WO2011054848A1 - Thetrahydroquinolines derivatives as bromodomain inhibitors - Google Patents

Thetrahydroquinolines derivatives as bromodomain inhibitors Download PDF

Info

Publication number
WO2011054848A1
WO2011054848A1 PCT/EP2010/066701 EP2010066701W WO2011054848A1 WO 2011054848 A1 WO2011054848 A1 WO 2011054848A1 EP 2010066701 W EP2010066701 W EP 2010066701W WO 2011054848 A1 WO2011054848 A1 WO 2011054848A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
methyl
acetyl
compound
tetrahydro
Prior art date
Application number
PCT/EP2010/066701
Other languages
English (en)
French (fr)
Inventor
Emmanuel Hubert Demont
Romain Luc Marie Gosmini
Original Assignee
Glaxosmithkline Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxosmithkline Llc filed Critical Glaxosmithkline Llc
Priority to ES10771771.2T priority Critical patent/ES2573706T3/es
Priority to US13/503,947 priority patent/US8580957B2/en
Priority to EP10771771.2A priority patent/EP2496558B1/en
Priority to JP2012537383A priority patent/JP5819840B2/ja
Publication of WO2011054848A1 publication Critical patent/WO2011054848A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • C07D215/42Nitrogen atoms attached in position 4
    • C07D215/44Nitrogen atoms attached in position 4 with aryl radicals attached to said nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to tetrahydroquinoline derivatives, pharmaceutical compositions containing such compounds and to their use in therapy.
  • the genomes of eukaryotic organisms are highly organised within the nucleus of the cell.
  • the long strands of duplex DNA are wrapped around an octomer of histone proteins (most usually comprising two copies of histones H2A, H2B H3 and H4) to form a nucleosome.
  • This basic unit is then further compressed by the aggregation and folding of nucleosomes to form a highly condensed chromatin structure.
  • a range of different states of condensation are possible, and the tightness of this structure varies during the cell cycle, being most compact during the process of cell division.
  • Chromatin structure plays a critical role in regulating gene transcription, which cannot occur efficiently from highly condensed chromatin.
  • the chromatin structure is controlled by a series of post translational modifications to histone proteins, notably histones H3 and H4, and most commonly within the histone tails which extend beyond the core nucleosome structure. These modifications include acetylation, methylation, phosphorylation, ubiquitinylation, SUMOylation. These epigenetic marks are written and erased by specific enzymes, which place the tags on specific residues within the histone tail, thereby forming an epigenetic code, which is then interpreted by the cell to allow gene specific regulation of chromatin structure and thereby transcription. Histone acetylation is most usually associated with the activation of gene transcription, as the modification loosens the interaction of the DNA and the histone octomer by changing the electrostatics.
  • Bromodomains are small (-1 10 amino acid) distinct domains within proteins that bind to acetylated lysine resides commonly but not exclusively in the context of histones. There is a family of around 50 proteins known to contain bromodomains, and they have a range of functions within the cell.
  • the BET family of bromodomain containing proteins comprises 4 proteins (BRD2, BRD3, BRD4 and BRD-t) which contain tandem bromodomains capable of binding to two acetylated lysine residues in close proximity, increasing the specificity of the interaction.
  • BRD2 and BRD3 are reported to associate with histones along actively transcribed genes and may be involved in facilitating transcriptional elongation (Leroy et al, Mol. Cell.
  • BRD4 appears to be involved in the recruitment of the pTEF- ⁇ complex to inducible genes, resulting in phosphorylation of RNA polymerase and increased transcriptional output (Hargreaves et al, Cell, 2009 138(1 ): 129-145). It has also been reported that BRD4 or BRD3 may fuse with NUT (nuclear protein in testis) forming novel fusion oncogenes, BRD4-NUT or BRD3-NUT, in a highly malignant form of epithelial neoplasia (French et al. Cancer Research, 2003, 63, 304-307 and French et al.
  • BRD-NUT fusion proteins contribute to carcinogensesis (Oncogene, 2008, 27, 2237-2242).
  • BRD-t is uniquely expressed in the testes and ovary. All family members have been reported to have some function in controlling or executing aspects of the cell cycle, and have been shown to remain in complex with chromosomes during cell division - suggesting a role in the maintenance of epigenetic memory. In addition some viruses make use of these proteins to tether their genomes to the host cell chromatin, as part of the process of viral replication (You et al Cell, 2004 1 17(3):349-60).
  • Japanese patent application JP2008-15631 1 discloses a benzimidazole derivative which is said to be a BRD2 bromodomain binding agent which has utility with respect to virus infection / proliferation.
  • Patent application WO2009/084693 discloses a series of thienotriazolodiazepiene derivatives that are said to inhibit the binding between an acetylated histone and a bromodomain containing protein which are said to be useful as anti-cancer agents.
  • bromodomain inhibitors A novel class of compounds which inhibit the binding of bromodomains with its cognate acetylated proteins, more particularly a class of compounds that inhibit the binding of BET family bromodomains to acetylated lysine residues. Such compounds will hereafter be referred to as "bromodomain inhibitors".
  • a compound of formula (I) or a salt thereof more particularly a compound of formula (I) or a pharmaceutically acceptable salt thereof
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers, diluents or excipients.
  • a compound of formula (I), or a pharmaceutically acceptable salt thereof for use in therapy, in particular in the treatment of diseases or conditions for which a bromodomain inhibitor is indicated.
  • a method of treating diseases or conditions for which a bromodomain inhibitor is indicated in a subject in need thereof which comprises administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • a compound of formula (I), or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of diseases or conditions for which a bromodomain inhibitor is indicated.
  • the present invention relates to compounds of formula (I) or a salt thereof
  • A represents a bond or Ci -4 alkyl
  • X represents:
  • a 5 to 10 membered heteroaromatic comprising 1 , 2 or 3 heteroatoms selected from the group consisting of O, N and S,
  • R 1 represents:
  • phenyl optionally substituted by 1 or 2 substituents independently selected from halogen, cyano, Ci -6 alkyl, Ci -6 haloalkyl, Ci -6 alkoxy, S0 2 Ci- 6 alkyl and -COR 7 ,
  • a 5 to 10 membered heteroaromatic comprising 1 , 2 or 3 heteroatoms selected from the group consisting of O, N and S optionally substituted by 1 or 2 substituents independently selected from halogen, cyano, Ci -6 alkyl, Ci -6 haloalkyl, Ci-6 alkoxy and -COR 7 , or
  • R 2 represents Ci-6 alkyl
  • R 3 represents Ci -6 alkyl
  • R 4 represents:
  • R 4a represents H, halogen, Ci -6 alkyl, Ci -6 haloalkyl, Ci -6 alkoxy or C 0- 6 hydroxyalkyl;
  • R 5 represents H, halogen, -Ci -6 alkyl or -Ci -6 alkoxy
  • R 6 represents H, -Ci -6 alkyl, -C 0- 6 alkylcyano, -C 0- 6 alkylCi -6 alkoxy or C 0- 2 alkylCOR 7 ;
  • R 7 represents hydroxyl, Ci -6 alkoxy, -NH 2 , -NHCi -6 alkyl or N(Ci -6 alkyl) 2 ;
  • R 8 and R 9 independently represent:
  • heterocyclyl or heteroaromatic may comprise 1 , 2 or 3 further heteroatoms independently selected from O, N and S;
  • R 10 represents hydroxyl, Ci -6 alkoxy or a 5 or 6 membered heterocyclyl or heteroaromatic comprising 1 , 2, 3 or 4 heteroatoms selected from O, N and S;
  • R 11 and R 12 independently represent:
  • R 11 and R 12 together with the N to which they are attached form a 5 or 6 membered heterocyclyl or heteroaromatic wherein said heterocyclyl or heteroaromatic may comprise 1 , 2 or 3 further heteroatoms independently selected from O, N and S; and m represents 0 or 1 .
  • the present invention relates to compounds of formula (I) or a salt thereof
  • A represents a bond or Ci -4 alkyl
  • X represents:
  • a 5 to 10 membered heteroaromatic comprising 1 , 2 or 3 heteroatoms selected from the group consisting of O, N and S,
  • R 1 represents:
  • phenyl optionally substituted by 1 or 2 substituents independently selected from halogen, cyano, Ci -6 alkyl, Ci -6 haloalkyl, Ci -6 alkoxy, S0 2 Ci- 6 alkyl and -COR 7 ,
  • a 5 to 10 membered heteroaromatic comprising 1 , 2 or 3 heteroatoms selected from the group consisting of O, N and S optionally substituted by 1 or 2 substituents independently selected from halogen, cyano, Ci -6 alkyl, Ci -6 haloalkyl, Ci-6 alkoxy and -COR 7 , or
  • R 2 represent Ci -6 alkyl
  • R 3 represent Ci -6 alkyl
  • R 4 represents:
  • heterocyclyl or heteroatomic is linked through a heteroatom and m is 1 then the heteroatom and O is not directly linked if the resultant arrangement would be unstable
  • R 5 represents H, halogen, -Ci -6 alkyl or -Ci -6 alkoxy
  • R 6 represent H, -Ci -6 alkyl, -C 0- 6 alkylcyano, -C 0- 6 alkylCi -6 alkoxy or C 0- 2 alkylCOR 7 ;
  • R 7 represents hydroxyl, Ci -6 alkoxy, -NH 2 , -NHCi -6 alkyl or N(Ci -6 alkyl) 2 ;
  • R 8 and R 9 independently represent:
  • heterocyclyl or heteroaromatic may comprise 1 , 2 or 3 further heteroatoms independently selected from O, N and S;
  • R 10 represents hydroxyl, Ci -6 alkoxy or a 5 or 6 membered heterocyclyl or heteroaromatic comprising 1 , 2, 3 or 4 heteroatoms selected from O, N or S;
  • R 11 and R 12 independently represent H or Ci -6 alkyl
  • m 0 or 1 .
  • the compound of formula (I) is not 4-quinolinamine, 1 - acetyl-7-(3-fluorophenyl)-1 ,2,3,4-tetrahydro-2-methyl-N-(4-methylphenyl).
  • A include a bond or -CH 2 -, more particularly a bond.
  • X is a 5 to 10 membered heteroaromatic comprising 1 , 2 or 3 heteroatoms selected from the group consisting of O, N and S
  • representative examples include indolyl, pyridinyl, pyrrolyl, thienyl or pyrazolyl, such as pyrazolyl or pyridinyl.
  • X is selected from pyridinyl, imidazolyl, pyrazolyl and triazolyl.
  • a more specific example of X is pyrazolyl.
  • X represents phenyl
  • R 1 substituents when R 1 is phenyl include methoxy, -SO2CH 3 , fluoro, chloro, cyano, -CF 3 or methyl such as methoxy, fluoro, chloro, cyano, - CF 3 or methyl.
  • R 1 represents phenyl optionally substituted by fluoro, chloro, cyano, -CF 3 , methyl -COR 7 , or -S0 2 CH 3 .
  • Phenyl substituents may, for example be in the meta or para position.
  • the phenyl may, for example, bear one substituent.
  • the substituent is in the para position on the phenyl ring.
  • the one substituent is chloro, for example in the para position.
  • R 1 is a 5 to 10 membered heteroaromatic representative examples include 5 or 6 membered heteroaromatics such as pyridinyl.
  • R 1 is a 5 to 10 membered heteroaromatic representative examples of optional substituents include methyl, -OCF 3 and cyano.
  • R 1 represents pyridinyl, pyrazinyl or pyrimidinyl optionally substituted by fluoro, chloro, methyl or -CF 3 .
  • R 1 represents unsubstituted pyrazinyl or pyrimidinyl.
  • R 1 represents optionally substituted pyridinyl selected from:
  • R 2 include -Ci -6 alkyl, for example -C1-4 alkyl such as methyl.
  • Representative examples of R 3 include methyl.
  • R 4a represents H.
  • Representative examples of R 4 include -C(0)NR 8 R 9 , methoxy, C(0)R 10 and CF 3 . In one embodiment R 4 is in the para position.
  • R 4 is selected from methyl, -C(0)R 1 °, -C(0)NR 8 R 9 , -C 0 - 6 alkyl-NR 11 R 12 and -C 0-6 hydroxyalkyl.
  • representative examples of R 4 include -CH 2 morpholinyl, -CH 2 piperidinyl, -CH 2 -/V-methylpiperizinyl, -CH 2 pyrolidinyl, benzyl and -OCH 2 CH 2 pyrrolidinyl such as -CH 2 piperidinyl.
  • R 5 include H, halogen, methoxy and methyl, such as H.
  • R 6 include H and -Ci -6 alkyl such as ethyl.
  • R 7 represents hydroxyl or methoxy.
  • R 8 and R 9 independently represent H or Ci -6 alkyl.
  • R 8 and R 9 together with the N to which they are attached form a 6 membered heterocyclyl comprising 1 further heteroatom independently selected from O and N.
  • a representative example includes morpholinyl.
  • R 10 represents hydroxyl or methoxy. In another embodiment R 10 represents hydroxyl.
  • R 11 and R 12 independently represent H or Ci -6 alkyl.
  • R 11 and R 12 together with the N to which they are attached form a 6- membered heterocyclyl optionally comprising one further heteroatom selected from O and N, for example piperazinyl, morpholinyl and piperidinyl.
  • the invention provides a compound of formula (la)
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined above for compounds of formula (I).
  • R 1 , R 2 , R 3 and R 5 are as defined above for compounds of formula (I),
  • Y represents -CH 2 - or -C(O)-
  • Z represents hydroxyl a 5 or 6 membered heterocyclyl or a 5 or 6 membered heteroaromatic.
  • R 2 represents methyl.
  • R 3 represents methyl.
  • the invention provides compounds with c/ ' s relative stereochemistry across the tetrahydroquinoline ring in respect of the substituents in the 2 and 4 position on the ring.
  • the compound of formula (I) or a salt thereof is the (2S, 4R) enantiomer.
  • Specific compounds of formula (I) include Examples 1 -191 as described herein or a salt thereof, in particular a pharmaceutically acceptable salt thereof.
  • the compound of formula (I) is selected from:
  • alkyl refers to straight or branched hydrocarbon chains containing the specified number of carbon atoms.
  • Ci -6 alkyl means a straight or branched alkyl containing at least 1 , and at most 6, carbon atoms.
  • alkyl as used herein include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n- pentyl, n-hexyl, isobutyl, isopropyl, t-butyl and 1 , 1 -dimethylpropyl.
  • alkyl may include alkylene.
  • alkoxy refers to a straight or branched alkoxy group containing the specified number of carbon atoms.
  • Ci -6 alkoxy means a straight or branched alkoxy group containing at least 1 , and at most 6, carbon atoms.
  • alkoxy as used herein include, but are not limited to, methoxy, ethoxy, propoxy, prop-2- oxy, butoxy, but-2-oxy, 2-methylprop-1 -oxy, 2-methylprop-2-oxy, pentoxy or hexyloxy.
  • halogen refers to the elements fluorine, chlorine, bromine and iodine. Preferred halo groups are fluorine, chlorine and bromine.
  • carbocyclyl as used herein refers to a cyclic group containing 3 to 10 carbon ring-atoms, and may be saturated (cycloalkyi) or unsaturated but may not be aromatic. Examples of saturated carbocyclyl groups include cyclopropyl, cyclopentyl or cyclohexyl. Unsaturated carbocyclyl groups may contain 2 double bonds or more provided the moiety remains non-aromatic. Examples of unsaturated carbocyclyl groups include cyclopentene or cyclopentene.
  • aromatic, aryl or “Ar” groups include naphthyl, anthryl, phenanthryl, indanyl, indenyl, azulenyl, azulanyl, fluorenyl, phenyl and napthyl, and more specifically phenyl.
  • Heteroaromatic as used in this specification refers to an aromatic cyclic group containing 5 to 10 ring-atoms 1 , 2, 3 or 4 of which are hetero-atoms independently selected from nitrogen, oxygen and sulfur. This definition includes bicyclic structures at least a portion of which is aromatic.
  • Heterocyclyl refers to a cyclic group containing 5 to 10 ring- atoms 1 , 2, 3 or 4 of which are hetero-atoms independently selected froms nitrogen, oxygen and sulfur, and, wherein said cyclic group is saturated or unsaturated but, which is not aromatic.
  • This definition includes bicyclic structures provided the moiety is non- aromatic.
  • heterocyclyl and heteroaromatic groups include: furyl, thienyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, imidazolyl, dioxolanyl, oxazolyl, thiazolyl, imidazolyl, imidazolinyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyranyl, pyridyl, piperidinyl, homopiperazinyl, dioxanyl, morpholino, dithianyl, thiomorpholino, pyridazinyl, pyrimidinyl, pyrazinyl, piperazinyl, sulfolanyl, tetrazolyl, triazinyl, azepinyl
  • heterocyclyl may include fused heterocyclyl groups, for example benzimidazolyl, benzoxazolyl, imidazopyridinyl, benzoxazinyl, benzothiazinyl, oxazolopyridinyl, benzofuranyl, quinolinyl, quinazolinyl, quinoxalinyl, dihydroquinazolinyl, benzothiazolyl, phthalimido, benzofuranyl, benzodiazepinyl, indolyl and isoindolyl.
  • fused heterocyclyl groups for example benzimidazolyl, benzoxazolyl, imidazopyridinyl, benzoxazinyl, benzothiazinyl, oxazolopyridinyl, benzofuranyl, quinolinyl, quinazolinyl, quinoxalinyl, dihydroquinazolinyl, benzothiazolyl,
  • substituted refers to substitution with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated.
  • the present invention covers compounds of formula (I) as the free base and as salts thereof, for example as a pharmaceutically acceptable salt thereof.
  • the invention relates relates to compounds of formula (I) as the free base.
  • the invention relates to compounds of formula (I) or a pharmaceutically acceptable salt thereof.
  • salts of the compounds of formula (I) are desirably pharmaceutically acceptable.
  • suitable pharmaceutically acceptable salts can include acid or base addition salts.
  • a pharmaceutically acceptable salt may be readily prepared by using a desired acid or base as appropriate. The resultant salt may precipitate from solution and be collected by filtration or may be recovered by evaporation of the solvent.
  • a pharmaceutically acceptable base addition salt can be formed by reaction of a compound of formula (I) with a suitable inorganic or organic base, (e.g. triethylamine, ethanolamine, triethanolamine, choline, arginine, lysine or histidine), optionally in a suitable solvent, to give the base addition salt which is usually isolated, for example, by crystallisation and filtration.
  • a suitable inorganic or organic base e.g. triethylamine, ethanolamine, triethanolamine, choline, arginine, lysine or histidine
  • Pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as those of sodium and potassium, alkaline earth metal salts such as those of calcium and magnesium and salts with organic bases, including salts of primary, secondary and tertiary amines, such as isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexyl amine and N-methyl-D-glucamine.
  • a pharmaceutically acceptable acid addition salt can be formed by reaction of a compound of formula (I) with a suitable inorganic or organic acid (such as hydrobromic, hydrochloric, sulphuric, nitric, phosphoric, succinc, maleic, acetic, propionic, fumaric, citric, tartaric, lactic, benzoic, salicylic, glutamaic, aspartic, p-toluenesulfonic, benzenesulfonic, methanesulfonic, ethanesulfonic, naphthalenesulfonic such as 2- naphthalenesulfonic, or hexanoic acid), optionally in a suitable solvent such as an organic solvent, to give the salt which is usually isolated for example by crystallisation and filtration.
  • a suitable inorganic or organic acid such as hydrobromic, hydrochloric, sulphuric, nitric, phosphoric, succinc, maleic, acetic
  • a pharmaceutically acceptable acid addition salt of a compound of formula (I) can comprise or be for example a hydrobromide, hydrochloride, sulfate, nitrate, phosphate, succinate, maleate, acetate, propionate, fumarate, citrate, tartrate, lactate, benzoate, salicylate, glutamate, aspartate, p-toluenesulfonate, benzenesulfonate, methanesulfonate, ethanesulfonate, naphthalenesulfonate (e.g. 2-naphthalenesulfonate) or hexanoate salt.
  • Other non-pharmaceutically acceptable salts e.g. formates, oxalates or trifluoroacetates, may be used, for example in the isolation of the compounds of formula (I), and are included within the scope of this invention.
  • the invention includes within its scope all possible stoichiometric and non-stoichiometric forms of the salts of the compounds of formula (I).
  • the invention includes within its scope all possible stoichiometric and non-stoichiometric forms of the solvates of the compounds of formula (I).
  • the invention encompasses all prodrugs, of the compounds of formula (I) and pharmaceutically acceptable salts thereof, which upon administration to the recipient are capable of providing (directly or indirectly) a compound of formula (I) or a pharmaceutically acceptable salt thereof, or an active metabolite or residue thereof.
  • Such derivatives are recognizable to those skilled in the art, without undue experimentation. Nevertheless, reference is made to the teaching of Burger's Medicinal Chemistry and Drug Discovery, 5 th Edition, Vol 1 : Principles and Practice, which is incorporated herein by reference to the extent of teaching such derivatives.
  • the compounds of formula (I) may be in crystalline or amorphous form. Furthermore, some of the crystalline forms of the compounds of formula (I) may exist as polymorphs, which are included within the scope of the present invention. Polymorphic forms of compounds of formula (I) may be characterized and differentiated using a number of conventional analytical techniques, including, but not limited to, X-ray powder diffraction (XRPD) patterns, infrared (IR) spectra, Raman spectra, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and solid state nuclear magnetic resonance (SSNMR).
  • XRPD X-ray powder diffraction
  • IR infrared
  • Raman spectra Raman spectra
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • SSNMR solid state nuclear magnetic resonance
  • the invention also extends to conformational isomers of compounds of formula (I) and any geometric (c/ ' s and/or trans) isomers of said compounds.
  • An individual isomer isolated such as to be substantially free of the other isomer (i.e. pure) may be isolated such that less than 10%, particularly less than about 1 %, for example less than about 0.1 % of the other isomer is present.
  • Separation of isomers may be achieved by conventional techniques known to those skilled in the art, e.g. by fractional crystallisation, chromatography or HPLC.
  • Certain compounds of formula (I) may exist in one of several tautomeric forms. It will be understood that the present invention encompasses all tautomers of the compounds of formula (I) whether as individual tautomers or as mixtures thereof. It will be appreciated from the foregoing that included within the scope of the invention are solvates, isomers and polymorphic forms of the compounds of formula (I) and salts thereof.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof may be made by a variety of methods, including standard chemistry. Any previously defined variable will continue to have the previously defined meaning unless otherwise indicated. Illustrative general synthetic methods are set out below and then specific compounds of formula (I) and pharmaceutically acceptable salts thereof are prepared in the working Examples. These processes form further aspects of the invention.
  • compounds of formula (I) may be prepared by the reaction of a compound of formula (II)
  • R 1 , R 2 , R 3 , R 5 and R 6 are as defined above for compounds of formula (I) and L 1 represents a leaving group, for example, halogen such as Br,
  • R 4 , R 4a and X are as defined above for compounds of formula (I).
  • the reaction may be effected by stirring a compound of formula (II) with the boronic acid of formula (III) in the presence of a suitable catalyst such as Pd(PPh 3 ) 4 , a base such as aqueous sodium carbonate, such as 2N sodium carbonate, and a suitable solvent, for example, DME or toluene such as DME, at a non-extreme temperature such as reflux, for example 85°C, for a period of, for example 5 to 24 hours such as about 12 hours.
  • a suitable catalyst such as Pd(PPh 3 ) 4
  • a base such as aqueous sodium carbonate, such as 2N sodium carbonate
  • a suitable solvent for example, DME or toluene such as DME
  • compounds of formula (I) where A represents a bond may be prepared by reacting a compound of formula (IV):
  • R 1 is as defined above for compounds of formula (I), or ii) a compound of formula (VI) R 1 L 2 (VI)
  • R 1 is as defined above for compounds of formula (I) and L 2 represents a leaving group, for example a halogen such as bromo.
  • the reaction part i) may be effected by stirring a compound of formula (IV) with the boronic acid of formula (V) in the presence of a suitable catalyst such as cupric acetate, an organic base such as triethylamine, and a suitable solvent, for example, an aprotic polar solvent such as DCM, at a non-extreme temperature such as room temperature for a period of approximately 48 to 72 hour.
  • a suitable catalyst such as cupric acetate, an organic base such as triethylamine, and a suitable solvent, for example, an aprotic polar solvent such as DCM
  • the reaction in part ii) may be effected by, for example, reacting of a compound of formula (IV) with a compound of formula (VI) in the presence of Pd 2 dba 3 , a base such a NaOtBu, and a suitable phosphine ligand such as a monophosphosphinobiphenyl ligand, for example 2'(dichlohexylphophanyl)-2-biphenyl]dimethylamine or 2'-biphenylyl[bis(1 , 1 - dimethylethyl)]phosphane and a suitable solvent, for example toluene at a non-extreme temperature such as 80°C, for a period of approximately 1 to 4 such as about 2 hours.
  • a suitable phosphine ligand such as a monophosphosphinobiphenyl ligand, for example 2'(dichlohexylphophanyl)-2-biphenyl]dimethylamine or
  • R 2 , R 3 , R 4 , R 4a , R 5 , and R 6 are as defined above for compounds of formula (I), with an aldehyde of the following formula: R 1 C 0-3 alkylC(O)H.
  • the above reaction may be effected in the presence of a reducing agent such as a suitable hydride eg tri-acetoxysodiumborohydride, in a suitable solvent, for example, 1 ,2- dicloroethane or THF such as 1 ,2-dichoroethane at, for example, room temperature for a period of approximately 10 to 15 such as about 12 hours.
  • a reducing agent such as a suitable hydride eg tri-acetoxysodiumborohydride
  • a suitable solvent for example, 1 ,2- dicloroethane or THF such as 1 ,2-dichoroethane
  • Ligand represents a monophosphosphinobiphenyl ligand such as
  • Step 1 in scheme 1 a may be effected by stirring the reagents in a suitable solvent, for example DME at an elevated temperature, for example above 50 °C such as refluxing at 85°C for a period of between 5 and 24 hours such as approximately 10 hours.
  • a suitable solvent for example DME
  • an elevated temperature for example above 50 °C such as refluxing at 85°C for a period of between 5 and 24 hours such as approximately 10 hours.
  • Step 2 in scheme 1 a may be effected by stirring at an elevated temperature such as reflux for less than 6 hours such as for a period of about 4 hours.
  • Step 3 in scheme 1 a may be effected by stirring the copper (II) acetate and boronic derivative in a suitable solvent such as DCM at a non-extreme temperature, such as room temperature, for a prolonged period, for example approximately 1 week such as about 5 days.
  • a suitable solvent such as DCM
  • step 3 in scheme 1 a above may be effected by stirring the compound of formula (Ixa) with the ligand and the palladium and the bromo compound in a suitable solvent, for example toluene at an elevated temperature, example above 50°C such as 80°C for less than 12 hours, such as for a period of approximately 7 hours.
  • a suitable solvent for example toluene
  • Compounds of formula (I) wherein R represents H, A is a bond and X is an aromatic or heteroaromatic group can be prepared as shown in Scheme 1 b below: Scheme 1 b
  • Step 1 in scheme 1 b may be effected as described for step 2 in scheme 1 a above.
  • Step 2 in scheme 1 b may be effected by treatment with the boronic acid in the presence of a suitable catalyst, such a cupric acetate, in a suitable solvent such as DCM, in the presence of an organic base, such as triethylamine, at room temperature for between 48 to 72 hours.
  • a suitable catalyst such as cupric acetate
  • DCM a suitable solvent
  • an organic base such as triethylamine
  • step 2 is described as the alternative step 3 in scheme 1 a above.
  • Step 3 in scheme 1 b may be effected as described for step 1 in scheme 1 a above.
  • Compounds of formula (I) wherein R 6 represents H, A is a bond and X is an aromatic or heteroaromatic group can be prepared as shown in Scheme 1 c below:
  • Step 1 in scheme 1 c may be effected as described for step 1 in scheme 1 a above.
  • Step 2 in scheme 1 c may be effected as described for step 3 in scheme 1 a above.
  • Compounds of formula (I) wherein A represents a bond, R 4 represents -CH 2 NR 11 R 12 and X represents phenyl, can be prepared by the reductive amination process described in Scheme 1 d below:
  • Step 1 in scheme 1 d above can be performed as described for step 3 in scheme 1 b above.
  • Step 2 in scheme 1 d above can be effected by stirring the compound of formula (Vll lc) with the amine reagent in the presence of a reducing agent such as a hydride, for example tri-acetoxysodium borohydride, and a catalytic amount of acetic acid in a suitable solvent, such as DCM at a non-extreme temperature, for example room temperature for 1 to 4 hours such as about 2 hours.
  • a reducing agent such as a hydride, for example tri-acetoxysodium borohydride
  • a catalytic amount of acetic acid in a suitable solvent, such as DCM
  • Step 3 in scheme 1 d can be performed as described for step 1 in scheme 1 b above.
  • Step 4 may be performed as described for step 2 in scheme 1 b above.
  • Compounds of formula (I) wherein R 4 represent C 2- 6 alkylNR 11 R 12 can be prepared, for example by employing a modified boronic acid reagent, in step 1 of scheme 1 d, wherein the aldehyde is linked to the phenyl ring by a Ci -5 alkyl chain.
  • An analogous method to that described in Scheme 1 d above can be used to prepare compounds of formula (I) wherein R 4 represents -CH 2 NR 11 R 12 and X represents heteroaromatic, by employing the appropriate starting materials.
  • the reaction may be carried out by stirring the compounds with an aldehyde and a reducing agent such as triacetoxysodiumborohydride in a suitable solvent, for example AcOH at room temperature, for a period of several days such as approximately 2 days.
  • a suitable solvent for example AcOH at room temperature
  • the reaction may be carried out by stirring the esters derivatives in a suitable solvent, for example EtOH at an elevated temperature, for example above 50°C such as refluxing for a period of between 0.5 and 12 hours such as approximately 2 hours.
  • a suitable solvent for example EtOH
  • an elevated temperature for example above 50°C such as refluxing for a period of between 0.5 and 12 hours such as approximately 2 hours.
  • the reaction may be carried out by stirring the acid derivatives, a base, for example sodium hydride, and an alkylating agent such as ethyl iodide in a suitable solvent, for example DMF at room temperature, for a period of between 5 and 48 hours such as approximately 14 hours.
  • a base for example sodium hydride
  • an alkylating agent such as ethyl iodide
  • a suitable solvent for example DMF
  • the reaction may be carried out by reacting compounds of formula (I) where R 4 is COOH, with R 8 R 9 NH in the presence of HOBt, EDCI and Et 3 N at room temperature.
  • Step 1 in scheme 2 may be effected by stirring a reagents in a suitable solvent, such toluene at room temperarture for a period of, for example 10 to 24 hours such as about 12 hours.
  • a suitable solvent such toluene
  • Step 2 may be performed in a suitable solvent, such as THF, at a reduced temperature, for example -5°C, in the presence of a lewis acid, such as BF 3 ,Et 2 0, for less than 4 hours such as a period of about 2 hours.
  • Step 3 in scheme 2 above may be performed by stirring compound of formula (XI) with an acid chloride R 3 COCI in the presence of pyridine in a suitable solvent, such as DCM, at a reduced temperature such as 0°C, for less than 4 hours such as about 2 hours.
  • a suitable solvent such as THF
  • Suitable amine protecting groups include acyl (e.g. acetyl, carbamate (e.g. 2',2',2'-trichloroethoxycarbonyl, benzyloxycarbonyl or t-butoxycarbonyl) and arylalkyl (e.g. benzyl), which may be removed by hydrolysis (e.g.
  • an acid such as hydrochloric acid in dioxane or trifluoroacetic acid in dichloromethane
  • reductively e.g. hydrogenolysis of a benzyl or benzyloxycarbonyl group or reductive removal of a 2',2',2'-trichloroethoxycarbonyl group using zinc in acetic acid
  • Other suitable amine protecting groups include trifluoroacetyl (-COCF 3 ) which may be removed by base catalysed hydrolysis.
  • the compounds of formula (I) and salts thereof are bromodomain inhibitors, and thus are believed to have potential utility in the treatment of diseases or conditions for which a bromodomain inhibitor is indicated.
  • the present invention thus provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in therapy.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in therapy.
  • the compounds of formula (I) and pharmaceutically salts thereof can be used in the treatment of diseases or conditions for which a bromodomain inhibitor is indicated.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in the treatment of diseases or conditions for which a bromodomain inhibitor is indicated In another embodiment, there is provided a compound or a pharmaceutically acceptable salt thereof for use in the treatment of a chronic autoimmune and/or inflammatory condition. In a further embodiment, there is provided a compound or a pharmaceutically acceptable salt thereof for use in the treatment of cancer.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of diseases or conditions for which a bromodomain inhibitor is indicated.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a chronic autoimmune and/or inflammatory condition.
  • a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of cancer.
  • a method for the treatment of a disease or condition, for which a bromodomain inhibitor is indicated in a subject in need thereof which comprises administering a therapeutically effective amount of compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • a method for treatment of a chronic autoimmune and/or inflammatory condition in a subject in need thereof which comprises administering a therapeutically effective amount of compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • a method for treatment of cancer in a subject in need thereof which comprises administering a therapeutically effective amount of compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • a method for treatment of a disease or condition, for which a bromodomain inhibitor is indicated, in a subject in need thereof which comprises administering a therapeutically effective amount of 4-(2S, 4/?)- ⁇ -1 -acetyl-4-[(4- chlorophenyl)amino]-2-methyl-1 ,2,3,4-tetrahydro-6-quinolinyl ⁇ benzoic acid or a pharmaceutically acceptable salt thereof.
  • a method for treatment of a chronic autoimmune and/or inflammatory condition in a subject in need thereof which comprises administering a therapeutically effective amount of 4-(2S, 4/?)- ⁇ -1 -acetyl-4-[(4-chlorophenyl)amino]-2-methyl-1 ,2,3,4-tetrahydro-6-quinolinyl ⁇ benzoic acid or a pharmaceutically acceptable salt thereof.
  • a method for treatment of cancer in a subject in need thereof which comprises administering a therapeutically effective amount of 4-(2S, 4/?)- ⁇ -1 -acetyl-4-[(4- chlorophenyl)amino]-2-methyl-1 ,2,3,4-tetrahydro-6-quinolinyl ⁇ benzoic acid or a pharmaceutically acceptable salt thereof.
  • the subject in need thereof is a mammal, particularly a human.
  • the term "effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.
  • therapeutically effective amount means any amount which, as compared to a corresponding subject who has not received such amount, results in improved treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder.
  • the term also includes within its scope amounts effective to enhance normal physiological function.
  • Bromodomain inhibitors are believed to be useful in the treatment of a variety of diseases or conditions related to systemic or tissue inflammation, inflammatory responses to infection or hypoxia, cellular activation and proliferation, lipid metabolism, fibrosis and in the prevention and treatment of viral infections.
  • Bromodomain inhibitors may be useful in the treatment of a wide variety of chronic autoimmune and inflammatory conditions such as rheumatoid arthritis, osteoarthritis, acute gout, psoriasis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease (Crohn's disease and Ulcerative colitis), asthma, chronic obstructive airways disease, pneumonitis, myocarditis, pericarditis, myositis, eczema, dermatitis, alopecia, vitiligo, bullous skin diseases, nephritis, vasculitis, atherosclerosis, Alzheimer's disease, depression, retinitis, uveitis, scleritis, hepatitis, pancreatitis, primary biliary cirrhosis, sclerosing cholangitis, Addison's disease, hypophysitis, thyroiditis, type I diabetes and
  • Bromodomain inhibitors may be useful in the treatment of a wide variety of acute inflammatory conditions such as acute gout, giant cell arteritis, nephritis including lupus nephritis, vasculitis with organ involvement such as glomerulonephritis, vasculitis including giant cell arteritis, Wegener's granulomatosis, Polyarteritis nodosa, Behcet's disease, Kawasaki disease, Takayasu's Arteritis, vasculitis with organ involvement and acute rejection of transplanted organs.
  • Bromodomain inhibitors may be useful in the prevention or treatment of diseases or conditions which involve inflammatory responses to infections with bacteria, viruses, fungi, parasites or their toxins, such as sepsis, sepsis syndrome, septic shock, endotoxaemia, systemic inflammatory response syndrome (SIRS), multi-organ dysfunction syndrome, toxic shock syndrome, acute lung injury, ARDS (adult respiratory distress syndrome), acute renal failure, fulminant hepatitis, burns, acute pancreatitis, post-surgical syndromes, sarcoidosis, Herxheimer reactions, encephalitis, myelitis, meningitis, malaria and SIRS associated with viral infections such as influenza, herpes zoster, herpes simplex and coronavirus.
  • diseases or conditions which involve inflammatory responses to infections with bacteria, viruses, fungi, parasites or their toxins, such as sepsis, sepsis syndrome, septic shock, endotoxaemia, systemic inflammatory response syndrome (SIRS),
  • Bromodomain inhibitors may be useful in the prevention or treatment of conditions associated with ischaemia-reperfusion injury such as myocardial infarction, cerebrovascular ischaemia (stroke), acute coronary syndromes, renal reperfusion injury, organ transplantation, coronary artery bypass grafting, cardio-pulmonary bypass procedures, pulmonary, renal, hepatic, gastro-intestinal or peripheral limb embolism.
  • ischaemia-reperfusion injury such as myocardial infarction, cerebrovascular ischaemia (stroke), acute coronary syndromes, renal reperfusion injury, organ transplantation, coronary artery bypass grafting, cardio-pulmonary bypass procedures, pulmonary, renal, hepatic, gastro-intestinal or peripheral limb embolism.
  • Bromodomain inhibitors may be useful in the treatment of disorders of lipid metabolism via the regulation of APO-A1 such as hypercholesterolemia, atherosclerosis and Alzheimer's disease.
  • Bromodomain inhibitors may be useful in the treatment of fibrotic conditions such as idiopathic pulmonary fibrosis, renal fibrosis, post-operative stricture, keloid formation, scleroderma and cardiac fibrosis.
  • Bromodomain inhibitors may be useful in the prevention and treatment of viral infections such as herpes virus, human papilloma virus, adenovirus and poxvirus and other DNA viruses. Bromodomain inhibitors may be useful in the treatment of cancer, including hematological, epithelial including lung, breast and colon carcinomas, midline carcinomas, mesenchymal, hepatic, renal and neurological tumours.
  • viral infections such as herpes virus, human papilloma virus, adenovirus and poxvirus and other DNA viruses.
  • Bromodomain inhibitors may be useful in the treatment of cancer, including hematological, epithelial including lung, breast and colon carcinomas, midline carcinomas, mesenchymal, hepatic, renal and neurological tumours.
  • the disease or condition for which a bromodomain inhibitor is indicated is selected from diseases associated with systemic inflammatory response syndrome, such as sepsis, burns, pancreatitis, major trauma, haemorrhage and ischaemia.
  • the bromodomain inhibitor would be administered at the point of diagnosis to reduce the incidence of: SIRS, the onset of shock, multi-organ dysfunction syndrome, which includes the onset of acute lung injury, ARDS, acute renal, hepatic, cardiac and gastro-intestinal injury and mortality.
  • the bromodomain inhibitor would be administered prior to surgical or other procedures associated with a high risk of sepsis, haemorrhage, extensive tissue damage, SIRS or MODS (multiple organ dysfunction syndrome).
  • the disease or condition for which a bromodomain inhibitor is indicated is sepsis, sepsis syndrome, septic shock or endotoxaemia.
  • the bromodomain inhibitor is indicated for the treatment of acute or chronic pancreatitis.
  • the bromodomain inhibitor is indicated for the treatment of burns.
  • the disease or condition for which a bromodomain inhibitor is indicated is selected from herpes simplex infections and reactivations, cold sores, herpes zoster infections and reactivations, chickenpox, shingles, human papilloma virus, cervical neoplasia, adenovirus infections, including acute respiratory disease, poxvirus infections such as cowpox and smallpox and African swine fever virus.
  • a bromodomain inhibitor is indicated for the treatment of Human papilloma virus infections of skin or cervical epithelia.
  • a method for inhibiting a bromodomain which comprises contacting the bromodomain with a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • a compound of formula (I) as well as pharmaceutically acceptable salts thereof may be administered as the raw chemical, it is common to present the active ingredient as a pharmaceutical composition.
  • the present invention therefore provides in a further aspect a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt and one or more pharmaceutically acceptable carriers, diluents and/or excipients.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof are as described above.
  • a pharmaceutical composition comprising 4-(2S, 4 /?)- ⁇ - 1 - acetyl-4-[(4-chlorophenyl)amino]-2-methyl-1 ,2,3,4-tetrahydro-6-quinolinyl ⁇ benzoic acid or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers, diluents or excipients.
  • the carrier(s), diluent(s) or excipient(s) must be acceptable in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipient thereof.
  • a process for the preparation of a pharmaceutical composition including admixing a compound of formula (I), or a pharmaceutically acceptable salt thereof, with one or more pharmaceutically acceptable carriers, diluents or excipients.
  • the pharmaceutical composition can be for use in the treatment of any of the conditions described herein.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof are intended for use in pharmaceutical compositions it will be readily understood that they are each preferably provided in substantially pure form, for example, at least 60% pure, more suitably at least 75% pure and preferably at least 85% pure, especially at least 98% pure (% in a weight for weight basis).
  • compositions may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose.
  • Preferred unit dosage compositions are those containing a daily dose or sub-dose, or an appropriate fraction thereof, of an active ingredient. Such unit doses may therefore be administered more than once a day.
  • Preferred unit dosage compositions are those containing a daily dose or sub- dose (for administration more than once a day), as herein above recited, or an appropriate fraction thereof, of an active ingredient.
  • compositions may be adapted for administration by any appropriate route, for example by the oral (including buccal or sublingual), rectal, inhaled, intranasal, topical (including buccal, sublingual or transdermal), vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route.
  • Such compositions may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier(s) or excipient(s).
  • the pharmaceutical composition is adapted for parenteral administration, particularly intravenous administration.
  • the pharmaceutical composition is adapted for oral administration.
  • compositions adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the composition isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the compositions may be presented in unit- dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.
  • compositions adapted for oral administration may be presented as discrete units such as capsules or tablets; powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.
  • the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like.
  • an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like.
  • Powders suitable for incorporating into tablets or capsules may be prepared by reducing the compound to a suitable fine size (e.g. by micronisation) and mixing with a similarly prepared pharmaceutical carrier such as an edible carbohydrate, for example, starch or mannitol. Flavoring, preservative, dispersing and coloring agent can also be present.
  • Capsules may be made by preparing a powder mixture, as described above, and filling formed gelatin sheaths.
  • Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate or solid polyethylene glycol can be added to the powder mixture before the filling operation.
  • a disintegrating or solubilizing agent such as agar- agar, calcium carbonate or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested.
  • suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like.
  • Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like. Tablets are formulated, for example, by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant and pressing into tablets.
  • a powder mixture is prepared by mixing the compound, suitably comminuted, with a diluent or base as described above, and optionally, with a binder such as carboxymethylcellulose, an aliginate, gelatin, or polyvinyl pyrrolidone, a solution retardant such as paraffin, a resorption accelerator such as a quaternary salt and/or an absorption agent such as bentonite, kaolin or dicalcium phosphate.
  • the powder mixture can be granulated by wetting with a binder such as syrup, starch paste, acadia mucilage or solutions of cellulosic or polymeric materials and forcing through a screen.
  • the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules.
  • the granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc or mineral oil.
  • the lubricated mixture is then compressed into tablets.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof can also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps.
  • a clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material and a polish coating of wax can be provided.
  • Dyestuffs can be added to these coatings to distinguish different unit dosages.
  • Oral fluids such as solution, syrups and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound.
  • Syrups can be prepared by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared through the use of a non-toxic alcoholic vehicle.
  • Suspensions can be formulated by dispersing the compound in a non-toxic vehicle.
  • Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxy ethylene sorbitol ethers, preservatives, flavor additive such as peppermint oil or natural sweeteners or saccharin or other artificial sweeteners, and the like can also be added.
  • dosage unit compositions for oral administration can be microencapsulated.
  • the formulation can also be prepared to prolong or sustain the release as for example by coating or embedding particulate material in polymers, wax or the like.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
  • compositions adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils.
  • compositions are preferably applied as a topical ointment or cream.
  • the active ingredient may be employed with either a paraffinic or a water- miscible ointment base.
  • the active ingredient may be formulated in a cream with an oil-in-water cream base or a water-in-oil base.
  • compositions adapted for topical administrations to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.
  • Dosage forms for nasal or inhaled administration may conveniently be formulated as aerosols, solutions, suspensions, gels or dry powders.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof is in a particle-size- reduced form e.g. obtained by micronisation.
  • the preferable particle size of the size- reduced (e.g. micronised) compound or salt is defined by a D50 value of about 0.5 to about 10 microns (for example as measured using laser diffraction).
  • Aerosol formulations can comprise a solution or fine suspension of the active substance in a pharmaceutically acceptable aqueous or nonaqueous solvent. Aerosol formulations can be presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device or inhaler. Alternatively the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve (metered dose inhaler) which is intended for disposal once the contents of the container have been exhausted. Where the dosage form comprises an aerosol dispenser, it preferably contains a suitable propellant under pressure such as compressed air, carbon dioxide or an organic propellant such as a hydrofluorocarbon (HFC). Suitable HFC propellants include
  • the aerosol dosage forms can also take the form of a pump-atomiser.
  • the pressurised aerosol may contain a solution or a suspension of the active compound. This may require the incorporation of additional excipients e.g. co-solvents and/or surfactants to improve the dispersion characteristics and homogeneity of suspension formulations. Solution formulations may also require the addition of co-solvents such as ethanol.
  • the pharmaceutical composition may be a dry powder inhalable composition.
  • a dry powder inhalable composition can comprise a powder base such as lactose, glucose, trehalose, mannitol or starch, the compound of formula (I) or a pharmaceutically acceptable salt thereof (preferably in particle-size-reduced form, e.g. in micronised form), and optionally a performance modifier such as L-leucine or another amino acid and/or metals salts of stearic acid such as magnesium or calcium stearate.
  • the dry powder inhalable composition comprises a dry powder blend of lactose e.g. lactose monohydrate and the compound of formula (I) or salt thereof.
  • Such compositions can be administered to the patient using a suitable device such as the DISKUS® device, marketed by GlaxoSmithKline which is for example described in GB 2242134 A.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof may be formulated as a fluid formulation for delivery from a fluid dispenser, for example a fluid dispenser having a dispensing nozzle or dispensing orifice through which a metered dose of the fluid formulation is dispensed upon the application of a user-applied force to a pump mechanism of the fluid dispenser.
  • a fluid dispenser for example a fluid dispenser having a dispensing nozzle or dispensing orifice through which a metered dose of the fluid formulation is dispensed upon the application of a user-applied force to a pump mechanism of the fluid dispenser.
  • Such fluid dispensers are generally provided with a reservoir of multiple metered doses of the fluid formulation, the doses being dispensable upon sequential pump actuations.
  • the dispensing nozzle or orifice may be configured for insertion into the nostrils of the user for spray dispensing of the fluid formulation into the nasal cavity.
  • a fluid dispenser of the aforementioned type is described and illustrated in WO2005/044354A
  • each dosage unit for oral or parenteral administration preferably contains from 0.01 to 3000 mg, more preferably 0.5 to 1000 mg, of a compound of formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.
  • Each dosage unit for nasal or inhaled administration preferably contains from 0.001 to 50 mg, more preferably 0.01 to 5 mg, of a compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.
  • the pharmaceutically acceptable compounds of formula (I) and pharmaceutically acceptable salts thereof can be administered in a daily dose (for an adult patient) of, for example, an oral or parenteral dose of 0.01 mg to 3000 mg per day or 0.5 to 1000 mg per day, or a nasal or inhaled dose of 0.001 to 50 mg per day or 0.01 to 5 mg per day, of the compound of the formula (I) or a pharmaceutically acceptable salt thereof, calculated as the free base.
  • This amount may be given in a single dose per day or more usually in a number (such as two, three, four, five or six) of sub-doses per day such that the total daily dose is the same.
  • An effective amount of a salt thereof may be determined as a proportion of the effective amount of the compound of formula (I) per se.
  • the compounds of formula (I) and pharmaceutically acceptable salts thereof and may be employed alone or in combination with other therapeutic agents.
  • Combination therapies according to the present invention thus comprise the administration of at least one compound of formula (I) or a pharmaceutically acceptable salt thereof, and the use of at least one other pharmaceutically active agent.
  • combination therapies according to the present invention comprise the administration of at least one compound of formula (I) or a pharmaceutically acceptable salt thereof, and at least one other pharmaceutically active agent.
  • the compound(s) of formula (I) and pharmaceutically acceptable salts thereof and the other pharmaceutically active agent(s) may be administered together in a single pharmaceutical composition or separately and, when administered separately this may occur simultaneously or sequentially in any order.
  • the amounts of the compound(s) of formula (I) and pharmaceutically acceptable salts thereof and the other pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
  • a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one other pharmaceutically active agent.
  • the compound of formula (I) and pharmaceutically acceptable salts thereof and pharmaceutical compositions comprising said compounds of formula (I) and pharmaceutically acceptable salts thereof may be used in combination with or include one or more other therapeutic agents, for example selected from antibiotics, anti-virals, glucocorticosteroids, muscarinic antagonists and beta-2 agonists.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered in combination with other therapeutic agents normally administered by the inhaled, intravenous, oral or intranasal route, that the resultant pharmaceutical composition may be administered by the same routes. Alternatively the individual components of the composition may be administered by different routes.
  • One embodiment of the invention encompasses combinations comprising one or two other therapeutic agents.
  • the other therapeutic ingredient(s) may be used in the form of salts, for example as alkali metal or amine salts or as acid addition salts, or prodrugs, or as esters, for example lower alkyl esters, or as solvates, for example hydrates, to optimise the activity and/or stability and/or physical characteristics, such as solubility, of the therapeutic ingredient.
  • the therapeutic ingredients may be used in optically pure form.
  • the combinations referred to above may conveniently be presented for use in the form of a pharmaceutical composition and thus pharmaceutical compositions comprising a combination as defined above together with a pharmaceutically acceptable diluent or carrier represent a further aspect of the invention.
  • LC/MS refers to analyses by analytical HPLC which were conducted on the following kinds of apparatus:
  • MS mass spectra
  • electrospray positive ionisation (ES+ve to give [M+H] + and [M+NH4] + molecular ions] or electrospray negative ionisation [(ES-ve to give [M-H]- molecular ion] modes.
  • Analytical data from this apparatus are given with the following format : [M+H] + or [M-H] " .
  • LC/HRMS Analytical HPLC was conducted on a Uptisphere-hsc column (3 ⁇ 33 x 3 mm id) eluting with 0.01 M ammonium acetate in water (solvent A) and 100% acetonitrile (solvent B), using the following elution gradient 0-0.5 minutes 5% B, 0.5-3.75 minutes 5 ⁇ 100% B, 3.75-4.5 100% B, 4.5-5 100 ⁇ 5% B, 5-5.5 5% B at a flow rate of 1.3 ml/minute.
  • MS mass spectra
  • ES+ve to give MH + molecular ions
  • electrospray negative ionisation ES-ve to give (M-H)- molecular ions] modes.
  • BiotageTM chromatography refers to purification carried out using equipment sold by Dyax Corporation (either the Flash 40i or Flash 150i) and cartridges pre-packed with KP- SilTM silica.
  • Mass directed auto-prep HPLC refers to the method where the material was purified by high performance liquid chromatography on a HPLCABZ+ 5 ⁇ column (5cm x 10mm i.d.) with 0.1 % HCO2H in water and 95% MeCN, 5% water (0.5% HCO2H) using the following gradient elution conditions: 0-1.0 minutes 5%B, 1.0-8.0 minutes 5 ⁇ 30%B, 8.0-8.9 minutes 30%B, 8.9-9.0 minutes 30 ⁇ 95%B, 9.0-9.9 minutes 95%B, 9.9-10 minutes 95 ⁇ 0%B at a flow rate of 8ml/minute.
  • the Gilson 202-fraction collector was triggered by a VG Platform Mass Spectrometer on detecting the mass of interest.
  • SPE solid phase extraction
  • SCX is a benzene sulfonic acid stationary phase.
  • TLC thin layer chromatography
  • the UPLC analysis was conducted on an Acquity UPLC BEH C18 column (50mm x 2.1 mm, i.d. 1 .7 ⁇ packing diameter) at 40°C.
  • the UV detection was a summed signal from wavelength of 210nm to 350nm.
  • A 10mM ammonium hydrogen carbonate in water adjusted to pH10 with ammonia solution
  • the UV detection was a summed signal from wavelength of 21 Onm to 350nm.
  • the HPLC analysis was conducted on either a Sunfire C18 column (100mm x 19mm, i.d 5 ⁇ packing diameter) or a Sunfire C18 column (150mm x 30mm, i.d. 5 ⁇ packing diameter) at ambient temperature.
  • the HPLC analysis was conducted on either an Xbridge C18 column (100mm x 19mm, i.d 5 ⁇ packing diameter) or a Xbridge C18 column (100mm x 30mm, i.d. 5 ⁇ packing diameter) at ambient temperature.
  • A 10mM ammonium bicarbonate in water, adjusted to pH10 with ammonia solution
  • the UV detection was a summed signal from wavelength of 21 Onm to 350nm.
  • the HPLC analysis was conducted on either a Sunfire C18 column (100mm x 19mm, i.d. 5 ⁇ packing diameter) or Sunfire C18 column (150mm x 30mm, i.d. 5 ⁇ packing diameter) at ambient temperature.
  • the UV detection was a summed signal from wavelength of 210nm to 350nm.
  • the organic layer was separated and was washed 1 x200ml_ H 2 0, 1 x200ml_ brine and dried (Na 2 S0 4 ).
  • the mixture was filtered and the solids washed 1x50ml_ ethyl acetate.
  • the filtrate was concentrated progressively until a precipitate appeared and the mixture cooled in an ice bath during 2h.
  • the precipitate was filtered through a Buchner funnel, and washed with 2x100 mL iPr 2 0 to deliver the title compound as a soild (71 g, 56%).
  • Acetyl chloride (21 mL, 0.29mol) is added dropwise at 0°C to a solution of intermediate 1 (71 g, 0.26 mol) in a mixture of DCM (1 L) and pyridine (350ml_). After stirring 2 hours at 0°C the mixture is poured into a mixture of crushed ice (2kg) and concentrated HCI (450 mL). The product is extracted with DCM (1 L) washed with brine and dried over Na 2 S0 4 . Concentration under vacuo afforded the expected product as an off white solid (82g, 100 %).
  • a dark precipitate has formed and is isolated by filtration after separation of the organic phase.
  • the organic layer is dried over Na 2 S0 4 and delivers the title compound (37.5g) as a yellow solid after concentration under reduced pressure and precipitation of the organic residue in a DCIW hexane mixture.
  • the dark solid is taken up in a DCM/MeOH mixture and purified by flash chromatography on silica gel eluting with a DCM/MeOH 80/2. to afford the title compound ( 45g) as a yellow brown solid.
  • the resulting mixture was stirred at 85°C for 16 h, at room temperature for 16 h then most of the ethanol was removed in vacuo.
  • the aqueous residue was basified to pH 9 with a saturated NaHC0 3 aqueous solution (100 mL) then partitioned between water (150 mL) and AcOEt (200 mL). The layers were separated and the aqueous layer was extracted with AcOEt (5 x 100 mL).
  • the title compound eluted at 18.57 min by HPLC as the second peak using a CHIRACEL OD (250x4.6 mm 10 ⁇ ) column with hexane/ethanol 80/20 as the mobile phase. A 1 ml/mn flow rate was applied and 10 ⁇ of sample prepared with the dilution of 1 mg of the title compound in 1 ml of eluent was injected. Detection of the compound was carried out with both 210 and 254 nM UV wavelengths. The other enantiomer came off at 12.8 min.
  • Triethylamine (58.2 mL, 417 mmol) and ethynyl(trimethyl)silane (29.7 mL, 209 mmol) were added and the resulting mixture was stirred for 20 h at 90°C under nitrogen then cooled to room temperature. Most of the solvent was removed in vacuo and the residue was partitioned between AcOEt and water/brine (1/1 ). The layers were separated and the aqueous phase was extracted with AcOEt. The combined organic phases were washed three times with water/brine (1/1 ), dried over MgS0 4 and concentrated in vacuo.
  • the resulting mixture was stirred for approximately 1 h in the ice bath, and then partitioned between AcOEt and a saturated NaHC0 3 aqueous solution.
  • the mixture was filtered through Celite, and the residue washed with AcOEt and a saturated NaHC0 3 aqueous solution (several times each).
  • the layers were separated and the aqueous phase was extracted with AcOEt (x2).
  • the combined organic phases were washed with brine, dried using a hydrophobic frit and concentrated in vacuo.
  • the solid obtained was dissolved, with warming, in AcOEt, filtered through Celite in order to remove remaining inorganics and the insoluble material was washed with warm AcOEt.
  • the resulting mixture was degassed under house vacuum with several quenches with nitrogen, stirred at 105°C under nitrogen for approximately 6 h and then cooled to room temperature and partitioned between AcOEt and water. The two layers were separated and the aqueous phase was extracted with AcOEt. The combined organic phases were washed brine then were filtered through a 70 g silica cartridge, washing the cartridge with AcOEt. The combined filtrate and washings were concentrated in vacuo.
  • the resulting mixture was stirred at 100°C under nitrogen for 20h, at 120°C for 16h then cooled to room temperature and partitioned between DCM and a saturated NaHC0 3 aqueous solution. The layers were separated using an hydrophobic frit and the organic phase concentrated in vacuo.
  • Ammonium formate (2.202 g, 34.9 mmol) and palladium (10% w/w on carbon, 50% wet, 0.473 g, 4.44 mmol) were added to a solution of 4-methyl-1 -(4-nitrophenyl)-1 H-imidazole (for a preparation see intermediate 93) (4.73 g, 23.28 mmol) in ethanol (150 mL) and the resulting mixture was refluxed under nitrogen for 1 h then cooled to room temperature. An extra portion of ammonium formate (2.202 g, 34.9 mmol) was then added and the resulting mixture was refluxed for a further hour then cooled to room temperature and filtered through celite.
  • the resulting mixture was degased under house vacuum for 20 min with several quenches with nitrogen then stirred at 120°C for 15 min under microwave irradiation, cooled to room temperature and partitioned between AcOEt and water. The layers were separated and the organic phase was washed with water, dried over Na 2 S0 4 and concentrated in vacuo.
  • the resulting mixture was degased under house vacuum for 20 min with several quenches with nitrogen then stirred at 120°C for 30 min under microwave irradiation, cooled to room temperature and partitioned between AcOEt and water. The layers were separated and the organic phase was washed with water, dried over Na 2 S0 4 and concentrated in vacuo.
  • the resulting mixture was stirred at approximately 0°C for 20 min, and then treated with a solution of methanol (18 mL) and triethylamine (34 mL, 245 mmol) over approximately 30 sec. The resulting mixture was stirred at 0°C for approximately 30 min, and then partitioned between AcOEt and a saturated NaHC0 3 aqueous solution.
  • the mixture was degassed under house vacuum with several quenches with nitrogen and then stirred at 105°C under nitrogen for approximately 6 h before being allowed to cool to room temperature.
  • the mixture was partitioned between AcOEt and water and the layers were separated.
  • the aqueous phase was extracted with AcOEt and the combined organic phases were washed with brine.
  • the organic phase was then filtered through a 70 g silica cartridge, washing the cartridge with AcOEt.
  • the combined filtrate and washings were concentrated in vacuo. The residue was triturated with Et 2 0 then filtered off.
  • the resulting mixture was stirred at 72°C for 3 h then cooled to room temperature and diluted with AcOEt (50 mL). The organic phase was washed with a 1 M NaOH aqueous solution (20 mL), water (50 mL) then brine (50 mL), dried over MgS0 4 and concentrated in vacuo.
  • Aluminium chloride (102 mg, 0.767 mmol) was further added and the resulting mixture was stirred at approximately 0°C for 30 min. Further Aluminium chloride (102 mg, 0.767 mmol) was added and the resulting mixture was stirred at approximately 0°C for 30 min. The reaction mixture was then treated with a solution of methanol (0.884 mL) and triethylamine (2.312 mL, 16.59 mmol) and the resulting mixture was stirred further at approximately 0 °C for 20 min then was partitioned between EtOAc (35 mL) and a saturated NaHC0 3 aqueous solution (35 mL).
  • the reaction mixture was then filtered through celite and the insoluble were washed with EtOAc (25 mL) and NaHCC>3 (25 mL).
  • the filtered aluminum residues were suspended in MeOH and sonicated.
  • the resulting suspension was filtered and the filtrate was concentrated in vacuo.
  • the white solid residue was loaded onto a 10 g SCX cartridge and eluted with MeOH and then with 2M NH 3 in MeOH.
  • the resulting mixture was degassed by bubbling nitrogen in to it, stirred at 100°C for 1 hr under microwave irradiation then cooled to room temperature.
  • the reaction mixture was filtered through celite and concentrated in vacuo.
  • the residue was partitioned between EtOAC (30 mL) and water (30 mL) and the layers were separated.
  • the organic phase was washed with brine (25 mL) dried over MgS0 4 and concentrated in vacuo.
  • the reaction was stirred at approximately 0 °C for 30 min, then treated with a solution of methanol (0.320 mL) and triethylamine (1 .230 mL, 8.82 mmol) .
  • the resulting mixture was stirred further at approximately 0 °C for 20 min then was diluted with EtOAc (25 mL) and a saturated NaHCC>3 aqueous solution (25 mL).
  • EtOAc 25 mL
  • a saturated NaHCC>3 aqueous solution 25 mL
  • the reaction mixture was then filtered through celite and the insoluble residues were washed with EtOAc (15 mL) and a saturated NaHCC>3 aqueous solution (15 ml).
  • the filtered aluminum residues were suspended in MeOH and sonicated.
  • the resulting mixture was degassed by bubbling nitrogen in to it, stirred at 100°C for 1 hr under microwave irradiation then cooled to room temperature.
  • the reaction mixture was filtered through celite and concentrated in vacuo.
  • the residue was partitioned between EtOAC (30 mL) and water (30 mL) and the layers were separated.
  • the organic phase was washed with brine (25 mL) dried over MgS0 4 and concentrated in vacuo.
  • the reaction was stirred further at approximately 0°C for 20 min then was diluted with EtOAc (35 mL) and a saturated NaHC0 3 aqueous solution (35 ml). The reaction mixture was then filtered through celite and the insoluble residues were washed with EtOAc (25 mL) and NaHCC>3 (25 mL. The filtered aluminum residues were suspended in MeOH and sonicated. The resulting suspension was filtered and the filtrate was concentrated in vacuo to yield a white solid which was loaded onto a 20 g SCX cartridge and eluted with MeOH and then with 2M NH 3 in MeOH.
  • (3S)-3-Aminobutanenitrile (8.6 g, 102 mmol, may be prepared as described in PCT Int. Appl., 2005100321 ), bromobenzene (16.16 ml, 153 mmol) and cesium carbonate (50.0 g, 153 mmol) were combined in toluene (100 mL) under nitrogen were stirred for 45 min.
  • Phenylboronic acid (0.187 g, 1 .534 mmol, Aldrich), palladium(ll) acetate (0.188 g, 0.837 mmol, available from Aldrich) and 2-dicyclohexylphosphino-2'-(N,N- dimethylamino)biphenyl (0.443 g, 1 .125 mmol, available from Aldrich) were combined in tetrahydrofuran (THF) (6.67 ml) under nitrogen and stirred for 45 min. The THF solution was added to the toluene solution and the reaction heated to 80°C for 16 h. The reaction mixture was cooled and partitioned between EtOAc (500 mL) and water (300 mL).
  • EtOAc 500 mL
  • water 300 mL
  • Examples 2 to 5 were prepared by similar methods to that described for Example 1 using the appropriate aryl bromide derivative and suitable precipitation or recrystallisation conditions (see Table 5):
  • the aqueous phase was washed twice with DCM (which didn't dissolve the precipitate previously formed) then was acidified with a 2N hydrochloric acid aqueous solution to pH 1 and extracted twice with AcOEt.
  • the combined AcOEt phases were washed with brine, dried using a hydrophobic frit and concentrated in vacuo. The residual yellow foam was triturated with Et 2 0 over approximately 1 h.
  • Examples 7 to 10 were prepared by similar methods to that described for Example 6 Process 1 (see Table 6):
  • Examples 12 to 34 were prepared by similar methods to that described for Example 1 1 using the appropriate boronic acid derivative and suitable precipitation or recrystallisation conditions (see Table 7):

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Transplantation (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Quinoline Compounds (AREA)
PCT/EP2010/066701 2009-11-05 2010-11-03 Thetrahydroquinolines derivatives as bromodomain inhibitors WO2011054848A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES10771771.2T ES2573706T3 (es) 2009-11-05 2010-11-03 Derivados de tetrahidroquinolinas como inhibidores de bromodominio
US13/503,947 US8580957B2 (en) 2009-11-05 2010-11-03 Thetrahydroquinolines derivatives as bromodomain inhibitors
EP10771771.2A EP2496558B1 (en) 2009-11-05 2010-11-03 Tetrahydroquinolines derivatives as bromodomain inhibitors
JP2012537383A JP5819840B2 (ja) 2009-11-05 2010-11-03 ブロモドメイン阻害剤としてのテトラヒドロキノリン誘導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0919434.1 2009-11-05
GBGB0919434.1A GB0919434D0 (en) 2009-11-05 2009-11-05 Novel compounds

Publications (1)

Publication Number Publication Date
WO2011054848A1 true WO2011054848A1 (en) 2011-05-12

Family

ID=41501977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/066701 WO2011054848A1 (en) 2009-11-05 2010-11-03 Thetrahydroquinolines derivatives as bromodomain inhibitors

Country Status (6)

Country Link
US (1) US8580957B2 (US07846941-20101207-C00217.png)
EP (1) EP2496558B1 (US07846941-20101207-C00217.png)
JP (1) JP5819840B2 (US07846941-20101207-C00217.png)
ES (1) ES2573706T3 (US07846941-20101207-C00217.png)
GB (1) GB0919434D0 (US07846941-20101207-C00217.png)
WO (1) WO2011054848A1 (US07846941-20101207-C00217.png)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143415A1 (en) * 2011-04-21 2012-10-26 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
WO2012143413A1 (en) * 2011-04-21 2012-10-26 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
WO2012150234A1 (en) 2011-05-04 2012-11-08 Glaxosmithkline Llc Dihydroquinoline derivatives as bromodomain inhibitors
WO2013027168A1 (en) 2011-08-22 2013-02-28 Pfizer Inc. Novel heterocyclic compounds as bromodomain inhibitors
WO2013033269A1 (en) * 2011-08-29 2013-03-07 Coferon, Inc. Bioorthogonal monomers capable of dimerizing and targeting bromodomains and methods of using same
WO2013097601A1 (en) * 2011-12-30 2013-07-04 Abbvie Inc. Bromodomain inhibitors
US8796261B2 (en) 2010-12-02 2014-08-05 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
JP2014521735A (ja) * 2011-08-17 2014-08-28 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー 4−(8−メトキシ−1−((1−メトキシプロパン−2−イル)−2−(テトラヒドロ−2H−ピラン−4−イル)−1H−イミダゾ[4,5−c]キノリン−7−イル)−3,5−ジメチルイソオキサゾールおよびブロモドメイン阻害剤としてのその使用
WO2014140076A1 (en) * 2013-03-14 2014-09-18 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-disubstituted 1 -acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
WO2014140077A1 (en) 2013-03-14 2014-09-18 Glaxosmithkline Intellectual Property (No.2) Limited Furopyridines as bromodomain inhibitors
WO2014159837A1 (en) 2013-03-14 2014-10-02 Convergene Llc Methods and compositions for inhibition of bromodomain-containing proteins
WO2014173241A1 (en) 2013-04-26 2014-10-30 Beigene, Ltd. Substituted5-(3,5-dimethylisoxazol-4-yl)indoline-2-ones
WO2014206345A1 (en) * 2013-06-28 2014-12-31 Abbvie Inc. Bromodomain inhibitors
WO2015013635A2 (en) 2013-07-25 2015-01-29 Dana-Farber Cancer Institute, Inc. Inhibitors of transcription factors and uses thereof
WO2015074064A2 (en) 2013-11-18 2015-05-21 Bair Kenneth W Tetrahydroquinoline compositions as bet bromodomain inhibitors
WO2015074081A1 (en) 2013-11-18 2015-05-21 Bair Kenneth W Benzopiperazine compositions as bet bromodomain inhibitors
WO2015104653A1 (en) * 2014-01-09 2015-07-16 Aurigene Discovery Technologies Limited Bicyclic heterocyclic derivatives as bromodomain inhibitors
WO2015117087A1 (en) 2014-01-31 2015-08-06 Dana-Farber Cancer Institute, Inc. Uses of diazepane derivatives
WO2015131005A1 (en) 2014-02-28 2015-09-03 The Regents Of The University Of Michigan 9h-pyrimido[4,5-b]indoles and related analogs as bet bromodomain inhibitors
US9227985B2 (en) 2013-03-15 2016-01-05 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US9249161B2 (en) 2010-12-02 2016-02-02 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
WO2016038120A1 (en) * 2014-09-12 2016-03-17 Glaxosmithkline Intellectual Property (No.2) Limited Tetrahydroquinoline derivatives as bromodomain inhibitors
US9290514B2 (en) 2013-07-08 2016-03-22 Incyte Holdings Corporation Tricyclic heterocycles as BET protein inhibitors
US9309246B2 (en) 2013-12-19 2016-04-12 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US9315501B2 (en) 2013-11-26 2016-04-19 Incyte Corporation Bicyclic heterocycles as BET protein inhibitors
US9328117B2 (en) 2011-06-17 2016-05-03 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
US9399640B2 (en) 2013-11-26 2016-07-26 Incyte Corporation Substituted pyrrolo[2,3-c]pyridines and pyrazolo[3,4-c]pyridines as BET protein inhibitors
US9422292B2 (en) 2011-05-04 2016-08-23 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
WO2016138332A1 (en) 2015-02-27 2016-09-01 The Regents Of The University Of Michigan 9h-pyrimido [4,5-b] indoles as bet bromodomain inhibitors
WO2016139292A1 (en) 2015-03-05 2016-09-09 Glaxosmithkline Intellectual Property (No.2) Limited Pyridinone compound, pharmaceutical composition containing the same and use
WO2016146755A1 (en) 2015-03-19 2016-09-22 Glaxosmithkline Intellectual Property Development Limited Covalent conjugates of bet inhibitors and alpha amino acid esters
US9493483B2 (en) 2012-06-06 2016-11-15 Constellation Pharmaceuticals, Inc. Benzo [C] isoxazoloazepine bromodomain inhibitors and uses thereof
WO2016196065A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Methods and compositions for assessing responsiveness of cancers to bet inhibitors
WO2016203335A1 (en) 2015-06-18 2016-12-22 Pfizer Inc. Novel pyrido[2,3-b]pyrazinones as bet-family bromodomain inhibitors
US9527864B2 (en) 2014-09-15 2016-12-27 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
WO2016210275A1 (en) 2015-06-26 2016-12-29 Tensha Therapeutics, Inc. Treatment of nut midline carcinoma
US9540368B2 (en) 2014-04-23 2017-01-10 Incyte Corporation 1H-pyrrolo[2,3-c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US9561231B2 (en) 2012-06-12 2017-02-07 Abbvie Inc. Pyridinone and pyridazinone derivatives
WO2017050714A1 (en) 2015-09-22 2017-03-30 Glaxosmithkline Intellectual Property (No.2) Limited Pyridinone dicarboxamide for use as bromodomain inhibitors
US9624244B2 (en) 2012-06-06 2017-04-18 Constellation Pharmaceuticals, Inc. Benzo [B] isoxazoloazepine bromodomain inhibitors and uses thereof
US9695172B2 (en) 2014-01-31 2017-07-04 Dana-Farber Cancer Institute, Inc. Diazepane derivatives and uses thereof
US9714946B2 (en) 2013-03-14 2017-07-25 Dana-Farber Cancer Institute, Inc. Bromodomain binding reagents and uses thereof
WO2017142881A1 (en) 2016-02-15 2017-08-24 The Regents Of The University Of Michigan Fused 1,4-oxazepines and related analogs as bet bromodomain inhibitors
US9763956B2 (en) 2012-06-19 2017-09-19 The Broad Institute, Inc. Diagnostic and treatment methods in subjects having or at risk of developing resistance to cancer therapy
US9776990B2 (en) 2012-04-20 2017-10-03 Abbvie Inc. Isoindolone derivatives
WO2017176958A1 (en) 2016-04-06 2017-10-12 The Regents Of The University Of Michigan Monofunctional intermediates for ligand-dependent target protein degradation
WO2017174620A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property (No.2) Limited Benzo[b]furans as bromodomain inhibitors
WO2017174621A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property (No.2) Limited Pyridyl derivatives as bromodomain inhibitors
US9789120B2 (en) 2010-05-14 2017-10-17 Dana-Farber Cancer Institute, Inc. Male contraceptive compositions and methods of use
WO2017180417A1 (en) 2016-04-12 2017-10-19 The Regents Of The University Of Michigan Bet protein degraders
WO2017202742A1 (en) 2016-05-24 2017-11-30 Glaxosmithkline Intellectual Property (No.2) Limited Pyridine dicarboxamide derivatives as bromodomain inhibitors
EP3290407A1 (en) * 2013-10-18 2018-03-07 Celgene Quanticel Research, Inc Bromodomain inhibitors
WO2018041964A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Intellectual Property (No.2) Limited Imidazole derivatives and their use in the treatment of autoimmune or inflammatory diseases or cancers
WO2018041947A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Intellectual Property (No.2) Limited Imidazole derivatives and their use in the treatment of autoimmune or inflammatory diseases or cancers
WO2018041946A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Intellectual Property Development Limited Crystalline hydrate of the compound (2s,3r)-isopropyl 2-(((2-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)-1-((tetrahydro-2h-pyran-4-yl)methyl)-1h-benzo[d]imidazol-5-yl)methyl)amino)-3-hydroxybutanoate edisylate
WO2018052949A1 (en) 2016-09-13 2018-03-22 The Regents Of The University Of Michigan Fused 1,4-diazepines as bet protein degraders
WO2018052945A1 (en) 2016-09-13 2018-03-22 The Regents Of The University Of Michigan Fused 1,4-oxazepines as bet protein degraders
US9951074B2 (en) 2014-08-08 2018-04-24 Dana-Farber Cancer Institute, Inc. Dihydropteridinone derivatives and uses thereof
US9969747B2 (en) 2014-06-20 2018-05-15 Constellation Pharmaceuticals, Inc. Crystalline forms of 2-((4S)-6-(4-chlorophenyl)-1-methyl-4H-benzo[C]isoxazolo[4,5-e]azepin-4-yl)acetamide
WO2018144789A1 (en) 2017-02-03 2018-08-09 The Regents Of The University Of Michigan Fused 1,4-diazepines as bet bromodomain inhibitors
WO2018158210A1 (en) 2017-03-01 2018-09-07 Glaxosmithkline Intellectual Property (N°.2) Limited Pyridyl derivatives as bromodomain inhibitors
US10124009B2 (en) 2014-10-27 2018-11-13 Tensha Therapeutics, Inc. Bromodomain inhibitors
US10150756B2 (en) 2014-01-31 2018-12-11 Dana-Farber Cancer Institute, Inc. Diaminopyrimidine benzenesulfone derivatives and uses thereof
US10189832B2 (en) 2016-06-20 2019-01-29 Incyte Corporation Crystalline solid forms of a BET inhibitor
WO2019055444A1 (en) 2017-09-13 2019-03-21 The Regents Of The University Of Michigan DEGRADATION AGENTS OF BROMODOMAIN BET PROTEIN WITH CLEAR BINDERS
WO2019068782A1 (en) 2017-10-06 2019-04-11 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-DIHYDROBENZOFURANES AS BROMODOMAIN INHIBITORS
WO2019068783A1 (en) 2017-10-06 2019-04-11 Glaxosmithkline Intellectual Property (No.2) Limited BENZOFURAN DERIVATIVES AND THEIR USE AS BROMODOMAIN INHIBITORS
US10308653B2 (en) 2014-08-08 2019-06-04 Dana-Farber Cancer Institute, Inc. Diazepane derivatives and uses thereof
US10329305B2 (en) 2015-10-29 2019-06-25 Incyte Corporation Amorphous solid form of a BET protein inhibitor
US10407441B2 (en) 2010-05-14 2019-09-10 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating neoplasia, inflammatory disease and other disorders
EP3549939A1 (en) 2015-03-19 2019-10-09 GlaxoSmithKline Intellectual Property Development Limited Benzimidazole derivatives as bromodomain inhibitors
WO2020043821A1 (en) 2018-08-31 2020-03-05 Glaxosmithkline Intellectual Property (No.2) Limited Furan derivatives as bromodomain inhibitors
US10633379B2 (en) 2016-04-15 2020-04-28 Abbvie Inc. Bromodomain inhibitors
US10676484B2 (en) 2010-05-14 2020-06-09 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating leukemia
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
US10881668B2 (en) 2015-09-11 2021-01-05 Dana-Farber Cancer Institute, Inc. Acetamide thienotriazolodiazepines and uses thereof
US10913752B2 (en) 2015-11-25 2021-02-09 Dana-Farber Cancer Institute, Inc. Bivalent bromodomain inhibitors and uses thereof
US10925881B2 (en) 2014-02-28 2021-02-23 Tensha Therapeutics, Inc. Treatment of conditions associated with hyperinsulinaemia
WO2021175824A1 (en) 2020-03-04 2021-09-10 Boehringer Ingelheim International Gmbh Method for administration of an anti cancer agent
US11192898B2 (en) 2016-04-06 2021-12-07 The Regents Of The University Of Michigan MDM2 protein degraders
US11306105B2 (en) 2015-09-11 2022-04-19 Dana-Farber Cancer Institute, Inc. Cyano thienotriazolodiazepines and uses thereof
CN115028617A (zh) * 2016-05-24 2022-09-09 基因泰克公司 Cbp/ep300的杂环抑制剂及其在治疗癌症中的用途
US11446309B2 (en) 2013-11-08 2022-09-20 Dana-Farber Cancer Institute, Inc. Combination therapy for cancer using bromodomain and extra-terminal (BET) protein inhibitors
WO2023041744A1 (en) 2021-09-17 2023-03-23 Institut Curie Bet inhibitors for treating pab1 deficient cancer
US11666580B2 (en) 2015-08-10 2023-06-06 Dana-Farber Cancer Institute, Inc. Mechanism of resistance to bet bromodomain inhibitors
WO2023205251A1 (en) 2022-04-19 2023-10-26 Nuevolution A/S Compounds active towards bromodomains
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
US12030882B2 (en) 2022-06-02 2024-07-09 Incyte Corporation Crystalline solid forms of a bet inhibitor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0919431D0 (en) * 2009-11-05 2009-12-23 Glaxosmithkline Llc Novel compounds
CA2895905A1 (en) 2012-12-21 2014-06-26 Zenith Epigenetics Corp. Novel heterocyclic compounds as bromodomain inhibitors
US9675697B2 (en) 2013-03-11 2017-06-13 The Regents Of The University Of Michigan BET bromodomain inhibitors and therapeutic methods using the same
US9636328B2 (en) 2013-06-21 2017-05-02 Zenith Epigenetics Ltd. Substituted bicyclic compounds as bromodomain inhibitors
BR112015031073B1 (pt) * 2013-06-21 2022-11-29 Zenith Epigenetics Ltd Compostos inibidores bicíclicos de bromodomínio e composição farmacêutica contendo os referidos compostos
AR096758A1 (es) * 2013-06-28 2016-02-03 Abbvie Inc Inhibidores cristalinos de bromodominios
KR20160038008A (ko) 2013-07-31 2016-04-06 제니쓰 에피제네틱스 코포레이션 브로모도메인 억제제로서 신규 퀴나졸리논
US9108953B2 (en) * 2013-11-26 2015-08-18 Gilead Sciences, Inc. Quinoline derivatives as bromodomain inhibitors
EA038715B1 (ru) * 2014-01-24 2021-10-08 Селджен Квонтисел Рисёрч, Инк. Ингибиторы бромодомена
US10710992B2 (en) 2014-12-01 2020-07-14 Zenith Epigenetics Ltd. Substituted pyridinones as bromodomain inhibitors
US10179125B2 (en) 2014-12-01 2019-01-15 Zenith Epigenetics Ltd. Substituted pyridines as bromodomain inhibitors
WO2016092375A1 (en) 2014-12-11 2016-06-16 Zenith Epigenetics Corp. Substituted heterocycles as bromodomain inhibitors
US10231953B2 (en) 2014-12-17 2019-03-19 Zenith Epigenetics Ltd. Inhibitors of bromodomains
US10702517B2 (en) 2015-04-22 2020-07-07 Celgene Quanticel Research, Inc. Bromodomain inhibitor
TW201642860A (zh) * 2015-04-22 2016-12-16 塞爾基因定量細胞研究公司 布羅莫結構域抑制劑
US10428026B2 (en) 2015-09-02 2019-10-01 Glaxosmithkline Intellectual Property (No.2) Limited Pyridinone dicarboxamide for use as bromodomain inhibitors
US10471050B2 (en) 2015-10-05 2019-11-12 Glaxosmithkline Intellectual Property (No.2) Limited 2-OXO-1,2-dihydropyridine-3,5-dicarboxamide compounds as bromodomain inhibitors
CN110099685A (zh) * 2016-10-20 2019-08-06 赛尔基因光迪斯研究公司 溴结构域抑制剂
US11028051B2 (en) * 2016-12-13 2021-06-08 St. Jude Children's Research Hospital Tetrahydroquinoline-based bromodomain inhibitors
GB201716374D0 (en) * 2017-10-06 2017-11-22 Glaxosmithkline Intellectual Property (No 2) Ltd Compounds
JOP20190192A1 (ar) * 2017-03-01 2019-08-08 Glaxosmithkline Ip No 2 Ltd مشتقات بيرازول بوصفها مثبطات برومودومين
TWI816880B (zh) * 2018-09-13 2023-10-01 大陸商恒翼生物醫藥(上海)股份有限公司 治療前列腺癌之組合療法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242134A (en) 1990-03-02 1991-09-25 Glaxo Group Ltd Inhalation device
WO2003105849A1 (en) * 2002-06-13 2003-12-24 Rheogene, Inc. Tetrahydroquinolines for modulating the expression of exogenous genes via an ecdysone receptor complex
EP1435356A1 (en) * 2003-01-06 2004-07-07 Warner-Lambert Company LLC Quinoline derivatives as CRTH2 antagonists
WO2005044354A1 (en) 2003-11-03 2005-05-19 Glaxo Group Limited A fluid dispensing device
WO2006083692A2 (en) * 2005-01-28 2006-08-10 Mount Sinai Schoool Of Medicine Methods of identifying modulators of bromodomains
JP2008156311A (ja) 2006-12-26 2008-07-10 Institute Of Physical & Chemical Research Brd2ブロモドメイン結合剤
WO2009084693A1 (ja) 2007-12-28 2009-07-09 Mitsubishi Tanabe Pharma Corporation 抗癌剤
EP2199283A1 (en) * 2007-09-27 2010-06-23 Kowa Company, Ltd. Prophylactic and/or therapeutic agent for anemia, comprising tetrahydroquinoline compound as active ingredient
WO2010113498A1 (ja) * 2009-03-31 2010-10-07 興和株式会社 テトラヒドロキノリン化合物を有効成分とする貧血の予防及び/又は治療剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0101161D0 (sv) * 2001-03-30 2001-03-30 Astrazeneca Ab New compounds
WO2007084625A2 (en) * 2006-01-19 2007-07-26 Mount Sinai School Of Medicine Novel compounds and methods for inhibiting p53 activity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242134A (en) 1990-03-02 1991-09-25 Glaxo Group Ltd Inhalation device
WO2003105849A1 (en) * 2002-06-13 2003-12-24 Rheogene, Inc. Tetrahydroquinolines for modulating the expression of exogenous genes via an ecdysone receptor complex
EP1435356A1 (en) * 2003-01-06 2004-07-07 Warner-Lambert Company LLC Quinoline derivatives as CRTH2 antagonists
WO2005044354A1 (en) 2003-11-03 2005-05-19 Glaxo Group Limited A fluid dispensing device
WO2006083692A2 (en) * 2005-01-28 2006-08-10 Mount Sinai Schoool Of Medicine Methods of identifying modulators of bromodomains
JP2008156311A (ja) 2006-12-26 2008-07-10 Institute Of Physical & Chemical Research Brd2ブロモドメイン結合剤
EP2199283A1 (en) * 2007-09-27 2010-06-23 Kowa Company, Ltd. Prophylactic and/or therapeutic agent for anemia, comprising tetrahydroquinoline compound as active ingredient
WO2009084693A1 (ja) 2007-12-28 2009-07-09 Mitsubishi Tanabe Pharma Corporation 抗癌剤
WO2010113498A1 (ja) * 2009-03-31 2010-10-07 興和株式会社 テトラヒドロキノリン化合物を有効成分とする貧血の予防及び/又は治療剤

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Burger's Medicinal Chemistry and Drug Discovery", vol. 1
BERGE ET AL., J. PHARM. SCI., vol. 66, 1977, pages 1 - 19
FRENCH ET AL., CANCER RESEARCH, vol. 63, 2003, pages 304 - 307
FRENCH ET AL., JOURNAL OF CLINICAL ONCOLOGY, vol. 22, no. 20, 2004, pages 4135 - 4139
HARGREAVES ET AL., CELL, vol. 138, no. 1, 2009, pages 129 - 145
INT. J. PEPTIDE PROTEIN RES., vol. 40, 1992, pages 13 - 18
LEROY ET AL., MOL. CELL., vol. 30, no. 1, 2008, pages 51 - 60
ONCOGENE, vol. 27, 2008, pages 2237 - 2242
SUZUKI, CHEM.REV., vol. 95, 1995, pages 2457 - 2483
T. W. GREENE: "Protective Groups in Organic Synthesis", 2006, J. WILEY AND SONS
YOU ET AL., CELL, vol. 117, no. 3, 2004, pages 349 - 60

Cited By (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676484B2 (en) 2010-05-14 2020-06-09 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating leukemia
US9789120B2 (en) 2010-05-14 2017-10-17 Dana-Farber Cancer Institute, Inc. Male contraceptive compositions and methods of use
US10407441B2 (en) 2010-05-14 2019-09-10 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating neoplasia, inflammatory disease and other disorders
US8796261B2 (en) 2010-12-02 2014-08-05 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
US9522920B2 (en) 2010-12-02 2016-12-20 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
US9249161B2 (en) 2010-12-02 2016-02-02 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
US8993554B2 (en) 2011-04-21 2015-03-31 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
CN103619820A (zh) * 2011-04-21 2014-03-05 葛兰素史密丝克莱恩有限责任公司 可用作溴区结构域抑制剂的四氢喹啉衍生物
JP2014511891A (ja) * 2011-04-21 2014-05-19 グラクソスミスクライン エルエルシー ブロモドメイン阻害剤として有用なテトラヒドロキノリン誘導体
KR101896599B1 (ko) 2011-04-21 2018-09-07 글락소스미스클라인 엘엘씨 브로모도메인 억제제로서 유용한 테트라하이드로퀴놀린 유도체
KR20140025484A (ko) * 2011-04-21 2014-03-04 글락소스미스클라인 엘엘씨 브로모도메인 억제제로서 유용한 테트라하이드로퀴놀린 유도체
EA022341B1 (ru) * 2011-04-21 2015-12-30 ГЛАКСОСМИТКЛАЙН ЭлЭлСи Производные тетрагидрохинолина, полезные в качестве ингибиторов бромодомена
EP3168213A1 (en) * 2011-04-21 2017-05-17 Glaxosmithkline LLC Tetrahydroquinoline derivatives useful as bromodomain inhibitors
US9029395B2 (en) 2011-04-21 2015-05-12 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
WO2012143415A1 (en) * 2011-04-21 2012-10-26 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
WO2012143413A1 (en) * 2011-04-21 2012-10-26 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
AU2012244759B2 (en) * 2011-04-21 2016-03-03 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
WO2012150234A1 (en) 2011-05-04 2012-11-08 Glaxosmithkline Llc Dihydroquinoline derivatives as bromodomain inhibitors
US9315487B2 (en) 2011-05-04 2016-04-19 Glaxosmithkline Llc Tetrahydroquinoline derivatives useful as bromodomain inhibitors
US9422292B2 (en) 2011-05-04 2016-08-23 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
JP2014513110A (ja) * 2011-05-04 2014-05-29 グラクソスミスクライン エルエルシー ブロモドメイン阻害剤としてのテトラヒドロキノリン誘導体
US9328117B2 (en) 2011-06-17 2016-05-03 Constellation Pharmaceuticals, Inc. Bromodomain inhibitors and uses thereof
JP2014521735A (ja) * 2011-08-17 2014-08-28 グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー 4−(8−メトキシ−1−((1−メトキシプロパン−2−イル)−2−(テトラヒドロ−2H−ピラン−4−イル)−1H−イミダゾ[4,5−c]キノリン−7−イル)−3,5−ジメチルイソオキサゾールおよびブロモドメイン阻害剤としてのその使用
WO2013027168A1 (en) 2011-08-22 2013-02-28 Pfizer Inc. Novel heterocyclic compounds as bromodomain inhibitors
WO2013033269A1 (en) * 2011-08-29 2013-03-07 Coferon, Inc. Bioorthogonal monomers capable of dimerizing and targeting bromodomains and methods of using same
CN106986872A (zh) * 2011-12-30 2017-07-28 艾伯维公司 溴结构域抑制剂
JP2017128594A (ja) * 2011-12-30 2017-07-27 アッヴィ・インコーポレイテッド ブロモドメイン阻害薬
AU2017219100C1 (en) * 2011-12-30 2019-05-16 Abbvie Inc. Bromodomain inhibitors
AU2017219100B2 (en) * 2011-12-30 2019-01-31 Abbvie Inc. Bromodomain inhibitors
KR20140113704A (ko) * 2011-12-30 2014-09-24 애브비 인코포레이티드 브로모도메인 억제제
KR102008975B1 (ko) 2011-12-30 2019-08-08 애브비 인코포레이티드 브로모도메인 억제제
WO2013097601A1 (en) * 2011-12-30 2013-07-04 Abbvie Inc. Bromodomain inhibitors
JP2015503529A (ja) * 2011-12-30 2015-02-02 アッヴィ・インコーポレイテッド ブロモドメイン阻害薬
AU2012361967B2 (en) * 2011-12-30 2017-09-07 Abbvie Inc. Bromodomain inhibitors
CN104136435B (zh) * 2011-12-30 2017-05-10 艾伯维公司 溴结构域抑制剂
CN104136435A (zh) * 2011-12-30 2014-11-05 艾伯维公司 溴结构域抑制剂
CN106986872B (zh) * 2011-12-30 2020-04-21 艾伯维公司 溴结构域抑制剂
JP2018172428A (ja) * 2011-12-30 2018-11-08 アッヴィ・インコーポレイテッド ブロモドメイン阻害薬
US9296741B2 (en) 2011-12-30 2016-03-29 Abbvie Inc. Bromodomain inhibitors
US9776990B2 (en) 2012-04-20 2017-10-03 Abbvie Inc. Isoindolone derivatives
US9493483B2 (en) 2012-06-06 2016-11-15 Constellation Pharmaceuticals, Inc. Benzo [C] isoxazoloazepine bromodomain inhibitors and uses thereof
US9925197B2 (en) 2012-06-06 2018-03-27 Constellation Pharmaceuticals, Inc. Benzo [C] isoxazoloazepine bromodomain inhibitors and uses thereof
US9624244B2 (en) 2012-06-06 2017-04-18 Constellation Pharmaceuticals, Inc. Benzo [B] isoxazoloazepine bromodomain inhibitors and uses thereof
US9561231B2 (en) 2012-06-12 2017-02-07 Abbvie Inc. Pyridinone and pyridazinone derivatives
US9763956B2 (en) 2012-06-19 2017-09-19 The Broad Institute, Inc. Diagnostic and treatment methods in subjects having or at risk of developing resistance to cancer therapy
US10034881B2 (en) 2013-03-14 2018-07-31 Glaxosmithkline Intellectual Property (No. 2) Limited 2,3-disubstituted 1 -acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
US9714946B2 (en) 2013-03-14 2017-07-25 Dana-Farber Cancer Institute, Inc. Bromodomain binding reagents and uses thereof
WO2014140076A1 (en) * 2013-03-14 2014-09-18 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-disubstituted 1 -acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
KR101780784B1 (ko) * 2013-03-14 2017-09-21 글락소스미스클라인 인털렉츄얼 프로퍼티 (넘버 2) 리미티드 2,3-이치환된 1-아실-4-아미노-1,2,3,4-테트라하이드로퀴놀린 유도체 및 이의 브로모도메인 억제제로서의 용도
WO2014140077A1 (en) 2013-03-14 2014-09-18 Glaxosmithkline Intellectual Property (No.2) Limited Furopyridines as bromodomain inhibitors
AU2014244426B2 (en) * 2013-03-14 2019-02-28 Convergene Llc Methods and compositions for inhibition of bromodomain-containing proteins
JP2016510782A (ja) * 2013-03-14 2016-04-11 グラクソスミスクライン、インテレクチュアル、プロパティー、ナンバー2、リミテッドGlaxosmithkline Intellectual Property No.2 Limited 2,3−二置換1−アシル−4−アミノ−1,2,3,4−テトラヒドロキノリン誘導体及びブロモドメイン阻害薬としてのそれらの使用
US10583139B2 (en) * 2013-03-14 2020-03-10 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-disubstituted 1-acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
US20180303831A1 (en) * 2013-03-14 2018-10-25 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-disubstituted 1 -acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
CN105407894A (zh) * 2013-03-14 2016-03-16 康威基内有限公司 用于抑制含布罗莫结构域的蛋白质的方法和组合物
WO2014159837A1 (en) 2013-03-14 2014-10-02 Convergene Llc Methods and compositions for inhibition of bromodomain-containing proteins
US10717739B2 (en) 2013-03-14 2020-07-21 Convergene Llc Methods and compositions for inhibition of bromodomain-containing proteins
US11478478B2 (en) 2013-03-14 2022-10-25 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-disubstituted 1-acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
US20160016908A1 (en) * 2013-03-14 2016-01-21 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-disubstituted 1 -acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
EA028174B1 (ru) * 2013-03-14 2017-10-31 Глаксосмитклайн Интеллекчуал Проперти (№2) Лимитед 2,3-дизамещенные производные 1-ацил-4-амино-1,2,3,4-тетрагидрохинолинов и их применение в качестве ингибиторов бромодомена
CN105189461A (zh) * 2013-03-14 2015-12-23 葛兰素史克知识产权第二有限公司 2,3-二取代的1-酰基-4-氨基-1,2,3,4-四氢喹啉衍生物和它们作为溴结构域抑制剂的用途
EP2968360A4 (en) * 2013-03-14 2017-03-08 ConverGene LLC Methods and compositions for inhibition of bromodomain-containing proteins
CN105189461B (zh) * 2013-03-14 2018-05-15 葛兰素史克知识产权第二有限公司 2,3-二取代的1-酰基-4-氨基-1,2,3,4-四氢喹啉衍生物和它们作为溴结构域抑制剂的用途
JP2016514147A (ja) * 2013-03-14 2016-05-19 コンバージーン・リミテッド・ライアビリティ・カンパニーConvergene Llc ブロモドメイン含有タンパク質の阻害のための方法および組成物
US10266536B2 (en) 2013-03-14 2019-04-23 Convergene Llc Methods and compositions for inhibition of bromodomain-containing proteins
US9637456B2 (en) 2013-03-14 2017-05-02 Glaxosmithkline Intellectual Property (No. 2) Limited 2,3-disubstituted 1-acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
JP2017125025A (ja) * 2013-03-14 2017-07-20 グラクソスミスクライン、インテレクチュアル、プロパティー、(ナンバー2)、リミテッドGlaxosmithkline Intellectual Property (No.2) Limited 2,3−二置換1−アシル−4−アミノ−1,2,3,4−テトラヒドロキノリン誘導体及びブロモドメイン阻害薬としてのそれらの使用
EP3511323A1 (en) * 2013-03-14 2019-07-17 GlaxoSmithKline Intellectual Property (No.2) Limited 2,3-disubstituted 1-acyl-4-amino-1,2,3,4-tetrahydroquinoline derivatives and their use as bromodomain inhibitors
US9695179B2 (en) 2013-03-14 2017-07-04 Convergene Llc Methods and compositions for inhibition of bromodomain-containing proteins
US10464947B2 (en) 2013-03-15 2019-11-05 Incyte Holdings Corporation Tricyclic heterocycles as BET protein inhibitors
US9938294B2 (en) 2013-03-15 2018-04-10 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US11498926B2 (en) 2013-03-15 2022-11-15 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US9227985B2 (en) 2013-03-15 2016-01-05 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US9624241B2 (en) 2013-03-15 2017-04-18 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US10919912B2 (en) 2013-03-15 2021-02-16 Incyte Holdings Corporation Tricyclic heterocycles as BET protein inhibitors
WO2014173241A1 (en) 2013-04-26 2014-10-30 Beigene, Ltd. Substituted5-(3,5-dimethylisoxazol-4-yl)indoline-2-ones
WO2014206345A1 (en) * 2013-06-28 2014-12-31 Abbvie Inc. Bromodomain inhibitors
US9957263B2 (en) 2013-06-28 2018-05-01 Abbvie Inc. Bromodomain inhibitors
WO2014206150A1 (en) * 2013-06-28 2014-12-31 Abbvie Inc. Bromodomain inhibitors
US10131657B2 (en) 2013-06-28 2018-11-20 Abbvie Inc. Bromodomain inhibitors
CN105518007A (zh) * 2013-06-28 2016-04-20 艾伯维公司 布罗莫结构域抑制剂
CN105531273A (zh) * 2013-06-28 2016-04-27 艾伯维公司 布罗莫结构域抑制剂
US9290514B2 (en) 2013-07-08 2016-03-22 Incyte Holdings Corporation Tricyclic heterocycles as BET protein inhibitors
US9533997B2 (en) 2013-07-08 2017-01-03 Incyte Holdings Corporation Tricyclic heterocycles as BET protein inhibitors
US9850257B2 (en) 2013-07-08 2017-12-26 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
WO2015013635A2 (en) 2013-07-25 2015-01-29 Dana-Farber Cancer Institute, Inc. Inhibitors of transcription factors and uses thereof
US9975896B2 (en) 2013-07-25 2018-05-22 Dana-Farber Cancer Institute, Inc. Inhibitors of transcription factors and uses thereof
US11884680B2 (en) 2013-10-18 2024-01-30 Celgene Quanticel Research, Inc. Bromodomain inhibitors
US10023592B2 (en) 2013-10-18 2018-07-17 Celgene Quanticel Research, Inc. Bromodomain inhibitors
AU2014337064B2 (en) * 2013-10-18 2019-03-14 Celgene Quanticel Research, Inc. Bromodomain inhibitors
US10941160B2 (en) 2013-10-18 2021-03-09 Celgene Quanticel Research, Inc. Bromodomain inhibitors
US10562915B2 (en) 2013-10-18 2020-02-18 Celgene Quanticel Research, Inc. Bromodomain inhibitors
AU2019201352B2 (en) * 2013-10-18 2020-08-20 Celgene Quanticel Research, Inc. Bromodomain inhibitors
EP3290407A1 (en) * 2013-10-18 2018-03-07 Celgene Quanticel Research, Inc Bromodomain inhibitors
US11446309B2 (en) 2013-11-08 2022-09-20 Dana-Farber Cancer Institute, Inc. Combination therapy for cancer using bromodomain and extra-terminal (BET) protein inhibitors
US10611750B2 (en) 2013-11-18 2020-04-07 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as bet bromodomain inhibitors
WO2015074081A1 (en) 2013-11-18 2015-05-21 Bair Kenneth W Benzopiperazine compositions as bet bromodomain inhibitors
US10703764B2 (en) 2013-11-18 2020-07-07 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
AU2014348191B2 (en) * 2013-11-18 2019-03-28 Forma Therapeutics Inc. Tetrahydroquinoline compositions as BET bromodomain inhibitors
CN110627770A (zh) * 2013-11-18 2019-12-31 福马疗法公司 作为bet溴域抑制剂的四氢喹啉组成物
RU2720237C2 (ru) * 2013-11-18 2020-04-28 Форма Терапеутикс, Инк. Композиции, содержащие бензопиперазин, в качестве ингибиторов бромодоменов вет
EP3071203A4 (en) * 2013-11-18 2017-10-04 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as bet bromodomain inhibitors
US10336722B2 (en) 2013-11-18 2019-07-02 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as BET bromodomain inhibitors
US11111229B2 (en) 2013-11-18 2021-09-07 Forma Therapeutics, Inc. Tetrahydroquinoline compositions as BET bromodomain inhibitors
EP3071205A4 (en) * 2013-11-18 2017-05-10 Forma Therapeutics, Inc. Benzopiperazine compositions as bet bromodomain inhibitors
WO2015074064A2 (en) 2013-11-18 2015-05-21 Bair Kenneth W Tetrahydroquinoline compositions as bet bromodomain inhibitors
EP3799872A1 (en) * 2013-11-18 2021-04-07 Forma Therapeutics, Inc. Tetrahydroquinoline derivatives for use as bet inhibitors
US10377769B2 (en) 2013-11-18 2019-08-13 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
US11084831B1 (en) 2013-11-18 2021-08-10 Forma Therapeutics, Inc. Benzopiperazine compositions as BET bromodomain inhibitors
US9918990B2 (en) 2013-11-26 2018-03-20 Incyte Corporation Substituted pyrrolo[2,3-c]pyridines and pyrazolo[3,4-c]pyridines as BET protein inhibitors
US9737516B2 (en) 2013-11-26 2017-08-22 Incyte Corporation Bicyclic heterocycles as bet protein inhibitors
US9315501B2 (en) 2013-11-26 2016-04-19 Incyte Corporation Bicyclic heterocycles as BET protein inhibitors
US9399640B2 (en) 2013-11-26 2016-07-26 Incyte Corporation Substituted pyrrolo[2,3-c]pyridines and pyrazolo[3,4-c]pyridines as BET protein inhibitors
US11091484B2 (en) 2013-12-19 2021-08-17 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US10442803B2 (en) 2013-12-19 2019-10-15 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US9777003B2 (en) 2013-12-19 2017-10-03 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US9309246B2 (en) 2013-12-19 2016-04-12 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US10590118B2 (en) 2014-01-09 2020-03-17 Orion Corporation Bicyclic heterocyclic derivatives as bromodomain inhibitors
EA029224B1 (ru) * 2014-01-09 2018-02-28 Орион Корпорейшн Бициклические гетероциклические производные в качестве ингибиторов бромодомена
WO2015104653A1 (en) * 2014-01-09 2015-07-16 Aurigene Discovery Technologies Limited Bicyclic heterocyclic derivatives as bromodomain inhibitors
WO2015117087A1 (en) 2014-01-31 2015-08-06 Dana-Farber Cancer Institute, Inc. Uses of diazepane derivatives
US9695172B2 (en) 2014-01-31 2017-07-04 Dana-Farber Cancer Institute, Inc. Diazepane derivatives and uses thereof
US10150756B2 (en) 2014-01-31 2018-12-11 Dana-Farber Cancer Institute, Inc. Diaminopyrimidine benzenesulfone derivatives and uses thereof
US10793571B2 (en) 2014-01-31 2020-10-06 Dana-Farber Cancer Institute, Inc. Uses of diazepane derivatives
US10730860B2 (en) 2014-01-31 2020-08-04 Dana-Farber Cancer Institute, Inc. Diaminopyrimidine benzenesulfone derivatives and uses thereof
WO2015131005A1 (en) 2014-02-28 2015-09-03 The Regents Of The University Of Michigan 9h-pyrimido[4,5-b]indoles and related analogs as bet bromodomain inhibitors
US10925881B2 (en) 2014-02-28 2021-02-23 Tensha Therapeutics, Inc. Treatment of conditions associated with hyperinsulinaemia
US9540368B2 (en) 2014-04-23 2017-01-10 Incyte Corporation 1H-pyrrolo[2,3-c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US11059821B2 (en) 2014-04-23 2021-07-13 Incyte Corporation 1H-pyrrolo[2,3-c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US10472358B2 (en) 2014-04-23 2019-11-12 Incyte Corporation 1H-pyrrolo[2,3-c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US10781209B2 (en) 2014-04-23 2020-09-22 Incyte Corporation 1H-pyrrolo[2,3-c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US11702416B2 (en) 2014-04-23 2023-07-18 Incyte Corporation 1H-pyrrolo[2,3-c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US9957268B2 (en) 2014-04-23 2018-05-01 Incyte Corporation 1H-pyrrolo[2,3,c]pyridin-7(6H)-ones and pyrazolo[3,4-c]pyridin-7(6H)-ones as inhibitors of BET proteins
US9969747B2 (en) 2014-06-20 2018-05-15 Constellation Pharmaceuticals, Inc. Crystalline forms of 2-((4S)-6-(4-chlorophenyl)-1-methyl-4H-benzo[C]isoxazolo[4,5-e]azepin-4-yl)acetamide
US9951074B2 (en) 2014-08-08 2018-04-24 Dana-Farber Cancer Institute, Inc. Dihydropteridinone derivatives and uses thereof
US10308653B2 (en) 2014-08-08 2019-06-04 Dana-Farber Cancer Institute, Inc. Diazepane derivatives and uses thereof
AU2015314184B2 (en) * 2014-09-12 2018-09-13 Glaxosmithkline Intellectual Property (No.2) Limited Tetrahydroquinoline derivatives as bromodomain inhibitors
CN106687453A (zh) * 2014-09-12 2017-05-17 葛兰素史克知识产权第二有限公司 作为溴结构域抑制剂的四氢喹啉衍生物
CN106687453B (zh) * 2014-09-12 2019-07-19 葛兰素史克知识产权第二有限公司 作为溴结构域抑制剂的四氢喹啉衍生物
EA031679B1 (ru) * 2014-09-12 2019-02-28 Глаксосмитклайн Интеллекчуал Проперти (№2) Лимитед Производные тетрагидрохинолина в качестве ингибиторов бромодомена
US10059699B2 (en) 2014-09-12 2018-08-28 Glaxosmithkline Intellectual Property (No.2) Limited Tetrahydroquinoline derivatives as bromodomain inhibitors
TWI686389B (zh) * 2014-09-12 2020-03-01 英商葛蘭素史密斯克藍智慧財產權有限公司 新穎化合物
WO2016038120A1 (en) * 2014-09-12 2016-03-17 Glaxosmithkline Intellectual Property (No.2) Limited Tetrahydroquinoline derivatives as bromodomain inhibitors
US10618910B2 (en) 2014-09-15 2020-04-14 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US10227359B2 (en) 2014-09-15 2019-03-12 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US9834565B2 (en) 2014-09-15 2017-12-05 Incyte Corporation Tricyclic heterocycles as bet protein inhibitors
US9527864B2 (en) 2014-09-15 2016-12-27 Incyte Corporation Tricyclic heterocycles as BET protein inhibitors
US10124009B2 (en) 2014-10-27 2018-11-13 Tensha Therapeutics, Inc. Bromodomain inhibitors
WO2016138332A1 (en) 2015-02-27 2016-09-01 The Regents Of The University Of Michigan 9h-pyrimido [4,5-b] indoles as bet bromodomain inhibitors
US10307407B2 (en) 2015-02-27 2019-06-04 The Regents Of The University Of Michigan 9H-pyrimido [4,5-B] indoles as BET bromodomain inhibitors
WO2016139292A1 (en) 2015-03-05 2016-09-09 Glaxosmithkline Intellectual Property (No.2) Limited Pyridinone compound, pharmaceutical composition containing the same and use
EP3549939A1 (en) 2015-03-19 2019-10-09 GlaxoSmithKline Intellectual Property Development Limited Benzimidazole derivatives as bromodomain inhibitors
WO2016146755A1 (en) 2015-03-19 2016-09-22 Glaxosmithkline Intellectual Property Development Limited Covalent conjugates of bet inhibitors and alpha amino acid esters
WO2016196065A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Methods and compositions for assessing responsiveness of cancers to bet inhibitors
US10702527B2 (en) 2015-06-12 2020-07-07 Dana-Farber Cancer Institute, Inc. Combination therapy of transcription inhibitors and kinase inhibitors
WO2016203335A1 (en) 2015-06-18 2016-12-22 Pfizer Inc. Novel pyrido[2,3-b]pyrazinones as bet-family bromodomain inhibitors
WO2016210275A1 (en) 2015-06-26 2016-12-29 Tensha Therapeutics, Inc. Treatment of nut midline carcinoma
US11666580B2 (en) 2015-08-10 2023-06-06 Dana-Farber Cancer Institute, Inc. Mechanism of resistance to bet bromodomain inhibitors
US10881668B2 (en) 2015-09-11 2021-01-05 Dana-Farber Cancer Institute, Inc. Acetamide thienotriazolodiazepines and uses thereof
US11306105B2 (en) 2015-09-11 2022-04-19 Dana-Farber Cancer Institute, Inc. Cyano thienotriazolodiazepines and uses thereof
US11406645B2 (en) 2015-09-11 2022-08-09 Dana-Farber Cancer Institute, Inc. Acetamide thienotriazolodiazepines and uses thereof
WO2017050714A1 (en) 2015-09-22 2017-03-30 Glaxosmithkline Intellectual Property (No.2) Limited Pyridinone dicarboxamide for use as bromodomain inhibitors
US10858372B2 (en) 2015-10-29 2020-12-08 Incyte Corporation Amorphous solid form of a BET protein inhibitor
US10329305B2 (en) 2015-10-29 2019-06-25 Incyte Corporation Amorphous solid form of a BET protein inhibitor
US10913752B2 (en) 2015-11-25 2021-02-09 Dana-Farber Cancer Institute, Inc. Bivalent bromodomain inhibitors and uses thereof
US11548899B2 (en) 2016-02-15 2023-01-10 The Regents Of The University Of Michigan Fused 1,4-oxazepines and related analogs as BET bromodomain inhibitors
WO2017142881A1 (en) 2016-02-15 2017-08-24 The Regents Of The University Of Michigan Fused 1,4-oxazepines and related analogs as bet bromodomain inhibitors
US11192898B2 (en) 2016-04-06 2021-12-07 The Regents Of The University Of Michigan MDM2 protein degraders
WO2017176958A1 (en) 2016-04-06 2017-10-12 The Regents Of The University Of Michigan Monofunctional intermediates for ligand-dependent target protein degradation
WO2017174621A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property (No.2) Limited Pyridyl derivatives as bromodomain inhibitors
WO2017174620A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property (No.2) Limited Benzo[b]furans as bromodomain inhibitors
US10633386B2 (en) 2016-04-12 2020-04-28 The Regents Of The University Of Michigan BET protein degraders
WO2017180417A1 (en) 2016-04-12 2017-10-19 The Regents Of The University Of Michigan Bet protein degraders
US10633379B2 (en) 2016-04-15 2020-04-28 Abbvie Inc. Bromodomain inhibitors
CN115028617A (zh) * 2016-05-24 2022-09-09 基因泰克公司 Cbp/ep300的杂环抑制剂及其在治疗癌症中的用途
EP4067347A1 (en) * 2016-05-24 2022-10-05 Genentech, Inc. Heterocyclic inhibitors of cbp/ep300 for the treatment of cancer
WO2017202742A1 (en) 2016-05-24 2017-11-30 Glaxosmithkline Intellectual Property (No.2) Limited Pyridine dicarboxamide derivatives as bromodomain inhibitors
US11377446B2 (en) 2016-06-20 2022-07-05 Incyte Corporation Crystalline solid forms of a BET inhibitor
US10626114B2 (en) 2016-06-20 2020-04-21 Incyte Corporation Crystalline solid forms of a BET inhibitor
US10189832B2 (en) 2016-06-20 2019-01-29 Incyte Corporation Crystalline solid forms of a BET inhibitor
US11091480B2 (en) 2016-06-20 2021-08-17 Incyte Corporation Crystalline solid forms of a BET inhibitor
WO2018041947A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Intellectual Property (No.2) Limited Imidazole derivatives and their use in the treatment of autoimmune or inflammatory diseases or cancers
WO2018041964A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Intellectual Property (No.2) Limited Imidazole derivatives and their use in the treatment of autoimmune or inflammatory diseases or cancers
WO2018041946A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Intellectual Property Development Limited Crystalline hydrate of the compound (2s,3r)-isopropyl 2-(((2-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)-1-((tetrahydro-2h-pyran-4-yl)methyl)-1h-benzo[d]imidazol-5-yl)methyl)amino)-3-hydroxybutanoate edisylate
EP3858837A1 (en) 2016-09-13 2021-08-04 The Regents of The University of Michigan Fused 1,4-diazepines as bet protein degraders
US11466028B2 (en) 2016-09-13 2022-10-11 The Regents Of The University Of Michigan Fused 1,4-oxazepines as BET protein degraders
WO2018052949A1 (en) 2016-09-13 2018-03-22 The Regents Of The University Of Michigan Fused 1,4-diazepines as bet protein degraders
US10975093B2 (en) 2016-09-13 2021-04-13 The Regents Of The University Of Michigan Fused 1,4-diazepines as BET protein degraders
WO2018052945A1 (en) 2016-09-13 2018-03-22 The Regents Of The University Of Michigan Fused 1,4-oxazepines as bet protein degraders
WO2018144789A1 (en) 2017-02-03 2018-08-09 The Regents Of The University Of Michigan Fused 1,4-diazepines as bet bromodomain inhibitors
US11046709B2 (en) 2017-02-03 2021-06-29 The Regents Of The University Of Michigan Fused 1,4-diazepines as BET bromodomain inhibitors
WO2018158210A1 (en) 2017-03-01 2018-09-07 Glaxosmithkline Intellectual Property (N°.2) Limited Pyridyl derivatives as bromodomain inhibitors
US11267822B2 (en) 2017-09-13 2022-03-08 The Regents Of The University Of Michigan BET bromodomain protein degraders with cleavable linkers
WO2019055444A1 (en) 2017-09-13 2019-03-21 The Regents Of The University Of Michigan DEGRADATION AGENTS OF BROMODOMAIN BET PROTEIN WITH CLEAR BINDERS
WO2019068782A1 (en) 2017-10-06 2019-04-11 Glaxosmithkline Intellectual Property (No.2) Limited 2,3-DIHYDROBENZOFURANES AS BROMODOMAIN INHIBITORS
WO2019068783A1 (en) 2017-10-06 2019-04-11 Glaxosmithkline Intellectual Property (No.2) Limited BENZOFURAN DERIVATIVES AND THEIR USE AS BROMODOMAIN INHIBITORS
WO2020043821A1 (en) 2018-08-31 2020-03-05 Glaxosmithkline Intellectual Property (No.2) Limited Furan derivatives as bromodomain inhibitors
WO2021175824A1 (en) 2020-03-04 2021-09-10 Boehringer Ingelheim International Gmbh Method for administration of an anti cancer agent
WO2021175432A1 (en) 2020-03-04 2021-09-10 Boehringer Ingelheim International Gmbh Method for administration of an anti cancer agent
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
WO2023041744A1 (en) 2021-09-17 2023-03-23 Institut Curie Bet inhibitors for treating pab1 deficient cancer
WO2023205251A1 (en) 2022-04-19 2023-10-26 Nuevolution A/S Compounds active towards bromodomains
US12030882B2 (en) 2022-06-02 2024-07-09 Incyte Corporation Crystalline solid forms of a bet inhibitor

Also Published As

Publication number Publication date
ES2573706T3 (es) 2016-06-09
US8580957B2 (en) 2013-11-12
JP2013510125A (ja) 2013-03-21
GB0919434D0 (en) 2009-12-23
JP5819840B2 (ja) 2015-11-24
EP2496558A1 (en) 2012-09-12
EP2496558B1 (en) 2016-03-30
US20120208814A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
EP2496558B1 (en) Tetrahydroquinolines derivatives as bromodomain inhibitors
EP2496557B1 (en) Tetrahydroquinoline derivatives and their pharmaceutical use
EP2585465B1 (en) Benzotriazolodiazepine compounds inhibitors of bromodomains
EP2699551B1 (en) Tetrahydroquinoline derivatives useful as bromodomain inhibitors
EP2699550B1 (en) Tetrahydroquinoline derivatives useful as bromodomain inhibitors
EP2496945B1 (en) Novel process
EP2705032B1 (en) Dihydroquinoline derivatives as bromodomain inhibitors
JP5702396B2 (ja) ベンゾジアゼピンブロモドメイン阻害剤
EP2496580A1 (en) Benzodiazepine bromodomain inhibitor
EP2496576A1 (en) Imidazo [4, 5-c]quinoline derivates as bromodomain inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010771771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503947

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012537383

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE