WO2011052579A1 - 有機光電変換素子及びその製造方法 - Google Patents

有機光電変換素子及びその製造方法 Download PDF

Info

Publication number
WO2011052579A1
WO2011052579A1 PCT/JP2010/068954 JP2010068954W WO2011052579A1 WO 2011052579 A1 WO2011052579 A1 WO 2011052579A1 JP 2010068954 W JP2010068954 W JP 2010068954W WO 2011052579 A1 WO2011052579 A1 WO 2011052579A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
photoelectric conversion
organic
active layer
conversion element
Prior art date
Application number
PCT/JP2010/068954
Other languages
English (en)
French (fr)
Inventor
岳仁 加藤
吉村 研
大西 敏博
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800475231A priority Critical patent/CN102576808A/zh
Priority to US13/504,653 priority patent/US20120222743A1/en
Publication of WO2011052579A1 publication Critical patent/WO2011052579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element.
  • organic photoelectric conversion elements Compared with other elements such as inorganic photoelectric conversion elements, organic photoelectric conversion elements have advantages such as a simple structure and easy and inexpensive manufacture such as that they can be manufactured by printing. . However, the inferior photoelectric conversion efficiency has hindered practical use of organic photoelectric conversion elements.
  • Patent Document 1 a compound that is a p-type semiconductor material is purified in advance by column chromatography using silica gel as a filler, and then this is formed into a p-type semiconductor layer.
  • the present invention provides an organic photoelectric conversion element comprising an active layer having an inorganic compound content of a certain amount or less by purifying an electron donating compound using a specific adsorbent.
  • the conversion element is excellent in photoelectric conversion efficiency.
  • the present invention provides the following [1] to [6].
  • An organic photoelectric conversion element comprising a pair of electrodes and an active layer located between the pair of electrodes and containing an organic compound, the phosphorus compound, palladium compound, and aluminum compound included in the active layer
  • the organic photoelectric conversion element whose quantity of each inorganic compound of an iron compound, a calcium compound, a potassium compound, and a sodium compound is 30 weight ppm or less.
  • An organic photoelectric conversion element comprising a pair of electrodes and an active layer located between the pair of electrodes and containing an organic compound, wherein the amount of palladium compound contained in the active layer is the amount of palladium
  • the organic photoelectric conversion element which is 30 weight ppm or less.
  • An organic photoelectric conversion device comprising an active layer containing an organic compound between a pair of electrodes and the pair of electrodes, wherein the amount of sodium compound contained in the active layer is 30 ppm by weight as the amount of sodium
  • the organic photoelectric conversion element that is: [5] An organic photoelectric conversion device comprising an active layer containing an organic compound between a pair of electrodes and the pair of electrodes, wherein the amount of the iron compound contained in the active layer is 30 ppm by weight as the amount of iron
  • the organic photoelectric conversion element that is: [6] A method for producing an organic photoelectric conversion device comprising a pair of electrodes and an active layer located between the pair of electrodes and containing an organic compound, wherein the electron donating compound as the organic compound is silica gel and The manufacturing method of an organic photoelectric conversion element including refine
  • FIG. 1 is a diagram showing an example of a layer configuration of an organic photoelectric conversion element in the present invention.
  • FIG. 2 is a diagram showing another example of the layer configuration of the organic photoelectric conversion element in the present invention.
  • FIG. 3 is a diagram showing another example of the layer configuration of the organic photoelectric conversion element in the present invention.
  • FIG. 4 is a graph showing current-voltage characteristics of the organic thin film solar cells of Example 1 and Comparative Example 1.
  • FIG. 5 is a graph showing current-voltage characteristics of the organic thin-film solar cells of Example 2 and Comparative Example 2.
  • FIG. 6 is a graph showing current-voltage characteristics of the organic thin-film solar cell of Comparative Example 3.
  • organic photoelectric conversion element 20 substrate 32 first electrode 34 second electrode 40 active layer 42 first active layer 44 second active layer 52 first intermediate layer 54 second intermediate layer
  • the basic configuration of the organic photoelectric conversion element of the present invention is a configuration having a pair of electrodes and an active layer. At least one of the pair of electrodes is transparent or translucent. In the organic photoelectric conversion element, the transparent or translucent electrode of the pair of electrodes is usually an anode. Of the pair of electrodes, the electrode that may not be transparent or translucent is usually a cathode. The position of the active layer in the organic photoelectric conversion element is usually between a pair of electrodes.
  • the active layer may be a single layer or a plurality of layers. A layer other than the active layer may be provided between the pair of electrodes, and this layer may be referred to as an intermediate layer in this specification.
  • the active layer is a layer containing an organic compound.
  • the organic compound include an electron donating compound (p-type semiconductor) and an electron accepting compound (n-type semiconductor).
  • the active layer may be a single layer or a laminate in which a plurality of layers are stacked.
  • the active layer is of a so-called pn heterojunction type in which a layer formed of an electron donating compound (electron donating layer) and a layer formed of an electron accepting compound (electron accepting layer) are superimposed.
  • FIGS. 1 to 3 are diagrams showing examples of the layer structure of the organic photoelectric conversion element.
  • FIGS. 1 to 3 are diagrams showing examples of the layer structure of the organic photoelectric conversion element.
  • a stacked body in which an active layer 40 is sandwiched between a first electrode 32 and a second electrode 34 is mounted on the substrate 20 to constitute the organic photoelectric conversion element 10.
  • the substrate 20 is transparent or translucent.
  • the first electrode 32 and the second electrode 34 are transparent or translucent.
  • the first electrode 32 is transparent or translucent.
  • Which of the first electrode 32 and the second electrode 34 is an anode and which is a cathode is not particularly limited.
  • the vapor deposition is performed in a later process when the vapor deposition method is used for film formation of the cathode (for example, aluminum).
  • the cathode for example, aluminum
  • the first electrode 32 is an anode and the second electrode 34 is a cathode.
  • the substrate 20 and the first electrode 32 are formed to be transparent or translucent so that the light can be taken from the substrate 20 side.
  • the active layer 40 is composed of two layers, a first active layer 42 and a second active layer 44, and is a pn heterojunction type active layer.
  • One of the first active layer 42 and the second active layer 44 is an electron accepting layer, and the other layer is an electron donating layer.
  • first intermediate layer 52 and a second intermediate layer 54 are provided.
  • the first intermediate layer 52 is located between the active layer 40 and the first electrode 32
  • the second intermediate layer 54 is located between the active layer 40 and the second electrode 34. Only one of the first intermediate layer 52 and the second intermediate layer 54 may be provided.
  • each intermediate layer is depicted as a single layer, but each intermediate layer may be composed of a plurality of layers.
  • the intermediate layer may have various functions. Assuming the case where the first electrode 32 is an anode, the first intermediate layer 52 may be, for example, a hole transport layer, an electron blocking layer, a hole injection layer, and a layer having other functions. In this case, the second electrode 34 is a cathode, and the second intermediate layer 54 can be, for example, an electron transport layer, an electron block layer, and a layer having other functions. On the other hand, when the first electrode 32 is a cathode and the second electrode 34 is an anode, the positions of the intermediate layers are also changed accordingly.
  • the organic photoelectric conversion element of the present invention is the organic photoelectric conversion element described above, and the amount of the inorganic compound contained in the active layer is 30 ppm by weight or less.
  • inorganic compounds include phosphorus compounds, palladium compounds, aluminum compounds, iron compounds, calcium compounds, potassium compounds, and sodium compounds.
  • the amount of the palladium compound in the active layer is 30 ppm by weight or less as the amount of palladium
  • the amount of the sodium compound that is a compound containing sodium is 30 ppm by weight or less as the amount of sodium
  • the amount of iron compound that is a compound containing iron is 30 ppm by weight or less as the amount of iron.
  • the amount of each element of inorganic elements (phosphorus, palladium, aluminum, iron, calcium, potassium, and sodium) contained in the inorganic compound is 30 ppm by weight or less, preferably Is 10 ppm by weight or less, more preferably 1 ppm by weight or less.
  • the lower limit of the inorganic compound contained in the active layer is not particularly limited as the total amount of inorganic elements contained in the inorganic compound, but is usually 0.01 ppm by weight or more.
  • the unit “ppm” represents “weight ppm”.
  • the active layer is a layer containing an organic compound.
  • the organic compound contained in the active layer may include a combination of an electron donating compound and an electron accepting compound as described above.
  • the electron-donating compound and the electron-accepting compound are not particularly limited, and can be determined relatively from the energy level of the energy level of these compounds.
  • Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, and aromatic amines in side chains or main chains. And polysiloxane derivatives, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and the like. Of these, oligothiophene and its derivatives are preferred, and poly (3-hexylthiophene) (P3HT) is more preferred.
  • P3HT poly (3-hexylthiophene)
  • a compound having a structural unit represented by the following formula (1) is also preferable.
  • the compound having a structural unit represented by the formula (1) preferably further has a structural unit represented by the formula (2).
  • Ar 1 and Ar 2 are the same or different and represent a trivalent heterocyclic group.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, Arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino Represents a monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl group, carboxyl group or cyano group.
  • R 50 is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, acid imide group, imino group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, aryl An alkenyl group, an arylalkynyl group, a carboxyl group or a cyano group is represented.
  • R 51 is an alkyl group having 6 or more carbon atoms, an alkyloxy group having 6 or more carbon atoms, an alkylthio group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, an aryloxy group having 6 or more carbon atoms, or 6 or more carbon atoms.
  • X 1 and Ar 2 are bonded to the adjacent position of the heterocyclic ring contained in Ar 1
  • C (R 50 ) (R 51 ) and Ar 1 are bonded to the adjacent position of the heterocyclic ring contained in Ar 2 . .
  • a polymer compound having a weight average molecular weight in terms of polystyrene calculated using a standard polystyrene sample is preferably 3000 to 10000000. If the weight average molecular weight is lower than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent or applicability during device fabrication may be reduced.
  • the weight average molecular weight of the electron donating compound is more preferably 8000 to 5000000, and particularly preferably 10,000 to 1000000.
  • the electron donating compounds may be used alone or in combination of two or more.
  • the electron donating compound is preferably a compound purified by an adsorbent containing both silica and alumina.
  • impurities in the electron-donating compound are removed, and the amount of the inorganic compound contained in the active layer can be suppressed to 30 ppm by weight or less, thereby reducing charge traps that cause deterioration of the performance of the organic photoelectric conversion element. And photoelectric conversion efficiency can be improved.
  • the conditions for purification using an adsorbent containing silica gel and alumina are not particularly limited, and may be appropriately selected depending on the type, amount, or other conditions of the compound.
  • Examples of the purification method using an adsorbent containing silica and alumina include a method using a column packed with silica and alumina. For example, there is a method in which an electron donating compound is dissolved in a solvent to prepare a liquid, the liquid is passed through a column packed with silica and alumina, and the compound is separated from the liquid after passing.
  • the solvent that can be used may be either water or an organic solvent.
  • Examples of the organic solvent include halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene; unsaturated hydrocarbon solvents; ether solvents, etc.
  • halogenated unsaturated hydrocarbon solvents are preferable, and dichlorobenzene is More preferred is orthodichlorobenzene, even more preferred.
  • Examples of the method for separating the compound after purification include a method of pouring the liquid after passing through the column into a hydrophilic solvent (such as methanol) such as alcohol to precipitate, and a method of filtering and drying the compound after precipitation. .
  • Examples of the electron-accepting compound include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, Diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerenes such as C 60 and its derivatives, bathocuproine, etc.
  • Phenanthrene derivatives metal oxides such as titanium oxide, carbon nanotubes, and the like.
  • titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and fullerene derivatives are particularly preferable.
  • fullerene examples include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
  • fullerene derivatives C 60 fullerene derivatives, C 70 fullerene derivatives, C 76 fullerene derivatives, C 78 fullerene derivatives, and C 84 fullerene derivatives.
  • Specific examples of the fullerene derivative include the following.
  • [5,6] - phenyl C 61 butyric acid methyl ester [5,6] -PCBM), [6,6] phenyl -C 61 butyric acid methyl ester ([6,6 ] -PCBM, C60PCBM, [6,6] -Phenyl C 61 butyric acid methyl ester), [6,6] phenyl -C 71 butyric acid methyl ester (C 70 PCBM, [6,6] -Phenyl C 71 butyric acid methyl ester), [6,6] phenyl -C 85 butyric acid methyl ester (C 84 PCBM, [6,6] -Phenyl C 85 butyric acid methyl ester), [6,6] thienyl -C 61 butyric acid methyl ester ([6 , 6] -Thienyl C 61 buty ic acid methyl ester) and the like.
  • fullerenes and fullerene derivatives are preferable among the above specific examples, and [5,6] -PCBM and [6,6] -PCBM are more preferable.
  • the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight and more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. .
  • the electron-accepting compound is not limited to one type of compound, and two or more types of compounds can be used in combination.
  • the active layer can be formed by depositing a liquid containing an organic compound.
  • an electron-donating compound as an organic compound is purified with a silica alumina column, and an organic compound containing an electron-donating compound after purification (that is, other than the electron-donating compound after purification and the electron-donating compound after purification) And a method of forming an active layer by forming a liquid containing one or more organic compounds).
  • an organic photoelectric conversion element having an inorganic compound amount of 30 ppm by weight or less can be efficiently produced.
  • the liquid containing the organic compound can be prepared by dissolving the organic compound in a solvent.
  • the solvent is appropriately selected depending on the types of the electron-donating compound and the electron-accepting compound, and water and organic solvents are exemplified.
  • the organic solvent include toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, unsaturated hydrocarbon solvents such as n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene,
  • the amount of the organic compound added to the solvent is not particularly limited, and an optimum range can be appropriately selected. Usually, it is 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.5%. It is the amount which becomes weight% or more.
  • the total amount of the electron donating compound and the electron accepting compound is usually 0 in the liquid. .2% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more.
  • the compounding ratio of the electron donating compound and the electron accepting compound can be usually adjusted to 1 to 20:20 to 1, preferably 1 to 10:10 to 1, more preferably 1 to 5: 5 to 1. .
  • the electron donating compound or the electron accepting compound is usually 0.4% by weight or more in the liquid, Preferably, it is added in an amount of 0.6% by weight or more, more preferably 2% by weight or more.
  • a liquid containing an organic compound may be filtered. Thereby, the photoelectric conversion efficiency can be further improved.
  • the pore size of the filter is usually 10 to 0.1 ⁇ m, preferably 5 to 0.1 ⁇ m, more preferably 0.15 to 0.1 ⁇ m.
  • a liquid containing an organic compound may be applied on the electrode or the intermediate layer, and the solvent may be volatilized.
  • the coating method include a coating method.
  • the coating method spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method, Examples include a flexographic printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, and a capillary coating method.
  • the spin coating method, flexographic printing method, gravure printing method, ink jet printing method, and dispenser printing method are preferable, and the spin coating method is more preferable.
  • an active layer of a bulk heterojunction type
  • a liquid containing both an electron-donating compound and an electron-accepting compound is applied onto the electrode or the intermediate layer, and the solvent is volatilized.
  • an active layer can be formed.
  • an organic photoelectric conversion element having an active layer of pn heterojunction type for example, a liquid containing an electron donating compound and a liquid containing an electron accepting compound are prepared, and an electron donating compound is prepared.
  • the liquid containing is applied on an electrode or an intermediate layer, and the solvent is evaporated to form an electron donating layer.
  • a liquid containing an electron accepting compound is applied onto the electron donating layer, and the solvent is volatilized to form an electron accepting layer.
  • an active layer having a two-layer structure can be formed.
  • the order of forming the electron donating layer and the electron accepting layer may be reversed.
  • the thickness of the active layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and even more preferably 20 nm to 200 nm.
  • An example of producing the organic photoelectric conversion device of the present invention is an example in which an electrode is formed on a substrate, an active layer is formed as described above, and then an electrode is formed on the active layer.
  • the organic photoelectric conversion element illustrated in FIG. 1 or FIG. 2 is obtained.
  • an electrode is formed on the substrate, an intermediate layer is formed on the electrode, an active layer is formed as described above, an intermediate layer is then formed on the active layer, and an electrode is further formed on the intermediate layer.
  • the organic photoelectric conversion element illustrated in FIG. 3 can be formed.
  • various thin film forming methods can be appropriately selected in consideration of conditions such as the type and thickness of the electrode material.
  • various thin film forming methods can be appropriately selected in consideration of conditions such as the type and thickness of the electrode material.
  • the above-described coating methods can be employed as appropriate, and vacuum deposition, sputtering, chemical vapor deposition (CVD), etc. can be employed. May be.
  • an active layer may be formed directly on the substrate, or optionally after being subjected to other steps such as heating, UV-O 3 treatment, atmospheric exposure, etc. A layer may be formed.
  • the substrate may be any substrate that does not chemically change when the electrode is formed and when the organic layer is formed.
  • the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode farther from the substrate of the pair of electrodes
  • Examples of the electrode material constituting the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and a composite of two or more thereof (eg, indium tin oxide (ITO), indium zinc oxide (IZO), NESA), etc. Films produced using materials; metal thin films such as gold, platinum, silver, and copper are exemplified, and films produced using conductive materials such as ITO, indium / zinc / oxide, and tin oxide are preferred. Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • the electrode paired with the transparent or translucent electrode may be transparent or translucent, but may be transparent or not translucent.
  • the electrode material constituting the electrode include metals and conductive polymers. Specific examples of the electrode material include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • Two or more alloys of the metals include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the material for the intermediate layer examples include alkali metals such as lithium fluoride (LiF), halides and oxides of alkaline earth metals.
  • alkali metals such as lithium fluoride (LiF)
  • halides and oxides of alkaline earth metals.
  • fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly (3,4) ethylenedioxythiophene) and the like are also exemplified.
  • the anode side intermediate layer is preferably PEDOT
  • the cathode side intermediate layer is preferably alkali metal (more preferably LiF).
  • the organic photoelectric conversion element manufactured by the manufacturing method of the present invention operates as an organic thin film solar cell because photovoltaic power is generated between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. You may let them. Moreover, you may use as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the organic light sensor may be operated. And you may use as an organic image sensor by integrating a plurality of organic optical sensors.
  • Organic thin-film solar cells can have basically the same module structure as conventional solar cell modules.
  • a solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin, protective glass, etc., and light is taken in from the opposite side of the support substrate.
  • a transparent support substrate made of a transparent material such as tempered glass can be used as the support substrate, and a cell can be formed on the support substrate to receive light from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the module structure of the organic thin film solar cell of the present invention can also be appropriately selected from these module structures depending on the purpose of use, the place of use or the environment.
  • a typical module structure called super straight type or substrate type has cells arranged at regular intervals between support substrates that are transparent on one or both sides and treated with antireflection, and adjacent cells are metal leads or flexible wiring.
  • the current collector electrode is arranged at the outer edge portion and the generated power is taken out to the outside.
  • plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell or improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the protective function can be achieved by configuring the surface protective layer with a transparent plastic film or by curing the filled resin.
  • the periphery of the support substrate is usually fixed in a sandwich shape with a metal frame.
  • the support substrate and the frame are usually hermetically sealed with a sealing material.
  • a flexible material is used as the material of the cell itself, the material of the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • the battery body can be produced.
  • a solar cell using a flexible support can also have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391.
  • SCAF solar Energy Materials and Solar Cells, 48, p383-391.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • cracks may occur on the coating film. Further, insoluble components and / or dust may become nuclei and aggregated particles may be generated.
  • the occurrence of cracks and the occurrence of agglomerated flow leads to phenomena such as poor electrical or chemical contact at the bonding interface and the occurrence of leakage current. According to the present invention, the occurrence of these phenomena can be reduced, so that the photoelectric conversion efficiency is improved.
  • Example 1 Preparation of an organic photoelectric conversion element
  • a glass substrate on which ITO having a thickness of about 150 nm formed by sputtering was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried. This substrate was subjected to UV-O 3 treatment using a UV-O 3 apparatus.
  • a suspension of an aqueous solution of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid dissolved in water was filtered through a 0.5 micron filter.
  • the suspension after filtration was formed into a film with a thickness of 70 nm by spin coating on the ITO surface side of the substrate, and dried at 200 ° C. for 10 minutes on a hot plate in the air.
  • the polymer compound A was purified. That is, it melt
  • the content of the inorganic compound in the polymer compound A was as follows: iron 10 wt ppm or less, palladium 10 wt ppm or less, phosphorus 10 wt ppm or less, sodium 14 wt ppm, potassium 10 wt ppm or less, calcium 10 weight ppm or less, aluminum 10 weight ppm or less.
  • An orthodichlorobenzene solution having a weight ratio of 1: 3 was prepared between the purified polymer compound A and [6,6] -phenyl C61 butyric acid methyl ester ([6,6] -PCBM).
  • the amount of the polymer compound A added was 0.5% by weight with respect to orthodichlorobenzene.
  • the said ortho dichlorobenzene solution was filtered with the filter of a 0.2 micrometer diameter. The obtained extract was spin-coated and then dried in an N 2 atmosphere.
  • LiF was deposited to a thickness of about 2.3 nm and then Al to a thickness of about 70 nm in a resistance heating vapor deposition apparatus to form an electrode. Furthermore, the sealing process was given by adhere
  • an epoxy resin rapid hardening type Araldite
  • Example 2 (Production of organic photoelectric conversion element) A glass substrate on which ITO having a thickness of about 150 nm formed by sputtering was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried. This substrate was subjected to UV-O 3 treatment using a UV-O 3 apparatus.
  • a suspension of an aqueous solution of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid dissolved in water was filtered through a 0.5 micron filter.
  • the suspension after filtration was formed into a film with a thickness of 70 nm by spin coating on the ITO surface side of the substrate, and dried at 200 ° C. for 10 minutes on a hot plate in the air.
  • polymer compound B was dissolved again in 30 mL of o-dichlorobenzene, passed through an alumina / silica gel column, and the resulting solution was poured into methanol to precipitate a polymer.
  • the polymer was filtered, dried, and purified.
  • the content of the inorganic compound in the purified polymer compound B was as follows: phosphorus 10 wt ppm or less, palladium 10 wt ppm or less, aluminum 10 wt ppm or less, calcium 10 wt ppm or less, potassium 10 Weight ppm or less, iron 10 ppm or less, and sodium 10 weight ppm or less.
  • an electrode was formed on the active layer thus formed by depositing LiF with a thickness of about 2.3 nm and subsequently with Al in a thickness of about 70 nm in a resistance heating vapor deposition apparatus. Furthermore, the sealing process was given by adhere
  • Example 1 (Production of organic photoelectric conversion element)
  • an organic photoelectric conversion element was produced in the same manner except that the polymer compound A was not purified.
  • the content of the inorganic compound in the polymer compound A was as follows: phosphorus 850 wt ppm, palladium 19 wt ppm, aluminum 380 wt ppm or less, calcium 110 wt ppm or less, potassium 13 wt ppm
  • iron 280 ppm and sodium 46 weight ppm was as follows: phosphorus 850 wt ppm, palladium 19 wt ppm, aluminum 380 wt ppm or less, calcium 110 wt ppm or less, potassium 13 wt ppm
  • iron 280 ppm and sodium 46 weight ppm was produced in the same manner except that the polymer compound A was not purified.
  • the content of the inorganic compound in the polymer compound A was as follows: phosphorus 850 wt ppm, palladium 19
  • Comparative Example 2 (Production of organic photoelectric conversion element) An organic photoelectric conversion device was produced in the same manner as in Example 2 except that the polymer compound B was not purified.
  • the content of the inorganic compound in the polymer compound B was as follows: phosphorus 110 wt ppm, palladium 580 wt ppm, aluminum 10 wt ppm or less, calcium 10 wt ppm or less, potassium 10 wt ppm Below, and 79 weight ppm sodium.
  • Comparative Example 3 Preparation of organic photoelectric conversion element
  • This substrate was UV-O 3 treated with a UV-O 3 apparatus with the ITO surface facing up.
  • a suspension of an aqueous solution of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid dissolved in water was filtered through a 0.5 micron filter.
  • the suspension after filtration was formed into a film with a thickness of 70 nm by spin coating on the ITO surface side of the substrate, and dried at 200 ° C. for 10 minutes on a hot plate in the air.
  • P3HT poly (3-hexylthiophene)
  • P3HT poly (3-hexylthiophene)
  • [6,6] -phenyl C61 butyric acid methyl ester [6,6] -PCBM
  • LiF is deposited to a thickness of about 2.3 nm and then Al is deposited to a thickness of about 70 nm in a resistance heating vapor deposition apparatus to form an electrode.
  • the sealing process was given by adhere
  • the shape of the organic thin film solar cell which is the organic photoelectric conversion element obtained in the examples and comparative examples, was a regular square of 2 mm ⁇ 2 mm. These organic thin film solar cells were irradiated with a constant light using a solar simulator (trade name: CEP-2000, manufactured by Spectrometer Co., Ltd., irradiance: 100 mW / cm 2 ), and the generated current and voltage were measured. The photoelectric conversion efficiency was calculated. Table 1 shows the short-circuit current density, open-circuit voltage, fill factor, and photoelectric conversion efficiency of each organic thin-film solar cell. Also, the current-voltage characteristics of the organic thin film solar cells of Example 1 and Comparative Example 1 are shown in FIG. 4, the current-voltage characteristics of the organic thin film solar cells of Example 2 and Comparative Example 2 are shown in FIG. The current-voltage characteristics of the organic thin film solar cell No. 3 are shown in FIG.
  • the organic thin film solar cells of Example 1 and Example 2 all showed higher photoelectric conversion efficiency than the organic thin film solar cells of Comparative Examples 1 to 3.
  • the present invention is useful because it provides an organic photoelectric conversion element and a method for producing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子であって、前記活性層に含まれる、リン化合物、パラジウム化合物、アルミニウム化合物、鉄化合物、カルシウム化合物、カリウム化合物、及びナトリウム化合物の各々の無機化合物の量が30重量ppm以下である有機光電変換素子は、光電変換効率に優れる。

Description

有機光電変換素子及びその製造方法
 本発明は、有機光電変換素子に関する。
 有機光電変換素子は、無機光電変換素子などの他の素子と比較して、構造がシンプルであること、印刷による製造が可能であるなど容易かつ安価に製造できること、などの利点を有している。しかし、光電変換効率が劣ることが、有機光電変換素子の実用化の妨げになっていた。
 有機光電変換素子の光電変換効率が低い原因の一つとして、素子を構成する活性層中の、p型半導体材料に混在する不溶成分の存在が挙げられている。
 特許文献1では、p型半導体材料である化合物を予めシリカゲルを充填材とするカラムクロマトグラフィーにより精製した後に、これを成膜してp型半導体層を形成している。
国際公開第2008/044585号公報
 しかし、特許文献1のようなシリカゲルによる精製を行っても、p型半導体材料中の不溶成分を十分に除去できず、有機光電変換素子において漏れ電流が発生するおそれがあり、光電変換効率を向上させることは困難であった。
 本発明は、特定の吸着剤を用いて電子供与性化合物を精製することで、無機化合物の含有量がある一定の量以下である活性層を備える、有機光電変換素子が得られ、該有機光電変換素子は、光電変換効率に優れるというものである。
 本発明は、下記の〔1〕~〔6〕を提供するものである。
〔1〕一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子であって、前記活性層に含まれる、リン化合物、パラジウム化合物、アルミニウム化合物、鉄化合物、カルシウム化合物、カリウム化合物、及びナトリウム化合物の各々の無機化合物の量が30重量ppm以下である有機光電変換素子。
〔2〕前記有機化合物が、シリカゲル及びアルミナを含む吸着剤により精製された電子供与性化合物である、上記〔1〕に記載の有機光電変換素子。
〔3〕一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子であって、前記活性層に含まれるパラジウム化合物の量がパラジウムの量として30重量ppm以下である有機光電変換素子。
〔4〕一対の電極と、前記一対の電極の間に、有機化合物を含む活性層を備える有機光電変換素子であって、前記活性層に含まれるナトリウム化合物の量がナトリウムの量として30重量ppm以下である有機光電変換素子。
〔5〕一対の電極と、前記一対の電極の間に、有機化合物を含む活性層を備える有機光電変換素子であって、前記活性層に含まれる鉄化合物の量が鉄の量として30重量ppm以下である有機光電変換素子。
〔6〕一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子の製造方法であって、前記有機化合物としての電子供与性化合物をシリカゲル及びアルミナを含む吸着剤で精製すること、精製後の電子供与性化合物を含む有機化合物を含有する液から前記活性層を成膜することを含む、有機光電変換素子の製造方法。
図1は、本発明における有機光電変換素子の層構成の一例を示す図である。 図2は、本発明における有機光電変換素子の層構成の他の一例を示す図である。 図3は、本発明における有機光電変換素子の層構成の他の一例を示す図である。 図4は、実施例1及び比較例1の各有機薄膜太陽電池の、電流-電圧特性を示すグラフである。 図5は、実施例2及び比較例2の各有機薄膜太陽電池の、電流-電圧特性を示すグラフである。 図6は、比較例3の有機薄膜太陽電池の、電流-電圧特性を示すグラフである。
10 有機光電変換素子
20 基板
32 第1電極
34 第2電極
40 活性層
42 第1活性層
44 第2活性層
52 第1中間層
54 第2中間層
 以下の説明において示す図面における各部材の縮尺は、実際と異なる場合がある。また、有機光電変換素子には電極のリード線などの部材も存在するが、本発明の説明として直接的に関係はないために記載および図示を省略している。
 本発明の有機光電変換素子の基本的な構成は、一対の電極と活性層とを有する構成である。一対の電極のうち少なくとも一方は透明又は半透明である。有機光電変換素子において、一対の電極のうち透明又は半透明な電極は、通常は陽極である。また、一対の電極のうち、透明又は半透明でなくてもよい電極は通常は陰極である。有機光電変換素子における活性層の位置は、通常は一対の電極の間である。活性層は1層であってもよいが、複数層であってもよい。また、一対の電極の間に、活性層以外の層が設けられてもよく、この層を本明細書においては中間層と称する場合がある。
 活性層は、有機化合物を含む層である。有機化合物としては、電子供与性化合物(p型半導体)と電子受容性化合物(n型半導体)が例示される。活性層は、単層であっても、複数の層が重ね合わされた積層体であってもよい。活性層の形態としては、電子供与性化合物で形成された層(電子供与性層)と電子受容性化合物で形成された層(電子受容性層)とが重ね合わされた、いわゆるpnヘテロ接合型の活性層;電子供与性化合物と電子受容性化合物とが混合して、バルクへテロジャンクション構造を形成したバルクへテロ接合型の活性層、等が例示され、本発明における活性層はいずれの形態であってもよい。
 有機光電変換素子の層構成の例について、図1~図3を参照しつつ説明する。図1~図3はそれぞれ、有機光電変換素子の層構成の例を示す図である。以下、図1について説明した後、図2について図1と異なる点のみ説明し、図3について、図1及び図2と異なる点のみ説明する。
 図1の例では、第1電極32及び第2電極34の間に活性層40が狭持された積層体が基板20に搭載されて、有機光電変換素子10を構成する。基板20側から採光する場合には、基板20は透明又は半透明である。
 通常は、第1電極32および第2電極34のうち少なくとも一方が、透明または半透明である。基板20側から採光する場合は、第1電極32が透明または半透明である。
 第1電極32及び第2電極34のうちいずれが陽極でありいずれが陰極であるかは、特に限定されない。例えば、基板20側から順次積層して有機光電変換素子10を製造する場合、陰極(例えば、アルミニウムなど)の成膜に蒸着法を用いるとすると、蒸着はより後の工程である方が好ましい場合がある。よってこの例の場合は、第1電極32が陽極であり、第2電極34が陰極であることが好ましい。また、この例の場合は、アルミニウム電極は、厚みの設定によっては透明または半透明にするのが困難な場合がある。よって、基板20側から採光し得るようにするため、基板20および第1電極32が透明または半透明に形成されることが好ましい。
 図2の例では、活性層40は、第1活性層42および第2活性層44の2つの層で構成されており、pnヘテロ接合型の活性層である。第1活性層42および第2活性層44のうちの一方の層が電子受容性層であり、他方の層が電子供与性層である。
 図3の例では、第1中間層52と第2中間層54が設けられている。第1中間層52は活性層40と第1電極32との間に、第2中間層54は活性層40と第2電極34との間に、それぞれ位置する。第1中間層52と第2中間層54は、いずれか一方のみを設けるものであってもよい。また、図3では各中間層を単層として描いているが、各中間層は複数の層により構成してもよい。
 中間層はさまざまな機能を有していてもよい。第1電極32が陽極である場合を想定すると、第1中間層52は、例えば、正孔輸送層、電子ブロック層、正孔注入層およびその他の機能を有する層であり得る。この場合、第2電極34は陰極であり、第2中間層54は、例えば電子輸送層、電子ブロック層およびその他の機能を有する層であり得る。反対に、第1電極32を陰極とし、第2電極34を陽極とした場合、これに応じて中間層もそれぞれ位置が入れ替わることになる。
 本発明の有機光電変換素子は、上述の有機光電変換素子であって、活性層に含まれる無機化合物の量が30重量ppm以下である有機光電変換素子である。
 無機化合物として、リン化合物、パラジウム化合物、アルミニウム化合物、鉄化合物、カルシウム化合物、カリウム化合物、ナトリウム化合物が例示される。本発明の態様としては、活性層に占めるパラジウム化合物の量がパラジウムの量として30重量ppm以下のもの、ナトリウムを含む化合物であるナトリウム化合物の量がナトリウムの量として30重量ppm以下のもの、及び、鉄を含む化合物である鉄化合物の量が鉄の量として30重量ppm以下のものが挙げられる。
 活性層に含まれる無機化合物の量に関して、無機化合物に含まれる無機元素(リン、パラジウム、アルミニウム、鉄、カルシウム、カリウム、及びナトリウム)の各々の元素の量が、30重量ppm以下であり、好ましくは10重量ppm以下であり、より好ましくは1重量ppm以下である。30重量ppm以下であることにより、有機光電変換素子の電化トラップが軽減され、性能の低下が防止され、その結果光電変換効率に優れた有機光電変換素子が得られる。活性層に含まれる無機化合物の下限は、無機化合物に含まれる無機元素の合計量として、特には限定されないが、通常、0.01重量ppm以上である。なお、本発明において単位「ppm」は、「重量ppm」を表すものとする。
 活性層は有機化合物を含む層である。活性層に含まれる有機化合物の例としては、前述したように、電子供与性化合物及び電子受容性化合物の組み合わせを挙げ得る。電子供与性化合物、電子受容性化合物は、特に限定されず、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定され得る。
 電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等が挙げられる。これらのうち、オリゴチオフェン及びその誘導体が好ましく、ポリ(3-ヘキシルチオフェン)(P3HT)がより好ましい。
 一方、電子供与性化合物としては、下記式(1)で示される構成単位を有する化合物も好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)で示される構成単位を有する化合物は、さらに、式(2)で表される構成単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Ar1及びAr2は、同一又は相異なり、3価の複素環基を表す。X1は、-O-、-S-、-C(=O)-、-S(=O)-、-SO2-、-Si(R3)(R4)-、-N(R5)-、-B(R6)-、-P(R7)-又は-P(=O)(R8)-を表す。
 R3、R4、R5、R6、R7及びR8は、同一又は相異なり、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R50は、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、複素環オキシ基、複素環チオ基、アリールアルケニル基、アリールアルキニル基、カルボキシル基又はシアノ基を表す。R51は、炭素数6以上のアルキル基、炭素数6以上のアルキルオキシ基、炭素数6以上のアルキルチオ基、炭素数6以上のアリール基、炭素数6以上のアリールオキシ基、炭素数6以上のアリールチオ基、炭素数7以上のアリールアルキル基、炭素数7以上のアリールアルキルオキシ基、炭素数7以上のアリールアルキルチオ基、炭素数6以上のアシル基又は炭素数6以上のアシルオキシ基を表す。X1とAr2は、Ar1に含まれる複素環の隣接位に結合し、C(R50)(R51)とAr1は、Ar2に含まれる複素環の隣接位に結合している。
 このような、式(1)で示される構成単位を有する化合物としては、下記の式(3)で表される化合物と式(4)で表される化合物を重合して得られるポリマー(以下、高分子化合物Aという。)が例示される。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 また、式(1)で示される構成単位を有する化合物としては、下記の式(5)で表されるポリマー(以下、高分子化合物Bという。)が例示される。
Figure JPOXMLDOC01-appb-C000005
 電子供与性化合物としては、ポリスチレンの標準試料を用いて算出したポリスチレン換算の重量平均分子量において、3000~10000000の高分子化合物が好ましく用いられる。重量平均分子量が3000より低いと、デバイス作製時の膜形成に欠陥が生じることがあり、10000000より大きいと溶媒への溶解性又は素子作製時の塗布性が低下することがある。電子供与性化合物の重量平均分子量としてさらに好ましくは8000~5000000であり、特に好ましくは10000~1000000である。
 電子供与性化合物は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 電子供与性化合物は、シリカ及びアルミナの両方を含む吸着剤により精製された化合物であることが好ましい。これにより、電子供与性化合物中の不純物が除去され、活性層に含まれる無機化合物の量が30重量ppm以下に抑えられ得るので、有機光電変換素子の性能を低下させる原因となる電荷トラップを軽減することが可能となり、光電変換効率を向上させることができる。シリカゲル及びアルミナを含む吸着剤を用いる精製の条件は、特に制限されず、化合物の種類、量、又はその他の条件により適宜選択されうる。
 シリカ及びアルミナを含む吸着剤による精製の方法としては、シリカ及びアルミナを充填したカラムを用いる方法が挙げられる。例えば、電子供与性化合物を溶媒に溶解し液を調製し、該液をシリカ及びアルミナを充填したカラムを通過させ、通過後の液から化合物を分離する方法が挙げられる。用い得る溶媒は、水及び有機溶媒のいずれであってもよい。有機溶媒としては、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒;不飽和炭化水素溶媒;エーテル溶媒等が挙げられ、このうちハロゲン化不飽和炭化水素溶媒が好ましく、ジクロロベンゼンがより好ましく、オルトジクロロベンゼンがさらにより好ましい。精製後の化合物の分離の方法としては、カラム通過後の液を、アルコール等の親水性溶媒(メタノールなど)に注いで析出させる方法、さらに析出後の化合物をろ過、乾燥させる方法が例示される。
 電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体が挙げられる。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンなどが挙げられる。
 フラーレン誘導体の例としては、C60フラーレン誘導体、C70フラーレン誘導体、C76フラーレン誘導体、C78フラーレン誘導体、及びC84フラーレン誘導体が挙げられる。フラーレン誘導体の具体的構造としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 また、フラーレン誘導体の例としては、[5,6]-フェニル C61 ブチリックアシッドメチルエステル([5,6]-PCBM)、[6,6]フェニル-C61酪酸メチルエステル([6,6]-PCBM、C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チェニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)などが挙げられる。
 電子受容性化合物としては、前記の具体例ののうち、フラーレン、フラーレン誘導体が好ましく、[5,6]-PCBM、[6,6]-PCBMがより好ましい。電子受容性化合物としてフラーレン誘導体を用いる場合、フラーレン誘導体の割合が、電子供与性化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。
 電子受容性化合物は、1種類の化合物に限らず、2種類以上の化合物を組み合わせて用い得る。
 活性層は、有機化合物を含む液を成膜して形成され得る。中でも、有機化合物としての電子供与性化合物をシリカアルミナカラムで精製し、精製後の電子供与性化合物を含む有機化合物(すなわち、精製後の電子供与性化合物と、該精製後の電子供与性化合物以外の1又は2以上の有機化合物)を含有する液を成膜して、活性層を形成する方法が例示される。かかる製法によれば、無機化合物の量が30重量ppm以下である有機光電変換素子を効率よく製造し得る。
 電子供与性化合物をシリカアルミナカラムで精製することについては、すでに説明したとおりである。
 有機化合物を含有する液は、有機化合物を溶媒に溶解して調製され得る。溶媒は、電子供与性化合物及び電子受容性化合物の種類等により適宜選択され、水及び有機溶媒が例示される。有機溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類溶媒等が挙げられる。これらのうち、ハロゲン化不飽和炭化水素溶媒が好ましく、ジクロロベンゼンがより好ましく、オルトジクロロベンゼンがさらにより好ましい。
 溶媒への、有機化合物の添加量は、特に限定されず適宜最適な範囲を選択することができ、通常は0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.5重量%以上となる量である。
 有機化合物を含有する液が電子供与性化合物及び電子受容性化合物の両方を含有する液として調製される場合には、電子供与性化合物と電子受容性化合物との合計量が、液中、通常0.2重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上となるように添加される。また、電子供与性化合物と電子受容性化合物の配合比は、通常は1~20:20~1、好ましくは1~10:10~1、さらに好ましくは1~5:5~1に調整され得る。電子供与性化合物を含有する液と電子受容性化合物を含有する液とが個々に調製される場合には、電子供与性化合物又は電子受容性化合物が、液中、通常0.4重量%以上、好ましくは0.6重量%以上、より好ましくは2重量%以上となるように添加される。
 必要に応じて、有機化合物を含む液のろ過を行ってもよい。これにより光電変換効率をさらに向上させ得る。フィルターの孔径は、通常、10~0.1μmであり、好ましくは5~0.1μmであり、より好ましくは0.15~0.1μmである。
 活性層の成膜は、例えば、有機化合物を含む液を、電極または中間層上に塗工し、溶媒を揮発させればよい。塗工の方法としては、例えば、塗布法が挙げられる。
 塗布法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等が例示される。このうち、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましく、スピンコート法がより好ましい。
 活性層がバルクヘテロ接合型の有機光電変換素子を製造する場合は、例えば、電子供与性化合物と電子受容性化合物の両方を含有する液を、電極または中間層上に塗工し、溶媒を揮発させることにより、活性層を形成し得る。
 一方、活性層がpnヘテロ接合型の有機光電変換素子を製造する場合には、例えば、電子供与性化合物を含有する液と電子受容性化合物を含有する液とを調製し、電子供与性化合物を含有する液を電極または中間層上に塗工し、溶媒を揮発させて電子供与性層を形成する。続いて、電子受容性化合物を含有する液を電子供与性層上に塗工し、溶媒を揮発させて電子受容性層を形成する。このようにして2層構成の活性層を形成し得る。電子供与性層および電子受容性層の形成順序は上記の逆でもよい。
 活性層の厚さは、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらにより好ましくは20nm~200nmである。
 本発明の有機光電変換素子の製造例としては、基板上に電極を形成してから、上述のように活性層を形成し、その後に、活性層上に電極を形成する例が挙げられ、この例により、図1または図2に例示する有機光電変換素子が得られる。また、基板上に電極を形成し、電極の上に中間層を形成してから、上述のように活性層を形成し、その後、活性層上に中間層を形成し、さらに中間層上に電極を形成することにより、図3に例示する有機光電変換素子を形成しうる。電極の形成においては、電極の材料の種類、厚みなどの条件を勘案し、適宜、様々な薄膜形成方法を選択し得る。中間層の形成においても、電極の材料の種類、厚みなどの条件を勘案し、適宜、様々な薄膜形成方法を選択し得る。電極及び/又は中間層の形成を液による成膜によって行う場合は、上述の塗布法などを適宜採用し得るほか、真空蒸着法、スパッタリング法、化学的気相成長法(CVD)などを採用してもよい。また、基板上に電極を形成した後は、直接その上に活性層を形成してもよいし、任意に、加熱、UV-O3処理、大気暴露等の他の工程に供した後、活性層を形成してもよい。
 基板は、電極を形成する際に、及び、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、一対の電極のうち基板から遠い方の電極)が透明又は半透明であることが好ましい。
 透明又は半透明の電極を構成する電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が例示される。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらのうち2以上の複合体(例:インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA)等の導電性材料を用いて作製された膜;金、白金、銀、銅等の金属薄膜が例示され、ITO、インジウム・亜鉛・オキサイド、酸化スズ等の導電性材料を用いて作製された膜が好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が例示される。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 透明又は半透明の電極と対をなす電極は、透明又は半透明であってもよいが、透明でも半透明でもなくてもよい。該電極を構成する電極材料としては、金属、導電性高分子等が例示される。該電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属;前記金属のうち2つ以上の合金;1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金;グラファイト、グラファイト層間化合物;ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 中間層の材料としては、フッ化リチウム(LiF)等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化物等が例示される。また、酸化チタン等無機半導体の微粒子、PEDOT(ポリ(3,4)エチレンジオキシチオフェン)なども例示される。このうち、陽極側の中間層はPEDOT、陰極側の中間層はアルカリ金属(より好ましくはLiF)であることが好ましい。
 有機光電変換素子の動作機構の概要を以下説明する。透明又は半透明の電極から入射した光エネルギーがフラーレン誘導体等の電子受容性化合物(n型の有機半導体)及び/又は共役高分子化合物等の電子供与性化合物(p型の有機半導体)で吸収され、電子とホールが結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
 本発明の製造方法により製造された有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生するので、有機薄膜太陽電池として動作させてもよい。また、有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いてもよい。
 さらに、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れるので、有機光センサーとして動作させてもよい。そして、有機光センサーを複数集積することにより有機イメージセンサーとして用いてもよい。
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、セルの上を充填樹脂、保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料からなる透明の支持基板を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の有機薄膜太陽電池のモジュール構造も、使用目的、使用場所又は環境に応じて、適宜これらのモジュール構造から選択され得る。
 スーパーストレートタイプあるいはサブストレートタイプと呼ばれる代表的なモジュール構造は、片側または両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リードまたはフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造である。基板とセルの間には、セルの保護又は集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルムまたは充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成することにより、または上記充填樹脂を硬化させて保護機能を付与することにより、片側の支持基板をなくすことが可能である。内部の密封およびモジュールの剛性を確保するため、通常、支持基板の周囲は、金属製のフレームでサンドイッチ状に固定される。また同様の理由から、通常、支持基板とフレームの間は封止材料で密封シールされる。また、セルそのものの材料、支持基板の材料、充填材料および封止材料として可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。
 ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、フレキシブル支持体を用いた太陽電池は、Solar Energy Materials and Solar Cells,48,p383-391記載の「SCAF」とよばれるモジュール構造を取ることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
 成膜時に不溶成分及び/又はダストが液中に存在していると、塗布膜上にクラックが発生するおそれがある。また、不溶成分及び/又はダストが核となり、凝集粒が発生するおそれがある。クラックの発生及び凝集流の発生は、接合界面での電気的又は化学的接触の不良、リーク電流の発生等の現象を招来する。本発明によれば、これらの現象の発生を低減させることができるので、光電変換効率が向上する。
実施例1(有機光電変換素子の作製)
 スパッタリング法にて成膜された約150nmの膜厚のITOがパターニングされたガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。この基板に、UV-O3装置にてUV-O3処理を行った。
 ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸を水に溶解させた水溶液(HCスタルクビーテック社製、Bytron P TP AI 4083)の懸濁液を0.5ミクロン径のフィルターでろ過した。ろ過後の懸濁液を、基板のITO面側に、スピンコートにより70nmの厚みで成膜して、大気中においてホットプレート上で200℃で10分間乾燥した。
 次に、高分子化合物Aを精製した。すなわち、オルトジクロロベンゼン30mLに溶解し、この溶液をアルミナ/シリカゲルカラムを通し、得られた溶液をメタノールに注いでポリマーを析出させた。このポリマーをろ過後、乾燥した。この場合の高分子化合物A中の、無機化合物の含有量は、下記のとおりであった:鉄10重量ppm以下、パラジウム10重量ppm以下、リン10重量ppm以下、ナトリウム14重量ppm、カリウム10重量ppm以下、カルシウム10重量ppm以下、アルミニウム10重量ppm以下。
 精製された高分子化合物Aと、[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の、重量比1:3のオルトジクロロベンゼン溶液を作製した。高分子化合物Aの添加量は、オルトジクロロベンゼンに対して0.5重量%とした。この溶液について、0.2μm径のフィルターで前記オルトジクロロベンゼン溶液のろ過を行った。得られた抽出物をスピンコートした後、N2雰囲気中で乾燥を行った。
 このようにして形成された活性層の上部に、抵抗加熱蒸着装置内にて、LiFを約2.3nm、続いてAlを約70nmの膜厚で成膜し、電極を形成した。さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)にてガラス基板を接着することで封止処理を施し、有機薄膜太陽電池を得た。
実施例2(有機光電変換素子の作製)
 スパッタリング法にて成膜された約150nmの膜厚のITOがパターニングされたガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。この基板に、UV-O3装置にてUV-O3処理を行った。
 ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸を水に溶解させた水溶液(HCスタルクビーテック社製、Bytron P TP AI 4083)の懸濁液を0.5ミクロン径のフィルターでろ過した。ろ過後の懸濁液を、基板のITO面側に、スピンコートにより70nmの厚みで成膜して、大気中においてホットプレート上で200℃で10分間乾燥した。
 次に、高分子化合物Bをo-ジクロロベンゼン30mLに再度溶解し、アルミナ/シリカゲルカラムを通し、得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製した。精製された高分子化合物B中の、無機化合物の含有量は、下記のとおりであった:リン10重量ppm以下、パラジウム10重量ppm以下、アルミニウム10重量ppm以下、カルシウム10重量ppm以下、カリウム10重量ppm以下、鉄10ppm以下、及びナトリウム10重量ppm以下。
 精製された高分子化合物Bと[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の重量比1:3のオルトジクロロベンゼン溶液を作製した。高分子化合物Bの添加量は、オルトジクロロベンゼンに対して1重量%とした。この溶液について、0.2μm径のフィルターでろ過を行った。得られた抽出物をスピンコートした後、N2雰囲気中で乾燥を行った。
 更に、このようにして形成された活性層の上部に、抵抗加熱蒸着装置内にて、LiFを約2.3nm、続いてAlを約70nmの膜厚で成膜し、電極を形成した。さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)にてガラス基板を接着することで封止処理を施し、有機薄膜太陽電池を得た。
比較例1(有機光電変換素子の作製)
 実施例1において、高分子化合物Aの精製を行わなかったこと以外は同様にして有機光電変換素子を作製した。この場合の高分子化合物A中の、無機化合物の含有量は、下記のとおりであった:リン850重量ppm、パラジウム19重量ppm、アルミニウム380重量ppm以下、カルシウム110重量ppm以下、カリウム13重量ppm以下、鉄280ppm、及びナトリウム46重量ppm。
比較例2(有機光電変換素子の作製)
 実施例2において、高分子化合物Bの精製を行わなかったこと以外は同様にして有機光電変換素子を作製した。この場合の高分子化合物B中の、無機化合物の含有量は、下記のとおりであった:リン110重量ppm、パラジウム580重量ppm、アルミニウム10重量ppm以下、カルシウム10重量ppm以下、カリウム10重量ppm以下、及びナトリウム79重量ppm。
比較例3(有機光電変換素子の作製)
 スパッタリング法にて成膜された約150nmの膜厚のITOがパターニングされたガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。この基板に、ITO面を上にしてUV-O3装置にてUV-O3処理を行った。
 ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸を水に溶解させた水溶液(HCスタルクビーテック社製、Bytron P TP AI 4083)の懸濁液を0.5ミクロン径のフィルターでろ過した。ろ過後の懸濁液を、基板のITO面側に、スピンコートにより70nmの厚みで成膜して、大気中においてホットプレート上で200℃で10分間乾燥した。
 次にポリ(3-ヘキシルチオフェン)(P3HT)を精製した。すなわち、オルトジクロロベンゼン30mLに溶解し、アルミナ/シリカゲルカラムを通し、得られた溶液をメタノールに注いでポリマーを析出させた。このポリマーをろ過後、乾燥した。
 精製された電子供与性高分子材料であるポリ(3-ヘキシルチオフェン)(P3HT)と、[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の、重量比1:0.8のオルトジクロロベンゼン溶液を作製した。P3HTの添加量は、オルトジクロロベンゼンに対して1重量%とした。この溶液について、0.2μm径のフィルターでろ過を行った。得られた抽出物をスピンコートした後、N2雰囲気中で乾燥を行った。
 最後に、このようにして形成された活性層の上部の上部に、抵抗加熱蒸着装置内にて、LiFを約2.3nm、続いてAlを約70nmの膜厚で成膜し、電極を形成した。さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)にてガラス基板を接着することで封止処理を施し、有機薄膜太陽電池を得た。
(光電変換効率の評価)
 実施例及び比較例において得られた有機光電変換素子である有機薄膜太陽電池の形状は、2mm×2mmの正四角形であった。これらの有機薄膜太陽電池に、ソーラシミュレーター(分光計器製、商品名:CEP-2000型、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して、光電変換効率を算出した。各有機薄膜太陽電池の短絡電流密度、開放端電圧、曲線因子及び光電変換効率を表1に示す。また、実施例1及び比較例1の各有機薄膜太陽電池の電流-電圧特性を図4に、実施例2及び比較例2の各有機薄膜太陽電池の電流-電圧特性を図5に、比較例3の有機薄膜太陽電池の電流-電圧特性を図5に、それぞれ示す。
 実施例1及び実施例2の有機薄膜太陽電池は比較例1~比較例3の有機薄膜太陽電池に比べて、いずれも高い光電変換効率を示した。
Figure JPOXMLDOC01-appb-T000007
 本発明は、有機光電変換素子およびその製造方法を提供することから有用である。

Claims (6)

  1.  一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子であって、
     前記活性層に含まれる、リン化合物、パラジウム化合物、アルミニウム化合物、鉄化合物、カルシウム化合物、カリウム化合物、及びナトリウム化合物の各々の無機化合物の量が30重量ppm以下である有機光電変換素子。
  2.  前記有機化合物が、シリカゲル及びアルミナを含む吸着剤により精製された電子供与性化合物である、請求項1に記載の有機光電変換素子。
  3.  一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子であって、
     前記活性層に含まれるパラジウム化合物の量がパラジウムの量として30重量ppm以下である有機光電変換素子。
  4.  一対の電極と、前記一対の電極の間に位置し、有機化合物を含む活性層とを備える有機光電変換素子であって、
     前記活性層に含まれるナトリウム化合物の量がナトリウムの量として30重量ppm以下である有機光電変換素子。
  5.  一対の電極と、前記一対の電極の間に、有機化合物を含む活性層とを備える有機光電変換素子であって、
     前記活性層に含まれる鉄化合物の量が鉄の量として30重量ppm以下である有機光電変換素子。
  6.  一対の電極と、前記一対の電極との間に位置し、有機化合物を含む活性層とを備える有機光電変換素子の製造方法であって、
     前記有機化合物としての電子供与性化合物をシリカゲル及びアルミナを含む吸着剤で精製すること、精製後の電子供与性化合物を含む有機化合物を含有する液から前記活性層を成膜することを含む、有機光電変換素子の製造方法。
PCT/JP2010/068954 2009-10-30 2010-10-26 有機光電変換素子及びその製造方法 WO2011052579A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800475231A CN102576808A (zh) 2009-10-30 2010-10-26 有机光电转换元件及其制造方法
US13/504,653 US20120222743A1 (en) 2009-10-30 2010-10-26 Organic photovoltaic cell and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249923 2009-10-30
JP2009-249923 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052579A1 true WO2011052579A1 (ja) 2011-05-05

Family

ID=43922003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068954 WO2011052579A1 (ja) 2009-10-30 2010-10-26 有機光電変換素子及びその製造方法

Country Status (4)

Country Link
US (1) US20120222743A1 (ja)
JP (1) JP2011119704A (ja)
CN (1) CN102576808A (ja)
WO (1) WO2011052579A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131074A1 (ja) * 2016-01-29 2017-08-03 住友化学株式会社 組成物およびそれを用いた有機薄膜トランジスタ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146754A1 (ja) 2012-03-27 2013-10-03 塩野義製薬株式会社 Trpv4阻害活性を有する芳香族複素5員環誘導体
WO2017175665A1 (ja) * 2016-04-07 2017-10-12 富士フイルム株式会社 有機薄膜トランジスタ素子、有機半導体膜形成用組成物、有機半導体膜の製造方法及び有機半導体膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041982A (ja) * 2003-05-29 2005-02-17 Seiko Epson Corp 発光材料、発光材料の精製方法および層形成方法
WO2006011643A1 (ja) * 2004-07-30 2006-02-02 Sumitomo Chemical Company, Limited 高分子化合物、高分子薄膜およびそれを用いた高分子薄膜素子
WO2006037458A1 (de) * 2004-10-01 2006-04-13 Merck Patent Gmbh Elektronische vorrichtungen enthaltend organische halbleiter
WO2008044585A1 (en) * 2006-10-11 2008-04-17 Toray Industries, Inc. Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
WO2008120809A1 (ja) * 2007-03-29 2008-10-09 Sumitomo Chemical Company, Limited 有機光電変換素子及びその製造に有用な重合体
WO2009104781A1 (ja) * 2008-02-18 2009-08-27 住友化学株式会社 組成物およびそれを用いた有機光電変換素子
WO2010140187A1 (ja) * 2009-06-02 2010-12-09 パイオニア株式会社 光電変換素子及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799990B2 (en) * 2007-03-12 2010-09-21 Northwestern University Electron-blocking layer / hole-transport layer for organic photovoltaics and applications of same
JP5150813B2 (ja) * 2007-05-21 2013-02-27 国立大学法人九州工業大学 有機薄膜光電変換素子および有機薄膜太陽電池
JP2010225758A (ja) * 2009-03-23 2010-10-07 Fuji Xerox Co Ltd 有機半導体トランジスタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041982A (ja) * 2003-05-29 2005-02-17 Seiko Epson Corp 発光材料、発光材料の精製方法および層形成方法
WO2006011643A1 (ja) * 2004-07-30 2006-02-02 Sumitomo Chemical Company, Limited 高分子化合物、高分子薄膜およびそれを用いた高分子薄膜素子
WO2006037458A1 (de) * 2004-10-01 2006-04-13 Merck Patent Gmbh Elektronische vorrichtungen enthaltend organische halbleiter
WO2008044585A1 (en) * 2006-10-11 2008-04-17 Toray Industries, Inc. Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
WO2008120809A1 (ja) * 2007-03-29 2008-10-09 Sumitomo Chemical Company, Limited 有機光電変換素子及びその製造に有用な重合体
WO2009104781A1 (ja) * 2008-02-18 2009-08-27 住友化学株式会社 組成物およびそれを用いた有機光電変換素子
WO2010140187A1 (ja) * 2009-06-02 2010-12-09 パイオニア株式会社 光電変換素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131074A1 (ja) * 2016-01-29 2017-08-03 住友化学株式会社 組成物およびそれを用いた有機薄膜トランジスタ

Also Published As

Publication number Publication date
JP2011119704A (ja) 2011-06-16
US20120222743A1 (en) 2012-09-06
CN102576808A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5553727B2 (ja) 有機光電変換素子及びその製造方法
JP5516153B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
US20120216866A1 (en) Organic photovoltaic cell
JP2013179181A (ja) 有機光電変換素子
WO2011052511A1 (ja) 有機光電変換素子
JP2011119687A (ja) 有機光電変換素子
JP5920341B2 (ja) 有機光電変換素子、その製造方法及び太陽電池
US20120211741A1 (en) Organic photovoltaic cell
WO2011052580A1 (ja) 有機光電変換素子及びその製造方法
JP5553728B2 (ja) 有機光電変換素子
WO2011052579A1 (ja) 有機光電変換素子及びその製造方法
JP5715796B2 (ja) 有機光電変換素子の製造方法
JP2012234877A (ja) 有機光電変換素子及び太陽電池
JP5608040B2 (ja) 有機光電変換素子
WO2011142314A1 (ja) 光電変換素子
WO2012121274A1 (ja) 光電変換素子の製造方法
WO2011148900A1 (ja) 高分子化合物及びそれを用いた光電変換素子
JP2015093944A (ja) 高分子化合物およびそれを用いた有機半導体素子
JP5908305B2 (ja) 光電変換素子
JP2016092278A (ja) 有機光電変換素子
WO2011052578A1 (ja) 有機光電変換素子の製造方法
KR20130137514A (ko) 태양 전지 및 그 제조 방법
JP2010251235A (ja) 電子素子
WO2014136696A1 (ja) 光電変換素子及びその製造方法
JP2017103268A (ja) 光電変換素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047523.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826711

Country of ref document: EP

Kind code of ref document: A1