味する。結合構造を形成する化学反応として、脱水縮合反応、付加環化反応等が挙げられるが、これらに限定されない。Y及びYが含む結合構造には、ジスルフィド結合は含まれないことが好ましい。前記結合構造としては、例えば、アミド結合(-CO-NH-)、エステル結合(-CO-O-)、チオエステル結合(-CO-S-)、リン酸エステル結合(-PO-O-)、ウレタン結合(-NH-CO-O-)、1,2,3-トリアゾール環を含む結合等が挙げられるが、これらに限定されない。結合構造は、アビジン-ビオチン結合等の分子間相互作用による結合であってもよい。
 本実施形態の生体分子構造検出用プローブは、例えば、下記式(P1-1)で表されるものであってもよい。
Figure JPOXMLDOC01-appb-C000002
[式中、Y11及びY12は、それぞれ独立に、結合構造を含む2価の連結基を表し;R11及びR12は、それぞれ独立に、2価の連結基を表し;Lは標識物質を表し;Aは特異的結合物質を表す。]
 式(P1-1)中、Y11及びY12は、それぞれ独立に、結合構造を含む2価の連結基を表す。結合構造としては、上記Y及びYで挙げたものと同様のものが挙げられる。
 式(P1-1)中、R11及びR12は、それぞれ独立に、2価の連結基を表す。2価の連結基としては、例えば、置換基を有してもよい炭化水素基が挙げられる。前記炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。
 前記脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよいが、飽和であることが好ましい。前記脂肪族炭化水素基としては、直鎖状若しくは分岐鎖状の脂肪族炭化水素基、及び構造中に環を含む脂肪族炭化水素基等が挙げられる。
 直鎖状の脂肪族炭化水素基は、炭素原子数1~15が好ましく、炭素原子数1~10がより好ましく、炭素原子数1~6がさらに好ましく、炭素原子数1~3が特に好ましい。直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましい。
 分岐鎖状の脂肪族炭化水素基は、炭素原子数2~15が好ましく、炭素原子数2~10がより好ましく、炭素原子数3~6がさらに好ましい。分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましい。
 構造中に環を含む脂肪族炭化水素基としては、環構造中にヘテロ原子を含む置換基を含んでもよい環状の脂肪族炭化水素基(脂肪族炭化水素環から水素原子を2個除いた基)、前記環状の脂肪族炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の末端に結合した基、前記環状の脂肪族炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。前記直鎖状または分岐鎖状の脂肪族炭化水素基としては前記と同様のものが挙げられる。環状の脂肪族炭化水素基は、炭素原子数3~20が好ましく、炭素原子数3~12がより好ましい。環状の脂肪族炭化水素基は、多環式基であってもよく、単環式基であってもよい。環状の脂肪族炭化水素基は、その環構造を構成する炭素原子の一部がヘテロ原子(酸素原子、窒素原子、硫黄原子等)を含む置換基で置換されてもよい。
 R11及びR12における2価の連結基が芳香族炭化水素基である場合、炭素原子数6~15がさらに好ましく、炭素原子数6~12が特に好ましい。芳香族炭化水素基は、芳香環を含む炭化水素基である。芳香環としては、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;及び、トリアゾール環、ピリジン環、チオフェン環等の芳香族複素環が挙げられる。
 芳香族炭化水素基として具体的には、前記芳香族炭化水素環または芳香族複素環から水素原子を2つ除いた基(アリーレン基またはヘテロアリーレン基);2以上の芳香環を含む芳香族化合物(例えばビフェニル、フルオレン等)から水素原子を2つ除いた基;前記芳香族炭化水素環または芳香族複素環から水素原子を1つ除いた基(アリール基またはヘテロアリール基)の水素原子の1つがアルキレン基で置換された基(アリール基又はヘテロアリール基から水素原子をさらに1つ除いた基)等が挙げられる。前記水素原子を置換するアルキレン基としては、炭素原子数1~10が好ましく、炭素原子数1~6がより好ましく、炭素原子数1~4がさらに好ましい。
 前記置換基を有してもよい炭化水素基は、炭化水素鎖の水素原子の一部が1価の基で置換されてもよく、炭化水素鎖を構成するメチレン基(-CH-)の一部がヘテロ原子を含む2価の基で置換されてもよい。前記水素原子を置換する1価の基としては、例えば、アシル基、アルコキシ基、ヒドロキシ基、カルボキシ基、アミノ基、チオール基等が挙げられるが、これらに限定されない。前記メチレン基を置換する2価の基としては、例えば、-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-C(=O)-、-NH-等が挙げられる。
 本実施形態の生体分子構造検出用プローブの具体例としては、例えば、下記(P1-1-1)で表されるものが挙げられるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000003
[式中、n1及びn2は、それぞれ独立に、1~10の整数を表し;Aviはアビジン又はその誘導体を表し;Lは標識物質を表し;Aは特異的結合物質を表す。]
 式(P1-1-1)中、Aviは、アビジン又はその誘導体を表す。アビジン誘導体としては、例えば、ストレプトアビジン、ニュートラアビジン等が挙げられる。Aviで表されるアビジン又はその誘導体は、ビオチン部と分子間相互作用により結合している。
 式(P1-1-1)中、n1及びn2は、それぞれ独立に、1~10の整数である。n1及びn2は、1~6の整数が好ましく、1~3の整数がより好ましく、2又は3がさらに好ましい。
 本実施形態の生体分子構造検出用プローブの具体例を以下に挙げるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000004
[式中、Aviはアビジン又はその誘導体を表し;Lは標識物質を表し;Aは特異的結合物質を表す。]
 本実施形態の生体分子構造検出用プローブは、特異的結合物質と標識物質とのリンカー部にジスルフィド結合を含むため、ジスルフィド結合を切断することにより、任意のタイミングで標識物質を切り離すことができる。ジスルフィド結合は、トリス(2-カルボキシエチル)ホスフィン(TCEP)、2-メルカプトエタノール、ジチオトレイトール(DTT)等の還元剤で容易に切断することができる。ジスルフィド結合は、光により開裂することがないため、蛍光観察を行う際に必要となる励起光を照射した場合に、開裂することがない。ジスルフィド結合の開裂には紫外線を使用することがないため、紫外線により核酸等の生体分子が変質することもない。そのため、本態様の生体分子構造検出用プローブを用いて特定の生体構造の検出した後、マイクロダイセクション法等により細胞を採取して、トランスクリプトーム解析等を好適に行うことができる。
[生体分子構造検出用キット]
<第1実施形態>
 本発明の第2の態様は、前記態様の生体分子検出用プローブと、ジスルフィド結合の切断試薬と、を含む生体分子構造検出用キットである。
(生体分子検出用プローブ)
 生体分子検出用プローブは、前記態様の生体分子検出用プローブと同じである。本実地形態のキットが含む生体分子検出用プローブにおいて、特異的結合物質は、例えば、一次プローブ(例えば、一次抗体)に対して特異的結合性を有する特異的結合物質(抗体、抗体断片、抗体模倣体、又はアプタマー等)であってもよい。例えば、一次プローブが特定種の動物由来の抗体(例えば、マウス抗体)である場合、生体分子検出用プローブの特異的結合物質としては、前記抗体の定常領域に対して特異的結合性を有する他種の動物由来の抗体(例えば、ヤギ抗マウス抗体)若しくはその抗体断片等を用いることができる。
(切断試薬)
 本実施形態の生体分子構造検出用キットは、上記生体分子検出用プローブに加えて、ジスルフィド結合の切断試薬を含む。ジスルフィド結合の切断試薬は、ジスルフィド結合を切断可能なものであれば、特に限定されない。切断試薬としては、例えば、TCEP、2-メルカプトエタノール、DTT等の還元剤が挙げられる。切断試薬としては、安定性及び選択性が高いことから、TCEPが好ましい。
<第2実施形態>
 本発明の第3の態様は、生体分子構造に対して特異的結合性を有する特異的結合物質と標識物質とを連結するためのリンカーであって、ジスルフィド結合を含むリンカーと、前記リンカーに結合している若しくは結合可能な標識物質と、前記ジスルフィド結合の切断試薬と、を含む、生体分子構造検出用キットである。
(リンカー)
 本実施形態のキットは、生体分子構造に対して特異的結合性を有する特異的結合物質と標識物質とを連結するためのリンカーを含む。前記リンカーは、例えば、特異的結合物質又は標識物質が含む官能基と反応する官能基を有するものであってもよい。例えば、特異的結合物質がアミノ基を有する場合、リンカーは、アミン反応性基を有していてもよい。アミン反応性基とは、アミンと反応する官能基である。アミン反応性基は、特に限定されず、公知のものを用いることができる。アミン反応性基としては、例えば、N-ヒドロキシエステル(NHS-エステル)基、カルボキシ基、イソシアネート基、イソチオシアネート基、スルホニルクロライド基、アルデヒド基、カルボジイミド基、アシルアザイド基、エポキシ基、イミドエステル基等が挙げられるが、これらに限定されない。
 リンカーと、特異的結合物質又は標識物質との結合は、アビジン-ビオチン結合により行われてもよい。この場合、リンカーは、ビオチンから誘導される基を含んでいてもよい。
 リンカーとしては、例えば、下記式(L1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
[式中、V及びVは、それぞれ独立に、官能基又はビオチンから誘導される基を表し;R11及びR12は、それぞれ独立に、2価の連結基を表す。]
 式(L1)中、V及びVは、それぞれ独立に、官能基又はビオチンから誘導される基を表す。V及びVにおける官能基は、特異的結合物質又は標識物質が有する官能基と反応して結合構造を形成することができる官能基である。例えば、特異的結合物質又は標識物質がアミノ基を有する場合、V及びVにおける官能基としては、上記のようなアミン反応性基が挙げられる。
 式(L1)中、R11及びR12は、それぞれ独立に、2価の連結基を表す。R11及びR12は、前記式(P1-1)中のR11及びR12と同じである。
(標識物質)
 標識物質は、前記リンカーに結合していてもよい。あるいは、標識物質は、前記リンカーに結合していない状態で提供されてもよい。この場合、標識物質は、前記リンカーに結合可能な構造を有する。例えば、標識物質は、リンカーが有する官能基と反応して結合構造を形成することができる官能基を有していてもよい。あるいは、リンカーがビオチンから誘導される基を含む場合には、アビジン又はアビジン誘導体が付加されていてもよい。アビジン誘導体としては、上記と同様のものが挙げられる。標識物質が、リンカーと結合していない状態で提供される場合、ユーザーが、使用前に、リンカーと標識物質との連結反応を行えばよい。
(切断試薬)
 切断試薬は、第1実施形態のキットで挙げたものと同様のものを用いることができる。
 本実施形態のキットは、特異的結合物質を含まず、ユーザーが任意の特異的物質を選択することができる。ユーザーは、使用前に、任意の特異的結合物質と、リンカーとの結合反応を行うことで、生体分子検出用プローブを作製することができる。
(任意の要素)
 第2の態様又は第3の態様にかかるキットは、上記要素に加えて、他の要素を含んでいてもよい。他の要素としては、例えば、標識物質の検出試薬、試料調製試薬、希釈液、バッファー類(ブロッキングバッファー、洗浄バッファー等)、使用説明書等が挙げられる。
 本実施形態のキットは、後述の生体分子構造検出方法に用いることができる。
[生体分子構造の検出方法]
 本発明の第4の態様は、第1の生体分子構造に対して特異的結合性を有する特異的結合物質と、第1の標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、第1の生体分子構造検出用プローブを用いて、細胞を含む試料中の第1の生体分子構造を検出する工程(A)と、前記第1の生体分子構造検出用プローブ中の前記ジスルフィド結合を切断して、前記第1の標識物質を遊離させる工程(B)と、を含む、生体分子構造の検出方法である。
 本実施形態の方法は、細胞を含む試料において、目的とする生体分子構造を検出する方法である。「細胞を含む試料」は、細胞を含む試料であれば、特に限定されない。細胞を含む試料は、組織切片であってもよく、細胞懸濁液であってもよく、細胞を含む体液試料等であってもよい。細胞は、いかなる生物の細胞であってもよい。
 図1は、本実施形態の方法の一例を模式的に示す図である。本実施形態の方法は、上記第1の態様の生体分子構造検出用プローブを用いて実施することができる。図1中、1は、細胞を含む試料である。試料1は、生体分子10a、10bを含んでいる。生体分子10a及び生体分子10bは、それぞれ、検出対象である生体分子構造を含む生体分子である。20aは、生体分子10aが含む生体分子構造に特異的に結合する特異的結合物質である。30aは、標識物質である。特異的結合物質20aと標識物質30aとは、ジスルフィド結合を含むリンカー40aを介して連結されており、生体分子構造検出用プローブP1を形成している。20bは、生体分子10bが含む生体分子構造に特異的に結合する特異的結合物質である。30bは、標識物質である。特異的結合物質20bと標識物質30bとは、ジスルフィド結合を含むリンカー40bを介して連結されており、生体分子構造検出用プローブP2を形成している。
 生体分子10a、10bは、上記[生体分子構造検出用プローブ]で例示したものと同様のものが挙げられる。生体分子10a、10bは、例えば、ペプチド又はタンパク質である。特異的結合物質20a、20bは、上記[生体分子構造検出用プローブ]で例示したものと同様のものが挙げられる。特異的結合物質20a、20bは、例えば、抗体又は抗体断片である。標識物質30a、30bは、上記[生体分子構造検出用プローブ]で例示したものと同様のものが挙げられる。標識物質30a、30bは、例えば、蛍光色素である。リンカー40a、40bは、上記[生体分子構造検出用プローブ]で例示したものと同様のものが挙げられる。標識物質30a及び30bは、同じものであってもよく、異なるものであってもよい。標識物質30aが蛍光色素である場合、標識物質30bも蛍光色素であることが好ましい。この場合、標識物質30a及び30bの蛍光色素は、同じものであってもよく、異なるものであってもよい。
<工程(A)>
 工程(A)では、第1の生体分子構造に対して特異的結合性を有する特異的結合物質(特異的結合物質20a)と、第1の標識物質(標識物質30a)とが、ジスルフィド結合を含むリンカー(リンカー40a)を介して連結している、第1の生体分子構造検出用プローブ(生体分子構造検出用プローブP1)を用いて、細胞を含む試料(試料1)中の第1の生体分子構造(生体分子10aが含む生体分子構造)を検出する(図1(A)参照)。
 図1中、生体分子構造検出用プローブP1が、第1の生体分子構造検出プローブである。工程(A)では、試料1を生体分子構造検出用プローブP1で処理する。これにより、生体分子構造検出用プローブP1は、特異的結合物質20aを介して、生体分子10aに結合する。
 生体分子構造検出用プローブP1による試料1の処理方法は、特異的結合物質20aの種類に応じて、適宜選択することができる。例えば、適当なバッファー(例えば、リン酸バッファー、トリス塩酸バッファー、PBS等)に生体分子構造検出用プローブP1を溶解した生体分子構造検出用プローブP1の溶液を、試料1に添加して、インキュベーションする。これにより、生体分子構造検出用プローブP1を生体分子10aに結合させることができる。インキュベーション温度、及びインキュベーション時間は、特異的結合物質20aの種類に応じて、適宜選択することができる。例えば、特異的結合物質20aが抗体又は抗体断片である場合、インキュベーション温度は、20~40℃(好ましくは、30~40℃)であってもよい。インキュベーション時間は、30~120分程度であってもよい。
 生体分子構造検出用プローブP1による処理後は、洗浄バッファー等により試料1を洗浄してもよい。これにより、未結合の生体分子構造検出用プローブP1を除去することができる。
 生体分子構造検出用プローブP1による処理の前に、ブロッキング剤による試料1のブロッキングを行ってもよい。ブロッキングを行うことにより、生体分子構造検出用プローブP1の非特異的結合を低減することができる。ブロッキング剤としては、例えば、ウシ血清アルブミン、スキムミルク、カゼイン、ゼラチン等が挙げられるが、これらに限定されない。
 次いで、生体分子構造検出用プローブP1の標識物質30aのシグナルを検出する。標識物質30aのシグナルを検出することにより、特異的結合物質20aが結合する生体分子構造を、間接的に検出することができる。標識物質30aのシグナルの検出方法は、標識物質30aの種類に応じて、適宜選択することができる。標識物質30aが蛍光色素である場合、当該蛍光色素の励起波長の光を照射し、蛍光顕微鏡を用いて蛍光を検出することにより、標識物質30aのシグナルを検出することができる。
<工程(B)>
 工程(B)では、第1の生体分子構造検出用プローブ(生体分子構造検出用プローブP1)中の前記ジスルフィド結合を切断して、前記第1の標識物質(標識物質30a)を遊離させる(図1(B)参照)。
 生体分子構造検出用プローブP1中のジスルフィド結合の切断は、ジスルフィド結合の切断試薬を用いて行うことができる。切断試薬としては、上記[生体分子構造検出用キット]で挙げたものと同様のものが挙げられる。切断試薬の濃度は特に限定されず、切断試薬の種類に応じて適宜選択することができる。切断試薬の濃度は、生体分子構造検出用プローブP1中のジスルフィド結合の切断に十分な量であればよい。切断試薬として還元剤(TCEP、2-メルカプトメタノール、又はDTT等)を用いる場合、還元剤の濃度は、例えば、5mM以上、10mM以上、20mM以上、又は30mM以上とすることができる。還元剤の濃度の上限値は特に限定されないが、例えば、100mM以下、80mM以下、70mM以下、60mM以下、又は50mM以下とすることができる。還元剤による処理時間は、例えば、10分以上、15分以上、20分以上、25分以上、又は30分以上とすることができる。還元剤による処理時間の上限は、特に限定されないが、生体分子を変性させない観点から、例えば、200分以下、150分以下、又は120分以下とすることができる。還元剤がTCEPである場合、例えば、濃度は5~50mM、処理時間は20~40分程度とすることができる。また、処理温度としては、20~40℃が挙げられる。
 生体分子構造検出用プローブP1中のジスルフィド結合を切断することにより、標識物質30aが生体分子構造検出用プローブP1から切り離されて遊離する。そのため、試料1における標識物質30aのシグナルが消滅する。
 切断試薬による処理後は、洗浄バッファー等により試料を洗浄してもよい。これにより、遊離した標識物質30aを除去することができる。
<任意工程>
 本実施形態の方法は、上記工程(A)及び(B)に加えて、他の工程を含んでいてもよい。他の工程としては、例えば、第2の生体分子構造に対して特異的結合性を有する特異的結合物質と、第2の標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、第2の生体分子構造検出用プローブを用いて、前記試料中の前記第2の生体分子構造を検出する工程(C)(図1(C)参照);及び生体分子構造検出用プローブP2中のジスルフィド結合を切断して、第2の標識物質を遊離させる工程(D)(図1(D)参照)等が挙げられる。
(工程(C))
 本実施形態の方法は、前記工程(B)後に、前記工程(C)をさらに含むことができる。図1中、生体分子構造検出用プローブP2が、第2の生体分子構造検出プローブである。工程(C)では、工程(B)後の試料1を生体分子構造検出用プローブP2で処理する。これにより、生体分子構造検出用プローブP2は、特異的結合物質20bを介して、生体分子10bに結合する。
 工程(C)は、生体分子構造検出用プローブP1に替えて、生体分子構造検出用プローブP2を用いること以外は、前記工程(A)と同様に行うことができる。
 試料1を生体分子構造検出用プローブP2で処理した後、生体分子構造検出用プローブP2の標識物質30bのシグナルを検出する。標識物質30bのシグナルを検出することにより、特異的結合物質20bが結合する生体分子構造を、間接的に検出することができる。標識物質30bのシグナルの検出方法は、標識物質30bの種類に応じて、適宜選択することができる。標識物質30bが蛍光色素である場合、当該蛍光色素の励起波長の光を照射し、蛍光顕微鏡を用いて蛍光を検出することにより、標識物質30bのシグナルを検出することができる。
 標識物質30bは、標識物質30aと同じであってもよく、異なっていてもよい。本実施形態の方法では、工程(B)により、試料1では標識物質30aが消失している。そのため、標識物質30bが、標識物質30aと同じであっても、工程(C)では、生体分子10bに結合した標識物質30bのみを検出することができる。
(工程(D))
 本実施形態の方法は、前記工程(C)後に、前記工程(D)をさらに含むことができる。工程(D)を行うことにより、試料1における標識物質30bのシグナルが消滅させることができる。工程(D)は、上記工程(B)と同様に行うことができる。
(繰り返し工程)
 本実施形態の方法は、さらに、生体分子構造検出用プローブ中の特異的結合物質の種類を変更して、工程(C)及び工程(D)を繰り返し行う工程(E)を含んでいてもよい。特異的結合物質は、工程(C)及び工程(D)のサイクル毎に、異なるものを用いることが好ましい。生体分子構造検出用プローブ中の標識物質は、サイクル毎に、変更してもよく、変更しなくてもよい。工程(C)及び工程(D)の繰り返し回数は、特に限定されず、任意の回数とすることができる。工程(C)及び工程(D)の繰り返し回数は、例えば、1回以上、2回以上、3回以上、5回以上、10回以上、20回以上、30回以上、40回以上、又は50回以上であってもよい。工程(C)及び工程(D)の繰り返し回数の上限値は特に限定されないが、例えば、500回以下、400回以下、300回以下、200回以下、又は100回以下であってもよい。工程(C)及び工程(D)の繰り返し回数は、例えば、1~100回、1~90回、1~80回、1~70回、1~60回、1~50回、1~40回、1~30回、1~20回、1~10回、又は1~5回等とすることができる。
 本実施形態の方法では、第1の生体分子構造検出用プローブを用いて第1の生体分子構造を検出した後、第1の生体分子構造検出用プローブ中のジスルフィド結合を切断して、標識物質を遊離させる。そのため、第2の生体分子構造検出用プローブを用いて第2の生体分子構造を検出する際に、第1の生体分子構造検出用プローブの標識物質が干渉することがない。そのため、同じ試料を用いて、生体分子構造の検出操作を繰り返し行うことができる。本実施形態の方法では、同じ標識物質を繰り返し用いることができるため、検出操作の繰り返し回数が標識物質の種類に限定されることがない。
 本実施形態の方法では、標識物質の切断構造に、ジスルフィド結合を用いているため、標識物質に蛍光色素を用いた場合であっても、励起光により標識物質が切り離されることがない。本実施形態の方法では、標識物質の切断を、生体分子を変性させない程度の還元条件下で行うことができる。そのため、本実施形態の方法で所望の生体分子構造を有する細胞を特定した後、当該細胞からRNA等を抽出し、トランスクリプトーム解析等に好適に利用することができる。
<変形例>
 本実施形態の方法は、一次プローブを用いて行うこともできる。この場合、生体分子構造検出用プローブが結合する生体分子構造は、一次プローブが含む生体分子構造であってもよい。例えば、第1の生体分子構造検出用プローブが結合する第1の生体分子構造は、第1の一次プローブが含む生体分子構造であってもよい。この場合、第1の一次プローブは、試料中の細胞が含む第3の生体分子構造に特異的に結合していてもよい。第2の生体分子構造検出用プローブが結合する第2の生体分子構造は、第2の一次プローブが含む生体分子構造であってもよい。この場合、第2の一次プローブは、試料中の細胞が含む第4の生体分子構造に特異的に結合していてもよい。
 図2は、一次プローブを用いる方法の一例を模式的に示す図である。図2中、特異的結合物質20aは、生体分子10aが含む生体分子構造に結合させる第1の一次プローブとして用いられている。21aは、特異的結合物質20a(第1の一次プローブ)の生体分子構造に特異的結合活性を有する特異的結合物質である。特異的結合物質21aと標識物質30aとは、ジスルフィド結合を含むリンカー40aを介して連結されており、生体分子構造検出用プローブP3を形成している。本変形例において、生体分子構造検出用プローブP3は、第1の生体分子構造検出用プローブとして用いられている。特異的結合物質20a、21aは、例えば、抗体又は抗体断片である。
 図2中、特異的結合物質20bは、生体分子10bが含む生体分子構造に結合させる第2の一次プローブとして用いられている。21bは、特異的結合物質20b(第2の一次プローブ)の生体分子構造に特異的結合活性を有する特異的結合物質である。特異的結合物質21bと標識物質30bとは、ジスルフィド結合を含むリンカー40bを介して連結されており、生体分子構造検出用プローブP4を形成している。本変形例において、生体分子構造検出用プローブP4は、第2の生体分子構造検出用プローブとして用いられている。特異的結合物質20b、21bは、例えば、抗体又は抗体断片である。
(工程(A’):図2(A’)参照)
 本変形例の方法は、工程(A’)を含む。工程(A’)は、第3の生体分子構造(生体分子10aが含む生体分子構造)に対して特異的結合性を有する第1の一次プローブ(特異的結合物質20a)を用いて、細胞を含む試料(試料1)を処理し、前記試料中の第3の生体分子構造に前記第1の一次プローブを結合させること;前記第1の一次プローブが含む第1の生体分子構造に特異的結合性を有する特異的結合物質(特異的結合物質21a)と、第1の標識物質(標識物質30a)とが、ジスルフィド結合を含むリンカー(リンカー40a)を介して連結している、第1の生体分子構造検出用プローブ(生体分子構造検出用プローブP3)を、前記第1の一次プローブに結合させること;及び前記第1の標識物質のシグナルを検出することにより、前記第1の生体分子構造を検出することを含む。
 本変形例の工程(A’)では、まず、試料1を、第1の一次プローブとしての特異的結合物質20aで処理する。これにより、特異的結合物質20aが、試料1中の生体分子10aに結合する。
 次に、試料1を、生体分子構造検出用プローブP3で処理する。これにより、生体分子構造検出用プローブP3は、特異的結合物質21aを介して、特異的結合物質20aに結合する。その結果、生体分子10a、第1の一次プローブ(特異的結合物質20a)、生体分子構造検出用プローブP3の複合体が形成される。
 特異的結合物質20a、及び生体分子構造検出用プローブP3による試料1の処理方法は、上記工程(A)における生体分子構造検出用プローブP1による試料1の処理と同様に行うことができる。
 第1の一次プローブ(特異的結合物質20a)による処理後は、洗浄バッファー等により試料1を洗浄してもよい。これにより、未結合の特異的結合物質20aを除去することができる。また、生体分子構造検出用プローブP3による処理後は、洗浄バッファー等により試料1を洗浄してもよい。これにより、未結合の生体分子構造検出用プローブP3を除去することができる。
 第1の一次プローブ(特異的結合物質20a)による処理の前に、ブロッキング剤による試料1のブロッキングを行ってもよい。ブロッキングを行うことにより、特異的結合物質20aの非特異的結合を低減することができる。生体分子構造検出用プローブP3による処理の前に、ブロッキング剤による試料1のブロッキングを行ってもよい。ブロッキングを行うことにより、生体分子構造検出用プローブP3の非特異的結合を低減することができる。ブロッキング剤としては、例えば、上記と同様のものが挙げられる。
 次いで、生体分子構造検出用プローブP3の標識物質30aのシグナルを検出する。標識物質30aのシグナルを検出することにより、特異的結合物質20a及び特異的結合物質21aを介して結合する生体分子10aの生体分子構造を、間接的に検出することができる。標識物質30aのシグナルの検出方法は、上記工程(A)と同様に行うことができる。
(工程(B’):図2(B’)参照)
 工程(B’)では、第1の生体分子構造検出用プローブ(生体分子構造検出用プローブP3)中の前記ジスルフィド結合を切断して、前記第1の標識物質(標識物質30a)を遊離させる。工程(B’)は、上記工程(B)と同様に行うことができる。
(任意工程)
≪工程(C’):図2(C’)参照≫
 本変形例の方法は、上記工程(A’)及び(B’)に加えて、工程(C’)を含んでいてもよい。工程(C’)は、第4の生体分子構造(生体分子10bが含む生体分子構造)に対して特異的結合性を有する第2の一次プローブ(特異的結合物質20b)を用いて、細胞を含む試料(試料1)を処理し、前記試料中の第2の生体分子構造に前記第2の一次プローブを結合させること;及び前記第2の一次プローブが含む第2の生体分子構造に特異的結合性を有する特異的結合物質(特異的結合物質21b)と、第2の標識物質(標識物質30b)とが、ジスルフィド結合を含むリンカー(リンカー40b)を介して連結している、第2の生体分子構造検出用プローブ(生体分子構造検出用プローブP4)を、前記第2の一次プローブに結合させること;及び前記第2の標識物質のシグナルを検出することにより、前記第2の生体分子構造を検出することを含む。
 本変形例の工程(C’)では、工程(B’)後の試料1を、第2の一次プローブとしての特異的結合物質20bで処理する。これにより、特異的結合物質20bが、試料1中の生体分子10bに結合する。
 次に、試料1を、生体分子構造検出用プローブP4で処理する。これにより、生体分子構造検出用プローブP4は、特異的結合物質21bを介して、特異的結合物質20bに結合する。その結果、生体分子10b、第2の一次プローブ(特異的結合物質20b)、生体分子構造検出用プローブP4の複合体が形成される。
 特異的結合物質20bによる試料1の処理方法は、特異的結合物質20aに替えて特異的結合物質20bを用いること以外は、上記工程(A’)と同様に行うことができる。生体分子構造検出用プローブP4による試料1の処理方法は、生体分子構造検出用プローブP3に替えて生体分子構造検出用プローブP4を用いること以外は、上記工程(A’)と同様に行うことができる。
 次いで、生体分子構造検出用プローブP4の標識物質30bのシグナルを検出する。標識物質30bのシグナルを検出することにより、特異的結合物質20b及び特異的結合物質21bを介して結合する生体分子10bの生体分子構造を、間接的に検出することができる。標識物質30bのシグナルの検出方法は、上記工程(A)と同様に行うことができる。
≪工程(D’):図2(D’)参照≫
 本変形例の方法は、上記工程(C’)の後、工程(D’)を含んでいてもよい。工程(D’)では、第2の生体分子構造検出用プローブ(生体分子構造検出用プローブP4)中の前記ジスルフィド結合を切断して、前記第1の標識物質(標識物質30b)を遊離させる。工程(D’)は、上記工程(D)と同様に行うことができる。
≪繰り返し工程≫
 本実施形態の方法は、さらに、一次プローブの種類及び生体分子構造検出用プローブ中の特異的結合物質の種類を変更して、工程(C’)及び工程(D’)を繰り返し行う工程(E’)を含んでいてもよい。一次プローブ及び生体分子構造検出用プローブ中の特異的結合物質は、工程(C’)及び工程(D’)のサイクル毎に、異なるものを用いることが好ましい。生体分子構造検出用プローブ中の標識物質は、サイクル毎に、変更してもよく、変更しなくてもよい。工程(C’)及び工程(D’)の繰り返し回数は、特に限定されず、任意の回数とすることができる。工程(C’)及び工程(D’)の繰り返し回数は、例えば、1回以上、2回以上、3回以上、5回以上、10回以上、20回以上、30回以上、40回以上、又は50回以上であってもよい。工程(C’)及び工程(D’)の繰り返し回数の上限値は特に限定されないが、例えば、500回以下、400回以下、300回以下、200回以下、又は100回以下であってもよい。工程(C’)及び工程(D’)の繰り返し回数は、例えば、1~100回、1~90回、1~80回、1~70回、1~60回、1~50回、1~40回、1~30回、1~20回、1~10回、又は1~5回等とすることができる。
 本変形例では、検出対象である試料中の生体分子構造に、一次プローブを介して生体分子構造検出用プローブを結合させる。そのため、任意の生体分子構造に特異的結合性を有する一次プローブを用いることで、任意の生体分子構造を検出することができる。例えば、一次プローブに用いる特異的結合物質に、特定の生体分子構造含むものを用いた場合、生体分子構造検出用プローブとしては当該特定の生体分子構造に対する特異的結合物質を含むものを用いればよい。例えば、一次プローブにマウス抗体を用いた場合、生体分子構造検出用プローブが含む特異的結合物質としては、マウス抗体の定常領域に結合する抗体を用いることができる。そのため、生体分子構造検出用プローブとしては、一次プローブの種類に合わせて予め準備したものを用いることができる。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
<第1の生体分子構造検出用プローブの作製>
(リンカーの作製)
 リンカーとして、下記構造のリンカー(1)を用いた。
Figure JPOXMLDOC01-appb-C000006
 リンカーは市販品であるEZ―link Sulfo-NHS-SS-Biotin(Thermo Fisher)を用いた。
(リンカーと特異的結合物質との結合)
 第1の特異的結合物質として、ラット抗マウスIgG抗体(Rat anti-mouse IgG, Jackson Immuno Research)を用いた。リンカーと第1の特異的結合物質との結合は、リンカーに添付の説明書に従って行った。
(リンカーと標識物質との結合)
 標識物質として、FITC標識アビジン(Avidin-FITC、Funakoshi)、又はAlexa 555標識アビジン(Streptavidin, Alexa Fluor 555 conjugate、Thermo Fisher)を用いた。リンカーと標識物質とは、0.1Mの炭酸水素ナトリウム水溶液(pH 8.3)中、室温で30分間反応させることで結合させた。
<第2の生体分子構造検出用プローブの作製>
 特異的結合物質として、ヤギ抗ラビットIgG抗体(Goat anti-rabbit IgG, Jackson Immuno Research)を用いたこと以外は、上記第1の生体分子構造検出用プローブの作製方法と同様の方法で第2の生体分子構造検出用プローブを作製した。
<免疫染色>
 実施例1の免疫染色方法の概略を図3に模式的に示す。一次抗体(第1の一次プローブ)としてマウス抗βアクチン抗体(Anti-βActin、Abcam)を試料に反応させた後、2次抗体として前記第1の生体分子構造検出用プローブを反応させた。その後、50mMのTCEP-HClで30分処理した。次いで一次抗体(第2の一次プローブ)としてウサギ抗H2AZ抗体(Anti-H2AZ、Abcam)を試料と反応させた後、2次抗体として前記第2の生体分子構造検出用プローブを反応させた。具体的には、以下のように行った。
 細胞培養皿で培養した細胞に4%のパラホルムアルデヒド(パラホルムアルデヒド、ナカライテスク)を加えて15分間反応させることで、細胞の固定を行った。固定化した細胞に0.5% TritonX-100を添加し、5分間反応させることで透過処理を行った。その後、ブロッキング溶液(Blocking One-P、ナカライテスク)を加えて10分間反応させることでブロッキングを行った。次に、一次抗体(Anti-βActin、Anti-H2AZなど)を10%ブロッキング溶液で適切な濃度に希釈し、室温で45分間、細胞に反応させた。その後、細胞をPBSで5分x3回洗浄し、リンカー標識をしたラット抗マウスIgG抗体またはヤギ抗ラビットIgG抗体(10%ブロッキング溶液で500倍に希釈)を室温で45分間、細胞に反応させた。反応後、細胞をPBSで5分x3回洗浄し、10%ブロッキング溶液で1000倍に希釈した蛍光標識アビジンを室温で45分間反応させた。反応後、細胞をPBSで5分x3回洗浄し、蛍光観察を行った。蛍光観察後、細胞に50mMのTCEPを添加し室温30分間処理を行った。反応後、細胞をPBSで5分x3回洗浄し、再度蛍光観察を行った。
<結果>
 結果を図4に示す。図4に示すように、マウス抗βアクチン抗体を一次抗体として反応させた後、前記第1の生体分子構造検出用プローブを反応させることにより、FITCの蛍光に基づきβアクチンを検出することができた(1段目画像)。次いで、50mMのTCEPで30分間処理することにより、FITCが遊離し、FITCの蛍光が消滅した(2段目、右端画像)。
 さらに、ウサギ抗H2AZ抗体を一次抗体として反応させた後、前記第2の生体分子構造検出用プローブを反応させることにより、FITCの蛍光に基づきH2AZを検出することができた(3段目画像)。次いで、50mMのTCEPで30分間処理することにより、FICTが遊離し、FITCの蛍光が消滅した(4段目、右端画像)。
 以上の結果より、ジスルフィド結合を含むリンカーを介して特異的結合物質と標識物質とを連結した生体分子構造検出用プローブを用いることにより、任意のタイミングで標識物質を遊離できることが確認された。また、免疫染色を繰り返し実施できることが確認された。
[実施例2]
 生体分子構造検出用プローブとして、実施例1で作製した第2の生体分子構造検出用プローブを用いた。一次抗体としてウサギ抗H2AZ抗体を用いて、上記と同様に試料と反応させた後、2次抗体として生体分子構造検出用プローブを反応させた(Staining)。その後、0mM、1mM、5mM、20mM、又は50mMのTCEP-HClで処理した(TCEP)。さらに、TCEP処理後の試料に対して、Alexa555標識ヤギ抗ウサギ抗体(Goat anti-Rabbit IgG、Thermo Fisher)又はアビジン標識FITCを反応させた(Re-staining)。
 結果を図5に示す。図5に示すように、ウサギ抗H2AZ抗体を一次抗体として反応させた後、前記生体分子構造検出用プローブを反応させることにより、FITCの蛍光に基づきH2AZを検出することができた(図5、1段目画像)。次いで、0~50mMのTCEPで30分間処理することにより、TCEPの濃度依存的にFICTが遊離し、FITCの蛍光が消滅した(図5、2段目画像)。さらに、TCEP処理後の試料にビオチン標識FITCを反応させたところ、FITCの蛍光がほとんど検出できなかった。この結果から、TCEPによりジスルフィド結合が切断されて、アビジンが遊離していることが確認された(図5、3段目画像)。次いで、TCEP処理後の試料にAlexa555標識ヤギ抗ウサギ抗体を反応させたところ、Alexa555の蛍光を検出できた(図5、4段目)。この結果から、試料中のH2Azに一次抗体が結合したまま残存していることが確認された。
[実施例3、比較例1]
 実施例3及び比較例1の免疫染色方法の概略を図6に模式的に示す。実施例3及び比較例1では、1次抗体としてAlexa555標識マウス抗ヒストンH3.1抗体を用い、2次抗体としてAl2xa488標識ヤギ抗マウス抗体を用いた。1次抗体として用いたAlexa555標識抗体は、抗体とAlexa555とのリンカー部位に、ジスルフィド結合又は2-ニトロベンジル基を含んでいる。
<実施例3>
 特異的結合物質としてマウス抗ヒストンH3.1抗体(Anti-H3.1 antibody、九州大学生体防御医学研究所大川研究室で作成)を用い、標識物質としてアビジン標識Alexa555(Streptavidin, Alexa Fluor 555 conjugate、Thermo Fisher)を用いたこと以外は、上記第1の生体分子構造検出用プローブの作製と同様の方法で、生体分子構造検出用プローブを作製した。
 一次抗体として、上記生体分子構造検出用プローブを用い、2次抗体としてAlexa488標識ヤギ抗マウス抗体(Goat anti-Mouse IgG Alexa Fluor 488、Thermo Fisher)を用いたこと以外は、上記と同様の方法で免疫染色を行った。また、Hoechst染色を行い、405nmの波長でイメージングした。
 結果を図7に示す。図7に示すように、励起波長の照射開始から60秒経過後もAlexa555の蛍光が検出することができた。
<比較例1>
 マウス抗ヒストンH3.1抗体(Anti-H3.1 antibody、九州大学生体防御医学研究所大川研究室で作成)に、光開裂リンカーを介してAlexa555が結合された抗体を1次抗体として用いた。光開裂リンカーとしては、光開裂基として2-ニトロベンジル基を含むものを用いた(PC-Biotin-PEG4-NHS carbonate、フナコシ)。
 一次抗体として、上記光開裂リンカーを含むAlexa555標識マウス抗ヒストンH3.1抗体を用いたこと以外は、実施例1と同様の方法で免疫染色を行った。また、Hoechst染色を行い、405nmの波長でイメージングした。
 結果を図8に示す。図8に示すように、励起波長の照射開始からAlexa555の蛍光が褪色し、30秒後及び60秒後では、Alexa555の蛍光の検出が困難であった。一方、Alexa488の蛍光は検出されたことから、一次抗体は残存していることが確認された。そのため、Alexa555の褪色は、励起光照射により光開裂基が開裂してAlexa555が遊離したことによるものであると考えられた。
 以上の結果より、標識物質の遊離をジスルフィド結合により行う方法は、光開裂基を用いる方法よりも優れていることが確認された。
[参考例1]
 一次抗体として、ウサギ抗H2AZ抗体(Anti-H2AZ、Abcam)を用い、2次抗体としてAlexa 488標識ヤギ抗ウサギ抗体を用いて、上記と同様に免疫染色を行った(Staining)。その後、0mM、5mM、20mM、又は50mMのTCEP-HClで30分間処理した(TCEP)。次いで、Alexa 488標識ヤギ抗ウサギ抗体により再度染色を行った(Restaining)。
 結果を図9に示す。図9に示すように、TCEP処理では、反応させた抗体由来のAlexa 488の蛍光が検出された(図9、2段目画像)。また、TCEP処理後の試料にAlexa 488標識ヤギ抗ウサギ抗体を反応させたところ、Alexa488の蛍光が検出されたことから、一次抗体が試料に残存していることが確認された。これらの結果と実施例1及び実施例2の結果とを合わせると、標識物質と特異的結合物質とを連結するリンカー中のジスルフィド結合が、抗体中のジスルフィド結合よりも効率的にTCEPで切断されていると考えられた。
[実施例4]
<生体分子構造検出用プローブの作製>
 特異的結合物質として、図10に示す各タンパク質に特異的な抗体を用いたこと以外は、実施例1と同様の方法で、各生体分子構造検出用プローブを作製した。
<連続免疫染色>
 細胞培養皿で培養した細胞に4%のパラホルムアルデヒド(パラホルムアルデヒド、ナカライテスク)を加えて15分間反応させることで細胞の固定を行った。固定化した細胞に0.5% TritonX-100を添加し、5分間反応させることで透過処理を行った。その後、ブロッキング溶液(Blocking One-P、ナカライテスク)を加えて10分間反応させることでブロッキングを行った。次に、リンカー標識をした抗aTublinマウスIgG抗体(10%ブロッキング溶液で500倍に希釈)を室温で30分間、細胞に反応させた。反応後、細胞をPBSで5分x3回洗浄し、蛍光観察を行った。蛍光観察後、細胞に50mMのTCEPを添加し室温30分間処理を行った。
 TCEP処理後の試料に対して、リンカー標識をした抗CD68マウスIgG抗体を用いたこと以外は、上記と同様にして免疫染色を行い、蛍光観察を行った。その後、上記と同様にTCEP処理を行った。図10に示す各タンパク質に特異的に結合するマウスIgG抗体を用いて、同様の処理を繰り返した。
<結果>
 結果を図10に示す。各タンパク質に対する抗体を特異的結合物質として含む生体分子構造検出用プローブを用いることにより、免疫染色により各タンパク質を検出することができた。TCEP処理により、その前に行った免疫染色の標識物質が除去され、その後の免疫染色に影響しないことが確認された。
[実施例5]
<生体分子構造検出用プローブの作製>
 特異的結合物質として、図11に示す各タンパク質に特異的な抗体を用いたこと以外は、実施例1と同様の方法で、各生体分子構造検出用プローブを作製した。
<連続免疫染色>
 図11に示す各タンパク質に特異的な抗体を用いたこと以外は、実施例10と同様の方法で、連続免疫染色を行った。
<連続免疫染色シグナルの定量化>
 連続免疫染色で得られた各タンパク質に対する免疫染色画像から、MATLAB(登録商標)(MathWorks,Inc.)を用いて、単一細胞レベルで各タンパク質シグナルを定量化した。図11に、その結果をプロテオームデータとして示した。連続免疫染色により、単一細胞レベルで、プロテオーム解析が可能なことが示された。
<プロテオームによる細胞のグループ化>
 図11に示すデータを次元圧縮(UMAP)して、類似した細胞の種類毎に、5つのグループにグループ化した。図12に、その結果を示した。連続免疫染色により、プロテオーム解析による細胞のグループ化が可能なことが示された。
<細胞集団の分布解析>
 免疫染色画像に存在する細胞の位置を点として示し、上記でグループ化した5つのグループの細胞の位置を、各グループに対応する色の点として示した。その結果を図13に示す。
 図13で得られた細胞の位置情報に、特定のタンパク質の発現の定量値を重ね合わせた結果を図14に示す。図14の結果から、特定のタンパク質の発現の高い細胞が空間的に偏って存在していることが示された。
 以上の結果から、リンカー部位にジスルフィド結合を含む生体分子構造検出用プローブを用いて連続染色を行うことにより、プロテオーム解析が可能なことが示された。
 本発明によれば、光開裂可能標識を用いることなく、同じ標識物質を繰り返し使用することが可能な、生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法が提供される。
 以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。
 1 細胞を含む試料
 10a,10b 生体分子
 20a,20b,21a,21b 特異的結合物質
 30a,30b 標識物質
 40a,40b リンカー
 P1,P2,P3,P4 生体分子構造検出用プローブ

Claims (12)

  1.  生体分子構造に対して特異的結合性を有する特異的結合物質と、標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、生体分子構造検出用プローブ。
  2.  前記特異的結合物質が抗体である、請求項1に記載の生体分子構造検出用プローブ。
  3.  前記標識物質が蛍光色素である、請求項1又は2に記載の生体分子構造検出用プローブ。
  4.  請求項1~3のいずれか一項に記載の生体分子構造検出用プローブと、
     ジスルフィド結合の切断試薬と、
     を含む、生体分子構造検出用キット。
  5.  生体分子構造に対して特異的結合性を有する特異的結合物質と標識物質とを連結するためのリンカーであって、ジスルフィド結合を含むリンカーと、
     前記リンカーに結合している若しくは結合可能な標識物質と、
     ジスルフィド結合の切断試薬と、
     を含む、生体分子構造検出用キット。
  6.  前記特異的結合物質が抗体である、請求項5に記載の生体分子構造検出用キット。
  7.  前記標識物質は蛍光色素である、請求項5又は6に記載の生体分子構造検出用キット。
  8.  第1の生体分子構造に対して特異的結合性を有する特異的結合物質と、第1の標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、第1の生体分子構造検出用プローブを用いて、細胞を含む試料中の第1の生体分子構造を検出する工程(A)と、
     前記第1の生体分子構造検出用プローブ中の前記ジスルフィド結合を切断して、前記第1の標識物質を遊離させる工程(B)と、
     を含む、生体分子構造の検出方法。
  9.  前記工程(B)後、
     第2の生体分子構造に対して特異的結合性を有する特異的結合物質と、第2の標識物質とが、ジスルフィド結合を含むリンカーを介して連結している、第2の生体分子構造検出用プローブを用いて、前記試料中の前記第2の生体分子構造を検出する工程(C)、
     をさらに含む、請求項8に記載の生体分子構造の検出方法。
  10.  前記第1の標識物質と前記第2の標識物質とが、同一の標識物質である、請求項9に記載の生体分子構造の検出方法。
  11.  前記第1の生体分子構造が、前記細胞が含む第3の生体分子構造に特異的に結合する第1の一次プローブが含む生体分子構造である、
     請求項8~10のいずれか一項に記載の生体分子構造の検出方法。
  12.  前記第1の生体分子構造が、前記細胞が含む第3の生体分子構造に特異的に結合する第1の一次プローブが含む生体分子構造であり、
     前記第2の生体分子構造が、前記細胞が含む第4の生体分子構造に特異的に結合する第2の一次プローブが含む生体分子構造である、
     請求項9又は10に記載の生体分子構造の検出方法。
PCT/JP2021/043986 2020-12-01 2021-11-30 生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法 WO2022118862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022566947A JPWO2022118862A1 (ja) 2020-12-01 2021-11-30
EP21900614.5A EP4239335A1 (en) 2020-12-01 2021-11-30 Biomolecule structure detection probe, biomolecule structure detection kit, and method for detecting biomolecule structure
US18/038,653 US20240044906A1 (en) 2020-12-01 2021-11-30 Biomolecule structure detection probe, biomolecule structure detection kit, and method for detecting biomolecule structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020199800 2020-12-01
JP2020-199800 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022118862A1 true WO2022118862A1 (ja) 2022-06-09

Family

ID=81853225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043986 WO2022118862A1 (ja) 2020-12-01 2021-11-30 生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法

Country Status (4)

Country Link
US (1) US20240044906A1 (ja)
EP (1) EP4239335A1 (ja)
JP (1) JPWO2022118862A1 (ja)
WO (1) WO2022118862A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324155A (ja) * 1986-04-03 1988-02-01 スカルボ インコ−ポレイテツド,ウエスト コ−スト 結合測定法に使用される開裂可能な標識
US20040259164A1 (en) * 2003-06-06 2004-12-23 President And Fellows Of Harvard College Capture and release based isotope tagged peptides and methods for using the same
JP2005511058A (ja) * 2001-12-04 2005-04-28 ソレックサ リミテッド 標識ヌクレオチド
JP2007312776A (ja) * 2004-06-24 2007-12-06 Scripps Res Inst:The 切断可能なリンカーを有するアレイ
JP2016525344A (ja) * 2013-06-12 2016-08-25 ザ ジェネラル ホスピタル コーポレイション 標的分子のマルチプレックス検出のための方法、キット、およびシステム、ならびにそれらの使用
JP2020199800A (ja) 2019-06-06 2020-12-17 株式会社Jvcケンウッド ドライブレコーダ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324155A (ja) * 1986-04-03 1988-02-01 スカルボ インコ−ポレイテツド,ウエスト コ−スト 結合測定法に使用される開裂可能な標識
JP2005511058A (ja) * 2001-12-04 2005-04-28 ソレックサ リミテッド 標識ヌクレオチド
US20040259164A1 (en) * 2003-06-06 2004-12-23 President And Fellows Of Harvard College Capture and release based isotope tagged peptides and methods for using the same
JP2007312776A (ja) * 2004-06-24 2007-12-06 Scripps Res Inst:The 切断可能なリンカーを有するアレイ
JP2016525344A (ja) * 2013-06-12 2016-08-25 ザ ジェネラル ホスピタル コーポレイション 標的分子のマルチプレックス検出のための方法、キット、およびシステム、ならびにそれらの使用
JP2020199800A (ja) 2019-06-06 2020-12-17 株式会社Jvcケンウッド ドライブレコーダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAULUM MEGHAN M., MURPHY BRIAN M., RAMSAY LAUREN M., HENRY CHARLES S.: "Detection of Cardiac Biomarkers Using Micellar Electrokinetic Chromatography and a Cleavable Tag Immunoassay", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 79, no. 14, 1 July 2007 (2007-07-01), US , pages 5249 - 5256, XP055936698, ISSN: 0003-2700, DOI: 10.1021/ac070452v *

Also Published As

Publication number Publication date
EP4239335A1 (en) 2023-09-06
JPWO2022118862A1 (ja) 2022-06-09
US20240044906A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US20240085424A1 (en) Antigen-coupled immunoreagents
JP7097885B2 (ja) 水溶性ポリマー色素
CN105980855B (zh) 利用可编程核酸探针的高通量且高度多路复用的成像
US20210181191A1 (en) Antigen detection using photocleavable labels
US11808770B2 (en) Proximity assays using chemical ligation and hapten transfer
US20190112356A1 (en) High-affinity immunopolymers
JP6302560B2 (ja) ポリエチレングリコール部分を含む化合物を用いて支持体に細胞を固定化する方法
US20230174585A1 (en) Peptide nucleic acid conjugates
Wolf et al. Strategies for Site‐Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags
WO2022118862A1 (ja) 生体分子構造検出用プローブ、生体分子構造検出用キット、及び生体分子構造の検出方法
JP2022046522A (ja) ペプチド核酸コンジュゲート
US11614445B2 (en) Background blockers for binding assays
US20140134645A1 (en) Method of isolating or counting target cells by using photocleavable linker coupled with fluorescent dye
US20220155311A1 (en) Multiplexed Imaging with Nanobody Probes
JP2022517957A (ja) フレキシブル検出システム
JP2017049184A (ja) 抗体のヌクレオチド結合部位(nbs)を利用して蛍光標識された抗体
Kageler et al. Tools to investigate the cell surface: Proximity as a central concept in glycoRNA biology
CN117264076A (zh) 标记多肽、修饰多肽、这些多肽的制造方法、含这些多肽的试剂及目标物质的测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18038653

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022566947

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021900614

Country of ref document: EP

Effective date: 20230530

NENP Non-entry into the national phase

Ref country code: DE