WO2011055585A1 - 電動シリンダの制御方法及び電動シリンダの制御システム - Google Patents

電動シリンダの制御方法及び電動シリンダの制御システム Download PDF

Info

Publication number
WO2011055585A1
WO2011055585A1 PCT/JP2010/064918 JP2010064918W WO2011055585A1 WO 2011055585 A1 WO2011055585 A1 WO 2011055585A1 JP 2010064918 W JP2010064918 W JP 2010064918W WO 2011055585 A1 WO2011055585 A1 WO 2011055585A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
servo
rod
electric cylinder
stop
Prior art date
Application number
PCT/JP2010/064918
Other languages
English (en)
French (fr)
Inventor
陽一郎 白井
政彦 長坂
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009252518A external-priority patent/JP4692671B2/ja
Priority claimed from JP2009253653A external-priority patent/JP4692672B2/ja
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to US13/498,365 priority Critical patent/US8786240B2/en
Publication of WO2011055585A1 publication Critical patent/WO2011055585A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • B30B15/148Electrical control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/166Electrical control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter

Definitions

  • the present invention relates to a method for controlling an electric cylinder driven by a servo motor and a control system for the electric cylinder.
  • a servo motor and load detector are used, and the load detected by the load detector is fed back to the servo motor to control the pressurized load.
  • a pressure device is known (for example, Patent Document 1 and Patent Document 2).
  • the target pressurizing load is not stopped at the target pressurizing load due to the inertia of the pressurizing device, etc.
  • the excessively applied load is applied to the member to be pressed (overload), the member to be pressed cannot be pressurized properly, and the load detector is damaged due to overload. It was.
  • the driving speed of the electric cylinder rod is increased after the tip of the electric cylinder rod collides with the member to be pressed until the pressing load reaches the target pressing load.
  • a method of performing pressure treatment by decelerating at a constant deceleration rate or proportionally decelerating with an increase in load for example, Patent Document 4 and Patent Document 5.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-138110 Patent Document 2: Japanese Patent Application Laid-Open No. 2009-101419 Patent Document 3: Japanese Patent Application Laid-Open No. 11-192598 Patent Document 4: Japanese Patent Application Laid-Open No. 9-314399 Patent Document 5: Japanese Patent Application Laid-Open No. 9-314399 2005-254290
  • a position control mode that uses a pulse signal for signal output from the servo press controller to the servo driver is employed.
  • the position control mode is capable of driving the electric cylinder at an appropriate speed and stopping it with high positional accuracy, and is widely adopted as a control mode for the electric cylinder.
  • the device drive system In addition to the influence of the inertia of the machine elements, the droop pulse generated in the servo amplifier that drives the servo motor causes overload.
  • a drooping pulse is a difference pulse between a feed pulse and a feedback pulse in a servo driver.
  • the mechanical system such as the pressurizing device has inertia
  • a control method is adopted in which position command pulses are accumulated in a deviation counter of a servo driver and the rotation of the servo motor is controlled according to the accumulated pulses.
  • the servo even if the output of the position command pulse from the servo controller is stopped to stop the servo motor, the servo according to the number of droop pulses until the droop pulse decreases to 0 in the deviation counter of the servo driver. The motor continues to rotate. As a result, the rod moves and an overload occurs.
  • the present invention provides a control method and a control system for an electric cylinder driven by a servo motor, and the pressure load is a target when the position of the servo motor is controlled and when the speed of the servo motor is controlled.
  • An object of the present invention is to realize an electric cylinder control method and an electric cylinder control system capable of preventing a load from being greatly exceeded and reducing a pressurizing time.
  • the invention according to the first aspect is an invention according to the case of controlling the position of a servo motor, An electric cylinder that moves the rod in the axial direction; A load detector that detects a pressure load that is connected to the rod and is applied to the member to be pressurized, a servo motor that drives the electric cylinder, A position detector provided in the servo motor and electrically connected to the servo amplifier, a servo amplifier electrically connected to the servo motor and the servo controller, and controlling the drive of the servo motor; A servo controller that is electrically connected to the load detector and the servo amplifier, and outputs a position control command for servo motor position control to the servo amplifier; A method for controlling an electric cylinder in an electric cylinder device comprising: Driving speed of the rod; Set a stop load, which is a load value set to be equal to or less than the target load used for determining to stop the rod so that the pressurized load does not
  • Step S7 Calculating a droop pulse that is a difference from the number of feedback pulse signals output from the servo amplifier to the servo controller based on an absolute position signal output to the servo amplifier; Step S7 for outputting a reverse position command pulse signal, which is a position control pulse signal for reducing the droop pulse, from the servo controller to the servo amplifier based on the droop pulse calculated in Step S6; Using technical means.
  • step S1 a position command pulse signal is output from the servo controller to the servo amplifier based on the rod driving speed input to the servo controller.
  • step S2 the servo amplifier outputs a motor driving current to the servo motor based on the position command pulse signal.
  • step S3 the servo motor is driven to rotate by the motor driving current, and the rod is driven.
  • step S4 a pressurization load signal corresponding to the pressurization load detected by the load detector is output from the load detector to the servo controller.
  • step S5 the servo controller determines whether the pressurization load is equal to or greater than the stop load based on the pressurization load signal.
  • step S6 When it is determined in step S6 that the pressurization load is equal to or greater than the stop load, the position of the position command pulse signal at the time of determination in step S5 in the servo controller and the number of rotations of the servo motor from the position detector are determined. Based on the absolute position signal output to the servo amplifier, calculate a droop pulse that is the difference from the number of pulses of the feedback pulse signal output from the servo amplifier to the servo controller, In step S7, based on the droop pulse calculated in step S6, a reverse position command pulse signal that is a position control pulse signal for reducing the droop pulse can be output from the servo controller to the servo amplifier.
  • the droop pulses can be quickly reduced to zero. Also, when the reverse position command pulse signal has a larger number of pulses, the servo motor is driven in reverse rotation, and the pressurizing load on the member to be pressed can be rapidly reduced. The pressure load can be brought close to the target load.
  • the frequency of the backward position command pulse signal is equal to or higher than the frequency of the position command pulse.
  • the droop pulses can be quickly reduced to stop the rod.
  • the invention according to the fourth aspect is an invention according to the case of controlling the speed of the servo motor, An electric cylinder that moves the rod in the axial direction; A load detector that detects a pressure load that is connected to the rod and is applied to the member to be pressurized, a servo motor that drives the electric cylinder, A servo amplifier electrically connected to the servo motor and the servo controller and controlling the drive of the servo motor; A servo controller that is electrically connected to the load detector and the servo amplifier, and outputs a speed control command for speed control of the servo motor to the servo amplifier; An electric cylinder control method in an electric cylinder device comprising: In the servo controller, Driving speed of the rod; A stop load that is a load value set to a target load or less used to determine whether to stop or move the rod in the direction opposite to the pressurization direction so that the pressurization load does not exceed the target load.
  • Step S2 In which the servo amplifier outputs a motor drive current to the servo motor based on the speed command signal; Step S3 of driving the servo motor to rotate by the motor driving current and driving the rod; Outputting a pressurization load signal corresponding to the pressurization load detected by the load detector from the load detector to the servo controller; and In the servo controller, step S5 for determining whether the pressurization load is equal to or greater than the stop load based on the pressurization load signal; An inversion signal that stops the output of the speed command signal from the servo controller to the servo amplifier or moves the rod in the direction opposite to the pressurizing direction when it is determined that the pressurizing load is equal to or greater than the stop load.
  • Step S6 for outputting Based on the stop of the output of the speed command signal or the reverse signal, the servo amplifier stops the output of the motor drive current to the servo motor or moves the rod in the direction opposite to the pressurizing direction.
  • the technical means provided with step S7 to output is used.
  • step S1 a speed command signal is output from the servo controller to the servo amplifier based on the rod driving speed input to the servo controller.
  • step S2 the servo amplifier outputs a motor drive current to the servo motor based on the speed command signal,
  • step S3 the servo motor is driven to rotate by the motor drive current, the rod is driven,
  • step S4 a pressurization load signal corresponding to the pressurization load detected by the load detector is output from the load detector to the servo controller.
  • step S5 the servo controller determines whether the pressurization load is equal to or greater than the stop load based on the pressurization load signal.
  • step S6 When it is determined in step S6 that the pressurization load is equal to or greater than the stop load, the output of the speed command signal from the servo controller to the servo amplifier is stopped, or An inversion signal that moves the rod in the direction opposite to the pressurizing direction is output. Based on the stop or inversion signal of the speed command signal, the servo amplifier stops the output of the motor drive current to the servo motor or adds the rod. A motor drive current that moves in the direction opposite to the pressure direction can be output. As a result, the rod is driven by speed control based on the set rod drive speed, and it is determined whether or not the pressure load detected by the load detector is equal to or greater than the stop load, and the pressure load is stopped.
  • a rod stop signal or reverse signal can be output to the servo amplifier to stop or reverse the rod at the target load. Further, since the rod is not decelerated until the pressurization load reaches the stop load, the pressurization processing time can be shortened.
  • a technical means is used in which the stop load is set in the servo controller based on the set driving speed of the rod and the target load.
  • the stop load is set in the servo controller based on the set rod driving speed and the target load. Therefore, there is no need to find the stop load and input it to the servo controller. In addition to saving, it is possible to prevent errors in calculation / input of stop loads.
  • the invention according to the sixth aspect is an invention relating to the position control of the servo motor, An electric cylinder that moves the rod in the axial direction; A load detector that detects a pressure load that is connected to the rod and is applied to the member to be pressurized, a servo motor that drives the electric cylinder, A position detector provided in the servo motor and electrically connected to the servo amplifier, a servo amplifier electrically connected to the servo motor and the servo controller, and controlling the drive of the servo motor; A servo controller that is electrically connected to the load detector and the servo amplifier, and outputs a position control command for servo motor position control to the servo amplifier; An electric cylinder control system in an electric cylinder device comprising: The servo controller Driving speed of the rod; It is configured to be able to set a stop load that is a load value set to be equal to or less than a target load used for determining to stop the rod so that the pressurized load does not exceed the target load,
  • Servo controller Rod drive speed It is configured to be able to set a stop load that is a load value set to be equal to or less than a target load used for determining to stop the rod so that the pressurized load does not exceed the target load, Based on the set rod driving speed, drive by rod position control, Determine whether the pressurized load detected by the load detector is equal to or greater than the stop load, When it is determined that the pressurized load is equal to or greater than the stop load, a reverse direction command pulse signal is output to the servo amplifier. The rod can be stopped by forcibly reducing the accumulated pulses accumulated in the servo amplifier. As a result, the rod can be stopped without significantly exceeding the target load, and the pressure treatment time can be shortened because the rod is not decelerated until the pressure load reaches the stop load.
  • the number of pulses of the reverse direction command pulse signal is equal to or greater than the number of droop pulses.
  • the droop pulses can be quickly reduced to zero. Also, when the reverse position command pulse signal has a larger number of pulses, the servo motor is driven in reverse rotation, and the pressurizing load on the member to be pressed can be rapidly reduced. The pressure load can be brought close to the target load.
  • the frequency of the reverse position command pulse signal is equal to or higher than the frequency of the position command pulse. Use appropriate means.
  • the droop pulse can be quickly reduced to stop the rod.
  • the invention according to the ninth aspect is an invention according to the case of controlling the speed of the servo motor, An electric cylinder that moves the rod in the axial direction; A load detector that detects a pressure load that is connected to the rod and is applied to the member to be pressurized, a servo motor that drives the electric cylinder, A servo amplifier electrically connected to the servo motor and the servo controller and controlling the drive of the servo motor; A servo controller that is electrically connected to the load detector and the servo amplifier, and outputs a speed control command for speed control of the servo motor to the servo amplifier; An electric cylinder control system in an electric cylinder device comprising: The servo controller Driving speed of the rod; A stop load that is a load value set to be equal to or less than a target load used to determine whether to stop or move the rod in a direction opposite to the pressurizing direction so that the pressurizing load does not exceed the target load; Is configured to be configurable, Based on the set drive speed of the
  • Servo controller Rod drive speed A stop load that is a load value set to be equal to or less than a target load used to determine whether to stop or move the rod in the direction opposite to the pressurizing direction so that the pressurizing load does not exceed the target load; Is configured to be configurable, Based on the set drive speed of the rod, drive by speed control of the rod, Determine whether the pressurized load detected by the load detector is equal to or greater than the stop load, When it is determined that the pressurization load is greater than or equal to the stop load, the output of the speed command signal from the servo controller to the servo amplifier is stopped, or the reverse signal that moves the rod in the direction opposite to the pressurization direction is output.
  • the rod can be stopped or moved in the direction opposite to the pressurizing direction. As a result, the rod can be stopped or reversed at the target load, and since the rod is not decelerated until the pressurizing load reaches the stop load, the pressurization processing time can be shortened.
  • the servo controller sets the stop load based on the set drive speed of the rod and the target load.
  • the technical means of having a load setting means is used.
  • the servo controller includes stop load setting means for setting a stop load based on the set drive speed and target load of the rod. This saves time and effort to input to the servo controller and prevents stop load calculation / input errors.
  • This invention relates to the position control of the servo motor, and compares the fluctuation waveform of the pressure load between when the electric cylinder control method of the first embodiment is applied and when the conventional control method is applied. It is a graph to show. It is a graph which shows the relationship between the target load of an electric cylinder, and a stop load. It is a graph which compares and shows the fluctuation waveform of the pressurization load when the control method of the electric cylinder concerning the present invention is applied, and the case where the proportional deceleration control technique (comparative example) is applied.
  • the press working apparatus 1 includes an electric cylinder 12 that moves a rod 11 that presses a member to be pressed M in the axial direction, and a load that is connected to the rod 11 and is applied to the member to be pressed M.
  • a servo amplifier 16 that is electrically connected to the controller 17 and controls the drive of the servo motor 14, and is electrically connected to the load detector 13 and the servo amplifier 16, and receives a position control command for position control of the servo motor 14.
  • a servo controller 17 which is a so-called positioning unit for outputting to the servo amplifier 16.
  • a control unit 20 that operates as an electric cylinder control system includes a load detector 13, a servo motor 14, a position detector 15, a servo amplifier 16, and a servo controller 17.
  • the servo amplifier 16 and the servo controller 17 are configured to be able to control at least the drive of the servo motor 14 in the position control mode.
  • the electric cylinder control system according to the present embodiment is configured to be controlled by switching to a mode other than the position control mode, that is, the speed control mode and the torque control mode. Among these, the speed control mode will be described later as a second embodiment.
  • the position control mode is selected as the control mode in the servo controller 17, and the drive speed of the rod 11 and the target load Pt that pressurizes the member to be pressed M and the stop of the rod 11 are stopped by the servo controller 17 by an input device (not shown). Input the load Ps.
  • the stop load Ps is set to the same value as the target load Pt.
  • step S1 the servo controller 17 causes the servo amplifier 16 to drive the servo amplifier 16 based on the input driving speed of the rod 11.
  • the position command pulse signal is output to.
  • the servo amplifier 16 counts the number of pulses of the position command pulse signal by the built-in deviation counter based on the position command pulse signal input from the servo controller 17 in step S1, and sets the pulse frequency and the number of pulses. A corresponding motor driving current is output to the servo motor 14.
  • the servo motor 14 is rotationally driven by the motor drive current input from the servo amplifier 16.
  • the rotational motion of the servo motor 14 is converted into a linear motion by a ball screw mechanism built in the electric cylinder 12 to drive the rod 11.
  • the rod 11 is pushed forward, and the rod 11 pressurizes the pressurized member M.
  • the pressure load Pm is detected by the load detector 13.
  • the position detector 15 provided in the servo motor 14 outputs an absolute position signal corresponding to the rotation speed of the servo motor 14 to the servo amplifier 16.
  • the servo amplifier 16 converts the absolute position signal information into a feedback pulse signal and outputs it to the servo controller 17. Further, the servo amplifier 16 controls the rotation of the servo motor 14 in accordance with the difference between the number of pulses of the position command pulse signal and the number of pulses of the feedback pulse signal, that is, the accumulated pulse.
  • the number of pulses of the position command pulse signal is proportional to the rotation angle of the servo motor 14, the drive speed of the servo motor 14 is controlled by the pulse frequency of the position command pulse signal, and the moving distance of the rod 11 by the number of pulses. Is determined.
  • step S4 a pressure load signal corresponding to the pressure load Pm detected by the load detector 13 is output from the load detector 13 to the servo controller 17.
  • step S5 the servo controller 17 determines whether or not the pressurization load Pm has reached the stop load Ps, that is, whether or not the pressurization load Pm is equal to or greater than the stop load Ps. If Pm ⁇ Ps (step S5: YES), the process proceeds to step S6, and if Pm ⁇ Ps (step S5: NO), the process returns to step S1.
  • a pressure load signal is output from the load detector 13 to the servo controller 17, and the rod 11 is pushed out at the driving speed from the servo controller 17 to the servo amplifier 16 until the pressure load Pm reaches the stop load Ps.
  • the position command pulse signal continues to be output.
  • step S6 the servo controller 17 calculates a difference between the number of pulses of the position command pulse signal and the number of pulses of the feedback pulse signal at the time of the determination in step S5, that is, a droop pulse.
  • step S7 based on the accumulation pulse calculated in step S6, the servo controller 17 causes the servo amplifier 16 to drive the rod 11 in the direction opposite to the pressurizing direction, that is, the position for rotating the servo motor in the reverse direction.
  • a reverse position command pulse signal which is a control pulse signal and is a position control pulse signal for reducing the droop pulse is output.
  • the reverse position command pulse is a position command pulse in the reverse direction to the droop pulse, and can be configured as a reverse pulse train that reverses the sign of the pulse train of the droop pulse that is a forward pulse.
  • the servo amplifier 16 reduces the accumulated pulses based on the reverse position command pulse signal input from the servo controller 17 in step S7, and stops the output of the motor driving current to the servo motor 14. . Then, after holding for a predetermined time with the ultimate load, the weight is removed and the pressurizing process is terminated.
  • the rod 11 is driven by position control based on the position command pulse signal, and the servo controller 17 is added to the load detected by the load detector 13.
  • the servo controller 17 is added to the load detected by the load detector 13.
  • the rod 11 does not stop at the target load Pt and the pressurizing load Pm increases due to the time required to reduce the accumulated pulses and the influence of the inertia of the mechanical elements of the device drive system of the press working apparatus 1. Since the droop pulse is reduced in a short time to stop the rod 11, the rod 11 can be stopped without the pressurization load Pm greatly exceeding the target load Pt. Further, since the rod 11 is not decelerated until the pressurization load Pm reaches the target load Pt, the pressurization processing time can be shortened.
  • the number of reverse direction command pulses can be arbitrarily set within a range in which the rod 11 can be stopped without the pressurization load Pm greatly exceeding the target load Pt. In order to quickly reduce the droop pulses to zero, it is preferable to set the number of droop pulses to be greater than or equal to the number of droop pulses. In particular, when the number of reverse position command pulses is larger, the servo motor 14 is driven in reverse rotation. Since the pressure load on the member to be pressed M can be reduced rapidly, the pressure load can be brought closer to the target load more effectively.
  • the frequency of the reverse direction command pulse is preferably equal to or higher than the frequency of the position command pulse in order to quickly reduce the droop pulse and stop the rod.
  • Example 1 of the first embodiment was confirmed using a conventional electric cylinder control method as a comparative example.
  • this invention is not limited to the content demonstrated by the following evaluation tests.
  • FIG. 4 shows a comparison of fluctuation waveforms of the pressure load when the electric cylinder control method of the first embodiment is applied and when the conventional control method is applied.
  • the pressurization conditions were a driving speed at the start of pressurization of 10 mm / s and a target load Pt of 1 kN.
  • the comparative example applied the conventional control method which does not use a reverse direction command pulse.
  • the origin of the time axis is when the pressurization load reaches the target load of 1 kN.
  • the pressurization load greatly exceeded the target load of 1 kN, and was almost constant at about 6 kN.
  • the pressurization load once exceeded the target load of 1 kN, it was almost constant at about 1.5 kN, and it was confirmed that the pressurization process could be performed without greatly exceeding the target load of 1 kN. It was done.
  • the rod 11 is driven based on the position control based on the position command pulse signal, and the servo controller 17 detects the pressurization detected by the load detector 13. It is determined whether or not the load Pm is equal to or greater than the target load Pt, and when it is determined that the pressurization load Pm is equal to or greater than the target load Pt, a reverse direction command pulse signal is output to the servo amplifier 16, and the servo amplifier 16
  • the rod 11 can be stopped by forcibly reducing the accumulated pulses accumulated in the rod 11.
  • the rod 11 is stopped by reducing the droop pulses in a short time, so that the rod 11 can be stopped without the pressurization load Pm greatly exceeding the target load Pt. Further, since the rod 11 is not decelerated until the pressurization load Pm reaches the target load Pt, the pressurization processing time can be shortened.
  • Example 2 of the first embodiment of the present invention will be described below.
  • the second embodiment is different from the first embodiment in that the stop load Ps in step S5 is set to the following value instead of the target load Pt.
  • the stop load Ps set in the second embodiment takes into consideration the load load overload factors such as the time required to reduce the droop pulses and the influence of the inertia of the mechanical elements of the device drive system of the press working apparatus 1,
  • step S7 when the reverse position command pulse signal is output and the driving of the electric cylinder 12 is controlled to stop, the rod 11 is analytically or experimentally determined to stop at the target load Pt, and the target load Pt is obtained.
  • the load value is set low.
  • Example 2 The effect of Example 2 was confirmed by using a conventional electric cylinder control method as a comparative example. In addition, this invention is not limited to the content demonstrated by the following evaluation tests.
  • FIG. 5 shows the result of experimentally determining the relationship between the target load Pt and the stop load Ps.
  • the driving speed of the rod 11 was set to three levels of 6, 8, and 10 mm / s. It was recognized that the higher the drive speed, the greater the difference between the target load Pt and the stop load Ps.
  • the driving speed and the target load Pt are determined according to FIG. 5, it is possible to determine what load value should be set for the stop load Ps. For example, when the driving speed is 10 mm / s and the target load Pt is 10 kN, it is understood that the stop load Ps may be set to 5.35 kN.
  • the pressurization conditions were set so that the driving speed at the start of pressurization was 10 mm / s, the target load Pt was 10 kN, and the pressure was held for 0.025 s at the target load Pt, and then extracted.
  • the stop load Ps was set to 5.35 kN based on the relationship of FIG.
  • a known proportional deceleration control method for decelerating the driving speed of the electric cylinder in proportion to the increase in the pressurizing load for example, a method described in JP-A-2005-254290 is applied.
  • the origin of the time axis is when the pressurization load reaches the target load Pt.
  • the stop load Ps is input to the servo controller 17 separately from the target load Pt, but a table and an arithmetic expression are stored in the stop load setting means provided in the servo controller 17 in association with the driving speed.
  • the stop load Ps may be set by referring to a table or an arithmetic expression.
  • the rod 11 is driven by position control based on the position command pulse signal, and the pressurization load Pm detected by the load detector 13 is obtained.
  • a reverse direction command pulse signal is output to the servo amplifier 16 and accumulated in the servo amplifier 16. It is possible to stop the rod 11 at the target load Pt by forcibly decreasing the accumulated pulses. Further, since the rod 11 is not decelerated until the pressurization load Pm reaches the stop load Ps, the pressurization processing time can be shortened.
  • the present invention is not limited to this, and other than the press working apparatus.
  • the present invention can be applied to various devices and processes using an electric cylinder.
  • the present invention when the present invention is applied to the press-fitting process, it is possible to press-fit without significantly exceeding the target pressurizing load, so that not only the quality of the press-fitted product is improved, but also press-fitting with a short cycle time. This makes it possible to reduce the cost of press-fit products.
  • the cycle time shortening effect becomes remarkable.
  • the traveling direction of the rod 11 is not limited to the pushing direction but may be the pulling direction.
  • an electric cylinder 12 that moves a rod 11 that presses a member to be pressed M in the axial direction, and a rod 11 that is connected to the rod 11 to be pressed.
  • a load detector 13 that detects a load applied to the member M
  • a servo motor 14 that drives the electric cylinder 12
  • a position detector 15 that is connected to the servo motor 14 and detects the position of the rod 11, and a servo motor 14
  • a servo amplifier 16 electrically connected to the servo controller 17 for controlling the drive of the servo motor 14 and a speed control for controlling the speed of the servo motor 14 electrically connected to the load detector 13 and the servo amplifier 16.
  • a servo controller 17 that is a so-called positioning unit that outputs a command to the servo amplifier 16.
  • a control unit 20 that operates as a control system for the electric cylinder 12 includes a load detector 13, a servo motor 14, a servo amplifier 16, and a servo controller 17.
  • the servo amplifier 16 and the servo controller 17 are configured so that at least the drive of the servo motor 14 can be controlled in the speed control mode.
  • the electric cylinder control system according to the present embodiment has a configuration capable of switching to the position control mode and the torque control mode in addition to the speed control mode.
  • the speed control mode is selected as the control mode in the servo controller 17, and the target load Pt and the stop load Ps for pressurizing the member to be pressed M are input to the servo controller 17 by an input device (not shown). .
  • the stop load Ps takes into account overload factors of the load load such as the influence of the inertia of the machine elements of the device drive system of the press working device 1, and the stop load Ps of the electric cylinder 12 at the stop load Ps will be described later.
  • This is a load value set lower than the target load Pt, which is analytically or experimentally determined so that the rod 11 stops at the target load Pt when the drive is controlled to stop.
  • step S 1 When the operation is started after the pressed member M to be pressed is set at a predetermined position of the press working apparatus 1, in step S 1, in step S 1, the servo controller 17 performs servo amplifier 16 based on the input driving speed of the rod 11. A speed command signal is output to.
  • step S2 the servo amplifier 16 outputs a motor drive current to the servo motor 14 based on the speed command signal input from the servo controller 17 in step S1.
  • the servo motor 14 is rotationally driven by the motor drive current input from the servo amplifier 16.
  • the rotational motion of the servo motor 14 is converted into a linear motion by a ball screw mechanism built in the electric cylinder 12 to drive the rod 11.
  • the rod 11 is pushed forward, and the rod 11 pressurizes the pressurized member M.
  • the pressure load Pm is detected by the load detector 13.
  • step S4 a pressure load signal corresponding to the pressure load Pm detected by the load detector 13 is output from the load detector 13 to the servo controller 17.
  • step S5 the servo controller 17 determines whether or not the pressurization load Pm has reached the stop load Ps, that is, whether or not the pressurization load Pm is equal to or greater than the stop load Ps. If Pm ⁇ Ps (step S5: YES), the process proceeds to step S6, and if Pm ⁇ Ps (step S5: NO), the process returns to step S1.
  • a pressure load signal is output from the load detector 13 to the servo controller 17, and the rod 11 is pushed out at the driving speed from the servo controller 17 to the servo amplifier 16 until the pressure load Pm reaches the stop load Ps. The speed command signal continues to be output.
  • step S6 the output of the speed command signal from the servo controller 17 to the servo amplifier 16 is stopped (set to zero).
  • step S ⁇ b> 7 the servo amplifier 16 stops outputting the motor drive current to the servo motor 14. Thereby, the servo motor 14 can be stopped suddenly.
  • the rod 11 does not stop at the stop load Ps and the pressurization load Pm increases due to the influence of the inertia of the mechanical elements of the device drive system of the press working apparatus 1, but can be stopped at the target load Pt. .
  • the weight is removed and the pressurizing process is terminated.
  • the pressure load detected by the load detector 13 is driven by the speed control of the rod 11 based on the set drive speed of the rod 11. It is determined whether or not Pm is equal to or greater than the stop load Ps, and when it is determined that the pressurization load Pm is equal to or greater than the stop load Ps, a stop signal is output to the servo amplifier 16 so that the drive speed of the rod 11 becomes zero.
  • the rod 11 can be stopped at the target load Pt. Further, since the rod 11 is not decelerated until the pressurization load Pm reaches the stop load Ps, the pressurization processing time can be shortened.
  • the result of experimentally determining the relationship between the target load Pt and the stop load Ps is the same as that in the first embodiment, and is shown in FIG.
  • the driving speed of the rod 11 was also set at three levels of 6, 8, and 10 mm / s. It was recognized that the higher the drive speed, the greater the difference between the target load Pt and the stop load Ps.
  • the drive speed and the target load Pt are determined according to FIG. 5, it is possible to determine what load value should be set for the stop load Ps. For example, when the driving speed is 10 mm / s and the target load Pt is 10 kN, it is understood that the stop load Ps may be set to 5.35 kN.
  • the case where the electric cylinder control method of the present invention is applied and the case where the proportional deceleration control method (comparative example) is applied are compared.
  • the pressurization conditions were set so that the driving speed at the start of pressurization was 10 mm / s, the target load Pt was 10 kN, and the pressure was held for 0.025 s at the target load Pt, and then extracted.
  • the stop load Ps was set to 5.35 kN based on the relationship of FIG.
  • a known proportional deceleration control method for decelerating the driving speed of the electric cylinder in proportion to the increase in the pressurizing load for example, a method described in JP-A-2005-254290 is applied.
  • the origin of the time axis is when the pressurized load reaches the target load Pt.
  • the pressurization load Pm As shown in FIG. 6, in the comparative example, 0.3 s was required for the pressurization load Pm to reach the target load Pt. However, in this embodiment, the pressurization load Pm does not exceed the target load Pt. , And reached in a short time of about a quarter of the comparative example of 0.07 s. As a result, it was confirmed that by appropriately setting the stop load Ps as shown in FIG. 5, the pressurization load Pm can be controlled by the target load Pt, and the pressurization process can be performed in a short time. .
  • the stop load Ps is input to the servo controller 17 separately from the target load Pm.
  • the stop load setting means provided in the servo controller 17 has a drive speed.
  • the table and the arithmetic expression may be stored in association with each other, and when the target load Pm is input, the stop load Ps may be set by referring to the table or the arithmetic expression. As a result, it is possible to save the trouble of obtaining the stop load Ps and inputting it to the servo controller 17, and to prevent an error in calculating and inputting the stop load Ps.
  • the electric cylinder 12 is controlled to stop. However, when it is not necessary to hold the pressurizing load, the electric cylinder 12 is immediately moved in the direction opposite to the pressurizing direction without being stopped (inverted). ). In this case, in step S6, a speed command signal (inverted signal) for moving the electric cylinder 12 in the direction opposite to the pressurizing direction may be input based on the speed condition set in the servo controller 17 in advance. According to this, since the holding time of the electric cylinder 12 is not required, the press working time can be further shortened.
  • the rod 11 is driven by speed control based on the set drive speed of the rod 11, and the pressure load detected by the load detector 13 is detected. It is determined whether or not Pm is equal to or greater than the stop load Ps, and when it is determined that the pressurization load Pm is equal to or greater than the stop load Ps, a stop signal is output to the servo amplifier 16 so that the drive speed of the rod 11 becomes zero.
  • the rod 11 can be stopped at the target load Pt. Further, since the rod 11 is not decelerated until the pressurization load Pm reaches the stop load Ps, the pressurization processing time can be shortened.

Abstract

 加圧荷重が目標荷重を超過することを防ぎ、かつ、加圧処理時間を短縮することができるサーボモータで駆動される電動シリンダの制御方法及び電動シリンダの制御システムを実現する。 サーボコントローラ17は、ロッド11の駆動速度と、加圧荷重Pmが目標 荷重Ptを大きく超えないようにロッド11を停止させる判定を行うために用いる停止荷重Psと、を設定可能に構成されており、ロッド11の位置制御による駆動を行い、荷重検出器13によって検出された加圧荷重Pmが停止荷重Ps以上であるか否かを判定し、加圧荷重Pmが停止荷重Ps以上であると判定した場合に、サーボアンプ16に逆方向位置指令パルス信号を出力し、サーボアンプ16に蓄積されている溜りパルスを強制的に減少させてロッド11を目標荷重Ptを大きく超過しない荷重で停止させることができる。

Description

電動シリンダの制御方法及び電動シリンダの制御システム
 本発明は、サーボモータで駆動される電動シリンダの制御方法及び電動シリンダの制御システムに関する。
 従来、被加圧部材を一定目標荷重で加圧処理するため、サーボモータ及び荷重検出器を使用し、荷重検出器で検出された荷重をサーボモータにフィードバックして加圧荷重をコントロールする機構の加圧装置が知られている(例えば特許文献1、特許文献2)。
 しかし、上述の加圧装置では電動シリンダロッドを5mm/s以上の速度で駆動しているため、加圧装置の慣性などにより目標加圧荷重において電動シリンダロッドが停止せずに目標加圧荷重を大幅に超過した荷重が被加圧部材に加わり(オーバーロード)、被加圧部材を適切に加圧処理することができない、更には過負荷により荷重検出器を破損してしまうなどの問題があった。
 そのため、電動シリンダロッドの先端が被加圧部材に衝突する直前に電動シリンダロッドの駆動速度を1mm/s程度に減速し、加圧処理を行う方法が用いられてきた(例えば、特許文献3)。
 しかし、この場合には電動シリンダロッドの駆動速度を極端に減速する必要があるため、加圧処理に要する加圧処理時間が著しく長くなり、とりわけ短サイクルタイムで繰り返し連続の加圧処理を行うような工程にこの方法を用いると、生産性の低下が避けられないという問題があった。
 更には、上記問題点を解決する目的で、電動シリンダロッドの先端が被加圧部材に衝突した後、加圧荷重が目標加圧荷重に達するまでの間に電動シリンダロッドの駆動速度を加圧荷重の増加に伴い一定減速率で減速、もしくは比例減速させ、加圧処理を行う方法が提案されている(例えば、特許文献4、特許文献5)。
   特許文献1: 特開2005-138110号公報
   特許文献2: 特開2009-101419号公報
   特許文献3: 特開平11-192598号公報
   特許文献4: 特開平9-314399号公報
   特許文献5: 特開2005-254290号公報
 特許文献4、特許文献5に記載の技術においても、目標加圧荷重が大きくなればなるほど、減速開始から加圧荷重が目標加圧荷重に達するまでの時間が長くなるため、加圧処理時間が長くなり、短いサイクルタイムで連続加圧処理を行う工程では生産性が低下するという問題があった。
 また、特許文献4に記載の技術では、サーボプレスコントローラからサーボドライバへの信号出力にパルス信号を用いる位置制御モードが採用されている。位置制御モードは、電動シリンダを適切な速度で駆動させ、位置精度良く停止させることが可能であり、電動シリンダの制御モードとして広く採用されているが、位置制御モードを使用した場合、装置駆動系の機械要素の慣性の影響だけでなく、サーボモータを駆動するサーボアンプにおいて生じる溜りパルスがオーバーロードの原因となる。
 溜りパルスとは、サーボドライバにおけるフィードパルスとフィードバックパルスの差のパルスである。サーボ機構の駆動系においては、加圧装置などの機械系に慣性があるため、サーボコントローラの位置指令パルス信号をサーボモータにそのまま出力すると機械に遅れが生じて追従できない。そこで、位置指令パルスをサーボドライバの偏差カウンタに溜めて、溜りパルスに応じてサーボモータの回転を制御する制御方法が採用されている。
 ここで、サーボモータを停止させるためにサーボコントローラから位置指令パルスの出力を停止しても、サーボドライバの偏差カウンタにおいて溜りパルスが減少して0になるまで、溜りパルスのパルス数に応じてサーボモータが回転を継続してしまう。 これにより、ロッドが移動してしまい、オーバーロードが発生する。
 従って、位置制御モードで加圧装置を制御する場合には、溜りパルスの問題を解決しない限り、特許文献4に記載された制御方法だけでは不十分であり、加圧処理時間が長くなったり、加圧荷重が目標荷重を大きく超過したりする問題があった。
 そこで、本発明は、サーボモータで駆動される電動シリンダの制御方法及び電動シリンダの制御システムであって、サーボモータを位置制御する場合、およびサーボモータを速度制御する場合に、加圧荷重が目標荷重を大きく超過することを防ぎ、かつ、加圧処理時間を短縮することができる電動シリンダの制御方法及び電動シリンダの制御システムを実現することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、第1の観点にかかる発明は、サーボモータを位置制御する場合にかかる発明であって、
 ロッドを軸方向に移動させる電動シリンダと、
 ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
 サーボモータに設けられ、サーボアンプに電気的に接続された位置検出器と、サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
 荷重検出器及びサーボアンプに電気的に接続され、サーボモータの位置制御のための位置制御指令をサーボアンプに出力するサーボコントローラと、
を備えた電動シリンダ装置における電動シリンダの制御方法であって、前記サーボコントローラにおいて、
 前記ロッドの駆動速度と、
 加圧荷重が目標荷重を超えないように前記ロッドを停止させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、を設定し、
 前記サーボコントローラに入力された前記ロッドの駆動速度に基づいて前記サーボコントローラから前記サーボアンプに位置指令パルス信号を出力するステップS1と、
 前記サーボアンプが、前記位置指令パルス信号に基づいて、前記サーボモータへモータ駆動電流を出力するステップS2と、
 前記モータ駆動電流により前記サーボモータを回転駆動し、前記ロッドを駆動するステップS3と、
 前記荷重検出器によって検出された加圧荷重に応じた加圧荷重信号を、前記荷重検出器から前記サーボコントローラに出力するステップS4と、
 前記サーボコントローラにおいて、前記加圧荷重信号に基づいて加圧荷重が停止荷重以上であるか否かを判定するステップS5と、
 加圧荷重が停止荷重以上であると判定された場合に、前記サーボコントローラにおいて前記ステップS5の判定時の位置指令パルス信号のパルス数と、前記サーボモータの回転数に応じて前記位置検出器から前記サーボアンプに対し出力される絶対位置信号に基づいて前記サーボアンプから前記サーボコントローラに出力される帰還パルス信号のパルス数との差である溜りパルスを計算するステップS6と、
 前記ステップS6で計算された溜りパルスに基づいて、前記溜りパルスを減少させる位置制御パルス信号である逆方向位置指令パルス信号を前記サーボコントローラから前記サーボアンプに出力するステップS7と、
を備えた技術的手段を用いる。
 第1の観点にかかる発明によれば、
 ステップS1により、サーボコントローラに入力されたロッドの駆動速度に基づいてサーボコントローラからサーボアンプに位置指令パルス信号を出力し、
 ステップS2により、サーボアンプが、位置指令パルス信号に基づいて、サーボモータへモータ駆動電流を出力し、ステップS3により、モータ駆動電流によりサーボモータを回転駆動し、ロッドを駆動し、
 ステップS4により、荷重検出器によって検出された加圧荷重に応じた加圧荷重信号を、荷重検出器からサーボコントローラに出力し、
 ステップS5により、サーボコントローラにおいて、加圧荷重信号に基づいて加圧荷重が停止荷重以上であるか否かを判定し、
 ステップS6により、加圧荷重が停止荷重以上であると判定された場合に、サーボコントローラにおいてステップS5の判定時の位置指令パルス信号のパルス数と、サーボモータの回転数に応じて位置検出器からサーボアンプに対し出力される絶対位置信号に基づいてサーボアンプからサーボコントローラに出力される帰還パルス信号のパルス数との差である溜りパルスを計算し、
 ステップS7により、ステップS6で計算された溜りパルスに基づいて、溜りパルスを減少させる位置制御パルス信号である逆方向位置指令パルス信号をサーボコントローラからサーボアンプに出力することができる。
 これにより、ロッドの位置制御による駆動を行い、荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、加圧荷重が停止荷重以上であると判定した場合に、サーボアンプに逆方向位置指令パルス信号を出力し、ロッドを目標荷重を大きく超過することなく停止させることができる。また、加圧荷重が停止荷重に到達するまではロッドを減速しないため、加圧処理時間を短縮することができる。
 第2の観点にかかる発明では、第1の観点にかかる発明の電動シリンダの制御方法において、前記逆方向位置指令パルス信号のパルス数は、前記溜りパルスのパルス数以上である、という技術的手段を用いる。
 第2の観点にかかる発明によれば、逆方向位置指令パルス信号のパルス数は、溜りパルスのパルス数以上であるため、溜りパルスを速やかに減少させて0とすることができる。
 また、逆方向位置指令パルス信号のパルス数の方が多い場合には、サーボモータの逆転駆動が生じて被加圧部材に対する加圧荷重を急速に減少させることができるので、より効果的に加圧荷重を目標荷重に近づけることができる。
 第3の観点にかかる発明では、第1または第2の観点にかかる発明の電動シリンダの制御方法において、前記逆方向位置指令パルス信号の周波数は、前記位置指令パルスの周波数以上である、という技術的手段を用いる。
 第3の観点にかかる発明によれば、逆方向位置指令パルス信号の周波数は、位置指令パルスの周波数以上であるため、溜りパルスを速やかに減少させてロッドを停止させることができる。
 第4の観点にかかる発明は、サーボモータを速度制御する場合にかかる発明であって、
 ロッドを軸方向に移動させる電動シリンダと、
 ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
 サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
 荷重検出器及びサーボアンプに電気的に接続され、サーボモータの速度制御のための速度制御指令をサーボアンプに出力するサーボコントローラと、
を備えた電動シリンダ装置における電動シリンダの制御方法であって、
前記サーボコントローラにおいて、
 前記ロッドの駆動速度と、
 前記加圧荷重が目標荷重を超えないように前記ロッドを停止または加圧方向と逆方向に移動させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、を設定し、
 前記サーボコントローラに入力された前記ロッドの駆動速度に基づいて前記サーボコントローラから前記サーボアンプに速度指令信号を出力するステップS1と、
 前記サーボアンプが、前記速度指令信号に基づいて、前記サーボモータへモータ駆動電流を出力するステップS2と、
 前記モータ駆動電流により前記サーボモータを回転駆動し、前記ロッドを駆動するステップS3と、
 前記荷重検出器によって検出された加圧荷重に応じた加圧荷重信号を、前記荷重検出器から前記サーボコントローラに出力するステップS4と、
 前記サーボコントローラにおいて、前記加圧荷重信号に基づいて加圧荷重が停止荷重以上であるか否かを判定するステップS5と、
 加圧荷重が停止荷重以上であると判定された場合に、前記サーボコントローラから前記サーボアンプへの速度指令信号の出力を停止する、または、前記ロッドを加圧方向と逆方向に移動させる反転信号を出力するステップS6と、
 前記速度指令信号の出力の停止または前記反転信号に基づいて、前記サーボアンプが、前記サーボモータへのモータ駆動電流の出力を停止または前記ロッドを加圧方向と逆方向に移動させるモータ駆動電流を出力するステップS7と、を備えた技術的手段を用いる。
 第4の観点にかかる発明によれば、
 ステップS1により、サーボコントローラに入力されたロッドの駆動速度に基づいてサーボコントローラからサーボアンプに速度指令信号を出力し、
 ステップS2により、サーボアンプが、速度指令信号に基づいて、サーボモータへモータ駆動電流を出力し、
 ステップS3により、モータ駆動電流によりサーボモータを回転駆動し、ロッドを駆動し、
 ステップS4により、荷重検出器によって検出された加圧荷重に応じた加圧荷重信号を、荷重検出器からサーボコントローラに出力し、
 ステップS5により、サーボコントローラにおいて、加圧荷重信号に基づいて加圧荷重が停止荷重以上であるか否かを判定し、
 ステップS6により、加圧荷重が停止荷重以上であると判定された場合に、サーボコントローラからサーボアンプへの速度指令信号の出力を停止、または、
ロッドを加圧方向と逆方向に移動させる反転信号を出力し、速度指令信号の出力の停止または反転信号に基づいて、サーボアンプが、サーボモータへのモータ駆動電流の出力を停止またはロッドを加圧方向と逆方向に移動させるモータ駆動電流を出力することができる。
 これにより、設定されたロッドの駆動速度に基づき、ロッドの速度制御による駆動を行い、荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、加圧荷重が停止荷重以上であると判定した場合に、サーボアンプにロッドの停止信号または反転信号を出力し、ロッドを目標荷重で停止または反転させることができる。
 また、加圧荷重が停止荷重に到達するまではロッドを減速しないため、加圧処理時間を短縮することができる。
 第5の観点にかかる発明では、第4の観点にかかる発明の電動シリンダの制御方法において、
 前記停止荷重は、設定された前記ロッドの駆動速度と前記目標荷重とに基づいて、前記サーボコントローラにおいて設定される、という技術的手段を用いる。
 第5の観点にかかる発明によれば、停止荷重は、設定されたロッドの駆動速度と目標荷重とに基づいて、サーボコントローラにおいて設定されるため、停止荷重を求めてサーボコントローラに入力する手間が省けるとともに、停止荷重の計算・入力ミスを防止することができる。
 第6の観点にかかる発明は、サーボモータを位置制御する場合にかかる発明であって、
 ロッドを軸方向に移動させる電動シリンダと、
 ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
 サーボモータに設けられ、サーボアンプに電気的に接続された位置検出器と、サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
 荷重検出器及びサーボアンプに電気的に接続され、サーボモータの位置制御のための位置制御指令をサーボアンプに出力するサーボコントローラと、
を備えた電動シリンダ装置における電動シリンダの制御システムであって、
 前記サーボコントローラは、
 前記ロッドの駆動速度と、
 加圧荷重が目標荷重を超えないように前記ロッドを停止させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、を設定可能に構成されており、
 前記ロッドの駆動速度に基づいて前記ロッドの位置制御による駆動を行い、前記荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、
 加圧荷重が停止荷重以上であると判定した場合に、前記サーボアンプに逆方向位置指令パルス信号を出力し、
 前記サーボアンプに蓄積されている溜りパルスを強制的に減少させて前記ロッドを停止させる、
 という技術的手段を用いる。
 第6の観点にかかる発明によれば、
 サーボコントローラは、
 ロッドの駆動速度と、
 加圧荷重が目標荷重を超えないように前記ロッドを停止させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、を設定可能に構成されており、
 設定された前記ロッドの駆動速度に基づき、ロッドの位置制御による駆動を行い、
 荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、
 加圧荷重が停止荷重以上であると判定した場合に、サーボアンプに逆方向位置指令パルス信号を出力し、
 サーボアンプに蓄積されている溜りパルスを強制的に減少させてロッドを停止させることができる。
 これにより、ロッドを目標荷重を大きく超過することなく停止させることができるとともに、加圧荷重が停止荷重に到達するまではロッドを減速しないため、加圧処理時間を短縮することができる。
 第7の観点にかかる発明では、第6の観点にかかる発明の電動シリンダの制御システムにおいて、
 前記逆方向位置指令パルス信号のパルス数は、前記溜りパルスのパルス数以上である、という技術的手段を用いる。
 第7の観点にかかる発明によれば、逆方向位置指令パルス信号のパルス数は、溜りパルスのパルス数以上であるため、溜りパルスを速やかに減少させて0とすることができる。
 また、逆方向位置指令パルス信号のパルス数の方が多い場合には、サーボモータの逆転駆動が生じて被加圧部材に対する加圧荷重を急速に減少させることができるので、より効果的に加圧荷重を目標荷重に近づけることができる。
 第8の観点にかかる発明では、第6または第7の観点にかかる発明の電動シリンダの制御システムにおいて、前記逆方向位置指令パルス信号の周波数は、前記位置指令パルスの周波数以上である、という技術的手段を用いる。
 第8の観点にかかる発明によれば、逆方向位置指令パルス信号の周波数は、位置指令パルスの周波数以上であるため、溜りパルスを速やかに減少させてロッドを停止させることができる。
 第9の観点にかかる発明は、サーボモータを速度制御する場合にかかる発明であって、
 ロッドを軸方向に移動させる電動シリンダと、
 ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
 サーボモータ及び前記サーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
 荷重検出器及びサーボアンプに電気的に接続され、サーボモータの速度制御のための速度制御指令をサーボアンプに出力するサーボコントローラと、
を備えた電動シリンダ装置における電動シリンダの制御システムであって、
 前記サーボコントローラは、
 前記ロッドの駆動速度と、
 前記加圧荷重が目標荷重を超えないように前記ロッドを停止または加圧方向と逆方向に移動させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、
 を設定可能に構成されており、
 設定された前記ロッドの駆動速度に基づき、前記ロッドの速度制御による駆動を行い、
 前記荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、
 加圧荷重が停止荷重以上であると判定した場合に、前記サーボコントローラから前記サーボアンプへの速度指令信号の出力を停止、または、前記ロッドを加圧方向と逆方向に移動させる反転信号を出力し、
 前記ロッドを停止または加圧方向と逆方向に移動させる、
 という技術的手段を用いる。
 第9の観点にかかる発明によれば、
 サーボコントローラは、
 ロッドの駆動速度と、
 加圧荷重が目標荷重を超えないように前記ロッドを停止または加圧方向と逆方向に移動させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、
 を設定可能に構成されており、
 設定された前記ロッドの駆動速度に基づき、ロッドの速度制御による駆動を行い、
 荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、
 加圧荷重が停止荷重以上であると判定した場合に、サーボコントローラからサーボアンプへの速度指令信号の出力を停止、または、ロッドを加圧方向と逆方向に移動させる反転信号を出力し、
 ロッドを停止または加圧方向と逆方向に移動させることができる。
 これにより、ロッドを目標荷重で停止または反転させることができるとともに、加圧荷重が停止荷重に到達するまではロッドを減速しないため、加圧処理時間を短縮することができる。
 第10の観点にかかる発明では、第9の観点にかかる発明の電動シリンダの制御システムにおいて、前記サーボコントローラは、設定された前記ロッドの駆動速度と目標荷重とに基づいて停止荷重を設定する停止荷重設定手段を備えた、という技術的手段を用いる。
 第10の観点にかかる発明によれば、サーボコントローラは、設定された前記ロッドの駆動速度と目標荷重とに基づいて停止荷重を設定する停止荷重設定手段を備えているため、停止荷重を求めてサーボコントローラに入力する手間が省けるとともに、停止荷重の計算・入力ミスを防止することができる。
本発明の電動シリンダの制御システムを備えたプレス加工装置の概略図である。 サーボモータを位置制御する場合にかかる発明であって、電動シリンダの制御方法を示すフローチャートである。 サーボモータを速度制御する場合にかかる発明であって、電動シリンダの制御方法を示すフローチャートである。 サーボモータを位置制御する場合にかかる発明であって、第1実施形態の電動シリンダの制御方法を適用した場合と、従来の制御方法を適用した場合との加圧荷重の変動波形を比較して示すグラフである。 電動シリンダの目標荷重と停止荷重との関係を示すグラフである。 本発明にかかる電動シリンダの制御方法を適用した場合と、比例減速制御手法(比較例)を適用した場合との加圧荷重の変動波形を比較して示すグラフである。
[第1実施形態]
 以下、本発明の第1の実施形態について、電動シリンダ装置としてプレス加工装置を例に、電動シリンダの制御システム及び制御方法を、図を参照して説明する。 ここで、第1の実施形態は、サーボモータを位置制御する場合にかかる発明に関連する。
[実施例1]
 図1に示すように、プレス加工装置1は、被加圧部材Mをプレス加工するロッド11を軸方向に移動させる電動シリンダ12と、ロッド11に連結され被加圧部材Mに負荷される荷重を検出する荷重検出器13と、電動シリンダ12を駆動させるサーボモータ14と、サーボアンプ16と接続され、サーボモータ14に設けられたエンコーダに代表される位置検出器15と、サーボモータ14及びサーボコントローラ17に電気的に接続され、サーボモータ14の駆動を制御するサーボアンプ16と、荷重検出器13及びサーボアンプ16に電気的に接続され、サーボモータ14の位置制御のための位置制御指令をサーボアンプ16に出力するいわゆる位置決めユニットであるサーボコントローラ17と、を備えている。
 電動シリンダの制御システムとして作動する制御ユニット20は、荷重検出器13、サーボモータ14、位置検出器15、サーボアンプ16及びサーボコントローラ17から構成される。
 ここで、サーボアンプ16及びサーボコントローラ17は少なくともサーボモータ14の駆動を位置制御モードで制御可能に構成されている。
 なお、本実施形態にかかる電動シリンダの制御システムにおいては、位置制御モード以外のモード、すなわち速度制御モード、トルク制御モードに切り替えて制御できる構成となっている。 この中で、速度制御モードについては、第2の実施形態として後述する。
 次に本発明の制御方法について図2を参照して説明する。まず、サーボコントローラ17における制御モードとして位置制御モードを選択し、図示しない入力装置により、サーボコントローラ17にロッド11の駆動速度及び被加圧部材Mを加圧する目標荷重Pt及びロッド11を停止させる停止荷重Psを入力する。本実施形態では、停止荷重Psは目標荷重Ptと同じ値に設定される。
 プレス加工を行う被加圧部材Mをプレス加工装置1の所定の位置にセットした後に、運転を開始すると、ステップS1では、入力されたロッド11の駆動速度に基づいてサーボコントローラ17がサーボアンプ16に位置指令パルス信号を出力する。
 続くステップS2では、サーボアンプ16は、ステップS1でサーボコントローラ17から入力された位置指令パルス信号に基づいて、内蔵する偏差カウンタにより位置指令パルス信号のパルス数を計数し、パルス周波数及びパルス数に応じたモータ駆動電流をサーボモータ14へ出力する。
 続くステップS3では、サーボアンプ16から入力されたモータ駆動電流によりサーボモータ14が回転駆動される。サーボモータ14の回転運動は、電動シリンダ12に内蔵されたボールねじ機構によって直線運動に変換され、ロッド11を駆動する。これにより、ロッド11が前方へ押し出され、ロッド11が被加圧部材Mを加圧する。加圧荷重Pmは荷重検出器13によって検出される。
 サーボモータ14の回転に伴い、サーボモータ14に設けられた位置検出器15がサーボアンプ16に対し、サーボモータ14の回転数に応じた絶対位置信号を出力する。サーボアンプ16は、絶対位置信号情報を帰還パルス信号に変換してサーボコントローラ17に出力する。更に、サーボアンプ16は、位置指令パルス信号のパルス数と帰還パルス信号のパルス数との差、つまり、溜りパルスに応じてサーボモータ14の回転を制御する。ここで、位置指令パルス信号のパルス数は、サーボモータ14の回転角と比例関係にあり、位置指令パルス信号のパルス周波数によりサーボモータ14の駆動速度が制御され、パルス数によりロッド11の移動距離が定まる。
 続くステップS4では、荷重検出器13によって検出された加圧荷重Pmに応じた加圧荷重信号を、荷重検出器13からサーボコントローラ17に出力する。
 続くステップS5では、サーボコントローラ17において、加圧荷重Pmが停止荷重Psに達したか否か、つまり、加圧荷重Pmが停止荷重Ps以上であるか否かを判定する。Pm≧Ps(ステップS5:YES)の場合にはステップS6に進み、Pm<Ps(ステップS5:NO)の場合にはステップS1に戻る。荷重検出器13からサーボコントローラ17に加圧荷重信号が出力され、加圧荷重Pmが停止荷重Psに達するまでの間、駆動速度でロッド11が押し出されるように、サーボコントローラ17からサーボアンプ16へ位置指令パルス信号が出力され続ける。
 ステップS6では、サーボコントローラ17がステップS5の判定時の位置指令パルス信号のパルス数と帰還パルス信号のパルス数との差、つまり、溜りパルスを計算する。
 続くステップS7では、ステップS6で計算された溜りパルスに基づいて、サーボコントローラ17からサーボアンプ16に、ロッド11を加圧方向と逆方向へ駆動させる、つまり、サーボモータを逆回転させるための位置制御パルス信号であって、溜りパルスを減少させる位置制御パルス信号である逆方向位置指令パルス信号を出力する。
 ここで、逆方向位置指令パルスは、溜りパルスと逆方向の位置指令パルスであり、正転パルスである溜りパルスのパルス列の符号を逆転させる逆転パルス列として構成することができる。
 続くステップS8では、サーボアンプ16は、ステップS7でサーボコントローラ17から入力された逆方向位置指令パルス信号に基づいて、溜りパルスを減少させて、サーボモータ14へのモータ駆動電流の出力を停止する。
そして、到達荷重で所定時間保持した後に抜重し、加圧処理を終了する。
 上述のような電動シリンダ12の制御方法または制御システム20を用いることにより、位置指令パルス信号に基づいてロッド11の位置制御による駆動を行い、サーボコントローラ17が、荷重検出器13によって検出された加圧荷重Pmが目標荷重Pt以上であるか否かを判定し、加圧荷重Pmが目標荷重Pt以上であると判定した場合に、サーボアンプ16に逆方向位置指令パルス信号を出力し、サーボアンプ16に蓄積されている溜りパルスを強制的に減少させてロッド11を停止させることができる。
 これにより、溜りパルスを減少させるために必要な時間やプレス加工装置1の装置駆動系の機械要素の慣性などの影響などによりロッド11は目標荷重Ptでは停止せず加圧荷重Pmが増大するが、溜りパルスを短時間で減少させてロッド11を停止させるため、加圧荷重Pmが目標荷重Ptを大きく超過することなくロッド11を停止させることができる。
 また、加圧荷重Pmが目標荷重Ptに到達するまではロッド11を減速しないため、加圧処理時間を短縮することができる。
 逆方向位置指令パルスのパルス数は、加圧荷重Pmが目標荷重Ptを大きく超過することなくロッド11を停止させることができる範囲で任意に設定することができる。溜りパルスを速やかに減少させて0とするために、溜りパルスのパルス数以上とすることが好ましく、特に、逆方向位置指令パルスのパルス数の方が多い場合には、サーボモータ14の逆転駆動が生じて被加圧部材Mに対する加圧荷重を急速に減少させることができるので、より効果的に加圧荷重を目標荷重に近づけることができる。
 また、逆方向位置指令パルスの周波数は、溜りパルスを速やかに減少させてロッドを停止させるために、位置指令パルスの周波数以上とすることが好ましい。
 このように、本発明をプレス加工工程に適用すると、加圧荷重Pmが目標荷重Ptを大きく超過せずにプレス加工を行うことが可能となるため、プレス加工された製品の品質向上につながるだけでなく、短サイクルタイムでプレスすることが可能となるためプレス品のコストダウンにつながる利点がある。
(評価試験1)
 第1の実施形態の実施例1について、その効果を、従来の電動シリンダの制御方法を比較例として確認した。なお、本発明は以下の評価試験にて説明される内容に限定されるものではない。
 図4に、実施例1の電動シリンダの制御方法を適用した場合と、従来の制御方法を適用した場合との加圧荷重の変動波形を比較して示す。加圧条件は、加圧開始時の駆動速度を10mm/s、目標荷重Ptを1kNとした。比較例は、逆方向位置指令パルスを用いない従来の制御方法を適用した。
 なお、図4において時間軸の原点は、加圧荷重が目標荷重1kNに到達した時とした。
 図4に示すように、比較例では、加圧荷重が目標荷重の1kNを大きく超過し、約6kNでほぼ一定となった。一方、実施例では、加圧荷重は目標荷重の1kNを一旦は越えたものの、約1.5kNでほぼ一定となり、目標荷重の1kNを大きく超過することなく加圧処理が行うことができることが確認された。
[実施例1の効果]
 本発明の電動シリンダの制御方法及び電動シリンダの制御システムによれば、位置指令パルス信号に基づいてロッド11の位置制御による駆動を行い、サーボコントローラ17が、荷重検出器13によって検出された加圧荷重Pmが目標荷重Pt以上であるか否かを判定し、加圧荷重Pmが目標荷重Pt以上であると判定した場合に、サーボアンプ16に逆方向位置指令パルス信号を出力し、サーボアンプ16に蓄積されている溜りパルスを強制的に減少させてロッド11を停止させることができる。
 これにより、溜りパルスを短時間で減少させてロッド11を停止させるため、加圧荷重Pmが目標荷重Ptを大きく超過することなくロッド11を停止させることができる。
 また、加圧荷重Pmが目標荷重Ptに到達するまではロッド11を減速しないため、加圧処理時間を短縮することができる。
[実施例2]
 次に、本発明の第1の実施形態の実施例2について以下に説明する。 実施例2は、ステップS5における停止荷重Psを目標荷重Ptではなく以下に示す値に設定する点で実施例1と異なっている。
 実施例2で設定する停止荷重Psは、溜りパルスを減少させるために必要な時間やプレス加工装置1の装置駆動系の機械要素の慣性の影響などの負荷荷重のオーバーロード要因を考慮して、ステップS7において逆方向位置指令パルス信号を出力し、電動シリンダ12の駆動を停止制御した場合に、ロッド11が目標荷重Ptで停止するように解析的または実験的に求めた、目標荷重Ptよりも低く設定される荷重値である。
(評価試験2)
 実施例2の効果を、従来の電動シリンダの制御方法を比較例として確認した。なお、本発明は以下の評価試験にて説明される内容に限定されるものではな
い。
 まず、目標荷重Ptと停止荷重Psとの関係を実験的に求めた結果を図5に示す。ロッド11の駆動速度は6、8、10mm/sの3水準とした。駆動速度が速いほど、目標荷重Ptと停止荷重Psとの差が大きくなる傾向が認められた。
 図5により、駆動速度と目標荷重Ptを決めると、停止荷重Psをどのような荷重値に設定すればよいかを求めることができる。例えば、駆動速度が10mm/s、目標荷重Ptが10kNの場合には、停止荷重Psを5.35kNに設定すればよいことがわかる。
 次に、本発明の電動シリンダの制御方法を適用した場合と、比例減速制御手法(比較例)を適用した場合とを比較する。 加圧条件は、加圧開始時の駆動速度を10mm/s、目標荷重Ptを10kNとし、目標荷重Ptで0.025s加圧保持した後に抜重するように設定した。停止荷重Psは、図5の関係に基づいて5.35kNに設定した。
 比較例は、加圧荷重の増加に比例して電動シリンダの駆動速度を減速する公知の比例減速制御手法、例えば、特開2005-254290号公報に記載の方法、を適用した。
 なお、図6において時間軸の原点は、加圧荷重が目標荷重Ptに到達した時とした。
 図6に示すように、比較例では、加圧荷重Pmが目標荷重Ptに到達するまでに0.3sを要したが、実施例では、加圧荷重Pmが目標荷重Ptを大きく超過することなく、0.07sという比較例の4分の1程度の短時間で到達した。これにより、図6に示すように適切に停止荷重Psを設定することで、加圧荷重Pmを目標荷重Ptで制御することができ、短時間で加圧処理が行うことができることが確認された。
 上述の実施例2では、停止荷重Psは目標荷重Ptと別にサーボコントローラ17に入力しているが、サーボコントローラ17が備えた停止荷重設定手段に駆動速度と関連させてテーブルや演算式を記憶させておき、目標荷重Ptを入力するとテーブルや演算式が参照されて停止荷重Psが設定されるように構成してもよい。これにより、停止荷重Psを求めてサーボコントローラ17に入力する手間が省けるとともに、停止荷重Psの計算・入力ミスを防止することができる。
[実施例2の効果]
 本実施例2の電動シリンダの制御方法及び電動シリンダの制御システムによれば、位置指令パルス信号に基づいてロッド11の位置制御による駆動を行い、荷重検出器13によって検出された加圧荷重Pmが停止荷重Ps以上であるか否かを判定し、加圧荷重Pmが停止荷重Ps以上であると判定した場合に、サーボアンプ16に逆方向位置指令パルス信号を出力し、サーボアンプ16に蓄積されている溜りパルスを強制的に減少させてロッド11を目標荷重Ptで停止させることができる。
 また、加圧荷重Pmが停止荷重Psに到達するまではロッド11を減速しないため、加圧処理時間を短縮することができる。
[その他の実施例]
上述の実施例1および2では、電動シリンダ12の制御方法、制御システムをプレス加工装置1に適用する例について説明したが、本発明はこれに限定されるものではなく、プレス加工装置以外にも電動シリンダを用いる各種装置、工程に適用可能である。
 例えば、本発明を圧入工程に適用すると、加圧荷重が目標加圧荷重を大きく超過せずに圧入することが可能となるため、圧入品の品質向上につながるだけでなく、短サイクルタイムで圧入することが可能となるため圧入品のコストダウンにつながる利点がある。
 更に、圧入品のように加圧の際に圧力が逃げるような部材に対しては、従来のように一定減速率もしくは加圧荷重と比例して電動シリンダのロッドを減速させる方法と比較したときにはサイクルタイム短縮効果が顕著となる利点がある。
 また、本発明を電動シリンダのロッドによって被搬送物を搬送する搬送工程に適用すると、俊敏な搬送が可能となるだけでなく、被搬送物とロッドが不意に衝突した際にも瞬時にロッドを減速もしくは停止することができ、ロッドや荷重検出器、更に被搬送物の破損を防ぐことができる利点がある。
 更に、本発明において、ロッド11の進行方向は押し出し方向のみに限らず、引き入れ方向であっても良い。これにより、加圧工程のみならず引っ張り工程にも本発明を適用することができる。
[第2実施形態]
 次に、本発明の第2の実施形態について、電動シリンダ装置としてプレス加工装置を例に、電動シリンダの制御システム及び制御方法を、図を参照して説明する。 ここで、第2の実施形態は、サーボモータを速度制御する場合にかかる発明に関連する。
 第2の実施形態にかかるプレス加工装置1では、図1に示すように、被加圧部材Mをプレス加工するロッド11を軸方向に移動させる電動シリンダ12と、ロッド11に連結され被加圧部材Mに負荷される荷重を検出する荷重検出器13と、電動シリンダ12を駆動させるサーボモータ14と、サーボモータ14と接続され、ロッド11の位置を検出する位置検出器15と、サーボモータ14及びサーボコントローラ17に電気的に接続され、サーボモータ14の駆動を制御するサーボアンプ16と、荷重検出器13及びサーボアンプ16に電気的に接続され、サーボモータ14の速度制御のための速度制御指令をサーボアンプ16に出力するいわゆる位置決めユニットであるサーボコントローラ17と、を備えている。
 電動シリンダ12の制御システムとして作動する制御ユニット20は、荷重検出器13、サーボモータ14、サーボアンプ16及びサーボコントローラ17から構成される。
 ここで、サーボアンプ16及びサーボコントローラ17は少なくともサーボモータ14の駆動を速度制御モードで制御可能に構成されている。前にも説明したように、本実施形態にかかる電動シリンダの制御システムにおいては、速度制御モードの他に、位置制御モード、トルク制御モードへの切り替えが可能な構成となっている。
 次に第2の実施形態にかかる発明の制御方法について図3を参照して説明する。
 まず、サーボコントローラ17における制御モードとして速度制御モードを選択し、図示しない入力装置により、サーボコントローラ17にロッド11の駆動速度及び被加圧部材Mを加圧する目標荷重Pt及び停止荷重Psを入力する。
 ここで、停止荷重Psは、プレス加工装置1の装置駆動系の機械要素の慣性の影響などの負荷荷重のオーバーロード要因を考慮して、後述するステップS7において停止荷重Psにて電動シリンダ12の駆動を停止制御した場合に、ロッド11が目標荷重Ptで停止するように解析的または実験的に求めた、目標荷重Ptよりも低く設定される荷重値である。
 プレス加工を行う被加圧部材Mをプレス加工装置1の所定の位置にセットした後に、運転を開始すると、ステップS1では、入力されたロッド11の駆動速度に基づいてサーボコントローラ17がサーボアンプ16に速度指令信号を出力する。
 続くステップS2では、サーボアンプ16は、ステップS1でサーボコントローラ17から入力された速度指令信号に基づいて、サーボモータ14へモータ駆動電流を出力する。
 続くステップS3では、サーボアンプ16から入力されたモータ駆動電流によりサーボモータ14が回転駆動される。サーボモータ14の回転運動は、電動シリンダ12に内蔵されたボールねじ機構によって直線運動に変換され、ロッド11を駆動する。これにより、ロッド11が前方へ押し出され、ロッド11が被加圧部材Mを加圧する。加圧荷重Pmは荷重検出器13によって検出される。
 続くステップS4では、荷重検出器13によって検出された加圧荷重Pmに応じた加圧荷重信号を、荷重検出器13からサーボコントローラ17に出力する。
 続くステップS5では、サーボコントローラ17において、加圧荷重Pmが停止荷重Psに達したか否か、つまり、加圧荷重Pmが停止荷重Ps以上であるか否かを判定する。Pm≧Ps(ステップS5:YES)の場合にはステップS6に進み、Pm<Ps(ステップS5:NO)の場合にはステップS1に戻る。荷重検出器13からサーボコントローラ17に加圧荷重信号が出力され、加圧荷重Pmが停止荷重Psに達するまでの間、駆動速度でロッド11が押し出されるように、サーボコントローラ17からサーボアンプ16へ速度指令信号が出力され続ける。
 ステップS6では、サーボコントローラ17からサーボアンプ16への速度指令信号の出力を停止(零に)する。
 続くステップS7では、サーボアンプ16は、サーボモータ14へのモータ駆動電流の出力を停止する。これにより、サーボモータ14を急停止させることができる。ここで、プレス加工装置1の装置駆動系の機械要素の慣性の影響などにより、ロッド11は停止荷重Psでは停止せず、加圧荷重Pmは増大するが、目標荷重Ptで停止することができる。
 そして、目標荷重Ptで所定時間保持した後に抜重し、加圧処理を終了する。
 上述のような電動シリンダ12の制御方法及び制御システムを用いることにより、設定されたロッド11の駆動速度に基づき、ロッド11の速度制御による駆動を行い、荷重検出器13によって検出された加圧荷重Pmが停止荷重Ps以上であるか否かを判定し、加圧荷重Pmが停止荷重Ps以上であると判定した場合に、サーボアンプ16にロッド11の駆動速度が0になる停止信号を出力し、ロッド11を目標荷重Ptで停止させることができる。
 また、加圧荷重Pmが停止荷重Psに到達するまではロッド11を減速しないため、加圧処理時間を短縮することができる。
 このように、本発明をプレス加工工程に適用すると、加圧荷重Pmが目標荷重Ptを大きく超過せずにプレス加工を行うことが可能となるため、プレス加工された製品の品質向上につながるだけでなく、短サイクルタイムでプレスすることが可能となるためプレス品のコストダウンにつながる利点がある。
(評価試験)
 第2の実施形態の効果を、従来の電動シリンダの制御方法を比較例として確認した。 なお、本発明は以下の評価試験にて説明される内容に限定されるものではない。
 まず、目標荷重Ptと停止荷重Psとの関係を実験的に求めた結果は、第1の実施形態の場合と同様であり、図5に示す。ロッド11の駆動速度についても6、8、10mm/sの3水準とした。駆動速度が速いほど、目標荷重Ptと停止荷重Psとの差が大きくなる傾向が認められた。
 図5により、駆動速度と目標荷重Ptを決めると、停止荷重Psをどのような荷重値に設定すればよいかを求めることができる。例えば、駆動速度が10mm/s、目標荷重Ptが10kNの場合には、停止荷重Psを5.35kNに設定すればよいことがわかる。
 次に、第1の実施形態の場合と同様に、本発明の電動シリンダの制御方法を適用した場合と、比例減速制御手法(比較例)を適用した場合とを比較する。
 加圧条件は、加圧開始時の駆動速度を10mm/s、目標荷重Ptを10kNとし、目標荷重Ptで0.025s加圧保持した後に抜重するように設定した。停止荷重Psは、図5の関係に基づいて5.35kNに設定した。
 比較例は、加圧荷重の増加に比例して電動シリンダの駆動速度を減速する公知の比例減速制御手法、例えば、特開2005-254290号公報に記載の方法、を適用した。
 なお、図6において時間軸の原点は、加圧荷重が目標荷重Ptに到達した時としている。
 図6に示すように、比較例では、加圧荷重Pmが目標荷重Ptに到達するまでに0.3sを要したが、本実施形態では、加圧荷重Pmが目標荷重Ptを超過することなく、0.07sという比較例の4分の1程度の短時間で到達した。
 これにより、図5に示すように適切に停止荷重Psを設定することで、加圧荷重Pmを目標荷重Ptで制御することができ、短時間で加圧処理が行うことができることが確認された。
 上述の第2の実施形態では、停止荷重Psは目標荷重Pmと別にサーボコントローラ17に入力したが、第1の実施形態の場合と同様に、サーボコントローラ17が備えた停止荷重設定手段に駆動速度と関連させてテーブルや演算式を記憶させておき、目標荷重Pmを入力するとテーブルや演算式が参照されて停止荷重Psが設定されるように構成してもよい。これにより、停止荷重Psを求めてサーボコントローラ17に入力する手間が省けるとともに、停止荷重Psの計算・入力ミスを防止することができる。
 上述の第2の実施形態では、電動シリンダ12を停止制御したが、加圧荷重を保持する必要がない場合には、電動シリンダ12を停止させずにすぐさま加圧方向と逆方向に移動(反転)させてもよい。この場合、ステップS6において、あらかじめサーボコントローラ17において設定しておいた速度条件に基づいて電動シリンダ12を加圧方向と逆方向に移動する速度指令信号(反転信号)を入力すればよい。これによれば、電動シリンダ12の保持時間が必要ないので、更にプレス加工時間を短縮することができる。
[第2の実施形態の効果]
 本発明の電動シリンダの制御方法及び電動シリンダの制御システムによれば、設定されたロッド11の駆動速度に基づき、ロッド11の速度制御による駆動を行い、荷重検出器13によって検出された加圧荷重Pmが停止荷重Ps以上であるか否かを判定し、加圧荷重Pmが停止荷重Ps以上であると判定した場合に、サーボアンプ16にロッド11の駆動速度が0になる停止信号を出力し、ロッド11を目標荷重Ptで停止させることができる。
 また、加圧荷重Pmが停止荷重Psに到達するまではロッド11を減速しないため、加圧処理時間を短縮することができる。
[その他の実施例]
 第2の実施形態では、第1の実施形態同様、電動シリンダ12の制御方法、制御システムをプレス加工装置1に適用する例について説明したが、本発明はこれに限定されるものではなく、プレス加工装置以外にも、第1の実施形態において説明した電動シリンダを用いるその他の各種装置、工程に適用可能である。
1 プレス加工装置(電動シリンダ装置)
11 ロッド
12 電動シリンダ
13 荷重検出器
14 サーボモータ
15 位置検出器
16 サーボアンプ
17 サーボコントローラ
20 制御ユニット
M 被加圧部材
Pm 加圧荷重
Ps 停止荷重
Pt 目標荷重

Claims (10)

  1.  ロッドを軸方向に移動させる電動シリンダと、
     ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
     サーボモータに設けられ、サーボアンプに電気的に接続された位置検出器と、サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
     荷重検出器及びサーボアンプに電気的に接続され、サーボモータの位置制御のための位置制御指令をサーボアンプに出力するサーボコントローラと、
     を備えた電動シリンダ装置における電動シリンダの制御方法であって、
     前記サーボコントローラにおいて、
     前記ロッドの駆動速度と、
     加圧荷重が目標荷重を超えないように前記ロッドを停止させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、
     を設定し、
     前記サーボコントローラに入力された前記ロッドの駆動速度に基づいて前記サーボコントローラから前記サーボアンプに位置指令パルス信号を出力するステップS1と、
     前記サーボアンプが、前記位置指令パルス信号に基づいて、前記サーボモータへモータ駆動電流を出力するステップS2と、
     前記モータ駆動電流により前記サーボモータを回転駆動し、前記ロッドを駆動するステップS3と、
     前記荷重検出器によって検出された加圧荷重に応じた加圧荷重信号を、前記荷重検出器から前記サーボコントローラに出力するステップS4と、
     前記サーボコントローラにおいて、前記加圧荷重信号に基づいて加圧荷重が停止荷重以上であるか否かを判定するステップS5と、
     加圧荷重が停止荷重以上であると判定された場合に、前記サーボコントローラにおいて前記ステップS5の判定時の位置指令パルス信号のパルス数と、前記サーボモータの回転数に応じて前記位置検出器から前記サーボアンプに対し出力される絶対位置信号に基づいて前記サーボアンプから前記サーボコントローラに出力される帰還パルス信号のパルス数との差である溜りパルスを計算するステップS6と、
     前記ステップS6で計算された前記溜りパルスに基づいて、前記溜りパルスを減少させる位置制御パルス信号である逆方向位置指令パルス信号を前記サーボコントローラから前記サーボアンプに出力するステップS7と、
    を備えたことを特徴とする電動シリンダの制御方法。
  2.  前記逆方向位置指令パルス信号のパルス数は、前記溜りパルスのパルス数以上であることを特徴とする請求項1に記載の電動シリンダの制御方法。
  3.  前記逆方向位置指令パルス信号の周波数は、前記位置指令パルスの周波数以上であることを特徴とする請求項1または請求項2に記載の電動シリンダの制御方法。
  4.  ロッドを軸方向に移動させる電動シリンダと、
     ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
     サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
     荷重検出器及びサーボアンプに電気的に接続され、サーボモータの速度制御のための速度制御指令をサーボアンプに出力するサーボコントローラと、
     を備えた電動シリンダ装置における電動シリンダの制御方法であって、
     前記サーボコントローラにおいて、
     前記ロッドの駆動速度と、
     前記加圧荷重が目標荷重を超えないように前記ロッドを停止または加圧方向と逆方向に移動させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、
     を設定し、
     前記サーボコントローラに入力された前記ロッドの駆動速度に基づいて前記サーボコントローラから前記サーボアンプに速度指令信号を出力するステップS1と、
     前記サーボアンプが、前記速度指令信号に基づいて、前記サーボモータへモータ駆動電流を出力するステップS2と、
     前記モータ駆動電流により前記サーボモータを回転駆動し、前記ロッドを駆動するステップS3と、
     前記荷重検出器によって検出された加圧荷重に応じた加圧荷重信号を、前記荷重検出器から前記サーボコントローラに出力するステップS4と、
     前記サーボコントローラにおいて、前記加圧荷重信号に基づいて加圧荷重が停止荷重以上であるか否かを判定するステップS5と、
     加圧荷重が停止荷重以上であると判定された場合に、前記サーボコントローラから前記サーボアンプへの速度指令信号の出力を停止する、または、前記ロッドを加圧方向と逆方向に移動させる反転信号を出力するステップS6と、
     前記速度指令信号の出力の停止または前記反転信号に基づいて、前記サーボアンプが、前記サーボモータへのモータ駆動電流の出力を停止または前記ロッドを加圧方向と逆方向に移動させるモータ駆動電流を出力するステップS7と、
     を備えたことを特徴とする電動シリンダの制御方法。
  5.  前記停止荷重は、設定された前記ロッドの駆動速度と前記目標荷重とに基づいて、前記サーボコントローラにおいて設定されることを特徴とする請求項4に記載の電動シリンダの制御方法。
  6.  ロッドを軸方向に移動させる電動シリンダと、
     ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
     サーボモータに設けられ、サーボアンプに電気的に接続された位置検出器と、サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
     荷重検出器及びサーボアンプに電気的に接続され、サーボモータの位置制御のための位置制御指令をサーボアンプに出力するサーボコントローラと、
     を備えた電動シリンダ装置における電動シリンダの制御システムであって、
     前記サーボコントローラは、
     前記ロッドの駆動速度と、
     加圧荷重が目標荷重を超えないように前記ロッドを停止させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、
     を設定可能に構成されており、
     前記ロッドの駆動速度に基づいて前記ロッドの位置制御による駆動を行い、前記荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、
     加圧荷重が停止荷重以上であると判定した場合に、前記サーボアンプに逆方向位置指令パルス信号を出力し、前記サーボアンプに蓄積されている溜りパルスを強制的に減少させて前記ロッドを停止させることを特徴とする電動シリンダの制御システム。
  7.  前記逆方向位置指令パルス信号のパルス数は、前記溜りパルスのパルス数以上であることを特徴とする請求項6に記載の電動シリンダの制御システム。
  8.  前記逆方向位置指令パルス信号の周波数は、前記位置指令パルスの周波数以上であることを特徴とする請求項6または請求項7に記載の電動シリンダの制御システム。
  9.  ロッドを軸方向に移動させる電動シリンダと、
     ロッドに連結され被加圧部材に負荷される加圧荷重を検出する荷重検出器と、電動シリンダを駆動させるサーボモータと、
     サーボモータ及びサーボコントローラに電気的に接続され、サーボモータの駆動を制御するサーボアンプと、
     荷重検出器及びサーボアンプに電気的に接続され、サーボモータの速度制御のための速度制御指令をサーボアンプに出力するサーボコントローラと、
     を備えた電動シリンダ装置における電動シリンダの制御システムであって、
     前記サーボコントローラは、
     前記ロッドの駆動速度と、
     前記加圧荷重が目標荷重を超えないように前記ロッドを停止または加圧方向と逆方向に移動させる判定を行うために用いる目標荷重以下に設定された荷重値である停止荷重と、
     を設定可能に構成されており、
     設定された前記ロッドの駆動速度に基づき、前記ロッドの速度制御による駆動を行い、
     前記荷重検出器によって検出された加圧荷重が停止荷重以上であるか否かを判定し、
     加圧荷重が停止荷重以上であると判定した場合に、前記サーボコントローラから前記サーボアンプへの速度指令信号の出力を停止、または、前記ロッドを加圧方向と逆方向に移動させる反転信号を出力し、前記ロッドを停止または
    加圧方向と逆方向に移動させることを特徴とする電動シリンダの制御システム。
  10.  前記サーボコントローラは、設定された前記ロッドの駆動速度と目標荷重とに基づいて停止荷重を設定する停止荷重設定手段を備えたことを特徴とする請求項9に記載の電動シリンダの制御システム。
PCT/JP2010/064918 2009-11-03 2010-09-01 電動シリンダの制御方法及び電動シリンダの制御システム WO2011055585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/498,365 US8786240B2 (en) 2009-11-03 2010-09-01 Method for controlling an electric cylinder and a control system for the electric cylinder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-252518 2009-11-03
JP2009252518A JP4692671B2 (ja) 2009-11-03 2009-11-03 電動シリンダの制御方法及び電動シリンダの制御システム
JP2009-253653 2009-11-05
JP2009253653A JP4692672B2 (ja) 2009-11-05 2009-11-05 電動シリンダの制御方法及び電動シリンダの制御システム

Publications (1)

Publication Number Publication Date
WO2011055585A1 true WO2011055585A1 (ja) 2011-05-12

Family

ID=43954836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064918 WO2011055585A1 (ja) 2009-11-03 2010-09-01 電動シリンダの制御方法及び電動シリンダの制御システム

Country Status (3)

Country Link
US (1) US8786240B2 (ja)
CN (1) CN102049880B (ja)
WO (1) WO2011055585A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076745B (zh) * 2014-07-02 2017-01-25 北京机械设备研究所 一种基于实验的伺服电动缸控制器参数设定方法
CN104267630B (zh) * 2014-10-10 2016-10-19 北京机械设备研究所 一种用于道口拦截系统的电动缸控制方法
JP6771272B2 (ja) * 2015-07-01 2020-10-21 日立オートモティブシステムズ株式会社 車載電子制御装置及びスタック使用方法
CN205377548U (zh) * 2016-01-26 2016-07-06 深圳市道通智能航空技术有限公司 一种电机机械限位装置及其云台
JP7156228B2 (ja) * 2019-09-30 2022-10-19 新東工業株式会社 電動シリンダシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345178A (ja) * 1989-07-11 1991-02-26 Yokogawa Electric Corp モータの位置制御システム
JPH1158099A (ja) * 1997-08-07 1999-03-02 Komatsu Ltd サーボプレスの金型保護装置及びその方法
JP2005254290A (ja) * 2004-03-12 2005-09-22 Sintokogio Ltd プレス装置の制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302936B1 (en) * 1986-12-29 1993-12-01 ISHII, Mitoshi Servo controller for a press machine
US5720421A (en) * 1994-02-28 1998-02-24 Vamco Machine & Tool, Inc. Elecronically controlled high speed press feed
JP3076755B2 (ja) 1996-05-27 2000-08-14 スズキメカトロニクス有限会社 プレス加工機械の制御装置
JP4008557B2 (ja) 1998-01-07 2007-11-14 蛇の目ミシン工業株式会社 プレス装置
JP2005138110A (ja) 2003-11-04 2005-06-02 Daiichi Dentsu Kk サーボプレス
JP4015139B2 (ja) * 2004-06-28 2007-11-28 ファナック株式会社 鍛圧機械のサーボモータ制御装置
CN200980019Y (zh) * 2006-10-18 2007-11-21 重庆海通机械制造有限公司 活塞杆直线运动控制伺服电动缸
CN101304193B (zh) * 2008-03-27 2011-03-30 北京首科凯奇电气技术有限公司 一种直驱伺服电动缸
CN101329563B (zh) * 2008-07-28 2010-07-14 柴庆宣 一种电动执行器脉冲控制方法
JP4860684B2 (ja) 2008-12-26 2012-01-25 コアテック株式会社 サーボプレス
CN101487688B (zh) * 2009-02-11 2010-12-29 中国人民解放军空军航空大学 一种测量与补偿电动缸传动误差的方法和装置
JP5476106B2 (ja) * 2009-12-07 2014-04-23 アイダエンジニアリング株式会社 電動サーボプレスの制御方法及び制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345178A (ja) * 1989-07-11 1991-02-26 Yokogawa Electric Corp モータの位置制御システム
JPH1158099A (ja) * 1997-08-07 1999-03-02 Komatsu Ltd サーボプレスの金型保護装置及びその方法
JP2005254290A (ja) * 2004-03-12 2005-09-22 Sintokogio Ltd プレス装置の制御方法

Also Published As

Publication number Publication date
US8786240B2 (en) 2014-07-22
US20120249042A1 (en) 2012-10-04
CN102049880A (zh) 2011-05-11
CN102049880B (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2011055585A1 (ja) 電動シリンダの制御方法及び電動シリンダの制御システム
JP3694684B2 (ja) 射出成形機
WO2011010528A1 (ja) 工作物のスリップ防止方法および装置
JP5382543B2 (ja) 電動シリンダの制御方法及び電動シリンダの制御システム
JP5890473B2 (ja) モータを制御するモータ制御装置
US10935956B2 (en) Positioning control device and mold-clamping apparatus
US20080125904A1 (en) Method of controlling drive of driving motor for rotary indexing device of machine tool
JP5308860B2 (ja) 線材張力調整装置
JP6652824B2 (ja) 自動ねじ締め装置
US20070229019A1 (en) Electric motor control unit
JP2019144809A (ja) サーボ制御装置
JP6013681B2 (ja) サーボプレス装置
JP4692671B2 (ja) 電動シリンダの制御方法及び電動シリンダの制御システム
US20060288827A1 (en) Method and device for cutting off band-like paper member and controller of the device
JP2009298091A (ja) 射出成形機のエジェクタ異常検出装置
JP4692672B2 (ja) 電動シリンダの制御方法及び電動シリンダの制御システム
JP5402347B2 (ja) 工作物のスリップ防止方法および装置
CN109311143B (zh) 电脉冲工具
JP2017030238A (ja) 金型保護方法および装置、型締装置
JP6183969B2 (ja) 竪型成形機および竪型成形機の制動部故障検出方法
JP2011251301A (ja) 圧力制御装置
JP5827835B2 (ja) 電動パーキングブレーキ装置
US20050248307A1 (en) Method for controlling induction motor
JP4616026B2 (ja) 射出成形機用の多軸駆動装置
JP6067397B2 (ja) 多軸サーボプレス装置及び多軸サーボプレス装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2674/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13498365

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10828145

Country of ref document: EP

Kind code of ref document: A1