WO2011059013A1 - フルフラールからの100%植物由来化成品の製造方法とその化成品 - Google Patents

フルフラールからの100%植物由来化成品の製造方法とその化成品 Download PDF

Info

Publication number
WO2011059013A1
WO2011059013A1 PCT/JP2010/070057 JP2010070057W WO2011059013A1 WO 2011059013 A1 WO2011059013 A1 WO 2011059013A1 JP 2010070057 W JP2010070057 W JP 2010070057W WO 2011059013 A1 WO2011059013 A1 WO 2011059013A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
derived
fumaric acid
oxidation reaction
product
Prior art date
Application number
PCT/JP2010/070057
Other languages
English (en)
French (fr)
Inventor
隆志 増田
正雄 国岡
正弘 船橋
熊野 橘
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2011540529A priority Critical patent/JP5510844B2/ja
Publication of WO2011059013A1 publication Critical patent/WO2011059013A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride

Definitions

  • the present invention relates to a method for efficiently and inexpensively producing by synthesis and a chemical product thereof.
  • (i) 100% plant-derived succinic acid and / or the succinic acid derivative (succinic acid in these compounds) is obtained from furfural derived from waste plant raw materials or inexpensive plant raw materials for agriculture, forestry, construction, etc.
  • the present invention relates to a method for efficiently and inexpensively producing a chemical product by chemical synthesis and the chemical product.
  • the present invention also relates to a method for producing a plant-derived fumaric acid and / or fumaric acid derivative, which is a precursor of the plant-derived succinic acid and plant-derived 1,4-butanediol.
  • plastics such as polylactic acid, succinic acid-based polyesters, and polyolefins from plant resources has attracted attention.
  • Succinic acid-based polyester is a biodegradable, environmentally low-load plastic made by a Japanese company, the first in the world, using petroleum as a raw material.
  • Polylactic acid has already been commercially produced using starch as a raw material.
  • succinic acid-based plastics technological development for producing plant-derived polyester-based plastics using succinic acid monomers obtained by fermentation synthesis is being promoted.
  • succinic acid fermentative synthesis in order to obtain 100% plant-derived succinic acid, it is necessary to secure plant-derived CO 2 as another raw material on an industrial scale.
  • succinic acid fermentation synthesis succinic acid is fermented and synthesized as a salt of succinic acid (for example, ammonium succinate), so a desalting step such as deammonium from ammonium succinate is necessary.
  • succinic acid is fermented and synthesized as a salt of succinic acid (for example, ammonium succinate), so a desalting step such as deammonium from ammonium succinate is necessary.
  • There are also problems such as contamination of polyester and coloring of polyester (Patent Document 1). Therefore, there is an urgent need to develop a technology for efficiently producing a plant-derived polyester-based plastic monomer by chemical synthesis using inexpensive plant resources such as non-edible agricultural and forestry and construction industry waste plants.
  • the present invention efficiently produces plant-derived fumaric acid and / or fumaric acid derivatives using an oxidation reaction using furfural that can be produced by using renewable plant resources that have grown by absorbing CO 2 in the atmosphere. It is an object to provide the technology to do. It is another object of the present invention to eliminate an obstructive factor in performing the reaction. Furthermore, the present invention provides a chemical product such as (i) 100% plant-derived succinic acid and the succinic acid derivative and (ii) 100% plant-derived 1,4-butanediol from the plant-derived fumaric acid and / or fumaric acid derivative. It is an object to provide a technique for manufacturing by chemical synthesis.
  • fumaric acid and / or fumaric acid which is expected as a precursor (manufacturing raw material) of the succinic acid and 1,4-butanediol useful for polyester monomers and the like using plant-derived furfural as a starting material.
  • the fumaric acid produced by filtration is separated after filtration of furfural.
  • fumaric acid aldehyde the presence of phenyl hydrazine is present in the aqueous solution from the aqueous solution recovered by filtration separation of the generated fumaric acid after completion of the oxidation reaction.
  • aqueous solution using a method of converting the fumaric acid aldehyde to fumaric acid by oxidizing unreacted sodium chlorate and / or air oxidation while recovering water, or using a specific solvent. A method for improving the yield of fumaric acid by extraction from a solid was found and the present invention was reached.
  • the hydrogenation reaction of the obtained fumaric acid and its derivatives is an improvement that can easily produce two types of chemical products, 100% plant-derived succinic acid and 100% plant-derived 1,4-butanediol.
  • the biomass carbon content (Biobased content) derived from the succinic acid skeleton (— (C ⁇ O) —CH 2 CH 2 — (C ⁇ O) —) in the compound of the present invention is 100%, and carbon dioxide gas reduction effect
  • a chemical product having the above is extremely useful as a polyester-based plastic monomer.
  • this invention consists of the following invention.
  • a step of removing a solid product from the oxidation reaction solution after the oxidation reaction, the solid-state generation Removing the at least part of the aqueous solvent from the oxidation reaction liquid while heating the oxidation reaction liquid after removing the substances, and concentrating the reaction liquid; and after removing at least part of the aqueous solvent from the oxidation reaction liquid
  • a product recovery step which includes cooling the oxidation reaction solution of the product and filtering and recovering the product, is added, and the unreacted oxidant in the concentrated oxidation reaction solution after recovering the product is rendered harmless
  • a method for producing a plant-derived fumaric acid and / or fumaric acid derivative characterized by comprising: (2)
  • the product recovery step includes a step of removing the solid product from the oxidation reaction solution after the oxidation reaction, and at least the
  • a step of removing and concentrating part a step of cooling the oxidation reaction liquid after removing at least a part of the oxidation reaction liquid and filtering the product, and extracting the filtered product with a solvent.
  • the plant-derived fumaric acid and / or the dehumidifying treatment of the unreacted oxidant in the concentrated oxidation reaction solution after the step of recovering the product and recovering the product is performed.
  • the product recovery step includes a step of removing a solid product from the oxidation reaction solution after the oxidation reaction, an oxygen-containing gas is introduced into the oxidation reaction solution after removing the solid product, and a predetermined time Stirring step, removing at least part of the oxidation reaction solution that has undergone the stirring step, cooling the oxidation reaction solution and filtering the product, and extracting and collecting the filtered product with a solvent
  • the manufacturing method of the plant origin fumaric acid and / or fumaric acid derivative as described in said (1) characterized by including the process to do.
  • a plant-derived succinic acid, a plant-derived succinic acid derivative, a plant-derived 1, characterized by hydrogenating the plant-derived fumaric acid and / or fumaric acid derivative according to any one of (1) to (6) above A method for producing a chemical product which is at least one selected from 4-butanediol.
  • the plant-derived succinic acid ester is a plant-derived succinic acid monoester or a plant-derived succinic acid diester, and the alkyl group of the alcohol unit is derived from a plant or petroleum. Manufacturing method of the product.
  • a plant-derived 1,4-butanediol produced by the production method according to the above (7) to (9), which has a carbon dioxide reduction effect and is 100% plant-derived.
  • Chemical products such as succinic acid, succinic acid ester, succinic anhydride, 1,4-butanediol, etc. of the present invention having carbon dioxide gas reduction effect and 100% plant-derived (biobased content is 100%) Is a non-edible plant resource, furfural derived from cheap agricultural and forestry waste such as rice husk, straw, corn cob / core, cottonseed husk, bamboo, waste wood, etc.
  • it can be advantageously produced by chemical synthesis.
  • the plant-derived chemical product obtained in the present invention contains radioactive carbon 14 derived from the modern atmosphere
  • accelerator mass spectrometry is used by a method such as US test material standard ASTM D6866 (Non-patent Document 2).
  • ASTM D6866 Non-patent Document 2
  • biomass carbon content which is a scale of plant-derived carbon content
  • biomass carbon content calculation method are described. (Biomass carbon content measurement method) If the molecular formula of the biomass-derived chemical product is the same, the physicochemical properties are not different from those of petroleum-derived chemical products, except that the raw material is biomass. In addition, consumers cannot distinguish at all by just looking and touching. As mentioned above, only biomass-derived chemical products contribute to the reduction of carbon dioxide emissions.
  • Biomass-derived carbon and petroleum-derived carbon have a difference in whether or not a very small amount of radioactive carbon 14 is contained. This is an application of a method used for carbon dating. Biomass-derived carbon is modern carbon, and it contains a very small amount of radioactive carbon 14 that is activated by atmospheric nitrogen by irradiation with cosmic rays.
  • Biomass carbon content calculation method ASTM calculates the biomass carbon content by multiplying the "modern carbon rate", which is commonly used in dating, which is obtained by using the scintillation counter or accelerator mass spectrometry to determine the carbon isotope ratio of the sample, to obtain bio-based content.
  • Biobased content This value is the ratio of the number of moles of carbon derived from biomass per the number of moles of all carbon contained in the chemical product.
  • biomass carbon content is difficult to understand, so the bio-based content obtained based on ASTM D6866 is called “biomass carbon content”.
  • the ratio is usually expressed as “wt%” or “part”, but in this patent, the biomass carbon content (carbon mol%) is mainly used. Use this to describe the biomass content of the synthesized chemical product.
  • Plant-derived furfural used in the present invention absorbs CO 2 in the atmosphere, a plant resource renewable cellulosic, rice hulls, straw, corn cobs, sugar cane bagasse, cotton seed hulls, bamboo, It can be obtained by boiling and distilling agricultural and forestry waste such as waste wood with dilute sulfuric acid. It can be obtained in a yield of about 20% from buckwheat and corn cobs (core) as raw materials.
  • the oxidation reaction of the plant-derived furfural prescribed by the present invention will be described.
  • the plant-derived furfural oxidation reaction defined by the present invention is not particularly limited as long as plant-derived fumaric acid and / or a fumaric acid derivative is produced, and an optimal reaction may be appropriately selected and carried out.
  • the oxidation reaction can be performed in the presence of an oxidation catalyst such as vanadium pentoxide, osmium tetroxide, or ruthenium tetroxide.
  • an oxidation catalyst such as vanadium pentoxide, osmium tetroxide, or ruthenium tetroxide.
  • general oxidizing agents such as chloric acid, perchloric acid, oxygen, air, and hydrogen peroxide can be used.
  • acetone or alcohol can be used as an extraction solvent effective for improving the yield and removing the catalyst poison.
  • the alcohol include monohydric alcohols such as methanol, ethanol, propanol, butanol, hexanol, heptanol, and octanol, and dihydric alcohols such as ethylene glycol, propanediol, and 1,4-butanediol.
  • monohydric alcohol and dihydric alcohol either petroleum-derived alcohol or plant-derived alcohol can be used.
  • the method for producing the plant-derived fumaric acid and the fumaric acid derivative in the present invention will be specifically described, but the present invention is not limited to these specific products.
  • sodium chlorate is used as an oxidizing agent for plant-derived furfural, and the reaction raw materials are stirred in the presence of a catalyst in a reaction solvent such as water.
  • An oxidation reaction is performed.
  • the reaction is carried out with stirring using a stirrer.
  • the reaction temperature (internal temperature) is 70 ° C. to reaction solvent reflux temperature, preferably 78 to reaction solvent reflux temperature.
  • the reaction may be carried out batchwise or continuously. The reaction is carried out for several hours to 20 hours.
  • the reaction liquid containing a plant-derived fumaric acid and a fumaric acid derivative is obtained by the above reaction.
  • the reaction solution contains a catalyst, a salt compound, and the like.
  • the reaction solution is cooled to room temperature or 0 to 15 ° C. and filtered. Water is separated from the solid obtained by filtration by a conventional method, and fumaric acid and a fumaric acid derivative are recovered by continuous extraction with a solvent.
  • the recovered plant-derived fumaric acid and fumaric acid derivative can be used directly as a raw material for the hydrogenation reaction without being subjected to a treatment such as a purification treatment, but may be subjected to a purification treatment.
  • Sodium chlorate is an inexpensive oxidizer, but decomposes when heated at 300 ° C. or higher, releases oxygen, and exhibits flame support. It is also known that sodium chlorate becomes an explosive mixture when mixed with an organic substance and heated. Therefore, when performing the oxidation reaction of furfural with sodium chlorate, it is indispensable to ensure safety such as deterring runaway oxidation reaction and detoxifying the unreacted sodium chlorate by reducing agent treatment and improving the yield. Appropriate control of the reaction temperature is important for preventing runaway oxidation reactions. Usually, the temperature is controlled at 70 ° C. to reflux temperature in an aqueous solvent under normal pressure.
  • Detoxification of unreacted sodium chlorate is preferably performed while improving the yield of fumaric acid and / or fumaric acid derivatives, but can also be performed after fumaric acid and / or fumaric acid derivatives are produced. .
  • the presence or absence of unreacted sodium chlorate in the reaction solution after the furfural oxidation reaction can be examined with potassium iodide starch paper, an oxidation-reduction potentiometer, or the like. In the present invention, it is confirmed by aldehyde analysis that the reaction solution after the oxidation reaction contains fumaric acid aldehyde in addition to NaCl as a reaction by-product and unreacted sodium chlorate.
  • Fumaric acid / fumaric acid by accelerating the oxidation reaction from fumaric acid aldehyde to fumaric acid by coexisting unreacted sodium chlorate and oxygen in the air in the presence of by-product NaCl while removing at temperatures below °C
  • the derivative yield could be improved.
  • the target fumaric acid / fumaric acid derivative was isolated by continuously extracting the solid obtained with acetone after removing water from the filtrate. Further, detoxification treatment of unreacted sodium chlorate is carried out by reducing the acetone extract and the unextracted acetone with sodium thiosulfate and neutralizing the treatment solution.
  • the second method after the furfural oxidation reaction, with respect to the filtrate obtained by filtering and separating the generated fumaric acid, while flowing bubbles of oxygen-containing gas such as air, unreacted sodium chlorate and in air Oxidized fumaric acid aldehyde to fumaric acid with oxygen, recovering about 50% of water, and then extracting fumaric acid from the precipitate deposited at room temperature with alcohol or acetone, followed by furfural oxidation by methods such as filtration, distillation, sublimation, etc.
  • a method of improving the yield of fumaric acid and / or fumaric acid derivatives from furfural by separating the fumaric acid ester as a reaction product may be used.
  • Detoxification treatment of the filtrate containing unreacted sodium chlorate from which about 50% of the water has been recovered and the deposited precipitate has been separated is to perform reduction treatment with sodium thiosulfate and neutralization treatment of the treatment solution.
  • oxygen-containing gas typical examples of the oxygen-containing gas are air and oxygen gas.
  • the recovered plant-derived fumaric acid and fumaric acid derivative can be used as they are as raw materials for the hydrogenation reaction without being subjected to a purification treatment, but may be subjected to a purification treatment such as recrystallization. .
  • plant-derived maleic acid When plant-derived maleic acid is mixed with the recovered plant-derived fumaric acid, it can be easily separated into plant-derived fumaric acid and plant-derived maleic acid by a known method.
  • the fumaric acid diester and fumaric acid monoester characterized in that the fumaric acid skeleton derived from the fumaric acid skeleton defined in the present invention is 100% plant-derived, the fumaric acid skeleton or the maleic acid skeleton obtained by the above production method. It is also possible to prepare fumaric acid, a plant-derived diol and / or a petroleum-derived diol characterized in that the carbon derived from the plant is 100% plant-derived by a known esterification reaction. Further, the maleic acid diester and maleic anhydride characterized in that the maleic acid skeleton-derived carbon defined in the present invention is 100% plant-derived, the maleic acid skeleton-derived carbon is 100% plant-derived. It can also be prepared by a known method in the presence of maleic acid and other components as required.
  • the plant-derived succinic acid of the present invention is produced by a hydrogen reduction reaction of a plant-derived fumaric acid and / or fumaric acid derivative.
  • the hydrogen reduction reaction can be carried out by using a reducing agent such as lithium aluminum hydride or sodium borohydride or by a hydrogenation reaction in the presence of a metal catalyst.
  • a catalyst for the hydrogen reduction reaction a catalyst in which palladium, rhenium, platinum, ruthenium, or rhodium is supported on activated carbon, a Raney alloy such as Raney nickel or Raney iron, a chromium-free copper catalyst, or the like is used.
  • the hydrogen addition pressure is an arbitrary pressure from normal pressure to several hundred atmospheres. It is possible to promote the reaction by increasing the pressure. The reaction can be accelerated by setting the temperature to 100 ° C. or higher.
  • the solvent water, acetic acid, alcohol or the like is used, but it is desirable to use water from the viewpoint of environment and safety.
  • Production of a plant-derived succinic acid diester is carried out by dehydrating and condensing the succinic acid and an alcohol in the presence of an optional catalyst.
  • an optional catalyst acid catalysts such as sulfuric acid, hydrochloric acid, iodic acid, nitric acid, and paratoluenesulfonic acid can be used.
  • plant-derived succinic acid diesters can be produced using a condensing agent such as dicyclohexylcarbodiimide.
  • Examples of the alcohol used include monohydric alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol and octanol, and dihydric alcohols such as ethylene glycol, propylene glycol and 1,4-butanediol. Can be mentioned.
  • a method for producing a succinic acid diester different from the above production method a method of synthesizing succinic anhydride or succinic acid dichloride from plant-derived succinic acid and reacting them with alcohol is also possible.
  • a method for producing a different plant-derived succinic acid diester a method of esterifying plant-derived fumaric acid and maleic acid and then selectively reducing the double bond site with hydrogen is also possible.
  • the same hydrogenation catalyst as in the production of succinic acid can be used as a catalyst.
  • Production of a plant-derived succinic acid monoester can also be carried out by transesterification using the same catalyst. It is also possible to carry out using a condensing agent.
  • succinic acid diester as a raw material for producing plastics, an ester with an alcohol that can be distilled off at 280 ° C. or lower under reduced pressure is desirable.
  • a 100% plant-derived succinic acid diester can be obtained.
  • plant-derived succinic acid diesters produced using petroleum-derived monohydric alcohols are used as raw materials for plastics, the alcohol structural units in succinic acid diesters are eliminated and removed as monohydric alcohols during polymerization. Even if petroleum-derived monohydric alcohol is used, the biomass carbon content of the resulting polyester is not reduced.
  • dihydric alcohol petroleum-derived dihydric alcohol is incorporated into the polyester molecular chain, so that the biomass carbon content of the polyester is reduced by the amount of the dihydric alcohol when introduced. The influence can be evaluated by measuring the biomass carbon content.
  • plant-derived 1,4-butanediol can be easily produced.
  • 1,4-butanediol can be obtained by reducing the plant-derived fumaric acid and fumaric acid derivative obtained by the above method with an organometallic catalyst such as ruthenium or a Pd / Re carbon catalyst.
  • organometallic catalyst such as ruthenium or a Pd / Re carbon catalyst.
  • the hydrogenation reaction from fumaric acid and fumaric acid derivatives to 1,4-butanediol is not limited to these methods.
  • the plant-derived succinic anhydride of the present invention is produced by heating plant-derived succinic acid to the melting point or higher, or by heating the succinic acid with a dehydrating agent such as acetyl chloride or phosphorus oxychloride. Further, it is produced by catalytic hydrogenation of maleic anhydride, which is one of plant-derived fumaric acid derivatives.
  • the mixture of the fumaric acid derivative containing the fumaric acid manufactured by the oxidation reaction of a plant-derived furfural can be utilized as a manufacturing raw material of a polyester monomer.
  • an operation for removing, for example, fumaric acid ester, maleic acid, maleic acid ester and the like from the mixture is unnecessary, which is advantageous in terms of production cost.
  • Chemical products such as plant-derived 1,4-butanediol, plant-derived succinic acid, plant-derived succinic anhydride, plant-derived succinic acid ester, and the like, which are included in the present invention and are 100% plant-derived, are used in the atmosphere. Since it is produced from a plant that has grown by taking in carbon dioxide, it has a carbon dioxide reduction effect.
  • the fumaric acid and fumaric acid derivatives prepared from the plant-derived furfural obtained in the present invention can be used as raw materials for unsaturated polyesters, pharmaceuticals, polyester synthesis monomers, mordants, fragrances and the like. It can also be used as an additive to food additives, supplements, beverages and baking powder. Furthermore, the fumaric acid and fumaric acid derivatives are useful raw materials for producing succinic acid and succinic acid derivatives.
  • the succinic acid obtained in the present invention is used as a pH adjuster or umami seasoning. In addition, it is also used for plating and as a bathing agent.
  • the succinic acid diester obtained in the present invention is used as a perfume retention agent, a plasticizer for a polymer compound, an intermediate for an organic synthetic raw material, and a raw material for a polyester.
  • 1,4-butanediol obtained in the present invention can be used as a polyester raw material, a chemical raw material, or a solvent.
  • the furfural as the starting material of the present invention does not use edible plants such as corn, sugar cane, potatoes, etc., but rice husk, straw, corn cobs, sugar cane pomace, cottonseed shell, bamboo, waste wood Can be produced by chemical synthesis from non-edible plant waste such as non-edible agricultural and forestry waste such as construction waste wood.
  • Chemical products such as plant-derived 1,4-butanediol, plant-derived succinic acid, plant-derived succinic anhydride, plant-derived succinic acid ester, etc., which are included in the present invention and are 100% plant-derived Since it is produced using a plant that has grown by taking in carbon dioxide therein, it has an effect of reducing carbon dioxide.
  • Chemical products such as plant-derived 1,4-butanediol, plant-derived succinic acid, plant-derived succinic anhydride, and plant-derived succinic acid ester, which are included in the present invention and are 100% plant-derived, Contains radioactive carbon 14.
  • fermentative synthesis generally has a lower yield per unit volume of reaction vessel (STY) than chemical synthesis methods, uses edible materials such as starch, and secures plant-derived CO 2 on an industrial scale.
  • STY reaction vessel
  • the present invention of producing chemical products such as 100% plant-derived succinic acid by chemical synthesis using furfural obtained from readily available waste plants as a raw material is useful for improving these difficulties.
  • Fumaric acid / fumaric acid by accelerating the oxidation reaction from fumaric acid aldehyde to fumaric acid by coexisting unreacted sodium chlorate and oxygen in the air in the presence of by-product NaCl while removing at temperatures below °C
  • the derivative yield could be improved.
  • the target fumaric acid / fumaric acid derivative was isolated by continuously extracting the solid obtained with acetone after removing water from the filtrate. Further, detoxification treatment of unreacted sodium chlorate was performed by reducing the acetone extract and the unextracted acetone with sodium thiosulfate and neutralizing the treatment solution (Example 1).
  • fumaric acid is extracted from the precipitate precipitated at room temperature with alcohol or acetone, and filtered as a product of the furfural oxidation reaction by methods such as distillation, sublimation, etc.
  • a method of separating the fumaric acid ester to improve the yield of fumaric acid and / or fumaric acid derivative from furfural may be used.
  • Detoxification treatment of the filtrate containing unreacted sodium chlorate from which about 50% of the water has been recovered and the deposited precipitate has been separated is to perform reduction treatment with sodium thiosulfate and neutralization treatment of the treatment solution.
  • the recovered plant-derived fumaric acid and fumaric acid derivative can be used as they are as raw materials for the hydrogenation reaction without being subjected to a purification treatment, but may be subjected to a purification treatment such as recrystallization. .
  • the analysis of the compound was performed by the following method. (Biomass carbon content) The biomass carbon content (%) (Biobased content) of the produced chemical product was obtained by measuring the concentration of radioactive carbon 14 by accelerator mass spectrometry (Non-patent Document 2). (Structural analysis) The synthesis of the compound was confirmed by proton NMR (JNM-ECX400 manufactured by JASCO Corporation).
  • the resulting white solid was filtered and separated from the aqueous solution and dried under reduced pressure to obtain 32 g (simple recovery yield 66.9% when the product was assumed to be fumaric acid).
  • Detoxification treatment of unreacted sodium chlorate was carried out by reducing the acetone extract and the unextracted acetone with sodium thiosulfate and neutralizing the treatment solution. Furthermore, when the concentration of carbon 14 by accelerator mass spectrometry was measured for fumaric acid isolated from a mixture of fumaric acid and maleic acid, the biomass carbon content (%) (Biobased content) was 100.37 ⁇ 0.25%. was gotten. As described above, the yield of fumaric acid and maleic acid, which are precursors of succinic acid and 1,4-butanediol, can be safely increased by using a product extraction step using an acetone solvent after the oxidation reaction of furfural. The result was 14.7% improvement from 66.9% to 81.6%. The presence of NaCl at the time of concentration of the filtrate may suppress the formation of an explosive mixture from organic substances such as sodium chlorate and fumaric acid.
  • the white solid obtained by proton NMR measurement was confirmed to be succinic acid. Moreover, when the carbon 14 density
  • a reaction solution was prepared by adding 11 g of dimethyl fumarate synthesized from plant-derived fumaric acid, 3 g of 5% palladium-supported activated carbon, and 500 ml of methanol to a glass reaction vessel having an internal volume of 500 ml having a magnetic stirring magazine. Hydrogen was bubbled into the solution at a rate of 50 ml / min for 3 hours. 5% palladium-supported activated carbon was removed with a glass filter, and the resulting solution was distilled under reduced pressure to obtain 9.78 g (yield 88%) of a colorless oil. The colorless liquid was confirmed to be dimethyl succinate by NMR measurement.
  • the biomass carbon content rate (%) (Biobased content) obtained the value of 66.94 +/- 0.25%. Since the carbon number of the succinic acid skeleton is 4 and the carbon number of the methanol skeleton is 2 and the carbon derived from biomass contains two-thirds the same as the theoretical value, the succinic acid skeleton may be derived from biomass. confirmed. By converting the methanol used from petroleum to plant, dimethyl succinate containing 100% biomass-derived carbon can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】 大気中のCO2を吸収し生長した再生可能な植物系資源から得たフルフラールを原料として植物由来フマル酸及び/又はフマル酸誘導体を効率良く製造する技術を提供すること。また、(i)100%植物由来のコハク酸と該コハク酸誘導体及び(ii)100%植物由来1,4-ブタンジオール等の化成品を化学合成に容易に製造する技術を提供すること。 【解決手段】 植物由来フルフラールを酸化反応させて植物由来フマル酸及び/又はフマル酸誘導体を製造する方法において、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液を70℃~反応溶媒還流温度未満の温度で加熱しながら前記酸化反応液の少なくとも一部を除去する工程、及び前記前記酸化反応液の少なくとも一部を除去した後の酸化反応液を冷却して生成物をろ別し、回収する工程を含む生成物回収工程を付加する。

Description

フルフラールからの100%植物由来化成品の製造方法とその化成品
 本発明は、炭酸ガス発生削減効果を有する100%植物由来化成品の製造方法とその化成品に関するものである。詳しくは、植物由来のフルフラールを原料として、(i)100%植物由来の炭素原子よりなる(以下、100%植物由来という)コハク酸及び/又はコハク酸誘導体(これら化合物中のコハク酸骨格(-(C=O)-CH2CH2-(C=O)-)由来の炭素が100%植物由来である)及び(ii)100%植物由来の1,4-ブタンジオール等の化成品を化学合成により安価に効率良く製造する方法とその化成品に関するものである。さらに詳しくは、農林、建築業等の廃棄植物原料又は安価な植物原料から誘導されるフルフラールを原料として、(i)100%植物由来のコハク酸及び/又は該コハク酸誘導体(これら化合物中のコハク酸骨格(-(C=O)-CH2CH2-(C=O)-)由来の炭素が100%植物由来である)及び(ii)100%植物由来の1,4-ブタンジオール等の化成品を化学合成により安価に効率良く製造する方法とその化成品に関するものである。また、本発明は上記植物由来コハク酸及び植物由来1,4-ブタンジオールの前駆体である植物由来フマル酸及び/又はフマル酸誘導体の製造方法に関する。
 近年CO2削減が地球規模で重要な課題になっており、各種の産業分野では、石油原料から、CO2発生削減効果を有し再生可能な原料でもある植物資源への原料転換が極めて重要な課題となっている。化製品製造工業やプラスチック工業分野でも植物資源から効率よくプラスチックモノマーやポリ乳酸、コハク酸系ポリエステル、ポリオレフィン等のプラスチックを製造する技術開発が注目されている。コハク酸系ポリエステルは、石油を原料とし我国の企業が世界に先駆けて商業生産した生分解性を有する環境低負荷型プラスチックである。ポリ乳酸はデンプンを原料として既に商業生産されている。コハク酸系プラスチックについても、発酵合成により得られるコハク酸モノマーを利用して植物由来ポリエステル系プラスチックを製造する技術開発が進められている。
 しかしながら発酵合成は、一般に化学合成法と比較して反応容器単位容積当たりの収率(STY)が低い傾向があり、またデンプン等の可食性原料が用いられているなどの問題がある。さらにコハク酸発酵合成では、100%植物由来のコハク酸を得るために、他の原料として植物由来のCOを工業規模で確保する必要がある。またコハク酸発酵合成ではコハク酸がコハク酸の塩(例えばコハク酸アンモニウム)として発酵合成されるため、コハク酸アンモニウムからの脱アンモニウムのような脱塩工程が必要であり、またポリエステル中に窒素成分が混入し、ポリエステル着色の原因になる等の問題もある(特許文献1)。従って、非可食性の農林、建築業等の廃棄植物のような安価な植物資源を利用して植物由来ポリエステル系プラスチックのモノマーを化学合成により効率よく製造する技術開発が急務となっている。
 前述したように、産業分野での排出CO2削減が地球規模の課題となっており、石油原料から、CO2発生削減効果を有する植物資源への原料転換の流れは、コハク酸などの各種有機酸や1,4-ブタンジオール等のアルコールを始めとして化成品の分野でも同様である。また世界の飢餓、食糧問題の観点から、デンプン等の可食性植物を化成品や燃料の原料として利用することが問題視されるようになってきた。従って、非可食性の農林、建築業等の廃棄植物のような安価で入手容易な廃棄植物を利用して植物由来化成品を化学合成により効率よく製造する技術開発が急務である。     
特開2005-139287号公報 特開平11-12207号公報 RADIOISOTOPES, 58(11), 767-779(2009). ASTM D6866
 本発明は、大気中のCO2を吸収し成長した再生可能な植物系資源を利用して製造できるフルフラールを原料として酸化反応を利用して植物由来フマル酸及び/又はフマル酸誘導体を効率良く製造する技術を提供することを課題とする。また反応を行う上での阻害要因を排除することを課題とする。さらに本発明は前記植物由来フマル酸及び/又はフマル酸誘導体から(i)100%植物由来のコハク酸と該コハク酸誘導体及び(ii)100%植物由来1,4-ブタンジオール等の化成品を化学合成により製造する技術を提供することを課題とする。
 前記、フマル酸をフルフラールから得る方法としては、塩素酸ナトリウムを酸化剤として用い、フルフラールを酸化し、反応後、沈澱したフマル酸をろ過、分離する方法が知られていた。しかしこの方法では、収率が低いこと、塩素酸ナトリウムは有機物と混合・加熱すると爆発性混合物となることなどの難点があった。
 本発明者らは、前記課題を解決すべく鋭意努力を重ねた結果、本発明を完成するに到った。即ち、本発明によれば、植物由来フルフラールを出発原料として、ポリエステルモノマー等に有用な前記コハク酸及び1,4-ブタンジオールの前駆体(製造原料)として期待されるフマル酸及び/又はフマル酸誘導体(フマル酸ジエステル、フマル酸モノエステル、マレイン酸、無水マレイン酸、マレイン酸ジエステル、マレイン酸モノエステル)を酸化反応により製造する方法において、フルフラールの酸化反応が終了後、生成フマル酸をろ過分離して得られた、未反応塩素酸ナトリウムを含むろ液から爆発的酸化反応を防止し、安全にフマル酸とその誘導体を得る方法を見出し、その結果としてフルフラールからのフマル酸とフマル酸誘導体(コハク酸及び1,4-ブタンジオールの前駆体(コハク酸及び1,4-ブタンジオールの製造原料))の収率を向上させることが可能となるとの知見を基に、研究を重ね、本発明に到達した。
 
 具体的には植物由来フルフラールからフマル酸への酸化反応において、酸化反応終了後、生成したフマル酸をろ過分離して回収された水溶液から、水溶液中に存在するフマル酸アルデヒド(フェニルヒドラジンによりその存在を確認)を、水を回収しながら未反応塩素酸ナトリウム及び又は空気酸化により該フマル酸アルデヒドをフマル酸へ酸化することによりフマル酸に転換する方法、あるいは特定の溶媒を用いて、水溶液中の固形物から抽出によりフマル酸収率を向上させる方法を見出し、本発明に到達した。
 その結果、得られたフマル酸及びその誘導体の水素化反応により、100%植物由来のコハク酸と該誘導体及び100%植物由来1,4-ブタンジオールの2種の化成品が容易に製造できる改善された技術が提供される。なお、本発明の化合物中のコハク酸骨格(-(C=O)-CH2CH2-(C=O)-)由来のバイオマス炭素含有率(Biobased content)が100%で、炭酸ガス削減効果を有する化成品は、ポリエステル系プラスチックモノマーとして極めて有用である。
 即ち、本発明は以下の発明からなる。
(1)植物由来フルフラールを酸化反応させて植物由来フマル酸及び/又はフマル酸誘導体を製造する方法において、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液を加熱しながら前記酸化反応液から水溶媒の少なくとも一部を除去し、反応液を濃縮する工程、及び前記酸化反応液から水溶媒を少なくとも一部を除去した後の酸化反応液を冷却して生成物をろ別、回収する工程を含む生成物回収工程を付加するとともに前記生成物を回収した後の濃縮された酸化反応液中の未反応酸化剤を無害化処理することを特徴とする植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
(2)生成物回収工程が、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液を加熱しながら前記酸化反応液の少なくとも一部を除去し、濃縮する工程、前記酸化反応液の少なくとも一部を除去した後の酸化反応液を冷却して生成物をろ別する工程、及び前記ろ別した生成物を溶媒で抽出し、回収する工程を含むとともに前記生成物を回収した後の濃縮された酸化反応液中の未反応酸化剤を無害化処理することを特徴とする上記(1)記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
(3)生成物回収工程が、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液に酸素含有ガスを導入し、所定時間撹拌する工程、前記撹拌する工程を経た酸化反応液の少なくとも一部を除去した後に酸化反応液を冷却して生成物をろ別する工程、及び前記ろ別した生成物を溶媒で抽出し、回収する工程を含むことを特徴とする上記(1)記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
(4)加熱温度が70℃~反応溶媒還流温度である上記(1)~(3)のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
(5)植物由来のフマル酸誘導体がフマル酸ジエステル、フマル酸モノエステル、フマル酸アルデヒド、マレイン酸、マレイン酸ジエステル、無水マレイン酸の中から選ばれた少なくとも1種である上記(1)~(4)のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
(6)溶媒がアセトン、アルコールから選ばれた少なくとも1種であることを特徴とする上記(2)~(4)記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
(7)上記(1)~(6)のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体を水素化することを特徴とする植物由来コハク酸、植物由来コハク酸誘導体、植物由来1,4-ブタンジオールから選ばれる少なくとも1種である化成品の製造方法。
(8)植物由来コハク酸誘導体が植物由来無水コハク酸、植物由来コハク酸エステルから選ばれる少なくとも1種である上記(7)記載の化成品の製造方法。
(9)植物由来コハク酸エステルが植物由来コハク酸モノエステル又は植物由来コハク酸ジエステルであり、そのアルコールユニットのアルキル基が植物由来又は石油由来であることを特徴とする上記(8)記載の化成品の製造方法。
(10)上記(7)~(9)記載の製造方法で製造される、炭酸ガス削減効果を有し、100%植物由来であることを特徴とする植物由来1,4-ブタンジオール。
(11)上記(7)~(9)記載の製造方法で製造される、炭酸ガス削減効果を有し、100%植物由来であることを特徴とする植物由来コハク酸、植物由来無水コハク酸又は植物由来コハク酸エステル。  
(12)上記(1)~(6)のいずれか記載の製造方法で製造される、フマル酸骨格又はマレイン酸骨格由来の炭素が100%植物由来であることを特徴とするフマル酸、フマル酸ジエステル、フマル酸モノエステル、マレイン酸、マレイン酸ジエステル又は無水マレイン酸。
(13)上記(10)記載の植物由来1,4-ブタンジオール及び又は上記(11)記載の植物由来コハク酸、植物由来無水コハク酸又は植物由来コハク酸エステルからなることを特徴とするポリエスエル合成用モノマー。
 炭酸ガス削減効果を有し、100%植物由来(バイオマス炭素含有率(Biobased content)が100%)の本発明のコハク酸、コハク酸エステル、無水コハク酸、1,4-ブタンジオール等の化成品は、非可食性植物資源である、もみ殻、わら、トウモロコシ穂軸・芯、綿実殻、竹、廃木材等の安価な農林業廃棄物から誘導されるフルフラールを主たる原料としており、可食性植物資源を原料とする発酵合成法に比べ有利に化学合成により製造することができる。
 本発明で得られた植物由来化成品は、現代大気に由来する放射性炭素14を含んでいるため、米国試験材料規格ASTM D6866(非特許文献2)等の方法等により、加速器質量分析をもちいれば、従前の石油由来化成品と明確に判別することができる。以下に植物由来炭素含有率の尺度であるバイオマス炭素含有率の測定法とバイオマス炭素含有率計算方法を記載する。
(バイオマス炭素含有率測定法)
 バイオマス由来化成品は、分子式が同じであれば、原料がバイオマスという以外に物理化学的性質は、石油由来の化成品と全く差がない。また、消費者にとっては、見たり、さわっただけでは全く区別が出来ない。前述したように、バイオマス由来の化成品だけが排出二酸化炭素量の削減に貢献する。そのため、日本有機資源協会は“バイオマス”マーク認証制度を運営している。これは、化成品にバイオマスが含まれていれば、“バイオマス”マークを表示することが許諾されるシステムである。これらのシステムの信頼性の確保、証拠のためにバイオマス炭素含有率の測定法の規格化が一部行われている。バイオマス由来の炭素と石油由来の炭素は、極微量の放射性炭素14が含まれているか、含まれていないかの違いがある。炭素年代測定にもちいられる方法を応用したもので、バイオマス由来炭素は現代炭素であり、大気圏の窒素が宇宙線の照射により放射化したごく微量の放射性炭素14を含んでいる。一方、石油由来炭素は非常に昔に作られた炭素化合物であるために、半減期が5730年の放射性炭素14は全て放射性崩壊してしまい、全く含まれていない。バイオマス炭素に含まれている放射性炭素の割合は、一般的な炭素12の1×10-12である。このため、この極微量の放射性炭素14を測定するためには、サンプルの炭素濃度を化学反応等により濃縮したサンプルを液体シンチレーションカウンターで計る方法や、サンプルから転換したグラファイトを加速器質量分析により、測定する方法などがある。これらの方法は、化成品に最適化はされていないが、米国試験材料規格(ASTM) D6866に測定法が規格化されている(非特許文献1、非特許文献2)。
(バイオマス炭素含有率計算方法)
 ASTMでは、バイオマス炭素含有率を、サンプルの炭素の同位体率をシンチレーションカウンターや加速器質量分析で求めた年代測定で常用されている「現代炭素率」に0.93を乗じることにより、バイオベースコンテント(Biobased content)と定義している。この値は、化成品に含まれる全部の炭素のモル数あたりのバイオマス由来の炭素のモル数の割合となる。本特許ではバイオベースコンテントという単語はわかりにくい単語であるので、ASTM D6866に基づいて求めたバイオベースコンテントを「バイオマス炭素含有率」と呼ぶ。化学産業界は、化成品の組成を表すとき、慣例的にその割合を“重量%”や“部”で表すことが多いが、本特許では、主にバイオマス炭素含有率(炭素モル%)をもちいて、合成した化成品のバイオマスの含有率を記述する。
 以下、本発明を詳細に説明する。
 本本発明で使用する植物由来フルフラールは、大気中のCO2を吸収し、再生可能なセルロース系の植物資源である、もみ殻、わら、トウモロコシ穂軸、サトウキビの絞りかす、綿実殻、竹、廃木材等の農林業廃棄物を希硫酸と煮沸、蒸留することにより得ることができる。原料として燕麦皮やトウモロコシの穂軸(芯)から、約20%の収率で得ることができる。
 本発明が規定する植物由来フルフラールの酸化反応について説明する。
 本発明が規定する植物由来フルフラールの酸化反応は植物由来のフマル酸及び/又はフマル酸誘導体が生成されるのであればとくに制限されないのであって、最適な反応を適宜選定し、実施すればよい。例えば、酸化反応の触媒としては、五酸化バナジウム、四酸化オスミウム、四酸化ルテニウム等の酸化触媒の存在下に行うことができる。酸化剤としては、塩素酸、過塩素酸、酸素、空気、過酸化水素など一般的な酸化剤を用いることができる。
 本発明が規定する生成物回収工程について説明する。
 上記反応による反応混合物の中には触媒として用いた金属、及び酸化剤として塩素酸などの塩化合物を用いた場合、副生物である塩化ナトリウムが混入するが、これらの塩はフマル酸又はその誘導体をポリエステル合成用原料として使い、反応を行う上での阻害要因となる。特に、金属触媒を用いた還元反応では、微量の塩化物イオンが触媒毒として働き、著しく触媒活性を低下させることが知られている。
 大量の塩を取り除くためには、一般的に用いられている透析膜分離、電界透析分離、蒸留精製、昇華精製等の方法が知られているが、本発明では、植物由来フルフラールの酸化反応後、特定の溶媒を用いる生成物回収工程を利用することにより植物由来フマル酸の収率を向上させるとともに、前記の触媒毒を除去できる。また、本発明では、植物由来フルフラールの酸化反応後、特定の溶媒を用いる生成物回収工程を利用することにより植物由来コハク酸及び1,4-ブタンジオールの前駆体(植物由来フマル酸、フマル酸誘導体)の収率を向上させるとともに、前記の触媒毒を除去できる。
 収率向上や触媒毒の除去に有効な抽出溶媒としては、アセトンやアルコールを利用することができる。アルコールとしては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、へプタノール、オクタノール等の一価アルコールやエチレングリコール、プロパンジオール、1、4-ブタンジオール等の二価アルコールが挙げられる。これらの一価アルコール及び二価アルコールは、石油由来アルコール又は植物由来のアルコールのいずれも使用できる。
 本発明での植物由来フマル酸及びフマル酸誘導体を製造する方法を具体的に説明するが、本発明はこれら具体的な物に限定されない。
 本発明により植物由来フマル酸及びフマル酸誘導体を製造する1つの方法においては、植物由来フルフラールの酸化剤として塩素酸ナトリウムを用い、水等の反応溶媒中、反応原料を触媒の存在下にかき混ぜながら酸化反応を実施する。反応はかき混ぜ機を用いかき混ぜながら実施する。反応温度(内温)は、70℃~反応溶媒還流温度、好ましくは78~反応溶媒還流温度である。反応は回分式、連続式で行ってもよい。反応は数時間~20時間程度で行われる。
 上記反応により植物由来フマル酸及びフマル酸誘導体を含む反応液が得られる。当該反応液には、植物由来フマル酸及びフマル酸誘導体の他に、触媒や塩化合物等が含まれる。次に該反応液を室温又は0~15℃に冷却し、ろ過処理する。ろ過処理して得られた固体から常法により水を分離し、溶媒で連続抽出することによりフマル酸及びフマル酸誘導体を回収する。回収された植物由来フマル酸及びフマル酸誘導体は、とくに精製処理等の処理を施さずにそのまま水素化反応の原料として使用することができるが、精製処理を施してもよい。
 塩素酸ナトリウムは安価な酸化剤であるが、300℃以上で加熱すると分解し、酸素を放出して、支燃性を示す。また塩素酸ナトリウムは、有機物と混合加熱すると爆発性混合物になることが知られている。従って、塩素酸ナトリウムによるフルフラールの酸化反応を行う場合は、酸化反応の暴走抑止と未反応の塩素酸ナトリウムの還元剤処理による無害化等の安全確保及び収率の向上が不可欠である。
 酸化反応の暴走予防には、反応温度の適切な制御が重要である。通常常圧下、水溶媒中、70℃~還流温度で温度制御を行う。
 未反応の塩素酸ナトリウムの無害化は、フマル酸及び/又はフマル酸誘導体収率を向上させながら行うことが好ましいが、また、フマル酸及び/又はフマル酸誘導体を生成させた後に行うこともできる。フルフラール酸化反応後の反応液中の未反応塩素酸ナトリウムの有無は、ヨウ化カリウムデンプン紙や酸化還元電位差計等で調べることができる。
 本発明では、酸化反応後の反応液中に、反応副生物であるNaClと未反応の塩素酸ナトリウム以外にフマル酸アルデヒドも含まれていることがアルデヒド分析により確認され、このフマルアルデヒドを応液中の未反応塩素酸ナトリウム及び空気中の酸素と接触させ水溶液中のフマルアルデヒドを、水に対する溶解度の低いフマル酸に転換することによりフマル酸の収率を向上させることができた。
 フルフラールからのフマル酸及び/又はフマル酸誘導体の収率を向上させ且つ未反応の塩素酸ナトリウムの無害化処理を実施する方法としては、下記に記載される幾つかの方法がある。
 第一の方法としては、フルフラールの酸化反応後、生成フマル酸の沈殿(白色固体)をろ過分離(室温又は0~15℃で)した後、ろ液中の水をエバポレータ等で70℃~100℃以下の温度で除去しながら、副生NaClの存在下、共存する未反応の塩素酸ナトリウム及び空気中の酸素によりフマル酸アルデヒドからフマル酸への酸化反応を促進させることによりフマル酸/フマル酸誘導体収率を向上できた。目的のフマル酸/フマル酸誘導体の単離方法としては、ろ液からの水の除去後、得られた固形物をアセトンで連続抽出を行うことにより実施された。また未反応の塩素酸ナトリウムの無害化処理は、アセトン抽出液及びアセトン未抽出物をチオ硫酸ナトリウムによる還元処理と該処理液の中和処理を行うことにより実施される。
 第二の方法としては、前記フルフラール酸化反応の後、生成フマル酸をろ過分離して得られたろ液について、空気等の酸素含有ガスの気泡を流しながら、未反応の塩素酸ナトリウム及び空気中の酸素によりフマル酸アルデヒドをフマル酸へ酸化し、水を約50%回収した後、室温で析出した沈澱からフマル酸をアルコールやアセトンで抽出して、ろ過、蒸留、昇華等の方法により、フルフラール酸化反応の生成物としてフマル酸エステルを分離して、フルフラールからのフマル酸及び/又はフマル酸誘導体の収率を向上させる方法でも良い。前記の水を約50%回収して、析出した沈澱を分離した未反応の塩素酸ナトリウムを含むろ液の無害化処理は、チオ硫酸ナトリウムによる還元処理と該処理液の中和処理を行うことにより実施される。なお、酸素含有ガスの代表例は空気、酸素ガスである。
 回収された上記の植物由来フマル酸及びフマル酸誘導体は、とくに精製処理等の処理を施さずにそのまま水素化反応の原料として使用することができるが、再結晶等の精製処理を施してもよい。
 なお、前記回収された植物由来フマル酸に植物由来マレイン酸が混合されているときには、公知の方法で容易に植物由来フマル酸と植物由来マレイン酸に分けることが可能である。また、本発明が規定するフマル酸骨格由来の炭素が100%植物由来であることを特徴とするフマル酸ジエステル、フマル酸モノエステルは、前記の製造方法により得られたフマル酸骨格又はマレイン酸骨格由来の炭素が100%植物由来であることを特徴とするフマル酸と植物由来のジオール及び/又は石油由来のジオールとを公知のエステル化反応により調製することも可能である。また、本発明が規定するマレイン酸骨格由来の炭素が100%植物由来であることを特徴とするマレイン酸ジエステル及び無水マレイン酸は、マレイン酸骨格由来の炭素が100%植物由来であることを特徴とするマレイン酸と必要に応じて他の成分と共存下に公知の方法により調製することも可能である。
 以下、本発明が規定する化成品について説明する。
 本発明の植物由来コハク酸は、植物由来フマル酸及び/又はフマル酸誘導体の水素還元反応により製造される。水素還元反応は、水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどの還元剤を用いるか、金属触媒存在下での水素添加反応により実施できる。
 水素還元反応の触媒としては、パラジウム、レニウム、白金、ルテニウム、ロジウムを活性炭素に担持させた触媒、もしくはラネーニッケル、ラネー鉄などのラネー合金、クロムフリー銅触媒等が用いられる。水素添加圧力は常圧~数百気圧の任意の圧力で行われる。圧力を上げることによって反応を促進することが可能である。温度を100℃以上にすることによって反応を促進することが可能である。溶媒として、水、酢酸、アルコールなどが用いられるが、環境・安全面からは水を使用することが望ましい。
 植物由来コハク酸ジエステルの製造は、上記コハク酸とアルコールとを任意の触媒の存在下、脱水縮合することによって実施される。触媒としては、硫酸、塩酸、ヨウ素酸、硝酸、パラトルエンスルホン酸などの酸触媒が利用できる。また、ジシクロヘキシルカルボジイミドなどの縮合剤を用いても植物由来コハク酸ジエステルの製造が可能である。
 使用するアルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、などの一価アルコールおよび、エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどの二価アルコールが挙げられる。
 上記の製造法と異なるコハク酸ジエステルの製造法としては、植物由来コハク酸からコハク酸無水物もしくはコハク酸ジクロリドなどを合成し、それらとアルコールを反応させる方法も可能である。
 さらに異なる植物由来コハク酸ジエステルの製造法としては、植物由来フマル酸及びマレイン酸をエステル化し、その後、二重結合部位を選択的に水素還元する製造法も可能である。該フマル酸やマレイン酸ジエステルを水素添加により還元する際には、触媒として、上記コハク酸の製造と同様の水素化触媒を使用することができる。植物由来コハク酸モノエステルの製造も同様の触媒を用いてエステル交換反応により実施可能である。また縮合剤を用いて実施することも可能である。
 プラスチックの製造原料としてコハク酸ジエステルを使用するためには、減圧下、280℃以下で留去可能なアルコールとのエステルが望ましい。
 上記のアルコールとして植物由来の化合物を用いれば、100%植物由来のコハク酸ジエステルを得ることができる。
 石油由来一価アルコールを利用して製造される植物由来コハク酸ジエステルをプラスチックの原料として使用する場合は、コハク酸ジエステル中のアルコール構造単位は重合時に一価アルコールとして脱離・除去されるため、石油由来一価アルコールを用いても、得られるポリエステルのバイオマス炭素含有量を低下させることはない。二価アルコールを使用する場合は、石油由来二価アルコールがポリエステル分子鎖中に組み込まれるので、ポリエステルのバイオマス炭素含有量は導入されると二価アルコールの分だけ低下する。その影響は、前記のバイオマス炭素含有率測定により評価できる。
 本発明では、植物由来1,4-ブタンジオールを容易に製造することができる。例えば、上記方法で得られた植物由来フマル酸及びフマル酸誘導体をルテニウムなどの有機金属触媒やPd/Reカーボン触媒で還元すると、1,4-ブタンジオールを得ることができる。フマル酸及びフマル酸誘導体から1,4-ブタンジオールへの水素化反応は、これらの方法に限定されない。
 本発明の植物由来無水コハク酸は、植物由来コハク酸を融点以上に加熱することにより、あるいは該コハク酸を塩化アセチルまたはオキシ塩化リンなどの脱水剤と加熱することにより製造される。また、植物由来フマル酸誘導体の1つである無水マレイン酸の接触水素化によって製造される。
 本発明では、植物由来フルフラールの酸化反応により製造されたフマル酸を含むフマル酸誘導体の混合物をポリエステルモノマーの製造原料として利用できる。この場合は、該混合物から例えばフマル酸エステル、マレイン酸、マレイン酸エステル等を除去する操作が不要であるので製造コスト的に有利である。
 本発明に包合され100%植物由来であることを特徴とする植物由来1,4-ブタンジオールや植物由来コハク酸、植物由来無水コハク酸、植物由来コハク酸エステル等の化成品は、大気中の炭酸ガスを取り込み成長した植物を原料として製造されることから、炭酸ガス削減効果を有する。
1)本発明で得られる植物由来フルフラールから調製されるフマル酸及びフマル酸誘導体は、不飽和ポリエステル、医薬品、ポリエステル合成用モノマー、媒染剤、香料等の原料として利用できる。また、食品添加物、サプリメント、飲料やベーキングパウダーへ添加物として利用可能である。さらに、前記フマル酸及びフマル酸誘導体は、コハク酸及びコハク酸誘導体製造用の有用な原料となる。本発明で得られるコハク酸は、pH調整剤やうまみ調味料として利用される。その他、メッキ加工時の使用や、入浴剤としても利用される。また、本発明で得られるコハク酸ジエステルは香料の保留剤や、高分子化合物の可塑剤、有機合成原料の中間体、ポリエステルの原料として利用されている。さらに、本発明で得られる1,4-ブタンジオールは、ポリエステル原料や化成品原料、溶剤として利用できる。
2)本発明の出発原料であるフルフラールは、トウモロコシ、サトウキビ、イモ類等の可食性植物を利用せず、もみ殻、わら、トウモロコシ穂軸、サトウキビの絞りかす、綿実殻、竹、廃木材等の非可食性農林業廃棄物や建築廃棄木材等の非可食性植物廃棄物から化学合成法により製造できる。このため植物廃棄物の有効利用が可能となり、循環型社会構築にも資する。また前記の再生可能な植物廃棄物の有効利用・化学原料化は、枯渇性資源である石油資源の枯渇抑制にも役立つ。
3)現在、CO2削減が地球規模で重要な課題になっており、各種の産業分野では、石油原料から、CO2発生削減効果を有し再生可能な原料でもある植物資源への原料転換が極めて重要な課題となっている。本発明に包合され、100%植物由来であることを特徴とする植物由来1,4-ブタンジオールや植物由来コハク酸、植物由来無水コハク酸、植物由来コハク酸エステル等の化成品は、大気中の炭酸ガスを取り込み成長した植物を原料として製造されることから、炭酸ガス削減効果を有する。
4)本発明に包合され、100%植物由来であることを特徴とする植物由来1,4-ブタンジオールや植物由来コハク酸、植物由来無水コハク酸、植物由来コハク酸エステル等の化成品は放射性炭素14を含む。従来、放射性炭素14を含む14COを用いたトレーサー実験によるウッド-ウエルクマン反応(ピルビン酸と二酸化炭素からオキサル酢酸が生成する反応)の反応機構解明に利用されている例もあり、放射性炭素14を含む本発明の化成品は、放射性炭素14を含まない石油由来の同化成品とは異なり、反応経路解明等の標識化合物としての利用が期待される。
5)デンプンを原料として発酵合成によりコハク酸を製造する技術開発が進められている。
しかしながら発酵合成は、一般に化学合成法と比較して反応容器単位容積当たりの収率(STY)が低い傾向があるほか、デンプン等可食性原料の使用、植物由来のCOを工業規模での確保などの難点がある。入手容易な廃棄植物から得られるフルフラールを原料とし化学合成により100%植物由来のコハク酸等の化成品製造する本発明はこれらの難点の改善に有用である。
 次に本発明を実施例等により具体的に説明するが、本発明はこれら実施例等の記載に限定されない。
(フルフラールの酸化反応を安全に行い且つ生成物収率を向上させる方法)
塩素酸ナトリウムは安価な酸化剤であるが、300℃以上で加熱すると分解し、酸素を放出して、支燃性を示す。また塩素酸ナトリウムは、有機物と混合加熱すると爆発性混合物になることが知られている。従って、塩素酸ナトリウムによるフルフラールの酸化反応を行う場合は、酸化反応の暴走抑止と未反応の塩素酸ナトリウムの還元剤処理による無害化等の安全確保及び収率の向上が不可欠である。
酸化反応の暴走予防には、反応温度の適切な制御が重要である。通常常圧下、水溶媒中、70℃~還流温度で温度制御を行う必要がある。
フルフラール酸化反応後の反応液中の未反応塩素酸ナトリウムの有無は、ヨウ化カリウムデンプン紙や酸化還元電位差計等で調べることができる。
本発明では、酸化反応後の反応液中に、反応副生物であるNaClと未反応塩素酸ナトリウム以外にフマル酸アルデヒドも含まれていることがアルデヒド分析により確認され、このフマルアルデヒドを反応液中の未反応塩素酸ナトリウム、さらには空気中の酸素と接触させ水溶液中のフマルアルデヒドを、水に対する溶解度の低いフマル酸に転換することによりフマル酸の収率を向上させることができた。
フルフラールからのフマル酸及び/又はフマル酸誘導体の収率を向上させ且つ未反応の塩素酸ナトリウムの無害化処理を実施する方法としては、下記のような幾つかの方法がある。
第一の方法としては、フルフラールの酸化反応後、生成フマル酸の沈殿(白色固体)をろ過分離(室温又は0~15℃で)した後、ろ液中の水をエバポレータ等で70℃~100℃以下の温度で除去しながら、副生NaClの存在下、共存する未反応の塩素酸ナトリウム及び空気中の酸素によりフマル酸アルデヒドからフマル酸への酸化反応を促進させることによりフマル酸/フマル酸誘導体収率を向上できた。目的のフマル酸/フマル酸誘導体の単離方法としては、ろ液からの水の除去後、得られた固形物をアセトンで連続抽出を行うことにより実施された。また未反応の塩素酸ナトリウムの無害化処理は、アセトン抽出液及びアセトン未抽出物をチオ硫酸ナトリウムによる還元処理と該処理液の中和処理を行うことにより実施された(実施例1)。
第二の方法としては、前記フルフラール酸化反応の後、生成フマル酸をろ過分離して得られたろ液について、空気の気泡を流しながら、未反応の塩素酸ナトリウム及び空気中の酸素によりフマル酸アルデヒドをフマル酸へ酸化し、水を約50%回収した後、室温で析出した沈澱からフマル酸をアルコールやアセトンで抽出して、ろ過、蒸留、昇華等の方法により、フルフラール酸化反応の生成物としてフマル酸エステルを分離して、フルフラールからのフマル酸及び/又はフマル酸誘導体の収率を向上させる方法でも良い。前記の水を約50%回収して、析出した沈澱を分離した未反応の塩素酸ナトリウムを含むろ液の無害化処理は、チオ硫酸ナトリウムによる還元処理と該処理液の中和処理を行うことにより実施される。
回収された上記の植物由来フマル酸及びフマル酸誘導体は、とくに精製処理等の処理を施さずにそのまま水素化反応の原料として使用することができるが、再結晶等の精製処理を施してもよい。
化合物の分析は下記の方法によった。
(バイオマス炭素含有率)
生成化成品のバイオマス炭素含有率(%)(Biobased content)は、加速器質量分析による放射性炭素14濃度の測定(非特許文献2)により求めた。
(構造解析)
プロトンNMR(日本分光製JNM-ECX400)により化合物の合成の確認を行った。
参考例1
 出発合成原料であるフルフラール(和光純薬社製の一級品を蒸留したもの)について、加速器質量分析による炭素14濃度を測定したところ、バイオマス炭素含有率(%)(Biobased content)は、101.42±0.35%の値が得られ、合成出発原料フルフラールの炭素は、100%植物由来であることが確認された。
(植物由来コハク酸及び1,4-ブタンジオールの前駆体(フマル酸、フマル酸誘導体)の合成)
 撹拌子とコンデンサーを有する内容積1リットルのガラス製四つ口フラスコに、塩素酸ナトリウム90gと五酸化バナジウム0.4gを加え、水200mlに分散させた。内温を75℃に加温し、植物由来のフルフラール40gを45分かけて滴下した。滴下後、水還流温度~77℃で11.3時間撹拌した。この酸化反応の後、反応溶液を8℃に冷却し一晩静置した。生じた白色固体を水溶液からろ過、分離し、減圧下で乾燥させ、32g(生成物がフマ酸と仮定した場合の単純回収収率は66.9%)の白色固体を得た。プロトンNMR測定により得られた白色固体は植物由来のフマル酸とマレイン酸の混合物(フマル酸/マレイン酸モル比=15/2)であることを確認した。さらに、前記白色固体を分離して得られたろ液(反応溶液)について、フマル酸の前駆体であるフマルアルデヒドの存在の有無をフェニルヒドラジンによるアルデヒド分析法により調べたところ、アルデヒドの存在が確認された。また該ろ液中の未反応塩素酸ナトリウムの存在の有無についてヨウ化カリウムデンプン紙を用いて調べたところ、未反応塩素酸ナトリウムの存在が確認された。そこで、ろ液中に副生物として生成するNaCl(100%理論収率として49.1g存在)の共存したまま、該ろ液から水を減圧下留去して、得られた固体を、アセトンで連続抽出したところ抽出物として、フマル酸とマレイン酸の混合物7g(白色固体)を回収した。従って、得られた全てのフマル酸とマレイン酸の混合物(39g)の合計収率は81.6%であった。未反応の塩素酸ナトリウムの無害化処理は、アセトン抽出液及びアセトン未抽出物をチオ硫酸ナトリウムによる還元処理と該処理液の中和処理を行うことにより実施された。さらに、フマル酸とマレイン酸の混合物から単離したフマル酸について加速器質量分析による炭素14濃度を測定したところ、バイオマス炭素含有率(%)(Biobased content)は100.37±0.25%の値が得られた。
 以上のように、フルフラールの酸化反応の後、アセトン溶媒を用いる生成物抽出工程を利用することによりコハク酸及び1,4-ブタンジオールの前駆体となるフマル酸、マレイン酸の収率を安全に66.9%から81.6%へ14.7%向上させる結果を得た。前記ろ液濃縮時のNaCl共存は塩素酸ナトリウムとフマル酸等の有機物から爆発性混合物の生成を抑制している可能性が考えられる。
(植物由来1,4-ブタンジオールの合成)
 撹拌子を有するチタン製オートクレーブ1Lに上記植物由来のフマル酸とマレイン酸の混合物30gと、触媒としてパラジウム・レニウム担持活性炭素8g(特許文献2に準じて調製した)を加え、イオン交換水70gに分散させた。水素ガスを、室温(30℃)で圧力9.0MPaになるまで注入した。160℃で10時間反応することで、水素添加反応により水素圧が減少することを確認した。反応終了後、ガラス製フィルターで触媒を除去し、得られた溶液を減圧下蒸留することによって、無色オイル14.7g(収率63%)を得た。プロトンNMR測定により得られた無色オイルが1,4-ブタンジオールであることを確認した。また、加速器質量分析による炭素14濃度を測定したところ、バイオマス炭素含有率(%)(Biobased content )は99.4±0.34%の値が得られ、本オイルの全炭素は植物由来炭素であることが確認された。
(植物由来コハク酸の合成)
 撹拌子を有する耐圧容器1Lに上記植物由来のフマル酸とマレイン酸の混合物30gと、触媒としてパラジウム担持活性炭素8g(市販品)を加え、イオン交換水70gに分散させた。水素ガスを、室温(30℃)で圧力9.0MPaになるまで注入した。160℃で10時間反応することで、水素添加反応により水素圧が減少することを確認した。反応終了後、ガラス製フィルターで触媒を除去し、得られた反応溶液から水を減圧除去することによって、白色固体30.1g(収率98%)を得た。プロトンNMR測定により得られた白色個体がコハク酸であることを確認した。また、加速器質量分析による炭素14濃度を測定したところ、バイオマス炭素含有率(%)(Biobased content)は99.0±0.34%の値が得られ、本固体の全炭素は植物由来炭素であることが確認された。
(植物由来骨格を持つフマル酸ジメチルの合成)
 マグネチック撹拌子とコンデンサーを有する内容積200mlのガラス製フラスコに植物由来のフルフラールから合成した前記フマル酸10g、石油由来メタノール60mlを加え、そこに、触媒として濃硫酸3mlを加えた。8時間還流した後、室温まで冷却し、生じた白色結晶12.4g(収率100%)を得た。NMR測定により白色結晶はフマル酸ジメチルであると確認した。
(植物由来コハク酸ジメチルの合成)
 マグネチック撹拌誌を有する内容積500mlのガラス製反応容器に植物由来のフマル酸から合成したフマル酸ジメチル11g、5%パラジウム担持活性炭素を3g、メタノールを500ml加え反応溶液を調製した。溶液中に水素を50ml/分の速度で3時間吹きこんだ。5%パラジウム担持活性炭素をガラス製のフィルターで除去し、得られた溶液を減圧下蒸留したところ、無色オイルを9.78g(収率88%)得た。NMR測定により無色液体はコハク酸ジメチルであると確認した。また、加速器質量分析による炭素14濃度を測定したところ、バイオマス炭素含有率(%)(Biobased content)は66.94±0.25%の値が得られた。コハク酸骨格の炭素数は4個、メタノール骨格の炭素数は2個であり、バイオマス由来の炭素を理論値と同じ3分の2含んでいることから、コハク酸骨格がバイオマス由来であることが確認された。用いるメタノールを石油由来から植物由来に変換することで、バイオマス由来炭素を100%含むコハク酸ジメチルを得ることができる。
参考例2
(植物由来ポリブチレンサクシネートの合成)
 マグネチック撹拌子を有する内容積10mlのガラス製反応容器に植物由来と石油由来を任意の割合で配合したコハク酸ジメチル2.0ミリモルと、植物由来と石油由来を任意の割合で配合した1,4-ブタンジオール2.08ミリモルを加え、触媒として、チタンテトライソプロポキシド1マイクロモルを加え、窒素雰囲気化、215℃で1時間撹拌し、メタノールを流出させた。その後、1mmHg以下に減圧し、215℃で4時間撹拌した。得られた重合体のプロトンNMR分析から、コハク酸ユニット1モルに対し1,4-ブタンジオールユニットを1モル有するポリブチレンサクシネートであること、分子量分布測定から高分子化合物であることを確認した。また、加速器質量分析による炭素14濃度を測定し、バイオマス炭素含有率(%)(Biobased content)を測定した。そのバイオマス炭素含有率はモノマー配合の段階の含有率と一致した。結果を以下の表1に示す。
表1
                                  
バイオマス炭素含有率(%) 数平  重量  バイオマス  バイオマス
コハク酸ジメ  1,4-ブタン 均分  平均  炭素含有率  炭素含有率
チル(コハク  ジオール  子量  分子  (理論値)  (測定値)
酸部分)              量    (%)    (%)
  100     100   43000  88000    100   99.65±0.33
  100      0   75000  164000    50   49.99±0.23
   0     100   35000  92000     50   49.11±0.21
  50      50   31000  81000     50   49.21±0.20
   0     10    28000  88000     5   4.88±0.07
  10      0    30000  89000     5   5.08±0.07
 

Claims (13)

  1. 植物由来フルフラールを酸化反応させて植物由来フマル酸及び/又はフマル酸誘導体を製造する方法において、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液を加熱しながら前記酸化反応液から水溶媒の少なくとも一部を除去し、反応液を濃縮する工程、及び前記酸化反応液から水溶媒を少なくとも一部を除去した後の酸化反応液を冷却して生成物をろ別、回収する工程を含む生成物回収工程を付加するとともに前記生成物を回収した後の濃縮された酸化反応液中の未反応酸化剤を無害化処理することを特徴とする植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
  2. 生成物回収工程が、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液を加熱しながら前記酸化反応液の少なくとも一部を除去し、濃縮する工程、前記酸化反応液の少なくとも一部を除去した後の酸化反応液を冷却して生成物をろ別する工程、及び前記ろ別した生成物を溶媒で抽出し、回収する工程を含むとともに前記生成物を回収した後の濃縮された酸化反応液中の未反応酸化剤を無害化処理することを特徴とする請求項1記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
  3. 生成物回収工程が、酸化反応後に当該酸化反応液から固体状の生成物を除去する工程、前記固体状の生成物を除去後の酸化反応液に酸素含有ガスを導入し、所定時間撹拌する工程、前記撹拌する工程を経た酸化反応液の少なくとも一部を除去した後に酸化反応液を冷却して生成物をろ別する工程、及び前記ろ別した生成物を溶媒で抽出し、回収する工程を含むことを特徴とする請求項1記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
  4. 加熱温度が70℃~反応溶媒還流温度である請求項1~3のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
  5. 植物由来のフマル酸誘導体がフマル酸ジエステル、フマル酸モノエステル、フマル酸アルデヒド、マレイン酸、マレイン酸ジエステル、無水マレイン酸の中から選ばれた少なくとも1種である請求項1~4のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
  6. 溶媒がアセトン、アルコールから選ばれた少なくとも1種であることを特徴とする請求項2~3のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体の製造方法。
  7. 請求項1~6のいずれか記載の植物由来フマル酸及び/又はフマル酸誘導体を水素化することを特徴とする植物由来コハク酸、植物由来コハク酸誘導体、植物由来1,4-ブタンジオールから選ばれる少なくとも1種である化成品の製造方法。
  8. 植物由来コハク酸誘導体が植物由来無水コハク酸、植物由来コハク酸エステルから選ばれる少なくとも1種である請求項7記載の化成品の製造方法
  9. 植物由来コハク酸エステルが植物由来コハク酸モノエステル又は植物由来コハク酸ジエステルであり、そのアルコールユニットのアルキル基が植物由来又は石油由来であることを特徴とする請求項8記載の化成品の製造方法。
  10. 請求項7~9のいずれか記載の製造方法で製造される、炭酸ガス削減効果を有し、100%植物由来であることを特徴とする植物由来1,4-ブタンジオール。
  11. 請求項7~9のいずれか記載の製造方法で製造される、炭酸ガス削減効果を有し、100%植物由来であることを特徴とする植物由来コハク酸、植物由来無水コハク酸又は植物由来コハク酸エステル。
  12. 請求項1~6のいずれか記載の製造方法で製造される、フマル酸骨格又はマレイン酸骨格由来の炭素が100%植物由来であることを特徴とするフマル酸、フマル酸ジエステル、フマル酸モノエステル、マレイン酸、マレイン酸ジエステル又は無水マレイン酸。
  13. 請求項10記載の植物由来1,4-ブタンジオール及び又は請求項11記載の植物由来コハク酸、植物由来無水コハク酸又は植物由来コハク酸エステルからなることを特徴とするポリエスエル合成用モノマー。
     
PCT/JP2010/070057 2009-11-10 2010-11-10 フルフラールからの100%植物由来化成品の製造方法とその化成品 WO2011059013A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011540529A JP5510844B2 (ja) 2009-11-10 2010-11-10 フルフラールからの100%植物由来化成品の製造方法とその化成品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009272600 2009-11-10
JP2009-272600 2009-11-10

Publications (1)

Publication Number Publication Date
WO2011059013A1 true WO2011059013A1 (ja) 2011-05-19

Family

ID=43991671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070057 WO2011059013A1 (ja) 2009-11-10 2010-11-10 フルフラールからの100%植物由来化成品の製造方法とその化成品

Country Status (2)

Country Link
JP (1) JP5510844B2 (ja)
WO (1) WO2011059013A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945239A (zh) * 2015-05-15 2015-09-30 常熟联邦化工股份有限公司 一种均四甲苯气相催化氧化尾气吸收水资源化利用的方法
JP2016113451A (ja) * 2014-12-15 2016-06-23 三菱化学株式会社 コハク酸類の製造方法
JP2017087210A (ja) * 2016-12-09 2017-05-25 積水化学工業株式会社 エタノール製品、エタノール製品の製造方法、エタノール製品の販売方法、及びエタノールの販売方法
JP2019513735A (ja) * 2016-04-07 2019-05-30 イノレックス インベストメント コーポレイション 1−メチルヘプチルアルコールから得られるパーソナルケア用途のためのジエステル
JP2021080600A (ja) * 2019-11-19 2021-05-27 株式会社アクシス Pbsスパンボンド不織布

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240846A (ja) * 1997-12-01 1999-09-07 Standard Oil Co:The 1,4−ブタンジオールへのマレイン酸の水素化のための改良されたプロセス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121946A (ja) * 1988-10-31 1990-05-09 Kyowa Yuka Kk コハク酸の連続製造法
JP3769312B2 (ja) * 1995-07-18 2006-04-26 株式会社日本触媒 コハク酸の製造方法
JP2002047402A (ja) * 2000-08-02 2002-02-12 Daicel Chem Ind Ltd 生分解性農業用マルチフィルム
JP2002060291A (ja) * 2000-08-21 2002-02-26 Daicel Chem Ind Ltd コンポスト化過程におけるアンモニア発生抑制方法
JP2005211042A (ja) * 2004-02-02 2005-08-11 Nippon Shokubai Co Ltd フマル酸の製造方法
JP5365824B2 (ja) * 2006-03-23 2013-12-11 独立行政法人産業技術総合研究所 コハク酸ジアルキルの製造方法および1,4−ブタンジオールの製造方法
JP5152709B2 (ja) * 2006-09-01 2013-02-27 独立行政法人産業技術総合研究所 コハク酸系エステル類の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240846A (ja) * 1997-12-01 1999-09-07 Standard Oil Co:The 1,4−ブタンジオールへのマレイン酸の水素化のための改良されたプロセス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POSKONIN, V. V. ET AL.: "Catalytic oxidation of furan and hydrofuran compounds. 2. Oxidation of furfural in the hydrogen peroxide-vanadyl sulfate-sodium acetate system", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 34, no. 6, 1998, pages 646 - 650 *
POSKONIN, V. V.: "Catalytic oxidation reactions of furan and hydrofuran compounds 9.* characteristics and synthetic possibilities of the reaction of furan with aqueous hydrogen peroxide in the presence of compounds of niobium (ii) and (v)", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 45, no. 10, October 2009 (2009-10-01), pages 1177 - 1183 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113451A (ja) * 2014-12-15 2016-06-23 三菱化学株式会社 コハク酸類の製造方法
CN104945239A (zh) * 2015-05-15 2015-09-30 常熟联邦化工股份有限公司 一种均四甲苯气相催化氧化尾气吸收水资源化利用的方法
JP2019513735A (ja) * 2016-04-07 2019-05-30 イノレックス インベストメント コーポレイション 1−メチルヘプチルアルコールから得られるパーソナルケア用途のためのジエステル
JP2017087210A (ja) * 2016-12-09 2017-05-25 積水化学工業株式会社 エタノール製品、エタノール製品の製造方法、エタノール製品の販売方法、及びエタノールの販売方法
JP2021080600A (ja) * 2019-11-19 2021-05-27 株式会社アクシス Pbsスパンボンド不織布
JP7523763B2 (ja) 2019-11-19 2024-07-29 株式会社アクシス Pbsスパンボンド不織布

Also Published As

Publication number Publication date
JPWO2011059013A1 (ja) 2013-04-04
JP5510844B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5441914B2 (ja) テレフタル酸組成物及びその製造方法
AU2017268624B2 (en) Production method for 1, 4-butanediol
KR101441268B1 (ko) 생물자원화 아크릴산 에스테르의 합성 방법
JP5492349B2 (ja) ギ酸を触媒的に製造する方法
RU2640203C2 (ru) Способ получения 2,5-фурандикарбоновой кислоты
JP5510844B2 (ja) フルフラールからの100%植物由来化成品の製造方法とその化成品
US20110287991A1 (en) Method for manufacturing a biomass-derived methyl methacrylate
JP2007254354A (ja) コハク酸系組成物、コハク酸ジアルキル等及びその製造方法。
CN101289395B (zh) 一种碳酸甲乙酯的制备方法
CN106518676B (zh) 利用工业含水原料甲缩醛制备甲氧基乙酸甲酯的方法
CN104854222A (zh) 从生物衍生的羧酸酯生产生物燃料
JP2020528446A (ja) 新規なバニリン及び/又はエチルバニリン、それらの調製方法、並びにそれらの使用
GB2041916A (en) Process for the Recovery of Dimethyl Terephthalate From Polyethylene Terephthalate Polymer Waste
CN111423398A (zh) 一种由乙酰丙酸制备γ-戊内酯的方法
EP3268342B1 (en) Production of terephthalic acid via reductive coupling of propiolic acid or propiolic acid derivatives
CN110483285A (zh) 高选择性合成长链脂肪酸单甘酯的方法
JP2014088349A (ja) 1,4−ブタンジオールの製造方法
Kohler The Conversion of Carbohydrates from Microalgae and Corn Stover into Building Block Chemical Acids
WO2019017490A1 (ja) ペンテン酸エステル誘導体の製造方法
CN115025781B (zh) 一种用于催化非临氢加氢的催化剂及其制备方法和应用
CN117142943A (zh) 一种利用二氧化碳和糠醇类化合物合成6-羟基己酸(酯)的方法
Jung et al. Development of tailored homogeneous ruthenium catalysts for the application in the hydrogenation of biogenic substrates
WO2024145151A1 (en) Processes for producing biomonomers and precursors for the biomonomers
WO2024145153A1 (en) Processes for producing biomonomers and precursors for same
CN118206450A (zh) 合成3-羟基丁酸甘油酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829972

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540529

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829972

Country of ref document: EP

Kind code of ref document: A1