WO2011048727A1 - 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途 - Google Patents

3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途 Download PDF

Info

Publication number
WO2011048727A1
WO2011048727A1 PCT/JP2010/004301 JP2010004301W WO2011048727A1 WO 2011048727 A1 WO2011048727 A1 WO 2011048727A1 JP 2010004301 W JP2010004301 W JP 2010004301W WO 2011048727 A1 WO2011048727 A1 WO 2011048727A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
groups
represented
carbonyl complex
Prior art date
Application number
PCT/JP2010/004301
Other languages
English (en)
French (fr)
Inventor
栗山亙
松本崇司
猪野恭規
小形理
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to EP10818127.2A priority Critical patent/EP2492275B1/en
Priority to JP2011514945A priority patent/JP5671456B2/ja
Priority to US13/121,990 priority patent/US8471048B2/en
Priority to CN201080002901.4A priority patent/CN102177170B/zh
Publication of WO2011048727A1 publication Critical patent/WO2011048727A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a novel ruthenium carbonyl complex having a tridentate ligand having two phosphino groups and a —NH— group, a process for producing the same, and hydrogenation of ketones and esters or lactones using the complex as a catalyst.
  • the present invention relates to a method for producing alcohols by reduction.
  • the method of obtaining alcohols by reducing ketones, esters and lactones is important in chemical synthesis.
  • Reduction by catalytic hydrogenation is useful as a method for producing alcohols in terms of reduction of by-products, good operability and work safety.
  • optically active alcohols are important as physiologically active substances such as pharmaceuticals, agricultural chemicals, and fragrances, and synthetic intermediates thereof.
  • Asymmetric hydrogenation of ketones and hydroreduction of optically active esters produce optically active alcohols.
  • One such reduction catalyst is a ruthenium complex having a polydentate ligand.
  • Patent Document 1 discloses a dichloro complex as a ruthenium complex having two phosphino groups and —NH— group as a tridentate ligand.
  • Non-Patent Document 1 reports dichloro complexes and hydride complexes having trimethylphosphine as a ligand. However, these complexes do not have a carbonyl ligand. Further, ruthenium complexes having two phosphino groups and a tridentate ligand having a pyridine ring and a carbonyl ligand have been reported in Non-Patent Documents 2, 3 and 4. -It has no group.
  • Patent Document 1 The ruthenium dichloro complex described in Patent Document 1 has been reported to hydrogenate and reduce ketones in the presence of a base to obtain alcohol, but no reduction of esters or lactones has been reported.
  • the ruthenium phosphine complex described in Non-Patent Document 1 has been reported as an ammonia-borane dehydrogenation catalyst, but hydrogenation reduction of ketones, esters and lactones has not been reported. Further, the ruthenium phosphine complex is reported to be unstable, has a difficulty in handling, and is difficult to use industrially.
  • the ruthenium complex having a pyridine ring described in Non-Patent Document 2 and Non-Patent Document 3 has been reported to catalyze an ester synthesis reaction by hydrogenation reduction of an ester or dehydrogenation of an alcohol.
  • the ruthenium complex having a pyridine ring described in Non-Patent Document 2 has low catalytic activity in the hydrogenation reduction of esters, and development of a catalyst having higher catalytic activity has been desired.
  • the object of the present invention is to provide a ruthenium complex that is easy to prepare and handle and can be procured at a relatively low cost, and a method for producing the same, as well as a corresponding alcohol obtained by hydrogenating ketones, esters and lactones using them as catalysts. It is to provide a technique for manufacturing a kind.
  • the ruthenium complex found in the present invention has been found to have high catalytic ability in the hydrogenation reduction of ketones, esters and lactones, and the present invention has been completed.
  • R 1 , R 2 , R 3 , and R 4 may be the same or different from each other, and are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkyl group.
  • R 1 and R 2 or R 3 and R 4 are bonded to each other and ring together with the adjacent phosphorus atom
  • These alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, aralkyloxy groups, heterocyclic groups, and substituted amino groups are Q 1 and Q 2 may be the same or different, and may be a divalent alkylene group or substituent which may have a substituent.
  • the tridentate aminodiphosphine ligand L is represented by the following general formula (3)
  • R 5 , R 6 , R 7 , and R 8 may be the same or different, and each may be a hydrogen atom, an alkyl group that may have a substituent, or a substituent.
  • the tridentate aminodiphosphine ligand L is represented by the following general formula (4)
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 may be the same or different and each represents an aryl group or an aromatic heterocyclic group.
  • the aryl group and aromatic heterocyclic group may have a substituent.
  • the tridentate aminodiphosphine ligand L is represented by the following general formula (5)
  • Ph represents a phenyl group.
  • the ruthenium carbonyl complex of the above-mentioned [4] represented by [6] The ruthenium carbonyl complex according to any one of [1] or [2], wherein the tridentate aminodiphosphine ligand L is an optically active tridentate aminodiphosphine ligand.
  • the tridentate aminodiphosphine ligand L represented by the general formula (2) is the tridentate aminodiphosphine ligand L represented by the general formula (5).
  • the novel ruthenium carbonyl complex of the present invention can be easily prepared from a tridentate aminodiphosphine ligand and a precursor ruthenium carbonyl complex, and the tridentate aminodiphosphine ligand is a bisalkyl having a leaving group. It can be easily prepared by reacting an amine and a phosphine compound in the presence of a base. Furthermore, a ruthenium carbonyl complex as a precursor can be easily prepared from an easily available inorganic ruthenium compound. Thus, the ruthenium carbonyl complex of the present invention is not only easy to prepare, but also highly stable and easy to handle, and is suitable for industrial use.
  • the ruthenium carbonyl complex of the present invention has a high catalytic activity even under relatively mild reaction conditions. For example, in the presence of a hydrogen donor, it catalyzes the hydrogenation reduction of ketones, esters and lactones to produce alcohols in a high yield. It is possible to manufacture with. If an optically active ligand is used, an optically active alcohol can be synthesized by asymmetric hydrogenation reduction of ketones. Further, even when the ester or lactone to be hydroreduced is an optically active substance, it can be reduced to an optically active alcohol without significant reduction in optical purity.
  • FIG. 1 is a diagram schematically showing the chemical structure of the complex 18 based on the result of X-ray structural analysis of the ruthenium carbonyl complex 18 of the present invention.
  • RuXY (CO) (L) (1) (In general formula (1), X and Y may be the same or different and each represents an anionic ligand, and L represents a tridentate aminodiphosphine ligand represented by the following general formula (2). To express.)
  • R 1 , R 2 , R 3 , and R 4 may be the same or different, and are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkyloxy group.
  • alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, aralkyloxy groups, and heterocyclic groups may have a substituent.
  • Q 1 and Q 2 may be the same or different, and may be a divalent alkylene group which may have a substituent, or a divalent cycloal which may have a substituent. Represents a xylene group or a divalent aralkylene group which may have a substituent.
  • the tridentate aminodiphosphine ligand used in the present invention will be described.
  • Examples of the tridentate aminodiphosphine ligand represented by L in the general formula (1) include those having two phosphino groups and —NH— group.
  • Specific examples of the tridentate aminodiphosphine ligand include those represented by the general formula (2).
  • alkyl group examples include linear or branched alkyl groups having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms. Examples thereof include a methyl group, an ethyl group, and n-propyl. Group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-octyl group and the like.
  • Examples of the cycloalkyl group include monocyclic, polycyclic or condensed cyclic cycloalkyl groups having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, and more preferably 3 to 10 carbon atoms. , Cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • Examples of the aryl group include monocyclic, polycyclic, and condensed cyclic aryl groups having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, and more preferably 6 to 14 carbon atoms.
  • Examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • examples of the aralkyl group include groups in which at least one hydrogen atom of the above-described alkyl group is substituted with the above-described aryl group.
  • an aralkyl group having 7 to 15 carbon atoms is preferable.
  • alkyloxy group examples include an alkyloxy group composed of a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms.
  • alkyloxy group examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, tert-butoxy group, n-pentyloxy group and the like.
  • the cycloalkyloxy group includes a cycloalkyloxy group composed of a polycyclic or condensed cyclic cycloalkyl group having 3 to 20 carbon atoms, preferably 3 to 15 carbon atoms, more preferably 3 to 10 carbon atoms.
  • a cyclopropyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, etc. are mentioned.
  • the aryloxy group is an aryloxy group comprising a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, more preferably 6 to 14 carbon atoms.
  • phenoxy group, triloxy group, xylyloxy group, naphthoxy group and the like can be mentioned.
  • examples of the aralkyloxy group include groups in which at least one hydrogen atom of the alkyloxy group or cycloalkyl group is substituted with the aryl group.
  • an aralkyloxy group having 7 to 15 carbon atoms is preferable.
  • heterocyclic group examples include an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • the aliphatic heterocyclic group has, for example, 2 to 14 carbon atoms and includes at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom and / or sulfur atom. Examples thereof include a 3- to 8-membered, preferably 4- to 6-membered monocyclic aliphatic heterocyclic group, a polycyclic or a condensed aliphatic heterocyclic group.
  • aliphatic heterocyclic group examples include, for example, azetidyl group, azetidino group, pyrrolidyl group, pyrrolidino group, piperidinyl group, piperidino group, piperazinyl group, piperazino group, morpholinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group. Group, tetrahydrothiophenyl group and the like.
  • aromatic heterocyclic group examples include 2 to 15 carbon atoms and at least one hetero atom, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom and / or a sulfur atom.
  • Examples thereof include a 5- or 6-membered monocyclic heteroaryl group and a polycyclic or condensed ring heteroaryl group. Specific examples thereof include, for example, furyl group, thienyl group, pyridyl group, pyrimidyl group, pyrazyl group, pyridazyl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, benzothienyl group, quinolyl group, isoquinolyl group.
  • substituted amino group examples include amino groups in which two hydrogen atoms of an amino group are substituted with the same or different alkyl group, cycloalkyl group, aryl group, aralkyl group, and / or heterocyclic group.
  • dialkylamino groups such as N, N-diethylamino group and N, N-diisopropylamino group
  • dicycloalkylamino groups such as N, N-dicyclohexylamino group; N, N-diphenylamino group, N
  • a diarylamino group such as naphthyl-N-phenylamino group
  • a diaralkylamino group such as N, N-dibenzylamino group
  • the alkyl group, cycloalkyl group, aryl group, aralkyl group, and heterocyclic group of the substituted amino group may further have a substituent.
  • substituents that the aryl group, aralkyl group, and heterocyclic group may have include the aforementioned alkyl group, the aforementioned cycloalkyl group, the aforementioned aryl group, the aforementioned aralkyl group, the aforementioned alkyloxy group, A cycloalkyloxy group, an aryloxy group described above, an aralkyloxy group described above, a heterocyclic group described above, a substituted amino group described above, a halogen atom, a silyl group, and an optionally protected hydroxyl group.
  • Examples of the halogen atom as a substituent for R 1 , R 2 , R 3 , and R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the silyl group as a substituent for R 1 , R 2 , R 3 , and R 4 three hydrogen atoms of the silyl group are the above-described alkyl group, the above-described cycloalkyl group, the above-described aryl group, and the above-described aralkyl. The thing replaced with the group etc. is mentioned.
  • Specific examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, and a triphenylsilyl group.
  • Examples of the optionally protected hydroxyl group as a substituent for R 1 , R 2 , R 3 , and R 4 include an unprotected hydroxyl group, or a trimethylsilyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, for example.
  • silyl groups such as benzyl groups and methoxymethyl groups, such as general hydroxyl groups used in peptide synthesis described in Reference Document 1 (Protective Groups in Organic Synthesis Second Edition, JOHN WILEY & SONS, INC. 1991).
  • Examples thereof include a hydroxyl group which may be protected with a protecting group.
  • the divalent alkylene group examples include a linear or branched divalent alkyl chain having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • a methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and the like can be given.
  • the divalent cycloalkylene group is a bicyclic cycloalkyl group having a monocyclic, polycyclic or condensed cyclic cycloalkyl group having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 6 carbon atoms.
  • Valent groups such as cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group and the like.
  • divalent aralkylene group include divalent groups having 7 to 11 carbon atoms in which one hydrogen atom is removed from an aryl group of an aralkyl group such as a benzyl group or a phenethyl group.
  • Benzylene group (—Ph—CH 2 —), 2-phenylethylene group (—Ph—CH 2 CH 2 —), 1-naphthylmethylene group (—Np—CH 2 —), 2-naphthylmethylene group (—Np—) CH 2 —) and the like (wherein —Ph— represents a phenylene group and —Np— represents a naphthylene group).
  • Examples of the substituent that the divalent alkylene group, divalent cycloalkylene group, or divalent aralkylene group may have include R 1 , R 2 , R 3 , and the like in the general formula (2). And an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkyloxy group, a cycloalkyloxy group, an aryloxy group, an aralkyloxy group, and a heterocyclic group, as described in the description of R 4 , and a halogen atom, Examples thereof include a silyl group, a substituted amino group, and an optionally protected hydroxyl group.
  • the monovalent anionic ligand represented by X or Y in the general formula (1) will be described.
  • the monovalent anionic ligand include hydride, alkyloxy group, cycloalkyloxy group, aryloxy group, aralkyloxy group, hydroxy group, acyloxy group, sulfonyloxy group, halogen ion, AlH 4 ⁇ , AlH. 2 (OCH 2 CH 2 OCH 3 ) 2 ⁇ , BH 4 ⁇ , BH 3 CN ⁇ , BH (Et) 3 ⁇ and BH (sec-Bu) 3 — and the like.
  • Preferable examples include BH 4 ⁇ , hydride, or chloride ion.
  • hydride is sometimes simply referred to as hydrogen
  • halogen ion is simply referred to as halogen.
  • the acyloxy groups include those represented by (R a CO 2), as the R a in the acyloxy group R a CO 2, hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group.
  • R a CO 2 hydrogen atom
  • alkyl group, cycloalkyl group, aryl group, and aralkyl group include an alkyl group and cycloalkyl as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • Groups, aryl groups, and aralkyl groups include those represented by (R a CO 2), as the R a in the acyloxy group R a CO 2, hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group.
  • alkyl group, cycloalkyl group, aryl group, and aralkyl group include an al
  • alkyl groups, cycloalkyl groups, aryl groups, and aralkyl groups are further represented by R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • the amino group which may be protected as a substituent for R a is an unprotected amino group; N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropyl Mono- or dialkylamino groups such as amino group, N-cyclohexylamino group; mono- or diaryls such as N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, N-naphthyl-N-phenylamino group Amino group; mono- or diaralkylamino group such as N-benzylamino group and N, N-dibenzylamino group; formylamino group, acetylamino group, propionylamino group, pivaloylamino group, pentanoylamino group, hexanoylamino group , Acylamino
  • Ra examples include a methyl group, an ethyl group, a propyl group, a tert-butyl group, a trifluoromethyl group, a phenyl group, and a pentafluorophenyl group.
  • Examples of the sulfonyloxy group include those represented by (R S SO 3 ).
  • the R S in a sulfonyloxy group R S SO 3 are the same as those of the R a in the acyloxy group.
  • Examples of the halogen ion include fluorine ion, chlorine ion, bromine ion and iodine ion.
  • a chlorine ion and a bromine ion More preferably, a chlorine ion is mentioned.
  • Preferred tridentate aminophosphine ligands include those represented by the following general formula (3).
  • R 5 , R 6 , R 7 and R 8 may be the same or different and each represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group, R 5 , R 5 and R 6 or R 7 or R 8 , R 6 and R 7 or R 8 may be bonded to each other to form a ring with adjacent carbon atoms, n is an integer of 0 to 3 These alkyl groups, cycloalkyl groups, aryl groups, and aralkyl groups may have a substituent.
  • examples of the alkyl group, cycloalkyl group, aryl group, and aralkyl group represented by R 5 , R 6 , R 7 and R 8 include R 1 , R in the general formula (2).
  • examples thereof include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group as described in the description of 2 , R 3 , and R 4 .
  • a substituent which these alkyl groups, a cycloalkyl group, an aryl group, and an aralkyl group may have, about R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 >, and R ⁇ 4 > in above-mentioned General formula (2)
  • More preferred tridentate aminodiphosphine ligands include those represented by the following general formula (4).
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 may be the same or different and each represents an aryl group or an aromatic heterocyclic group. Moreover, these aryl groups and aromatic heterocyclic groups may have a substituent.
  • Examples of the aryl group and aromatic heterocyclic group in the general formula (4) include an aryl group and a heterocyclic ring as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2). And the aromatic heterocycle described in the above. Moreover, as a substituent which these aryl groups and aromatic heterocyclic groups may have, it was described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • alkyl groups such as alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, and aralkyloxy groups, and halogen atoms, silyl groups, heterocyclic groups, substituted amino groups, and protection Examples thereof include a hydroxyl group which may be used.
  • tridentate aminodiphosphine ligands include those represented by the following general formula (5).
  • tridentate aminodiphosphine ligand represented by the general formulas (2) and (3) is represented by the substituents on Q 1 and Q 2 , and depending on R 1 to R 8 , the general formula (1 It can be used as a ligand of a ruthenium carbonyl complex represented by
  • the ruthenium compound which is the starting material for producing the ruthenium carbonyl complex in the present invention is not particularly limited, for example, RuCl 3 hydrate, RuBr 3 hydrate, inorganic ruthenium compounds such as RuI 3 hydrate , RuCl 2 (DMSO) 4 , [Ru (cod) Cl 2 ] n, [Ru (nbd) Cl 2 ] n, (cod) Ru (2-methyl) 2 , [Ru (benzone) Cl 2 ] 2 , [ Ru (benzone) Br 2 ] 2 , [Ru (benzone) I 2 ] 2 , [Ru (p-cymene) Cl 2 ] 2 , [Ru (p-cymene) Br 2 ] 2 , [Ru (p-cymene) I 2] 2, [Ru ( mesitylene) Cl 2] 2, [Ru (mesitylene) Br 2] 2, [Ru (me itylene) I 2] 2, [Ru (hexamethylbenzene) Cl 2] 2, [Ru
  • the ruthenium carbonyl complex represented by the general formula (1) can be easily prepared from a tridentate aminodiphosphine ligand and a ruthenium carbonyl complex as a precursor.
  • the tridentate aminodiphosphine ligand can be easily prepared by reacting a bis (substituted alkyl) amine having a leaving group with an alkali metal phosphide compound such as lithium, sodium, or potassium.
  • the ruthenium carbonyl complex to be the precursor can be obtained by, for example, the method described in Inorg. Synth, 1974, 15, 45.
  • the ruthenium carbonyl complex to be the precursor obtained can be reacted with a tridentate aminodiphosphine ligand to obtain the ruthenium carbonyl complex of the present invention having a tridentate aminodiphosphine ligand.
  • the ruthenium carbonyl complex as a precursor in the present invention include carbonyl (dihydrido) tris (triphenylphosphine) ruthenium (II), carbonylchlorohydridotris (triphenylphosphine) ruthenium (II) carbonyldichlorohydridotris (triphenylphosphine) Examples include ruthenium (II).
  • the ruthenium carbonyl complex represented by the general formula (1) includes a tridentate aminodiphosphine ligand L represented by the general formula (2) and RuXY (CO) (P (Ar 5 ) 3 ) 3 (wherein , Ar 5 may be the same or different and each represents an aryl group which may have a substituent. Examples of the aryl group and its substituent in Ar 5 include those described above.
  • Preferable Ar 5 includes an optionally substituted phenyl group, particularly a phenyl group.
  • the ruthenium carbonyl complex in which X is BH 4 — in the ruthenium carbonyl complex represented by the general formula (1) can be produced by reacting NaBH 4 with a ruthenium carbonyl complex in which X is a chlorine ion.
  • the complex prepared in this way may give rise to stereoisomers depending on the coordination mode and conformation of the ligand, but the complex used in the reaction is a pure one even if it is a mixture of these stereoisomers. It may be an isomer.
  • RuHCl (CO) (L) (8)
  • (L) represents a tridentate aminodiphosphine represented by the above general formula (5)
  • this complex is a tridentate amino represented by the general formula (5).
  • the diphosphine ligand L and RuClH (CO) (PPh 3 ) 3 are easily prepared by appropriately stirring in a solvent.
  • the method for producing an alcohol for hydrogenating and reducing a ketone is represented by the following reaction formula (10) using a ruthenium carbonyl complex represented by the general formula (1) and a hydrogen donor.
  • R 9 and R 10 may be the same or different, and are a hydrogen atom, alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkenyl group, alkynyl group, cycloalkenyl group.
  • R 9 and R 10 may be bonded to each other to form a ring with adjacent carbon atoms, and these alkyl groups may be (A cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, and a cycloalkenyl group may have a substituent.) It is a method represented by.
  • R 9 and R 10 in the reaction formula (10) will be described.
  • an alkyl group as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2), Examples thereof include a cycloalkyl group, an aryl group, an aralkyl group, and a heterocyclic group.
  • the alkenyl group may be linear or branched and has, for example, 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, more preferably Specific examples thereof include alkenyl groups having 2 to 10 carbon atoms.
  • alkynyl group may be linear or branched, and examples thereof include alkynyl groups having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms.
  • Examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, pentynyl group, hexynyl group and the like.
  • Examples of the cycloalkenyl group include 4- to 10-membered monocyclic to tricyclic aliphatic hydrocarbon groups containing 1 or 2 double bonds in the ring. Examples thereof include a pentenyl group, a cyclohexenyl group, a cycloheptenyl group, and a cyclooctenyl group.
  • the keto group has the following general formula (I)
  • R k represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, or a cycloalkenyl group.
  • alkyl groups A cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, and a cycloalkenyl group may have a substituent. The thing represented by is mentioned.
  • alkyl group, cycloalkyl group, aryl group, aralkyl group, heterocyclic group, alkenyl group, alkynyl group, and cycloalkenyl group for R k are the same as those described above.
  • R 9 and R 10 in the reaction formula (10) and R k in the keto group may have substituents R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • R 9 or R 10 is a keto group or has a keto group as a substituent, a polyhydric alcohol is obtained as a product.
  • a ruthenium carbonyl complex represented by the general formula (1) in which R 9 and R 10 are different and the tridentate aminodiphosphine ligand represented by the general formula (2) or (3) is an optically active substance is used.
  • the reaction represented by the reaction formula (10) is performed, an alcohol in which one enantiomer is excessive is obtained as a product.
  • the method for producing an alcohol for hydroreducing an ester comprises the following reaction formula (11) using a ruthenium carbonyl complex represented by the general formula (1) and a hydrogen donor.
  • R 11 and R 12 may be the same or different, and an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, a cycloalkenyl group,
  • R 11 may be a hydrogen atom, and these alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, heterocyclic groups, alkenyl groups may be represented by the general formula (I). Group, alkynyl group, and cycloalkenyl group may have a substituent.) It is the method of manufacturing alcohol from ester represented.
  • the method for producing alcohols for hydroreducing lactones is represented by the following reaction formula (12) using a ruthenium carbonyl complex represented by the general formula (1) and a hydrogen donor.
  • Q 8 represents a divalent alkylene group, a divalent cycloalkylene group, a divalent aralkylene group, or a divalent arylene group
  • (Q 9 -X 12 ) represents a bond
  • Q 9 represents a divalent alkylene group, a divalent cycloalkylene group, a divalent aralkylene group, or a divalent arylene group
  • X 12 represents a different atom such as oxygen, nitrogen, or sulfur.
  • the divalent alkylene group, divalent cycloalkylene group, divalent aralkylene group, or divalent arylene group of Q 8 and Q 9 , and X 12 as a nitrogen atom may have a substituent.
  • R 11 and R 12 in the reaction formula (11) will be described.
  • Examples of the alkyl group, cycloalkyl group, aryl group, aralkyl group, and heterocyclic group represented by R 11 and R 12 include R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and a heterocyclic group as described in the description of the above.
  • Examples of the alkenyl group, alkynyl group, cycloalkenyl group, and keto group include the above reaction formula (10).
  • examples of the substituent that R 11 and R 12 in the reaction formula (11) may have are as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • R 11 and R 12 are a keto group, a keto group as a substituent, an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, an alkenyloxycarbonyl group, an alkynyloxycarbonyl
  • R 11 and R 12 are a keto group, a keto group as a substituent, an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, an alkenyloxycarbonyl group, an alkynyloxycarbonyl
  • polyhydric alcohols obtained by hydrogenating them may be obtained.
  • alkoxycarbonyl group, cycloalkyloxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, alkenyloxycarbonyl group, alkynyloxycarbonyl group, and cycloalkynyloxycarbonyl group as a substituent are represented by the following general formula (13).
  • R 13 represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heterocyclic group, an alkenyl group, an alkynyl group, or a cycloalkenyl group.
  • Group, aryl group, aralkyl group, heterocyclic group, alkenyl group, alkynyl group, and cycloalkenyl group may have a substituent.
  • R 13 in the general formula (13) will be described.
  • an alkyl group as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2).
  • a cycloalkyl group, an aryl group, an aralkyl group, and a heterocyclic group, and the alkenyl group, alkynyl group, and cycloalkenyl group are as described in the description of R 9 and R 10 in the reaction formula (10).
  • An alkenyl group, an alkynyl group, and a cycloalkenyl group are mentioned.
  • R 13 in the general formula (13) may have include an alkyl group as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2). , A cycloalkyl group, an aryl group, an aralkyl group, and a heterocyclic group, and an alkenyl group, an alkynyl group, and a cycloalkenyl group as described in the description of R 9 and R 10 in the reaction formula (10).
  • R 12 is preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, and an isopropyl group, and a methyl group is more preferable.
  • the divalent alkylene group includes a monocyclic or condensed cyclic aryl group having 6 to 12 carbon atoms. Examples thereof include divalent groups such as a phenylene group and a 2,3-naphthalenediyl group. Examples of the phenylene group include o or m-phenylene group.
  • Q 8 and Q 9 in the reaction formula (12) may have, as described in the description of R 1 , R 2 , R 3 , and R 4 in the general formula (2), Alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, alkyloxy groups, cycloalkyloxy groups, aryloxy groups, aralkyloxy groups, halogen atoms, silyl groups, heterocyclic groups, amino groups that may be protected, And an optionally protected hydroxyl group, an alkenyl group, an alkynyl group, a cycloalkenyl group, an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an aryl as described in the description of R 9 and R 10 in the reaction formula (10) Oxycarbonyl group, aralkyloxycarbonyl group, alkenyloxy group, alkynyloxy group, and cyclo Rukiniruokishi group,
  • the protective group of the hydroxyl group which may be protected is an acyl group
  • a product in which the protective group is reduced may be obtained.
  • the substituent has an alkoxycarbonyl group, a cycloalkyloxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, an alkenyloxycarbonyl group, an alkynyloxycarbonyl group, or a cycloalkynyloxycarbonyl group, these groups
  • polyhydric alcohols obtained by hydrogenation reduction can be obtained.
  • R 1 , R 2 , R 3 and R 4 in the general formula (2) can be given as a substituent which nitrogen in the case where the hetero atom represented by X 12 is nitrogen.
  • the description about R 1 , R 2 , R 3 and R 4 in the general formula (2) can be given.
  • lactones examples include ⁇ -lactone, ⁇ -lactone, ⁇ -lactone, and the like.
  • the method for producing alcohols of the present invention can be preferably carried out without solvent or in a solvent, but it is preferable to use a solvent.
  • a solvent As the solvent to be used, those capable of dissolving the substrate and the catalyst are preferable, and a single solvent or a mixed solvent is used.
  • aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, halogenated hydrocarbons such as methylene chloride and chlorobenzene, diethyl ether, tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, etc.
  • Examples include ethers, alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-butanol and tert-butanol, and polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol and glycerin.
  • ethers or alcohols are preferable, and particularly preferable solvents include tetrahydrofuran, methanol, or isopropanol.
  • the amount of the solvent used can be appropriately selected depending on the reaction conditions and the like. The reaction is carried out with stirring as necessary.
  • Examples of the hydrogen donor used in the method of the present invention include molecular hydrogen, formic acid, primary alcohol (methanol, ethanol, butanol, etc.) and secondary alcohol (isopropanol, etc.).
  • molecular hydrogen and secondary alcohol are used.
  • the amount of the catalyst used varies depending on the hydrogenation substrate, reaction conditions, catalyst type, etc., but is usually 0.0001 mol% to 10 mol%, preferably 0.005 mol in terms of the molar ratio of ruthenium metal to the hydrogenation substrate. % To 5 mol%.
  • the reaction temperature during the hydrogenation reduction is 0 ° C. to 180 ° C., preferably 0 ° C. to 120 ° C. If the reaction temperature is too low, a large amount of unreacted raw material may remain, and if it is too high, decomposition of the raw material, catalyst, etc. may occur, which is not preferable.
  • the hydrogen pressure at the time of hydrogen reduction is 0.1 MPa to 10 MPa, preferably 3 MPa to 6 MPa.
  • the reaction time is 30 minutes to 72 hours, preferably 2 hours to 48 hours, and a sufficiently high raw material conversion can be obtained.
  • the desired alcohols can be obtained by combining commonly used purification methods such as extraction, filtration, crystallization, distillation, various chromatography, etc., alone or in appropriate combination.
  • additives may be added as appropriate.
  • the additive include basic compounds and metal hydrides.
  • Specific examples of the basic compound include, for example, triethylamine, diisopropylethylamine, N, N-dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] non-5-ene.
  • alkali metal carbonates such as potassium carbonate, sodium carbonate, lithium carbonate and cesium carbonate Salts
  • alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate
  • alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide
  • Alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide
  • Particularly preferred bases include sodium methoxide or potassium tert-butoxide.
  • the metal hydride include lithium borohydride, sodium borohydride, potassium borohydride, lithium aluminum hydride, and the like. These metal hydrides are used as 10% of esters, lactones, and ketones which are hydrogenated substrates. A sufficiently high conversion can be obtained even when used in an amount of not more than%.
  • Conversion rate / selectivity A, B, C, or D was used as an analysis condition for conversion rate and selectivity.
  • Analysis condition A GC: Capillary HP-INNOWax Injection temperature 250 ° C, detection temperature 250 ° C 80 ° C (1 minute) -10 ° C / minute-250 ° C (12 minutes)
  • Analysis condition B GC; Capillary RTx-5 Injection temperature 250 ° C, detection temperature 250 ° C 80 ° C (10 minutes) -10 ° C / minute-270 ° C (1 minute)
  • Analysis condition C GC: Capillary TC-WAX Injection temperature 250 ° C, detection temperature 250 ° C 80 ° C-10 ° C / min-200 ° C (2 min)
  • Analysis condition D GC; Capillary CP-CHIRASIL-DEX-CB Injection temperature 250 ° C, detection temperature 250 ° C 115 ° C (12 minutes)
  • optical purity of each product was measured by the following method.
  • Optical purity optical purity analysis of 1,2-propanediol Analysis after conversion to propylene carbonate.
  • GC Capillary ⁇ -DEX225 Injection temperature 250 ° C, detection temperature 250 ° C 170 ° C (30 minutes)
  • Optical purity optical purity analysis of 2- (Boc-amino) propan-1-ol. After conversion to p-nitrobenzoate, analysis was performed.
  • MERCURY plus 300 manufactured by Varian was used.
  • amine hydrochloride 8 (4.18 mmol) was added to a 100 ml flask, suspended in toluene (33 ml), 15% aqueous NaOH (14 ml) was added, and the mixture was stirred at room temperature until there was no solid. After separating the solution, the organic layer was washed with distilled water (14 ml ⁇ 2), and the aqueous layer was extracted with toluene (14 ml ⁇ 2). The combined organic layers were dried over sodium sulfate, and the solvent was distilled off to obtain amine 9. Ruthenium carbonyl complex 7 (4.18 mmol) was added to a 200 ml flask and the atmosphere was purged with nitrogen.
  • the complex 1b (0.02 mmol) produced in Example 1 was added to a 100 ml autoclave containing a stirring bar, and the atmosphere was replaced with nitrogen. Tetrahydrofuran (4 ml) and 99% ee or more methyl (R) -3- (Boc-amino) butanoate (5 mmol) were added thereto, and hydrogenated at a hydrogen pressure of 5 MPa and 80 ° C. for 16 hours. As a result of analyzing the reaction solution by gas chromatography, (R) -3- (Boc-amino) butan-1-ol was obtained with a conversion rate of 95.9%. The optical purity of the alcohol obtained was 99% ee or higher.
  • Example 11 Using a ruthenium carbonyl complex composed of an optically active tridentate aminodiphosphine ligand, asymmetric hydrogenation of acetophenone was performed according to the following reaction formula.
  • Example 15 As a result of changing the isopropanol of Example 14 to toluene and performing the reaction in the same manner, the conversion was 88.2%. The alcohol obtained had an optical purity of 88.8% ee.
  • Example 16 As a result of changing the isopropanol of Example 14 to ethanol and performing the reaction in the same manner, the conversion was 98.3%. The alcohol obtained had an optical purity of 93.7% ee.
  • Example 17 The ruthenium carbonyl complex 14 of the present invention was produced by the following procedure.
  • Example 18 Hydrogenation of (R) -methyl lactate was performed. Methyl lactate (20.0 mmol), complex 14 prepared in Example 17 (0.01 mmol), sodium methoxide (0.2 mmol), and methanol (8 ml) were added to a 100 ml autoclave containing a stir bar, and the hydrogen pressure Hydrogenation was performed at 5 MPa and 30 ° C. for 16 hours. As a result of analyzing the reaction of the reaction solution by gas chromatography, the conversion was 48% and the selectivity was 98%. The alcohol obtained had an optical purity of 99.1% ee.
  • Example 19 The ruthenium carbonyl complex 18 of the present invention was produced by the following procedure.
  • potassium t-butoxide (8.0 mmol) was added to a 100 ml flask, suspended in tetrahydrofuran (40 ml), di-p-tolylphosphine (4.0 mmol), amine 12 (2.0 mmol). ) And reacted at room temperature for 14 hours, followed by heating under reflux for 5 hours.
  • the reaction solution was diluted with ethyl acetate (40 ml) and washed with 15% NaOH aqueous solution, distilled water and saturated brine. After the aqueous layer was extracted with ethyl acetate, the combined organic layer was dehydrated with sodium sulfate and dried under reduced pressure.
  • amine hydrochloride 17 (0.36 mmol) was added to a 20 ml flask, suspended in toluene (5.0 ml), 15% NaOH aqueous solution was added and reacted at room temperature for 30 minutes.
  • FIG. 1 schematically shows the chemical structure of the complex 18 based on these results.
  • Example 20 Hydrogenation of (R) -methyl lactate was performed. Methyl lactate (10.0 mmol), complex 18 prepared in Example 19 (0.005 mmol), sodium methoxide (0.1 mmol), methanol (4 ml) were added to a 100 ml autoclave containing a stir bar, and the hydrogen pressure Hydrogenation was performed at 5 MPa and 30 ° C. for 16 hours. As a result of analyzing the reaction of the reaction solution by gas chromatography, the reaction conversion was 70% and the selectivity was 94%.
  • the present invention provides a novel ruthenium carbonyl complex having a tridentate aminodiphosphine ligand that can be easily prepared from readily available inorganic ruthenium compounds, and the novel ruthenium carbonyl complex of the present invention comprises hydrogen In the presence of a donor, it catalyzes the hydrogenation reduction of ketones, esters and lactones, and has not only high catalytic activity even under relatively mild reaction conditions, but also asymmetric hydrogenation reduction of a carbonyl group.
  • the novel ruthenium carbonyl complex of the present invention is highly stable and easy to handle, and is suitable for industrial use. Therefore, the ruthenium carbonyl complex of the present invention and the hydrogenation reduction method of ketones, esters and lactones using the same are useful in the field of organic industrial chemistry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、次の一般式(1) RuXY(CO)(L) (1) (一般式(1)中、X及びYは同一であっても異なっていてもよくアニオン性配位子を表し、Lは2つのホスフィノ基と-NH-基を有する3座アミノジホスフィン配位子を表す。) で表されるルテニウムカルボニル錯体、及びその製造方法、並びにこれを触媒としてケトン類、エステル類及びラクトン類を水素還元することによるアルコール類の製造方法に関する。 本発明のルテニウムカルボニル錯体は、触媒活性が高く、調製及び取り扱いが容易である。

Description

3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
 本発明は、2つのホスフィノ基と-NH-基を持つ3座配位子を有する新規ルテニウムカルボニル錯体及びその製造法、並びにこの錯体を触媒として用いたケトン類及びエステル類又はラクトン類を水素化還元してアルコール類を製造する方法に関する。
 ケトン類、エステル類及びラクトン類を還元してアルコール類を得る方法は化学合成において重要である。触媒的水素化による還元は副生成物の低減、操作性のよさ、作業の安全性などからアルコール類の製造法として有用である。また、光学活性なアルコール類は医薬品、農薬、香料など生理活性物質、及びそれらの合成中間体として重要であり、ケトン類の不斉水素化や光学活性エステルの水素化還元は光学活性アルコールの製造法として有用である。このような還元触媒の1つとして多座配位子を有するルテニウム錯体が挙げられる。
 3座配位子として2つのホスフィノ基と-NH-基を有するルテニウム錯体としては、特許文献1にはジクロロ錯体が記載されている。また、非特許文献1ではトリメチルホスフィンを配位子として有するジクロロ錯体やヒドリド錯体が報告されている。しかし、これらの錯体はカルボニル配位子を有していない。また、2つのホスフィノ基とピリジン環を持つ3座配位子とカルボニル配位子を有するルテニウム錯体が非特許文献2、3及び4に報告されているが、この3座配位子は-NH-基を有していない。
 特許文献1に記載されているルテニウムジクロロ錯体は、塩基存在下にケトン類を水素化還元し、アルコールを得ることが報告されているが、エステル類やラクトン類の還元は報告されていない。非特許文献1に記載されているルテニウムホスフィン錯体はアンモニア-ボランの脱水素触媒としての報告がされているが、ケトン類、エステル類及びラクトン類の水素化還元は報告されていない。また該ルテニウムホスフィン錯体は不安定であることが報告され、取り扱いに難点があり、工業的な使用は困難である。また、非特許文献2や非特許文献3に記載されているピリジン環を有するルテニウム錯体は、エステル類の水素化還元やアルコールの脱水素によるエステル合成反応を触媒することが報告されているが、錯体合成に低温が必要である上、配位子合成に煩雑な手順と工業利用上好ましくない錫を用いたラジカル反応が用いられているなどの問題があった。特に、非特許文献2に記載のピリジン環を有するルテニウム錯体は、エステル類の水素化還元における触媒活性が低く、より触媒活性の高い触媒の開発が望まれていた。
米国特許公開2005/0107638号公報
Angew. Chem. Int. Ed. 2009, 48, p.905-907 Angew. Chem. Int. Ed. 2006, 45, p.1113-1115 J. Am. Chem. Soc. 2005, 127, p.10840-10841 Organometallics. 2004, 23, p.4026-4033
 本発明の目的は、調製及び取り扱いが容易で比較的安価に調達できるルテニウム錯体、及びその製造法と、それを触媒として用いたケトン類、エステル類及びラクトン類を水素化還元して対応するアルコール類を製造する技術を提供することにある。
 本発明者らは上記の事情に鑑み、鋭意検討を行った結果、2つのホスフィノ基及び-NH-基を持つ3座配位子とカルボニル配位子とを有する新規なルテニウム錯体を見出した。配位子や錯体は合成容易で安定性が高く取り扱いも容易である。
 また、本発明において見出されたルテニウム錯体は、ケトン類、エステル類及びラクトン類の水素化還元において高い触媒能を持つことを見出し、本発明を完成させるに至った。
 本発明をより詳細に説明すれば、本発明は、以下の[1]から[18]に関するものである。
[1]次の一般式(1)
      RuXY(CO)(L)         (1)
(一般式(1)中、X及びYは同一であっても異なっていてもよくアニオン性配位子を表し、Lは下記一般式(2)
Figure JPOXMLDOC01-appb-C000001
(一般式(2)中、R、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、又は置換アミノ基を表し、これらのRとR又はRとRは互いに結合し隣接するリン原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、置換アミノ基は置換基を有していてもよい。Q及びQは同一であっても異なっていてもよく、置換基を有していてもよい二価のアルキレン基、置換基を有していてもよい二価のシクロアルキレン基、又は置換基を有していてもよい二価のアラルキレン基を表す。)
で表される3座アミノジホスフィン配位子を表す。)
で表されるルテニウムカルボニル錯体。
[2]3座アミノジホスフィン配位子Lが下記一般式(3)
Figure JPOXMLDOC01-appb-C000002
(一般式(3)中、R、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいアラルキル基を表す。nは0から3の整数を表す。)
で表される前記[1]のルテニウムカルボニル錯体。
[3]3座アミノジホスフィン配位子Lが下記一般式(4)
Figure JPOXMLDOC01-appb-C000003
(一般式(4)中、Ar、 Ar、Ar、及びArは、それぞれ同一であっても異なっていてもよく、アリール基、又は芳香族複素環基を表す。また、これらのアリール基、及び芳香族複素環基は置換基を有していてもよい。)
で表される前記[1]記載のルテニウムカルボニル錯体。
[4]一般式(4)における、Ar、Ar、Ar、及びArが、置換基を有していてもよいフェニル基である前記[3]記載のルテニウムカルボニル錯体。
[5]3座アミノジホスフィン配位子Lが下記一般式(5)
Figure JPOXMLDOC01-appb-C000004
(式中、Phはフェニル基を表す。)
で表される前記[4]記載のルテニウムカルボニル錯体。
[6]3座アミノジホスフィン配位子Lが、光学活性な3座アミノジホスフィン配位子である前記[1]又は[2]のいずれかに記載のルテニウムカルボニル錯体。
[7]一般式(1)におけるXのアニオン性配位子がヒドリドであり、Yのアニオン性配位子が塩素イオンである前記[1]~[6]のいずれかに記載のルテニウムカルボニル錯体。
[8]一般式(1)におけるXのアニオン性配位子がヒドリドであり、Yのアニオン性配位子が、BH である前記[1]~[6]のいずれかに記載のルテニウムカルボニル錯体。
[9]一般式(2)で表される3座アミノジホスフィン配位子LとRuXY(CO)(P(Ar(式中、Arは、それぞれ同一であっても異なっていてもよく、置換基を有していてもよいアリール基を表す。)とを反応させて、一般式(1)で表されるルテニウムカルボニル錯体を製造する方法。
[10]Arが、フェニル基である前記[9]に記載の方法。
[11]一般式(2)で表される3座アミノジホスフィン配位子Lが、一般式(5)で表される3座アミノジホスフィン配位子Lである前記[9]又は[10]に記載の方法。
[12]RuXY(CO)(P(Arが、RuHCl(CO)(PPhである前記[9]~[11]のいずれかに記載の方法。
[13]RuHCl(CO)(PPhと一般式(5)で表される3座アミノジホスフィン配位子Lとを反応させて、下記一般式(6)
Figure JPOXMLDOC01-appb-C000005
で表されるルテニウムカルボニル錯体を製造する方法。
[14]前記一般式(6)で表されるルテニウムカルボニル錯体とNaBHを反応させて、下記一般式(7)
Figure JPOXMLDOC01-appb-C000006
で表されるルテニウムカルボニル錯体を製造する方法。
[15]前記[1]から[8]のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いてケトン類を水素化還元するアルコールの製造方法。
[16]前記[6]から[8]のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いてケトン類を不斉水素化還元する光学活性アルコールの製造方法。
[17]前記[1]から[8]のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いて、エステル類又はラクトン類を水素化還元するアルコールの製造方法。
[18]前記[1]から[8]のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いて、光学活性エステル類又は光学活性ラクトン類を光学活性を保持したまま水素化還元する光学活性アルコールの製造方法。
 本発明の新規ルテニウムカルボニル錯体は、3座アミノジホスフィン配位子と前駆体となるルテニウムカルボニル錯体から容易に調製することができ、また、3座アミノジホスフィン配位子は脱離基を有するビスアルキルアミンとホスフィン化合物とを塩基存在下反応させることで容易に調製することができる。さらに、前駆体となるルテニウムカルボニル錯体も容易に入手可能な無機ルテニウム化合物より簡便に調製することができる。このように、本発明のルテニウムカルボニル錯体は調製が容易であるだけでなく、安定性が高く取り扱いも容易であり、工業的な使用に適したものである。本発明のルテニウムカルボニル錯体は比較的温和な反応条件下でも触媒活性が高く、例えば、水素供与体存在下、ケトン類、エステル類及びラクトン類の水素化還元を触媒し、アルコール類を高収率で製造することが可能である。また、光学活性な配位子を用いれば、ケトン類の不斉水素化還元による光学活性アルコールの合成を行うことができる。さらに、水素化還元されるエステル類又はラクトン類が光学活性体である場合でも、顕著な光学純度の低下を伴うことなく光学活性アルコール類へ還元することができる。
図1は、本発明のルテニウムカルボニル錯体18のX線構造解析の結果に基づいて錯体18の化学構造を模式的に示した図である。
 まず、本発明の下記一般式(1)で表されるルテニウムカルボニル錯体について説明する。
      RuXY(CO)(L)    (1)
(一般式(1)中、X及びYは同一であっても異なっていてもよくアニオン性配位子を表し、Lは下記一般式(2)で表される3座アミノジホスフィン配位子を表す。)
Figure JPOXMLDOC01-appb-C000007
(一般式(2)中、R、R、R、及びRは同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、置換アミノ基を表し、RとR又はRとRが互いに結合し隣接するリン原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基は置換基を有していてもよい。Q及びQは同一であっても異なっていてもよく、置換基を有していてもよい二価のアルキレン基、置換基を有していてもよい二価のシクロアルキレン基、又は置換基を有していてもよい二価のアラルキレン基を表す。)
 本発明に用いられる3座アミノジホスフィン配位子について説明する。一般式(1)におけるLで表される3座アミノジホスフィン配位子としては、ふたつのホスフィノ基と-NH-基を有するものが挙げられる。具体的な3座アミノジホスフィン配位子としては前記した一般式(2)で表されるものが挙げられる。
 一般式(2)におけるR、R、R、及びRについて説明する。
 アルキル基としては、炭素数1~50、好ましくは炭素数1~20、より好ましくは炭素数1~10の直鎖又は分岐のアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基等が挙げられる。
 また、シクロアルキル基としては炭素数3~30、好ましくは炭素数3~20、より好ましくは炭素数3~10の単環式、多環式又は縮合環式のシクロアルキル基が挙げられ、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 また、アリール基としては、炭素数6~36、好ましくは炭素数6~18、より好ましくは炭素数6~14の単環式、多環式又は縮合環式のアリール基が挙げられ、具体的には、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。
 また、アラルキル基としては、前記したアルキル基の少なくとも1個の水素原子が前記したアリール基で置換された基が挙げられ、例えば炭素数7~15のアラルキル基が好ましく、具体的にはベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、3-ナフチルプロピル基等が挙げられる。
 また、アルキルオキシ基としては、炭素数1~20、好ましくは炭素数1~15、より好ましくは炭素数1~10の直鎖若しくは分岐状のアルキル基からなるアルキルオキシ基が挙げられ、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基等が挙げられる。
 また、シクロアルキルオキシ基としては、炭素数3~20、好ましくは炭素数3~15、より好ましくは炭素数3~10の多環式又は縮合環式のシクロアルキル基からなるシクロアルキルオキシ基が挙げられ、例えば、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 また、アリールオキシ基としては、炭素数6~36、好ましくは炭素数6~18、より好ましくは炭素数6~14の単環式、多環式又は縮合環式のアリール基からなるアリールオキシ基が挙げられ、具体的には、例えば、フェノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基等が挙げられる。
 また、アラルキルオキシ基としては前記アルキルオキシ基のアルキル基又はシクロアルキル基の少なくとも1個の水素原子が前記アリール基で置換された基が挙げられ、例えば炭素数7~15のアラルキルオキシ基が好ましく、具体的にはベンジルオキシ基、1-フェニルエトキシ基、2-フェニルエトキシ基、1-フェニルプロポキシ基、2-フェニルプロポキシ基、3-フェニルプロポキシ基、4-フェニルブトキシ基、1-ナフチルメトキシ基、2-ナフチルメトキシ基等が挙げられる。
 また、複素環基としては、脂肪族複素環基及び芳香族複素環基が挙げられる。脂肪族複素環基としては、例えば、炭素数2~14で、異種原子として少なくとも1個、好ましくは1~3個の例えば窒素原子、酸素原子及び/又は硫黄原子等のヘテロ原子を含んでいる、3~8員、好ましくは4~6員の単環の脂肪族複素環基、多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、アゼチジル基、アゼチジノ基、ピロリジル基、ピロリジノ基、ピペリジニル基、ピペリジノ基、ピペラジニル基、ピペラジノ基、モルホリニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基、テトラヒドロチオフェニル基等が挙げられる。
 芳香族複素環基としては、例えば、炭素数2~15で、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子及び/又は硫黄原子等の異種原子を含んでいる、5又は6員の単環式ヘテロアリール基、多環式又は縮合環式のヘテロアリール基が挙げられる。その具体例としては、例えば、フリル基、チエニル基、ピリジル基、ピリミジル基、ピラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、アクリジル基、アクリジニル基等が挙げられる。
 また、置換アミノ基としては、アミノ基の2つの水素原子が、同一又は異なる前記したアルキル基、シクロアルキル基、アリール基、アラルキル基、及び/又は複素環基で置換されたアミノ基があげられ、具体的には、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基等のジアルキルアミノ基;N,N-ジシクロヘキシルアミノ基等のジシクロアルキルアミノ基;N,N-ジフェニルアミノ基、N-ナフチル-N-フェニルアミノ基等のジアリールアミノ基;N,N-ジベンジルアミノ基等のジアラルキルアミノ基などが挙げられる。また、置換アミノ基のアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基はさらに置換基を有していてもよい。
 これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、並びに、置換アミノ基上のアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基が有していてもよい置換基としては、前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基、前記したアルキルオキシ基、前記したシクロアルキルオキシ基、前記したアリールオキシ基、前記したアラルキルオキシ基、前記した複素環基、前記した置換アミノ基、ハロゲン原子、シリル基、及び保護されていてもよい水酸基等が挙げられる。
 R、R、R、及びRの置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 R、R、R、及びRの置換基としてのシリル基としては、シリル基の水素原子の3個が前記したアルキル基、前記したシクロアルキル基、前記したアリール基、前記したアラルキル基等に置き換ったものが挙げられる。具体的にはトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリフェニルシリル基等が挙げられる。
 R、R、R、及びRの置換基としての保護されていてもよい水酸基としては、無保護の水酸基、又は例えばトリメチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基などのシリル基、ベンジル基やメトキシメチル基など例えば参考文献1(Protective Groups in Organic Synthesis Second Edition, JOHN WILEY&SONS, INC.1991)に記載されているペプチド合成等で用いられている一般的な水酸基の保護基で保護されていてもよい水酸基などが挙げられる。
 一般式(2)におけるQ、及びQについて説明する。
 二価のアルキレン基としては、炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~6の鎖状又は分岐状の二価のアルキル鎖が挙げられ、具体的には例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。
 また、二価のシクロアルキレン基としては、炭素数3~15、好ましくは炭素数3~10、より好ましくは3~6の単環式、多環式又は縮合環式のシクロアルキル基からなる二価の基が挙げられ、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基等が挙げられる。
 また、二価のアラルキレン基としてはベンジル基、フェネチル基等などのアラルキル基のアリール基から水素原子を一個除いた炭素数7~11の二価の基を挙げることができる。ベンジレン基(-Ph-CH-)、2-フェニルエチレン基(-Ph-CHCH-)、1-ナフチルメチレン基(-Np-CH-)、2-ナフチルメチレン基(-Np-CH-)等(式中、-Ph-はフェニレン基を示し、-Np-はナフチレン基を示す。)が挙げられる。
 これらの二価のアルキレン基、二価のシクロアルキレン基、又は二価のアラルキレン基が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、及び複素環基、並びにハロゲン原子、シリル基、置換アミノ基、及び保護されていてもよい水酸基等が挙げられる。
 次に、一般式(1)におけるX又はYで表される1価のアニオン性配位子について説明する。
 1価のアニオン性配位子としては、例えば、ヒドリド、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ヒドロキシ基、アシルオキシ基、スルホニルオキシ基、ハロゲンイオン、AlH 、AlH(OCHCHOCH 、BH 、BHCN、BH(Et) 及びBH(sec-Bu) 等が挙げられる。好ましいものとしてはBH 、ヒドリド、又は塩素イオンが挙げられる。なお、本明細書中では、ヒドリドを単に水素、ハロゲンイオンを単にハロゲンということもある。
 アシルオキシ基としては(RCO)で表されるものが挙げられる、アシルオキシ基RCOにおけるRとしては、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基が挙げられる。アルキル基、シクロアルキル基、アリール基、アラルキル基、としては、例えば前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基が挙げられ、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基は、さらに前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アラルキルオキシ基、アリールオキシ基、及び複素環基、並びにハロゲン原子、シリル基、保護されていてもよい水酸基、及び保護されていてもよいアミノ基等で置換されていてもよい。
 Rの置換基としての保護されていてもよいアミノ基としては、無保護のアミノ基;N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N-シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基、N-ナフチルアミノ基、N-ナフチル-N-フェニルアミノ基等のモノ又はジアリールアミノ基;N-ベンジルアミノ基、N,N-ジベンジルアミノ基等のモノ又はジアラルキルアミノ基;ホルミルアミノ基、アセチルアミノ基、プロピオニルアミノ基、ピバロイルアミノ基、ペンタノイルアミノ基、ヘキサノイルアミノ基、ベンゾイルアミノ基等のアシルアミノ基;メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n-プロポキシカルボニルアミノ基、n-ブトキシカルボニルアミノ基、tert-ブトキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基等のアルコキシカルボニルアミノ基;フェニルオキシカルボニルアミノ基等のアリールオキシカルボニルアミノ基;ベンジルオキシカルボニルアミノ基等のアラルキルオキシカルボニルアミノ基等が挙げられる。さらに保護されていてもよいアミノ基としては、例えば前記の参考文献1に記載されているペプチド合成等で用いられる一般的なアミノ基の保護基で保護されたアミノ基が挙げられる。
 Rとしては例えばメチル基、エチル基、プロピル基、tert-ブチル基、トリフルオロメチル基、フェニル基、ペンタフルオロフェニル基等が挙げられる。
 スルホニルオキシ基としては(RSO)で表されるものが挙げられる。スルホニルオキシ基RSOにおけるRとしてはアシルオキシ基におけるRと同様のものがあげられる。
 ハロゲンイオンとしては、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンが挙げられる。好ましくは塩素イオン、臭素イオン、さらに好ましくは塩素イオンが挙げられる。
 好ましい3座アミノホスフィン配位子としては下記一般式(3)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
(一般式(3)中、R、R、R及びRは同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、又はアラルキル基を表し、R同士、RとR又はR又はR、RとR又はRが互いに結合し隣接する炭素原子と共に環を形成していてもよい。nは0から3の整数を表す。また、これらのアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、置換基を有していてもよい。)
 一般式(3)において、R、R、R及びRで表されるアルキル基、シクロアルキル基、アリール基、及びアラルキル基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、及びアラルキル基が挙げられる。また、これらのアルキル基、シクロアルキル基、アリール基、及びアラルキル基が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、及び複素環基、並びにハロゲン原子、シリル基、置換アミノ基、及び保護されていてもよい水酸基等が挙げられる。
 より好ましい3座アミノジホスフィン配位子としては下記一般式(4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
一般式(4)中、Ar、Ar、Ar、Arは同一であっても異なっていてもよく、アリール基、芳香族複素環基を表す。また、これらのアリール基、芳香族複素環基は置換基を有していてもよい。
 一般式(4)におけるアリール基、芳香族複素環基としては例えば前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアリール基や複素環の中で述べた芳香族複素環等が挙げられる。また、これらのアリール基や芳香族複素環基が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、及びアラルキルオキシ基、並びにハロゲン原子、シリル基、複素環基、置換アミノ基、及び保護されていてもよい水酸基等が挙げられる。
 また、さらに好ましい3座アミノジホスフィン配位子としては下記一般式(5)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
また、一般式(2)や(3)で表される3座アミノジホスフィン配位子はQ、Q上の置換基によって、またR~Rによっては光学活性体として一般式(1)で表されるルテニウムカルボニル錯体の配位子として用いることができる。
 本発明におけるルテニウムカルボニル錯体を製造するための出発原料であるルテニウム化合物としては、特に制限はないが、例えば、RuCl水和物、RuBr水和物、RuI水和物等の無機ルテニウム化合物、RuCl(DMSO)、[Ru(cod)Cl]n、[Ru(nbd)Cl]n、(cod)Ru(2-methallyl)、[Ru(benzene)Cl、[Ru(benzene)Br、[Ru(benzene)I、[Ru(p-cymene)Cl、[Ru(p-cymene)Br、[Ru(p-cymene)I、[Ru(mesitylene)Cl、[Ru(mesitylene)Br、[Ru(mesitylene)I、[Ru(hexamethylbenzene)Cl、[Ru(hexamethylbenzene)Br、[Ru(hexamethylbenzene)I、RuCl(PPh、RuBr(PPh、RuI(PPh、RuH(PPh、RuClH(PPh、RuH(OAc)(PPh、RuH(PPh等が挙げられる。例示中、DMSOはジメチルスルホキシド、codは1,5-シクロオクタジエン、nbdはノルボルナジエン、Phはフェニル基をそれぞれ表す。
 一般式(1)で表されるルテニウムカルボニル錯体は、3座アミノジホスフィン配位子と前駆体となるルテニウムカルボニル錯体から容易に調製することができる。
 3座アミノジホスフィン配位子は、脱離基を有するビス(置換アルキル)アミンとリチウム、ナトリウム、カリウムなどのアルカリ金属フォスフィド化合物を反応させることで容易に調製することができる。
 前駆体となるルテニウムカルボニル錯体は、例えば、Inorg.Synth,1974,15,45.に記載の方法などにより得ることができる。得られた前駆体となるルテニウムカルボニル錯体を3座アミノジホスフィン配位子と反応させて3座アミノジホスフィン配位子を有する本発明のルテニウムカルボニル錯体とすることができる。
 本発明における前駆体となるルテニウムカルボニル錯体としては、カルボニル(ジヒドリド)トリス(トリフェニルホスフィン)ルテニウム(II)、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II) カルボニルジクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)などが挙げられる。
 例えば、一般式(1)で表されるルテニウムカルボニル錯体は、一般式(2)で表される3座アミノジホスフィン配位子LとRuXY(CO)(P(Ar(式中、Arは、それぞれ同一であっても異なっていてもよく、置換基を有していてもよいアリール基を表す。)とを反応させて製造することができる。Arにおける、アリール基やその置換基としては前記したものが挙げられる。好ましいArとしては、置換基を有してもよいフェニル基、特にフェニル基が挙げられる。
 また、一般式(1)で表されるルテニウムカルボニル錯体におけるXがBH であるルテニウムカルボニル錯体は、Xが塩素イオンであるルテニウムカルボニル錯体とNaBHを反応させることにより製造することができる。
 このように調製される錯体は、配位子の配位様式やコンホメーションによって立体異性体を生じることがあるが、反応に用いる錯体はこれら立体異性体の混合物であっても純粋なひとつの異性体であっても構わない。
 また、例えば、J.Am.Chem.Soc.2005,127,516.に記載の方法などに準じて、3座アミノジホスフィン配位子とX=H(ヒドリド)、Y=BH を有するルテニウムカルボニルヒドリドボロヒドリド錯体を得ることができる。これらの錯体は比較的安定に存在し、取り扱いが容易である。
 好ましい錯体としては、例えば、下記一般式(8)
       RuHCl(CO)(L)        (8)
(式中(L)は、前記した一般式(5)で表される3座アミノジホスフィンを表す)で表される錯体が挙げられ、この錯体は一般式(5)で表される3座アミノジホスフィン配位子LとRuClH(CO)(PPhを適宜溶媒中で攪拌することで容易に調製される。
 また、好ましい錯体としては、例えば、下記一般式(9)
       RuH(BH)(CO)(L)     (9)
(式中(L)は、前記した一般式(5)で表される3座アミノジホスフィンを表す)で表される錯体が挙げられ、この錯体は一般式(8)で表されるルテニウムカルボニル錯体とNaBHを適宜溶媒中で攪拌することで容易に調製される。
 このようなルテニウムカルボニル錯体を触媒として用いることで、工業的に有利な比較的低い水素圧及び反応温度で、エステル類及びラクトン類並びにケトン類からアルコール類を高収率、高触媒効率で製造することが可能となる。
 本発明において原料の水素化基質として、エステル類又はラクトン類、ケトン類が用いられるが、これらのエステル類、ラクトン類やケトン類は、本発明の水素化方法において悪影響を及ぼさない置換基で置換されていてもよい。
 本発明におけるケトン類を水素化還元するアルコール類の製造方法は、一般式(1)で表されるルテニウムカルボニル錯体と水素供与体を用いて行う下記反応式(10)
Figure JPOXMLDOC01-appb-C000011
(式中、RとR10は同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、又は下記の一般式(I)で表されるケト基を表す。また、RとR10が互いに結合し隣接する炭素原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、及びシクロアルケニル基は置換基を有していてもよい。)
で表される方法である。
 反応式(10)におけるRとR10について説明する。アルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基としては前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基が挙げられ、アルケニル基としては、直鎖状でも分岐状でもよく、例えば炭素数2~20、好ましくは炭素数2~15、より好ましくは炭素数2~10のアルケニル基が挙げられ、その具体例としては、例えば、エテニル基、プロペニル基、1-ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基等が挙げられる。アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~20、好ましくは炭素数2~15、より好ましくは炭素数2~10のアルキニル基が挙げられ、その具体例としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。シクロアルケニル基としては、環内に1又は2個の二重結合を含む4~10員の単環式~三環式の脂肪族炭化水素基が挙げられ、具体的には、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロへプテニル基、又はシクロオクテニル基が挙げられる。
 ケト基としては下記一般式(I)
Figure JPOXMLDOC01-appb-C000012
(一般式(I)中、Rは水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、又はシクロアルケニル基を表す。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、及びシクロアルケニル基は置換基を有していてもよい。)
で表されるものが挙げられる。
 Rにおけるアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、及びシクロアルケニル基は、前記してきたものと同じである。
 また、反応式(10)におけるR、R10及び、ケト基におけるRが有していてもよい置換基としては、一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、及び複素環基、並びにハロゲン原子、シリル基、保護されていてもよいアミノ基、保護されていてもよい水酸基や、一般式(10)におけるRとR10についての説明で述べたようなアルケニル基、アルキニル基、シクロアルケニル基、及びケト基が挙げられる。
 RやR10がケト基である場合や、置換基としてケト基を有する場合には、生成物として多価アルコールが得られる。
 RとR10が異なっていて、一般式(2)や(3)で表される3座アミノジホスフィン配位子が光学活性体である一般式(1)で表されるルテニウムカルボニル錯体を用いて、反応式(10)で表される反応を行った場合には、片方の鏡像体が過剰なアルコールが生成物として得られる。
 本発明におけるエステル類又はラクトン類を水素化還元するアルコール類の製造方法について説明する。
 本発明におけるエステル類を水素化還元するアルコール類の製造方法は、一般式(1)で表されるルテニウムカルボニル錯体と水素供与体を用いて行う下記反応式(11)
Figure JPOXMLDOC01-appb-C000013
(式中、R11とR12は同一であっても異なっていてもよく、アルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、シクロアルケニル基、又は前記した一般式(I)で表されるケト基を表す。ただし、R11は水素原子であってもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、及びシクロアルケニル基は置換基を有していてもよい。)
で表されるエステル類からアルコール類を製造する方法である。
 本発明におけるラクトン類を水素化還元するアルコール類の製造方法は、一般式(1)で表されるルテニウムカルボニル錯体と水素供与体を用いて行う下記反応式(12)
Figure JPOXMLDOC01-appb-C000014
(式中、Qは二価のアルキレン基、二価のシクロアルキレン基、二価のアラルキレン基、又は二価のアリーレン基を表し、(Q-X12)は結合手を表すか、又はQが二価のアルキレン基、二価のシクロアルキレン基、二価のアラルキレン基、又は二価のアリーレン基で、X12が酸素、窒素、硫黄などの異種原子である基を表す。また、Q及びQの二価のアルキレン基、二価のシクロアルキレン基、二価のアラルキレン基、又は二価のアリーレン基、及び窒素原子としてのX12は置換基を有していてもよい。)
 反応式(11)におけるR11とR12について説明する。R11とR12で表されるアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基が挙げられ、アルケニル基、アルキニル基、シクロアルケニル基、及びケト基としては、前記反応式(10)におけるRとR10についての説明で述べたようなアルケニル基、アルキニル基、シクロアルケニル基、及びケト基が挙げられる。
 また、反応式(11)におけるR11とR12が有していてもよい置換基としては、一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ハロゲン原子、シリル基、複素環基、保護されていてもよいアミノ基、及び保護されていてもよい水酸基や、反応式(10)におけるRとR10についての説明で述べたようなアルケニル基、アルキニル基、シクロアルケニル基、ケト基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシ基、アルキニルオキシ基、及びシクロアルキニルオキシ基が挙げられる。ただし、保護されていてもよい水酸基の保護基がアシル基の場合には保護基が還元された生成物が得られる場合がある。また、R11とR12がケト基である場合や、置換基としてのケト基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、又はシクロアルキニルオキシカルボニル基が存在する場合には、これらが水素化還元された多価アルコール類が得られる場合がある。
 置換基としてのアルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、シクロアルキニルオキシカルボニル基としては、下記一般式(13)
Figure JPOXMLDOC01-appb-C000015
(一般式(13)中、R13はアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、又はシクロアルケニル基を表す。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、複素環基、アルケニル基、アルキニル基、及びシクロアルケニル基は置換基を有していてもよい。)
で表されるものが挙げられる。
 一般式(13)におけるR13について説明する。アルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基が挙げられ、アルケニル基、アルキニル基、及びシクロアルケニル基としては反応式(10)におけるRとR10についての説明で述べたようなアルケニル基、アルキニル基、及びシクロアルケニル基が挙げられる。
 一般式(13)におけるR13が有していてもよい置換基としては、前記した一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、及び複素環基、並びに反応式(10)におけるRとR10についての説明で述べたようなアルケニル基、アルキニル基、及びシクロアルケニル基が挙げられる。
 R12としては、好ましくは炭素数1~10のアルキル基が挙げられる。具体的にはメチル基、エチル基、イソプロピル基などが挙げられ、より好ましくはメチル基が挙げられる。
 反応式(12)におけるQ及びQについて説明する。Q及びQで表される二価のアルキレン基、二価のシクロアルキレン基、二価のアラルキレン基としては、前記した一般式(2)におけるQ及びQについての説明で述べたような二価のアルキレン基、二価のシクロアルキレン基、及び二価のアラルキレン基が挙げられ、二価のアリーレン基としては、炭素数6~12の単環式又は縮合環式のアリール基からなる2価の基が挙げられ、例えば、フェニレン基、2,3-ナフタレンジイル基等が挙げられる。フェニレン基としては、o又はm-フェニレン基が挙げられる。
 また、反応式(12)におけるQ及びQが有していてもよい置換基としては、一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、ハロゲン原子、シリル基、複素環基、保護されていてもよいアミノ基、及び保護されていてもよい水酸基や、反応式(10)におけるRとR10についての説明で述べたようなアルケニル基、アルキニル基、シクロアルケニル基、アルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシ基、アルキニルオキシ基、及びシクロアルキニルオキシ基が挙げられる。ただし、保護されていてもよい水酸基の保護基がアシル基の場合には保護基が還元された生成物が得られる場合がある。また、置換基としてアルコキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルケニルオキシカルボニル基、アルキニルオキシカルボニル基、又はシクロアルキニルオキシカルボニル基を持つ場合には、これらの基が水素化還元された多価アルコール類が得られる場合がある。また、X12で表される異種原子が窒素である場合の窒素が有していてもよい置換基としては、一般式(2)におけるR、R、R、及びRについての説明で述べたようなアルキル基、シクロアルキル基、アリール基、アラルキル基や前記の参考文献1に記載されている一般的なアミノ基の保護基が挙げられる。
 ラクトン類としてはβ-ラクトン、γ-ラクトン、δ-ラクトン等が好ましいラクトン類として挙げられる。
 R11や、Q又はQが不斉中心を有する基である光学活性なエステル類又はラクトン類を本発明の方法に従って水素化還元すると、顕著な光学純度の低下を伴わず、もとのエステル類やラクトン類の立体を保持したアルコール類を得ることができる。
 本発明のアルコール類の製造方法は、無溶媒又は溶媒中で好適に実施することができるが、溶媒を使用することが好ましい。用いられる溶媒としては、基質及び触媒を溶解できるものが好ましく、単一溶媒あるいは混合溶媒が用いられる。具体的にはトルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、塩化メチレン、クロロベンゼン等のハロゲン化炭化水素、ジエチルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類、メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール等のアルコール類、エチレングリコール、プロピレングリコール、1,2-プロパンジオール及びグリセリン等の多価アルコール類が挙げられる。この中でもエーテル類又はアルコール類が好ましく、特に好ましい溶媒としては、テトラヒドロフラン、メタノール又はイソプロパノールが挙げられる。溶媒の使用量は、反応条件等により適宜選択することができる。反応は必要に応じ撹拌下に行われる。
 本発明の方法で用いられる水素供与体としては、分子状水素、蟻酸、1級アルコール(メタノール、エタノール、ブタノールなど)及び2級アルコール(イソプロパノールなど)などが挙げられる。好ましくは、分子状水素と2級アルコールが挙げられる。
 触媒の使用量は、水素化基質、反応条件や触媒の種類等によって異なるが、通常、水素化基質に対するルテニウム金属としてのモル比で0.0001モル%~10モル%、好ましくは0.005モル%~5モル%の範囲である。本発明の方法において、水素化還元を行う際の反応温度は、0℃~180℃、好ましくは0℃~120℃である。反応温度が低すぎると未反応の原料が多く残存する場合があり、また高すぎると、原料、触媒等の分解が起こる場合があり、好ましくない。本発明において、水素還元を行う際の水素の圧力は、0.1MPa~10MPa、好ましくは3MPa~6MPaである。また反応時問は30分~72時間、好ましくは2時間から48時間で十分に高い原料転化率を得ることができる。
 反応終了後は、抽出、濾過、結晶化、蒸留、各種クロマトグラフィー等、通常用いられる精製法を単独又は適宜組み合わせることにより目的のアルコール類を得ることができる。
 本発明における水素化還元は適宜添加剤を加えてもよい。
 添加剤としては例えば塩基性化合物や金属水素化物等が挙げられる。塩基性化合物の具体例としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、ピペリジン、ピリジン、4-ジメチルアミノピリジン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、トリ-n-ブチルアミン及びN-メチルモルホリン等のアミン類、炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等のアルカリ金属炭酸塩、炭酸マグネシウム、炭酸カルシウム等のアルカリ土類金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムイソプロポキシド、カリウムtert-ブトキシド、リチウムメトキシド、リチウムイソプロポキシド、リチウムtert-ブトキシド等のアルカリ金属アルコキシド、マグネシウムメトキシド、マグネシウムエトキシド等のアルカリ土類金属アルコキシド、水素化ナトリウム、水素化カルシウム、の金属水素化物が挙げられる。特に好ましい塩基としては、ナトリウムメトキシド又はカリウムtert-ブトキシドが挙げられる。
 金属水素化物としては水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化アルミニウムリチウム等が挙げられ、これらの金属水素化物を水素化基質であるエステル類、ラクトン類、ケトン類の10mol%以下用いることでも十分に高い転化率が得られる。
 以下に実施例を挙げ、本発明を詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 なお、転化率、選択率、光学純度の測定はガスクロマトグラフィー(GC)及び液体クロマトグラフィー(LC)で行った。用いた装置は次のとおりである。
転化率・選択率
 転化率及び選択率の分析条件はA、B、C又はDを使用した。
分析条件A:
GC;キャピラリー HP-INNOWax
   注入温度 250℃,検出温度 250℃
   80℃(1分)-10℃/分-250℃(12分)
分析条件B:
GC;キャピラリー RTx-5
   注入温度 250℃,検出温度 250℃
   80℃(10分)-10℃/分-270℃(1分)
分析条件C:
GC;キャピラリー TC-WAX
   注入温度 250℃,検出温度 250℃
   80℃-10℃/分-200℃(2分)
分析条件D:
GC;キャピラリー CP-CHIRASIL-DEX-CB
   注入温度 250℃,検出温度 250℃
   115℃(12分)
 各生成物の光学純度はそれぞれ次の方法により測定した。
光学純度:1,2-プロパンジオールの光学純度分析
     炭酸プロピレンに変換した後分析した。
     GC;キャピラリー β-DEX225
        注入温度 250℃,検出温度 250℃
        170℃(30分)
光学純度:2-(Boc-アミノ)プロパン-1-オールの光学純度分析
     p-ニトロ安息香酸エステルに変換した後分析した。
     HPLC;カラム ダイセルCHIRALCEL OD-H
     オーブン;40℃、溶離液;ヘキサン:イソプロパノール
          =95:5
光学純度:2-(ベンジルオキシ)プロパン-1-オールの光学純度分析
     HPLC;カラム ダイセルCHIRALCEL AD-H
     オーブン;30℃、溶離液;ヘキサン;イソプロパノール
          =98:2
光学純度:3-(Boc-アミノ)ブタン-1-オールの光学純度分析
     p-ニトロ安息香酸エステルに変換した後分析した。
     HPLC;カラム ダイセルCHIRALCEL AD-H
     オーブン;30℃、溶離液;ヘキサン:イソプロパノール
          =90:10
光学純度:3-(フェニルアミノ)ブタン-1-オールの光学純度分析
     HPLC;カラム ダイセルCHIRALCEL AS-H
     オーブン;30℃、溶離液;ヘキサン:イソプロパノール
          =95:5
光学純度:3-(tert-ブチルジメチルシリルオキシ)ブタン-1-オールの光学純度分析
     GC;キャピラリー CP-CHIRASIL-DEX- CB
        注入温度 250℃,検出温度 250℃
        80℃(30分)
光学純度:1-フェニルエタノールの光学純度分析
     GC;キャピラリー CP-CHIRASIL-DEX- CB
        注入温度 250℃,検出温度 250℃
        115℃(12分)
 H-NMRスペクトル及び31P-NMRスペクトルの測定はバリアン社製のMERCURY plus 300を使用した。
[実施例1]
 次の反応式によりルテニウムカルボニル錯体1a及び1bを製造した。
Figure JPOXMLDOC01-appb-C000016
 窒素気流下、アミン塩酸塩8(4.18mmol)を100mlのフラスコに加え、トルエン(33ml)に懸濁させ、15%NaOH水溶液(14ml)を加え固体がなくなるまで室温で撹拌した。溶液を分液後、有機層を蒸留水(14ml×2)で洗浄し、水層をトルエン(14ml×2)で抽出した。あわせた有機層を硫酸ナトリウムで乾燥し、溶媒を留去してアミン9を得た。
 ルテニウムカルボニル錯体7(4.18mmol)を200mlのフラスコに加え、窒素置換した後、トルエン(33ml)に溶解させたアミン9を加え、60分間加熱還流を行った。放冷後、反応液にヘキサン(82ml)を加えた後、窒素雰囲気下にて析出している結晶をろ別した。得られた結晶をヘキサン(10ml)、エタノール(40ml)で洗浄した。減圧乾燥し、ルテニウム錯体1aを1.4g(2.3mmol)得た。
H-NMR(300MHz CDCl):δ=
   -15.23(t, J = 29.3Hz, 1H), 2.40-2.65(m, 4H), 
   2.90-3.05(m, 2H),3.30-3.55(m,2H), 3.92(bs, 1H),
   7.08-7.34(m, 4H), 7.38-7.46(m,8H), 7.40-7.88(m, 8H)
31P-NMR(121.5MHz CDCl):δ=52.8(d, J = 14Hz)
 前記で製造した錯体1a(2.22mmol)を窒素雰囲気下、1000mlフラスコに加え、トルエン(222ml)に懸濁させた。この懸濁液に、エタノール(222ml)に溶解させたNaBH(60.0mmol)を加え、65℃で30分撹拌後、室温で30分撹拌し溶媒を減圧下で留去した。残渣にヘキサン(220ml)、蒸留水(110ml)を加え15分撹拌した後に、析出している結晶をろ別した。得られた結晶を蒸留水(110ml×2)、ヘキサン(110m1×2)で洗浄した。減圧乾燥をおこない目的のルテニウム錯体1bを1.05g(1.79mmol)得た。
H-NMR(300MHz CDCl):δ=
   -12.36(t, J = 28.5Hz, 1H), -2.80- -1.70(bs, 4H),
   2.40-2.78(m, 4H),2.90-3.05(m, 2H), 3.32-3.60(m, 2H),
   4.20-4.40(m, 1H), 6.92-7.28(m, 4H),
   7.38-7.46(m, 8H), 7.70-7.82(m, 8H)
31P-NMR(121.5MHz CDCl):δ=56.6(s)
[実施例2]
 次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000017
 撹拌子を入れた100mlのオートクレーブに、光学純度が99.3%eeの(R)-乳酸メチル(10mmol)、実施例1で製造した錯体1a(0.01mmol)、メタノール(7.6ml)、0.5Mナトリウムメトキシドのメタノール溶液(0.4ml)を加え、水素圧5MPa、30℃で16時間水素化還元を行った。反応液をガスクロマトグラフィーで分析した結果、転化率96.3%であった。得られたアルコールの光学純度は99.1%eeであった。
[実施例3]
 次の反応式によりL-Boc-アラニンメチルエステルの水素化を行った。
Figure JPOXMLDOC01-appb-C000018
 撹拌子を入れた100mlのオートクレーブに、L-Boc-アラニンメチルエステル(5mmol)、実施例1で製造した錯体1b(0.01mmol)、テトラヒドロフラン(4ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率100%、選択率100%で(S)-2-(Boc-アミノ)プロパン-1-オールが生成していた。得られたアルコールの光学純度は99%ee以上であった。
[実施例4]
 次の反応式により(S)-2-(ベンジルオキシ)プロピオン酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000019
 撹拌子を入れた100mlのオートクレーブに、光学純度98.5%eeの(S)-2-(ベンジルオキシ)プロピオン酸メチル(5mmol)、実施例1で製造した錯体1b(0.01mmol)、テトラヒドロフラン(4ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率100%、選択率99%で(S)-2-(ベンジルオキシ)プロパン-1-オールが得られた。得られたアルコールの光学純度は98.5%eeであった。
[実施例5]
 次の反応式により(R)一3-(Boc-アミノ)ブタン酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000020
 撹拌子を入れた100mlのオートクレーブに、実施例1で製造した錯体1b(0.02mmol)を加え、窒素置換した。ここにテトラヒドロフラン(4ml)と99%ee以上の(R)-3-(Boc-アミノ)ブタン酸メチル(5mmol)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率95.9%で(R)-3-(Boc-アミノ)ブタン-1-オールが得られた。得られたアルコールの光学純度は99%ee以上であった。
[実施例6]
 次の反応式により(S)-3-(フェニルアミノ)ブタン酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000021
 撹拌子を入れた100mlのオートクレーブに、光学純度93.9%eeの(S)-3-(フェニルアミノ)ブタン酸メチル(5mmol)、実施例1で製造した錯体1b(0.01mmol)、テトラヒドロフラン(4ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率86.4%で(3S)-3-(フェニルアミノ)ブタン-1-オールが得られた。得られたアルコールの光学純度は91.1%eeであった。
[実施例7]
 次の反応式により(R)-3-(tert-ブチルジメチルシリルオキシ)ブタン酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000022
 撹拌子を入れた100mlのオートクレーブに、光学純度99%eeの(3R)-3-tert-ブチルジメチルシリルオキシブタン酸メチル(5.0mmol)、実施例1で製造した錯体1b(0.02mmol)、テトラヒドロフラン(4ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率87.9%で(R)-3-(tert-ブチルジメチルシリルオキシ)ブタン-1-オールが得られた。得られたアルコールの光学純度は99%eeであった。
[実施例8]
 次の反応式により安息香酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000023
 撹拌子を入れた100mlのオートクレーブに、安息香酸メチル(10.0mmol)、実施例1で製造した錯体1a(0.01mmol)、ナトリウムメトキシド(0.5mmol)、テトラヒドロフラン(5ml)を加え、水素圧5MPa、80℃で13.5時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率96%でベンジルアルコールが得られた。
[実施例9]
 次の反応式により安息香酸イソプロピルの水素移動型還元反応を行った。
Figure JPOXMLDOC01-appb-C000024
 撹拌子を入れた100mlのオートクレーブに、安息香酸イソプロピル(6.15mmol)、実施例1で製造した錯体1a(0.06mmol)、0.1Mカリウムtert-ブトキシドのイソプロパノール溶液(12.3ml)、及びイソプロパノール(8ml)を加え、80℃で16時間撹拌を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率21.0%、選択率47.0%でベンジルアルコールが得られた。
[実施例10]
 次の反応式によりアセトフェノンの水素化を行った。
Figure JPOXMLDOC01-appb-C000025
 撹拌子を入れた100mlのオートクレーブに、アセトフェノン(20.1mmol)、実施例1で製造した錯体1a(0.01mmol)、カリウムtert-ブトキシド(0.1mmol)、及びイソプロパノール(11.5ml)を加え、水素圧3MPa、40℃で17.5時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率100%で1-フェニルエタノールが得られた。
[実施例11]
 光学活性3座アミノジホスフィン配位子からなるルテニウムカルボニル錯体を用い、次の反応式によりアセトフェノンの不斉水素化を行った。
Figure JPOXMLDOC01-appb-C000026
(1)光学活性3座アミノジホスフィン配位子を有するルテニウムカルボニル錯体の製造
 3座アミノジホスフィン配位子として、実施例1に記載のアミン9に代えてN,N-ビス[(S)-2-ジフェニルホスフィノ-プロピル]アミンを用いて、実施例1と同様にして目的の光学活性3座アミノジホスフィン配位子ルテニウムカルボニル錯体1a’を製造した。
(2)アセトフェノンの不斉水素化
 撹拌子を入れた100mlのオートクレーブに、アセトフェノン(20mmol)、光学活性な配位子を有する錯体1a’(0.01mmol)、カリウムtert-ブトキシド(0.1mmol)、イソプロパノール(11.5ml)を加え、水素圧3MPa、40℃で5時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率100%で1-フェニルエタノールが得られた。得られたアルコールの光学純度は54.0%eeであった。
[実施例12]
 次の反応式によりアセトフェノンの水素移動型不斉還元を行った。
Figure JPOXMLDOC01-appb-C000027
 撹拌子を入れた20mlのフラスコに、アセトフェノン(20mmol)、実施例11で製造した光学活性な配位子を有する錯体1a’(0.01mmol)、0.1Mカリウムtert-ブトキシドのイソプロパノール溶液(1ml)、イソプロパノール(10.5ml)を加え、窒素気流下40℃で8.5時間撹拌を行った。反応液をガスクロマトグラフィーで分析した結果、反応転化率72%で1-フェニルエタノールが得られた。得られたアルコールの光学純度は40.0%eeであった。
[実施例13]
 次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000028
撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(50mmol)、実施例1で製造した錯体1a(0.01mmo1)、ナトリウムメトキシド(0.5mmol)、テトラヒドロフラン(19ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率95%であった。
[実施例14]
 次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000029
 撹拌子を入れた100mlのオートクレーブに、光学純度が99.3%eeの(R)-乳酸メチル(10mmol)、実施例1で製造した錯体1b(0.01mmol)、イソプロパノール(7.6ml)を加え、水素圧5MPa、80℃で16時間水素化還元を行った。反応液をガスクロマトグラフィーで分析した結果、転化率98.4%であった。得られたアルコールの光学純度は81.8%eeであった。
[実施例15]
 実施例14のイソプロパノールをトルエンに変更し、同様にして反応を行った結果、転化率88.2%であった。得られたアルコールの光学純度は88.8%eeであった。
[実施例16]
 実施例14のイソプロパノールをエタノールに変更し、同様にして反応を行った結果、転化率98.3%であった。得られたアルコールの光学純度は93.7%eeであった。
[実施例17]
 次の手順により本発明のルテニウムカルボニル錯体14を製造した。
Figure JPOXMLDOC01-appb-C000030
 窒素気流下、カリウムt-ブトキシド(22.3mmol)を100mlのフラスコに加え、テトラヒドロフラン(40ml)に懸濁させ、続いて、ビス(3,5-ジメチルフェニル)ホスフィン(11.0mmol)、アミン12(5.5mmol)を加え、6時間加熱還流した後、50℃で12時間、再び加熱還流を2時間行った。その後、反応溶液を酢酸エチルで希釈し、15%NaOH水溶液、蒸留水で洗浄した後、水層をジエチルエーテルで抽出した。合わせた有機層を硫酸マグネシウムで水分除去し、減圧乾燥を行い粗生成物を得た。粗生成物を塩基処理したシリカゲルカラムクロマトグラフィーで精製し、ビスホスフィノアミン13を1.63g、54%で得た。
H-MNR(300MHz CDCl):δ=
   2.27(s,24H), 2.19-2.34(m,4H), 2.68-2.80(m, 4H), 
   6.93(s,4H), 7.02(d,J=8.1Hz,8H)
31P-NMR(121.5MHz CDCl):δ=-22.89(s)
 続いて、窒素気流下、ビスホスフィノアミン13(0.72mmol)を50mlのフラスコに加え、トルエン(8.5ml)、錯体7(0.60mmol)を加え、5時間加熱還流を行った。その後、反応溶液をシリカゲルカラムクロマトグラフィーで精製し、錯体14を得た。
H-MNR(300MHz CDCl):δ=
   -15.37(t,J=29.1Hz,1H), 2.34(s, 12H), 2.36(s, 12H),
   2.40-2.50(m,4H), 2.80-3.20(m,2H), 3.30-3.50(m,2H), 
   3.75-3.95(bs,1H), 7.05-7.80(m,4H), 7.36-7.46(m,8H)
31P-NMR(121.5MHz CDCl):δ=
   51.68(d,J=11.7Hz)
[実施例18]
 (R)-乳酸メチルの水素化を行った。
 撹拌子を入れた100mlのオートクレーブに、乳酸メチル(20.0mmol)、実施例17で製造した錯体14(0.01mmol)、ナトリウムメトキシド(0.2mmol)、メタノール(8ml)を加え、水素圧5MPa、30℃で16時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、転化率48%、選択率98%であった。得られたアルコールの光学純度は99.1%eeであった。
[実施例19]
 次の手順により本発明のルテニウムカルボニル錯体18を製造した。
Figure JPOXMLDOC01-appb-C000031
 窒素気流下、カリウムt-ブトキシド(8.0 mmol)を100mlのフラスコに加え、テトラヒドロフラン(40 ml)に懸濁させ、ジp-トリルホスフィン(4.0 mmol)、アミン12(2.0 mmol)を加え、室温で14時間反応した後、5時間加熱還流を行った。反応溶液を酢酸エチル(40 ml)で希釈し、15%NaOH水溶液、蒸留水、飽和食塩水で洗浄した。水層を酢酸エチルで抽出した後、合わせた有機層を硫酸ナトリウムで水分除去し、減圧乾燥を行った。その後、ヘキサン(40 ml)、1N HClを加え室温で30分反応させた。析出した固体をろ別し、ヘキサンで洗浄した後、減圧乾燥を行い、アミン塩酸塩17を混合物として得た。
 続いて、窒素気流下、アミン塩酸塩17(0.36 mmol)を20mlのフラスコに加え、トルエン(5.0ml)に懸濁させ、15%NaOH水溶液を加え室温で30分反応させた。二層を分離後、有機層を飽和食塩水で洗浄し、水層をトルエン(1 ml)で抽出し、合わせた有機層をアミンのトルエン溶液とした。窒素気流下、20mlのフラスコに先ほど調整したアミンのトルエン溶液、錯体7(0.30 mmol)を加え、5時間加熱還流を行った。その後反応溶液をろ過し、ろ液にヘキサンを加え、再結晶を行った。析出した結晶をろ別し、トルエン:ヘキサン=1:1で洗浄を行った。その後減圧下で乾燥し錯体18を得た。
H-MNR(300MHz CDCl):δ=
   -15.35(t,J=19.5Hz,1H),2.36(s,12H), 2.42-2.52(m,4H), 
   2.88-3.00(m,2H), 3.30-3.52(m,2H),3.74-3.88(m,1H),
   7.18-7.27(m,8H),7.60-7.40(m,8H)
31P-NMR(121.5MHz CDCl):δ=
   50.93(d,J=14.2Hz)
MS: C3338ClNOPRuとして、
        計算値 : (MH)=663.12
        実測値 : (MH)=663.07
 実施例19で得られた錯体18を、トルエンーヘキサンで単結晶を調整し、Rigaku Mercury CCD、Crystal Clearを用いてX線構造解析を行った。解析はCrystal Structure3.8のSHELX97を用いた。
 単結晶によるX線構造解析の結果は次のとおりであった。
 晶系:単斜晶系。
 空間群:P121/c1。
 格子定数a=12.5423(13)、b=14.5907(11)、c=18.0776(15)(単位はÅ(オングストローム))、β=102.131(4)、V=3234.3(5)(Å(立方オングストローム))。
 Ruの周りの結合長はそれぞれRu-Hが1.65Å(オングストローム);Ru-Cが1.834Å(オングストローム);Ru-Nが2.191Å(オングストローム);Ru-Pがそれぞれ2.3358Å(オングストローム)と2.3068Å(オングストローム)であった。
 これらの結果に基づいて錯体18の化学構造を模式化した図を図1に示す。
[実施例20]
 (R)-乳酸メチルの水素化を行った。
 撹拌子を入れた100mlのオートクレーブに、乳酸メチル(10.0mmol)、実施例19で製造した錯体18(0.005mmol)、ナトリウムメトキシド(0.1mmol)、メタノール(4ml)を加え、水素圧5MPa、30℃で16時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率70%、選択率94%であった。
[実施例21]
 次の手順によりルテニウムカルボニル錯体16を製造した。
Figure JPOXMLDOC01-appb-C000032
 窒素気流下、カリウムt-ブトキシド(2.2 mmol)を20mlのフラスコに加え、テトラヒドロフラン(10ml)に懸濁させ、ビス(3,5-ビス(トリフルオロメチル)フェニル)ホスフィン(1.09mmol)、アミン12(0.55mmol)を加え、4時間加熱還流を行った。反応溶液を減圧留去した後、残渣に酢酸エチルを加え、15%NaOH水溶液、飽和食塩水で洗浄した。得られた有機層を硫酸ナトリウムで水分除去し、減圧乾燥を行ってアミン15を粗生成物として得た。
31P-NMR(121.5MHz CDCl):δ=-14.67(s)
 続いて、窒素気流下、アミン15(0.55 mmol)を50mlのフラスコに加え、トルエン(6.6ml)、錯体7(0.46 mmol)を加え、4時間加熱還流を行った。その後、反応溶液を室温に冷やし、析出した結晶をろ別した。結晶をトルエン、ジエチルエーテルで洗浄した後、減圧乾燥を行い、錯体16を得た。
H-MNR(300MHz CDCl):δ=
   -14.59(t,J= 18.6Hz,1H), 2.35-2.60(m,2H), 2.65-2.85(m,2H),
   3.02-3.18(m,2H), 3.35-3.65(m,2H), 3.80-4.20(m,1H), 
   8.04(d,J=21.6Hz,4H), 8.18-8.26(m,4H), 8.36-8.44(m,4H)
31P-NMR(121.5MHz CDCl):δ=60.18(s)
[実施例22]
 次の反応式によりマレイン酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000033
 撹拌子を入れた100mlのオートクレーブに、マレイン酸メチル(4.0mmol)、実施例1で得られた錯体1a(0.01mmol)、ナトリウムメトキシド(0.2mmol)、メタノール(4ml)を加え、水素圧5MPa、80℃で8時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率100%、選択率100%であった。
[実施例23]
 次の反応式によりメトキシ酢酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000034
 撹拌子を入れた100mlのオートクレーブに、メトキシ酢酸メチル(5.0mmol)、錯体1a(0.01mmol)、ナトリウムメトキシド(0.2mmol)、メタノール(4ml)を加え、水素圧5MPa、80℃で8時間水素化を行った。反応液をガスクロマトグラフィーで反応を分析した結果、反応転化率100%、選択率100%であった。
(比較例1)
 特許文献1記載のジクロロルテニウム錯体を用いて塩基を添加した条件で、次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000035
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(50mmol)、錯体10(0.01mmol)、ナトリウムメトキシド(0.5mmol)、テトラヒドロフラン(19ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率31%であった。
(比較例2)
 特許文献1記載のジクロロルテニウム錯体を用いて、次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000036
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸酸メチル(9.95mmol)、錯体10(0.01mmol)、ナトリウムメトキシド(0.2mmol)、メタノール(4ml)を加え、水素圧5MPa、30℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率3.5%であった。
(比較例3)
 N上に水素原子を有さず、代わりにエチル基を有するアミノジホスフィン配位子を有するルテニウムカルボニル錯体を用いて塩基を添加した条件で、次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000037
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(9.95mmol)、錯体11(0.01mmol)、ナトリウムメトキシド(0.2mmol)、メタノール(4ml)を加え、水素圧5MPa、30℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率1.2%であった。
(比較例4)
 N上に水素原子を有さず、代わりにエチル基を有するアミノジホスフィン配位子を有するルテニウムカルボニル錯体を用いて塩基を添加した条件で、次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000038
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(9.95mmol)、錯体11(0.002mmol)、ナトリウムメトキシド(0.1mmol)、テトラヒドロフラン(4ml)を加え、水素圧5MPa、80℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率1.1%であった。
(比較例5)
 非特許文献2に記載されているルテニウムカルボニル錯体19(STREM販売品)を用いて、次の反応式により(R)-乳酸メチルの水素化を行った。
Figure JPOXMLDOC01-appb-C000039
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(10mmol)、錯体19(0.01mmol)、メタノール(8ml)を加え、水素圧5MPa、30℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率2.6%、選択率0%であった。
(比較例6)
 非特許文献2に記載されているルテニウムカルボニル錯体19(STREM販売品)を用いて塩基を添加した条件で、前記した反応式で示される(R)-乳酸メチルの水素化を行った。
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(10mmol)、錯体19(0.01mmol)、ナトリウムメトキシド(0.2mmol)、メタノール(8ml)を加え、水素圧5MPa、30℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率5.8%、選択率21.5%であった。
(比較例7)
 非特許文献2に記載されているルテニウムカルボニル錯体19(STREM販売品)を用いて、溶媒としてメタノールに代えてテトラヒドロフラン(THF)を用いて、前記した反応式で示される(R)-乳酸メチルの水素化を行った。
 撹拌子を入れた100mlのオートクレーブに、(R)-乳酸メチル(10mmol)、錯体19(0.01mmol)、テトラヒドロフラン(8ml)を加え、水素圧5MPa、100℃で16時間水素化を行った。反応液をガスクロマトグラフィーで分析した結果、転化率7.4%、選択率40.7%であった。
 本発明は、容易に入手可能な無機ルテニウム化合物より簡便に調製することができる3座アミノジホスフィン配位子を有する新規ルテニウムカルボニル錯体を提供するものであり、本発明の新規ルテニウムカルボニル錯体は、水素供与体存在下、ケトン類、エステル類及びラクトン類の水素化還元を触媒し、比較的温和な反応条件下でも触媒活性が高いだけなく、カルボニル基の不斉水素化還元も可能である。そして、本発明の新規ルテニウムカルボニル錯体は、安定性が高く取り扱いも容易であり、工業的な使用に適したものである。
 したがって、本発明のルテニウムカルボニル錯体、及びそれを用いたケトン類、エステル類及びラクトン類の水素化還元方法は、有機工業化学の分野において有用である。

Claims (18)

  1. 次の一般式(1)
          RuXY(CO)(L)         (1)
    (一般式(1)中、X及びYは同一であっても異なっていてもよくアニオン性配位子を表し、Lは下記一般式(2)
    Figure JPOXMLDOC01-appb-C000040
    (一般式(2)中、R、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、又は置換アミノ基を表し、これらのRとR又はRとRは互いに結合し隣接するリン原子と共に環を形成していてもよい。また、これらのアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルオキシ基、シクロアルキルオキシ基、アリールオキシ基、アラルキルオキシ基、複素環基、及び置換アミノ基は置換基を有していてもよい。
    及びQは同一であっても異なっていてもよく、置換基を有していてもよい二価のアルキレン基、置換基を有していてもよい二価のシクロアルキレン基、又は置換基を有していてもよい二価のアラルキレン基を表す。)
    で表される3座アミノジホスフィン配位子を表す。)
    で表されるルテニウムカルボニル錯体。
  2. 3座アミノジホスフィン配位子Lが、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000041
    (一般式(3)中、R、R、R、及びRはそれぞれ同一であっても異なっていてもよく、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいアラルキル基を表す。nは0から3の整数を表す。)
    で表される3座アミノジホスフィン配位子である請求項1に記載のルテニウムカルボニル錯体。
  3. 3座アミノジホスフィン配位子Lが、下記一般式(4)
    Figure JPOXMLDOC01-appb-C000042
    (一般式(4)中、Ar、Ar、Ar、及びArは、それぞれ同一であっても異なっていてもよく、アリール基、又は芳香族複素環基を表す。また、これらのアリール基、及び芳香族複素環基は置換基を有していてもよい。)
    で表される3座アミノジホスフィン配位子である請求項1又は2に記載のルテニウムカルボニル錯体。
  4. 一般式(4)におけるAr、Ar、Ar、及びArが、置換基を有していてもよいフェニル基である請求項3に記載のルテニウムカルボニル錯体。
  5. 3座アミノジホスフィン配位子Lが、下記一般式(5)
    Figure JPOXMLDOC01-appb-C000043
    (式中、Phはフェニル基を表す。)
    で表される3座アミノジホスフィン配位子である請求項1~4のいずれかに記載のルテニウムカルボニル錯体。
  6. 3座アミノジホスフィン配位子Lが、光学活性な3座アミノジホスフィン配位子である請求項1又は2に記載のルテニウムカルボニル錯体。
  7. 一般式(1)におけるXのアニオン性配位子がヒドリドであり、Yのアニオン性配位子が塩素イオンである請求項1~6のいずれかに記載のルテニウムカルボニル錯体。
  8. 一般式(1)におけるXのアニオン性配位子がヒドリドであり、Yのアニオン性配位子が、BH である請求項1~6のいずれかに記載のルテニウムカルボニル錯体。
  9. 一般式(2)で表される3座アミノジホスフィン配位子LとRuXY(CO)(P(Ar(式中、Arは、それぞれ同一であっても異なっていてもよく、置換基を有していてもよいアリール基を表す。)とを反応させて、一般式(1)で表されるルテニウムカルボニル錯体を製造する方法。
  10. Arが、フェニル基である請求項9に記載の方法。
  11. 一般式(2)で表される3座アミノジホスフィン配位子Lが、一般式(5)で表される3座アミノジホスフィン配位子Lである請求項9又は10に記載の方法。
  12. RuXY(CO)(P(Arが、RuHCl(CO)(PPhである請求項9~11のいずれかに記載の方法。
  13. RuHCl(CO)(PPhと一般式(5)で表される3座アミノジホスフィン配位子Lとを反応させて、下記一般式(6)
    Figure JPOXMLDOC01-appb-C000044
    で表されるルテニウムカルボニル錯体を製造する方法。
  14. 前記一般式(6)で表されるルテニウムカルボニル錯体とNaBHを反応させて、下記一般式(7)
    Figure JPOXMLDOC01-appb-C000045
    で表されるルテニウムカルボニル錯体を製造する方法。
  15. 請求項1~8のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いてケトン類を水素化還元するアルコールの製造方法。
  16. 請求項6~8のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いてケトン類を不斉水素化還元する光学活性アルコールの製造方法。
  17. 請求項1~8のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いてエステル類又はラクトン類を水素化還元するアルコールの製造方法。
  18. 請求項1~8のいずれかに記載のルテニウムカルボニル錯体の存在下、水素供与体を用いて光学活性エステル類又は光学活性ラクトン類を光学活性を保持したまま水素化還元する光学活性アルコールの製造方法。
PCT/JP2010/004301 2009-10-23 2010-06-30 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途 WO2011048727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10818127.2A EP2492275B1 (en) 2009-10-23 2010-06-30 Novel ruthenium carbonyl complex having a tridentate ligand and manufacturing method and usage therefor
JP2011514945A JP5671456B2 (ja) 2009-10-23 2010-06-30 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
US13/121,990 US8471048B2 (en) 2009-10-23 2010-06-30 Ruthenium carbonyl complex having tridentate ligand, its production method and use
CN201080002901.4A CN102177170B (zh) 2009-10-23 2010-06-30 具有三齿配体的新型羰基钌配合物、其制备方法和用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-244893 2009-10-23
JP2009244893 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011048727A1 true WO2011048727A1 (ja) 2011-04-28

Family

ID=43899972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004301 WO2011048727A1 (ja) 2009-10-23 2010-06-30 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途

Country Status (5)

Country Link
US (1) US8471048B2 (ja)
EP (1) EP2492275B1 (ja)
JP (1) JP5671456B2 (ja)
CN (1) CN102177170B (ja)
WO (1) WO2011048727A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105431A1 (ja) 2011-02-03 2012-08-09 セントラル硝子株式会社 β-フルオロアルコール類の製造方法
WO2012144650A1 (en) * 2011-04-22 2012-10-26 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
WO2013018573A1 (ja) 2011-08-03 2013-02-07 セントラル硝子株式会社 α-フルオロアルデヒド類の製造方法
EP2599544A1 (en) 2011-12-01 2013-06-05 Leibniz-Institut für Katalyse e.V. an der Universität Rostock A process for producing alkyl esters by dehydrogenation of a primary alcohol using a homogenous catalyst system
JP2014114257A (ja) * 2012-12-12 2014-06-26 Takasago Internatl Corp ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
JP2014518335A (ja) * 2011-07-06 2014-07-28 リキッド・ライト・インコーポレーテッド 二酸化炭素のカルボン酸、グリコール、及びカルボキシレートへの還元
WO2014115801A1 (ja) 2013-01-25 2014-07-31 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドの製造方法
WO2014136374A1 (ja) 2013-03-04 2014-09-12 高砂香料工業株式会社 アミン類のアルキル化方法
WO2014203963A1 (ja) 2013-06-20 2014-12-24 株式会社クラレ 3座アミノジカルベン配位子を有する金属錯体及びそれを用いた水素化還元方法
WO2015163440A1 (ja) * 2014-04-25 2015-10-29 高砂香料工業株式会社 ルテニウム錯体及びその製造方法並びにその用途
JP2015536922A (ja) * 2012-10-19 2015-12-24 上海 インスティテュート オブ オーガニック ケミストリー、チャイニーズ アカデミー オブ サイエンシーズShanghai Institute Of Organic Chemistry, Chinese Academy Of Sciences 新規なルテニウム錯体ならびにメタノールおよびグリコールの製造方法
JP2016520512A (ja) * 2013-03-15 2016-07-14 ドミトリー・ゴッサブ 水素化および脱水素法のためのアミノ−ホスフィンリガンドに基づく錯体触媒
JP2017512795A (ja) * 2014-03-31 2017-05-25 ザ プロクター アンド ギャンブル カンパニー 鉄の錯体を触媒として使用するエステルの均質水素化
WO2017131226A1 (ja) 2016-01-29 2017-08-03 高砂香料工業株式会社 N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法
US10072033B2 (en) 2014-08-26 2018-09-11 Takasago International Corporation N-(phosphinoalkyl)-N-(thioalkyl)amine derivative, method for producing same, and metal complex thereof
WO2018181865A1 (ja) 2017-03-31 2018-10-04 高砂香料工業株式会社 カチオン型ルテニウム錯体及びその製造方法並びにその用途
JP2019507140A (ja) * 2016-02-05 2019-03-14 ウニヴェルスィタ デッリ ストゥーディ ディ ウーディネ モノカルボニルルテニウム触媒及びモノカルボニルオスミウム触媒
US10487100B1 (en) 2017-04-04 2019-11-26 Triad National Security, Llc Macrocyclic ligands and their complexes for bifunctional molecular catalysis
US10550139B2 (en) 2014-06-09 2020-02-04 Triad National Security, Llc Polydentate ligands and their complexes for molecular catalysis
US10584140B2 (en) 2015-09-30 2020-03-10 Takasago International Corporation Method for producing ruthenium complex
WO2020050271A1 (ja) 2018-09-04 2020-03-12 高砂香料工業株式会社 4座ジアミノジホスフィン配位子、遷移金属錯体及びそれらの製造方法並びにその用途
JP2020516631A (ja) * 2017-04-11 2020-06-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft キラル金属錯体化合物
JP2020518577A (ja) * 2017-04-27 2020-06-25 デューテリア ビバレッジズ、エルエルシー D2からの重水素化エタノールの調製方法
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation
WO2022268786A1 (en) 2021-06-23 2022-12-29 Minasolve Sas Production process for 1,2-alkanediols and compositions containing 1,2-alkanediols
US11685755B2 (en) 2016-02-05 2023-06-27 Universita′ degli Studi di Udine Dicarbonyl ruthenium and osmium catalysts
EP4282816A1 (en) 2022-05-25 2023-11-29 Umicore AG & Co. KG Catalytic system for storing and releasing of hydrogen from liquid organic hydrogen carriers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5628613B2 (ja) * 2010-09-21 2014-11-19 高砂香料工業株式会社 アミド化合物からアルコール及び/又はアミンを製造する方法
JP5531120B1 (ja) * 2013-01-21 2014-06-25 田中貴金属工業株式会社 ドデカカルボニルトリルテニウムの製造方法
FR3013047B1 (fr) * 2013-11-08 2016-01-01 Pivert Procede de synthese d'esters
US9944579B2 (en) 2015-01-15 2018-04-17 Council Of Scientific & Industrial Research Catalytic hydrogenation process for the synthesis of terminal diols from terminal dialkyl aliphatic esters
AU2018260727B2 (en) * 2017-04-27 2022-07-21 Deuteria Beverages, Llc Process for the preparation of deuterated ethanol from D2O
US11413610B2 (en) 2018-01-10 2022-08-16 Basf Se Use of a transition metal catalyst comprising a tetradentate ligand for hydrogenation of esters and/or formation of esters, a process for hydrogenation of esters, a process for formation of esters and a transition metal complex comprising said tetradentate ligand
IL274942B (en) * 2019-05-31 2022-08-01 Int Flavors & Fragrances Inc Stereoselective synthesis of parahydro-6,3-dialkyl-2-benzo[b]furanones and analogs
JP2022538350A (ja) 2019-07-03 2022-09-01 ビーエーエスエフ ソシエタス・ヨーロピア Ru-PNN錯体存在下でのエステルのアルコールへの水素化
CN110396072B (zh) * 2019-09-02 2022-09-13 上海欣海健伟实业有限公司 (s)-3-羟基四氢呋喃的制备方法
US11306112B2 (en) * 2020-02-10 2022-04-19 Guangdong Oxo Chem Ltd. Biphenyl tetradentate phosphite compound: preparation method and application thereof
WO2024079091A1 (en) * 2022-10-10 2024-04-18 Danmarks Tekniske Universitet Method for hydrogenation of biomass using pincer complex catalysts and precatalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107638A1 (en) 2003-05-02 2005-05-19 Kamaluddin Abdur-Rashid Transfer hydrogenation processes and catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107638A1 (en) 2003-05-02 2005-05-19 Kamaluddin Abdur-Rashid Transfer hydrogenation processes and catalysts

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 1991, JOHN WILEY & SONS, INC.
A.FRIEDRICH ET AL.: "Iridium Olefin Complexes Bearing Dialkylamino/amido PNP Pincer Ligands: Synthesis, Reactivity, and Solution Dynamics", ORGANOMETALLICS, vol. 28, no. 3, 2009, pages 708 - 718, XP008147531 *
A.T.RADOSEVICH ET AL.: "Ligand Reactivity in Diarylamido/Bis(Phosphine) PNP Complexes of Mn (CO)3 and Re(CO)3", INORGANIC CHEMISTRY, vol. 48, no. 19, 2009, pages 9214 - 9221, XP008147522 *
ANGEW. CHEM. INT. ED., vol. 45, 2006, pages 1113 - 1115
ANGEW. CHEM. INT. ED., vol. 48, 2009, pages 905 - 907
INORG. SYNTH, vol. 15, 1974, pages 45
J. AM. CHEM. SOC., vol. 127, 2005, pages 10840 - 10841
J. AM. CHEM. SOC., vol. 127, 2005, pages 516
L.A.VAN DER VEEN ET AL.: "Origin of the Bite Angle Effect on Rhodium Diphosphine Catalyzed Hydroformylation", ORGANOMETALLICS, vol. 19, no. 5, 2000, pages 872 - 883, XP008147527 *
ORGANOMETALLICS, vol. 23, 2004, pages 4026 - 4033
R.CELENLIGIL-CETIN ET AL.: "Decarbonylation of Acetone and Carbonate at a Pincer-Ligated Ru Center", ORGANOMETALLICS, vol. 24, no. 2, 2005, pages 186 - 189, XP008147532 *
See also references of EP2492275A4

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650276A1 (en) * 2011-02-03 2013-10-16 Central Glass Company, Limited Method for producing -fluoroalcohol
WO2012105431A1 (ja) 2011-02-03 2012-08-09 セントラル硝子株式会社 β-フルオロアルコール類の製造方法
EP2650276A4 (en) * 2011-02-03 2014-08-27 Central Glass Co Ltd PROCESS FOR PRODUCTION OF -FLUOROALCOOL
US8658840B2 (en) 2011-02-03 2014-02-25 Central Glass Company, Limited Method for producing β-fluoroalcohol
JP2014519472A (ja) * 2011-04-22 2014-08-14 高砂香料工業株式会社 3座配位子を有するルテニウムカルボニル錯体を脱水素酸化触媒として用いてカルボニル基を有する化合物を製造する方法
WO2012144650A1 (en) * 2011-04-22 2012-10-26 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
US9000212B2 (en) 2011-04-22 2015-04-07 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
JP2014518335A (ja) * 2011-07-06 2014-07-28 リキッド・ライト・インコーポレーテッド 二酸化炭素のカルボン酸、グリコール、及びカルボキシレートへの還元
US9284248B2 (en) 2011-08-03 2016-03-15 Central Glass Company, Limited Process for producing α-fluoroaldehydes
US9024075B2 (en) 2011-08-03 2015-05-05 Central Glass Company, Limited Process for producing α-fluoroaldehydes
CN103748063A (zh) * 2011-08-03 2014-04-23 中央硝子株式会社 α-氟代醛类的制造方法
JP2013209356A (ja) * 2011-08-03 2013-10-10 Central Glass Co Ltd α−フルオロアルデヒド類の製造方法
WO2013018573A1 (ja) 2011-08-03 2013-02-07 セントラル硝子株式会社 α-フルオロアルデヒド類の製造方法
EP2599544A1 (en) 2011-12-01 2013-06-05 Leibniz-Institut für Katalyse e.V. an der Universität Rostock A process for producing alkyl esters by dehydrogenation of a primary alcohol using a homogenous catalyst system
WO2013079659A1 (en) 2011-12-01 2013-06-06 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock A process for producing ethyl acetate by dehydrogenation of ethanol using a homogenous catalyst system
JP2015536922A (ja) * 2012-10-19 2015-12-24 上海 インスティテュート オブ オーガニック ケミストリー、チャイニーズ アカデミー オブ サイエンシーズShanghai Institute Of Organic Chemistry, Chinese Academy Of Sciences 新規なルテニウム錯体ならびにメタノールおよびグリコールの製造方法
JP2014114257A (ja) * 2012-12-12 2014-06-26 Takasago Internatl Corp ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
WO2014115801A1 (ja) 2013-01-25 2014-07-31 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドの製造方法
US9440900B2 (en) 2013-01-25 2016-09-13 Central Glass Company, Limited α,α-difluoroacetaldehyde production method
US9765004B2 (en) 2013-01-25 2017-09-19 Central Glass Company, Limited α,α-Difluoroacetaldehyde production method
US9751827B2 (en) 2013-03-04 2017-09-05 Takasago International Corporation Method for alkylation of amines
JPWO2014136374A1 (ja) * 2013-03-04 2017-02-09 高砂香料工業株式会社 アミン類のアルキル化方法
WO2014136374A1 (ja) 2013-03-04 2014-09-12 高砂香料工業株式会社 アミン類のアルキル化方法
JP2016520512A (ja) * 2013-03-15 2016-07-14 ドミトリー・ゴッサブ 水素化および脱水素法のためのアミノ−ホスフィンリガンドに基づく錯体触媒
WO2014203963A1 (ja) 2013-06-20 2014-12-24 株式会社クラレ 3座アミノジカルベン配位子を有する金属錯体及びそれを用いた水素化還元方法
US9840527B2 (en) 2013-06-20 2017-12-12 Kuraray Co., Ltd. Metal complex including tridentate aminodicarbene ligand and hydrogenation reduction method using same
JP2017512795A (ja) * 2014-03-31 2017-05-25 ザ プロクター アンド ギャンブル カンパニー 鉄の錯体を触媒として使用するエステルの均質水素化
JPWO2015163440A1 (ja) * 2014-04-25 2017-04-20 高砂香料工業株式会社 ルテニウム錯体及びその製造方法並びにその用途
WO2015163440A1 (ja) * 2014-04-25 2015-10-29 高砂香料工業株式会社 ルテニウム錯体及びその製造方法並びにその用途
US10059729B2 (en) 2014-04-25 2018-08-28 Takasago International Corporation Ruthenium complex, method for producing same, and use of same
US10550139B2 (en) 2014-06-09 2020-02-04 Triad National Security, Llc Polydentate ligands and their complexes for molecular catalysis
US10072033B2 (en) 2014-08-26 2018-09-11 Takasago International Corporation N-(phosphinoalkyl)-N-(thioalkyl)amine derivative, method for producing same, and metal complex thereof
US10584140B2 (en) 2015-09-30 2020-03-10 Takasago International Corporation Method for producing ruthenium complex
WO2017131226A1 (ja) 2016-01-29 2017-08-03 高砂香料工業株式会社 N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法
US10407448B2 (en) 2016-01-29 2019-09-10 Takasago International Corporation N-N-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing N,N-bis(2-dialkylphosphinoethyl)amine as ligand
US11577233B2 (en) 2016-02-05 2023-02-14 Universita' Delgi Studi Di Udine Monocarbonyl ruthenium and osmium catalysts
JP2019507140A (ja) * 2016-02-05 2019-03-14 ウニヴェルスィタ デッリ ストゥーディ ディ ウーディネ モノカルボニルルテニウム触媒及びモノカルボニルオスミウム触媒
US11819837B2 (en) 2016-02-05 2023-11-21 Universita Degli Studi Di Monocarbonyl ruthenium and osmium catalysts
US11278876B2 (en) 2016-02-05 2022-03-22 Universtia Degli Studi Di Udine Monocarbonyl ruthenium and osmium catalysts
US11685755B2 (en) 2016-02-05 2023-06-27 Universita′ degli Studi di Udine Dicarbonyl ruthenium and osmium catalysts
WO2018181865A1 (ja) 2017-03-31 2018-10-04 高砂香料工業株式会社 カチオン型ルテニウム錯体及びその製造方法並びにその用途
US10487100B1 (en) 2017-04-04 2019-11-26 Triad National Security, Llc Macrocyclic ligands and their complexes for bifunctional molecular catalysis
JP2020516631A (ja) * 2017-04-11 2020-06-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft キラル金属錯体化合物
JP7267932B2 (ja) 2017-04-11 2023-05-02 エフ. ホフマン-ラ ロシュ アーゲー キラル金属錯体化合物
JP2020518577A (ja) * 2017-04-27 2020-06-25 デューテリア ビバレッジズ、エルエルシー D2からの重水素化エタノールの調製方法
JP7109471B2 (ja) 2017-04-27 2022-07-29 デューテリア ビバレッジズ、エルエルシー D2からの重水素化エタノールの調製方法
US11639362B2 (en) 2018-09-04 2023-05-02 Takasago International Corporation Tetradentate diaminodiphosphine ligand and transition metal complex, and method for manufacturing same and application for same
WO2020050271A1 (ja) 2018-09-04 2020-03-12 高砂香料工業株式会社 4座ジアミノジホスフィン配位子、遷移金属錯体及びそれらの製造方法並びにその用途
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation
WO2022268786A1 (en) 2021-06-23 2022-12-29 Minasolve Sas Production process for 1,2-alkanediols and compositions containing 1,2-alkanediols
EP4282816A1 (en) 2022-05-25 2023-11-29 Umicore AG & Co. KG Catalytic system for storing and releasing of hydrogen from liquid organic hydrogen carriers
WO2023227640A1 (en) 2022-05-25 2023-11-30 Umicore Ag & Co. Kg Catalytic system for storing and releasing of hydrogen from liquid organic hydrogen carriers

Also Published As

Publication number Publication date
EP2492275A1 (en) 2012-08-29
US8471048B2 (en) 2013-06-25
EP2492275A4 (en) 2014-10-22
US20110237814A1 (en) 2011-09-29
JP5671456B2 (ja) 2015-02-18
CN102177170A (zh) 2011-09-07
JPWO2011048727A1 (ja) 2013-03-07
EP2492275B1 (en) 2017-08-23
CN102177170B (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP5477557B2 (ja) エステル又はラクトン類の水素還元によるアルコール類の製造方法
JP3281920B2 (ja) アリルフラン化合物の製造方法
EP2699535B1 (en) Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
EP1911516B1 (en) Homogeneous asymmetric hydrogenation process
JP5628613B2 (ja) アミド化合物からアルコール及び/又はアミンを製造する方法
JP6358660B2 (ja) アミン類のアルキル化方法
JP4718452B2 (ja) 光学活性遷移金属−ジアミン錯体及びこれを用いた光学活性アルコール類の製造方法
JP2014114257A (ja) ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
EP1849792B1 (en) Biphosphine ruthenium complexes with chiral diamine ligands as catalysts
JP6686050B2 (ja) ボラン錯体及びその製造法
JP2012224600A (ja) 2−メントキシエタノールの製造方法
JP2004075560A (ja) 3−キヌクリジノンエノールエステルおよびそれを使用した光学活性3−キヌクリジノールエステルの製造方法
JP2011140469A (ja) 新規な配位子、遷移金属錯体、及び該錯体を触媒として用いる光学活性アルコールの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002901.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2290/DELNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010818127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010818127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13121990

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011514945

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818127

Country of ref document: EP

Kind code of ref document: A1