WO2011048662A1 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
WO2011048662A1
WO2011048662A1 PCT/JP2009/068040 JP2009068040W WO2011048662A1 WO 2011048662 A1 WO2011048662 A1 WO 2011048662A1 JP 2009068040 W JP2009068040 W JP 2009068040W WO 2011048662 A1 WO2011048662 A1 WO 2011048662A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ejector
load
heat pump
pump device
Prior art date
Application number
PCT/JP2009/068040
Other languages
English (en)
French (fr)
Inventor
岡崎 多佳志
野本 宗
真哉 東井上
博和 南迫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011537045A priority Critical patent/JP5430667B2/ja
Priority to EP09850560.5A priority patent/EP2492612B1/en
Priority to CN200980162048.XA priority patent/CN102575882B/zh
Priority to US13/499,365 priority patent/US9200820B2/en
Priority to PCT/JP2009/068040 priority patent/WO2011048662A1/ja
Publication of WO2011048662A1 publication Critical patent/WO2011048662A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a heat pump device including an ejector, for example.
  • Patent Document 1 describes an air conditioner that switches between a power recovery operation using an ejector and a decompression operation using a normal expansion valve without using an ejector depending on the situation.
  • this air conditioner when the pressure on the high pressure side decreases, the power recovery operation is switched to the pressure reduction operation.
  • a shortage of the refrigerant circulation amount to the evaporator due to a shortage of drive power of the ejector occurs, and a reduction in efficiency is suppressed.
  • An object of the present invention is to provide a heat pump device that can switch between an efficient high-efficiency operation and a high-capacity high-capacity operation according to the state of the load.
  • an object of the present invention is to provide a heat pump device having a circuit configuration capable of efficiently operating both high efficiency operation and high capacity operation.
  • the heat pump device is, for example, The discharge side of the compressor and one port of the first heat exchanger are connected by piping, the other port of the first heat exchanger and the first inlet of the ejector are connected by piping, and the outlet of the ejector
  • An inlet of the gas-liquid separator is connected by a pipe, a gas-side outlet of the gas-liquid separator and an intake side of the compressor are connected by a pipe, and a liquid-side outlet of the gas-liquid separator and a second
  • a second sub refrigerant circuit for flowing into the compressor comprising a second sub refrigerant circuit provided with a second expansion mechanism in the middle, Heat exchange between the refrigerant flowing between the first connection point in the first sub refrigerant circuit and the first expansion mechanism and the refrigerant after passing through the second expansion mechanism in the second sub refrigerant circuit.
  • 3 heat exchangers are provided.
  • the heat pump device includes a main refrigerant circuit using an ejector and two sub refrigerant circuits for bypassing the ejector. It is possible to switch between high-efficiency operation and high-capacity operation by switching the circuit through which the refrigerant flows according to the state of the load. In addition, since the branch position of the main refrigerant circuit and the two sub refrigerant circuits and the installation position of the third heat exchanger are optimized, both high-efficiency operation and high-capacity operation can be operated efficiently. It is.
  • FIG. 1 is a configuration diagram of a heat pump device 100 according to Embodiment 1.
  • FIG. Explanatory drawing of the control part 10 of the heat pump apparatus 100.
  • FIG. The block diagram of the ejector 4.
  • FIG. 1 The figure which shows the relationship between the outside temperature and heating capability about the heat pump apparatus 100 which concerns on Embodiment 1, and the relationship between outside temperature and COP.
  • FIG. The figure which shows the flow of the refrigerant
  • FIG. 1 is a configuration diagram of a heat pump device 100 according to the first embodiment.
  • the heat pump apparatus 100 includes a main refrigerant circuit 101 indicated by a solid line and sub refrigerant circuits 102 and 103 indicated by a broken line.
  • the discharge port 1 ⁇ / b> B of the compressor 1 and the heat exchanger 2 are connected via a four-way valve 7 by piping.
  • the heat exchanger 2 and the first inlet 41 of the ejector 4 are connected by piping.
  • the outlet 46 of the ejector 4 and the inlet 5A of the gas-liquid separator 5 are connected by piping.
  • the gas side outlet 5B of the gas-liquid separator 5 and the suction port 1A of the compressor 1 are connected by piping.
  • the liquid side outlet 5C of the gas-liquid separator 5 and the heat exchanger 3 are connected by a pipe.
  • the heat exchanger 3 and the second inlet 42 of the ejector 4 are connected by piping through the four-way valve 7.
  • the four-way valve 7 switches between a first channel (solid line channel in the four-way valve 7 in FIG. 1) and a second channel (broken line channel in the four-way valve 7 in FIG. 1).
  • the first flow path is a flow path that connects the discharge port 1 ⁇ / b> B of the compressor 1 and the heat exchanger 2, and connects the heat exchanger 3 and the second inlet 42 of the ejector 4.
  • the second flow path is a flow path that connects the discharge port 1 ⁇ / b> B of the compressor 1 and the heat exchanger 3 and connects the heat exchanger 2 and the second inlet 42 of the ejector 4.
  • a third expansion valve 13 which is an electronic expansion valve is connected to a pipe between a branch point 21 (first connection point, third connection point) described later and the first inlet 41 of the ejector 4. (Open / close valve) is provided.
  • a fourth expansion valve 14 which is an electronic expansion valve is connected to a pipe between a liquid side outlet 5C of the gas-liquid separator 5 and a junction 22 (second connection point) described later. Valve).
  • the main refrigerant circuit 101 is filled with a refrigerant such as H410 (hydrofluorocarbon) refrigerant R410 or a natural refrigerant such as propane or CO 2 .
  • the auxiliary refrigerant circuits 102 and 103 are provided by branching pipes from the main refrigerant circuit 101 at a branch point 21 between the heat exchanger 2 and the first inlet 41 of the ejector 4.
  • the sub refrigerant circuits 102 and 103 branch into a first sub refrigerant circuit 102 and a second sub refrigerant circuit 103 at a branch point 23.
  • the first sub refrigerant circuit 102 connects the branch point 23 to the junction 22 between the liquid side outlet 5C of the gas-liquid separator 5 and the heat exchanger 3 in the main refrigerant circuit 101 by piping.
  • the first sub refrigerant circuit 102 is provided with a first expansion valve 11 (first expansion mechanism) that is an electronic expansion valve in the middle of the piping.
  • the second sub refrigerant circuit 103 connects from the branch point 23 to the injection pipe 25 provided in the compressor 1.
  • the second sub refrigerant circuit 103 is provided with a second expansion valve 12 (second expansion mechanism) that is an electronic expansion valve in the middle of the pipe.
  • the injection pipe 25 is connected to the intermediate pressure space in the compressor 1.
  • the intermediate pressure space is an intermediate pressure that is higher than the low pressure and lower than the high pressure in the compressor 1 when the compressor 1 compresses the refrigerant sucked from the suction port 1A from low pressure to high pressure. It is a space. That is, the intermediate pressure space is a space in the compressor 1 where the refrigerant sucked from the suction port 1A is in the middle of compression.
  • the flow path connecting the low-stage compression section and the high-stage compression section is the intermediate pressure space.
  • the space in the compression unit (compression chamber) where the refrigerant sucked from the suction port becomes an intermediate pressure is the intermediate pressure. It is space. Therefore, the second sub refrigerant circuit 103 is a so-called injection circuit.
  • the heat pump device 100 includes a refrigerant flowing between the branch point 23 in the first sub refrigerant circuit 102 and the first expansion valve 11, and between the second expansion valve 12 and the injection pipe 25 in the second sub refrigerant circuit 103.
  • the 3rd heat exchanger 6 (supercooler) which heat-exchanges with the refrigerant
  • FIG. 2 is an explanatory diagram of the control unit 10 of the heat pump apparatus 100.
  • the heat pump apparatus 100 includes temperature sensors T ⁇ b> 1, T ⁇ b> 2, T ⁇ b> 3, T ⁇ b> 4 and a control unit 10.
  • the temperature sensor T ⁇ b> 1 detects the refrigerant temperature on the discharge side of the compressor 1.
  • the temperature sensor T2 detects the refrigerant temperature on the outlet side of the heat exchanger 2 during the heating operation. That is, the temperature sensor T2 detects the degree of supercooling of the refrigerant during the heating operation.
  • the temperature sensor T3 detects the refrigerant temperature on the outlet side of the heat exchanger 3 during the heating operation.
  • the temperature sensor T3 detects the degree of superheat of the refrigerant during the heating operation.
  • the temperature sensor T4 detects the outside air temperature.
  • the control part 10 controls the opening degree of the expansion valves 11, 12, 13, and 14 according to the temperature detected by the temperature sensors T1, T2, T3, and T4.
  • the control unit 10 controls the second expansion valve 12 according to the outside air temperature detected by the temperature sensor T4 and the refrigerant temperature detected by the temperature sensor T1.
  • the control unit 10 controls the third expansion valve 13 according to the outside air temperature detected by the temperature sensor T4 and the refrigerant temperature detected by the temperature sensor T2.
  • control unit 10 controls the first expansion valve 11 and the fourth expansion valve 14 according to the outside air temperature detected by the temperature sensor T4 and the refrigerant temperature detected by the temperature sensor T3. Moreover, the control part 10 controls the setting of the four-way valve 7 according to operation content, such as a heating operation, a cooling operation, and a defrost operation.
  • the control unit 10 is a computer such as a microcomputer.
  • FIG. 3 is a configuration diagram of the ejector 4.
  • the ejector 4 includes two inlets, a first inlet 41 and a second inlet 42, and one outlet 46. Further, the ejector 4 includes a nozzle part 43, a mixing part 44, and a diffuser part 45.
  • the mixing unit 44 and the diffuser unit 45 are collectively referred to as a boosting unit.
  • a high-pressure liquid refrigerant serving as a driving flow flows from the first inlet 41.
  • the refrigerant that has flowed from the first inlet 41 is decompressed and expanded by the nozzle portion 43 and accelerated, and is injected to the mixing portion 44.
  • the nozzle unit 43 isotropically converts the pressure energy of the refrigerant into kinetic energy, expands the refrigerant under reduced pressure, and injects the refrigerant into the mixing unit 44.
  • the refrigerant is sucked into the mixing unit 44 from the second inlet 42 by the entrainment action of the high-speed refrigerant flow injected from the nozzle unit 43 to the mixing unit 44.
  • the mixing unit 44 the refrigerant injected from the nozzle unit 43 and the refrigerant sucked from the second inlet 42 are mixed.
  • the refrigerant is mixed in the mixing unit 44 by mixing the refrigerant so that the sum of the kinetic energy of the refrigerant injected from the nozzle portion 43 and the kinetic energy of the refrigerant sucked from the second inlet 42 is preserved.
  • the pressure rises to become a gas-liquid two-phase refrigerant.
  • the diffuser portion 45 has a channel cross-sectional area that gradually increases from the mixing portion 44 side toward the outlet 46 side. Therefore, in the diffuser part 45, the velocity energy of the refrigerant flowing from the mixing part 44 side is converted into pressure energy, and the pressure rises. Then, the refrigerant flows out from the outlet 46.
  • FIG. 4 is a Ph diagram of the ejector cycle.
  • a solid line indicates an ejector cycle
  • a broken line indicates a general expansion valve cycle.
  • a general expansion valve cycle is a heat pump cycle in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected by piping.
  • the high-temperature and high-pressure refrigerant exiting the compressor 1 is radiated and cooled by the heat exchanger 2, and flows into the ejector 4 from the first inlet 41.
  • the refrigerant flowing into the ejector 4 from the first inlet 41 is decompressed and expanded at the nozzle portion 43 as described above. Furthermore, the low-temperature refrigerant injected from the nozzle unit 43 is mixed with the high-temperature refrigerant flowing out from the heat exchanger 3 in the mixing unit 44, and the temperature rises. Further, the pressure of the refrigerant is increased in the diffuser unit 45 and flows into the gas-liquid separator 5 for gas-liquid separation. The gas refrigerant separated by the gas-liquid separator 5 is sucked into the compressor 1, and the liquid refrigerant flows into the heat exchanger 3.
  • the pressure of the refrigerant sucked by the compressor 1 in the ejector cycle is higher by ⁇ P than the pressure of the refrigerant sucked by the compressor in a general expansion valve cycle. Since the pressure of the refrigerant sucked by the compressor 1 is higher by ⁇ P, the power supplied to the compressor 1 can be reduced, and the COP (Coefficient Of Performance) can be increased.
  • the ejector 4 is a two-phase flow ejector including the nozzle portion 43, the mixing portion 44, and the diffuser portion 45 as described above.
  • the dimensions of each part of the ejector 4 are tuned and designed so as to be optimal from the high and low pressures and the circulation flow rate at the load (for example, outside air temperature 2 ° C. or more and less than 7 ° C.) in the heat pump cycle.
  • the heating operation here includes not only heating for warming the air in the room, but also hot water supply for heating the water to make hot water.
  • 5 to 8 are diagrams showing the flow of the refrigerant in the heat pump device 100 for each operation state. 5 to 8, arrows indicate the flow of the refrigerant. Further, “open” and “closed” shown in parentheses next to the reference numerals of the expansion valves 11, 12, 13, 14 represent the opening degrees of the expansion valves 11, 12, 13, 14. “Open” indicates that the opening of the expansion mechanism is larger than a predetermined opening and the refrigerant flows.
  • “Closed” indicates that the opening of the expansion mechanism is smaller than a predetermined opening (for example, fully closed) and the refrigerant does not flow.
  • a solid line circuit indicates a circuit through which the refrigerant flows, and a broken line circuit indicates a circuit through which the refrigerant does not flow.
  • the ejector operation is executed when the load is medium.
  • the load will be described in detail later, the case where the load is medium is, for example, a case where the outside air temperature is 2 ° C. or higher and lower than 7 ° C. “The outside air temperature is 2 ° C. or more and less than 7 ° C.” is a standard temperature zone in annual heating operation, and is a temperature zone that occupies about half of the total heating operation time. Therefore, by increasing the operating efficiency (COP) in this temperature range, it is possible to make the most contribution to improving the efficiency in the entire operation, and it becomes possible to greatly reduce the electric power used by the heat pump device annually.
  • the ejector 4 is used to increase the COP, but the effect of the ejector 4 cannot be brought out unless the high-pressure side pressure of the heat pump device is high to some extent. do not do.
  • FIG. 5 is a diagram illustrating the flow of the refrigerant when performing the ejector utilization operation.
  • the control unit 10 sets the first expansion valve 11 and the second expansion valve 12 to be fully closed, and sets the third expansion valve 13 and the fourth expansion valve 14 at a predetermined opening degree. Is set to an opening at which an appropriate amount of refrigerant flows.
  • the control part 10 sets the four-way valve 7 to a 1st flow path (The continuous line flow path in the four-way valve 7 of FIG. 5).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat and condenses in the heat exchanger 2 and is liquefied to become a medium-temperature and high-pressure liquid refrigerant. That is, the heat exchanger 2 operates as a radiator (condenser) in the heating operation. As described above, the heating operation includes not only heating that warms the air in the room, but also hot water supply that heats water to make hot water. Therefore, the heat exchanger 2 may exchange heat between the refrigerant and air, or may exchange heat between the refrigerant and water.
  • the medium-temperature and high-pressure liquid refrigerant flows from the branch point 21 toward the ejector 4 and flows into the ejector 4 from the first inlet 41.
  • the refrigerant that has flowed into the ejector 4 from the first inlet 41 is depressurized and accelerated by the nozzle portion 43 as described with reference to FIG.
  • the refrigerant injected into the mixing unit 44 is mixed with the refrigerant gas flowing in from the second inlet 42, and the pressure rises to some extent to become a gas-liquid two-phase.
  • the gas-liquid two-phase refrigerant further increases in pressure at the diffuser portion 45 and flows out from the outlet 46 of the ejector 4.
  • the refrigerant that has flowed out of the ejector 4 flows into the gas-liquid separator 5.
  • the gas-liquid two-phase refrigerant that has flowed in is separated into liquid refrigerant and gas refrigerant.
  • the separated gas refrigerant flows out from the gas side outlet 5B and is sucked into the compressor 1.
  • An oil return hole (not shown) is provided in the U-shaped tube constituting the gas side outlet 5 ⁇ / b> B, so that the oil staying in the gas-liquid separator 5 is returned to the compressor 1.
  • the separated liquid refrigerant flows out from the liquid side outlet 5C and is decompressed by the fourth expansion valve 14, and then takes heat from the air by the heat exchanger 3 and evaporates to become a gas refrigerant. That is, the heat exchanger 3 operates as an evaporator in the heating operation.
  • the gas refrigerant flowing out of the heat exchanger 3 is sucked into the mixing unit 44 from the second inlet 42 of the ejector 4 and mixed with the refrigerant injected from the nozzle unit 43 as described above.
  • the refrigerant sucked into the compressor 1 is compressed, discharged as a high-temperature and high-pressure gas refrigerant, and flows into the heat exchanger 2 again.
  • the pressure of the refrigerant sucked by the compressor 1 is increased by using the ejector 4 to recover the pressure energy of the refrigerant that has been lost in the normal expansion valve. Therefore, the efficiency of the heat pump device 100 is improved.
  • the injection operation is executed when the heating capacity becomes insufficient as the outside air temperature becomes lower and a higher heating capacity is required than the operation using the ejector. That is, the injection operation is executed when the load is large.
  • the case where the load is large is, for example, a case where the outside air temperature is less than 2 ° C.
  • FIG. 6 is a diagram illustrating the flow of the refrigerant when performing the injection operation.
  • the control unit 10 sets the third expansion valve 13 and the fourth expansion valve 14 to be fully closed, and sets the first expansion valve 11 and the second expansion valve 12 to be larger than a predetermined opening degree.
  • the opening is set so that an appropriate amount of refrigerant flows.
  • the control unit 10 adjusts the flow rate of the refrigerant by controlling the opening degree of the first expansion valve 11 so that the degree of superheat at the outlet of the heat exchanger 3 is 5 ° C. or more and less than 10 ° C.
  • control part 10 controls the opening degree of the 2nd expansion valve 12 and adjusts the flow volume of a refrigerant
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat and condenses in the heat exchanger 2 and is liquefied to become a medium-temperature and high-pressure liquid refrigerant.
  • the medium-temperature and high-pressure liquid refrigerant does not flow from the branch point 21 to the ejector 4 side, but all flows into the sub refrigerant circuits 102 and 103.
  • a part of the refrigerant flowing through the sub refrigerant circuits 102 and 103 is distributed to the first sub refrigerant circuit 102 at the branch point 23, and the rest is distributed to the second sub refrigerant circuit 103.
  • the refrigerant distributed to the second sub refrigerant circuit 103 is expanded by the second expansion valve 12 and becomes a gas-liquid two-phase refrigerant.
  • the refrigerant flowing through the second sub refrigerant circuit 103 expanded by the second expansion valve 12 and the refrigerant flowing through the first sub refrigerant circuit 102 are heat-exchanged by the third heat exchanger 6 and flow through the second sub refrigerant circuit 103. Is heated, and the refrigerant flowing through the first sub refrigerant circuit 102 is cooled.
  • the refrigerant flowing through the first sub refrigerant circuit 102 after being cooled by the third heat exchanger 6 is expanded by the first expansion valve 11 and flows into the heat exchanger 3.
  • the refrigerant flowing into the heat exchanger 3 takes heat from the air in the heat exchanger 3 and evaporates to become a gas refrigerant.
  • the gas refrigerant flowing out of the heat exchanger 3 flows from the second inlet 42 of the ejector 4 through the mixing unit 44 and the diffuser unit 45 into the gas-liquid separator 5.
  • the refrigerant flowing into the gas-liquid separator 5 does not flow out from the liquid side outlet 5C because the fourth expansion valve 14 is closed, flows out from the gas side outlet 5B, is sucked into the compressor 1, and is compressed. .
  • the refrigerant flowing through the second sub refrigerant circuit 103 after being heated by the third heat exchanger 6 is injected from the injection pipe 25 into the intermediate pressure space in the compressor 1.
  • the refrigerant flowing out of the heat exchanger 2 (condenser) is injected into the intermediate pressure space of the compressor 1.
  • the circulation amount of the refrigerant increases and the heating capacity increases.
  • Simple bypass operation is performed when the load is small.
  • the case where the load is small is, for example, a case where the outside air temperature is 7 ° C. or higher.
  • FIG. 7 is a diagram illustrating the flow of the refrigerant when performing simple bypass operation.
  • the control unit 10 sets the second expansion valve 12, the third expansion valve 13, and the fourth expansion valve 14 to be fully closed, and the first expansion valve 11 is larger than a predetermined opening degree.
  • the opening is set so that an appropriate amount of refrigerant flows.
  • the control unit 10 adjusts the flow rate of the refrigerant by controlling the opening degree of the first expansion valve 11 so that the degree of superheat at the outlet of the heat exchanger 3 is 5 ° C. or more and less than 10 ° C.
  • the control part 10 sets the four-way valve 7 to a 1st flow path (The continuous line flow path in the four-way valve 7 of FIG. 7).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat and condenses in the heat exchanger 2 and is liquefied to become a medium-temperature and high-pressure liquid refrigerant. Then, the medium-temperature and high-pressure liquid refrigerant does not flow from the branch point 21 to the ejector 4 side, but all flows into the sub refrigerant circuits 102 and 103. All of the refrigerant flowing into the sub refrigerant circuits 102 and 103 flows to the first sub refrigerant circuit 102 side at the branch point 23.
  • the refrigerant flowing through the first sub refrigerant circuit 102 is expanded by the first expansion valve 11 and flows into the heat exchanger 3.
  • the refrigerant flowing into the heat exchanger 3 takes heat from the air in the heat exchanger 3 and evaporates to become a gas refrigerant.
  • the gas refrigerant flowing out of the heat exchanger 3 flows from the second inlet 42 of the ejector 4 through the mixing unit 44 and the diffuser unit 45 into the gas-liquid separator 5.
  • the refrigerant flowing into the gas-liquid separator 5 does not flow out from the liquid side outlet 5C because the fourth expansion valve 14 is closed, flows out from the gas side outlet 5B, is sucked into the compressor 1, and is compressed. . That is, in the simple bypass operation, a general heating operation is performed.
  • FIG. 8 is a diagram illustrating the flow of the refrigerant when performing the defrosting operation.
  • the control unit 10 sets the second expansion valve 12, the third expansion valve 13, and the fourth expansion valve 14 to be fully closed, and sets the first expansion valve 11 to a predetermined opening degree.
  • the opening is set to a large and appropriate amount of refrigerant.
  • the control unit 10 adjusts the flow rate of the refrigerant by controlling the opening of the first expansion valve 11 such that the degree of superheat at the outlet of the heat exchanger 2 is 5 ° C. or more and less than 10 ° C.
  • the control part 10 sets the four-way valve 7 to a 2nd flow path (The broken line flow path in the four-way valve 7 of FIG. 8).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat to the air in the heat exchanger 3 and condenses and liquefies to become a high-pressure liquid refrigerant.
  • the frost on the heat exchanger 3 is melted. That is, the heat exchanger 3 operates as a radiator (condenser) in the defrosting operation.
  • the liquid refrigerant flowing out of the heat exchanger 3 is decompressed by the first expansion valve 11.
  • the refrigerant decompressed by the first expansion valve 11 flows into the heat exchanger 2, absorbs heat, and evaporates to some extent.
  • the gas refrigerant flowing out from the heat exchanger 2 flows into the gas-liquid separator 5 from the second inlet 42 of the ejector 4 through the mixing unit 44 and the diffuser unit 45.
  • the refrigerant flowing into the gas-liquid separator 5 does not flow out from the liquid side outlet 5C because the fourth expansion valve 14 is closed, flows out from the gas side outlet 5B, is sucked into the compressor 1, and is compressed. .
  • FIG. 9 is a diagram illustrating the relationship between the outside air temperature and the heating capacity and the relationship between the outside air temperature and the COP for the heat pump apparatus 100 according to the first embodiment.
  • the solid line indicates the heating capacity and COP of the heat pump device 100.
  • a broken line shows the heating capacity and COP of a general heat pump apparatus.
  • only the solid line is shown about the part with which a continuous line and a broken line overlap.
  • a portion where both a solid line and a broken line are shown is a portion where there is a difference between a general heat pump device and the heat pump device 100. That is, in the general heat pump device and the heat pump device 100 of the present invention, there is a difference between the COP when the outside air temperature is 2 ° C. or more and less than 7 ° C. and the heating capacity when the outside air temperature is less than 2 ° C.
  • the heat pump device 100 When the outside air temperature is 2 ° C. or higher and lower than 7 ° C., the heat pump device 100 performs the ejector-utilizing operation. As described above, in the ejector utilization operation, the pressure energy in the decompression process is recovered by the ejector 4. Therefore, the COP of the heat pump device 100 (COP indicated by reference numeral 32 in FIG. 9) is higher than the COP of the general heat pump apparatus (COP indicated by reference numeral 33 in FIG. 9). When the outside air temperature is less than 2 degrees, the heat pump device 100 performs the injection operation. As described above, in the injection operation, the refrigerant is injected into the intermediate pressure space of the compressor 1 and the refrigerant flow rate increases.
  • symbol 31 of FIG. 9) of a general heat pump apparatus becomes high.
  • the heat pump device 100 performs a simple bypass operation. As described above, in the simple bypass operation, the ejector 4 is bypassed without being used. Therefore, when the outside air temperature rises and the load decreases, the drive power of the ejector 4 is not short, and the refrigerant circulation amount to the heat exchanger 3 operating as an evaporator is not short. As a result, the COP does not become lower than that of a general heat pump device.
  • the heat pump device 100 can be operated with high efficiency and high capacity as a whole by switching the circuit through which the refrigerant flows according to the state of the load.
  • control unit 10 controls the expansion valves 11, 12, 13, 14 and the like according to the outside air temperature during the heating operation.
  • the heat pump apparatus 100 includes a load detection unit (not shown), and the outside air temperature is detected by a load detection unit (not shown).
  • control part 10 is the expansion valve 11,12,13 according to whether the outside temperature at the time of heating operation is less than 2 degreeC, 2 degreeC or more and less than 7 degreeC, or 7 degreeC or more. , 14 etc. were controlled.
  • the temperature of 2 ° C. or 7 ° C. is an example, and is not limited to this.
  • the outside air temperature is used as an index for determining the load.
  • the index for determining the load is not limited to the outside air temperature.
  • the load is a necessary load that is an amount of heat necessary for setting the temperature of the fluid that exchanges heat with the refrigerant flowing through the main refrigerant circuit 101 in the heat exchanger 2 to a predetermined temperature.
  • the load is the amount of heat necessary to bring the temperature of the air in the room to a predetermined temperature in the air conditioning operation, and the temperature of the supplied water is set to the predetermined temperature in the hot water supply operation.
  • the load detection unit may detect not the outside air temperature but the evaporation pressure or temperature of the heat exchanger 3 as an index for determining the load, or may detect a compressor frequency that is an index of the refrigerant circulation amount. Also good. Further, the load detection unit may detect the temperature on the load side such as the room temperature of the room that is warmed in the air conditioning, the tapping temperature, the feed water temperature, or the high pressure side such as the condensation pressure or temperature of the heat exchanger 2. The information may be detected.
  • the tapping temperature is the temperature of the liquid such as water after being heated by the heat exchanger 2 when the heat exchanger 2 is a heat exchanger that exchanges heat between the refrigerant and the liquid such as water.
  • the water supply temperature is the temperature of a liquid such as water before being heated by the heat exchanger 2 when the heat exchanger 2 is a heat exchanger that exchanges heat between a refrigerant and a liquid such as water. Then, the control unit 10 may determine the magnitude of the load from these indexes and control the expansion valves 11, 12, 13, 14, and the like.
  • the load detection unit may determine the load by detecting a plurality of indices.
  • the load detection unit may detect an outside air temperature and a water supply temperature.
  • the control unit 10 performs the ejector operation.
  • the control unit 10 may perform an injection operation when the outside air temperature is less than 2 ° C. or the feed water temperature is low (for example, less than 35 ° C.), and may perform a simple bypass operation when the outside air temperature is 7 ° C. or more.
  • the load detection unit may detect the outside air temperature and the compressor frequency.
  • the control unit 10 when the outside air temperature is 2 ° C. or more and less than 7 ° C. and the compressor frequency is high (for example, a frequency that is 90% or more of the rated capacity of the compressor 1), the control unit 10 performs the ejector-using operation. It is good. Further, the control unit 10 performs the injection operation when the outside air temperature is less than 2 ° C. or the compressor frequency is low (for example, a frequency that is less than 90% of the rated capacity of the compressor 1), and the outside air temperature is 7 ° C. or more. In this case, simple bypass operation may be performed.
  • the control unit 10 performs control so that the injection operation is performed when it is determined that the load is greater than the preset first load. Further, when the control unit 10 determines that the load is lower than the first load and the load is higher than the second load set lower than the first load, the control unit 10 performs control so as to perform the ejector using operation. To do. In addition, when it is determined that the load is smaller than the second load, the control unit 10 performs control so that the simple bypass operation is performed. It is assumed that the first load and the second load are set in advance in a memory included in the control unit 10.
  • control unit 10 In addition to the magnitude of the load, the control unit 10 is in a state where the amount of throttling at the nozzle unit 43 of the ejector 4 is insufficient or excessive, or the nozzle unit 43 of the ejector 4 is blocked due to dust clogging or the like. In some cases, control may be performed to perform injection operation or simple bypass operation.
  • injection operation or simple bypass operation When the ejector 4 is in the above state, if the operation using the ejector 4 is performed, the efficiency is deteriorated. Therefore, an injection operation or a simple bypass operation in which the ejector 4 is bypassed to flow the refrigerant is performed to prevent deterioration in efficiency. As shown in FIG.
  • the load detection unit can detect a state where the throttle amount in the ejector 4 is insufficient or excessive by detecting the outside air temperature or the room temperature.
  • the load detection unit can also detect a state in which the throttle amount in the ejector 4 is insufficient or excessive from the temperature and pressure of each part of the refrigerant circuit. Further, the load detection unit may detect that the nozzle unit 43 of the ejector 4 is blocked by detecting that the outlet superheat degree of the heat exchanger 3 is higher than a predetermined temperature.
  • the fourth expansion valve 14 is an electronic expansion valve.
  • the fourth expansion valve 14 may be a check valve.
  • the ejector 4 is a fixed diaphragm.
  • the ejector 4 includes an electromagnetic coil 47 and a needle 48.
  • the electromagnetic coil 47 By controlling the electromagnetic coil 47, the diameter of the nozzle portion 43 is changed by the needle 48, and the refrigerant passes through the nozzle portion 43.
  • the flow rate may be controllable.
  • the flow rate of the refrigerant flowing from the first inlet 41 of the ejector 4 is adjusted by controlling the opening degree of the third expansion valve 13.
  • the flow rate of the refrigerant passing through the nozzle portion 43 can be controlled by the needle 48 by controlling the electromagnetic coil 47
  • the refrigerant flowing from the first inlet 41 of the ejector 4 can be controlled by controlling the electromagnetic coil 47.
  • the flow rate may be adjusted.
  • R410 and propane are used as examples of the refrigerant.
  • the refrigerant is not limited to propane but may be a low GWP (Global Warming Potential) HFO (hydrofluoroolefin) refrigerant or a mixed refrigerant mixed with an HFO refrigerant. These refrigerants are flammable or slightly flammable. However, if the heat exchanger 2 is provided in an outdoor unit, the combustible refrigerant does not enter the indoor space and can be used safely.
  • GWP Global Warming Potential
  • Embodiment 2 The heat pump device 100 according to the first embodiment performs the ejector operation when the outside air temperature is 2 ° C. or more and less than 7 ° C., and performs the injection operation without using the ejector 4 when the outside air temperature is less than 2 ° C. . That is, in the first embodiment, the operation using the ejector 4 and the injection operation are selectively switched according to the outside air temperature.
  • the heat pump device 100 according to Embodiment 2 newly sets a reference temperature of B ° C. lower than 2 ° C. as the outside air temperature. When the outside air temperature is not lower than B ° C.
  • the heat pump device 100 uses the ejector 4 and performs a combined operation for flowing the refrigerant to the second sub refrigerant circuit 103. Further, the heat pump device 100 performs an injection operation without using the ejector 4 when the outside air temperature is lower than B ° C. That is, the control unit 10 included in the heat pump device 100 according to the second embodiment has a higher load than the first load and a lower load than the third load set higher than the first load. Control to perform combined operation. Further, the control unit 10 performs control so that the injection operation is performed when the load is larger than the third load.
  • FIG. 11 is a diagram illustrating the flow of the refrigerant when performing a combined operation.
  • the control unit 10 causes the first expansion valve 11, the second expansion valve 12, the third expansion valve 13, and the fourth expansion valve 14 to be larger than a predetermined opening, and an appropriate amount of refrigerant is supplied. Set the opening to flow.
  • the control part 10 sets the four-way valve 7 to a 1st flow path (The solid line flow path in the four-way valve 7 of FIG. 11).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat and condenses in the heat exchanger 2 and is liquefied to become a medium-temperature and high-pressure liquid refrigerant, and partly flows from the branch point 21 to the ejector 4.
  • the remainder flows into the sub refrigerant circuits 102 and 103.
  • a part of the refrigerant flowing into the sub refrigerant circuits 102 and 103 is distributed to the first sub refrigerant circuit 102 at the branch point 23, and the rest is distributed to the second sub refrigerant circuit 103. That is, the refrigerant flows through all the circuits.
  • the heat pump device 100 according to the second embodiment is operated using the ejector 4 when the outside air temperature with a medium load is 2 ° C. or higher and lower than 7 ° C., similarly to the heat pump device 100 according to the first embodiment. I do. Moreover, the heat pump apparatus 100 performs simple bypass operation, when the outside air temperature with a small load is 7 degreeC or more. Further, the heat pump device 100 performs an injection operation without using the ejector 4 when the outside air temperature is lower than B ° C.
  • FIG. 12 is a diagram illustrating a relationship between the outside air temperature and the heating capacity and a relationship between the outside air temperature and the COP for the heat pump apparatus 100 according to the second embodiment. Only the portions different from those in FIG. 9 will be described with respect to the relationship between the outside air temperature and the heating capacity and the relationship between the outside air temperature and the COP shown in FIG.
  • the heat pump apparatus 100 performs a combined operation. Therefore, compared with the heating capability (heating capability shown with the code
  • the heating capacity of the heat pump apparatus 100 according to Embodiment 2 is slightly lower than the heating capacity of the heat pump apparatus 100 according to Embodiment 1 (the heating capacity indicated by reference numeral 30 in FIG. 9).
  • the COP of the heat pump device 100 according to the second embodiment COP in FIG. 12
  • the COP of the general heat pump device COP indicated by reference numeral 36 in FIG.
  • the COP indicated by the reference numeral 35 increases. That is, the COP of the heat pump apparatus 100 according to the second embodiment is higher than the COP of the heat pump apparatus 100 according to the first embodiment.
  • the heat pump device 100 according to the second embodiment can perform an operation with a balance between capacity and efficiency when the load is large, compared to the heat pump device 100 according to the first embodiment.
  • the index for determining the load is not limited to the outside air temperature, but may be another index.
  • the heat pump device 100 includes a compressor, a radiator that dissipates and cools the refrigerant discharged from the compressor, and decompresses and expands the refrigerant that is discharged from the radiator to convert expansion energy into pressure energy.
  • An ejector that raises the suction pressure, a gas-liquid separator that divides the refrigerant discharged from the ejector into a gas refrigerant and a liquid refrigerant, and an evaporator that evaporates the liquid refrigerant separated from the gas-liquid separator are connected in an annular fashion through a pipe.
  • a refrigerant circuit configured, A sub refrigerant circuit in which a liquid refrigerant outlet portion of the gas-liquid separator and a high pressure side inlet portion of the ejector are connected by a pipe via a first throttling device;
  • a supercooler is provided between the high pressure side upstream portion of the sub refrigerant circuit and the first expansion device.
  • the heat pump device 100 is characterized in that an open / close valve is provided at the liquid refrigerant outlet of the gas-liquid separator.
  • the on-off valve is a check valve.
  • the cooling heat source of the supercooler is a low-pressure two-phase refrigerant in which a part of the refrigerant in the sub refrigerant circuit is decompressed.
  • the refrigerant evaporated by the supercooler is bypassed to an intermediate pressure portion in the middle of compression of the compressor.
  • the refrigerant circuit and the sub refrigerant circuit are switched according to the outside air temperature.
  • the outside air temperature is characterized by comprising a relatively high temperature of the first outside air and a low temperature of the second outside air.
  • the supercooler is not used above the first outside air temperature, and the subcooler is used below the first outside air temperature.
  • the ejector is not used above the second outside air temperature, and the ejector is used above the first outside air temperature and below the second outside air temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 ヒートポンプ装置において、負荷の状態に応じて、効率のよい高効率運転と能力の高い高能力運転とを切り替え可能とすることを目的とする。エジェクタ4を利用する主冷媒回路101と、熱交換器2とエジェクタ4との間と、気液分離器5と熱交換器3との間とを接続した第1副冷媒回路102と、熱交換器2とエジェクタ4との間と、圧縮機1のインジェクションパイプ25とを接続した第2副冷媒回路103とを備える。負荷が中程度の場合には、冷媒を主冷媒回路101内を循環させ、エジェクタ4を利用した効率のよいエジェクタ利用運転を行う。負荷が大きい場合には、第2副冷媒回路103へ冷媒を流すことにより、能力の高いインジェクション運転を行う。負荷が小さい場合には、第1副冷媒回路102へ冷媒を流すことにより、効率の悪化を防止した単純バイパス運転を行う。

Description

ヒートポンプ装置
 本発明は、例えば、エジェクタを備えるヒートポンプ装置に関する。
 特許文献1には、エジェクタを用いた動力回収運転と、エジェクタを用いず通常の膨張弁を用いた減圧運転とを状況に応じて切り替える空気調和機についての記載がある。
 この空気調和機では、高圧側の圧力が低下した場合に、動力回収運転から減圧運転に切り替える。これにより、エジェクタの駆動動力が不足することで蒸発器への冷媒循環量不足が発生し、効率が悪化することを抑制する。
特開2008-116124号公報
 特許文献1に記載された空気調和機では、外気温度が高いときに暖房運転を行う場合等の負荷が小さい場合に、効率が悪くなることを抑制できる。しかし、外気温度が低いときに暖房運転を行う場合等の負荷が大きい場合に、能力を高めて運転することができない。
 この発明は、負荷の状態に応じて、効率のよい高効率運転と能力の高い高能力運転とを切り替え可能としたヒートポンプ装置を提供することを目的とする。特に、この発明は、高効率運転と高能力運転とのどちらも効率よく運転可能な回路構成のヒートポンプ装置を提供することを目的とする。
 この発明に係るヒートポンプ装置は、例えば、
 圧縮機の吐出側と第1熱交換器の一方の口とが配管により接続され、前記第1熱交換器の他方の口とエジェクタの第1入口とが配管により接続され、前記エジェクタの出口と気液分離器の入口とが配管により接続され、前記気液分離器のガス側出口と前記圧縮機の吸入側とが配管により接続されるとともに、前記気液分離器の液側出口と第2熱交換器の一方の口とが配管により接続され、前記第2熱交換器の他方の口と前記エジェクタの第2入口とが配管により接続され、冷媒が循環する主冷媒回路と、
 前記主冷媒回路における前記第1熱交換器の前記他方の口と前記エジェクタの前記第1入口との間の第1接続点から、前記主冷媒回路における前記気液分離器の前記液側出口と前記第2熱交換器の前記一方の口との間の第2接続点までを配管で接続し、配管の途中に第1膨張機構が設けられた第1副冷媒回路と、
 前記主冷媒回路における前記第1熱交換器の前記他方の口と前記エジェクタの前記第1入口との間の第3接続点を流れる冷媒の一部を、前記エジェクタを通過させることなくバイパスさせて前記圧縮機へ流入させる第2副冷媒回路であって、途中に第2膨張機構が設けられた第2副冷媒回路とを備え、
 前記第1副冷媒回路における前記第1接続点と前記第1膨張機構との間を流れる冷媒と、前記第2副冷媒回路における前記第2膨張機構を通過した後の冷媒とを熱交換させる第3熱交換器が設けられた
ことを特徴とする。
 この発明に係るヒートポンプ装置は、エジェクタを用いる主冷媒回路と、エジェクタをバイパスさせる2つの副冷媒回路とを備える。負荷の状態に応じて、冷媒を流す回路を切り替えることにより、高効率運転と高能力運転とを切り替えることが可能である。また、主冷媒回路と2つの副冷媒回路との分岐位置や、第3熱交換器の設置位置などが最適化されているため、高効率運転と高能力運転とのどちらも効率的に運転可能である。
実施の形態1に係るヒートポンプ装置100の構成図。 ヒートポンプ装置100の制御部10の説明図。 エジェクタ4の構成図。 エジェクタサイクルのP-h線図。 エジェクタ利用運転を行う場合における冷媒の流れを示す図。 インジェクション運転を行う場合における冷媒の流れを示す図。 単純バイパス運転を行う場合における冷媒の流れを示す図。 除霜運転を行う場合における冷媒の流れを示す図。 実施の形態1に係るヒートポンプ装置100についての外気温度と暖房能力との関係、及び外気温度とCOPとの関係を示す図。 エジェクタ4の他の構成を示す図。 複合運転を行う場合における冷媒の流れを示す図。 実施の形態2に係るヒートポンプ装置100についての外気温度と暖房能力との関係、及び外気温度とCOPとの関係を示す図。
 実施の形態1.
 まず、実施の形態1に係るヒートポンプ装置100の構成について説明する。
 図1は、実施の形態1に係るヒートポンプ装置100の構成図である。
 図1に示すように、ヒートポンプ装置100は、実線で示す主冷媒回路101と、破線で示す副冷媒回路102,103とを備える。
 主冷媒回路101では、圧縮機1の吐出口1Bと熱交換器2(第1熱交換器)とが、四方弁7を介して配管により接続される。また、熱交換器2とエジェクタ4の第1入口41とが、配管により接続される。また、エジェクタ4の出口46と気液分離器5の入口5Aとが、配管により接続される。また、気液分離器5のガス側出口5Bと圧縮機1の吸入口1Aとが、配管により接続される。さらに、気液分離器5の液側出口5Cと熱交換器3(第2熱交換器)とが、配管により接続される。また、熱交換器3とエジェクタ4の第2入口42とが、四方弁7を介して配管により接続される。
 なお、四方弁7は、第1流路(図1の四方弁7における実線の流路)と、第2流路(図1の四方弁7における破線の流路)とを切り替える。第1流路は、圧縮機1の吐出口1Bと熱交換器2とを接続するとともに、熱交換器3とエジェクタ4の第2入口42とを接続する流路である。一方、第2流路は、圧縮機1の吐出口1Bと熱交換器3とを接続するとともに、熱交換器2とエジェクタ4の第2入口42とを接続する流路である。
 また、主冷媒回路101には、後述する分岐点21(第1接続点,第3接続点)とエジェクタ4の第1入口41との間の配管に、電子膨張弁である第3膨張弁13(開閉弁)が設けられている。また、主冷媒回路101には、気液分離器5の液側出口5Cと後述する合流点22(第2接続点)との間の配管に、電子膨張弁である第4膨張弁14(開閉弁)が設けられている。
 なお、主冷媒回路101には、HFC(ハイドロフルオロカーボン)系冷媒のR410あるいは自然冷媒であるプロパンやCO等の冷媒が封入されている。
 副冷媒回路102,103は、熱交換器2とエジェクタ4の第1入口41との間の分岐点21で、主冷媒回路101から配管が分岐して設けられる。副冷媒回路102,103は、分岐点23で第1副冷媒回路102と第2副冷媒回路103とに分岐する。
 第1副冷媒回路102は、分岐点23から、主冷媒回路101における気液分離器5の液側出口5Cと熱交換器3との間の合流点22までを配管で接続する。なお、第1副冷媒回路102には、配管の途中に電子膨張弁である第1膨張弁11(第1膨張機構)が設けられている。
 第2副冷媒回路103は、分岐点23から、圧縮機1に設けられたインジェクションパイプ25までを接続する。なお、第2副冷媒回路103には、配管の途中に電子膨張弁である第2膨張弁12(第2膨張機構)が設けられている。
 なお、インジェクションパイプ25は、圧縮機1における中間圧空間に接続される。中間圧空間とは、圧縮機1が吸入口1Aから吸入した冷媒を低圧から高圧まで圧縮する場合に、吸入口1Aから吸入した冷媒が圧縮機1において低圧よりも高く高圧よりも低い中間圧となる空間のことである。つまり、中間圧空間とは、圧縮機1において吸入口1Aから吸入した冷媒が圧縮途中の段階となる空間のことである。例えば、低段圧縮部と高段圧縮部とが直列に連結された二段圧縮機であれば、低段圧縮部と高段圧縮部とを繋ぐ流路が中間圧空間である。また、吸入口から吸入した冷媒を1つの圧縮部で低圧から高圧まで圧縮する単段圧縮機であれば、吸入口から吸入した冷媒が中間圧となる圧縮部内(圧縮室内)の空間が中間圧空間である。したがって、第2副冷媒回路103は、いわゆるインジェクション回路である。
 また、ヒートポンプ装置100は、第1副冷媒回路102における分岐点23と第1膨張弁11との間を流れる冷媒と、第2副冷媒回路103における第2膨張弁12とインジェクションパイプ25との間を流れる冷媒とを熱交換させる第3熱交換器6(過冷却器)を備える。
 図2は、ヒートポンプ装置100の制御部10の説明図である。
 図2に示すように、ヒートポンプ装置100は、温度センサT1,T2,T3,T4、制御部10を備える。
 温度センサT1は、圧縮機1の吐出側の冷媒温度を検出する。
 温度センサT2は、暖房運転時における熱交換器2の出口側の冷媒温度を検出する。つまり、温度センサT2は、暖房運転時に、冷媒の過冷却度を検出する。
 温度センサT3は、暖房運転時における熱交換器3の出口側の冷媒温度を検出する。つまり、温度センサT3は、暖房運転時に、冷媒の過熱度を検出する。
 温度センサT4は、外気温度を検出する。
 制御部10は、温度センサT1,T2,T3,T4が検出した温度に応じて、膨張弁11,12,13,14の開度を制御する。例えば、制御部10は、温度センサT4が検出した外気温度や、温度センサT1が検出した冷媒温度に応じて、第2膨張弁12を制御する。また、制御部10は、温度センサT4が検出した外気温度や、温度センサT2が検出した冷媒温度に応じて、第3膨張弁13を制御する。また、制御部10は、温度センサT4が検出した外気温度や、温度センサT3が検出した冷媒温度に応じて、第1膨張弁11、第4膨張弁14を制御する。
 また、制御部10は、暖房運転、冷房運転、除霜運転等の運転内容に応じて、四方弁7の設定を制御する。
 なお、制御部10は、マイクロコンピュータなどのコンピュータである。
 次に、エジェクタ4の構成と動作について説明する。
 図3は、エジェクタ4の構成図である。
 図3に示すように、エジェクタ4は、第1入口41と第2入口42との2つの入口と、1つの出口46とを備える。また、エジェクタ4は、ノズル部43と、混合部44と、ディフューザ部45とを備える。混合部44とディフューザ部45とを総称して昇圧部と呼ぶ。
 第1入口41から駆動流となる高圧の液冷媒が流入する。第1入口41から流入した冷媒は、ノズル部43で減圧膨張されるとともに加速され、混合部44へ噴射される。つまり、ノズル部43は、冷媒の圧力エネルギーを運動エネルギーに等エントロピー的に変換して、冷媒を減圧膨張させ、混合部44へ噴射する。
 ノズル部43から混合部44へ噴射された高速の冷媒流の巻き込み作用により、第2入口42から冷媒を混合部44へ吸引する。そして、混合部44では、ノズル部43から噴射された冷媒と第2入口42から吸引された冷媒とが混合される。この際、ノズル部43から噴射された冷媒の運動エネルギーと、第2入口42から吸引された冷媒の運動エネルギーとの和が保存されるように冷媒が混合されることにより、混合部44において冷媒の圧力が上昇して気液二相の冷媒になる。
 ディフューザ部45は、混合部44側から出口46側へ向かって流路断面積が徐々に拡大している。そのため、ディフューザ部45では、混合部44側から流入した冷媒の速度エネルギーが圧力エネルギーに変換され、圧力が上昇する。そして、出口46から冷媒が流出する。
 次に、エジェクタ4を利用したエジェクタサイクルの効果について説明する。
 図4は、エジェクタサイクルのP-h線図である。なお、図4において、実線はエジェクタサイクルを示し、破線は一般的な膨張弁サイクルを示す。一般的な膨張弁サイクルとは、圧縮機、凝縮機、膨張弁、蒸発器が順次配管で接続されたヒートポンプサイクルのことである。
 図4に示すように、エジェクタサイクルでは、圧縮機1を出た高温高圧の冷媒が、熱交換器2で放熱して冷却され、第1入口41からエジェクタ4へ流入する。そして、第1入口41からエジェクタ4へ流入した冷媒は、上述したように、ノズル部43で減圧膨張される。さらに、ノズル部43から噴射された低温の冷媒は、混合部44で、熱交換器3から流出した高温の冷媒と混合され、温度が上昇する。さらに、ディフューザ部45で冷媒が昇圧され、気液分離器5へ流入して、気液分離される。気液分離器5で分離されたガス冷媒は圧縮機1へ吸入され、液冷媒は熱交換器3へ流入する。
 このように動作することにより、エジェクタサイクルにおいて圧縮機1が吸入する冷媒の圧力は、一般的な膨張弁サイクルにおいて圧縮機が吸入する冷媒の圧力よりもΔPだけ高い。圧縮機1が吸入する冷媒の圧力がΔPだけ高い分、圧縮機1へ供給する動力を低減させることができ、COP(Coefficient Of Performance)を高くすることができる。
 なお、エジェクタ4は、上述したように、ノズル部43、混合部44、ディフューザ部45を備える二相流エジェクタである。エジェクタ4の各部分の寸法は、ヒートポンプサイクルにおける負荷(例えば、外気温度2℃以上7℃未満)での高低圧や循環流量から最適になるようチューニングされ、設計されている。
 通常の膨張弁では、冷媒を膨張させる際、圧力エネルギーが損失となっていた。これに対して、エジェクタ4は、上述したように、ノズル部43で冷媒を膨張させる際、冷媒の圧力エネルギーを運動エネルギーに変換し、さらに、混合部44とディフューザ部45とで運動エネルギーを圧力エネルギーに変換する。これにより、損失となっていた圧力エネルギーの一部を回収する。
 次に、実施の形態1に係るヒートポンプ装置100の動作について説明する。ここでは、暖房運転を例として説明する。ここでいう暖房運転には、居室内の空気を暖める暖房だけでなく、水に熱を与えて温水を作る給湯も含む。
 図5から図8は、運転状態毎のヒートポンプ装置100における冷媒の流れを示す図である。図5から図8において、矢印は冷媒の流れを表す。また、膨張弁11,12,13,14の符号の横に括弧書きで示した“開”,“閉”は、膨張弁11,12,13,14の開度を表す。“開”であれば、その膨張機構の開度が所定の開度よりも大きく、冷媒が流れる状態であることを表す。“閉”であれば、その膨張機構の開度が所定の開度よりも小さく(例えば、全閉であり)、冷媒が流れない状態であることを表す。また、実線の回路は冷媒が流れる回路を示し、破線の回路は冷媒が流れない回路を示す。
 まず、エジェクタ4を利用したエジェクタ利用運転を行う場合について説明する。エジェクタ利用運転は、負荷が中程度の場合に実行される。負荷について詳しくは後述するが、負荷が中程度の場合とは、例えば、外気温度が2℃以上7℃未満の場合である。「外気温度が2℃以上7℃未満」は年間の暖房運転における標準的な温度帯であり、暖房運転全時間の約半分を占める温度帯である。そのため、この温度帯で運転効率(COP)を高めることで全運転における効率向上に最も寄与でき、ヒートポンプ装置が年間に使用する電力を大きく削減することが可能になる。なお、COPを高めるためにエジェクタ4を利用するが、ヒートポンプ装置の高圧側圧力がある程度高くないとエジェクタ4の効果が引き出せないため、暖房負荷が低くなる温度(ここでは、7℃以上)では使用しない。
 図5は、エジェクタ利用運転を行う場合における冷媒の流れを示す図である。
 負荷が中程度の場合、制御部10は、第1膨張弁11と第2膨張弁12とを全閉に設定するとともに、第3膨張弁13と第4膨張弁14とを所定の開度よりも大きく、適切な量の冷媒が流れる開度に設定する。また、制御部10は、四方弁7を第1流路(図5の四方弁7における実線の流路)に設定する。
 この場合、圧縮機1から吐出された高温、高圧のガス冷媒は、熱交換器2で放熱して凝縮し、液化して中温、高圧の液冷媒になる。つまり、熱交換器2は、暖房運転では放熱器(凝縮機)として動作する。なお、上述したように、暖房運転には、居室内の空気を暖める暖房だけでなく、水に熱を与えて温水を作る給湯も含む。したがって、熱交換器2は、冷媒と空気とを熱交換してもよいし、冷媒と水を熱交換してもよい。そして、中温、高圧の液冷媒は、分岐点21から全てエジェクタ4側へ流れ、第1入口41からエジェクタ4へ流入する。
 第1入口41からエジェクタ4へ流入した冷媒は、図3に基づき説明した通り、ノズル部43で減圧、加速され、混合部44へ噴射される。混合部44へ噴射された冷媒は、第2入口42から流入する冷媒ガスと混合され、ある程度圧力が上昇して気液二相になる。そして、気液二相冷媒は、ディフューザ部45でさらに圧力が上昇して、エジェクタ4の出口46から流出する。
 エジェクタ4を流出した冷媒は、気液分離器5へ流入する。気液分離器5では、流入した気液二相冷媒が液冷媒とガス冷媒とに分離される。分離されたガス冷媒は、ガス側出口5Bから流出して圧縮機1に吸入される。また、ガス側出口5Bを構成するU字管には図示されていない油戻し穴が設けられ、気液分離器5内に滞留した油が圧縮機1へ返される。一方、分離された液冷媒は、液側出口5Cから流出し第4膨張弁14で減圧された後、熱交換器3で空気から熱を奪って蒸発してガス冷媒になる。つまり、熱交換器3は、暖房運転では蒸発器として動作する。熱交換器3から流出したガス冷媒は、エジェクタ4の第2入口42から混合部44へ吸引され、上述した通りノズル部43から噴射した冷媒と混合される。
 そして、圧縮機1へ吸入された冷媒は、圧縮され、高温、高圧のガス冷媒となって吐出され、再び熱交換器2へ流入する。
 エジェクタ利用運転では、エジェクタ4を利用することにより、通常の膨張弁では損失となっていた冷媒の圧力エネルギーを回収することで、圧縮機1が吸入する冷媒の圧力が高くなる。そのため、ヒートポンプ装置100の効率がよくなる。
 次に、エジェクタ4を利用せずインジェクション運転を行う場合について説明する。インジェクション運転は、外気温が低くなることに伴い暖房能力が不足し、エジェクタ利用運転よりも高い暖房能力が必要となる場合に実行される。つまり、インジェクション運転は、負荷が大きい場合に実行される。負荷が大きい場合とは、例えば、外気温度が2℃未満の場合である。
 図6は、インジェクション運転を行う場合における冷媒の流れを示す図である。
 負荷が大きい場合、制御部10は、第3膨張弁13と第4膨張弁14とを全閉に設定するとともに、第1膨張弁11と第2膨張弁12とを所定の開度よりも大きく、適切な量の冷媒が流れる開度に設定する。例えば、制御部10は、熱交換器3の出口過熱度が5℃以上10℃未満となるように、第1膨張弁11の開度を制御して冷媒の流量を調整する。また、制御部10は、圧縮機1の吐出温度が所定の温度を超えない適切な温度となるように、第2膨張弁12の開度を制御して冷媒の流量を調整する。また、制御部10は、四方弁7を第1流路(図6の四方弁7における実線の流路)に設定する。
 この場合、エジェクタ利用運転の場合と同様に、圧縮機1から吐出された高温、高圧のガス冷媒は、熱交換器2で放熱して凝縮し、液化して中温、高圧の液冷媒となる。そして、中温、高圧の液冷媒は、分岐点21からエジェクタ4側へは流れず、全て副冷媒回路102,103へ流入する。副冷媒回路102,103を流れる冷媒は、分岐点23で一部が第1副冷媒回路102へ分配され、残りが第2副冷媒回路103へ分配される。
 第2副冷媒回路103へ分配された冷媒は、第2膨張弁12で膨張され、気液二相の冷媒になる。第2膨張弁12で膨張した第2副冷媒回路103を流れる冷媒と第1副冷媒回路102を流れる冷媒とは、第3熱交換器6で熱交換され、第2副冷媒回路103を流れる冷媒は加熱され、第1副冷媒回路102を流れる冷媒は冷却される。
 第3熱交換器6で冷却された後の第1副冷媒回路102を流れる冷媒は、第1膨張弁11で膨張され、熱交換器3へ流入する。熱交換器3へ流入した冷媒は、熱交換器3で空気から熱を奪って蒸発してガス冷媒になる。熱交換器3から流出したガス冷媒は、エジェクタ4の第2入口42から混合部44、ディフューザ部45を通って、気液分離器5へ流入する。気液分離器5へ流入した冷媒は、第4膨張弁14が閉鎖されているため液側出口5Cからは流出せず、ガス側出口5Bから流出して圧縮機1へ吸入され、圧縮される。
 一方、第3熱交換器6で加熱された後の第2副冷媒回路103を流れる冷媒は、インジェクションパイプ25から圧縮機1における中間圧空間へ注入される。
 インジェクション運転では、圧縮機1の中間圧空間へ熱交換器2(凝縮器)から流出した冷媒が注入される。その結果、冷媒の循環量が増加し、暖房能力が高くなる。
 次に、エジェクタ4を利用せず、インジェクション運転を行わない単純バイパス運転を行う場合について説明する。単純バイパス運転は、負荷が小さい場合に実行される。負荷が小さい場合とは、例えば、外気温度が7℃以上の場合である。
 図7は、単純バイパス運転を行う場合における冷媒の流れを示す図である。
 負荷が小さい場合、制御部10は、第2膨張弁12と第3膨張弁13と第4膨張弁14とを全閉に設定するとともに、第1膨張弁11を所定の開度よりも大きく、適切な量の冷媒が流れる開度に設定する。例えば、制御部10は、熱交換器3の出口過熱度が5℃以上10℃未満となるように、第1膨張弁11の開度を制御して冷媒の流量を調整する。また、制御部10は、四方弁7を第1流路(図7の四方弁7における実線の流路)に設定する。
 この場合、エジェクタ利用運転の場合と同様に、圧縮機1から吐出された高温、高圧のガス冷媒は、熱交換器2で放熱して凝縮し、液化して中温、高圧の液冷媒となる。そして、中温、高圧の液冷媒は、分岐点21からエジェクタ4側へは流れず、全て副冷媒回路102,103へ流入する。副冷媒回路102,103へ流入した冷媒は、分岐点23で全て第1副冷媒回路102側へ流れる。第1副冷媒回路102を流れる冷媒は、第1膨張弁11で膨張され、熱交換器3へ流入する。熱交換器3へ流入した冷媒は、熱交換器3で空気から熱を奪って蒸発してガス冷媒になる。熱交換器3から流出したガス冷媒は、エジェクタ4の第2入口42から混合部44、ディフューザ部45を通って、気液分離器5へ流入する。気液分離器5へ流入した冷媒は、第4膨張弁14が閉鎖されているため液側出口5Cからを流出せず、ガス側出口5Bから流出して圧縮機1へ吸入され、圧縮される。
 つまり、単純バイパス運転では、一般的な暖房運転が行われる。
 負荷が低い場合には、高圧側の圧力が低くなる。つまり、第1入口41から流入する冷媒の圧力が低くなる。そのため、ノズル部43では十分な駆動力を得ることができず、混合部44において第2入口42から冷媒を十分に吸引できない。その結果、熱交換器3(蒸発器)への冷媒循環量が減ってしまい、効率が悪くなる。しかし、単純バイパス運転では、エジェクタ4を利用せずバイパスさせることにより、熱交換器3への冷媒循環量が減ることを防止でき、効率の悪化を抑制できる。
 次に、除霜運転について説明する。低外気温で暖房運転を行った場合、熱交換器3に着霜するため、除霜運転を行う必要がある。
 図8は、除霜運転を行う場合における冷媒の流れを示す図である。
 除霜運転を行う場合、制御部10は、第2膨張弁12と第3膨張弁13と第4膨張弁14とを全閉に設定するとともに、第1膨張弁11を所定の開度よりも大きく、適切な量の冷媒が流れる開度に設定する。例えば、制御部10は、熱交換器2の出口過熱度が5℃以上10℃未満となるように、第1膨張弁11の開度を制御して冷媒の流量を調整する。また、制御部10は、四方弁7を第2流路(図8の四方弁7における破線の流路)に設定する。
 この場合、圧縮機1から吐出された高温・高圧のガス冷媒は、熱交換器3で空気へ放熱して凝縮し、液化して、高圧の液冷媒となる。この際、熱交換器3に着いた霜を溶かす。つまり、熱交換器3は、除霜運転では放熱器(凝縮機)として動作する。熱交換器3から流出した液冷媒は、第1膨張弁11で減圧される。第1膨張弁11で減圧された冷媒は、熱交換器2へ流入し、吸熱してある程度蒸発する。熱交換器2から流出したガス冷媒は、エジェクタ4の第2入口42から混合部44、ディフューザ部45を通って、気液分離器5へ流入する。気液分離器5へ流入した冷媒は、第4膨張弁14が閉鎖されているため液側出口5Cからを流出せず、ガス側出口5Bから流出して圧縮機1へ吸入され、圧縮される。
 次に、ヒートポンプ装置100についての負荷と暖房能力との関係、及び負荷とCOPとの関係を説明する。なお、ここでは、負荷を表す指標として外気温度を用いて説明する。
 図9は、実施の形態1に係るヒートポンプ装置100についての外気温度と暖房能力との関係、及び外気温度とCOPとの関係を示す図である。図9において、実線は、ヒートポンプ装置100の暖房能力及びCOPを示す。一方、破線は、一般的なヒートポンプ装置の暖房能力及びCOPを示す。なお、実線と破線とが重なる部分については実線のみが示されている。したがって、実線と破線との両方が示された部分が、一般的なヒートポンプ装置とヒートポンプ装置100とで差がある部分である。
 つまり、一般的なヒートポンプ装置と本願発明のヒートポンプ装置100とでは、外気温度が2℃以上7℃未満の場合におけるCOPと、外気温度が2℃未満の場合における暖房能力とに差がある。
 外気温度が2℃以上7℃未満である場合、ヒートポンプ装置100はエジェクタ利用運転を行う。上述したように、エジェクタ利用運転では、減圧過程における圧力エネルギーをエジェクタ4により回収する。そのため、一般的なヒートポンプ装置のCOP(図9の符号33で示すCOP)に比べ、ヒートポンプ装置100のCOP(図9の符号32で示すCOP)は高くなる。
 また、外気温度が2度未満である場合、ヒートポンプ装置100はインジェクション運転を行う。上述したように、インジェクション運転では、圧縮機1の中間圧空間へ冷媒が注入され冷媒流量が増加する。そのため、一般的なヒートポンプ装置の暖房能力(図9の符号31で示す暖房能力)に比べ、ヒートポンプ装置100の暖房能力(図9の符号30で示す暖房能力)は高くなる。
 また、外気温度が7℃以上である場合、ヒートポンプ装置100は単純バイパス運転を行う。上述したように、単純バイパス運転では、エジェクタ4を利用せずバイパスさせる。そのため、外気温度が上昇し負荷が下がることにより、エジェクタ4の駆動動力が不足して、蒸発器として動作する熱交換器3への冷媒循環量が不足することがない。その結果、一般的なヒートポンプ装置と比べCOPが低くなることがない。
 以上のように、ヒートポンプ装置100は、負荷の状態に応じて、冷媒を流す回路を切り替えることにより、全体として、効率がよく、また能力が高い運転をすることができる。
 なお、上記説明では、制御部10は、暖房運転時の外気温度に応じて膨張弁11,12,13,14等の制御を行うとした。ここで、ヒートポンプ装置100は、図示されていない負荷検出部を備え、外気温度は、図示されていない負荷検出部によって検出される。
 また、上記説明では、制御部10は、暖房運転時の外気温度が2℃未満であるか、2℃以上7℃未満であるか、7℃以上であるかによって、膨張弁11,12,13,14等の制御を行った。しかし、2℃や7℃という温度は一例であり、これに限定されるものではない。
 また、上記説明では、負荷を判断する指標として外気温度を用いた。しかし、負荷を判断する指標は外気温度に限定されるものではない。
 ここで、負荷とは、熱交換器2において主冷媒回路101を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷である。つまり、負荷とは、空調運転であれば、居室内の空気の温度を所定の温度にするのに必要な熱量であり、給湯運転であれば、供給する水の温度を所定の温度にするのに必要な温度である。
 そこで、負荷検出部は、負荷を判断する指標として、外気温度ではなく、熱交換器3の蒸発圧力や温度を検出してもよいし、冷媒循環量の指標となる圧縮機周波数を検出してもよい。また、負荷検出部は、空調において暖める部屋の室内温度や、出湯温度や、給水温度のような負荷側の温度を検出してもよいし、熱交換器2の凝縮圧力や温度等の高圧側の情報を検出してもよい。なお、出湯温度とは、熱交換器2が冷媒と水等の液体とを熱交換する熱交換器である場合において、熱交換器2で加熱された後の水等の液体の温度である。給水温度とは、熱交換器2が冷媒と水等の液体とを熱交換する熱交換器である場合において、熱交換器2で加熱される前の水等の液体の温度である。
 そして、制御部10は、これらの指標から負荷の大きさを判断して、膨張弁11,12,13,14等の制御を行うとしてもよい。
 また、負荷検出部は、複数の指標を検出して負荷を判断してもよい。
 例えば、負荷検出部は、外気温度と給水温度とを検出してもよい。この場合、例えば、制御部10は、外気温度が2℃以上7℃未満で、かつ給水温度が高い(例えば、35℃以上)場合の場合に、エジェクタ利用運転を行う。また、制御部10は、外気温度が2℃未満又は給水温度が低い(例えば、35℃未満)場合、インジェクション運転を行い、外気温度が7℃以上の場合、単純バイパス運転を行うとしてもよい。
 また、例えば、負荷検出部は、外気温度と圧縮機周波数とを検出してもよい。この場合、例えば、制御部10は、外気温度が2℃以上7℃未満、かつ圧縮機周波数が大きい(例えば、圧縮機1の定格能力の90%以上となる周波数)場合、エジェクタ利用運転を行うとしてもよい。また、制御部10は、外気温度が2℃未満又は圧縮機周波数が低い(例えば、圧縮機1の定格能力の90%未満となる周波数)場合、インジェクション運転を行い、外気温度が7℃以上の場合、単純バイパス運転を行うとしてもよい。
 いずれの指標を用いて負荷を判断する場合であっても、制御部10は、予め設定した第1の負荷よりも負荷が大きいと判断した場合、インジェクション運転を行うように制御する。また、制御部10は、前記第1の負荷よりも負荷が低く、前記第1の負荷よりも低く設定した第2の負荷よりも負荷が大きいと判断した場合、エジェクタ利用運転を行うように制御する。また、制御部10は、前記第2の負荷よりも負荷が小さいと判断した場合、単純バイパス運転を行うように制御する。
 なお、第1の負荷、第2の負荷は、制御部10が備えるメモリに予め設定されているものとする。
 また、制御部10は、負荷の大きさ以外に、エジェクタ4のノズル部43での絞り量が不足又は過剰である状態や、エジェクタ4のノズル部43がゴミ詰まり等により閉塞した状態になった場合に、インジェクション運転又は単純バイパス運転を行うように制御してもよい。エジェクタ4が上記の状態になった場合、エジェクタ4を利用した運転を行うと、効率が悪くなる。そこで、エジェクタ4をバイパスさせて冷媒を流すインジェクション運転又は単純バイパス運転を行い、効率の悪化を防止する。
 なお、図3に示すように、エジェクタ4のノズル部43を、絞り量を調整できない固定絞りとした場合、外気温度や室内温度の変化に伴い蒸発温度が上昇又は低下することにより、エジェクタ4での絞り量が不足又は過剰となる。したがって、負荷検出部は、外気温度や室内温度を検出することにより、エジェクタ4での絞り量が不足又は過剰となっている状態を検出できる。また、負荷検出部は、冷媒回路各部の温度や圧力からエジェクタ4での絞り量が不足又は過剰となっている状態を検出することも可能である。また、負荷検出部は、熱交換器3の出口過熱度が所定の温度よりも高くなっていることを検出することにより、エジェクタ4のノズル部43が閉塞したことを検出してもよい。
 また、上記説明では、第4膨張弁14を電子膨張弁とした。しかし、第4膨張弁14は、逆止弁であってもよい。第4膨張弁14が逆止弁である場合、気液分離器5と合流点22とをつなぐ配管に、第4膨張弁14と直列に接続された絞り機構を設ける必要がある。
 また、上記説明では、図3に示すように、エジェクタ4が固定絞りである例を示した。しかし、図10に示すように、エジェクタ4が電磁コイル47とニードル48とを備え、電磁コイル47を制御することにより、ニードル48でノズル部43の径を変化させて、ノズル部43を通る冷媒の流量を制御可能にしてもよい。
 上記説明では、第3膨張弁13の開度制御することにより、エジェクタ4の第1入口41から流入する冷媒の流量を調整した。しかし、電磁コイル47を制御することにより、ニードル48でノズル部43を通る冷媒の流量を制御可能にした場合、電磁コイル47を制御することにより、エジェクタ4の第1入口41から流入する冷媒の流量を調整してもよい。
 また、上記説明では、冷媒の一例としてR410やプロパンを上げた。しかし、冷媒はプロパンに限らず、低GWP(Global Warming Potential)であるHFO(ハイドロフルオロオレフィン)系の冷媒や、HFO系の冷媒を混合した混合冷媒を用いてもよい。これらの冷媒は、可燃性あるいは微燃性である。しかし、熱交換器2が室外機に備えられている場合であれば、室内側の空間に可燃性冷媒が進入することはなく、安全に使用できる。
 実施の形態2.
 実施の形態1に係るヒートポンプ装置100は、外気温度が2℃以上7℃未満の場合、エジェクタ利用運転を行い、外気温度が2℃未満の場合、エジェクタ4を用いず、インジェクション運転を行うとした。つまり、実施の形態1では、外気温度に応じて、エジェクタ4を用いる運転と、インジェクション運転とを選択的に切り替えた。
 実施の形態2に係るヒートポンプ装置100は、新たに、外気温度として2℃よりも低いB℃という基準温度を設定する。そして、ヒートポンプ装置100は、外気温度がB℃以上2℃未満の場合、エジェクタ4を用いるとともに、第2副冷媒回路103へも冷媒を流す複合運転を行う。また、ヒートポンプ装置100は、外気温度がB℃未満の場合、エジェクタ4を用いないインジェクション運転を行う。
 つまり、実施の形態2に係るヒートポンプ装置100が備える制御部10は、前記第1の負荷よりも負荷が高く、前記第1の負荷よりも高く設定された第3の負荷よりも負荷が小さい場合、複合運転を行うように制御する。また、制御部10は、前記第3の負荷よりも負荷が大きい場合、インジェクション運転を行うように制御する。
 図11は、複合運転を行う場合における冷媒の流れを示す図である。
 複合運転を行う場合、制御部10は、第1膨張弁11と第2膨張弁12と第3膨張弁13と第4膨張弁14とを所定の開度よりも大きく、適切な量の冷媒が流れる開度に設定する。また、制御部10は、四方弁7を第1流路(図11の四方弁7における実線の流路)に設定する。
 圧縮機1から吐出された高温、高圧のガス冷媒は、熱交換器2で放熱して凝縮し、液化して中温、高圧の液冷媒となって分岐点21から一部がエジェクタ4へ流入し、残りが副冷媒回路102,103へ流入する。副冷媒回路102,103へ流入した冷媒は、分岐点23で一部が第1副冷媒回路102へ分配され、残りが第2副冷媒回路103へ分配される。つまり、全ての回路を冷媒が流れる。
 なお、実施の形態2に係るヒートポンプ装置100は、実施の形態1に係るヒートポンプ装置100と同様に、負荷が中程度である外気温度が2℃以上7℃未満の場合、エジェクタ4を用いた運転を行う。また、ヒートポンプ装置100は、負荷が小さい外気温度が7℃以上の場合、単純バイパス運転を行う。また、ヒートポンプ装置100は、外気温度がB℃未満の場合、エジェクタ4を用いないインジェクション運転を行う。
 図12は、実施の形態2に係るヒートポンプ装置100についての外気温度と暖房能力との関係、及び外気温度とCOPとの関係を示す図である。図12に示す外気温度と暖房能力との関係、及び外気温度とCOPとの関係について、図9とは異なる部分のみを説明する。
 外気温度がB℃以上2℃未満である場合、ヒートポンプ装置100は複合運転を行う。そのため、一般的なヒートポンプ装置の暖房能力(図12の符号31で示す暖房能力)に比べ、実施の形態2に係るヒートポンプ装置100の暖房能力(図12の符号34で示す暖房能力)は高くなる。しかし、実施の形態1に係るヒートポンプ装置100の暖房能力(図9の符号30で示す暖房能力)に比べ、実施の形態2に係るヒートポンプ装置100の暖房能力は若干低くなる。
 一方、外気温度がB℃以上2℃未満である場合、一般的なヒートポンプ装置のCOP(図12の符号36で示すCOP)に比べ、実施の形態2に係るヒートポンプ装置100のCOP(図12の符号35で示すCOP)は高くなる。つまり、実施の形態1に係るヒートポンプ装置100のCOPに比べ、実施の形態2に係るヒートポンプ装置100のCOPは高くなる。
 すなわち、実施の形態2に係るヒートポンプ装置100は、実施の形態1に係るヒートポンプ装置100に比べ、負荷が大きい場合における能力と効率のバランスの取れた運転を行うことができる。
 なお、実施の形態1と同様に、負荷を判断する指標は外気温度に限らず、他の指標であってもよい。
 以上をまとめると次のようになる。
 ヒートポンプ装置100は、圧縮機と、前記圧縮機から吐出した冷媒を放熱して冷却する放熱器と、前記放熱器から出た冷媒を減圧膨張し膨張エネルギーを圧力エネルギーに変換して前記圧縮機の吸入圧力を高めるエジェクタと、前記エジェクタから出た冷媒をガス冷媒と液冷媒に分ける気液分離器と、気液分離器から分離された液冷媒を蒸発させる蒸発器とが順次配管で環状に接続されて構成された冷媒回路と、
 前記気液分離器の液冷媒出口部と前記エジェクタの高圧側入口部とが、第1絞り装置を介して配管で接続された副冷媒回路と、
を備えた冷凍サイクル装置において、前記副冷媒回路の高圧側上流部と前記第1絞り装置との間に過冷却器を設けたことを特徴とする。
 また、ヒートポンプ装置100は、前記気液分離器の液冷媒出口部に開閉弁を設けたことを特徴とする。
 さらに、前記開閉弁を逆止弁としたことを特徴とする。
 また、さらに、前記過冷却器の冷熱源は、副冷媒回路の冷媒の一部を減圧した低圧二相冷媒であることを特徴とする。
 また、前記過冷却器で蒸発した冷媒を圧縮機の圧縮途中の中間圧力部分へバイパスすることを特徴とする。
 前記冷媒回路と、前記副冷媒回路とを外気温度に応じて切り替えることを特徴とする。
 前記外気温度とは、比較的高温の第1外気温度と低温の第2外気温度からなることを特徴とする。
 前記第1外気温度以上では前記過冷却器を使用せず、前記第1外気温度未満では、前記過冷却器を使用することを特徴とする。
 前記第2外気温度以上では前記エジェクタを使用せず、前記第1外気温度以上、前記第2外気温度未満では、前記エジェクタを使用することを特徴とする。
 1 圧縮機、1A 吸入口、1B 吐出口、2 熱交換器、3 熱交換器、4 エジェクタ、5 気液分離器、5A 入口、5B ガス側出口、5C 液側出口、6 第3熱交換器、7 四方弁、8 第4熱交換器、10 制御部、11 第1膨張弁、12 第2膨張弁、13 第3膨張弁、14 第4膨張弁、15,16 電磁弁、17,18 毛細管、21,23 分岐点、22,24 合流点、25 インジェクションパイプ、41 第1入口、42 第2入口、43 ノズル部、44 混合部、45 ディフューザ部、46 出口、47 電磁コイル、48 ニードル、100 ヒートポンプ装置、101 主冷媒回路、102 第1副冷媒回路、103 第2副冷媒回路。

Claims (11)

  1.  圧縮機の吐出側と第1熱交換器とが配管により接続され、前記第1熱交換器とエジェクタの第1入口とが配管により接続され、前記エジェクタの出口と気液分離器の入口とが配管により接続され、前記気液分離器のガス側出口と前記圧縮機の吸入側とが配管により接続されるとともに、前記気液分離器の液側出口と第2熱交換器とが配管により接続され、前記第2熱交換器と前記エジェクタの第2入口とが配管により接続され、冷媒が循環する主冷媒回路と、
     前記主冷媒回路における前記第1熱交換器と前記エジェクタの前記第1入口との間の第1接続点から、前記主冷媒回路における前記気液分離器の前記液側出口と前記第2熱交換器との間の第2接続点までを配管で接続し、配管の途中に第1膨張機構が設けられた第1副冷媒回路と、
     前記主冷媒回路における前記第1熱交換器と前記エジェクタの前記第1入口との間の第3接続点を流れる冷媒の一部を、前記エジェクタを通過させることなくバイパスさせて前記圧縮機へ流入させる第2副冷媒回路であって、途中に第2膨張機構が設けられた第2副冷媒回路とを備え、
     前記第1副冷媒回路における前記第1接続点と前記第1膨張機構との間を流れる冷媒と、前記第2副冷媒回路における前記第2膨張機構を通過した後の冷媒とを熱交換させる第3熱交換器が設けられた
    ことを特徴とするヒートポンプ装置。
  2.  前記第2副冷媒回路は、前記第3接続点から、前記圧縮機に設けられたインジェクションパイプまでを配管で接続し、前記圧縮機において前記主冷媒回路から吸入された冷媒が圧縮途中の段階になる中間圧空間へ前記第3接続点を流れる冷媒を前記インジェクションパイプから注入するインジェクション回路である
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  3.  前記ヒートポンプ装置は、さらに、
     前記1熱交換器を流出した冷媒が前記エジェクタの前記第1入口へ流入する量を制御する制御弁と
     前記第1熱交換器を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷に応じて、前記制御弁の開度と、前記第1膨張機構の開度と、前記第2膨張機構の開度とを制御する制御部と
    を備えることを特徴とする請求項1に記載のヒートポンプ装置。
  4.  前記制御部は、前記必要負荷が、予め設定された第1の負荷以下で、前記第1の負荷よりも低く設定された第2の負荷より大きい場合には、前記制御弁の開度を所定の開度よりも大きくし、前記第1膨張機構と前記第2膨張機構との開度を前記所定の開度よりも小さくする
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  5.  前記制御部は、前記必要負荷が、予め設定された第1の負荷より大きい場合には、前記制御弁の開度を所定の開度よりも小さくし、前記第1膨張機構と前記第2膨張機構との開度を前記所定の開度よりも大きくする
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  6.  前記制御部は、前記必要負荷が、予め設定された第2の負荷以下の場合には、前記制御弁と前記第2膨張機構との開度を所定の開度よりも小さくし、前記第1膨張機構の開度を前記所定の開度よりも大きくする
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  7.  前記制御部は、
     前記必要負荷が、予め設定された第1の負荷より大きく、前記第1の負荷よりも高く設定された第3の負荷以下の場合には、前記制御弁と前記第1膨張機構と前記第2膨張機構との開度を所定の開度よりも大きくし、
     前記必要負荷が、前記第3の負荷より大きい場合には、前記制御弁の開度を前記所定の開度よりも小さくし、前記第1膨張機構と前記第2膨張機構との開度を前記所定の開度よりも大きくする
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  8.  前記制御弁は、前記第1接続点と前記エジェクタの前記第1入口との間に設けられた開閉弁である
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  9.  前記エジェクタは、
     前記第1入口から流入した冷媒を減圧、加速して噴射するノズル部と、
     前記ノズル部が噴射した冷媒と前記第2入口から吸入した冷媒とを混合して、昇圧する昇圧部とを備え、
     前記制御弁は、前記ノズル部の開度を調整する絞り機構である
    ことを特徴とする請求項3に記載のヒートポンプ装置。
  10.  前記主冷媒回路には、前記気液分離器の前記液側出口と前記第2接続点との間に開閉弁が設けられた
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  11.  前記開閉弁は、前記気液分離器の液側出口から前記第2接続点へ向かう流れを許し、前記第2接続点から前記気液分離器の液側出口へ向かう流れを許さない逆止弁である
    ことを特徴とする請求項10に記載のヒートポンプ装置。
PCT/JP2009/068040 2009-10-20 2009-10-20 ヒートポンプ装置 WO2011048662A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011537045A JP5430667B2 (ja) 2009-10-20 2009-10-20 ヒートポンプ装置
EP09850560.5A EP2492612B1 (en) 2009-10-20 2009-10-20 Heat pump device
CN200980162048.XA CN102575882B (zh) 2009-10-20 2009-10-20 热泵装置
US13/499,365 US9200820B2 (en) 2009-10-20 2009-10-20 Heat pump apparatus with ejector cycle
PCT/JP2009/068040 WO2011048662A1 (ja) 2009-10-20 2009-10-20 ヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068040 WO2011048662A1 (ja) 2009-10-20 2009-10-20 ヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2011048662A1 true WO2011048662A1 (ja) 2011-04-28

Family

ID=43899913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068040 WO2011048662A1 (ja) 2009-10-20 2009-10-20 ヒートポンプ装置

Country Status (5)

Country Link
US (1) US9200820B2 (ja)
EP (1) EP2492612B1 (ja)
JP (1) JP5430667B2 (ja)
CN (1) CN102575882B (ja)
WO (1) WO2011048662A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080436A1 (ja) * 2012-11-20 2014-05-30 三菱電機株式会社 冷凍装置
WO2014103436A1 (ja) * 2012-12-27 2014-07-03 三菱電機株式会社 冷凍サイクル装置
KR101503012B1 (ko) * 2013-05-30 2015-03-17 서울대학교산학협력단 증기분사를 이용한 히트펌프 시스템
CN108662799A (zh) * 2017-03-31 2018-10-16 开利公司 多级制冷系统及其控制方法
WO2021065186A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 空気調和機

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334905B2 (ja) 2010-03-31 2013-11-06 三菱電機株式会社 冷凍サイクル装置
WO2012077156A1 (ja) * 2010-12-07 2012-06-14 三菱電機株式会社 ヒートポンプ装置
ITTV20120169A1 (it) * 2012-08-22 2014-02-23 Enex Srl Circuito refrigerante
US9982929B2 (en) * 2012-11-20 2018-05-29 Samsung Electronics Co., Ltd. Air conditioner
US9933192B2 (en) * 2012-12-20 2018-04-03 Mitsubishi Electric Corporation Air-conditioning apparatus
CN105008823B (zh) * 2012-12-31 2017-11-03 特灵国际有限公司 热泵热水器
EP3032110B1 (en) * 2013-08-05 2018-06-27 Panasonic Intellectual Property Management Co., Ltd. Ejector and heat pump device using same
CN104089424B (zh) * 2014-07-04 2017-01-11 珠海格力电器股份有限公司 引射制冷循环装置
EP3172501B1 (en) * 2014-07-24 2023-12-06 Carrier Corporation Heat pump with ejector
CN105987501B (zh) * 2015-01-30 2019-07-23 青岛经济技术开发区海尔热水器有限公司 变频热泵热水器系统中电子膨胀阀的控制方法
CN104930752B (zh) * 2015-05-29 2017-10-13 浙江工业大学 采用过冷器的低品位热能驱动的喷射‑压缩制冷系统
CN104913542B (zh) * 2015-05-29 2017-10-13 浙江工业大学 采用气液分离器的低品位热能驱动的喷射‑压缩制冷系统
RU2680447C1 (ru) 2015-08-14 2019-02-21 Данфосс А/С Паровая компрессионная система с по меньшей мере двумя испарительными установками
WO2017067858A1 (en) 2015-10-20 2017-04-27 Danfoss A/S A method for controlling a vapour compression system with a variable receiver pressure setpoint
WO2017067863A1 (en) 2015-10-20 2017-04-27 Danfoss A/S A method for controlling a vapour compression system in a flooded state
JP6788007B2 (ja) * 2015-10-20 2020-11-18 ダンフォス アクチ−セルスカブ 長時間エジェクタモードで蒸気圧縮システムを制御するための方法
CN108351134A (zh) * 2015-11-20 2018-07-31 开利公司 带喷射器的热泵
CN105928265B (zh) * 2016-05-31 2019-02-05 广东美的制冷设备有限公司 空调系统及其除霜控制方法
CN106247508B (zh) * 2016-09-12 2019-03-05 青岛海信日立空调系统有限公司 采用喷射器的空调热泵系统、空调器及空调器控制方法
CN108224833A (zh) 2016-12-21 2018-06-29 开利公司 喷射器制冷系统及其控制方法
EP3361192B1 (en) * 2017-02-10 2019-09-04 Daikin Europe N.V. Heat source unit and air conditioner having the heat source unit
CN106931675B (zh) * 2017-04-13 2019-11-29 广东美的白色家电技术创新中心有限公司 喷射式循环系统和空调
WO2018195884A1 (zh) * 2017-04-28 2018-11-01 曙光信息产业(北京)有限公司 一种分离空气和制冷剂蒸汽的气汽分离装置及方法
CN107176009B (zh) * 2017-05-24 2023-05-02 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN109891165B (zh) * 2017-10-06 2021-05-04 日立江森自控空调有限公司 空调机
CN112313459A (zh) * 2018-06-26 2021-02-02 开利公司 用于制冷压缩机的润滑的增强方法
CN108709330A (zh) * 2018-07-06 2018-10-26 天津商业大学 一种蒸汽喷射器准双级压缩制冷系统实验台
EP3850278A1 (en) * 2018-09-10 2021-07-21 Carrier Corporation Ejector heat pump operation
DK180146B1 (en) 2018-10-15 2020-06-25 Danfoss As Intellectual Property Heat exchanger plate with strenghened diagonal area
CN111520928B (zh) 2019-02-02 2023-10-24 开利公司 增强热驱动的喷射器循环
CN111520932B8 (zh) 2019-02-02 2023-07-04 开利公司 热回收增强制冷系统
EP3699515B1 (de) * 2019-02-20 2023-01-11 Weiss Technik GmbH Temperierkammer und verfahren
CN109915951A (zh) * 2019-02-25 2019-06-21 珠海格力电器股份有限公司 具有0~100%输出负荷调节能力中央空气调节机组及控制方法
CN113441449B (zh) * 2020-03-27 2022-12-09 先丰通讯股份有限公司 喷盘检测系统及其检测方法
JP2021162205A (ja) * 2020-03-31 2021-10-11 ダイキン工業株式会社 空気調和装置
US11959669B2 (en) 2021-05-06 2024-04-16 Rolls-Royce North American Technologies Inc. Bimodal cooling system
CN113418316B (zh) * 2021-06-08 2022-06-21 瀚润联合高科技发展(北京)有限公司 一种引射增焓水冷却风冷热泵模块机组
US11919368B2 (en) * 2021-10-07 2024-03-05 Ford Global Technologies, Llc Heat pump for a vehicle
KR20230095493A (ko) 2021-12-22 2023-06-29 현대자동차주식회사 이젝터가 포함된 차량용 열관리 시스템
CN116481201A (zh) * 2022-01-17 2023-07-25 开利公司 热泵系统及其控制方法
WO2023172251A1 (en) * 2022-03-08 2023-09-14 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for regenerative ejector-based cooling cycles
KR20230147870A (ko) 2022-04-15 2023-10-24 현대자동차주식회사 가스인젝션 타입의 차량용 열관리 시스템
EP4339535A1 (en) 2022-08-10 2024-03-20 Carrier Corporation Heat pump with ejector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116124A (ja) 2006-11-06 2008-05-22 Hitachi Appliances Inc 空気調和機
JP2008241069A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp 空気調和装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009186121A (ja) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837457A (ja) 1981-08-29 1983-03-04 富士電機株式会社 冷凍機の冷媒回路
JPS5896955A (ja) 1981-12-04 1983-06-09 株式会社荏原製作所 冷凍装置の油戻し装置
JPS61285352A (ja) 1985-06-11 1986-12-16 株式会社神戸製鋼所 スクリユ式ヒ−トポンプ
JPH01300167A (ja) 1988-05-25 1989-12-04 Toshiba Corp 冷媒加熱サイクル
JP3843331B2 (ja) 1999-08-27 2006-11-08 株式会社日立製作所 ヒートポンプ式空気調和機及び室外機
US6374631B1 (en) * 2000-03-27 2002-04-23 Carrier Corporation Economizer circuit enhancement
JP4639541B2 (ja) 2001-03-01 2011-02-23 株式会社デンソー エジェクタを用いたサイクル
JP2003097868A (ja) 2001-09-25 2003-04-03 Denso Corp エジェクタサイクル
JP4184973B2 (ja) 2002-01-29 2008-11-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) キャビネット冷却
JP3928470B2 (ja) * 2002-04-26 2007-06-13 株式会社デンソー 車両用空調装置
JP4078901B2 (ja) 2002-07-08 2008-04-23 株式会社デンソー エジェクタサイクル
DE10330608A1 (de) * 2002-07-08 2004-01-29 Denso Corp., Kariya Ejektorkreislauf
JP2004163084A (ja) 2002-09-24 2004-06-10 Denso Corp 蒸気圧縮式冷凍機
JP2005076914A (ja) * 2003-08-28 2005-03-24 Tgk Co Ltd 冷凍サイクル
JP4626380B2 (ja) 2005-04-27 2011-02-09 アイシン精機株式会社 内燃機関駆動ヒートポンプ式空調装置
JP2007315632A (ja) * 2006-05-23 2007-12-06 Denso Corp エジェクタ式サイクル
JP4501984B2 (ja) * 2007-10-03 2010-07-14 株式会社デンソー エジェクタ式冷凍サイクル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116124A (ja) 2006-11-06 2008-05-22 Hitachi Appliances Inc 空気調和機
JP2008241069A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp 空気調和装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009186121A (ja) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080436A1 (ja) * 2012-11-20 2014-05-30 三菱電機株式会社 冷凍装置
JP5995990B2 (ja) * 2012-11-20 2016-09-21 三菱電機株式会社 冷凍装置
JPWO2014080436A1 (ja) * 2012-11-20 2017-01-05 三菱電機株式会社 冷凍装置
WO2014103436A1 (ja) * 2012-12-27 2014-07-03 三菱電機株式会社 冷凍サイクル装置
JPWO2014103436A1 (ja) * 2012-12-27 2017-01-12 三菱電機株式会社 冷凍サイクル装置
KR101503012B1 (ko) * 2013-05-30 2015-03-17 서울대학교산학협력단 증기분사를 이용한 히트펌프 시스템
CN108662799A (zh) * 2017-03-31 2018-10-16 开利公司 多级制冷系统及其控制方法
WO2021065186A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 空気調和機
CN114450527A (zh) * 2019-09-30 2022-05-06 大金工业株式会社 空调机
CN114450527B (zh) * 2019-09-30 2023-09-19 大金工业株式会社 空调机

Also Published As

Publication number Publication date
US20120180510A1 (en) 2012-07-19
CN102575882A (zh) 2012-07-11
EP2492612A1 (en) 2012-08-29
CN102575882B (zh) 2014-09-10
EP2492612A4 (en) 2016-09-21
JP5430667B2 (ja) 2014-03-05
JPWO2011048662A1 (ja) 2013-03-07
US9200820B2 (en) 2015-12-01
EP2492612B1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5430667B2 (ja) ヒートポンプ装置
US8109111B2 (en) Refrigerating apparatus having an intermediate-pressure refrigerant gas-liquid separator for performing refrigeration cycle
JP4906894B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
US9709304B2 (en) Air-conditioning apparatus
KR100544983B1 (ko) 냉동장치
WO2014128830A1 (ja) 空気調和装置
US10161647B2 (en) Air-conditioning apparatus
JP2010139205A (ja) 空気調和装置
WO2017138108A1 (ja) 空気調和装置
JP6765438B2 (ja) 空気調和装置
JP2011242048A (ja) 冷凍サイクル装置
JP2015064169A (ja) 温水生成装置
EP2584285A1 (en) Refrigerating air-conditioning device
JP2009257756A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
WO2013146415A1 (ja) ヒートポンプ式加熱装置
JP5872052B2 (ja) 空気調和装置
JP2010048506A (ja) マルチ型空気調和機
KR101161381B1 (ko) 냉동 사이클 장치
JP4720641B2 (ja) 冷凍装置
CN111919073B (zh) 制冷装置
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JP2013053849A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP2009115336A (ja) 冷凍装置
WO2013073070A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162048.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537045

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13499365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009850560

Country of ref document: EP