WO2011052611A1 - 反転パターン形成方法及びポリシロキサン樹脂組成物 - Google Patents

反転パターン形成方法及びポリシロキサン樹脂組成物 Download PDF

Info

Publication number
WO2011052611A1
WO2011052611A1 PCT/JP2010/069010 JP2010069010W WO2011052611A1 WO 2011052611 A1 WO2011052611 A1 WO 2011052611A1 JP 2010069010 W JP2010069010 W JP 2010069010W WO 2011052611 A1 WO2011052611 A1 WO 2011052611A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polysiloxane
mask pattern
resin composition
pattern
Prior art date
Application number
PCT/JP2010/069010
Other languages
English (en)
French (fr)
Inventor
慧 出井
慶友 保田
長谷川 公一
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020127010842A priority Critical patent/KR101674703B1/ko
Publication of WO2011052611A1 publication Critical patent/WO2011052611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0331Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers for lift-off processes

Definitions

  • the polysiloxane resin composition is [A] Hydrolyzable silane compound represented by the following formula (1) (hereinafter also referred to as “compound (1)”) and hydrolyzable silane compound represented by the following formula (2) (hereinafter, “ A polysiloxane (hereinafter also referred to as “[A] polysiloxane”) obtained by hydrolytic condensation of at least one selected from the group consisting of “compound (2)”), and [B] the following formula ( 3) an organic solvent (hereinafter also referred to as “[B] organic solvent”) containing the compound represented by 3) (hereinafter also referred to as “compound (3)”).
  • a reversal pattern forming method comprising: (In the formula (1), R represents a hydrogen atom, a fluorine atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a cyano group, a cyanoalkyl group, an alkylcarbonyloxy group, an alkenyl group, or an aryl group.
  • X is a halogen atom or —OR 1 and R 1 is a monovalent organic group, a is an integer of 1 to 3, provided that when a plurality of R and X are present, they are the same as each other.
  • R ′ is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R ′′ is a hydrogen atom or a linear or branched alkyl group having 1 to 9 carbon atoms. (However, the total number of carbon atoms of R ′ and R ′′ is 4 to 10.)
  • the resin composition for forming the inversion pattern is formed first by a commonly used radiation-sensitive resin composition. Further, the embedding property between the mask patterns becomes good, and the reverse pattern formed by the present invention is more excellent in dry etching resistance.
  • the resin composition for forming the inversion pattern is between the mask patterns previously formed by the commonly used radiation-sensitive resin composition.
  • the reversal pattern formed by the present invention is further excellent in dry etching resistance.
  • the polysiloxane resin composition of the present invention comprises: [A] Obtained by hydrolytic condensation of at least one selected from the group consisting of a hydrolyzable silane compound represented by the following formula (1) and a hydrolyzable silane compound represented by the following formula (2). It contains polysiloxane and an organic solvent containing [B] a compound represented by the following formula (3).
  • R represents a hydrogen atom, a fluorine atom, a linear or branched alkyl group having 1 to 5 carbon atoms, a cyano group, a cyanoalkyl group, an alkylcarbonyloxy group, an alkenyl group, or an aryl group.
  • X is a halogen atom or —OR 1 , R 1 is a monovalent organic group, a is an integer of 1 to 3. When a plurality of R and X are present, They may be the same or different.)
  • R ′ is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R ′′ is a hydrogen atom or a linear or branched alkyl group having 1 to 9 carbon atoms. (However, the total number of carbon atoms of R ′ and R ′′ is 4 to 10.)
  • the polysiloxane resin composition of the present invention can be suitably used for forming a reverse pattern.
  • the polysiloxane resin composition is also excellent in storage stability.
  • the polysiloxane is a polysiloxane obtained by hydrolytic condensation of the hydrolyzable silane compound represented by the above formula (1) and the hydrolyzable silane compound represented by the above formula (2). Is preferred.
  • the polysiloxane resin composition is more excellent in storage stability and the like.
  • the reversal pattern forming method and the polysiloxane resin composition of the present invention suppress mixing with the mask pattern formed on the substrate to be processed, and can be embedded in the gap of the mask pattern well, and are resistant to dry etching. And excellent storage stability. Therefore, the present invention can be used very suitably for the manufacture of LSI, which is expected to be further miniaturized in the future, particularly for the formation of fine contact holes and the like.
  • the substrate to be processed in the step (i) for example, a silicon wafer, a wafer partially covered with aluminum, copper, silicon dioxide, or the like can be used.
  • an organic or inorganic type is used on this substrate to be processed.
  • An antireflection film may be formed in advance.
  • the method for applying the radiation-sensitive resin composition is not particularly limited, and examples thereof include appropriate application means such as spin coating, cast coating, and roll coating.
  • coating a radiation sensitive resin composition is not specifically limited,
  • the solvent in a coating film can be volatilized by preheating. This heating condition is appropriately adjusted depending on the composition of the radiation sensitive resin composition, but is usually about 30 to 200 ° C., preferably 50 to 150 ° C.
  • the thickness of the coating film obtained after drying is not particularly limited, but is usually 10 to 1000 nm, preferably 50 to 500 nm.
  • the radiation used for the exposure in the step (ii) includes visible light, ultraviolet light, far ultraviolet light, EUV (ultraviolet light), X, depending on the type of acid generator contained in the radiation-sensitive resin composition.
  • EUV ultraviolet light
  • X depending on the type of acid generator contained in the radiation-sensitive resin composition.
  • far ultraviolet rays represented by ArF excimer laser (wavelength 193 nm) or KrF excimer laser (wavelength 248 nm) are preferable.
  • EUV can be used to create a fine mask pattern.
  • exposure conditions, such as exposure amount are suitably selected according to the compounding composition of a radiation sensitive resin composition, the kind of additive, etc.
  • the exposure process may be performed through a mask having a predetermined design shape pattern.
  • the heating conditions are appropriately selected depending on the composition of the radiation sensitive resin composition, but the heating temperature is usually 30 to 200 ° C., preferably 50 to 170 ° C.
  • the heating time is usually 10 to 300 seconds, preferably 30 to 180 seconds.
  • Examples of the developer used for development in the step (iii) include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, Di-n-propylamine, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, Examples thereof include an alkaline aqueous solution in which at least one alkaline compound such as 1,5-diazabicyclo- [4.3.0] -5-nonene is dissolved, water, an organic solvent, and a mixture thereof.
  • alkaline aqueous solution in which at least one alkaline compound such as 1,5-diazabicyclo- [4.3.0] -5-n
  • alkaline aqueous solutions are preferred.
  • An appropriate amount of a surfactant or the like can be added to the developer composed of the alkaline aqueous solution.
  • the size of the mask pattern obtained in step (1) (for example, the line width in the case of a line and space pattern, the hole diameter in the case of a hole pattern, etc.) is usually 10 to 100 nm.
  • a fine mask pattern of 10 to 30 nm can be formed using immersion exposure or the like.
  • examples of the immersion liquid used for exposure include water and hydrocarbon-based inert liquids.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film.
  • excimer laser light wavelength 193 nm
  • water it is preferable to use water from the viewpoints of availability and easy handling in addition to the above-described viewpoints.
  • an additive that decreases the surface tension of water and increases the surface activity may be added in a small proportion.
  • This additive is preferably one that does not dissolve the coating layer on the wafer and can ignore the influence on the optical coating on the lower surface of the lens.
  • the water used is preferably distilled water.
  • step (1) double exposure and double patterning can be used in step (1).
  • the said light source may use the same light source or a different light source, it is preferable to use ArF excimer laser light for the 1st exposure.
  • the first mask pattern forming step refers to a step of forming a mask pattern on a substrate by (1) steps (i) to (iii) in the mask pattern forming step.
  • the step of forming the second mask pattern means a step of forming a mask pattern different from the first pattern by the steps (i) to (iii) in the mask pattern forming step after forming the first mask pattern.
  • the second mask pattern includes a case where the second mask pattern is formed at a different position through a mask having the same design shape pattern as the first mask pattern.
  • region through the mask of the design shape pattern from which a 1st mask pattern and a 2nd mask pattern differ is also included.
  • the first mask pattern formed by the steps (i) to (iii) in the above (1) mask pattern forming step is preferably subjected to insolubilization treatment for the radiation sensitive resin composition for forming the second mask pattern.
  • the insolubilization treatment include baking treatment on the first mask pattern at a temperature of 120 ° C. or higher, preferably 140 ° C. or higher, and / or irradiation with radiation, preferably irradiation with light having a wavelength of 300 nm or less. It is done. More specific exposure conditions include radiation irradiation with an exposure amount 2 to 20 times the optimum exposure amount for forming the first mask pattern.
  • the method of heating on the temperature conditions higher than the temperature of the post-exposure bake (Post Exposure Bake: PEB) which is the heating process after the exposure in the case of 1st mask pattern formation can be mentioned.
  • the surface of the first mask pattern may be coated with an insolubilized resin composition and cured by baking or exposure to form an insolubilized film.
  • the insolubilized resin composition include a resin containing a hydroxyl group-containing resin and an alcohol solvent and having a property of being insolubilized by baking.
  • a resin comprising a monomer having an amide bond in the molecule and a monomer having a hydroxyl group, a monohydric alcohol having 1 to 8 carbon atoms, and, if necessary, a crosslinking component can be mentioned.
  • An insolubilized first mask pattern can be formed by applying the insolubilized resin composition, baking or exposing, and then washing the residual composition as necessary. These insolubilization treatments may be performed alone or in combination of two or more.
  • the second mask pattern is formed by applying the radiation-sensitive resin composition onto the substrate on which the first mask pattern is formed, and by the same method as steps (i) to (iii) in the above (1) mask pattern forming step. can do.
  • steps (i) to (iii) in the above (1) mask pattern forming step. can do.
  • the first mask pattern is inactivated or insolubilized, mixing between the radiation sensitive resin composition for forming the second mask pattern and the first mask pattern does not occur.
  • a finer mask pattern can be formed by forming the second mask pattern in the space portion of the first mask pattern.
  • Step (2) a polysiloxane resin composition for forming a reverse pattern is embedded in the gap between the mask patterns.
  • the polysiloxane resin composition of the present invention is formed on the substrate to be processed on the substrate to be processed by an appropriate application means such as spin coating, cast coating, roll coating or the like. And is embedded in the gap of the mask pattern.
  • the polysiloxane resin composition of the present invention used in this step (2) will be described in detail later.
  • the drying means is not specifically limited,
  • the organic solvent in a composition can be volatilized by baking.
  • the firing conditions are appropriately adjusted depending on the composition of the resin composition, but the firing temperature is usually 80 to 250 ° C., preferably 80 to 200 ° C.
  • the firing temperature is 80 to 180 ° C.
  • the heating time is usually 10 to 300 seconds, preferably 30 to 180 seconds.
  • the thickness of the pattern reversal resin film obtained after drying is not particularly limited, but is usually 10 to 1000 nm, preferably 50 to 500 nm.
  • Step (3) the mask pattern is removed and an inverted pattern is formed. Specifically, first, a planarization process is preferably performed to expose the upper surface of the mask pattern. Next, the mask pattern is removed by dry etching or dissolution and a predetermined reverse pattern is obtained.
  • a planarization method used in the planarization process an etching method such as dry etch back or wet etch back, a CMP method, or the like can be used. Among these, dry etch back and wet etch back methods using a fluorine-based gas or the like are preferable at a low cost.
  • the processing conditions in the planarization processing are not particularly limited, and can be adjusted as appropriate.
  • dry etching is preferable for removing the mask pattern, and specifically, oxygen etching, ozone etching, or the like is preferably used.
  • a known resist stripping apparatus such as an oxygen plasma ashing apparatus or an ozone ashing apparatus can be used.
  • the etching process conditions are not particularly limited and can be adjusted as appropriate.
  • step (1) as shown in FIG. 1 (a), a radiation-sensitive resin composition is applied on the substrate 1 on which the antireflection film 2 is formed, followed by a drying step by heating or the like. A predetermined film thickness 3 is formed. Then, after exposure by irradiation with radiation or the like is performed on a desired area of the coating film 3 through a mask having a predetermined design shape pattern, a mask pattern 31 is formed by development (FIG. 1B). )reference).
  • step (2) as shown in FIG.
  • the resin composition is formed on the substrate 1 on which the mask pattern 31 is formed so that the resin composition is embedded in the gaps of the mask pattern 31.
  • An object is applied, and a pattern reversal resin film 4 is formed through a drying process such as heating.
  • planarization is performed by means such as an etch back method or a CMP method so that the upper surface of the coating film 31 is exposed.
  • the reverse pattern 41 is formed by removing the mask pattern 31 by dry etching (see FIG. 1E).
  • the silicon atom content measured by SIMS method is preferably 30% by mass or more and 46.7% by mass or less, and 40% by mass or more and 46.7% by mass. It is more preferable that the amount is not more than mass%. Further, the content of carbon atoms is preferably 1% by mass or more and 50% by mass or less, and more preferably 1% by mass or more and 30% by mass or less. When the content of silicon atoms is less than 30% by mass, resistance to dry etching using oxygen gas and ozone gas may be reduced.
  • the storage stability of the polysiloxane may be extremely lowered.
  • the elemental composition of the silicon dioxide film measured by SIMS is 46.75% by mass for silicon atoms, 53.25% by mass for oxygen atoms, and 0% by mass for carbon atoms.
  • the polysiloxane resin composition of the present invention contains [A] polysiloxane and [B] organic solvent. Moreover, [C] hardening accelerator is included as a suitable component. Furthermore, as long as the effects of the present invention are not impaired, other optional components may be contained.
  • the polysiloxane resin composition of the present invention is particularly preferably used in the above-described reversal pattern forming method of the present invention, but is not limited thereto. It is also suitably used for a planarizing material. Each component is described in detail below.
  • the polysiloxane is obtained by hydrolytic condensation of at least one selected from the group consisting of the compound (1) represented by the above formula (1) and the compound (2) represented by the above formula (2).
  • the compound (1) and the compound (2) may be used alone or in combination of several.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by R in the above formula (1) include a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group; And branched alkyl groups such as an isobutyl group, a sec-butyl group, a t-butyl group, and an isoamyl group. Note that some or all of the hydrogen atoms of these alkyl groups may be substituted with fluorine atoms or the like.
  • Examples of the cyanoalkyl group include a cyanoethyl group and a cyanopropyl group.
  • Examples of the alkylcarbonyloxy group include a methylcarbonyloxy group, an ethylcarbonyloxy group, a propylcarbonyloxy group, and a butylcarbonyloxy group.
  • alkenyl group examples include groups represented by the following formula (4).
  • n is an integer of 0 to 4.
  • n is an integer of 0 to 4, preferably 0 or 1, more preferably 0.
  • alkenyl group other than the group represented by the above formula (4) include 1-butenyl group, 1-pentenyl group, 1-hexenyl group and the like.
  • aryl group examples include a phenyl group, a naphthyl group, a methylphenyl group, an ethylphenyl group, a chlorophenyl group, a bromophenyl group, a fluorophenyl group, a benzyl group, a phenethyl group, and a methoxyphenyl group.
  • X in the above formulas (1) and (2) is a halogen atom such as a fluorine atom or a chlorine atom, or —OR 1 , and preferably —OR 1 .
  • the monovalent organic group in R 1 include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, and the like.
  • Preferred are an alkyl group of 1 to 4, an aryl group such as a phenyl group, and a silyl group such as a dimethylsilyl group.
  • a in the above formula (1) is an integer of 1 to 3, and preferably 1 or 2.
  • the compound (1) represented by the above formula (1) include, for example, phenyltrimethoxysilane, benzyltrimethoxysilane, phenethyltrimethoxysilane, 4-methylphenyltrimethoxysilane, 4-ethylphenyltrimethoxy Silane, 4-methoxyphenyltrimethoxysilane, 4-phenoxyphenyltrimethoxysilane, 4-hydroxyphenyltrimethoxysilane, 4-aminophenyltrimethoxysilane, 4-dimethylaminophenyltrimethoxysilane, 4-acetylaminophenyltrimethoxy Silane, 3-methylphenyltrimethoxysilane, 3-ethylphenyltrimethoxysilane, 3-methoxyphenyltrimethoxysilane, 3-phenoxyphenyltrimethoxysilane, 3-hydroxyphenyltrimethoxy Silane, 3-aminophenyltrimethoxys
  • the compound (2) represented by the above formula (2) include, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, and tetra-n-butoxysilane. Tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetraphenoxysilane, tetrachlorosilane and the like. Among these, tetramethoxysilane and tetraethoxysilane are preferable because an inverted pattern with excellent dry etching resistance can be obtained.
  • the polysiloxane is preferably obtained by hydrolytic condensation of the compound (1) and the compound (2).
  • the compounds exemplified above as compounds (1) and (2) are preferably used in combination.
  • a hydrolyzable silane compound for obtaining a polysiloxane a hydrolyzable silane compound represented by the following general formula (5) (hereinafter referred to as the compound (1) and (2)) as necessary. , Also referred to as “compound (5)”).
  • R 2 and R 5 are each independently a hydrogen atom, a fluorine atom, an alkoxyl group, a linear or branched alkyl group having 1 to 5 carbon atoms, a cyano group, a cyanoalkyl group, or .
  • R 3 alkylcarbonyl group are each independently a monovalent .
  • R 4 is an organic group, an arylene group, a methylene group, or .R 4 is an alkylene group having 2 to 10 carbon atoms A plurality thereof may be the same or different, b represents an integer of 0 to 3, and m represents an integer of 1 to 20.
  • Examples of the alkoxyl group represented by R 2 and R 5 in the above formula (5) include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a 2-methylpropoxy group, and 1-methyl.
  • Propoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n- A decyloxy group etc. can be mentioned.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group. Note that some or all of the hydrogen atoms of these alkyl groups may be substituted with fluorine atoms or the like.
  • Examples of the cyanoalkyl group include a cyanoethyl group and a cyanopropyl group.
  • Examples of the alkylcarbonyloxy group include a methylcarbonyloxy group, an ethylcarbonyloxy group, a propylcarbonyloxy group, and a butylcarbonyloxy group.
  • Examples of the monovalent organic group represented by R 3 in the above formula (5) include groups having a cyclic ether structure such as an alkyl group, an alkoxyl group, an aryl group, an alkenyl group, and a glycidyl group. Among these, an alkyl group, an alkoxyl group, and an aryl group are preferable.
  • Examples of the alkyl group include linear or branched alkyl groups having 1 to 5 carbon atoms, and examples of the linear or branched alkyl groups having 1 to 5 carbon atoms represented by R 2 and R 5 above. The thing similar to what was done can be mentioned.
  • alkoxyl group examples include linear or branched alkoxyl groups having 1 to 10 carbon atoms. Specific examples thereof include the same groups as those exemplified as the alkoxyl group represented by R 2 and R 5 above.
  • aryl group examples include phenyl group, naphthyl group, methylphenyl group, benzyl group, phenethyl group, ethylphenyl group, chlorophenyl group, bromophenyl group, and fluorophenyl group. Among these, a phenyl group is preferable.
  • alkenyl group examples include a vinyl group, a 1-propenyl group, a 2-propenyl group (allyl group), a 3-butenyl group, a 3-pentenyl group, and a 3-hexenyl group.
  • R 4 there are a plurality the plurality of R 4 each may be the same or may be different.
  • the arylene group for R 4 in the above formula (5) is preferably an arylene group having 6 to 10 carbon atoms. Examples thereof include a phenylene group, a naphthylene group, methylphenylene, ethylphenylene, chlorophenylene group, bromophenylene group, and fluorophenylene group. Examples of the alkylene group having 2 to 10 carbon atoms include an ethylene group, a propylene group, and a butylene group.
  • b is an integer of 0 to 3, preferably 1 or 2.
  • M is an integer of 1 to 20, preferably 5 to 15, and more preferably 5 to 10.
  • the compound (5) include hexamethoxydisilane, hexaethoxydisilane, hexaphenoxydisilane, 1,1,1,2,2-pentamethoxy-2-methyldisilane, 1,1,1,2,2- Pentaethoxy-2-methyldisilane, 1,1,1,2,2-pentaphenoxy-2-methyldisilane, 1,1,1,2,2-pentamethoxy-2-ethyldisilane, 1,1,1, 2,2-pentaethoxy-2-ethyldisilane, 1,1,1,2,2-pentaphenoxy-2-ethyldisilane, 1,1,1,2,2-pentamethoxy-2-phenyldisilane, 1, 1,1,2,2-pentaethoxy-2-phenyldisilane, 1,1,1,2,2-pentaethoxy-2-phenyldisilane, 1,1,2,2-tetramethoxy-1,2-dimethyl Rudisilane, 1,1,2,2-tetrae
  • polycarbosilanes such as polydimethoxymethylcarbosilane and polydiethoxymethylcarbosilane are exemplified.
  • Compound (5) may be used alone or in combination of two or more.
  • polysiloxane may be contained only 1 type in the resin composition in this invention, and may be contained 2 or more types.
  • the molecular weight of the polysiloxane is preferably from 2,000 to 100,000, more preferably from 2,000 to 50,000, particularly preferably from 2,000 to 30 in terms of polystyrene-reduced weight average molecular weight by size exclusion chromatography. , 000.
  • the molecular weight of [A] polysiloxane in this specification uses a GPC column manufactured by Tosoh Corporation (trade name “G2000HXL”, product name “G3000HXL”, product name “G4000HXL” 1), Measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under analysis conditions of flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, column temperature: 40 ° C.
  • GPC gel permeation chromatography
  • the method for synthesizing the [A] polysiloxane of the present invention is not particularly limited as long as at least one selected from the compound (1) and the compound (2) is hydrolytically condensed.
  • the compound (1), Compound (2), if necessary, compound (5), etc. are dissolved in an organic solvent, and this solution and water are mixed intermittently or continuously, and the presence of the catalyst is usually conducted at a temperature of 0 to 100 ° C. Below, it hydrolyzes and condenses, [A] polysiloxane is obtained.
  • the catalyst may be dissolved or dispersed in an organic solvent in advance, or may be dissolved or dispersed in the added water.
  • the organic solvent used when synthesizing [A] polysiloxane is not particularly limited as long as it is a solvent used for this type of application.
  • the catalyst include metal chelate compounds, organic acids, inorganic acids, organic bases, and inorganic bases. Of these, metal chelate compounds, organic acids, and inorganic acids are preferred.
  • the proportion of the compound (1) in the whole hydrolyzable silane compound is preferably 1 to 99 mol%, more preferably 10 to 95 mol%, particularly preferably 20 to 90 mol%.
  • the proportion of compound (2) is preferably 1 to 99 mol%, more preferably 5 to 90 mol%, and particularly preferably 10 to 80 mol%.
  • the organic solvent contains a compound represented by the above formula (3).
  • the organic solvent is not particularly limited as long as it can dissolve polysiloxane and does not dissolve a mask pattern formed in advance on a substrate to be processed.
  • R ′ is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R ′′ is a hydrogen atom or a linear or branched alkyl group having 1 to 9 carbon atoms, provided that the total number of carbon atoms of R ′ and R ′′ is 4 to 10.
  • Compound (3) is an alkyl alcohol or alkyl ether having 4 to 10 carbon atoms.
  • Examples of the linear or branched alkyl group represented by R ′ and R ′′ include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, etc.
  • R ′ and R in the above formula (3) The total number of carbon atoms of "" is 4 to 10, preferably 4 to 8.
  • Examples of the compound (3) include 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol and 2-ethyl.
  • Examples include alkyl alcohols such as 1-butanol, 2,4-dimethyl-3-pentanol, 4-methyl-2-pentanol, and 3-methyl-2-pentanol.
  • 1-butanol, 2 -Butanol, 4-methyl-2-pentanol, 3-methyl-2-pentanol and 2-methyl-2-propanol are preferred.
  • a compound (3) may be used independently or may be used in mixture of 2 or more types.
  • the organic solvent may be a mixed solvent of the compound (3) and another solvent.
  • Other solvents include, for example, monohydric alcohols other than compound (3), polyhydric alcohols, alkyl ethers of polyhydric alcohols, alkyl ether acetates of polyhydric alcohols, ethers other than compound (3), Examples include cyclic ethers, higher hydrocarbons, aromatic hydrocarbons, ketones, esters, fluorine-based solvents, and water.
  • Examples of monohydric alcohols other than compound (3) include methanol, ethanol, n-propanol, iso-propanol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl alcohol, and phenylmethylcarbyl. Examples thereof include diol, diacetone alcohol, cresol and the like. Examples of polyhydric alcohols include ethylene glycol and propylene glycol.
  • Polyalkyl alcohol alkyl ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether. , Propylene glycol monomethyl ether, propylene glycol monoethyl ether, and the like.
  • polyhydric alcohol alkyl ether acetates examples include ethylene glycol ethyl ether acetate, diethylene glycol ethyl ether acetate, propylene glycol ethyl ether acetate, and propylene glycol monomethyl ether acetate.
  • Ethers other than the compound (3) include cyclopentyl methyl ether, cyclohexyl methyl ether, cyclopentyl ethyl ether, cyclohexyl ethyl ether, cyclopentyl propyl ether, cyclopentyl-2-propyl ether, cyclohexyl propyl ether, cyclohexyl-2-propyl ether, cyclopentyl Examples include butyl ether, cyclopentyl-tert-butyl ether, cyclohexyl butyl ether, cyclohexyl-tert-butyl ether, and the like.
  • Examples of cyclic ethers include tetrahydrofuran and dioxane.
  • Examples of higher hydrocarbons include decane, dodecane, and undecane.
  • Examples of aromatic hydrocarbons include benzene, toluene, xylene and the like.
  • Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
  • Esters include ethyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2- Mention may be made of methyl hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate and methyl 3-ethoxypropionate.
  • fluorine-based solvent examples include perfluoroalkanes such as perfluorohexane and perfluoroheptane or perfluorocycloalkanes, perfluoroalkenes having a double bond in a part of these, further perfluorotetrahydrofuran, perfluoro-2- Examples thereof include perfluoro cyclic ethers such as butyltetrahydrofuran, and perfluorotetrabutylamine, perfluorotetrapentylamine, and perfluorotetrahexylamine. Of these, monohydric alcohols, ethers, cyclic ethers, polyhydric alcohol alkyl ethers, polyhydric alcohol alkyl ether acetates, and higher hydrocarbons are preferred.
  • the ratio of the other solvent which can be mixed is 30 mass% or less with respect to the mixed solvent whole quantity, and 20 mass% or less is more preferable. If it is 30% by mass or more, a problem of mixing with the coating film occurs, which is not preferable.
  • the polysiloxane resin composition of the present invention further contains a [C] curing accelerator in addition to the essential components [A] polysiloxane and [B] organic solvent.
  • the curing accelerator include an acid generating compound that generates an acid upon irradiation with ultraviolet light and / or heating (hereinafter also referred to as “acid generator”), and a base generating compound that generates a base upon irradiation with ultraviolet light. (Hereinafter also referred to as “base generator”) is preferred.
  • the acid generator examples include a compound that generates an acid by heat treatment (hereinafter also referred to as “thermal acid generator”) and a compound that generates an acid by performing an ultraviolet light irradiation treatment (hereinafter “photoacid generation”). And so on.).
  • the thermal acid generator is a compound that generates an acid by heating to 50 to 450 ° C., preferably 200 to 350 ° C. Examples thereof include onium salts such as sulfonium salts, benzothiazolium salts, ammonium salts, and phosphonium salts.
  • the sulfonium salt include 4-acetophenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimonate, dimethyl- Alkylsulfonium salts such as 4- (benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate; Benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate,
  • benzothiazolium salt examples include 3-benzylbenzothiazolium hexafluoroantimonate, 3-benzylbenzothiazolium hexafluorophosphate, 3-benzylbenzothiazolium tetrafluoroborate, 3- (p- Benzylbenzothiazolium such as methoxybenzyl) benzothiazolium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazolium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazolium hexafluoroantimonate Salt.
  • 2,4,4,6-tetrabromocyclohexadienone may be mentioned as a thermal acid generator other than the above.
  • 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimony Nate, 4-acetoxyphenylbenzylsulfonium hexafluoroantimonate, 3-benzylbenzothiazolium hexafluoroantimonate and the like are preferably used.
  • these commercially available products include Sun-Aid SI-L85, SI-L110, SI-L145, SI-L150, SI-L160 (manufactured by Sanshin Chemical Industry Co., Ltd.).
  • the photoacid generator is a compound that generates an acid upon irradiation with ultraviolet light of usually 1 to 100 mJ / cm 2 , preferably 10 to 50 mJ / cm 2 .
  • the photoacid generator include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium pyrenesulfonate, diphenyliodonium dodecylbenzenesulfonate, diphenyliodonium nonafluoro n-butanesulfonate, bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-tert-butylphenyl) iodonium dodecylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium naphthalenesulfonate, bis (4-tert-butylphenyl) iodonium
  • these acid generators may be used independently and may be used in combination of 2 or more type.
  • the content of the acid generator is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the solid content of [A] polysiloxane.
  • the base generator is not particularly limited, and examples thereof include triphenylsulfonium compounds, triphenylmethanol; photoactive carbamates such as benzylcarbamate and benzoincarbamate; o-carbamoylhydroxylamide, o-carbamoyloxime, aroma Examples include tic sulfonamides, alpha-lactams, and amides such as N- (2-allylethynyl) amide; oxime esters, ⁇ -aminoacetophenone, cobalt complexes, and the like.
  • a photobase generator (F1) represented by the following formula (f1): 2-nitrobenzylcyclohexylcarbamate, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, N- (2-nitro Benzyloxycarbonyl) pyrrolidine, bis [[(2-nitrobenzyl) oxy] carbonyl] hexane 1,6-diamine, a carbamate photobase generator (F2); triphenylmethanol, o-carbamoylhydroxylamide, o -Carbamoyloxime, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butanone, hexaammine Baltic (III) tris (triamino
  • R 41 to R 43 each independently represents an alkyl group, an alkoxy group or a halogen atom; n 1 to n 3 each independently represents an integer of 0 to 3.
  • the alkyl group represented by R 41 to R 43 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably a linear or branched alkyl group, a methyl group, an ethyl group Particularly preferred are a group, a propyl group, an n-butyl group and a tert-butyl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 5 carbon atoms, more preferably a linear or branched alkoxy group, and particularly preferably a methoxy group or an ethoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among them, a fluorine atom is most preferable.
  • n 1 to n 3 are each independently an integer of 0 to 3, preferably 0 to 1 each independently. In particular, it is more preferable that all of n 1 to n 3 are 0.
  • a preferred specific example of the photobase generator (F1) is a compound represented by the following formula (f1-1).
  • the photobase generators (F2) 2-nitrobenzyl cyclohexyl carbamate is most preferable from the viewpoint of the effect of the present invention.
  • these acid generators may be used independently and may be used in combination of 2 or more type.
  • the content of the acid generator is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the solid content of [A] polysiloxane.
  • the polysiloxane resin composition of the present invention includes a surfactant, a crosslinking agent as optional components. An agent or the like can be contained.
  • An antireflection film material (Nissan Chemical Co., Ltd., ARC29) was applied to the surface of the silicon wafer by a spin coater, and then dried on a hot plate at 205 ° C. for 1 minute to form an antireflection film having a thickness of 77 nm (lower layer) What formed the film
  • a radiation sensitive resin composition manufactured by JSR, AR230JN was applied on the antireflection film and dried at 126 ° C. for 90 seconds. The film thickness of the coating film obtained at this time was controlled to 205 nm.
  • an ArF excimer laser (wavelength: 193 nm) was passed through a quartz reduction projection mask for forming a 0.100 ⁇ m 1: 1 line and space pattern,
  • the substrate on which the coating film was formed was irradiated with 17 mJ / cm 2 .
  • the substrate was then heated at 126 ° C. for 90 seconds.
  • development processing was performed with a 2.38% tetramethylammonium hydroxide aqueous solution for 40 seconds to obtain a 1: 1 line and space mask pattern having a height of 73 nm and 0.100 ⁇ m on the substrate.
  • a polysiloxane resin composition for pattern inversion is applied to the surface of the silicon wafer using a spin coater under the conditions of a rotational speed of 2,000 rpm and 20 seconds, and then on a hot plate at 120 ° C. for 1 minute. By drying, a pattern reversal resin film was formed. Next, the obtained film for pattern reversal was measured at 9 points using an optical film thickness meter (manufactured by KLA-Tencor, model number “UV-1280SE”), and the average film thickness was measured. Asked. Moreover, after each composition was stored at 40 ° C. for 1 week, a resin film was formed in the same manner as described above, the film thickness was measured, and the average film thickness was determined.
  • a resin film is formed by applying each composition on the surface of a silicon wafer using a spin coater under the conditions of a rotational speed of 2000 rpm for 20 seconds and then drying on a hot plate at 200 ° C. for 1 minute. did.
  • the content ratio of silicon (Si) and carbon (C) in the resin film was measured using SIMS (PHI ADEPT-1010 manufactured by ULVAC-PHI Co., Ltd.), and the average value of the measured values in the depth direction was calculated. It was set as the content rate.
  • Example 23 A reverse pattern was formed using the polysiloxane resin composition of Example 1 of the present invention. A description will be given with reference to FIG.
  • An antireflection film material (Nissan Chemical Co., Ltd., ARC29) was applied to the surface of the silicon wafer by a spin coater, and then dried on a hot plate at 205 ° C. for 1 minute to form an antireflection film having a thickness of 77 nm (lower layer) What formed the film
  • a radiation sensitive resin composition manufactured by JSR, AR230JN was applied on the antireflection film and dried at 126 ° C. for 90 seconds.
  • the film thickness of the coating film obtained at this time was controlled to 205 nm. Thereafter, using an ArF excimer laser irradiation apparatus (Nikon Corporation), an ArF excimer laser (wavelength: 193 nm) was passed through a quartz mask for forming a 1: 1 line and space pattern of 0.100 ⁇ m. The formed substrate was irradiated with 17 mJ / cm 2 . The substrate was then heated at 126 ° C. for 90 seconds. Thereafter, development processing was performed with a 2.38% tetramethylammonium hydroxide aqueous solution for 40 seconds to obtain a 0.100 ⁇ m 1: 1 line and space mask pattern on the substrate as shown in FIG. .
  • the reverse pattern forming resin composition of Example 1 is applied onto the mask pattern and the gap between the mask patterns at a rotation speed of 150 nm in film thickness by a spin coater, and is baked at 160 ° C. for 1 minute. As a result, a resin film as shown in FIG. 1C was formed. At this time, the film thickness of the reverse pattern forming resin was 210 nm. Thereafter, the surface of the resin film was dry-etched using plasma made of a mixed gas of CF 4 / O 2 in an RIE apparatus. Etching was performed until the surface of the mask pattern 31 was exposed as shown in FIG. 1 (d) (dry etch back). As a result, as shown in FIG.
  • the inversion pattern forming resin film could be left only in the gap between the mask patterns 31. Further, dry etching was performed using plasma made of a mixed gas of N 2 / O 2 in the RIE apparatus to obtain an inversion pattern as shown in FIG. At this time, the height dimension of the reverse pattern was about 180 nm, and was a rectangular shape.
  • Double exposure method A 12-inch silicon wafer in which a lower antireflection film "ARC66” (manufactured by Brewer Science) having a film thickness of 105 nm was formed on the surface of a silicon wafer was used. “ARX2014J” (manufactured by JSR) was applied on the antireflection film using “CLEAN TRACK ACT12” (manufactured by Tokyo Electron), and dried at 90 ° C. for 60 seconds. The resist film thickness at this time was controlled to 100 nm.
  • a liquid immersion upper layer film material “NFC TCX091-7” (manufactured by JSR) was applied onto the formed resist film and dried at 90 ° C. for 60 seconds. At this time, the film thickness of the liquid immersion upper layer film was controlled to 30 nm. Thereafter, using an ArF excimer laser irradiation apparatus “S610C” (manufactured by Nikon Corporation), irradiation was performed under a condition of a first exposure of 16 mJ / cm 2 through a quartz mask for forming a 40 nm 1: 1 line and space pattern. .
  • the surface of the ARC66 film is formed.
  • a resin film having a thickness of 150 nm was formed.
  • the substrate was immersed in a 0.5% tetramethylammonium hydroxide aqueous solution for 30 seconds, so that the surface of the mask pattern formed in advance was exposed on the polysiloxane surface (wet etch back).
  • dry etching was performed in the RIE apparatus using plasma made of a mixed gas of N 2 / O 2 to obtain a reverse pattern.
  • the inverted pattern was a fine hole pattern in which holes with a diameter of about 40 nm ⁇ were formed at equal intervals.
  • Double patterning method A 12-inch silicon wafer in which a lower antireflection film “ARC66” (manufactured by Brewer Science) having a film thickness of 105 nm was formed on the surface of a silicon wafer was used.
  • “ARX3520JN” manufactured by JSR
  • CLAN TRACK ACT12 manufactured by Tokyo Electron
  • irradiation was performed under a condition of an exposure amount of 23 mJ / cm 2 through a quartz mask for forming a 40 nm 1: 3 line and space pattern.
  • the substrate was heated at 105 ° C. for 60 seconds, and developed with a 2.38% tetramethylammonium hydroxide aqueous solution for 30 seconds to form a first mask pattern having a height of 85 nm and a line width of 40 nm.
  • the mask pattern formation substrate was heated at 150 ° C. for 1 minute to insolubilize the first mask pattern.
  • the polysiloxane resin composition of the present invention can be satisfactorily embedded in the gap between the mask patterns without mixing with the mask pattern formed on the substrate to be processed, In addition, it is excellent in dry etching resistance and storage stability. Therefore, the present invention can be used very suitably for the manufacture of LSI, which is expected to be further miniaturized in the future, particularly for forming fine contact holes and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 被加工基板上に形成されたマスクパターンとミキシングすることがなく、かつこのマスクパターンの間隙に良好に埋め込むことができ、ドライエッチング耐性及び保存安定性に優れる反転パターン形成用のポリシロキサン樹脂組成物及びこれを用いた反転パターン形成方法の提供を目的とする。本発明は、(1)被加工基板上にマスクパターンを形成するマスクパターン形成工程(2)上記マスクパターンの間隙に、ポリシロキサン樹脂組成物を埋め込む埋込工程、及び(3)上記マスクパターンを除去し、反転パターンを形成する反転パターン形成工程を有する反転パターン形成方法であって、上記ポリシロキサン樹脂組成物が、特定構造を有する[A]ポリシロキサン及び特定構造を有する[B]有機溶媒を含有することを特徴とする反転パターン形成方法である。

Description

反転パターン形成方法及びポリシロキサン樹脂組成物
 本発明は、反転パターン形成方法及びポリシロキサン樹脂組成物に関する。
 半導体用素子等を製造する際のパターン形成においては、リソグラフィー技術、エッチング技術等を適用する反転パターン形成法により、有機材料又は無機材料よりなる基板のさらなる微細加工が提案されている(特許文献1参照)。
 しかしながら、回路基板における半導体素子等の高集積化が進むにつれて、被加工基板上に形成されるマスクパターンが微細化し、且つこのパターンの間隙の容積も小さくなっているため、従来のパターン形成方法に用いられている反転パターン形成用材料では、被加工基板上に形成されたマスクパターンの間隙に、良好に埋め込むことが困難となってきている。そのため、埋め込み性により優れる反転パターン形成用材料が求められている。また、このような反転パターン形成用材料は、被加工基板上に形成されたマスクパターンとインターミキシングしないことが必要であり、且つドライエッチング耐性及び保存安定性等にも優れていることが求められており、これら全てを満足する反転パターン形成用樹脂組成物は未だ提案されていないのが現状である。
特開2002-110510号公報
 本発明は、このような課題を克服するためになされたものであり、その目的は、被加工基板上に形成されたマスクパターンとミキシングすることがなく、さらにこのマスクパターンの間隙に良好に埋め込むことができ、且つドライエッチング耐性に優れる反転パターン形成方法を提供することである。
 上記課題を解決するためになされた発明は、
 (1)被加工基板上にマスクパターンを形成するマスクパターン形成工程、
 (2)上記マスクパターンの間隙に、ポリシロキサン樹脂組成物を埋め込む埋込工程、及び
 (3)上記マスクパターンを除去し、反転パターンを形成する反転パターン形成工程
を有する反転パターン形成方法であって、
 上記ポリシロキサン樹脂組成物が、
 [A]下記式(1)で表される加水分解性シラン化合物(以下、「化合物(1)」ともいう。)、及び下記式(2)で表される加水分解性シラン化合物(以下、「化合物(2)」ともいう。)からなる群より選ばれる少なくとも1種を加水分解縮合させて得られるポリシロキサン(以下、「[A]ポリシロキサン」ともいう。)、並びに
 [B]下記式(3)で表される化合物(以下、「化合物(3)」ともいう。)を含む有機溶媒(以下、「[B]有機溶媒」ともいう。)
を含有することを特徴とする反転パターン形成方法である。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは水素原子、フッ素原子、炭素数1~5の直鎖状若しくは分岐鎖状のアルキル基、シアノ基、シアノアルキル基、アルキルカルボニルオキシ基、アルケニル基、又はアリール基である。Xはハロゲン原子又は-ORであり、Rは1価の有機基である。aは1~3の整数である。但し、R及びXがそれぞれ複数存在する場合は、互いに同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Xは上記式(1)と同義である。)
Figure JPOXMLDOC01-appb-C000009
(式(3)中、R’は炭素数1~10の直鎖状又は分岐状のアルキル基である。R”は水素原子又は炭素数1~9の直鎖状若しくは分岐状のアルキル基である。但し、R’とR”の炭素数の合計は、4~10である。)
 本発明の反転パターン形成方法によると、反転パターン形成用のポリシロキサン樹脂組成物が、一般的に用いられる感放射線性樹脂組成物により先に形成されたマスクパターンとインターミキシングすることがなく、上記マスクパターンの間隙に良好に埋め込むことができる。また、本発明により形成された反転パターンは、ドライエッチング耐性にも優れる。なお、「マスクパターン」とは、基板上を所定のパターンで部分的に被覆したものを意味し、例えばライン・アンド・スペースパターン、ホールパターン等が該当する。
 [A]ポリシロキサンが、上記式(1)で表される加水分解性シラン化合物、及び上記式(2)で表される加水分解性シラン化合物を加水分解縮合させて得られるポリシロキサンであることが好ましい。
 [A]ポリシロキサンが化合物(1)及び化合物(2)の加水分解縮合物であると、反転パターン形成用の樹脂組成物は、一般的に用いられる感放射線性樹脂組成物により先に形成されたマスクパターン間への埋め込み性が良好となり、また、本発明により形成された反転パターンは、ドライエッチング耐性にもより優れる。
 上記式(1)及び(2)におけるXが-ORであることが好ましい。但し、Rは上記式(1)と同義である。
 上記式(1)及び(2)におけるXが-ORであると、反転パターン形成用の樹脂組成物は、一般的に用いられる感放射線性樹脂組成物により先に形成されたマスクパターン間への埋め込み性が良好となり、また、本発明により形成された反転パターンは、ドライエッチング耐性にもさらに優れる。
 形成された反転パターンのSIMS法にて測定した珪素原子含有量が30質量%以上46.7質量%以下であり、炭素原子含有量が1質量%以上50質量%以下であることが好ましい。元素組成が上記範囲内であると、得られる反転パターンは、ドライエッチング耐性に優れると共に、塗膜の表面の平担化加工も容易となる。
 (1)マスクパターン形成工程が、
 (i)被加工基板上に感放射線性樹脂組成物を塗布及び乾燥し、塗膜を形成する塗膜形成工程、
 (ii)上記塗膜上の所定の領域に放射線を照射する露光工程、及び
 (iii)上記露光された塗膜を現像する現像工程
を含むことが好ましい。
 (ii)露光工程が連続して複数回行われることが好ましい。本発明の反転パターン形成方法によれば、上記ダブルエクスポージャー等により形成されるさらに微細なマスクパターンの間隙においても、反転パターンを良好に形成することができる。
 (1)マスクパターン形成工程が、繰り返し行われ、第一マスクパターンの形成工程と、第一マスクパターンとは異なる第二マスクパターンの形成工程とを有することが好ましい。本発明の反転パターン形成方法によれば、上記ダブルパターニングにより得られるさらに微細なマスクパターンの間隙においても、反転パターンを良好に形成することができる。
 本発明のポリシロキサン樹脂組成物は、
 [A]下記式(1)で表される加水分解性シラン化合物、及び下記式(2)で表される加水分解性シラン化合物からなる群より選ばれる少なくとも1種を加水分解縮合させて得られるポリシロキサン、並びに
 [B]下記式(3)で表される化合物を含む有機溶媒
を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Rは水素原子、フッ素原子、炭素数1~5の直鎖状若しくは分岐鎖状のアルキル基、シアノ基、シアノアルキル基、アルキルカルボニルオキシ基、アルケニル基、又はアリール基である。Xはハロゲン原子又は-ORであり、Rは1価の有機基である。aは1~3の整数である。なお、R及びXは、それぞれ複数存在する場合は、互いに同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000011
(式(2)中、Xは上記式(1)と同義である。)
Figure JPOXMLDOC01-appb-C000012
(式(3)中、R’は炭素数1~10の直鎖状又は分岐状のアルキル基である。R”は水素原子又は炭素数1~9の直鎖状若しくは分岐状のアルキル基である。但し、R’とR”の炭素数の合計は、4~10である。)
 本発明のポリシロキサン樹脂組成物は、反転パターン形成用に好適に用いることができる。当該ポリシロキサン樹脂組成物は保存安定性にも優れる。
 [A]ポリシロキサンが、上記式(1)で表される加水分解性シラン化合物、及び上記式(2)で表される加水分解性シラン化合物を加水分解縮合させて得られるポリシロキサンであることが好ましい。[A]ポリシロキサンが上記特定構造を有すると、当該ポリシロキサン樹脂組成物は保存安定性等により優れる。
 [A]ポリシロキサンのサイズ排除クロマトグラフィによるポリスチレン換算の重量平均分子量が2,000以上100,000以下であることが好ましい。[A]ポリシロキサンが上記サイズであると、当該ポリシロキサン樹脂組成物は保存安定性等にさらに優れる。
 [C]硬化促進剤をさらに含有することが好ましい。硬化促進剤を加えることにより、マスクパターンの間隙に埋め込んだポリシロキサンの硬化が低温でも進行し、埋め込み後の焼成条件を緩和することで、転写形状をより良好に保持することができる。
 本発明の反転パターン形成方法及びポリシロキサン樹脂組成物は、被加工基板上に形成されたマスクパターンとのミキシングが抑制され、且つこのマスクパターンの間隙に良好に埋め込むことができると共に、ドライエッチング耐性及び保存安定性に優れている。従って、本発明は、今後更に微細化が進行するとみられるLSIの製造、特に微細なコンタクトホール等の形成に極めて好適に使用することができる。
反転パターンの形成方法を説明する模式図である。
 以下、本発明の実施の形態について詳細に説明する。
<反転パターンの形成方法>
 本発明の反転パターン形成方法は、 (1)被加工基板上にマスクパターンを形成するマスクパターン形成工程(以下、「工程(1)」ともいう。)、
 (2)上記マスクパターンの間隙に、ポリシロキサン樹脂組成物を埋め込む埋込工程(以下、「工程(2)」ともいう。)、及び
 (3)上記マスクパターンを除去し、反転パターンを形成する反転パターン形成工程(以下、「工程(3)」ともいう。)
を有する。以下各工程について詳述する。
[工程(1)]
 本工程では、被加工基板上にマスクパターンが形成される。このマスクパターンの形成方法は特に限定されず、公知のフォトリソグラフィ工程を用いて形成することができる。例えば、
 (i)被加工基板上に感放射線性樹脂組成物を塗布し、乾燥させて塗膜を形成する塗膜形成工程、
 (ii)上記塗膜上の所定の領域に放射線を照射して露光する露光工程、及び
 (iii)上記露光された塗膜を現像する現像工程により形成することができる。
 上記工程(i)における被加工基板としては、例えば、シリコンウェハ、アルミニウム、銅、二酸化シリコンで部分被覆したウェハ等を用いることができる。なお、この被加工基板上には、後述の感放射線性樹脂組成物の潜在能力を最大限に引き出すため、特公平6-12452号公報等に開示されているように、有機系又は無機系の反射防止膜を予め形成しておいてもよい。
 上記感放射線性樹脂組成物としては、例えば、酸発生剤等を含有する化学増幅型のレジスト組成物等を、適当な溶媒中に、例えば0.1~20質量%の固形分濃度となるように溶解したのち、例えば孔径30nm程度のフィルターでろ過して調製されたものを使用することができる。なお、ArF用レジスト組成物やKrF用レジスト組成物等の市販されているレジスト組成物をそのまま使用することもできる。また、この感放射線性樹脂組成物は、ポジ型であってもよいし、ネガ型であってもよい。
 上記感放射線性樹脂組成物の塗布方法は特に限定されず、例えば、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段が挙げられる。また、感放射線性樹脂組成物を塗布した後の乾燥手段は特に限定されないが、例えば、予備加熱することにより、塗膜中の溶剤を揮発させることができる。この加熱条件は、感放射線性樹脂組成物の配合組成によって適宜調整されるが、通常、30~200℃程度、好ましくは50~150℃である。更に、乾燥後に得られる上記塗膜の厚みは特に限定されないが、通常、10~1000nmであり、好ましくは50~500nmである。
 上記工程(ii)における露光に使用される放射線としては、感放射線性樹脂組成物に含有される酸発生剤等の種類に応じて、可視光線、紫外線、遠紫外線、EUV(超紫外線)、X線、荷電粒子線等から適宜選定されるが、ArFエキシマレーザ(波長193nm)或いはKrFエキシマレーザー(波長248nm)で代表される遠紫外線が好ましい。また、微細マスクパターンの作成には、EUVを用いることもできる。また、露光量等の露光条件は、感放射線性樹脂組成物の配合組成や添加剤の種類等に応じて適宜選定される。また、露光処理は所定の設計形状パターンを有するマスクを介して行ってもよい。更に、上記露光後には、加熱処理を行うことが好ましい。この加熱処理により、樹脂成分中の酸解離性基の解離反応が円滑に進行させることができる。この加熱条件は、感放射線性樹脂組成物の配合組成によって適宜選択されるが、加熱温度は通常、30~200℃、好ましくは50~170℃である。また、加熱時間は通常10~300秒間、好ましくは30~180秒間である。
 上記工程(iii)における現像に使用される現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液や、水、有機溶剤およびこれらの混合物を挙げることができる。これらのうち、アルカリ性水溶液が好ましい。また、上記アルカリ性水溶液からなる現像液には、界面活性剤等を適量添加することもできる。なお、アルカリ性水溶液からなる現像液で現像したのちは、一般に、水で洗浄して乾燥する。
 工程(1)で得られるマスクパターンのサイズ(例えば、ライン・アンド・スペースパターンの場合は線幅、ホールパターンの場合はホール径等)は、通常、10~100nmである。なお、例えば10~30nmの微細マスクパターンについては、液浸露光等を用いて作成することができる。
 なお、露光の際に用いられる液浸液としては水や炭化水素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤を僅かな割合で添加しても良い。この添加剤は、ウェハ上の塗膜層を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 さらに、工程(1)においては、ダブルエクスポージャー、ダブルパターニングを用いることもできる。
 ダブルエクスポージャーとは、上記工程(i)の後の工程(ii)において、所望の設計形状パターンのマスクによる露光を2回以上行う方法である。その場合、露光は連続して行うことが好ましい。例えば所望の領域にライン・アンド・スペースパターンマスクを介して第1の縮小投影露光を行い、続けて第1の露光により形成したラインパターンの潜像に対してラインが交差するように、好ましくは直交するように第2の縮小投影露光を行う。この露光方法により、ポジ型感放射線性樹脂組成物の場合、露光部で囲まれた未露光部において柱状(ピラー状)マスクパターンを形成することができる。
 なお、上記複数回の露光は、同じ光源を用いても、異なる光源を用いても良いが、1回目の露光には、ArFエキシマレーザー光を用いることが好ましい。
 ダブルパターニングとは、(1)マスクパターン形成工程が繰り返し行われ、第一マスクパターンの形成工程と、第一マスクパターンとは異なる第二マスクパターンの形成工程とを有するマスクパターン形成方法をいう。
 第一マスクパターンの形成工程とは、はじめに、(1)マスクパターン形成工程における工程(i)~(iii)により基板上にマスクパターンを形成する工程のことをいう。第二マスクパターンの形成工程とは、第一マスクパターンを形成した後に、(1)マスクパターン形成工程における工程(i)~(iii)により第一パターンとは異なるマスクパターンを形成する工程をいう。このとき、第二マスクパターンにおいて、第一マスクパターンと同じ設計形状パターンのマスクを介して、異なる位置に第二マスクパターンを形成する場合も含まれる。また、第一マスクパターンと第二マスクパターンとが異なる設計形状パターンのマスクを介して同じ領域にマスクパターンを形成する場合も含まれる。
 上記(1)マスクパターン形成工程における工程(i)~(iii)により形成した第一マスクパターンは、第二マスクパターン形成用の感放射線性樹脂組成物に対する不溶化処理が施されることが好ましい。不溶化処理としては、例えば、第一マスクパターンに対する、120℃以上、好ましくは140℃以上の温度でのベーク処理、及び/又は、放射線の照射、好ましくは300nm以下の波長の光の照射処理が挙げられる。より具体的な暴露条件としては、第一マスクパターンを形成するための最適露光量の2~20倍の露光量での放射線照射等を挙げることができる。また、加熱条件としては、第一マスクパターン形成の際の露光後の加熱工程であるポストエクスポージャーベーク(Post Exposure Bake:PEB)の温度よりも高い温度条件下で加熱する方法を挙げることができる。
 また、第一マスクパターンの表面に不溶化樹脂組成物をコーティングし、ベーク又は露光により硬化させて不溶化膜を形成してもよい。不溶化樹脂組成物としては、例えば、水酸基を有する樹脂とアルコール溶媒を含有し、ベークにより不溶化する性質を有するものが挙げられる。具体的には、分子内にアミド結合を有する単量体と水酸基を有する単量体から構成される樹脂、炭素数1~8の1価のアルコール、及び必要に応じて架橋成分を含有するものを挙げることができる。不溶化樹脂組成物を塗布し、ベーク又は露光した後、必要に応じて残留組成物を洗浄することにより、不溶化された第一マスクパターンを形成することができる。
 これらの不溶化処理は、1種のみを行ってもよく2種以上行っても良い。
 第二マスクパターンは、感放射線性樹脂組成物を第一マスクパターンが形成された基板上に塗布し、上記(1)マスクパターン形成工程における工程(i)~(iii)と同様の方法により形成することができる。上述のように、第一マスクパターンは不活性化又は不溶化されているため、第二マスクパターン形成用の感放射線性樹脂組成物と第一マスクパターンとのミキシングは起こらない。例えば、第二マスクパターンを第一マスクパターンのスペース部分に形成することで、より微細なマスクパターン形成が可能となる。
 上記方法により、ライン・アンド・スペースパターン及びホールパターン共に、マスクパターンの微細化を行うことが可能になる。
[工程(2)]
 本工程では、上記マスクパターンの間隙に反転パターン形成用のポリシロキサン樹脂組成物が埋め込まれる。具体的には、上記マスクパターンが形成された被加工基板上に、本発明のポリシロキサン樹脂組成物が、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、上記被加工基板上に塗布されて、上記マスクパターンの間隙に埋め込まれる。なお、この工程(2)で用いられる本発明のポリシロキサン樹脂組成物については、後段で詳細を説明する。
 また、本工程においては、ポリシロキサン樹脂組成物を上記マスクパターンの間隙に埋め込んだ後に、乾燥工程を設けることが好ましい。上記乾燥手段は特に限定されないが、例えば、焼成することにより、組成物中の有機溶剤を揮発させることができる。この焼成条件は、樹脂組成物の配合組成によって適宜調整されるが、焼成温度は通常80~250℃、好ましくは80~200℃である。この焼成温度が、80~180℃である場合には、後述の平坦化工程、特にウェットエッチバック法による平坦化加工を円滑に行うことができる。なお、この加熱時間は通常10~300秒間、好ましくは30~180秒間である。また、乾燥後に得られるパターン反転用樹脂膜の厚みは特に限定されないが、通常10~1000nmであり、好ましくは50~500nmである。
[工程(3)]
 本工程では、上記マスクパターンが除去され、反転パターンが形成される。具体的には、まず、好ましくは上記マスクパターンの上表面を露出するための平坦化加工が行われる。次いで、ドライエッチング又は溶解除去により上記マスクパターンが除去され、所定の反転パターンが得られる。上記平坦化加工で利用される平坦化法としては、ドライエッチバック、ウェットエッチバック等のエッチング法や、CMP法等を用いることができる。これらのなかでも、フッ素系ガス等を用いたドライエッチバック、ウェットエッチバック法が低コストで好ましい。なお、平坦化加工における加工条件は特に限定されず、適宜調整できる。また、マスクパターン除去にはドライエッチングが好ましく、具体的には、酸素エッチング、オゾンエッチング等が好ましく用いられる。上記ドライエッチングには、酸素プラズマ灰化装置、オゾンアッシング装置等の公知のレジスト剥離装置を用いることができる。なお、エッチング加工条件は特に限定されず、適宜調整できる。
 以下、上記工程(1)、(2)及び(3)を有する本発明の反転パターン形成方法の具体的な例を、図1を用いて説明する。
 上記工程(1)では、図1の(a)に示すように、反射防止膜2が形成された被加工基板1上に、感放射線性樹脂組成物が塗布され、加熱等による乾燥工程を経て所定膜厚塗膜3が形成される。そして、塗膜3の所用領域に、所定の設計形状パターンのマスクを介して放射線等の照射による露光が行われた後、現像されることによってマスクパターン31が形成される(図1の(b)参照)。
 次いで、上記工程(2)では、図1の(c)に示すように、マスクパターン31の間隙に樹脂組成物が埋め込まれるように、マスクパターン31が形成された被加工基板1上に樹脂組成物が塗布され、加熱等による乾燥工程を経てパターン反転用樹脂膜4が形成される。
 その後、上記工程(3)では、図1の(d)に示すように、塗膜31の上表面が露出するように、エッチバック法やCMP法等の手段により平坦化加工が行われる。次いで、ドライエッチングにより、マスクパターン31が除去されることで、反転パターン41が形成される(図1の(e)参照)。
 本発明の反転パターン形成方法により得られる反転パターンは、SIMS法にて測定した珪素原子の含有量が、30質量%以上46.7質量%以下であることが好ましく、40質量%以上46.7質量%以下であることがより好ましい。また、炭素原子の含有量が、1質量%以上50質量%以下であることが好ましく、1質量%以上30質量%以下であることがより好ましい。珪素原子の含有量が30質量%未満であると、酸素ガス及びオゾンガスを用いたドライエッチングへの耐性が低下する場合がある。また、珪素原子の含有量46.7質量%を超える場合や炭素原子の含有量が1質量%未満である場合は、ポリシロキサンの保存安定性が極度に低下する可能性がある。
 なお、参考までに二酸化珪素膜のSIMS法にて測定した元素組成は、珪素原子が46.75質量%、酸素原子が53.25質量%、炭素原子が0質量%である。
<ポリシロキサン樹脂組成物>
 本発明のポリシロキサン樹脂組成物は、[A]ポリシロキサン及び[B]有機溶媒を含有する。また好適成分として[C]硬化促進剤を含む。さらに本発明の効果を損なわない限り、他の任意成分を含有していてもよい。本発明のポリシロキサン樹脂組成物は、上述の本発明の反転パターン形成方法において特に好適に用いられるものであるが、それに限らず、層間絶縁膜材料、反射防止膜材料、基板平坦化のための平坦化材にも好適に用いられる。以下に各成分について詳述する。
<[A]ポリシロキサン>
 [A]ポリシロキサンは、上記式(1)で表される化合物(1)及び上記式(2)で表される化合物(2)からなる群より選ばれる少なくとも1種を、加水分解縮合させて得られるものであり、化合物(1)及び化合物(2)は、それぞれ1種でも数種を混合して用いてもよい。
 上記式(1)におけるRが表す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等の直鎖状のアルキル基;イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、イソアミル基等の分岐状のアルキル基が挙げられる。なお、これらのアルキル基が有する水素原子の一部又は全部は、フッ素原子等で置換されていてもよい。
 シアノアルキル基としては、シアノエチル基、シアノプロピル基等が挙げられる。
 アルキルカルボニルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、ブチルカルボニルオキシ基等が挙げられる。
 アルケニル基としては、下記式(4)で表される基が好ましいものとして挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式(4)中、nは0~4の整数である。)
 上記式(4)におけるnは、0~4の整数であり、好ましくは0又は1の整数、更に好ましくは0である。
 また、上記式(4)で表される基以外のアルケニル基としては、例えば1-ブテニル基、1-ペンテニル基、1-ヘキセニル基等が挙げられる。
 アリール基としては、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基、ベンジル基、フェネチル基、メトキシフェニル基等が挙げられる。
 上記式(1)及び(2)におけるXは、フッ素原子、塩素原子等のハロゲン原子又は-ORであり、-ORであることが好ましい。このRにおける1価の有機基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基等の炭素数1~4のアルキル基、フェニル基等のアリール基、ジメチルシリル基等のシリル基が好ましいものとして挙げられる。更に、上記式(1)におけるaは1~3の整数であり、1又は2であることが好ましい。
 上記式(1)で表される化合物(1)の具体例としては、例えば、フェニルトリメトキシシラン、ベンジルトリメトキシシラン、フェネチルトリメトキシシラン、4-メチルフェニルトリメトキシシラン、4-エチルフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-フェノキシフェニルトリメトキシシラン、4-ヒドロキシフェニルトリメトキシシラン、4-アミノフェニルトリメトキシシラン、4-ジメチルアミノフェニルトリメトキシシラン、4-アセチルアミノフェニルトリメトキシシラン、3-メチルフェニルトリメトキシシラン、3-エチルフェニルトリメトキシシラン、3-メトキシフェニルトリメトキシシラン、3-フェノキシフェニルトリメトキシシラン、3-ヒドロキシフェニルトリメトキシシラン、3-アミノフェニルトリメトキシシラン、3-ジメチルアミノフェニルトリメトキシシラン、3-アセチルアミノフェニルトリメトキシシラン、2-メチルフェニルトリメトキシシラン、2-エチルフェニルトリメトキシシラン、2-メトキシフェニルトリメトキシシラン、2-フェノキシフェニルトリメトキシシラン、2-ヒドロキシフェニルトリメトキシシラン、2-アミノフェニルトリメトキシシラン、2-ジメチルアミノフェニルトリメトキシシラン、2-アセチルアミノフェニルトリメトキシシラン、2,4,6-トリメチルフェニルトリメトキシシラン、4-メチルベンジルトリメトキシシラン、4-エチルベンジルトリメトキシシラン、4-メトキシベンジルトリメトキシシラン、4-フェノキシベンジルトリメトキシシラン、4-ヒドロキシベンジルトリメトキシシラン、4-アミノベンジルトリメトキシシラン、4-ジメチルアミノベンジルトリメトキシシラン、4-アセチルアミノベンジルトリメトキシシラン等の芳香環含有トリアルコキシシラン;
 メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリ-iso-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、メチルトリ-tert-ブトキシシラン、メチルトリフェノキシシラン、メチルトリアセトキシシラン、メチルトリクロロシラン、メチルトリイソプロペノキシシラン、メチルトリス(ジメチルシロキシ)シラン、メチルトリス(メトキシエトキシ)シラン、メチルトリス(メチルエチルケトキシム)シラン、メチルトリス(トリメチルシロキシ)シラン、メチルシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ-n-プロポキシシラン、エチルトリ-iso-プロポキシシラン、エチルトリ-n-ブトキシシラン、エチルトリ-sec-ブトキシシラン、エチルトリ-tert-ブトキシシラン、エチルトリフェノキシシラン、エチルビストリス(トリメチルシロキシ)シラン、エチルジクロロシラン、エチルトリアセトキシシラン、エチルトリクロロシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリ-n-プロポキシシラン、n-プロピルトリ-iso-プロポキシシラン、n-プロピルトリ-n-ブトキシシラン、n-プロピルトリ-sec-ブトキシシラン、n-プロピルトリ-tert-ブトキシシラン、n-プロピルトリフェノキシシラン、n-プロピルトリアセトキシシラン、n-プロピルトリクロロシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、iso-プロピルトリ-n-プロポキシシラン、iso-プロピルトリ-iso-プロポキシシラン、iso-プロピルトリ-n-ブトキシシラン、iso-プロピルトリ-sec-ブトキシシラン、iso-プロピルトリ-tert-ブトキシシラン、iso-プロピルトリフェノキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ブチルトリ-n-プロポキシシラン、n-ブチルトリ-iso-プロポキシシラン、n-ブチルトリ-n-ブトキシシラン、n-ブチルトリ-sec-ブトキシシラン、n-ブチルトリ-tert-ブトキシシラン、n-ブチルトリフェノキシシラン、n-ブチルトリクロロシラン、2-メチルプロピルトリメトキシシラン、2-メチルプロピルトリエトキシシラン、2-メチルプロピルトリ-n-プロポキシシラン、2-メチルプロピルトリ-iso-プロポキシシラン、2-メチルプロピルトリ-n-ブトキシシラン、2-メチルプロピルトリ-sec-ブトキシシラン、2-メチルプロピルトリ-tert-ブトキシシラン、2-メチルプロピルトリフェノキシシラン、1-メチルプロピルトリメトキシシラン、1-メチルプロピルトリエトキシシラン、1-メチルプロピルトリ-n-プロポキシシラン、1-メチルプロピルトリ-iso-プロポキシシラン、1-メチルプロピルトリ-n-ブトキシシラン、1-メチルプロピルトリ-sec-ブトキシシラン、1-メチルプロピルトリ-tert-ブトキシシラン、1-メチルプロピルトリフェノキシシラン、tert-ブチルトリメトキシシラン、tert-ブチルトリエトキシシラン、tert-ブチルトリ-n-プロポキシシラン、tert-ブチルトリ-iso-プロポキシシラン、tert-ブチルトリ-n-ブトキシシラン、tert-ブチルトリ-sec-ブトキシシラン、tert-ブチルトリ-tert-ブトキシシラン、tert-ブチルトリフェノキシシラン、tert-ブチルトリクロロシラン、tert-ブチルジクロロシラン等のアルキルトリアルコキシシラン類;
 ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ-n-プロポキシシラン、ビニルトリイソプロポキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、ビニルトリ-tert-ブトキシシラン、ビニルトリフェノキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ-n-プロポキシシラン、アリルトリイソプロポキシシラン、アリルトリ-n-ブトキシシラン、アリルトリ-sec-ブトキシシラン、アリルトリ-tert-ブトキシシラン、アリルトリフェノキシシラン等のアルケニルトリアルコキシシラン類;
等が挙げられる。
 これらのなかでも、反応性、物質の取り扱い容易性の観点から、4-メチルフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-メチルベンジルトリメトキシシランメチルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリ-iso-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ-n-プロポキシシラン、エチルトリ-iso-プロポキシシラン、エチルトリ-n-ブトキシシラン、エチルトリ-sec-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリ-n-プロポキシシラン、n-プロピルトリ-iso-プロポキシシラン、n-プロピルトリ-n-ブトキシシラン、n-プロピルトリ-sec-ブトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン等が好ましい。
 また、上記式(2)で表される化合物(2)の具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ブトキシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラフェノキシシラン、テトラクロロシラン等が挙げられる。
 これらのなかでも、テトラメトキシシラン及びテトラエトキシシランが、ドライエッチング耐性に優れた反転パターンが得られるため好ましい。
 [A]ポリシロキサンは、化合物(1)と化合物(2)とを加水分解縮合して得られるものであることが好ましい。好ましくは化合物(1)及び化合物(2)について好ましいものとして上記に例示した化合物同士を組み合わせて用いるのがよい。
 [A]ポリシロキサンを得るための加水分解性シラン化合物としては、必要に応じて、化合物(1)及び(2)以外にも、下記一般式(5)で表わされる加水分解性シラン化合物(以下、「化合物(5)」ともいう。)を併用してもよい。
Figure JPOXMLDOC01-appb-C000014
 (式(5)において、R及びRは、それぞれ独立に、水素原子、フッ素原子、アルコキシル基、炭素数1~5の直鎖状若しくは分岐状のアルキル基、シアノ基、シアノアルキル基、又はアルキルカルボニルオキシ基である。Rは、それぞれ独立して、1価の有機基である。Rは、アリーレン基、メチレン基、又は炭素数2~10のアルキレン基である。Rが複数存在する場合はそれぞれ同一でも異なっていてもよい。bは0~3の整数を示し、mは1~20の整数である。)
 上記式(5)のR及びRが表すアルコキシル基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等を挙げることができる。
 また、炭素数1~5の直鎖状若しくは分岐状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。なお、これらのアルキル基が有する水素原子の一部又は全部は、フッ素原子等に置換されていてもよい。
 シアノアルキル基としては、シアノエチル基、シアノプロピル基等が挙げられる。
 アルキルカルボニルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、ブチルカルボニルオキシ基等が挙げられる。
 上記式(5)のRが表す1価の有機基としては、アルキル基、アルコキシル基、アリール基、アルケニル基、グリシジル基等の環状エーテル構造を有する基等が挙げられる。これらのなかでも、アルキル基、アルコキシル基、アリール基でが好ましい。
 上記アルキル基としては、炭素数1~5の直鎖状若しくは分岐状のアルキル基が挙げられ、上記R及びRが表す炭素数1~5の直鎖状若しくは分岐状のアルキル基として例示したものと同様のものを挙げることができる。なお、これらのアルキル基が有する水素原子の一部又は全部は、フッ素原子等に置換されていてもよい。
 上記アルコキシル基としては、炭素数1~10の直鎖状又は分岐状のアルコキシル基が挙げられる。具体的には、上記R及びRが表すアルコキシル基として例示したものと同様の基を挙げることができる。 上記アリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基、フェネチル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基等が挙げられる。これらのなかでも、フェニル基が好ましい。
 上記アルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基(アリル基)、3-ブテニル基、3-ペンテニル基、3-ヘキセニル基等が挙げられる。
 なお、Rが複数存在する場合、複数のRは、それぞれ、同一であっても、異なっていてもよい。
 上記式(5)のRにおけるアリーレン基としては、炭素数6~10のアリーレン基が好ましい。例えば、フェニレン基、ナフチレン基、メチルフェニレン、エチルフェニレン、クロロフェニレン基、ブロモフェニレン基、フルオロフェニレン基等が挙げられる。
 また、炭素数2~10のアルキレン基としては、エチレン基、プロピレン基、ブチレン基等が挙げられる。
 上記式(5)におけるbは、0~3の整数であり、好ましくは1又は2である。
 また、mは、1~20の整数であり、好ましくは5~15であり、更に好ましくは5~10である。
 化合物(5)の具体例としては、ヘキサメトキシジシラン、ヘキサエトキシジシラン、ヘキサフェノキシジシラン、1,1,1,2,2-ペンタメトキシ-2-メチルジシラン、1,1,1,2,2-ペンタエトキシ-2-メチルジシラン、1,1,1,2,2-ペンタフェノキシ-2-メチルジシラン、1,1,1,2,2-ペンタメトキシ-2-エチルジシラン、1,1,1,2,2-ペンタエトキシ-2-エチルジシラン、1,1,1,2,2-ペンタフェノキシ-2-エチルジシラン、1,1,1,2,2-ペンタメトキシ-2-フェニルジシラン、1,1,1,2,2-ペンタエトキシ-2-フェニルジシラン、1,1,1,2,2-ペンタフェノキシ-2-フェニルジシラン、1,1,2,2-テトラメトキシ-1,2-ジメチルジシラン、1,1,2,2-テトラエトキシ-1,2-ジメチルジシラン、1,1,2,2-テトラフェノキシ-1,2-ジメチルジシラン、1,1,2,2-テトラメトキシ-1,2-ジエチルジシラン、1,1,2,2-テトラエトキシ-1,2-ジエチルジシラン、1,1,2,2-テトラフェノキシ-1,2-ジエチルジシラン、1,1,2,2-テトラメトキシ-1,2-ジフェニルジシラン、1,1,2,2-テトラエトキシ-1,2-ジフェニルジシラン、1,1,2,2-テトラフェノキシ-1,2-ジフェニルジシラン、
 1,1,2-トリメトキシ-1,2,2-トリメチルジシラン、1,1,2-トリエトキシ-1,2,2-トリメチルジシラン、1,1,2-トリフェノキシ-1,2,2-トリメチルジシラン、1,1,2-トリメトキシ-1,2,2-トリエチルジシラン、1,1,2-トリエトキシ-1,2,2-トリエチルジシラン、1,1,2-トリフェノキシ-1,2,2-トリエチルジシラン、1,1,2-トリメトキシ-1,2,2-トリフェニルジシラン、1,1,2-トリエトキシ-1,2,2-トリフェニルジシラン、1,1,2-トリフェノキシ-1,2,2-トリフェニルジシラン、1,2-ジメトキシ-1,1,2,2-テトラメチルジシラン、1,2-ジエトキシ-1,1,2,2-テトラメチルジシラン、1,2-ジフェノキシ-1,1,2,2-テトラメチルジシラン、1,2-ジメトキシ-1,1,2,2-テトラエチルジシラン、1,2-ジエトキシ-1,1,2,2-テトラエチルジシラン、1,2-ジフェノキシ-1,1,2,2-テトラエチルジシラン、1,2-ジメトキシ-1,1,2,2-テトラフェニルジシラン、1,2-ジエトキシ-1,1,2,2-テトラフェニルジシラン、1,2-ジフェノキシ-1,1,2,2-テトラフェニルジシラン;
 ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ-n-プロポキシシリル)メタン、ビス(トリ-イソプロポキシシリル)メタン、ビス(トリ-n-ブトキシシリル)メタン、ビス(トリ-sec-ブトキシシリル)メタン、ビス(トリ-tert-ブトキシシリル)メタン、1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,2-ビス(トリ-n-プロポキシシリル)エタン、1,2-ビス(トリ-イソプロポキシシリル)エタン、1,2-ビス(トリ-n-ブトキシシリル)エタン、1,2-ビス(トリ-sec-ブトキシシリル)エタン、1,2-ビス(トリ-tert-ブトキシシリル)エタン、1-(ジメトキシメチルシリル)-1-(トリメトキシシリル)メタン、1-(ジエトキシメチルシリル)-1-(トリエトキシシリル)メタン、1-(ジ-n-プロポキシメチルシリル)-1-(トリ-n-プロポキシシリル)メタン、1-(ジ-イソプロポキシメチルシリル)-1-(トリ-イソプロポキシシリル)メタン、1-(ジ-n-ブトキシメチルシリル)-1-(トリ-n-ブトキシシリル)メタン、1-(ジ-sec-ブトキシメチルシリル)-1-(トリ-sec-ブトキシシリル)メタン、1-(ジ-tert-ブトキシメチルシリル)-1-(トリ-tert-ブトキシシリル)メタン、1-(ジメトキシメチルシリル)-2-(トリメトキシシリル)エタン、1-(ジエトキシメチルシリル)-2-(トリエトキシシリル)エタン、1-(ジ-n-プロポキシメチルシリル)-2-(トリ-n-プロポキシシリル)エタン、1-(ジ-イソプロポキシメチルシリル)-2-(トリ-イソプロポキシシリル)エタン、1-(ジ-n-ブトキシメチルシリル)-2-(トリ-n-ブトキシシリル)エタン、1-(ジ-sec-ブトキシメチルシリル)-2-(トリ-sec-ブトキシシリル)エタン、1-(ジ-tert-ブトキシメチルシリル)-2-(トリ-tert-ブトキシシリル)エタン、
 ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、ビス(ジ-n-プロポキシメチルシリル)メタン、ビス(ジ-イソプロポキシメチルシリル)メタン、ビス(ジ-n-ブトキシメチルシリル)メタン、ビス(ジ-sec-ブトキシメチルシリル)メタン、ビス(ジ-tert-ブトキシメチルシリル)メタン、1,2-ビス(ジメトキシメチルシリル)エタン、1,2-ビス(ジエトキシメチルシリル)エタン、1,2-ビス(ジ-n-プロポキシメチルシリル)エタン、1,2-ビス(ジ-イソプロポキシメチルシリル)エタン、1,2-ビス(ジ-n-ブトキシメチルシリル)エタン、1,2-ビス(ジ-sec-ブトキシメチルシリル)エタン、1,2-ビス(ジ-tert-ブトキシメチルシリル)エタン、ビス(ジメチルメトキシシリル)メタン、ビス(ジメチルエトキシシリル)メタン、ビス(ジメチル-n-プロポキシシリル)メタン、ビス(ジメチル-イソプロポキシシリル)メタン、ビス(ジメチル-n-ブトキシシリル)メタン、ビス(ジメチル-sec-ブトキシシリル)メタン、ビス(ジメチル-tert-ブトキシシリル)メタン、1,2-ビス(ジメチルメトキシシリル)エタン、1,2-ビス(ジメチルエトキシシリル)エタン、1,2-ビス(ジメチル-n-プロポキシシリル)エタン、1,2-ビス(ジメチル-イソプロポキシシリル)エタン、1,2-ビス(ジメチル-n-ブトキシシリル)エタン、1,2-ビス(ジメチル-sec-ブトキシシリル)エタン、1,2-ビス(ジメチル-tert-ブトキシシリル)エタン、
 1-(ジメトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジエトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジ-n-プロポキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジ-イソプロポキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジ-n-ブトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジ-sec-ブトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジ-tert-ブトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジメトキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジエトキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジ-n-プロポキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジ-イソプロポキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジ-n-ブトキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジ-sec-ブトキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジ-tert-ブトキシメチルシリル)-2-(トリメチルシリル)エタン、
 1,2-ビス(トリメトキシシリル)ベンゼン、1,2-ビス(トリエトキシシリル)ベンゼン、1,2-ビス(トリ-n-プロポキシシリル)ベンゼン、1,2-ビス(トリ-イソプロポキシシリル)ベンゼン、1,2-ビス(トリ-n-ブトキシシリル)ベンゼン、1,2-ビス(トリ-sec-ブトキシシリル)ベンゼン、1,2-ビス(トリ-tert-ブトキシシリル)ベンゼン、1,3-ビス(トリメトキシシリル)ベンゼン、1,3-ビス(トリエトキシシリル)ベンゼン、1,3-ビス(トリ-n-プロポキシシリル)ベンゼン、1,3-ビス(トリ-イソプロポキシシリル)ベンゼン、1,3-ビス(トリ-n-ブトキシシリル)ベンゼン、1,3-ビス(トリ-sec-ブトキシシリル)ベンゼン、1,3-ビス(トリ-tert-ブトキシシリル)ベンゼン、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、1,4-ビス(トリ-n-プロポキシシリル)ベンゼン、1,4-ビス(トリ-イソプロポキシシリル)ベンゼン、1,4-ビス(トリ-n-ブトキシシリル)ベンゼン、1,4-ビス(トリ-sec-ブトキシシリル)ベンゼン、1,4-ビス(トリ-tert-ブトキシシリル)ベンゼン等が挙げられる。
 更には、ポリジメトキシメチルカルボシラン、ポリジエトキシメチルカルボシラン等のポリカルボシラン等が挙げられる。
 これらの化合物のなかでも、ヘキサメトキシジシラン、ヘキサエトキシジシラン、1,1,2,2-テトラメトキシ-1,2-ジメチルジシラン、1,1,2,2-テトラエトキシ-1,2-ジメチルジシラン、1,1,2,2-テトラメトキシ-1,2-ジフェニルジシラン、1,2-ジメトキシ-1,1,2,2-テトラメチルジシラン、1,2-ジエトキシ-1,1,2,2-テトラメチルジシラン、1,2-ジメトキシ-1,1,2,2-テトラフェニルジシラン、1,2-ジエトキシ-1,1,2,2-テトラフェニルジシラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1-(ジメトキシメチルシリル)-1-(トリメトキシシリル)メタン、1-(ジエトキシメチルシリル)-1-(トリエトキシシリル)メタン、1-(ジメトキシメチルシリル)-2-(トリメトキシシリル)エタン、1-(ジエトキシメチルシリル)-2-(トリエトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、1,2-ビス(ジメトキシメチルシリル)エタン、1,2-ビス(ジエトキシメチルシリル)エタン、ビス(ジメチルメトキシシリル)メタン、ビス(ジメチルエトキシシリル)メタン、1,2-ビス(ジメチルメトキシシリル)エタン、1,2-ビス(ジメチルエトキシシリル)エタン、1-(ジメトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジエトキシメチルシリル)-1-(トリメチルシリル)メタン、1-(ジメトキシメチルシリル)-2-(トリメチルシリル)エタン、1-(ジエトキシメチルシリル)-2-(トリメチルシリル)エタン、1,2-ビス(トリメトキシシリル)ベンゼン、1,2-ビス(トリエトキシシリル)ベンゼン、1,3-ビス(トリメトキシシリル)ベンゼン、1,3-ビス(トリエトキシシリル)ベンゼン、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、ポリジメトキシメチルカルボシラン、ポリジエトキシメチルカルボシランが好ましい。
 化合物(5)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、[A]ポリシロキサンは、本発明における樹脂組成物に1種のみ含有されていてもく、2種以上含有されていてもよい。
 [A]ポリシロキサンの分子量は、サイズ排除クロマトグラフィによるポリスチレン換算の重量平均分子量が、好ましくは2,000~100,000、より好ましくは2,000~50,000、特に好ましくは2,000~30,000である。
 なお、本明細書における[A]ポリシロキサンの分子量は、東ソー社製のGPCカラム(商品名「G2000HXL」2本、商品名「G3000HXL」1本、商品名「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。
<[A]ポリシロキサンの合成方法>
 本発明の[A]ポリシロキサンを合成する方法は、化合物(1)及び化合物(2)から選ばれる少なくとも1種を加水分解縮合させるものであれば特に限定されないが、例えば、化合物(1)、化合物(2)、必要に応じて化合物(5)等を有機溶媒中に溶解し、この溶液と水を断続的に或いは連続的に混合し、通常0~100℃の温度下において、触媒の存在下に、加水分解縮合させて、[A]ポリシロキサンを得る。この際、触媒は、予め有機溶媒中に溶解又は分散させておいてもよく、添加される水中に溶解又は分散させておいてもよい。
 なお、[A]ポリシロキサンを合成する際に用いられる有機溶媒としては、この種の用途に使用される溶媒であれば特に限定されない。例えば、後述する[B]有機溶媒と同様のものを挙げることができる。また、上記触媒としては、例えば、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基等を挙げることができる。これらのなかでも、金属キレート化合物、有機酸、無機酸が好ましい。
 加水分解性シラン化合物全体における化合物(1)の割合は、好ましくは1~99モル%、より好ましくは10~95モル%、特に好ましくは20~90モル%である。また、化合物(2)の割合は、好ましくは1~99モル%、より好ましくは5~90モル%、特に好ましくは10~80モル%である。化合物(1)及び(2)が上記の割合で用いられることにより、フッ素系ガスを用いたドライエッチングによる塗膜表面を露出するための平坦化加工が容易でありながら、ドライエッチング耐性に優れ、かつ保存安定性に優れた樹脂組成物を得ることができる。また、化合物(5)の割合は、好ましくは0~50モル%である。
<[B]有機溶媒>
 [B]有機溶媒は、上記式(3)で表される化合物を含む。[A]ポリシロキサンを溶解可能であり、被加工基板上に予め形成されたマスクパターンを溶解しない有機溶媒であれば特に限定されるものではない。
 式(3)中、R’は炭素数1~10の直鎖状又は分岐状のアルキル基である。R”は水素原子又は炭素数1~9の直鎖状若しくは分岐状のアルキル基である。但し、R’とR”の炭素数の合計は、4~10である。
 化合物(3)は、炭素数4~10のアルキルアルコール又はアルキルエーテルである。R’及びR”が表す直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。また、上記式(3)におけるR’とR”の炭素数の合計は4~10であり、好ましくは4~8である。
 化合物(3)としては、例えば1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-エチル-1-ブタノール、2,4-ジメチル-3-ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ペンタノール等のアルキルアルコールが挙げられ、これらの中でも、1-ブタノール、2-ブタノール、4-メチル-2-ペンタノール、3-メチル-2-ペンタノール及び2-メチル-2-プロパノールが好ましい。また、ジプロピルエーテル、ジイソプロピルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、ブチルプロピルエーテル、ジイソアミルエーテル、ジブチルエーテル、ジイソブチルエーテル、tert-ブチル-メチルエーテル、tert-ブチルエチルエーテル、tert-ブチルプロピルエーテル、ジ-tert-ブチルエーテル、ジペンチルエーテル等のアルキルエーテルが挙げられ、これらの中でもジイソアミルエーテル及びジブチルエーテルが好ましい。なお、化合物(3)は、単独で用いても2種以上を混合して用いてもよい。
 [B]有機溶媒は、化合物(3)と他の溶媒との混合溶媒であってもよい。他の溶媒としては、例えば化合物(3)以外の1価のアルコール類、多価アルコール類、多価アルコールのアルキルエーテル類、多価アルコールのアルキルエーテルアセテート類、化合物(3)以外のエーテル類、環状エーテル類、高級炭化水素類、芳香族炭化水素類、ケトン類、エステル類、フッ素系溶剤、水等を挙げることができる。
 化合物(3)以外の1価アルコール類としては、メタノール、エタノール、n-プロパノール、iso-プロパノール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、フェニルメチルカルビノール、ジアセトンアルコール、クレゾール等を挙げることができる。
 多価アルコール類としては、エチレングリコール、プロピレングリコール等を挙げることができる。
 多価アルコールのアルキルエーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等を挙げることができる。
 多価アルコールのアルキルエーテルアセテート類としては、エチレングリコールエチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等を挙げることができる。
 化合物(3)以外のエーテル類としては、シクロペンチルメチルエーテル、シクロヘキシルメチルエーテル、シクロペンチルエチルエーテル、シクロヘキシルエチルエーテル、シクロペンチルプロピルエーテル、シクロペンチル-2-プロピルエーテル、シクロヘキシルプロピルエーテル、シクロヘキシル-2-プロピルエーテル、シクロペンチルブチルエーテル、シクロペンチル-tert-ブチルエーテル、シクロヘキシルブチルエーテル、シクロヘキシル-tert-ブチルエーテル等を挙げることができる。
 環状エーテル類としては、テトラヒドロフラン、ジオキサン等を挙げることができる。
 高級炭化水素類としては、デカン、ドデカン、ウンデカン等を挙げることができる。芳香族炭化水素類としては、ベンゼン、トルエン、キシレン等を挙げることができる。
 ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等を挙げることができる。
 エステル類としては、酢酸エチル、酢酸ブチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルを挙げることができる。
 フッ素系溶媒としては、例えばパーフルオロヘキサン、パーフルオロヘプタン等のパーフルオロアルカン又はパーフルオロシクロアルカン、これらの一部に二重結合を有するパーフルオロアルケン、さらにはパーフルオロテトラヒドロフラン、パーフルオロ-2-ブチルテトラヒドロフラン等のパーフルオロ環状エーテル、パーフルオロトリブチルアミン、パーフルオロテトラペンチルアミン、パーフルオロテトラヘキシルアミン等のフパーフルオロアミンを挙げることが出来る。
 これらのうち、1価アルコール類、エーテル類、環状エーテル類、多価アルコールのアルキルエーテル類、多価アルコールのアルキルエーテルアセテート類、高級炭化水素類が好ましい。
 なお、混合できる他の溶媒の割合は、混合溶媒全量に対して30質量%以下であることが好ましく、20質量%以下がより好ましい。30質量%以上であると、塗膜とのミキシングの問題が生じて好ましくない。
<[C]硬化促進剤>
 本発明のポリシロキサン樹脂組成物には、必須成分である[A]ポリシロキサン及び[B]有機溶媒以外に、[C]硬化促進剤がさらに含まれていることが好ましい。硬化促進剤としては、紫外光の照射及び加熱又はいずれか一方により酸を発生する酸発生化合物(以下、「酸発生剤」ともいう。)、及び紫外光の照射により塩基を発生する塩基発生化合物(以下、「塩基発生剤」ともいう。)が好ましい。これら硬化促進剤を加える事により、マスクパターンの間隙に埋め込んだポリシロキサンの硬化が低温でも進行し、埋め込み後の焼成条件を緩和する事ができる。すなわち、マスクパターンの熱変形を抑えながらポリシロキサンの硬化が促進されることで、転写形状をより良好に保持することができる。
 上記酸発生剤としては、加熱処理を行うことによって酸を発生する化合物(以下「熱酸発生剤」ともいう。)及び紫外光照射処理を行うことによって酸を発生する化合物(以下「光酸発生剤」ともいう。)等が挙げられる。
 上記熱酸発生剤は、通常50~450℃、好ましくは200~350℃に加熱することにより酸を発生する化合物である。例えば、スルホニウム塩、ベンゾチアゾリウム塩、アンモニウム塩、ホスホニウム塩等のオニウム塩が挙げられる。
 上記スルホニウム塩の具体例としては、4-アセトフェニルジメチルスルホニウム ヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルホニウム ヘキサフルオロアルセネート、ジメチル-4-(ベンジルオキシカルボニルオキシ)フェニルスルホニウム ヘキサフルオロアンチモネート、ジメチル-4-(ベンゾイルオキシ)フェニルスルホニウム ヘキサフルオロアンチモネート、ジメチル-4-(ベンゾイルオキシ)フェニルスルホニウム ヘキサフルオロアルセネート、ジメチル-3-クロロ-4-アセトキシフェニルスルホニウム ヘキサフルオロアンチモネート等のアルキルスルホニウム塩;
 ベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、4-アセトキシフェニルベンジルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル-4-メトキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル-2-メチル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、ベンジル-3-クロロ-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアルセネート、4-メトキシベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、ベンゾイントシレート、2-ニトロベンジルトシレート等のベンジルスルホニウム塩;
 ジベンジル-4-ヒドロキシフェニルスルホニウム ヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウム ヘキサフルオロホスフェート、4-アセトキシフェニルジベンジルスルホニウム ヘキサフルオロアンチモネート、ジベンジル-4-メトキシフェニルスルホニウム ヘキサフルオロアンチモネート、ジベンジル-3-クロロ-4-ヒドロキシフェニルスルホニウム ヘキサフルオロアルセネート、ジベンジル-3-メチル-4-ヒドロキシ-5-tert-ブチルフェニルスルホニウム ヘキサフルオロアンチモネート、ベンジル-4-メトキシベンジル-4-ヒドロキシフェニルスルホニウム ヘキサフルオロホスフェート等のジベンジルスルホニウム塩;
 p-クロロベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、p-ニトロベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、p-クロロベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、p-ニトロベンジル-3-メチル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、3,5-ジクロロベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、o-クロロベンジル-3-クロロ-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート等の置換ベンジルスルホニウム塩;等が挙げられる。
 上記ベンゾチアゾリウム塩の具体例としては3-ベンジルベンゾチアゾリウム ヘキサフルオロアンチモネート、3-ベンジルベンゾチアゾリウム ヘキサフルオロホスフェート、3-ベンジルベンゾチアゾリウム テトラフルオロボレート、3-(p-メトキシベンジル)ベンゾチアゾリウム ヘキサフルオロアンチモネート、3-ベンジル-2-メチルチオベンゾチアゾリウム ヘキサフルオロアンチモネート、3-ベンジル-5-クロロベンゾチアゾリウム ヘキサフルオロアンチモネート等のベンジルベンゾチアゾリウム塩が挙げられる。
 更に、上記以外の熱酸発生剤として、2,4,4,6-テトラブロモシクロヘキサジエノンを挙げることもできる。
 これらのうち、4-アセトキシフェニルジメチルスルホニウム ヘキサフルオロアルセネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウム ヘキサフルオロアンチモネート、4-アセトキシフェニルベンジルメチルスルホニウム ヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウム ヘキサフルオロアンチモネート、4-アセトキシフェニルベンジルスルホニウム ヘキサフルオロアンチモネート、3-ベンジルベンゾチアゾリウム ヘキサフルオロアンチモネート等が好ましく用いられる。これらの市販品としてはサンエイド SI-L85、同SI-L110、同SI-L145、同SI-L150、同SI-L160(三新化学工業社製)等が挙げられる。
 また、上記光酸発生剤は、通常1~100mJ/cm、好ましくは10~50mJ/cmの紫外光照射により酸を発生する化合物である。
 光酸発生剤としては、例えば、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムドデシルベンゼンスルホネート、ジフェニルヨードニウムノナフルオロn-ブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムドデシルベンゼンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムナフタレンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(4-tert-ブチルフェニル)ヨードニウムノナフルオロn-ブタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムナフタレンスルホネート、トリフェニルスルホニウムノナフルオロn-ブタンスルホネート、(ヒドロキシフェニル)ベンゼンメチルスルホニウムトルエンスルホネート、シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル(2-オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート、
 ジメチル(2-オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムカンファースルホネート、(4-ヒドロキシフェニル)ベンジルメチルスルホニウムトルエンスルホネート、1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-シアノ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-シアノ-1-ナフチル-ジエチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-メトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-エトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-メトキシメトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-エトキシメトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-(1-メトキシエトキシ)-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-(2-メトキシエトキシ)-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-メトキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-エトキシカルブニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-n-プロポキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、
 4-iso-プロポキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-n-ブトキカルビニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-tert-ブトキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-(2-テトラヒドロフラニルオキシ)-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-(2-テトラヒドロピラニルオキシ)-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-ベンジルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート等のオニウム塩系光酸発生剤類;
 フェニル-ビス(トリクロロメチル)-s-トリアジン、メトキシフェニル-ビス(トリクロロメチル)-s-トリアジン、ナフチル-ビス(トリクロロメチル)-s-トリアジン等のハロゲン含有化合物系光酸発生剤類;
 1,2-ナフトキノンジアジド-4-スルホニルクロリド、1,2-ナフトキノンジアジド-5-スルホニルクロリド、2,3,4,4’-テトラベンゾフェノンの1,2-ナフトキノンジアジド-4-スルホン酸エステル又は1,2-ナフトキノンジアジド-5-スルホン酸エステル等のジアゾケトン化合物系光酸発生剤類;
 4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等のスルホン酸化合物系光酸発生剤類;
 ベンゾイントシレート、ピロガロールのトリストリフルオロメタンスルホネート、ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネート、トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等のスルホン酸化合物系光酸発生剤類等が挙げられる。
 なお、これらの酸発生剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記酸発生剤の含有量は、[A]ポリシロキサンの固形分100質量部に対して、0.1~10質量部であることが好ましく、より好ましくは0.1~5質量部である。
 塩基発生剤としては、特に限定されるものではないが、例えば、トリフェニルスルホニウム化合物、トリフェニルメタノール;ベンジルカルバメート及びベンゾインカルバメート等の光活性なカルバメート;o-カルバモイルヒドロキシルアミド、o-カルバモイルオキシム、アロマティックスルホンアミド、アルファーラクタム及びN-(2-アリルエチニル)アミド等のアミド;オキシムエステル、α-アミノアセトフェノン、コバルト錯体等を挙げることができる。
 なかでも、下記式(f1)で表される光塩基発生剤(F1);2-ニトロベンジルシクロヘキシルカルバメート、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサン1,6-ジアミンから選ばれるカルバメート系の光塩基発生剤(F2);トリフェニルメタノール、o-カルバモイルヒドロキシルアミド、o-カルバモイルオキシム、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)が好ましく用いられ、光塩基発生剤 (F1)、光塩基発生剤(F2)がより好ましく用いられ、光塩基発生剤(F1)が特に好ましく用いられる。
Figure JPOXMLDOC01-appb-C000015
 式中、R41~R43はそれぞれ独立してアルキル基、アルコキシ基又はハロゲン原子を示し;n~nはそれぞれ独立して0~3の整数である。
 上記式(f1)中、R41~R43で示されるアルキル基としては、炭素数1~5のアルキル基が好ましく、なかでも直鎖又は分岐鎖状のアルキル基がより好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基が特に好ましい。
 アルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、なかでも直鎖又は分岐鎖状のアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、なかでもフッ素原子が最も好ましい。
 上記式(f1)中、n~nは、それぞれ独立して0~3の整数であり、好ましくは、それぞれ独立して0~1である。なかでも、n~nのいずれもが0であるものがより好ましい。
 光塩基発生剤(F1)の好適な具体例としては、下記式(f1-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 また、光塩基発生剤 (F2)のなかでも好適なものとしては、本発明の効果の点から、2-ニトロベンジルシクロヘキシルカルバメートが最も好ましい。なお、これらの酸発生剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記酸発生剤の含有量は、[A]ポリシロキサンの固形分100質量部に対して、0.1~10質量部であることが好ましく、より好ましくは0.1~5質量部である。
 また、本発明のポリシロキサン樹脂組成物には、必須成分としての[A]ポリシロキサン及び[B]有機溶媒、好適成分としての[C]硬化促進剤以外に、任意成分として界面活性剤、架橋剤等を含有させることができる。
<当該ポリシロキサン樹脂組成物の調製方法>
 必須成分である[A]ポリシロキサン及び[B]有機溶媒、好適成分である[C]硬化促進剤、さらには必要に応じて加える上記任意成分とを混合することにより、本発明のポリシロキサン樹脂組成物を調製することができる。この際、[A]ポリシロキサンの固形分濃度は適宜調整することができるが、1~30質量%が好ましく、1~20質量%がより好ましい。
 以下、実施例を挙げて、本発明を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。また、この実施例の記載における「部」及び「%」の記載は、特記しない限り質量基準である。
<[A]ポリシロキサンの合成>
 下記合成例及び比較合成例に示すようにポリシロキサンを合成した。なお、各合成例で得られるポリシロキサンの重量平均分子量(Mw)の測定は、下記の方法により行った。
[重量平均分子量(Mw)の測定]
 東ソー社製のGPCカラム(商品名「G2000HXL」2本、商品名「G3000HXL」1本、商品名「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。
[合成例1]
 石英製三口フラスコ中に、20%マレイン酸水溶液0.53g及び超純水34.89gを加えて65℃に加熱した。次いで、テトラメトキシシラン6.42g、メチルトリメトキシシラン51.68g、及びプロピレングリコールモノエチルエーテル6.48gを混合した溶液を1時間かけて反応容器に滴下し、65℃で4時間攪拌させた。この溶液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、反応生成物(ポリシロキサンA-1)を得た。得られた生成物の分子量(Mw)は8,200であった。
[合成例2]
 石英製三口フラスコ中に、20%マレイン酸水溶液0.54g及び超純水35.25gを加えて55℃に加熱した。次いで、テトラメトキシシラン28.72g、メチルトリメトキシシラン25.70g、及びプロピレングリコールモノプロピルエーテル9.79gを混合した溶液を1時間かけて反応容器に滴下し、55℃で3時間攪拌させた。この溶液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、反応生成物(ポリシロキサンA-2)を得た。得られた生成物の分子量(Mw)は10,000であった。
[合成例3]
 石英製三口フラスコ中に、20%マレイン酸水溶液0.54g及び超純水35.25gを加えて55℃に加熱した。次いで、テトラメトキシシラン49.58g、メチルトリメトキシシラン4.93g、及びプロピレングリコールモノエチルエーテル7.24gを混合した溶液を1時間かけて反応容器に滴下し、55℃で3時間攪拌させた。この溶液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、反応生成物(ポリシロキサンA-3)を得た。得られた生成物の分子量(Mw)は12,000であった。
[合成例4]
 石英製三口フラスコ中に、20%マレイン酸水溶液0.54g及び超純水35.25gを加えて55℃に加熱した。次いで、テトラクロロシラン55.34g、メチルトリメトキシシラン4.93g、及びメタノール3.62g、プロピレングリコールモノエチルエーテル3.62gを混合した溶液を1時間かけて反応容器に滴下し、55℃で3時間攪拌させた。この溶液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、反応生成物(ポリシロキサンA-4)を得た。得られた生成物の分子量(Mw)は12,000であった。
[合成例5]
 石英製三口フラスコ中に、20%マレイン酸水溶液0.46g及び超純水29.78gを加えて55℃に加熱した。次いで、テトラメトキシシラン3.38g、メチルトリメトキシシラン12.11g、ビストリエトキシシリルエタン39.41g及びプロピレングリコールモノエチルエーテル17.38gを混合した溶液を1時間かけて反応容器に滴下し、55℃で2時間攪拌させた。この溶液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、反応生成物(ポリシロキサンA-5)を得た。得られた生成物の分子量(Mw)は4,000であった。
[合成例6]
 25%テトラアンモニウムヒドロキシド水溶液14.59g、水4.53g、及びメタノール40.0gを入れたフラスコに、冷却管と、テトラメトキシシラン10.66g、4-メチルフェニルトリメトキシシラン1.06g、メチルトリメトキシシラン3.41g、及びメタノール50.00gを入れた滴下ロートをセットした。次いで、オイルバスにて60℃に加熱した後、このモノマーのメタノール溶液をゆっくり滴下し、60℃で2時間反応させた。反応終了後、反応溶液の入ったフラスコを放冷した。
 その後、20%無水マレイン酸水溶液23.83gとメタノール18.73gを混合した溶液に対し、上述のように放冷した反応溶液を滴下し、30分間攪拌した。次いで、4-メチル-2-ペンテノン450gを添加してからエバポレーターにセットし、反応溶媒及び反応により生成したメタノールを除去して反応生成物の4-メチル-2-ペンテノン溶液を得た。得られた溶液を分液ロートへ移してから、水80gを添加して1回目の水洗を行い、水40gを添加して2回目の水洗を行なった。その後、分液ロートよりフラスコへ移した4-メチル-2-ペンテノン溶液に、4-メチル-2-ペンタノール370部を添加してからエバポレーターにセットし、4-メチル-2-ペンテノンを除去して、反応生成物(ポリシロキサンA-6)の4-メチル-2-ペンタノール溶液を得た。
[合成例7]
 無水マレイン酸0.42gを水2gに加熱溶解させてマレイン酸水溶液を調製した。次に、メチルトリエトキシシラン30.5g及び4-メチル-2-ペンタノール50.8gをフラスコに入れた。このフラスコに、冷却管と予め調製しておいたマレイン酸水溶液を入れた滴下ロートとをセットし、オイルバスにて100℃で加熱した後、マレイン酸水溶液をゆっくり滴下し、100℃で4時間反応させた。この溶液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、反応生成物(ポリシロキサンA-7)を得た。得られた生成物の分子量(Mw)は1,400であった。
<ポリシロキサン樹脂組成物の調製>
[実施例1~9、比較例1]
 表1に示す割合で、合成例で得られた[A]ポリシロキサンと、[C]硬化促進剤を混合し、ポリシロキサン樹脂組成物(J-1~J-9,j-1)を調製した。また、各組成物の固形分濃度が表1の値となるように[B]有機溶媒を添加した。なお、[B]有機溶媒の含有比とは、質量比である。
 なお、表1における[B]有機溶媒と、[C]硬化促進剤の詳細は下記の通りである。
<[B]有機溶媒>
B-1:4-メチル-2-ペンタノール
B-2:1-ブタノール
B-3:ジブチルエーテル
B-4:ジイソアミルエーテル
B-5:プロピレングリコールモノエチルエーテル
<[C]硬化促進剤>
C-1:トリフェニルスルホニウムトリフルオロスルホネート
C-2:2-ニトロベンジルシクロヘキシルカルバメート
C-3:4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート
Figure JPOXMLDOC01-appb-T000017
<性能評価>[実施例10~22、比較例2]
 上記各ポリシロキサン樹脂組成物を用い、表2に示す条件で、下記の性能評価を行った。その評価結果を表2に示す。
[インターミキシング性]
 シリコンウェハの表面に、感放射線性樹脂組成物溶液(JSR社製、AR230JN)をスピンコーターによって塗布した後、126℃のホットプレート上で90秒間乾燥して、膜厚170nmの塗膜が形成された基板を得た。次いで、上記塗膜上に、各パターン反転用のポリシロキサン樹脂組成物を塗布し、120℃のホットプレート上で60秒間乾燥させた後、分光エリプソメーターにより、塗膜の膜厚を測定した。その膜厚と初期膜厚よりも膜厚が減量するものを不適「×」として、上記塗膜とのインターミキシング性を評価した。
[マスクパターン間への埋め込み性]
 シリコンウェハの表面に、反射防止膜用材料(日産化学社製、ARC29)をスピンコーターによって塗布した後、205℃のホットプレート上で1分間乾燥して、膜厚が77nmの反射防止膜(下層膜)を形成したものを基板として用いた。次いで、上記反射防止膜上に感放射線性樹脂組成物(JSR社製、AR230JN)を塗布し、126℃で90秒間乾燥した。この際得られた塗膜の膜厚は205nmに制御した。その後、ArFエキシマレーザ照射装置(ニコン社製、S306C)を用い、ArFエキシマレーザ(波長193nm)を0.100μmの1:1ライン・アンド・スペースパターン形成用の石英製縮小投影マスクを介して、上記塗膜が形成された基板に17mJ/cm照射した。次いで、基板を126℃で90秒間加熱した。その後、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液で40秒間現像処理を行い、基板上に高さ73nm、0.100μmの1:1ライン・アンド・スペース形状のマスクパターンを得た。次いで、このマスクパターン上及びマスクパターンの間隙に、各ポリシロキサン樹脂組成物をスピンコーターによって塗布し、表2に記載された温度(PEB(℃))のホットプレートで1分間乾燥することにより、膜厚150nmの樹脂膜を形成した。実施例16及び18に関しては、ホットプレートで乾燥後、ArFエキシマレーザ照射装置(ニコン社製、S306C)を用い、ArFエキシマレーザ(波長193nm)を50mJ/cmウエハ全面に照射した。このようにして、得られた基板の断面を走査型電子顕微鏡(SEM)で観察して、上記マスクパターン間に、各ポリシロキサン樹脂組成物が隙間なく埋め込まれている場合を「○」とし、ボイドが生じている場合を「×」として、マスクパターンへの埋め込み性を評価した。
[ドライエッチング耐性]
 上述のようにして形成したパターン反転用樹脂膜に対して、バレル型酸素プラズマ灰化装置「PR-501」(ヤマト科学社製)を用いて、500Wで15秒間ドライエッチング処理を行った。処理前のパターン反転用樹脂膜の膜厚と、処理後のパターン反転用樹脂膜の膜厚との差を求め、ドライエッチング耐性として評価した。なお、膜厚変化幅が小さいほど、ドライエッチング耐性に優れるという評価となる。
[保存安定性]
 シリコンウェハの表面に、スピンコーターを用いて、回転数2,000rpm、20秒間の条件にて、各パターン反転用のポリシロキサン樹脂組成物を塗布し、その後、120℃のホットプレート上で1分間乾燥することにより、パターン反転用樹脂膜を形成した。次いで、得られたパターン反転用樹脂膜について、光学式膜厚計(KLA-Tencor社製、型番「UV-1280SE」)を用いて、9点の位置で膜厚を測定し、その平均膜厚を求めた。また、各組成物を、40℃で1週間保存した後、上記と同様にして樹脂膜を形成して膜厚を測定し、その平均膜厚を求めた。次に、保存前の樹脂膜の平均膜厚(T0)と、保存後のパターン反転用樹脂膜の平均膜厚(T)との差(T-T0)を求め、平均膜厚T0に対するその差の大きさの割合〔(T-T0)/T0〕を膜厚増加率として算出した。なお、膜厚増加率が小さいほど、保存安定性に優れるという評価となる。膜厚増加率は使用環境によっては5.5%以下も実用上許容レベルだが、5%以下がより望ましい。
[珪素及び炭素の含有割合測定]
 シリコンウェハの表面に、スピンコーターを用いて、回転数2000rpm、20秒間の条件にて、各組成物を塗布し、その後、200℃のホットプレート上で1分間乾燥することにより、樹脂膜を形成した。該樹脂膜の珪素(Si)及び炭素(C)の含有割合を、SIMS(アルバック-ファイ株式会社製 PHI ADEPT-1010)を用いて測定し、深さ方向における測定値の平均値を算出し、含有割合とした。
Figure JPOXMLDOC01-appb-T000018
<反転パターンの形成>
[実施例23]
 本発明の実施例1のポリシロキサン樹脂組成物を用いて反転パターンを形成した。図1を参照して説明する。
 シリコンウェハの表面に、反射防止膜用材料(日産化学社製、ARC29)をスピンコーターによって塗布した後、205℃のホットプレート上で1分間乾燥して、膜厚が77nmの反射防止膜(下層膜)を形成したものを基板として用いた。
 次いで、上記反射防止膜上に感放射線性樹脂組成物(JSR社製、AR230JN)を塗布し、126℃で90秒間乾燥した。この際得られた塗膜の膜厚は205nmに制御した。その後、ArFエキシマレーザ照射装置(ニコン社製)を用い、ArFエキシマレーザ(波長193nm)を0.100μmの1:1ライン・アンド・スペースパターン形成用の石英製マスクを介して、上記塗膜が形成された基板に17mJ/cm照射した。次いで、基板を126℃で90秒間加熱した。その後、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液で40秒間現像処理を行い、図1(b)に示すように基板上に0.100μmの1:1ライン・アンド・スペースのマスクパターンを得た。
 次いで、上記マスクパターン上及びマスクパターンの間隙に、実施例1の反転パターン形成樹脂組成物を膜厚150nmとなる回転数で、スピンコーターによって塗布し、160℃で1分間のベーキング処理をすることにより、図1(c)に示すような樹脂膜を形成した。このとき、反転パターン形成樹脂の膜厚は210nmであった。
 その後、RIE装置内にてCF/Oの混合ガスよりなるプラズマを用いて樹脂膜の表面をドライエッチングした。エッチングは図1(d)に示すように、マスクパターン31の表面が露出するまで行った(ドライエッチバック)。これにより、図1(d)に示すように、マスクパターン31の間隙にのみ、反転パターン形成樹脂膜を残すことができた。
 さらに、RIE装置内にてN/Oの混合ガスよりなるプラズマを用いてドライエッチングを行い、図1(e)に示すような反転パターンを得た。このとき、反転パターンの高さ寸法は約180nmであり、矩形形状であった。
<微細反転パターンの形成>
[実施例24]ダブルエクスポージャー法
 シリコンウェハの表面に、膜厚105nmの下層反射防止膜「ARC66」(ブルワー・サイエンス社製)を形成した12インチシリコンウェハを用いた。上記反射防止膜上に「CLEAN TRACK ACT12」(東京エレクトロン社製)を用いて「ARX2014J」(JSR社製)を塗布し、90℃で60秒間乾燥させた。このときのレジストの膜厚は100nmに制御した。さらに、形成したレジスト被膜上に液浸上層膜材料「NFC TCX091-7」(JSR社製)を塗布し、90℃で60秒間乾燥させた。このときの液浸上層膜の膜厚は30nmに制御した。その後、ArFエキシマレーザー照射装置「S610C」(ニコン社製)を用い、40nmの1:1ライン・アンド・スペースパターン形成用の石英マスクを介して第一の露光16mJ/cmの条件で照射した。次に石英マスクを90°回転させ、第一の露光で得られた潜像に直行する向きにマスクの潜像が得られるように配置して、第二の露光16mJ/cmを照射した。次いで、基板を115℃で60秒間加熱した後、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液で30秒間現像処理し、高さ85nm、柱径40nmのピラー状マスクパターンを形成した。
 次いで、このマスクパターン上及びマスクパターンの間隙に、反転パターン形成用ポリシロキサン樹脂組成物(J-2)をスピンコーターによって塗布し、120℃のホットプレートで1分間乾燥することにより、ARC66膜表面からの膜厚150nmの樹脂膜を形成した。この基板を0.5%テトラメチルアンモニウムハイドロオキサイド水溶液に30秒間浸す処理をすることで、予め形成したマスクパターンの表面がポリシロキサン表面に露出する状態となった(ウェットエッチバック)。基板を180℃で1分加熱してポリシロキサン部分を追加硬化させた後、RIE装置内にてN/Oの混合ガスよりなるプラズマを用いてドライエッチングを行い、反転パターンを得た。このとき、反転パターンは約40nmφ径の穴が等間隔に形成された微細ホールパターンであった。
[実施例25]ダブルパターニング法
 シリコンウェハの表面に、膜厚105nmの下層反射防止膜「ARC66」(ブルワー・サイエンス社製)を形成した12インチシリコンウェハを用いた。次いで、上記反射防止膜上に「CLEAN TRACK ACT12」(東京エレクトロン社製)を用いて「ARX3520JN」(JSR社製)を塗布し、90℃で60秒間乾燥させた。このときのレジストの膜厚は100nmに制御した。次いで、ArFエキシマレーザー照射装置「S610C」(ニコン社製)を用い、40nmの1:3ライン・アンド・スペース形状のパターン形成用の石英マスクを介して露光量23mJ/cmの条件で照射した。次に、基板を105℃で60秒間加熱し、2.38%テトラメチルアンモニウムハイドロオキサイド水溶液で30秒間現像処理し、高さ85nm、ライン幅40nmの第一のマスクパターンを形成した。次いで、このマスクパターン形成基板を150℃で1分加熱して第一マスクパターンの不溶化処理を行った。
 次に第一マスクパターン基板に「ARX3714JN」(JSR社製)を上記「ARX3520JN」と同様に105nmの膜厚となるように塗布、成膜した。同じ40nmの1:3ライン・アンド・スペース形状のパターン形成用の石英マスクを介してパターニングすることで第一マスクパターンの間に第二のマスクパターンが形成される様に露光装置上でウエハの位置を80nmずらして配置した。次いで露光(20mJ/cm)、加熱(100℃で60秒)、現像(2.38%テトラメチルアンモニウムハイドロオキサイド水溶液で30秒間)を第一のパターニングと同様に行い、ARC66の膜上に高さ85nm、40nmの1:1ライン・アンド・スペースのマスクパターンを形成した。
 この間隙に、反転パターン形成用ポリシロキサン樹脂組成物(J-5)をスピンコーターによって塗布し、140℃のホットプレートで1分間乾燥することにより、ARC66表面からの膜厚150nmの樹脂膜を形成した。この基板にArFエキシマレーザ(波長193nm)を50mJ/cmウエハ全面に照射してポリシロキサン樹脂を追加硬化させた。その後、RIE装置内にてCF/Oの混合ガスよりなるプラズマを用いてポリシロキサン樹脂膜の表面をドライエッチングした。エッチングは図1(d)に示すように、マスクパターン31の表面が露出するまで行った(ドライエッチバック)。次いでRIE装置内にてN/Oの混合ガスよりなるプラズマを用いてドライエッチングを行い、反転パターンを得た。このとき、反転パターンは約40nmのラインが等間隔に形成された微細ラインパターンであった。
 表2から明らかなように、本実施例のパターン反転用であるポリシロキサン樹脂組成物は、基板に形成された塗膜とインターミキシングを起こすことがなく、且つ塗膜に形成されたマスクパターン間に良好に埋め込むことができると共に、ドライエッチング耐性及び保存安定性に優れることが確認できた。比較例1についてはマスクパターン上に塗布した段階でマスクパターンの消失が見られた。
 実施例23においては、本発明のポリシロキサン樹脂組成物を用いることにより、通常のマスクパターンの反転パターンとして、100nmのラインが等間隔に形成された良好なパターンを形成することができた。また、実施例24及び25の結果から、本発明のポリシロキサン樹脂組成物は、ダブルエクスポージャー法及びダブルパターニング法によって形成されたさらに微細なマスクパターンの反転パターン材料として好適に用いられ、約40nmのラインが等間隔に形成された良好な微細ラインパターンを形成することができることがわかった。
 本発明の反転パターン形成方法によると、本発明のポリシロキサン樹脂組成物は、被加工基板上に形成されたマスクパターンとミキシングすることがなく、このマスクパターンの間隙に良好に埋め込むことができ、かつドライエッチング耐性及び保存安定性に優れている。従って、本発明は、今後更に微細化が進むとみられるLSIの製造、特に微細なコンタクトホール等の形成に極めて好適に使用することができる。
 1;被加工基板、2;反射防止膜、3;塗膜、31;マスクパターン、4;パターン反転用樹脂膜、41;反転パターン。

Claims (11)

  1.  (1)被加工基板上にマスクパターンを形成するマスクパターン形成工程、
     (2)上記マスクパターンの間隙に、ポリシロキサン樹脂組成物を埋め込む埋込工程、及び
     (3)上記マスクパターンを除去し、反転パターンを形成する反転パターン形成工程
    を有する反転パターン形成方法であって、
     上記ポリシロキサン樹脂組成物が、
     [A]下記式(1)で表される加水分解性シラン化合物、及び下記式(2)で表される加水分解性シラン化合物からなる群より選ばれる少なくとも1種を加水分解縮合させて得られるポリシロキサン、並びに
     [B]下記式(3)で表される化合物を含む有機溶媒
    を含有することを特徴とする反転パターン形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子、フッ素原子、炭素数1~5の直鎖状若しくは分岐鎖状のアルキル基、シアノ基、シアノアルキル基、アルキルカルボニルオキシ基、アルケニル基、又はアリール基である。Xはハロゲン原子又は-ORであり、Rは1価の有機基である。aは1~3の整数である。但し、R及びXがそれぞれ複数存在する場合は、互いに同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Xは上記式(1)と同義である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R’は炭素数1~10の直鎖状又は分岐状のアルキル基である。R”は水素原子又は炭素数1~9の直鎖状若しくは分岐状のアルキル基である。但し、R’とR”の炭素数の合計は、4~10である。)
  2.  [A]ポリシロキサンが、上記式(1)で表される加水分解性シラン化合物、及び上記式(2)で表される加水分解性シラン化合物を加水分解縮合させて得られるポリシロキサンである請求項1に記載の反転パターン形成方法。
  3.  上記式(1)及び(2)におけるXが-ORである請求項1に記載の反転パターン形成方法。(但し、Rは上記式(1)と同義である。)
  4.  形成された反転パターンのSIMS法にて測定した珪素原子含有量が30質量%以上46.7質量%以下であり、炭素原子含有量が1質量%以上50質量%以下である請求項1に記載の反転パターン形成方法。
  5.  (1)マスクパターン形成工程が、
     (i)被加工基板上に感放射線性樹脂組成物を塗布及び乾燥し、塗膜を形成する塗膜形成工程、
     (ii)上記塗膜上の所定の領域に放射線を照射する露光工程、及び
     (iii)上記露光された塗膜を現像する現像工程
    を含む請求項1に記載の反転パターン形成方法。
  6.  (ii)露光工程が連続して複数回行われる請求項5に記載の反転パターン形成方法。
  7.  (1)マスクパターン形成工程が、繰り返し行われ、第一マスクパターンの形成工程と、第一マスクパターンとは異なる第二マスクパターンの形成工程とを有する請求項5に記載の反転パターン形成方法。
  8.  [A]下記式(1)で表される加水分解性シラン化合物、及び下記式(2)で表される加水分解性シラン化合物からなる群より選ばれる少なくとも1種を加水分解縮合させて得られるポリシロキサン、並びに
     [B]下記式(3)で表される化合物を含む有機溶媒
    を含有することを特徴とするポリシロキサン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは水素原子、フッ素原子、炭素数1~5の直鎖状若しくは分岐鎖状のアルキル基、シアノ基、シアノアルキル基、アルキルカルボニルオキシ基、アルケニル基、又はアリール基である。Xはハロゲン原子又は-ORであり、Rは1価の有機基である。aは1~3の整数である。なお、R及びXは、それぞれ複数存在する場合は、互いに同一であっても異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、Xは上記式(1)と同義である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、R’は炭素数1~10の直鎖状又は分岐状のアルキル基である。R”は水素原子又は炭素数1~9の直鎖状若しくは分岐状のアルキル基である。但し、R’とR”の炭素数の合計は、4~10である。)
  9.  [A]ポリシロキサンが、上記式(1)で表される加水分解性シラン化合物、及び上記式(2)で表される加水分解性シラン化合物を加水分解縮合させて得られるポリシロキサンである請求項8に記載のポリシロキサン樹脂組成物。
  10.  [A]ポリシロキサンのサイズ排除クロマトグラフィによるポリスチレン換算の重量平均分子量が2,000以上100,000以下である請求項8に記載のポリシロキサン樹脂組成物。
  11.  [C]硬化促進剤をさらに含有する請求項8に記載のポリシロキサン樹脂組成物。
PCT/JP2010/069010 2009-10-30 2010-10-26 反転パターン形成方法及びポリシロキサン樹脂組成物 WO2011052611A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127010842A KR101674703B1 (ko) 2009-10-30 2010-10-26 반전 패턴 형성 방법 및 폴리실록산 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-249874 2009-10-30
JP2009249874 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052611A1 true WO2011052611A1 (ja) 2011-05-05

Family

ID=43922036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069010 WO2011052611A1 (ja) 2009-10-30 2010-10-26 反転パターン形成方法及びポリシロキサン樹脂組成物

Country Status (4)

Country Link
JP (1) JP5696428B2 (ja)
KR (1) KR101674703B1 (ja)
TW (1) TWI596159B (ja)
WO (1) WO2011052611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118995A1 (ja) * 2014-02-07 2015-08-13 株式会社ダイセル シリコーン溶解用溶剤

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480691B2 (ja) * 2013-10-21 2019-03-13 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ケイ素含有熱または光硬化性組成物
JP6587065B2 (ja) * 2014-02-26 2019-10-09 日産化学株式会社 レジストパターンに塗布されるポリマー含有塗布液
KR102369818B1 (ko) * 2015-01-13 2022-03-04 주식회사 동진쎄미켐 포지티브형 감광성 실록산 수지 조성물
WO2017043344A1 (ja) * 2015-09-09 2017-03-16 日産化学工業株式会社 シリコン含有平坦化性パターン反転用被覆剤
CN108699389B (zh) * 2016-02-24 2020-10-27 日产化学株式会社 含有硅的图案反转用被覆剂
JP6835062B2 (ja) 2016-02-24 2021-02-24 日産化学株式会社 シリコン含有組成物を用いた半導体基板の平坦化方法
WO2017150261A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 パターン積層体の製造方法、反転パターンの製造方法およびパターン積層体
FI127462B (en) * 2016-07-14 2018-06-29 Inkron Oy Siloxane monomers, their polymerization and uses
US11884839B2 (en) 2016-08-29 2024-01-30 Nissan Chemical Corporation Acetal-protected silanol group-containing polysiloxane composition
WO2018066515A1 (ja) * 2016-10-04 2018-04-12 日産化学工業株式会社 パターン反転のための被覆組成物
JP6699903B2 (ja) * 2017-01-27 2020-05-27 株式会社東芝 パターン形成方法、半導体装置及びその製造方法
JP2019120750A (ja) * 2017-12-28 2019-07-22 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 感光性シロキサン組成物およびこれを用いたパターン形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235037A (ja) * 2001-02-13 2002-08-23 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2003064305A (ja) * 2001-08-27 2003-03-05 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2004059737A (ja) * 2002-07-29 2004-02-26 Jsr Corp 膜形成用ポリシロキサンの製造方法、膜形成用組成物、膜形成方法および膜
JP2007019161A (ja) * 2005-07-06 2007-01-25 Dainippon Screen Mfg Co Ltd パターン形成方法及び被膜形成装置
JP2009217250A (ja) * 2008-02-14 2009-09-24 Shin Etsu Chem Co Ltd ダブルパターン形成方法
JP2009251216A (ja) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd ダブルパターン形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848070B2 (ja) 2000-09-27 2006-11-22 株式会社東芝 パターン形成方法
KR101423058B1 (ko) * 2006-10-12 2014-07-25 닛산 가가쿠 고교 가부시키 가이샤 4층계 적층체에 의한 반도체장치의 제조방법
JP5099140B2 (ja) * 2007-08-24 2012-12-12 東レ株式会社 感光性組成物、それから形成された硬化膜、および硬化膜を有する素子
JP5077569B2 (ja) * 2007-09-25 2012-11-21 信越化学工業株式会社 パターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235037A (ja) * 2001-02-13 2002-08-23 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2003064305A (ja) * 2001-08-27 2003-03-05 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2004059737A (ja) * 2002-07-29 2004-02-26 Jsr Corp 膜形成用ポリシロキサンの製造方法、膜形成用組成物、膜形成方法および膜
JP2007019161A (ja) * 2005-07-06 2007-01-25 Dainippon Screen Mfg Co Ltd パターン形成方法及び被膜形成装置
JP2009217250A (ja) * 2008-02-14 2009-09-24 Shin Etsu Chem Co Ltd ダブルパターン形成方法
JP2009251216A (ja) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd ダブルパターン形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118995A1 (ja) * 2014-02-07 2015-08-13 株式会社ダイセル シリコーン溶解用溶剤

Also Published As

Publication number Publication date
TWI596159B (zh) 2017-08-21
KR101674703B1 (ko) 2016-11-09
JP5696428B2 (ja) 2015-04-08
JP2011118373A (ja) 2011-06-16
KR20120091138A (ko) 2012-08-17
TW201132706A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
JP5696428B2 (ja) 反転パターン形成方法及びポリシロキサン樹脂組成物
US20100178620A1 (en) Inverted pattern forming method and resin composition
US9170492B2 (en) Silicon-containing film-forming composition, silicon-containing film, and pattern forming method
US9126231B2 (en) Insulation pattern-forming method and insulation pattern-forming material
JP2008158002A (ja) レジスト下層膜用組成物及びその製造方法
JP5644339B2 (ja) レジスト下層膜形成用組成物、レジスト下層膜及びパターン形成方法
JP2010020109A (ja) パターン反転用樹脂組成物及び反転パターン形成方法
JP5776301B2 (ja) ポリシロキサン組成物及びパターン形成方法
WO2012008538A1 (ja) ポリシロキサン組成物及びパターン形成方法
KR101920649B1 (ko) 폴리머 함유 현상액
KR20190059902A (ko) 패턴반전을 위한 피복 조성물
WO2016111210A1 (ja) シリコン含有膜形成用組成物及び該組成物を用いたパターン形成方法
JP2016011411A (ja) シリコン含有膜形成用組成物、パターン形成方法及びポリシロキサン化合物
US8703395B2 (en) Pattern-forming method
JP5540509B2 (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP6163770B2 (ja) レジスト下層膜形成用組成物及びパターン形成方法
JP5560564B2 (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP5136439B2 (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP5625301B2 (ja) シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP2011213921A (ja) シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP5835425B2 (ja) ダマシンプロセス用絶縁パターン形成材料
JP2010090248A (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826743

Country of ref document: EP

Kind code of ref document: A1