WO2011048821A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011048821A1
WO2011048821A1 PCT/JP2010/006284 JP2010006284W WO2011048821A1 WO 2011048821 A1 WO2011048821 A1 WO 2011048821A1 JP 2010006284 W JP2010006284 W JP 2010006284W WO 2011048821 A1 WO2011048821 A1 WO 2011048821A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
compound
Prior art date
Application number
PCT/JP2010/006284
Other languages
English (en)
French (fr)
Inventor
紀昌 横山
誠 長岡
和法 富樫
重 草野
英治 高橋
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to CN2010800478600A priority Critical patent/CN102576813A/zh
Priority to KR1020127013074A priority patent/KR101847222B1/ko
Priority to JP2011537147A priority patent/JP6134476B2/ja
Priority to EP10824673.7A priority patent/EP2492985A4/en
Priority to US13/503,156 priority patent/US9306174B2/en
Publication of WO2011048821A1 publication Critical patent/WO2011048821A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter abbreviated as an organic EL element) which is a self-luminous element suitable for various display devices, and more specifically, an organic EL element using a compound having a carbazole ring structure. It is about.
  • organic EL elements are self-luminous elements, they have been actively researched because they are brighter and more visible than liquid crystal elements and are capable of clear display.
  • Non-Patent Document 1 To date, many improvements have been made for practical application of organic EL devices, and various roles have been further subdivided, and sequentially on the substrate, anode, hole injection layer, hole transport layer, light emitting layer, electron transport High efficiency and durability are achieved by an electroluminescent element provided with a layer, an electron injection layer, and a cathode (see, for example, Non-Patent Document 1).
  • Non-Patent Document 2 the use of triplet excitons has been attempted for the purpose of further improving the luminous efficiency, and the use of phosphorescent emitters has been studied (for example, see Non-Patent Document 2).
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission, but by increasing the hole injection property and increasing the electron blocking property to block the electrons injected from the cathode.
  • High emission efficiency can be obtained by improving the probability of recombination of holes and electrons and confining excitons generated in the light emitting layer. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • Patent Document 1 and Patent Document 2 As hole transport materials that have been used for organic EL devices so far, aromatic amine derivatives shown in Patent Document 1 and Patent Document 2 have been known. Among these compounds, compounds having excellent mobility of hole mobility of 10 ⁇ 3 cm 2 / Vs or more are known. However, since the electron blocking property is insufficient, The portion passes through the light emitting layer, and the improvement of the light emission efficiency cannot be expected.
  • T 1 a material having a high excited triplet energy level
  • Ir (ppy) 3 the green phosphorescent phosphor tris (phenylpyridyl) iridium represented by the following formula
  • T 1 of the is 2.42EV, N, N'- diphenyl -N, since N'- di (alpha-naphthyl) benzidine (hereinafter referred to as alpha-NPD) T 1 of the is 2.29eV
  • alpha-NPD N'- di (alpha-naphthyl) benzidine
  • T 1 of the is 2.29eV
  • TAPC 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane
  • Non-Patent Document 4 Higher luminous efficiency is obtained by using (see, for example, Non-Patent Document 4).
  • the hole mobility of TAPC is small, and in addition, the ionization potential (work function) is 5.8 eV, which is not an appropriate value as a hole transport material.
  • the ionization potential (work function) of the compound A is 5.5 eV, which is close to an appropriate value than the TAPC, and T 1 is also high at 2.9 eV, so that sufficient confinement of triplet excitons can be expected.
  • the compound also has a low hole mobility, the driving voltage of the manufactured element is high and the light emission efficiency is not sufficient (see, for example, Non-Patent Document 5). Therefore, in order to obtain a phosphorescent light emitting device having higher luminous efficiency, T 1 is high, hole mobility is large, and not only used for a hole injection layer or a hole transport layer, but also suitable as an electron blocking layer. There is a need for materials to be used.
  • JP-A-8-048656 Japanese Patent No. 3194657 JP-A-8-003547 JP 2006-151979 A WO2008 / 62636 JP 2007-022986 A
  • the object of the present invention is excellent in hole injection / transport performance, high ability to confine triplet excitons, electron blocking ability, high stability in a thin film state, and high luminous efficiency.
  • An object of the present invention is to provide a highly efficient and highly durable organic EL element, particularly a phosphorescent organic EL element, using an organic compound having characteristics.
  • the physical characteristics to be possessed by the organic compound used in the organic EL device of the present invention are (1) good hole injection characteristics, (2) high hole mobility, (3) It can be mentioned that it has a high T 1 , (4) an excellent electron blocking ability, (5) a stable thin film state, and (6) an excellent heat resistance. Further, the physical characteristics to be provided by the organic EL element to be provided by the present invention are (1) high luminous efficiency and power efficiency, (2) low emission start voltage, and (3) practical driving. It can be mentioned that the voltage is low.
  • the present inventors have a high T 1 carbazole ring structure, excellent electron blocking properties, excellent hole transport performance, and heat resistance. Designing and selecting compounds with linked carbazole ring structures, chemically synthesizing these compounds, making prototypes of various organic EL devices, and intensively evaluating device characteristics As a result, the present invention has been completed.
  • the following organic EL elements are provided.
  • an organic EL device having a plurality of organic layers including a light emitting layer and an electron blocking layer sandwiched between a pair of electrodes, a compound having a carbazole ring structure represented by the following general formula (1):
  • An organic EL device which is used as a constituent material of the electron blocking layer.
  • R 1, R 2, R 3, R 4, R 5, R 6 may be the same or different from each other, and are fluorine atom, chlorine atom, cyano group, trifluoromethyl group, nitro group, straight chain having 1 to 6 carbon atoms.
  • Ar2 is a monovalent group represented by the following general formula (2) or (3). More preferably, it is characterized.
  • R7 and R8 may be the same as or different from each other, and may be a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a nitro group, a linear or branched alkyloxy having 1 to 6 carbon atoms
  • Group cycloalkyloxy group having 5 to 10 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted condensed polycyclic aromatic group, substituted or Represents an unsubstituted aryloxy group
  • r7 represents 0 or an integer of 1 to 4
  • r8 represents 0 or an integer of 1 to 3
  • B represents a substituted or unsubstituted aromatic hydrocarbon divalent group, substituted Or an unsubstituted aromatic heterocyclic divalent group or a substituted or unsubstituted condensed polycyclic aromatic divalent group
  • Ar4
  • R9 and R10 may be the same or different from each other, and are a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 6 carbon atoms.
  • Cycloalkyl group having 5 to 10 carbon atoms, linear or branched alkyloxy group having 1 to 6 carbon atoms, cycloalkyloxy group having 5 to 10 carbon atoms, substituted or unsubstituted aromatic carbonization Represents a hydrogen group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group, a substituted or unsubstituted aryloxy group, and r9 and r10 represent 0 or an integer of 1 to 3.
  • C represents a substituted or unsubstituted aromatic hydrocarbon divalent group, a substituted or unsubstituted aromatic heterocyclic divalent group or a substituted or unsubstituted condensed polycyclic aromatic divalent group
  • Ar5 represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group
  • W, X, Y, and Z are carbon atoms or nitrogen. (W, X, Y, Z are only one of nitrogen atoms, and the nitrogen atom in this case does not have the substituent of R9.)
  • An organic EL element having a plurality of organic layers including a light emitting layer containing a phosphorescent light emitting material and an electron blocking layer sandwiched between a pair of electrodes and represented by the general formula (1)
  • An organic EL element wherein a compound having a carbazole ring structure is used as a constituent material of the light emitting layer.
  • a linear or branched alkyl group having 1 to 6 carbon atoms represented by R1 to R10 in the general formulas (1) to (3), "a cycloalkyl group having 5 to 10 carbon atoms", Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, Examples thereof include a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like.
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms represented by R1 to R10 in the general formulas (1) to (3), “a cycloalkyloxy group having 5 to 10 carbon atoms” Specifically, methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group Cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group, and the like.
  • aromatic hydrocarbon group “aromatic heterocyclic group” or “fused polycyclic aromatic group” in the “substituted or unsubstituted condensed polycyclic aromatic group”
  • phenyl group, biphenylyl group Terphenylyl, naphthyl, anthryl, phenanthryl, fluorenyl, indenyl, pyrenyl, acenaphthenyl, fluoranthenyl, triphenylenyl, pyridyl, furanyl, pyranyl, thienyl, quinolyl, isoquinolyl , Benzofuranyl group, benzothienyl group, indolyl group, carbazolyl
  • Preferred examples include a phenyl group, a biphenylyl group, a terphenylyl group, a fluorenyl group, a carbazolyl group, and a carbolinyl group.
  • T 1 decreases, and therefore the number of carbons of the “condensed polycyclic aromatic” is preferably 20 or less.
  • substituent specifically, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, nitro group, linear or branched alkyl group having 1 to 6 carbon atoms, carbon atom number
  • Examples include cycloalkyloxy groups, phenyl groups, naphthyl groups, anthryl groups, styryl groups, phenoxy groups, tolyloxy groups, benzyloxy groups, and phenethyloxy groups.
  • the “aryloxy group” in the “substituted or unsubstituted aryloxy group” represented by R1 to R10 and Ar1 to Ar5 in the general formulas (1) to (3) is specifically a phenoxy group, biphenyl Examples include a ryloxy group, a terphenylyloxy group, a naphthyloxy group, an anthryloxy group, a phenanthryloxy group, a fluorenyloxy group, an indenyloxy group, and a pyrenyloxy group.
  • substituted aryloxy group represented by R1 to R10 and Ar1 to Ar5 in the general formulas (1) to (3)
  • substituents include a fluorine atom, a chlorine atom, a cyano group, Trifluoromethyl group, nitro group, linear or branched alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, linear or branched chain having 1 to 6 carbon atoms Examples include alkyloxy groups, cycloalkyloxy groups having 5 to 10 carbon atoms, phenyl groups, naphthyl groups, anthryl groups, styryl groups, phenoxy groups, tolyloxy groups, benzyloxy groups, and phenethyloxy groups. These substituents may be further substituted.
  • Specific examples of the “substituent” in the “divalent group” include a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a nitro group, and a linear or branched alkyl group having 1 to 6 carbon atoms.
  • R1, R2, R3, R4, R7 and R8 may be the same or different from each other, and are a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a nitro group, or a straight chain having 1 to 6 carbon atoms.
  • R1, R2, R3, R4, R5 and R6 may be the same or different from each other, and are a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a nitro group, or a straight chain having 1 to 6 carbon atoms.
  • the compound having a carbazole ring structure represented by the general formula (1) used in the organic EL device of the present invention has a high ability to confine triplet excitons, and has excellent electron blocking ability and heat resistance. In addition, the thin film state is stable.
  • the compound having a carbazole ring structure represented by the general formula (1) used in the organic EL device of the present invention is a hole injection layer and / or a hole transport layer of an organic EL device, particularly a phosphorescent organic EL device. It can also be used as a constituent material.
  • the compound has high hole-injection property, high mobility, high T 1 , and high stability to electrons. Therefore, triplet excitons generated in a light-emitting layer containing a phosphorescent light-emitting material can be obtained. In addition to being able to confine, the probability of recombination of holes and electrons can be improved, high luminous efficiency can be obtained, the driving voltage is lowered, and the durability of the organic EL element is improved.
  • the compound having a carbazole ring structure represented by the general formula (1) used in the organic EL device of the present invention is also used as a constituent material of an electron blocking layer of an organic EL device, particularly a phosphorescent organic EL device.
  • the driving voltage is lowered and current resistance is reduced while having high luminous efficiency. As a result, the maximum light emission luminance of the organic EL element is improved.
  • the compound having a carbazole ring structure represented by the general formula (1) used in the organic EL device of the present invention may be used as a constituent material of a light emitting layer of an organic EL device, particularly a phosphorescent organic EL device. it can. Since the compound has excellent hole transportability and a wide band gap, the compound is used as a host material of a light emitting layer, and a phosphorescent light emitter called a dopant is supported and used as a light emitting layer. The driving voltage is lowered, and an organic EL element with improved light emission efficiency can be realized.
  • the organic EL device of the present invention uses a compound having a carbazole ring structure having a high hole mobility, an ability to confine excellent triplet excitons, and a stable thin film state. It became possible to achieve high durability.
  • the compound having a carbazole ring structure used in the organic EL device of the present invention is useful as a constituent material for an electron blocking layer or a light emitting layer of an organic EL device, particularly a phosphorescent organic EL device, and has the ability to confine triplet excitons. Excellent in heat resistance.
  • the organic EL device of the present invention has high luminous efficiency and high power efficiency, which can reduce the practical driving voltage of the device. Furthermore, the light emission starting voltage can be lowered and the durability can be improved.
  • FIG. 1 is a 1H-NMR chart of the compound of Example 1 of the present invention (Compound 4).
  • FIG. 3 is a 1H-NMR chart of the compound of Example 2 of the present invention (Compound 25). It is the figure which showed the organic EL element structure of Example 6 and Example 7.
  • FIG. It is the figure which showed the organic EL element structure of the comparative examples 1 and 2.
  • FIG. 1 is a 1H-NMR chart of the compound of Example 1 of the present invention (Compound 4).
  • FIG. 3 is a 1H-NMR chart of the compound of Example 2 of the present invention (Compound 25). It is the figure which showed the organic EL element structure of Example 6 and Example 7.
  • FIG. It is the figure which showed the organic EL element structure of the comparative examples 1 and 2.
  • the compound having a carbazole ring structure used in the present invention can be synthesized by a known method (for example, see Patent Document 3). Moreover, it is compoundable also with the following method, for example.
  • Patent Document 7 and dibromocarbazole or monobromocarbazole are subjected to a cross-coupling reaction such as Suzuki coupling (see, for example, Non-Patent Document 8), whereby bis (N-aryl-9′H-carbazole-3 '-Ill) -9-Ari Etc. can be a synthesized Le -9H- carbazole or (N- aryl -9'H- carbazol-3'-yl) -9H- carbazole. Further, (N-aryl-9′H-carbazol-3′-yl) -9H-carbazole and (N-aryl-9′H-carbazole) obtained by condensation reaction such as Ullmann reaction of various dihalogenoarylenes.
  • a cross-coupling reaction such as Suzuki coupling
  • 3′-yl) -9-halogenoaryl-carbazole and 3-boronic acid or boronic acid ester of 9-arylcarbazole are subjected to a cross-coupling reaction such as Suzuki coupling (for example, see Non-Patent Document 8).
  • a compound having a carbazole ring structure can be synthesized.
  • Tg glass transition point
  • work function index of hole transportability
  • the glass transition point (Tg) was determined with a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100S) using powder.
  • the work function was measured using an atmospheric photoelectron spectrometer AC-3 manufactured by Riken Keiki Co., Ltd. after a 100 nm thin film was prepared on the ITO substrate.
  • T 1 of these compounds can be calculated from the measured phosphorescence spectrum.
  • the phosphorescence spectrum can be measured using a commercially available spectrophotometer.
  • a general method for measuring phosphorescence spectrum a method in which it is dissolved in a solvent and irradiated with excitation light at a low temperature (for example, refer to Non-Patent Document 9), or vapor deposited on a silicon substrate to form a thin film at a low temperature.
  • There is a method of irradiating excitation light and measuring a phosphorescence spectrum see, for example, Patent Document 6).
  • T 1 can be calculated by reading the wavelength of the first peak on the short wavelength side of the phosphorescence spectrum or the wavelength of the rising position on the short wavelength side and converting it to the light energy value according to the following equation.
  • T 1 is an index of confinement of triplet excitons of the phosphorescent emitter.
  • E is the value of light energy
  • h Planck's constant (6.63 ⁇ 10 ⁇ 34 Js)
  • c is the speed of light (3.00 ⁇ 10 8 m / s)
  • is the short wavelength of the phosphorescence spectrum. It represents the wavelength (nm) where the side rises.
  • 1 eV becomes 1.60 ⁇ 10 ⁇ 19 J.
  • an anode As the structure of the organic EL device of the present invention, on the substrate sequentially, an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, a cathode, Further, there may be mentioned those having an electron injection layer between the electron transport layer and the cathode. In these multilayer structures, several organic layers can be omitted.
  • the light emitting layer, the hole transport layer, and the electron transport layer may each have a structure in which two or more layers are stacked.
  • an electrode material having a large work function such as ITO or gold is used.
  • a hole injection layer of the organic EL device of the present invention in addition to the compound having a carbazole ring structure represented by the general formula (1) of the present invention, a porphyrin compound typified by copper phthalocyanine, a starburst type triphenylamine Derivatives, materials such as various triphenylamine tetramers, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating-type polymer materials can be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • TPD As the hole transport layer of the organic EL device of the present invention, in addition to the compound having a carbazole ring structure represented by the general formula (1) of the present invention, TPD, ⁇ -NPD, N, N, N ′, N′— Benzidine derivatives such as tetrabiphenylylbenzidine, TAPC, various triphenylamine trimers and tetramers can be used. These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • a coating type such as poly (3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT) / poly (styrene sulfonate) (hereinafter abbreviated as PSS) is used.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (styrene sulfonate)
  • These polymer materials can be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • a material that is usually used for the layer is further P-doped with trisbromophenylamine hexachloroantimony or the like, or a TPD structure having a partial structure. Molecular compounds and the like can be used.
  • TCTA N-carbazolyl triphenyl Amine
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • Ad-Cz Carbazole derivatives such as 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • Ad-Cz 9- [4- (carbazol-9-yl) phenyl] -9-
  • Compounds having an electron blocking action such as compounds having a triphenylsilyl group and a triarylamine structure typified by 4- (triphenylsilyl) phenyl]
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • the light emitting layer of the organic EL device of the present invention various metal complexes, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, etc., in addition to metal complexes of quinolinol derivatives including Alq 3 Can be used.
  • the light-emitting layer may be composed of a host material and a dopant material.
  • thiazole Derivatives, benzimidazole derivatives, polydialkylfluorene derivatives and the like can be used.
  • quinacridone coumarin, rubrene, perylene, and derivatives thereof
  • benzopyran derivatives rhodamine derivatives, aminostyryl derivatives, and the like
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • a phosphorescent light emitting material can be used as the light emitting material.
  • a phosphorescent emitter of a metal complex such as iridium or platinum can be used.
  • Green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6, red phosphorescent emitters such as Btp 2 Ir (acac), and the like are used as host materials.
  • carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, mCP, etc.
  • the general formula (1) of the present invention The compound which has the carbazole ring structure represented by these can be used.
  • an electron transporting host material p-bis (triphenylsilyl) benzene (hereinafter abbreviated as UGH2) or 2,2 ′, 2 ′′-(1,3,5-phenylene) represented by the following formula -Tris (1-phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) and the like can be used.
  • the phosphorescent light-emitting material into the host material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer.
  • a light-emitting layer produced using a compound having a different work function as a host material in a light-emitting layer produced using a compound having a carbazole ring structure represented by the general formula (1) used in the organic EL device of the present invention can be manufactured (see, for example, Non-Patent Document 10 and Non-Patent Document 11).
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • a phenanthroline derivative such as bathocuproine (hereinafter abbreviated as BCP), aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (hereinafter referred to as “BCP”).
  • BCP bathocuproine
  • BCP aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BCP aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • various rare earth complexes, oxazole derivatives, triazole derivatives, and triazine derivatives are used. These materials may also serve as the material for the electron transport layer.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • various metal complexes triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline, in addition to metal complexes of quinolinol derivatives including Alq 3 and BAlq.
  • Derivatives, phenanthroline derivatives, silole derivatives and the like can be used. These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • an alkali metal salt such as lithium fluoride and cesium fluoride
  • an alkaline earth metal salt such as magnesium fluoride
  • a metal oxide such as aluminum oxide
  • a material usually used for the layer and further doped with a metal such as cesium can be used.
  • an electrode material having a low work function such as aluminum or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • each layer of the organic EL element of the present invention is not particularly limited, but generally, when the film thickness is thin, there is a high possibility that defects such as pinholes occur, and when the film thickness is large, the applied voltage tends to increase. Therefore, it is usually in the range of 0.1 nm to 1 ⁇ m, and preferably in the range of 0.3 nm to 500 nm.
  • Tetrakis (triphenylphosphine) palladium (0.23 g) was added and heated, followed by stirring at 74 ° C. for 4 hours. After adding 80 ml of toluene and heating, the mixture was further stirred at 70 ° C. for 1 hour, cooled to 40 ° C., insoluble matters were removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a black crude product. The crude product was dissolved by adding 100 ml of toluene, subjected to adsorption purification using 28.9 g of silica gel, and then concentrated under reduced pressure to obtain a yellowish white powder.
  • Tetrakis (triphenylphosphine) palladium (1.74 g) was added and heated, followed by stirring at 72 ° C. for 12.5 hours. After allowing to cool to room temperature, extraction was performed by adding 100 ml of toluene and 150 ml of water, and the organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to obtain a black crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: hexane / toluene) and 9′-phenyl-9- [4- (9-phenyl-9H-carbazol-3-yl) -phenyl] -9H , 9′H- [3,3 ′] bicarbazolyl 10.44 g (48% yield) was obtained.
  • the glass transition point was calculated
  • the compound used in the present invention has a glass transition point of 100 ° C. or higher, and indicates that the thin film state is stable in the compound used in the present invention.
  • the compound used in the present invention shows a favorable energy level as compared with the work function 5.4 eV of general hole transport materials such as ⁇ -NPD and TPD, and has good hole It can be seen that it has transportation capability.
  • a 1.0 ⁇ 10 ⁇ 5 mol / L 2-methyltetrahydrofuran solution was prepared.
  • the prepared solution was put into a dedicated quartz tube, pure oxygen was passed through to remove oxygen, and a septum rubber stopper was used to prevent further oxygen contamination.
  • a phosphorescence spectrum was measured by irradiating excitation light using a fluorescent phosphorescence spectrophotometer (manufactured by Horiba, Ltd., FluoroMax-4 type). Reading the wavelength of the first peak on the shorter wavelength side of the phosphorescence spectrum was calculated T 1 by converting the wavelength value to the energy of light.
  • Inventive Example 2 compound 2.71 eV FIrpic 2.62eV Ir (ppy) 3 2.42 eV CBP 2.56eV ⁇ -NPD 2.29 eV
  • the compound used in the present invention is FIrpic which is a commonly used blue phosphorescent material, Ir (ppy) 3 which is a green phosphorescent material, CBP which is a commonly used host material, and generally used. It has a value larger than T 1 of ⁇ -NPD which is a hole transport material to be obtained, and has the ability to sufficiently confine triplet excitons excited in the light emitting layer.
  • the organic EL element has a hole transport layer 3, an electron blocking layer 4, a light emitting layer 5, and a hole blocking layer on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2 as shown in FIG. 6, an electron transport layer 7, an electron injection layer 8, and a cathode (aluminum electrode) 9 were deposited in this order.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, ⁇ -NPD having a thickness of 40 nm was formed as the hole transport layer 3 so as to cover the transparent anode 2. On this hole transport layer 3, the compound (compound 4) of Example 1 of the present invention was formed as an electron blocking layer 4 so as to have a film thickness of 10 nm.
  • BCP was formed as a hole blocking layer 6 so as to have a film thickness of 10 nm.
  • Alq 3 was formed as an electron transport layer 7 so as to have a film thickness of 30 nm.
  • lithium fluoride was formed as the electron injection layer 8 so as to have a film thickness of 0.5 nm.
  • aluminum was deposited to a thickness of 150 nm to form the cathode 9.
  • the characteristic measurement was performed at normal temperature in air
  • Example An organic EL device was produced under the same conditions as in Example 6 by replacing the material of the hole transport layer 3 in Example 6 with the compound 53 having the following structural formula. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 1 For comparison, an organic EL device was produced under the same conditions as in Example 6 except that the hole transport layer 3 in Example 6 was formed to have a thickness of 50 nm and the electron blocking layer 4 was omitted. . About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 2 For comparison, an organic EL device was produced under the same conditions as in Example 7 except that the hole transport layer 3 in Example 7 was formed to have a thickness of 50 nm and the electron blocking layer 4 was omitted. . About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • the driving voltage was obtained when the compound of Example 1 of the present invention (Compound 4) was not used as the electron blocking layer material.
  • the compound (Compound 4) of Example 1 of the present invention is used as a material for the electron blocking layer, compared to 6.54 V when ⁇ -NPD is used as the material for the transport layer and 5.89 V when Compound 53 is used. In this case, the voltage was lowered to 5.77 V and 5.68 V, respectively. Further, in any of the light emission luminance, the light emission efficiency, and the power efficiency, when the compound of Example 1 of the present invention (Compound 4) was used as the material for the electron blocking layer, the results were greatly improved.
  • the organic EL device using the compound having the carbazole ring structure represented by the general formula (1) used in the present invention as the material of the electron blocking layer has improved light emission luminance, light emission efficiency, and power efficiency. It was found that a decrease in practical driving voltage can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 正孔の注入・輸送性能に優れ、三重項励起子を閉じ込める高い能力を有し、電子阻止能力を有し、薄膜状態での安定性が高く、発光効率が高い優れた特性を有する有機化合物を用いて、高効率、高耐久性の有機エレクトロルミネッセンス素子、特に燐光発光有機エレクトロルミネッセンス素子を提供すること。 一対の電極とその間に挟まれた、発光層と電子阻止層を含む複数層の有機層を有する有機EL素子において、下記一般式(1)で表されるカルバゾール環構造を有する化合物が、該電子阻止層、更には発光層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以後、有機EL素子と略称する)に関するものであリ、詳しくはカルバゾール環構造を有する化合物を用いた有機EL素子に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)と正孔を輸送することのできる芳香族アミン化合物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度を得た(例えば、特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されている(例えば、非特許文献1参照)。
 また発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている(例えば、非特許文献2参照)。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作製することもできる。上記の講習会予稿集に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、さらには発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 これまで有機EL素子に用いられてきた正孔輸送材料としては、特許文献1および特許文献2に示される芳香族アミン誘導体が知られていた。これらの化合物の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物が知られているが、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できない。
 これらを改良した化合物として、下記の式で表される置換カルバゾール構造を有するアリールアミン化合物(例えば、化合物A、化合物Bおよび化合物C)が提案されている。(例えば、特許文献3~5参照)。
Figure JPOXMLDOC01-appb-C000001
                         (化合物A)
Figure JPOXMLDOC01-appb-C000002
                         (化合物B)
Figure JPOXMLDOC01-appb-C000003
                         (化合物C)
 近年、素子の発光効率を上げる試みとして、燐光発光体を用いて燐光を発生させる、すなわち三重項励起状態からの発光を利用する素子が開発されている。励起状態の理論によれば、燐光発光を用いた場合には、従来の蛍光発光の約4倍の発光効率が可能になるという、顕著な発光効率の増大が期待される。
 1999年にプリンストン大学のM.A.Baldoらが、イリジウム錯体を用いた燐光発光素子によって、従来の外部量子効率を大幅に上回る8%を示して以来、燐光発光素子の開発が積極的に行われるようになった。
 燐光発光素子の発光効率を向上させるためには、ホスト材料に励起三重項エネルギーレベル(以後、Tと略称する)の高い材料を用いる必要があるが、正孔輸送材料に関しても三重項励起子を閉じ込めるために、Tの高い材料を用いる必要があると報告されている(例えば、非特許文献3参照)。さらに、下記式で表される緑色燐光発光体トリス(フェニルピリジル)イリジウム(以後、Ir(ppy)と略称する)
Figure JPOXMLDOC01-appb-C000004
のTは2.42eVであり、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以後、α-NPDと略称する)のTが2.29eVであることから、α-NPDでは三重項励起子の十分な閉じ込めが期待できず、より高いTを有する下記式で表される1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以後、TAPCと略称する)(T;2.9eV)
Figure JPOXMLDOC01-appb-C000005
を用いることによってより高い発光効率が得られている(例えば、非特許文献4参照)。しかしながらTAPCの正孔移動度は小さく、加えてイオン化ポテンシャル(仕事関数)も5.8eVと正孔輸送材料としては適正な値ではない。
 また、前記化合物Aのイオン化ポテンシャル(仕事関数)は5.5eVと、前記TAPCより適正な値に近く、Tも2.9eVと高く、三重項励起子の十分な閉じ込めが期待できるが、この化合物も正孔移動度が小さいため、作製した素子の駆動電圧が高く、発光効率も十分とはいえない(例えば、非特許文献5参照)。従って、さらに高い発光効率を有する燐光発光素子を得るため、Tが高く、正孔移動度も大きく、正孔注入層または正孔輸送層にも用いられるばかりでなく、電子阻止層として好適に用いられる材料が求められている。
特開平8-048656号公報 特許第3194657号公報 特開平8-003547号公報 特開2006-151979号公報 WO2008/62636号公報 特開2007-022986号公報
応用物理学会第9回講習会予稿集55~61ページ(2001) 応用物理学会第9回講習会予稿集23~31ページ(2001) J.Appl.Phys.,12,95,7798(2004) 有機ELディスプレイ、89(2004) 時任、安達、村田共著 オーム社 Appl.Phys.Lett.,93,063306(2008) Helvetica Chimica Acta.,vol.89,1123(2006) J.Org.Chem.,60,7508(1995) Synth.Commun.,11,513(1981) 第4版実験化学講座7 p384-398(1992)日本化学会編 丸善 有機EL討論会第1回例会予稿集,19(2005) Appl.Phys.Lett.,93,133312(2008)
 本発明の目的は、正孔の注入・輸送性能に優れ、三重項励起子を閉じ込める高い能力を有し、電子阻止能力を有し、薄膜状態での安定性が高く、発光効率が高い優れた特性を有する有機化合物を用いて、高効率、高耐久性の有機EL素子、特に燐光発光有機EL素子を提供することにある。
 本発明の有機EL素子に用いられる、有機化合物が具備すべき物理的な特性としては、(1)正孔の注入特性が良いこと、(2)正孔の移動度が大きいこと、(3)高いTを有すること、(4)電子阻止能力に優れること、(5)薄膜状態が安定であること(6)耐熱性に優れていることをあげることができる。また、本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、(1)発光効率および電力効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いことをあげることができる。
 そこで本発明者らは上記の目的を達成するために、カルバゾール環構造が高いTを有していること、電子阻止性に優れていること、正孔輸送性能に優れていること、耐熱性と薄膜安定性に優れていることに着目して、カルバゾール環構造が連結した化合物を設計、選択し、該化合物を化学合成し、種々の有機EL素子を試作し、素子の特性評価を鋭意行なった結果、本発明を完成するに至った。
 すなわち、本発明によれば、以下の有機EL素子が提供される。
 1)一対の電極とその間に挟まれた、発光層と電子阻止層を含む複数層の有機層を有する有機EL素子において、下記一般式(1)で表されるカルバゾール環構造を有する化合物が、該電子阻止層の構成材料として用いられていることを特徴とする有機EL素子。
Figure JPOXMLDOC01-appb-C000006
                           (1)
(式中、R1、R2、R3、R4、R5、R6は、互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r1、r4、r5は0または1~4の整数を表し、r2、r3、r6は0または1~3の整数を表し、nは0または1の整数を表し、Ar1、Ar2、Ar3は互いに同一でも異なっていても良く、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
 2)前記一般式(1)においてAr2が下記一般式(2)または(3)で表される1価基であることを特徴とする上記1)記載の有機EL素子。
、ことを特徴とするがより好ましい。
Figure JPOXMLDOC01-appb-C000007
                           (2)
(式中、R7、R8は、互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r7は0または1~4の整数を表し、r8は0または1~3の整数を表し、Bは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、Ar4は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000008
                           (3)
(式中、R9、R10は、互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r9、r10は0または1~3の整数を表し、Cは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、Ar5は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、W、X、Y、Zは炭素原子または窒素原子を表す。ここでW、X、Y、Zはそのいずれか1つのみが窒素原子であるものとし、この場合の窒素原子はR9の置換基を有さないものとする。)
 3)前記した発光層が燐光性の発光材料を含有することを特徴とする上記1)または2)記載の有機EL素子。
 4)一対の電極とその間に挟まれた、燐光性の発光材料を含有する発光層と電子阻止層を含む複数層の有機層を有する有機EL素子において、前記一般式(1)で表されるカルバゾール環構造を有する化合物が、該発光層の構成材料として用いられていることを特徴とする有機EL素子。
 5)前記した燐光性の発光材料がイリジウムまたは白金を含む金属錯体であることを特徴とする上記3)または4)記載の有機EL素子。
 一般式(1)~(3)中のR1~R10で表される「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」、としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、などをあげることができる。
 一般式(1)~(3)中のR1~R10で表される「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」、「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることができる。
 一般式(1)~(3)中のR1~R10、Ar1~Ar5、で表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、アセナフテニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フラニル基、ピラニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、およびカルボリニル基などをあげることができる。好ましくは、フェニル基、ビフェニリル基、ターフェニリル基、フルオレニル基、カルバゾリル基、カルボリニル基などをあげることができる。「縮合多環芳香族」の炭素数が増加するとTが低くなるため、「縮合多環芳香族」の炭素数は20個以下であることが好ましい。
 一般式(1)~(3)中のR1~R10、Ar1~Ar5、で表される、「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、フェニル基、ナフチル基、アントリル基、スチリル基、フェノキシ基、トリルオキシ基、ベンジルオキシ基、フェネチルオキシ基のような基をあげることができ、これらの置換基はさらに置換されていても良い。
 一般式(1)~(3)中のR1~R10、Ar1~Ar5で表される、「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェノキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基などをあげることができる。
 一般式(1)~(3)中のR1~R10、Ar1~Ar5で表される、「置換アリールオキシ基」における「置換基」としては、具体的に、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、フェニル基、ナフチル基、アントリル基、スチリル基、フェノキシ基、トリルオキシ基、ベンジルオキシ基、フェネチルオキシ基のような基をあげることができ、これらの置換基はさらに置換されていても良い。
 一般式(2)~(3)中のBまたはCで表される、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の芳香族複素環の2価基」、「置換もしくは無置換の縮合多環芳香族の2価基」における「芳香族炭化水素の2価基」、「芳香族複素環の2価基」、「縮合多環芳香族の2価基」としては、具体的に、フェニレン基、ビフェニレン基、ターフェニレン基、テトラキスフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、フルオレニレン基、フェナントロリレン基、インデニレン基、ピレニレン基、アセナフテニレン基、フルオランテニレン基、トリフェニレニレン基、ピリジニレン基、ピリミジニレン基、キノリレン基、イソキノリレン基、インドリレン基、カルバゾリレン基、キノキサリレン基、ベンゾイミダゾリレン基、ピラゾリレン基、ナフチリジニレン基、フェナントロリニレン基、アクリジニレン基、チエニレン基、ベンゾチエニレン基、ジベンゾチエニレン基などをあげることができる
 一般式(2)~(3)中のBまたはCで表される、「置換芳香族炭化水素の2価基」、「置換芳香族複素環の2価基」、「置換縮合多環芳香族の2価基」における「置換基」としては、具体的に、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、フェニル基、ナフチル基、アントリル基、スチリル基、フェノキシ基、トリルオキシ基、ベンジルオキシ基、フェネチルオキシ基のような基をあげることができ、これらの置換基はさらに置換されていても良い。
 尚、前記一般式(1)で表されるカルバゾール環構造を有する化合物のうち、nが0である下記一般式(1’)及び前記一般式(1)で表されるカルバゾール環構造を有する化合物のうち、nが1である下記一般式(1’’)で表されるカルバゾール環構造を有する化合物が有機EL素子に用いるのに好ましい。
Figure JPOXMLDOC01-appb-C000009
                         (1’)
(式中、R1、R2、R3、R4、R7、R8は互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r1、r4、r7は0または1~4の整数を表し、r2、r3、r8は0または1~3の整数を表し、Bは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、Ar3、Ar4は互いに同一でも異なっていても良く、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
Figure JPOXMLDOC01-appb-C000010
                         (1’’)
(式中、R1、R2、R3、R4、R5、R6は互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r4、r5は0または1~4の整数を表し、r1、r2、r3、r6は0または1~3の整数を表し、Ar1、Ar2、Ar3は互いに同一でも異なっていても良く、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
 本発明の有機EL素子に用いられる、一般式(1)で表される、カルバゾール環構造を有する化合物は、三重項励起子を閉じ込める能力が高く、優れた電子阻止能力と耐熱性を有し、かつ薄膜状態が安定である。
 本発明の有機EL素子に用いられる、一般式(1)で表される、カルバゾール環構造を有する化合物は、有機EL素子、特に燐光発光有機EL素子の正孔注入層および/または正孔輸送層の構成材料として使用することもできる。該化合物は、正孔の注入性が高く、移動度が大きく、Tが高く、しかも電子に対する安定性が高いため、燐光性の発光材料を含有する発光層内で生成した三重項励起子を閉じ込めることができ、さらに正孔と電子が再結合する確率を向上させ、高発光効率を得ることができると共に、駆動電圧が低下して、有機EL素子の耐久性が向上するという作用を有する。
 本発明の有機EL素子に用いられる、一般式(1)で表される、カルバゾール環構造を有する化合物は、有機EL素子、特に燐光発光有機EL素子の電子阻止層の構成材料としても使用することができる。三重項励起子を閉じ込める能力に優れていると共に正孔輸送性に優れ、かつ薄膜状態の安定性の高い材料を用いることにより、高い発光効率を有しながら、駆動電圧が低下し、電流耐性が改善されて、有機EL素子の最大発光輝度が向上するという作用を有する。
 本発明の有機EL素子に用いられる、一般式(1)で表される、カルバゾール環構造を有する化合物は、有機EL素子、特に燐光発光有機EL素子の発光層の構成材料としても使用することができる。該化合物は、正孔輸送性に優れ、かつバンドギャップが広いため、該化合物を発光層のホスト材料として用い、ドーパントと呼ばれている燐光発光体を担持させて、発光層として用いることにより、駆動電圧が低下し、発光効率が改善された有機EL素子を実現できるという作用を有する。
 本発明の有機EL素子は、正孔の移動度が大きく、優れた三重項励起子を閉じ込める能力を有し、かつ薄膜状態が安定なカルバゾール環構造を有する化合物を用いているため、高効率、高耐久性を実現することが可能となった。
 本発明の有機EL素子に用いられる、カルバゾール環構造を有する化合物は、有機EL素子、特に燐光発光有機EL素子の電子阻止層あるいは発光層の構成材料として有用であり、三重項励起子を閉じ込める能力に優れ、薄膜状態が安定で、耐熱性に優れている。本発明の有機EL素子は発光効率および電力効率が高く、このことにより素子の実用駆動電圧を低くさせることができる。さらに発光開始電圧を低くさせ、耐久性を向上させることができる。
本発明実施例1の化合物(化合物4)の1H-NMRチャート図である。 本発明実施例2の化合物(化合物25)の1H-NMRチャート図である。 実施例6、実施例7の有機EL素子構成を示した図である。 比較例1、2の有機EL素子構成を示した図である。
 本発明で使用されるカルバゾール環構造を有する化合物は、公知の方法(例えば、特許文献3参照)によって合成できる。また、例えば以下の方法によっても合成できる。まず、相当する9位をアリール基で置換されたカルバゾールをN-ブロモスクシンイミドなどによるブロモ化を行うことによって、3-ブロモ-9-アリールカルバゾールなどのモノブロモカルバゾールまたは3,6-ジブロモ-9-アリールカルバゾールなどのジブロモカルバゾールを合成し(例えば、非特許文献6参照)、このモノブロモカルバゾールとピナコールボランやビス(ピナコラート)ジボロンなどとの反応で合成されるボロン酸またはボロン酸エステル(例えば、非特許文献7参照)と、ジブロモカルバゾールまたはモノブロモカルバゾールをSuzukiカップリングなどのクロスカップリング反応(例えば、非特許文献8参照)を行うことによって、ビス(N-アリール-9’H-カルバゾール-3’-イル)-9-アリール-9H-カルバゾールまたは(N-アリール-9’H-カルバゾール-3’-イル)-9H-カルバゾールなどを合成することができる。また、(N-アリール-9’H-カルバゾール-3’-イル)-9H-カルバゾールと、種々のジハロゲノアリーレンとのウルマン反応などの縮合反応によって得られる(N-アリール-9’H-カルバゾール-3’-イル)-9-ハロゲノアリール-カルバゾールと9-アリールカルバゾールの3-ボロン酸またはボロン酸エステルをSuzukiカップリングなどのクロスカップリング反応(例えば、非特許文献8参照)を行うことによって、カルバゾール環構造を有する化合物を合成することができる。
 一般式(1)で表されるカルバゾール環構造を有する化合物の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
                         (化合物4)
Figure JPOXMLDOC01-appb-C000012
                         (化合物5)
Figure JPOXMLDOC01-appb-C000013
                         (化合物6)
Figure JPOXMLDOC01-appb-C000014
                         (化合物7)
Figure JPOXMLDOC01-appb-C000015
                         (化合物8)
Figure JPOXMLDOC01-appb-C000016
                         (化合物9)
Figure JPOXMLDOC01-appb-C000017
                         (化合物10)
Figure JPOXMLDOC01-appb-C000018
                         (化合物11)
Figure JPOXMLDOC01-appb-C000019
                         (化合物12)
Figure JPOXMLDOC01-appb-C000020
                         (化合物13)
Figure JPOXMLDOC01-appb-C000021
                         (化合物14)
Figure JPOXMLDOC01-appb-C000022
                         (化合物15)
Figure JPOXMLDOC01-appb-C000023
                         (化合物16)
Figure JPOXMLDOC01-appb-C000024
                         (化合物17)
Figure JPOXMLDOC01-appb-C000025
                         (化合物18)
Figure JPOXMLDOC01-appb-C000026
                         (化合物19)
Figure JPOXMLDOC01-appb-C000027
                         (化合物20)
Figure JPOXMLDOC01-appb-C000028
                         (化合物21)
Figure JPOXMLDOC01-appb-C000029
                         (化合物22)
Figure JPOXMLDOC01-appb-C000030
                         (化合物23)
Figure JPOXMLDOC01-appb-C000031
                         (化合物24)
Figure JPOXMLDOC01-appb-C000032
                         (化合物25)
Figure JPOXMLDOC01-appb-C000033
                         (化合物26)
Figure JPOXMLDOC01-appb-C000034
                         (化合物27)
Figure JPOXMLDOC01-appb-C000035
                         (化合物28)
Figure JPOXMLDOC01-appb-C000036
                         (化合物29)
Figure JPOXMLDOC01-appb-C000037
                         (化合物30)
Figure JPOXMLDOC01-appb-C000038
                         (化合物31)
Figure JPOXMLDOC01-appb-C000039
                         (化合物32)
Figure JPOXMLDOC01-appb-C000040
                         (化合物33)
Figure JPOXMLDOC01-appb-C000041
                         (化合物34)
Figure JPOXMLDOC01-appb-C000042
                         (化合物35)
Figure JPOXMLDOC01-appb-C000043
                         (化合物36)
Figure JPOXMLDOC01-appb-C000044
                         (化合物37)
Figure JPOXMLDOC01-appb-C000045
                         (化合物38)
Figure JPOXMLDOC01-appb-C000046
                         (化合物39)
Figure JPOXMLDOC01-appb-C000047
                         (化合物40)
Figure JPOXMLDOC01-appb-C000048
                         (化合物41)
Figure JPOXMLDOC01-appb-C000049
                         (化合物42)
Figure JPOXMLDOC01-appb-C000050
                         (化合物43)
Figure JPOXMLDOC01-appb-C000051
                         (化合物44)
Figure JPOXMLDOC01-appb-C000052
                         (化合物45)
Figure JPOXMLDOC01-appb-C000053
                         (化合物46)
Figure JPOXMLDOC01-appb-C000054
                         (化合物47)
Figure JPOXMLDOC01-appb-C000055
                         (化合物48)
Figure JPOXMLDOC01-appb-C000056
                         (化合物49)
Figure JPOXMLDOC01-appb-C000057
                         (化合物50)
Figure JPOXMLDOC01-appb-C000058
                         (化合物51)
Figure JPOXMLDOC01-appb-C000059
                         (化合物52)
 これらの化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法などによって行った。化合物の同定は、NMR分析によって行なった。物性値として、ガラス転移点(Tg)と仕事関数の測定を行った。ガラス転移点(Tg)は薄膜状態の安定性の指標となり、仕事関数は正孔輸送性の指標となるものである。
 ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって求めた。
 仕事関数は、ITO基板の上に100nmの薄膜を作製して、理研計器製の大気中光電子分光装置AC-3型を用いて測定した。
 これらの化合物のTは、測定した燐光スペクトルより算出できる。燐光スペクトルは市販の分光光度計を用いて測定できる。一般的な燐光スペクトルの測定方法としては溶媒に溶解し、低温下励起光を照射して測定する方法(例えば、非特許文献9参照)、あるいは、シリコン基板上に蒸着して薄膜とし、低温下励起光を照射して燐光スペクトルを測定する方法などがある(例えば、特許文献6参照)。Tは、燐光スペクトルの短波長側の第1ピークの波長あるいは短波長側の立ち上がり位置の波長を読み取り、下記の式に従って光のエネルギー値に換算することによって算出できる。Tは燐光発光体の三重項励起子の閉じ込めの指標となる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Eは光エネルギーの値を、hはプランク定数(6.63×10-34Js)を、cは光速(3.00×10m/s)を、λは燐光スペクトルの短波長側の立ち上がるところの波長(nm)を表す。そして、1eVは1.60×10-19Jとなる。
 本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、陰極からなるもの、また、電子輸送層と陰極の間にさらに電子注入層を有するものがあげられる。これらの多層構造においては有機層を何層か省略することが可能である。
 前記発光層、前記正孔輸送層、前記電子輸送層においては、それぞれが2層以上積層された構造であっても良い。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。本発明の有機EL素子の正孔注入層として、本発明の一般式(1)で表されるカルバゾール環構造を有する化合物のほか、銅フタロシアニンに代表されるポルフィリン化合物、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔輸送層として、本発明の一般式(1)で表されるカルバゾール環構造を有する化合物のほか、TPDやα-NPD、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、TAPC、種々のトリフェニルアミン3量体および4量体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(以後、PEDOTと略称する)/ポリ(スチレンスルフォネート)(以後、PSSと略称する)などの塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものや、TPDの構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の電子阻止層として、本発明の一般式(1)で表されるカルバゾール環構造を有する化合物のほか、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以後、Ad-Czと略称する)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の発光層として、Alqをはじめとするキノリノール誘導体の金属錯体の他、各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成しても良く、ホスト材料として、本発明の一般式(1)で表されるカルバゾール環構造を有する化合物のほか、前記発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。
 また、発光材料として燐光性の発光材料を使用することも可能である。燐光性の発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料として、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)やTCTA、mCPなどのカルバゾール誘導体などに加え、本発明の一般式(1)で表されるカルバゾール環構造を有する化合物を用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)や下記式で表される2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。
Figure JPOXMLDOC01-appb-C000060
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 また、本発明の有機EL素子に用いられる一般式(1)で表されるカルバゾール環構造を有する化合物を用いて作製した発光層に、仕事関数の異なる化合物をホスト材料として用いて作製した発光層を隣接させて積層した構造の素子を作製することができる(例えば、非特許文献10および非特許文献11参照)。
 これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
本発明の有機EL素子の正孔阻止層として、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、オキサゾール誘導体、トリアゾール誘導体、トリアジン誘導体など、正孔阻止作用を有する化合物が用いられる。これらの材料は電子輸送層の材料を兼ねても良い。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子輸送層として、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 さらに、電子注入層あるいは電子輸送層において、該層に通常使用される材料に対し、さらにセシウムなどの金属をNドーピングしたものを用いることができる。
 本発明の有機EL素子の陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 本発明の有機EL素子の各層の膜厚は特に制限されないが、一般に膜厚が薄い場合、ピンホールなどの欠陥が生じる可能性が高くなり、膜厚が厚い場合、印加電圧が高くなる傾向にあるため、通常は0.1nm~1μmの範囲であり、0.3nm~500nmの範囲が好ましい。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 <3,6-ビス(9’-フェニル-9’H-カルバゾール-3-イル)-9-フェニル-9H-カルバゾール(化合物4)の合成>
 窒素置換した反応容器に、3、6-ジブロモ-9-フェニル-9H-カルバゾール1.6g、9-フェニル-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール2.4g、トルエン20ml、エタノール5ml、2M炭酸カリウム水溶液6mlを加え、超音波を照射しながら30分間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム0.23gを加えて加熱し、74℃で4時間攪拌した。トルエン80mlを加えて加熱し、70℃で1時間さらに撹拌した後、40℃まで冷却して不溶物をろ過によって除き、ろ液を減圧下で濃縮することによって黒色の粗製物を得た。粗製物にトルエン100mlを加えて溶解し、シリカゲル28.9gを用いた吸着精製を行った後、減圧下で濃縮して黄白色粉体を得た。黄白色粉体にトルエン/メタノールを用いた再結晶による精製を2回繰り返すことによって、3,6-ビス(9’-フェニル-9’H-カルバゾール-3-イル)-9-フェニル-9H-カルバゾール(化合物4)1.76g(収率60.9%)の褐白色粉体を得た。
 得られた褐白色粉体についてNMRを使用して構造を同定した。1H-NMR測定結果を図1に示した。
 1H-NMR(CDCl3)で以下の35個の水素のシグナルを検出した。δ(ppm)=8.56(2H)、8.49(2H)、8.24-8.26(2H)、7.79-7.81(4H)、7.62-7.67(12H)、7.43-7.55(11H)、7.30-7.33(2H)。
 <9’-フェニル-9-[4-(9-フェニル-9H-カルバゾール-3-イル)-フェニル]-9H,9’H-[3,3’]ビカルバゾリル(化合物25)の合成>
 窒素置換した反応容器に、9-フェニル-9H,9’H-[3,3’]ビカルバゾリル12.9g、4-ブロモ-ヨードベンゼン13.4g、銅粉0.64g、炭酸カリウム8.34g、亜硫酸水素ナトリウム0.49g、オルトジクロロベンゼン50mlを加えて加熱し、170℃で19.5時間攪拌した。90℃まで冷却し、トルエン200mlを加えて溶解した。不溶物をろ過によって除き、減圧下で濃縮した後、メタノール50mlから結晶化することによって、9-(4-ブロモフェニル)-9’-フェニル-9H,9’H-[3,3’]ビカルバゾリル17.30g(収率97%)の白色粉体を得た。
 得られた9-(4-ブロモフェニル)-9’-フェニル-9H,9’H-[3,3’]ビカルバゾリル17.00g、9-フェニル-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール12.25g、トルエン160ml、エタノール40ml、2M炭酸カリウム水溶液23mlを、窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム1.74gを加えて加熱し、72℃で12.5時間攪拌した。室温まで放冷した後、トルエン100ml、水150mlを加えて抽出し、有機層を硫酸マグネシウムで乾燥した後、減圧下で濃縮することによって黒色の粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製し、9’-フェニル-9-[4-(9-フェニル-9H-カルバゾール-3-イル)-フェニル]-9H,9’H-[3,3’]ビカルバゾリル10.44g(収率48%)の淡黄白色粉体を得た。
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。1H-NMR測定結果を図2に示した。
 1H-NMR(THF-d)で以下の35個の水素のシグナルを検出した。δ(ppm)=7.25-7.31(3H)、7.36-7.44(5H)、7.48-7.53(5H)、7.58(1H)、7.64-7.69(8H)、7.73-7.76(2H)、7.81-7.85(3H)、8.04-8.08(2H)、8.26-8.30(3H)、8.56-8.61(3H)。
 本発明で用いられる化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によってガラス転移点を求めた。
                ガラス転移点
本発明実施例1の化合物     142.5℃
本発明実施例2の化合物     151.4℃
 本発明で用いられる化合物は100℃以上のガラス転移点を有しており、本発明で用いられる化合物において薄膜状態が安定であることを示すものである。
 本発明で用いられる化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、大気中光電子分光装置(理研計器製、AC-3型)で仕事関数を測定した。
                仕事関数
 本発明実施例1の化合物    5.44eV
 本発明実施例2の化合物    5.49eV
 このように本発明で用いられる化合物はα-NPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。
 本発明で用いられる化合物について、1.0×10-5mol/Lの2-メチルテトラヒドロフラン溶液を調製した。調製した溶液を専用の石英管に入れ、純窒素を通気することによって酸素分を除き、さらに酸素分が混入しないようにセプタムラバーによる栓をした。77Kに冷却した後、蛍光リン光分光光度計(堀場製作所製、FluoroMax-4型)を用い、励起光を照射して燐光スペクトルを測定した。燐光スペクトルの短波長側の第1ピークの波長を読み取り、該波長値を光のエネルギーに換算してTを算出した。
                  T
 本発明実施例1の化合物      2.74eV
 本発明実施例2の化合物      2.71eV
 FIrpic           2.62eV
 Ir(ppy)         2.42eV
 CBP              2.56eV
 α-NPD            2.29eV
 このように本発明で用いられる化合物は一般的に用いられている青色燐光材料であるFIrpic、緑色燐光材料であるIr(ppy)や一般的に用いられるホスト材料であるCBP、一般的に用いられる正孔輸送材料であるα-NPDがもつTより大きい値を有しており、発光層で励起された三重項励起子を充分閉じ込める能力を有している。
 有機EL素子は、図3に示すような、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層3、電子阻止層4、発光層5、正孔阻止層6、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔輸送層3としてα-NPDを膜厚40nmとなるように形成した。この正孔輸送層3の上に、電子阻止層4として本発明実施例1の化合物(化合物4)を膜厚10nmとなるように形成した。この電子阻止層4の上に発光層5としてTPBIとIr(ppy)を、蒸着速度比がTPBI:Ir(ppy)=92:8となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した。この発光層5の上に、正孔阻止層6としてBCPを膜厚10nmとなるように形成した。この正孔阻止層6の上に、電子輸送層7としてAlqを膜厚30nmとなるように形成した。この電子輸送層7の上に、電子注入層8としてフッ化リチウムを膜厚0.5nmとなるように形成した。最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極9を形成した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
 実施例6における正孔輸送層3の材料を下記構造式の化合物53に代え、実施例6と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000061
                         (化合物53)
[比較例1]
 比較のために、実施例6における正孔輸送層3の膜厚を50nmとなるように形成し、電子阻止層4を省略した以外は、実施例6と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例2]
 比較のために、実施例7における正孔輸送層3の膜厚を50nmとなるように形成し、電子阻止層4を省略した以外は、実施例7と同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す様に、電流密度10mA/cmの電流を流したときの駆動電圧は、電子阻止層の材料として本発明の実施例1の化合物(化合物4)を用いなかった場合、正孔輸送層の材料としてα-NPDを用いた場合の6.54V、化合物53を用いた場合の5.89Vに対して本発明の実施例1の化合物(化合物4)を電子阻止層の材料として用いた場合では5.77V、5.68Vとそれぞれ低電圧化した。また、発光輝度、発光効率、電力効率のいずれにおいても、電子阻止層の材料として本発明の実施例1の化合物(化合物4)を用いた場合、大きく向上する結果となった。
 上記と同一の有機EL素子を用いて発光開始電圧を測定した結果を以下に示した。
有機EL素子  正孔輸送層材料/電子素子層材料  発光開始電圧[V]
実施例6      α-NPD/化合物4     2.8
実施例7      化合物53/化合物4     2.8
比較例1      α-NPD/なし       2.9
比較例2      化合物53/なし       2.9
 その結果、電子阻止層の材料として本発明の実施例1の化合物(化合物4)を用いなかった比較例1、比較例2に対し、電子阻止層の材料として本発明の実施例1の化合物(化合物4)を用いた実施例6、7では発光開始電圧が低電圧化していることが分かる。
 以上のように、本発明で用いられる一般式(1)で表されるカルバゾール環構造を有する化合物を電子阻止層の材料として用いた有機EL素子は、発光輝度、発光効率、電力効率の向上や実用駆動電圧の低下を達成できることがわかった。
 一般式(1)で表されるカルバゾール環構造を有する化合物を用いた有機EL素子を作製することにより、高い発光輝度、発光効率および電力効率を得ることができると共に、実用駆動電圧を低下させることができ、耐久性を改善させることができる。例えば、家庭電化製品や照明の用途への展開が可能となった。
1 ガラス基板
2 透明陽極
3 正孔輸送層
4 電子阻止層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極

Claims (9)

  1.  一対の電極とその間に挟まれた、発光層と電子阻止層を含む複数層の有機層を有する有機エレクトロルミネッセンス素子において、下記一般式(1)で表されるカルバゾール環構造を有する化合物が、該電子阻止層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000062
                             (1)
    (式中、R1、R2、R3、R4、R5、R6は、互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r1、r4、r5は0または1~4の整数を表し、r2、r3、r6は0または1~3の整数を表し、nは0または1の整数を表し、Ar1、Ar2、Ar3は互いに同一でも異なっていても良く、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  2.  前記一般式(1)においてAr2が下記一般式(2)または(3)で表される1価基である、カルバゾール環構造を有する化合物が該電子阻止層の構成材料として用いられていることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000063
                             (2)
    (式中、R7、R8は、互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r7は0または1~4の整数を表し、r8は0または1~3の整数を表し、Bは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、Ar4は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表す。)
    Figure JPOXMLDOC01-appb-C000064
                             (3)
    (式中、R9、R10は、互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r9、r10は0または1~3の整数を表し、Cは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、Ar5は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、W、X、Y、Zは炭素原子または窒素原子を表す。ここでW、X、Y、Zはそのいずれか1つのみが窒素原子であるものとし、この場合の窒素原子はR9の置換基を有さないものとする。)
  3.  前記一般式(1)においてnが0であることを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  一対の電極とその間に挟まれた、発光層と電子阻止層を含む複数層の有機層を有する有機エレクトロルミネッセンス素子において、下記一般式(1’)で表されるカルバゾール環構造を有する化合物が、該電子阻止層の構成材料として用いられていることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000065
                             (1’)
    (式中、R1、R2、R3、R4、R7、R8は互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r1、r4、r7は0または1~4の整数を表し、r2、r3、r8は0または1~3の整数を表し、Bは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、Ar3、Ar4は互いに同一でも異なっていても良く、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  5.  前記一般式(1)においてnが1であることを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。
  6.  一対の電極とその間に挟まれた、発光層と電子阻止層を含む複数層の有機層を有する有機エレクトロルミネッセンス素子において、下記一般式(1’’)で表されるカルバゾール環構造を有する化合物が、該電子阻止層の構成材料として用いられていることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000066
                             (1’’)
    (式中、R1、R2、R3、R4、R5、R6は互いに同一でも異なっても良く、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、炭素原子数5ないし10のシクロアルキル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基を表し、r4、r5は0または1~4の整数を表し、r1、r2、r3、r6は0または1~3の整数を表し、Ar1、Ar2、Ar3は互いに同一でも異なっていても良く、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。)
  7.  前記した発光層が燐光性の発光材料を含有することを特徴とする請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  一対の電極とその間に挟まれた、燐光性の発光材料を含有する発光層と電子阻止層を含む複数層の有機層を有する有機エレクトロルミネッセンス素子において、前記一般式(1)で表されるカルバゾール環構造を有する化合物が、該発光層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子。
  9.  前記した燐光性の発光材料がイリジウムまたは白金を含む金属錯体である請求項7または請求項8に記載の有機エレクトロルミネッセンス素子。
PCT/JP2010/006284 2009-10-23 2010-10-22 有機エレクトロルミネッセンス素子 WO2011048821A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800478600A CN102576813A (zh) 2009-10-23 2010-10-22 有机电致发光器件
KR1020127013074A KR101847222B1 (ko) 2009-10-23 2010-10-22 유기 일렉트로 루미네센스 소자
JP2011537147A JP6134476B2 (ja) 2009-10-23 2010-10-22 有機エレクトロルミネッセンス素子
EP10824673.7A EP2492985A4 (en) 2009-10-23 2010-10-22 Organic electroluminescent element
US13/503,156 US9306174B2 (en) 2009-10-23 2010-10-22 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009244248 2009-10-23
JP2009-244248 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011048821A1 true WO2011048821A1 (ja) 2011-04-28

Family

ID=43900065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006284 WO2011048821A1 (ja) 2009-10-23 2010-10-22 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US9306174B2 (ja)
EP (1) EP2492985A4 (ja)
JP (1) JP6134476B2 (ja)
KR (1) KR101847222B1 (ja)
CN (1) CN102576813A (ja)
TW (1) TWI531563B (ja)
WO (1) WO2011048821A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001986A1 (ja) * 2010-06-30 2012-01-05 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012008281A1 (ja) * 2010-07-13 2012-01-19 東レ株式会社 発光素子
WO2012029253A1 (ja) * 2010-08-31 2012-03-08 出光興産株式会社 含窒素芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2013022419A1 (en) 2011-08-05 2013-02-14 Universal Display Corporation Phosphorescent organic light emitting devices combined with hole transport material having high operating stability
US8803134B2 (en) 2011-02-07 2014-08-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence
JPWO2013105206A1 (ja) * 2012-01-10 2015-05-11 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた素子
JP2017503343A (ja) * 2013-12-17 2017-01-26 北京維信諾科技有限公司 有機エレクトロルミネッセン素子及びその製造方法
US9564595B2 (en) 2011-03-24 2017-02-07 Idemitsu Kosan Co., Ltd. Bis-carbazole derivative and organic electroluminescent element using same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421772B (zh) 2010-04-20 2015-11-25 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
JP5898683B2 (ja) 2011-12-05 2016-04-06 出光興産株式会社 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR101390362B1 (ko) * 2012-09-21 2014-04-30 주식회사 엘엠에스 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치
KR101458690B1 (ko) * 2013-02-28 2014-11-05 포항공과대학교 산학협력단 전도성 박막 및 이를 포함한 전자 소자
US9477737B1 (en) 2013-11-20 2016-10-25 Consumerinfo.Com, Inc. Systems and user interfaces for dynamic access of multiple remote databases and synchronization of data based on user rules
JP6492385B2 (ja) * 2014-03-12 2019-04-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
CN106410054B (zh) * 2015-12-09 2019-03-12 广东阿格蕾雅光电材料有限公司 仅空穴有机半导体二极管器件
WO2018092561A1 (ja) * 2016-11-16 2018-05-24 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083547A (ja) 1994-03-31 1996-01-09 Toray Ind Inc 発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH09249876A (ja) * 1996-03-18 1997-09-22 Toray Ind Inc 発光素子
JPH11144876A (ja) * 1997-11-12 1999-05-28 Toray Ind Inc 発光素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
WO2004066685A1 (ja) * 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
JP2007022986A (ja) 2005-07-20 2007-02-01 Sogo Pharmaceutical Co Ltd 新規ピラゾール誘導体及びこれを含有する有機el素子
WO2007119816A1 (ja) * 2006-04-19 2007-10-25 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998487B2 (en) * 2001-04-27 2006-02-14 Lg Chem, Ltd. Double-spiro organic compounds and organic electroluminescent devices using the same
US6750608B2 (en) * 2001-11-09 2004-06-15 Konica Corporation Organic electroluminescence element and display
EP2463930B1 (en) 2006-01-05 2017-04-12 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
KR20090028943A (ko) * 2007-09-17 2009-03-20 (주)루디스 정공주입층/정공수송층 물질 및 이를 포함하는유기전계발광소자
JP4675413B2 (ja) 2008-02-14 2011-04-20 財団法人山形県産業技術振興機構 有機発光素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JPH083547A (ja) 1994-03-31 1996-01-09 Toray Ind Inc 発光素子
JPH09249876A (ja) * 1996-03-18 1997-09-22 Toray Ind Inc 発光素子
JPH11144876A (ja) * 1997-11-12 1999-05-28 Toray Ind Inc 発光素子
WO2004066685A1 (ja) * 2003-01-24 2004-08-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
JP2007022986A (ja) 2005-07-20 2007-02-01 Sogo Pharmaceutical Co Ltd 新規ピラゾール誘導体及びこれを含有する有機el素子
WO2007119816A1 (ja) * 2006-04-19 2007-10-25 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Jikken Kagaku Kouza", vol. 7, 1992, CHEMICAL SOCIETY OF JAPAN, MARUZEN, pages: 384 - 398
"Organic EL Display", vol. 89, 2004, OHMSHA
APPL. PHYS. LETT., vol. 93, 2008, pages 063306
APPL. PHYS. LETT., vol. 93, 2008, pages 133312
HELVETICA CHIMICA ACTA., vol. 89, 2006, pages 1123
J. APPL. PHYS., vol. 12, no. 95, 2004, pages 7798
J. ORG. CHEM., vol. 60, 1995, pages 7508
ORGANIC EL SYMPOSIUM, vol. 19, 2005
See also references of EP2492985A1
SYNTH. COMMUN., vol. 11, 1981, pages 513
THE JAPAN SOCIETY OF APPLIED PHYSICS, 2001, pages 23 - 31
THE JAPAN SOCIETY OF APPLIED PHYSICS, 2001, pages 55 - 61

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001986A1 (ja) * 2010-06-30 2012-01-05 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012008281A1 (ja) * 2010-07-13 2012-01-19 東レ株式会社 発光素子
US9382206B2 (en) 2010-08-31 2016-07-05 Idemitsu Kosan Co., Ltd. Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using the same
WO2012029253A1 (ja) * 2010-08-31 2012-03-08 出光興産株式会社 含窒素芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
US9818958B2 (en) 2011-02-07 2017-11-14 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US8803134B2 (en) 2011-02-07 2014-08-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence
US11271171B2 (en) 2011-02-07 2022-03-08 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10230057B2 (en) 2011-02-07 2019-03-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US9564595B2 (en) 2011-03-24 2017-02-07 Idemitsu Kosan Co., Ltd. Bis-carbazole derivative and organic electroluminescent element using same
US9705092B2 (en) 2011-08-05 2017-07-11 Universal Display Corporation Phosphorescent organic light emitting devices combined with hole transport material having high operating stability
WO2013022419A1 (en) 2011-08-05 2013-02-14 Universal Display Corporation Phosphorescent organic light emitting devices combined with hole transport material having high operating stability
JPWO2013105206A1 (ja) * 2012-01-10 2015-05-11 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた素子
US9685614B2 (en) 2012-01-10 2017-06-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element, and element using same
US10312453B2 (en) 2013-12-17 2019-06-04 Beijing Visionox Technology Co., Ltd. Organic electroluminescent device and method for manufacture thereof
JP2017503343A (ja) * 2013-12-17 2017-01-26 北京維信諾科技有限公司 有機エレクトロルミネッセン素子及びその製造方法

Also Published As

Publication number Publication date
JPWO2011048821A1 (ja) 2013-03-07
US20120273767A1 (en) 2012-11-01
TWI531563B (zh) 2016-05-01
JP6134476B2 (ja) 2017-05-24
EP2492985A1 (en) 2012-08-29
EP2492985A4 (en) 2017-03-29
KR20120093303A (ko) 2012-08-22
US9306174B2 (en) 2016-04-05
TW201130797A (en) 2011-09-16
CN102576813A (zh) 2012-07-11
KR101847222B1 (ko) 2018-04-09

Similar Documents

Publication Publication Date Title
JP6134476B2 (ja) 有機エレクトロルミネッセンス素子
WO2011048822A1 (ja) 有機エレクトロルミネッセンス素子
JP6049998B2 (ja) カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5807011B2 (ja) カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5836358B2 (ja) インドロカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5936229B2 (ja) インデノカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2011155169A1 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2013157367A1 (ja) 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子
WO2011093056A1 (ja) トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子
JP2011178742A (ja) フェノキサジン環構造またはフェノチアジン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6251675B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012115219A1 (ja) ビピリジル基とカルバゾール環を有する化合物及び有機エレクトロルミネッセンス素子
JP6580553B2 (ja) ベンゾフロインドール誘導体および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047860.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537147

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13503156

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010824673

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127013074

Country of ref document: KR

Kind code of ref document: A