WO2014103436A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2014103436A1
WO2014103436A1 PCT/JP2013/074012 JP2013074012W WO2014103436A1 WO 2014103436 A1 WO2014103436 A1 WO 2014103436A1 JP 2013074012 W JP2013074012 W JP 2013074012W WO 2014103436 A1 WO2014103436 A1 WO 2014103436A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
ejector
heat exchanger
refrigeration cycle
Prior art date
Application number
PCT/JP2013/074012
Other languages
English (en)
French (fr)
Inventor
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13868444.4A priority Critical patent/EP2942585B1/en
Priority to JP2014554186A priority patent/JPWO2014103436A1/ja
Priority to CN201320897498.7U priority patent/CN203704419U/zh
Publication of WO2014103436A1 publication Critical patent/WO2014103436A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Definitions

  • the present invention relates to a refrigeration cycle apparatus provided with a refrigerant circuit.
  • a conventional chilling unit composed of a plurality of compressors connected in parallel and a plurality of water heat exchanger type evaporators.
  • the water pipe connected to the evaporator is connected in series to each evaporator. Since the cooling water is gradually cooled by heat exchange with the refrigerant in each evaporator, the evaporation temperature of the refrigerant can be lowered sequentially from the inlet side of the cooling water. As a result, the average evaporation temperature is higher than when cooling with a single compressor, which can contribute to improvement of the COP of the refrigeration cycle and high efficiency operation of the refrigeration cycle (for example, Patent Documents). 1).
  • the present invention has been made to cope with such a problem, and aims to increase the efficiency of the refrigeration cycle and suppress the increase in size and cost of the apparatus.
  • the refrigeration cycle apparatus of the present invention includes a refrigerant discharge section of a compressor, a condenser, a first expansion valve, a first evaporator, a first refrigerant circuit connected to a refrigerant suction section of an ejector, an outlet side of the condenser, A second refrigerant circuit branched from a connection pipe between the first expansion valve and connected to the refrigerant inflow portion of the ejector, a refrigerant outflow portion of the ejector, a second evaporator, and a refrigerant intake of the compressor A third refrigerant circuit connected to each other, wherein the first evaporator and the second evaporator include a refrigerant flowing through the refrigerant circuit in which the respective evaporators are disposed, and a liquid heat medium different from the refrigerant A water heat exchanger for exchanging heat between the two, wherein the liquid heat medium is supplied from the outside, flows in the order of the second evapor
  • the evaporation temperature of the second evaporator can be made higher than the evaporation temperature of the first evaporator due to the boosting effect of the ejector, and the water heat exchanger is changed from the second evaporator to the first evaporator.
  • the temperature of the liquid heat medium can be gradually cooled.
  • the refrigerant is sucked into the compressor at an evaporation temperature higher than the evaporation temperature of the first evaporator, so that the COP of the refrigeration cycle is improved and the operation efficiency can be improved.
  • a refrigerant circuit can be constructed more economically than in the prior art using two compressors.
  • FIG. 1 It is a block diagram of the refrigerating cycle apparatus of Embodiment 1 of this invention. It is explanatory drawing of the ejector used in Embodiment 1. FIG. It is explanatory drawing of the water heat exchanger used in Embodiment 1. FIG. It is explanatory drawing of the condenser (air heat exchanger) used in Embodiment 1. FIG. It is a Mollier diagram which shows the operation state of the refrigerating-cycle apparatus of FIG. It is explanatory drawing which shows the temperature distribution of the flow direction of the liquid heat medium (water) and refrigerant
  • FIG. 4 It is a 4th illustration figure which shows the example of arrangement
  • FIG. 4 It is a block diagram of the refrigerating-cycle apparatus of Embodiment 4 of this invention. It is a perspective view which shows the example of the high / low pressure heat exchanger used in Embodiment 4.
  • FIG. It is a Mollier diagram which shows the operation state of the refrigerating-cycle apparatus of FIG. In the refrigeration cycle apparatus of FIG. 12, it is the figure which showed the comparison of operation
  • FIG. 10 is an explanatory diagram illustrating an example of a gas-liquid separator used in a fifth embodiment.
  • a Mollier diagram which shows the operation state of the refrigerating-cycle apparatus of FIG.
  • a block diagram of the refrigerating-cycle apparatus of Embodiment 6 of this invention It is a Mollier diagram which shows the operation state of the refrigerating-cycle apparatus of FIG.
  • Embodiment 1 (Constitution) A refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described with reference to FIG.
  • the refrigeration cycle apparatus shown in FIG. 1 includes a compressor 101, a condenser 102, a first expansion valve 103, a first evaporator 104 and a second evaporator that exchange heat between the refrigerant and a liquid heat medium different from the refrigerant.
  • the condenser 102 is an air heat exchanger that exchanges heat between the refrigerant and air
  • the first evaporator 104 and the second evaporator 106 are a refrigerant and a liquid heat medium (liquid such as water or brine).
  • the heat exchange is also referred to as a water heat exchanger.
  • the compressor 101, the condenser 102, the first expansion valve 103, the first evaporator 104, and the refrigerant suction part 205 of the ejector 105 are connected by a refrigerant pipe to form a first refrigerant circuit.
  • a pipe branched from the refrigerant pipe between the condenser 102 and the first expansion valve 103 is connected to the refrigerant inflow portion 204 of the ejector 105 to form a second refrigerant circuit.
  • the refrigerant outflow part 203 of the ejector 105, the second evaporator 106, and the refrigerant suction part of the compressor 101 are connected by a refrigerant pipe to form a third refrigerant circuit.
  • each of these elements and piping for connecting each element are contained in one housing.
  • the first evaporator 104 and the second evaporator 106 are configured such that the refrigerant and the liquid heat medium flow oppositely to exchange heat.
  • the inflow / outflow portions of the liquid heat medium of the first evaporator 104 and the second evaporator 106 exit from the housing for connection to the outside (for example, the indoor unit 108).
  • the first evaporator 104 and the second evaporator 106 are connected to the indoor heat exchanger 109 of the indoor unit 108 on the heat load side, and form a liquid heat medium circulation circuit together with the water feeder 107 for conveying the liquid heat medium. is doing.
  • the water feeder 107 is installed in a direction in which the liquid heat medium flows in the order from the second evaporator 106 to the first evaporator 104.
  • FIG. 2 shows an example of the ejector 105.
  • FIG. 2 also shows the internal pressure distribution corresponding to the configuration.
  • the ejector 105 includes a nozzle part 201, a mixing part 202, a diffuser part (refrigerant outflow part) 203, a refrigerant inflow part 204, and a refrigerant suction part 205.
  • the nozzle part 201 further includes a pressure reducing part 201a, a nozzle throat part 201b, and a divergent part 201c.
  • the alphabet of “e, f” in FIG. 2 represents each point of the Mollier diagram described later.
  • the ejector 105 in FIG. 2 operates as follows.
  • the refrigerant flowing in from the refrigerant inflow portion 204 is decompressed and expanded as the flow path area is reduced in the decompression portion 201a. Thereafter, the speed of the refrigerant increases due to the reduced pressure, and the speed of sound is increased at the nozzle throat 201b.
  • the refrigerant having reached the speed of sound is depressurized while further increasing the speed at the divergent portion 201c. As a result, a super-high-speed gas-liquid two-phase refrigerant flows out from the nozzle part 201.
  • the refrigerant sucked from the refrigerant suction part 205 of the ejector 105 is drawn into the ultrahigh-speed refrigerant due to the pressure difference between the refrigerant suction part 205 and the outlet of the nozzle part 201 (suction refrigerant).
  • the super-high-speed refrigerant and the low-speed suction refrigerant start to be mixed (mixed refrigerant) from the outlet of the nozzle unit 201, that is, the inlet of the mixing unit 202.
  • the pressure is recovered (increased) by exchanging the momentum between the ultrahigh-speed refrigerant and the suction refrigerant.
  • the dynamic pressure is converted into a static pressure by the deceleration due to the expansion of the flow path, the pressure rises, and the mixed refrigerant flows out of the diffuser part (refrigerant outflow part) 203.
  • the plate heat exchanger As the first evaporator 104 and the second evaporator 106 , for example, a plate heat exchanger as disclosed in JP 2012-2425 A can be used. As shown in FIG. 3, the plate heat exchanger has heat transfer plates 1042 and heat transfer plates 1043 stacked alternately. Further, a reinforcing side plate 1041 is stacked on the foremost surface, and a reinforcing side plate 1044 is stacked on the backmost surface. The reinforcing side plate 1041 is formed in a substantially rectangular plate shape, and a first inflow pipe 1045, a first outflow pipe 1046, a second outflow pipe 1047, and a second inflow pipe 1048 are provided at four corners.
  • Each of the heat transfer plates 1042 and 1043 is formed in a substantially rectangular plate shape like the reinforcing side plate 1041 and is provided with a first inlet, a first outlet, a second inlet, and a second outlet at the four corners. It has been.
  • Each of the heat transfer plates 1042 and 1043 has a wave shape that is displaced in the stacking direction of the plates, and a wave shape that is formed in a substantially V shape when viewed from the stacking direction is formed. It should be noted that the substantially V-shaped direction is reversed between the wave shape formed on the heat transfer plate 1042 and the wave shape formed on the heat transfer plate 1043.
  • the back side reinforcing side plate 1044 is formed in a substantially rectangular plate shape like the reinforcing side plate 1041 and the like. However, the back side reinforcing side plate 1044 is not provided with the first inflow pipe, the first outflow pipe, the second inflow pipe, and the second outflow pipe.
  • the substantially V-shaped corrugations having different directions overlap to cause a complicated flow between the heat transfer plate 1042 and the heat transfer plate 1043. Is formed.
  • a first flow path through which the first fluid (for example, water) flowing in from the first inflow pipe 1045 flows out from the first outflow pipe 1046 is formed between the back surface of the heat transfer plate 1043 and the front surface of the heat transfer plate 1042.
  • the second flow path through which the second fluid (for example, refrigerant) flowing in from the second inflow pipe 1048 flows out from the second outflow pipe 1047 is between the back surface of the heat transfer plate 1042 and the front surface of the heat transfer plate 1043. Formed.
  • the first fluid that has flowed into the first inflow pipe 1045 from the outside flows through the passage formed by overlapping the first inlets of the heat transfer plates 1042 and 1043 and flows into the first flow paths.
  • the first fluid that has flowed into the first flow path flows in the long axis direction while gradually spreading in the short axis direction, and then flows out from the first outlet.
  • the first fluid flowing out from the first outlet flows through a passage formed by overlapping the first outlets, and flows out from the first outlet pipe 1046 to the outside.
  • the second fluid that has flowed into the second inflow pipe 1048 from the outside flows through the passage formed by overlapping the second inlets of the heat transfer plates 1042 and 1043 and flows into the second flow paths.
  • the second fluid that has flowed into the second flow path flows in the long axis direction while gradually spreading in the short axis direction, and flows out from the second outlet.
  • the second fluid that has flowed out of the second outflow port flows through the passage formed by the overlap of the second outflow port, and flows out from the second outflow tube 1047 to the outside.
  • the first fluid flowing in the first flow path and the second fluid flowing in the second flow path are heat-exchanged via the heat transfer plates 1042 and 1043 when flowing through the portion where the wave shape is formed.
  • the portion where the wave shape is formed is called a heat exchange flow path.
  • the condenser 102 includes, for example, a blower 1026 and an air heat exchanger 1027 as shown in FIG.
  • the blower 1026 is a combination of a wing-type propeller and a motor that rotationally drives the propeller, and the motor and the propeller are rotated at a predetermined rotational speed by electric power supplied from the outside.
  • the air heat exchanger 1027 is formed by bending a long refrigerant pipe in which a large number of thin aluminum fins closely contact each other into a substantially L-shaped plate shape, and heat exchange is performed between the refrigerant in the refrigerant pipe and the air around the fins. . And the air volume of the air which flows between each fin and passes by the air blower 1026 is increased and adjusted, and the amount of heat exchange is increased and adjusted.
  • FIG. 5 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus of the first embodiment.
  • Alphabet symbols in the figure indicate positions in the black circles shown in FIG.
  • the high-temperature and high-pressure gas refrigerant in the state a sent out by the compressor 101 is condensed by the heat exchanger with the outside air in the condenser 102 to become a high-temperature and high-pressure liquid refrigerant (state b).
  • the refrigerant in the state b is divided into the first expansion valve 103 side and the ejector 105 side.
  • the refrigerant flowing to the first expansion valve 103 side is depressurized by the first expansion valve 103 to be in the state c, and is heated by the relatively low temperature liquid heat medium cooled by the second evaporator 106 in the first evaporator 104. Then, it is vaporized and becomes the state d, and is sucked into the refrigerant suction portion 205 of the ejector 105.
  • the refrigerant diverted from the condenser 102 and flowing into the refrigerant inflow portion 204 of the ejector 105 is decompressed by the nozzle portion 201 of the ejector 105 (state e), and the refrigerant evaporated by the first evaporator 104 is sucked into the state. f. Further, the refrigerant is pressurized by the mixing unit 202 and the diffuser unit (refrigerant outflow unit) 203 of the ejector 105 to be in the state g and flows into the second evaporator 106.
  • the second evaporator 106 is vaporized by the heat exchange with the liquid heat medium having a relatively high temperature heated by the indoor heat exchanger 109, enters the state h, and is sucked into the compressor 101.
  • the refrigeration cycle is configured by repeating the above state.
  • FIG. 6 is an explanatory diagram of the temperature distribution in the flow direction of the refrigerant and the liquid heat medium in the first evaporator 104 and the second evaporator 106 in FIG.
  • 601 indicates the temperature of the liquid heat medium
  • 602 indicates the refrigerant temperature of the first evaporator 104
  • 603 indicates the refrigerant temperature of the second evaporator 106.
  • the liquid heat medium that has returned to the outdoor unit 100 due to a high temperature in the indoor heat exchanger 109 is cooled and decreases in temperature by passing through the first evaporator 104 and the second evaporator 106. Since the evaporation temperature of the first evaporator 104 is before the pressure is increased by the ejector 105, it is relatively lower than the evaporation temperature of the second evaporator 106. However, the refrigerant discharged from the first evaporator 104 is increased in pressure by the ejector 105 and flows into the second evaporator 106, whereby the evaporation temperature can be increased by ⁇ Tej. Then, the refrigerant discharged from the second evaporator 106 is returned to the suction side of the compressor 101.
  • the evaporation temperature of the second evaporator 106 can be made higher than the evaporation temperature of the first evaporator 104, and the heated liquid heat medium is transferred from the second evaporator 106 to the first evaporator 104. By flowing in this order, the liquid heat medium can be gradually cooled. Thereby, since the refrigerant can be sucked into the compressor 101 at an evaporation temperature higher than the evaporation temperature of the first evaporator 104, the COP of the refrigeration cycle is improved and the operation efficiency can be improved.
  • the water-side flow paths of the two water heat exchangers are connected in series, and the refrigerant flow paths of the respective water heat exchangers have separate compressors having one compressor.
  • There is a refrigerating and air-conditioning apparatus that increases operating efficiency depending on the configuration connected to for example, Japanese Patent No. 4651627.
  • the first embodiment has an advantage that an economically efficient refrigeration cycle can be constructed with a single refrigerant circuit.
  • Embodiment 2 (Constitution)
  • the capacities of the first evaporator 104 and the second evaporator 106 in Embodiment 1 are different capacities. Specifically, as shown in FIG. 22, the capacity of the second evaporator 106 is made larger than the capacity of the first evaporator 104.
  • the COP of the refrigeration cycle is improved.
  • the principle is as follows.
  • the high-temperature and high-pressure refrigerant that has flowed out of the condenser 102 is divided into the first expansion valve 103 side and the ejector 105 side.
  • the processing capacity of the first evaporator 104 is reduced, so that the refrigerant diverted to the first expansion valve 103 is reduced, while the capacity of the second evaporator 106 is increased.
  • the processing capacity of the second evaporator 106 increases, so that the amount of refrigerant diverted to the ejector 105 increases.
  • the amount of pressure increase obtained by power recovery in the ejector 105 is defined by the following equation, and the amount of pressure increase increases as the amount of refrigerant flowing into the ejector 105 increases.
  • Gn is the flow rate of refrigerant flowing into the ejector 105
  • hg is enthalpy of the refrigerant inflow portion 204 of the ejector 105
  • he is enthalpy when adiabatically expanded from the inlet to the outlet of the nozzle portion 201 shown in FIG. 2
  • Ge is the ejector 105.
  • ⁇ e is the density of the refrigerant suction part 205 of the ejector 105.
  • FIG. 7 shows the COP characteristics of the refrigeration cycle when the total value of the capacity of the first evaporator 104 and the capacity of the second evaporator 106 is fixed and the closing ratio of the first evaporator 104 is changed. 50% indicates the COP when the capacities of the first evaporator 104 and the second evaporator 106 are the same.
  • COP is improved by reducing the capacity of the first evaporator 104 and increasing the capacity of the second evaporator 106 regardless of the ejector efficiency. Specifically, it is effective in improving COP when the capacity of the first evaporator 104 is in the range of 30% to 50%, and in particular, COP is most improved when the first evaporator 104 is in the vicinity of 40% of the total capacity. is doing. If the capacity of the first evaporator 104 is excessively reduced, the processing capacity of the second evaporator 106 is increased, so that the evaporation temperature of the refrigerant flowing through the first evaporator 104 is lowered. As a result, the compressor 101 As the suction pressure decreases, the COP decreases.
  • the refrigerant flow rate Gn flowing into the ejector 105 decreases and Ge increases, so that the pressure increase amount decreases, so that COP does not improve.
  • An excessive difference in capacity between the first evaporator 104 and the second evaporator 106 is not appropriate.
  • Embodiment 3 (Configuration of the first embodiment)
  • the first evaporator 104 and the second evaporator 106 in the first and second embodiments are arranged one above the other.
  • FIG. 8 shows an installation example of the first evaporator 104, the second evaporator 106, and the ejector 105 in the first embodiment.
  • the first evaporator 104 is disposed above the second evaporator 106.
  • the ejector 105 is disposed so that the refrigerant inflow portion 204 is located above the diffuser portion (refrigerant outflow portion) 203.
  • the refrigerant outlet 802 of the first evaporator 104 is connected to the refrigerant suction part 205 of the ejector 105 via a pipe 805.
  • the diffuser part (refrigerant outflow part) 203 of the ejector 105 and the second evaporator 106 are connected by a pipe 806.
  • the liquid heat medium inlet 811 of the first evaporator 104 is connected to the liquid heat medium outlet 814 of the second evaporator 106 by a pipe 815.
  • the liquid single-phase or gas-liquid two-phase refrigerant flowing into the first evaporator 104 flows from the lower part to the upper part of the first evaporator 104 while being heated and vaporized by the liquid heat medium flowing through the liquid heat medium circulation circuit. .
  • the refrigerant flowing out from the refrigerant outlet 802 of the first evaporator 104 is sucked into the refrigerant suction part 205 of the ejector 105 through the pipe 805.
  • the refrigerant flowing in from the refrigerant inflow portion 204 and the refrigerant sucked in the refrigerant suction portion 205 from the first evaporator 104 sequentially pass through the mixing portion 202, diffuser portion (refrigerant outflow portion) 203, and pipe 806 of the ejector 105. And flows into the refrigerant inlet 803 of the second evaporator 106.
  • the gas-liquid two-phase refrigerant flowing into the second evaporator 106 flows toward the upper side of the second evaporator 106 while being heated and vaporized by the liquid heat medium flowing through the liquid heat medium circulation circuit, and flows out from the refrigerant outlet 804. .
  • the liquid heat medium in the liquid heat medium circulation circuit flows into the second evaporator 106 from the liquid heat medium inlet 813. Therefore, the liquid heat medium is cooled by a relatively high-temperature refrigerant that has been pressurized by the ejector 105, and flows out from the liquid heat medium outlet 814. Further, it flows into the first evaporator 104 from the liquid heat medium inlet 811 of the first evaporator 104 through the pipe 815. Then, the refrigerant is cooled by the refrigerant having a relatively low temperature immediately before being pressurized by the ejector 105, and flows out from the liquid heat medium outlet 812. In addition, it is set as the form of the alternating current which a refrigerant
  • the first evaporator 104 is on the upper stage side
  • the second evaporator 106 is on the lower stage side
  • the diffuser part (refrigerant outflow part) 203 of the ejector 105 is connected to the refrigerant inflow part 204 and the refrigerant suction part 205 of the ejector 105.
  • the piping 805 and the piping 806 are shortened by setting them to the lower side. For this reason, the pressure loss in the connection piping is reduced, and the refrigeration cycle can be made highly efficient.
  • the ejector 105, the first evaporator 104, and the second evaporator 106 can be installed in a compact manner, and space saving and cost reduction can be achieved.
  • the same effect can be obtained even if the inlet and outlet of the refrigerant and liquid heat medium of the first evaporator 104 and the second evaporator 106 are installed diagonally. Furthermore, the weldability of the pipe connection is improved. 8 and 9, the flow of the refrigerant and the liquid heat medium are opposed to each other. However, as shown in FIG. 10, substantially the same effect can be obtained when the refrigerant and the liquid heat medium flow in parallel. Obtainable. In this case, the connection method of the ejector 105 is not changed, and the connection of the piping of the liquid heat medium can be handled only as shown in FIG.
  • the first evaporator 104 and the second evaporator 106 are arranged horizontally, that is, arranged side by side, and the refrigerant inflow portion 204 of the ejector 105 is arranged. It is installed above the diffuser part (refrigerant outflow part) 203 of the ejector 105.
  • Other configurations and operations are the same as those of the first example of the first and third embodiments.
  • FIG. 11 shows an installation example of the first evaporator 104, the second evaporator 106, and the ejector 105 in the second embodiment.
  • the first evaporator 104 and the second evaporator 106 are arranged side by side.
  • the ejector 105 is disposed such that the refrigerant inflow portion 204 is located above the diffuser portion (refrigerant outflow portion) 203.
  • the refrigerant outlet 802 of the first evaporator 104 is connected to the refrigerant suction part 205 of the ejector 105 by a pipe 805.
  • a diffuser part (refrigerant outflow part) 203 of the ejector 105 and the second evaporator 106 are connected by a pipe 806.
  • the liquid heat medium outlet 812 of the first evaporator 104 is connected to the liquid heat medium inlet 813 of the second evaporator 106 by a pipe 815.
  • the first evaporator 104 and the second evaporator 106 are installed side by side, the diffuser part (refrigerant outflow part) 203 of the ejector 105 is replaced with the refrigerant inflow part 204 of the ejector 105 and the refrigerant suction. Since it is below the part 205, the piping 805 and the piping 806 are shortened. This configuration is an effective connection method when the installation height is constrained. Like the installation method shown in FIGS. 8 to 10, the pressure loss in the connection piping is reduced and the refrigeration cycle is highly efficient. it can.
  • FIG. 12 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the first performs heat exchange between the refrigerants.
  • the outdoor unit 100 includes a high / low pressure heat exchanger 1101 and a second high / low pressure heat exchanger 1102.
  • the low pressure side of the heat exchanger 1102 and the refrigerant suction part 205 of the ejector 105 are connected in order to constitute a first refrigerant circuit.
  • the first refrigerant circuit of the fourth embodiment includes a high-pressure side passage of the first high-low pressure heat exchanger 1101 between the condenser 102 and the first expansion valve 103 of the first refrigerant circuit of the first to third embodiments.
  • a high pressure side flow path of the second high / low pressure heat exchanger 1102, and a low pressure side flow path of the second high / low pressure heat exchanger 1102 is added between the first evaporator 104 and the refrigerant suction part 205 of the ejector 105. It is a thing. Further, a pipe branched from the refrigerant pipe between the condenser 102 and the first high / low pressure heat exchanger 1101 is connected to the refrigerant inflow portion 204 of the ejector 105 to form a second refrigerant circuit.
  • the diffuser part (refrigerant outflow part) 203 of the ejector 105, the second evaporator 106, the low pressure side of the first high / low pressure heat exchanger 1101, and the refrigerant suction part of the compressor 101 are connected by a refrigerant pipe to form a third refrigerant circuit. Is forming.
  • the third refrigerant circuit of the fourth embodiment includes a low-pressure channel of the first high-low pressure heat exchanger 1101 between the second evaporator 106 and the compressor 101 of the third refrigerant circuit of the first to third embodiments. Is added.
  • each of these elements and piping for connecting each element are contained in one housing.
  • FIG. 13 shows an example of the high / low pressure heat exchanger used in the fourth embodiment.
  • the high and low pressure heat exchangers 1101 and 1102 are constituted by double pipes, and the low-pressure and low-temperature refrigerant is located on the inner side 1201 of the inner pipe, and the annular part of the outer pipe located outside the inner pipe.
  • a high-temperature and high-pressure refrigerant flows through 1202 and heat exchange is performed between the refrigerants.
  • the high-low pressure heat exchanger shown in FIG. 13B is composed of a double pipe of an outer pipe 2101 and an inner pipe 2102, and a plurality of fins 2102 a are provided in the inner pipe 2102 in the axial direction, and the inner pipe 2102 is provided.
  • the heat exchange performance between the refrigerant flowing through the inner side 2104 and the refrigerant flowing through the annular portion 2103 of the outer tube 2101 is improved.
  • it is good also as a structure which distribute
  • FIG. 14 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus of FIG.
  • the state of the refrigerant at the outlet of the condenser 102 is the same as in the first embodiment.
  • the refrigerant flowing out of the condenser 102 and going to the first expansion valve 103 is cooled by the heat exchange with the low-temperature and low-pressure refrigerant that has flowed out of the second evaporator 106 in the first high-low pressure heat exchanger 1101, and is cooled to the state b ′. It becomes.
  • the heat exchanger with the low-temperature and low-pressure refrigerant that has flowed out of the first evaporator 104 in the second high-low pressure heat exchanger 1102 enters the state b ′′ and flows into the first expansion valve 103.
  • the refrigerant depressurized by the first expansion valve 103 becomes the state c, and further passes through the first evaporator 104 and becomes the state d ′.
  • the refrigerant is heated by the high-temperature and high-pressure refrigerant in the second high / low pressure heat exchanger 1102 to be in the state d and sucked into the ejector 105.
  • the refrigerant passes through the ejector 105 and the second evaporator 106, and the refrigerant is in the state h. Thereafter, the refrigerant is heated by the first high / low pressure heat exchanger 1101 to be in the state h ′ and is sucked into the compressor 101.
  • the refrigerant flowing out of the first and second evaporators 104 and 106 can be made into a two-phase refrigerant by using the high and low pressure heat exchangers 1101 and 1102.
  • the first and second evaporators 104 and 106 are configured in the configuration (b) having the high and low pressure heat exchanger as compared with the configuration (a) having no high and low pressure heat exchanger. Can be made to flow out in a two-phase state and be superheated by a high-low pressure heat exchanger. Therefore, the heat passage rates of the first and second evaporators 104 and 106 can be increased.
  • the pressure of the refrigerant suction unit 205 of the ejector 105 and the suction pressure of the compressor 101 are increased.
  • the temperature of the refrigerant sucked into the air rises, and the efficiency of the refrigeration cycle can be improved.
  • the relationship between the length of the heat exchange part of the high-low pressure heat exchangers 1101 and 1102 and the COP ratio is seen, as shown in FIG. It is preferable to make it.
  • FIG. 17 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • the refrigeration cycle apparatus shown in FIG. 17 includes a gas-liquid separator 1701 in addition to the compressor 101, the condenser 102, the first expansion valve 103, the first evaporator 104, the ejector 105, and the second evaporator 106.
  • the outdoor unit 100 is configured.
  • the compressor 101, the condenser 102, the first expansion valve 103, the first evaporator 104, and the ejector 105 are connected by a refrigerant pipe to form a first refrigerant circuit.
  • the 2nd refrigerant circuit branched from the refrigerant
  • coolant suction part of the compressor 101 are connected by refrigerant
  • a gas-liquid separator 1701 is inserted between the ejector 105 and the second evaporator 106 of the third refrigerant circuit of the first to third embodiments. Further, a bypass circuit 1702 for connecting the gas refrigerant outlet of the gas-liquid separator 1701 and the outlet of the second evaporator 106 via the first flow rate control means 1703 is provided.
  • the bypass circuit 1702 may be constituted by a capillary tube. Each element of these refrigerant circuits and piping for connecting each element are contained in one housing.
  • the gas-liquid separator 1701 includes a refrigerant inlet, a gas refrigerant outlet, and a liquid refrigerant outlet.
  • FIG. 18 is an explanatory view showing an example of a gas-liquid separator 1701.
  • the gas-liquid separator 1701 includes a container 301 having a cylindrical side wall 301a, a top wall 301b and a bottom wall 301c, an inflow pipe 302 attached through the top wall 301b, and a top wall juxtaposed to the inflow pipe 302.
  • An upper outlet pipe 303 attached to 301b and a lower outlet pipe 304 attached to the bottom wall 301c of the container 301 are provided.
  • the refrigerant vapor 308 flows out of the container 301 through the upper outflow pipe 303.
  • the refrigerant liquid 307a that has progressed downward without being blown out from the lateral hole of the inflow pipe 302 is accumulated on the bottom surface of the inflow pipe 302, flows downward from the lower hole as the refrigerant liquid 307c, and flows together with the refrigerant liquid 307b into the container 301.
  • the refrigerant liquid 307e accumulated at the bottom of the container flows and flows out of the container 301 through the lower outlet pipe 304.
  • FIG. 19 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus of FIG. Here, differences from the first to third embodiments will be described.
  • the refrigerant in the state g flowing out from the ejector 105 is separated into a liquid refrigerant (state g ′) and a gas refrigerant (state g ′′) by the gas-liquid separator 1701.
  • the liquid refrigerant is heated by the liquid heat medium in the second evaporator 106.
  • the gas refrigerant merges with the refrigerant that has flowed out of the second evaporator 106, enters the state h, and is sucked into the compressor 101.
  • FIG. 20 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • the refrigeration cycle apparatus of the sixth embodiment includes an internal heat exchanger 2001 and a second evaporator in addition to the compressor 101, the condenser 102, the first expansion valve 103, the first evaporator 104, the ejector 105, and the second evaporator 106.
  • the outdoor unit 100 including the flow rate control unit 2002 is configured.
  • the first high-pressure flow path of the internal heat exchanger 2001 is configured between the condenser 102 and the first expansion valve 103 of the first refrigerant circuit of Embodiments 1 to 3). Also, a pipe branched from the refrigerant pipe between the condenser 102 and the internal heat exchanger 2001 is connected to the refrigerant inflow portion 204 of the ejector 105 to form a second refrigerant circuit.
  • the diffuser part (refrigerant outflow part) 203 of the ejector 105, the second evaporator 106, and the refrigerant suction part of the compressor 101 are connected by a refrigerant pipe to form a third refrigerant circuit. Furthermore, it branches from between the outlet side of the condenser 102 and the inlet side of the internal heat exchanger 2001, and is intermediate between the compressor 101 via the second flow rate control means 2002 and the low pressure side flow path of the internal heat exchanger 2001. An injection circuit 2003 connected to the pressure port is provided. Each element of these circuits and piping for connecting each element are contained in one casing.
  • the internal heat exchanger 2001 can have the same structure as the high-low pressure heat exchanger described above, and the water heat exchanger described above may be used as the internal heat exchanger.
  • FIG. 21 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus of FIG. Here, a different part from the operation
  • the refrigerant in the high-temperature and high-pressure state b flowing out of the condenser 102 branches into a refrigerant that goes to the internal heat exchanger 2001 and a refrigerant that goes to the ejector 105.
  • the refrigerant that goes to the internal heat exchanger 2001 further branches into a refrigerant that goes to the internal heat exchanger 2001 and a refrigerant that goes to the second flow rate control unit 2002.
  • the refrigerant in the state i whose pressure is adjusted and reduced in pressure by the second flow rate control unit 2002 is heated in the internal heat exchanger 2001 by the heat exchanger with the high-temperature and high-pressure refrigerant to become the state j, and near the intermediate pressure of the compressor 101. Inflow.
  • the refrigerant that has flowed into the intermediate pressure of the compressor 101 is mixed with the refrigerant that has flowed from the suction portion of the compressor 101 and is compressed, and after being in the state k, is recompressed.
  • the refrigerant in the state b flowing into the high pressure side of the internal heat exchanger 2001 is cooled by the heat exchanger with the low-temperature refrigerant flowing in the low pressure side of the internal heat exchanger 2001 to become the state c ′, and the first expansion valve 103 Flow into.
  • the subsequent steps are the same as in FIG.
  • 100 outdoor unit 101 compressor, 102 condenser, 103 first expansion valve, 104 first evaporator, 105 ejector, 106 second evaporator, 107 water feeder, 108 indoor unit, 109 indoor heat exchanger, 201 ejector Nozzle part, 202, ejector mixing part, 203 ejector diffuser part (refrigerant outflow part), 204 ejector refrigerant inflow part, 205 ejector refrigerant suction part, 1101, first high / low pressure heat exchanger, 1102 second high / low pressure heat Exchanger, 1701 gas-liquid separator, 1702 bypass circuit, 1703 first flow control means, 2001 internal heat exchanger, 2002 second flow control means, 2003 injection circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 圧縮機101の冷媒吐出部、凝縮器102、第一膨張弁103、第一蒸発器104、エジェクタ105の冷媒吸引部205が接続された第1冷媒回路と、凝縮器102の出口側と第一膨張弁103との間の接続配管から分岐して、エジェクタ105の冷媒流入部204に接続された第2冷媒回路と、エジェクタ105のディフューザー部(冷媒流出部)203、第二蒸発器106、圧縮機101の冷媒吸入部が接続された第3冷媒回路とを備え、第一蒸発器104と第二蒸発器106は、それぞれの蒸発器が配置されている冷媒回路を流れる冷媒と該冷媒とは異なる液熱媒体との間で熱交換を行う水熱交換器であり、液熱媒体は外部から供給され、第二蒸発器106、第一蒸発器104の順に流れて外部に流出する。

Description

冷凍サイクル装置
 本発明は、冷媒回路を備えた冷凍サイクル装置に関する。
 従来のチリングユニットとして、並列に接続された複数の圧縮機と複数の水熱交換器式の蒸発器で構成されたものがある。そこでは、蒸発器に接続される水配管は、各蒸発器に直列に接続されている。冷却水は各蒸発器で冷媒との熱交換により徐々に冷却されるため、冷媒の蒸発温度は冷却水の入口側から順に低くすることができる。その結果、圧縮機1台の冷凍機で冷却する場合よりも、平均蒸発温度が上昇し、冷凍サイクルのCOPの向上や、冷凍サイクルの高効率運転に寄与できるというものである(例えば、特許文献1)。
特開2006-329601号公報
 上記のような従来のチリングユニットでは、圧縮機が複数台必要であるためコストが上昇する。また、冷却負荷の変動に応じて圧縮機の運転容量を制御するためにインバータ化した場合、制御基板を圧縮機の台数に応じて複数台実装する必要があることから、ユニットの大型化とコスト上昇に繋がる。
 本発明は、このような課題に対応するためになされたもので、冷凍サイクルの高効率化を図り、かつ装置の大型化とコスト上昇を抑制しようとするものである。
 本発明の冷凍サイクル装置は、圧縮機の冷媒吐出部、凝縮器、第一膨張弁、第一蒸発器、エジェクタの冷媒吸引部が接続された第1冷媒回路と、前記凝縮器の出口側と前記第一膨張弁との間の接続配管から分岐して、前記エジェクタの冷媒流入部に接続された第2冷媒回路と、前記エジェクタの冷媒流出部、第二蒸発器、前記圧縮機の冷媒吸入部が接続された第3冷媒回路とを備え、前記第一蒸発器と前記第二蒸発器は、それぞれの蒸発器が配置されている冷媒回路を流れる冷媒と該冷媒とは異なる液熱媒体との間で熱交換を行う水熱交換器であり、前記液熱媒体は外部から供給され、前記第二蒸発器、前記第一蒸発器の順に流れて前記外部に流出するようにされているものである。
 本発明の冷凍サイクル装置は、エジェクタの昇圧効果により、第二蒸発器の蒸発温度を第一蒸発器の蒸発温度より高くでき、また、水熱交換器を第二蒸発器から第一蒸発器の順に流すことで、液熱媒体の温度を徐々に冷却することができる。これらにより、冷媒が第一蒸発器の蒸発温度よりも高い蒸発温度で圧縮機に吸入されるため、冷凍サイクルのCOPが向上し、運転効率の改善を図れる。また、圧縮機が1台で済むため、圧縮機を2台使った従来技術よりも、経済的に冷媒回路を構築できる。
本発明の実施の形態1の冷凍サイクル装置の構成図である。 実施の形態1で使用するエジェクタの説明図である。 実施の形態1で使用する水熱交換器の説明図である。 実施の形態1で使用する凝縮器(空気熱交換器)の説明図である。 図1の冷凍サイクル装置の動作状態を示すモリエル線図である。 図1における第一蒸発器と第二蒸発器の液熱媒体(水)と冷媒の流れ方向の温度分布を示す説明図である。 本発明の実施の形態2における第一蒸発器と第二蒸発器の容量特性を示す図である。 本発明の実施の形態3における第一蒸発器、第二蒸発器及びエジェクタの配置例を示す第1の例示図である。 実施の形態3における第一蒸発器、第二蒸発器及びエジェクタの配置例を示す第2の例示図である。 実施の形態3における第一蒸発器、第二蒸発器及びエジェクタの配置例を示す第3の例示図である。 実施の形態3における第一蒸発器、第二蒸発器及びエジェクタの配置例を示す第4の例示図である。 本発明の実施の形態4の冷凍サイクル装置の構成図である。 実施の形態4で使用する高低圧熱交換器の例を示す斜視図である。 図12の冷凍サイクル装置の動作状態を示すモリエル線図である。 図12の冷凍サイクル装置において、高低圧熱交換器無しの場合と、高低圧熱交換器有りの場合との動作の比較を示した図である。 高低圧熱交換器の熱交換部分の長さとCOP比との関係を示すグラフである。 本発明の実施の形態5の冷凍サイクル装置の構成図である。 実施の形態5で使用する気液分離器の一例を示す説明図である。 図17の冷凍サイクル装置の動作状態を示すモリエル線図である。 本発明の実施の形態6の冷凍サイクル装置の構成図である。 図20の冷凍サイクル装置の動作状態を示すモリエル線図である。 実施の形態2における第一蒸発器と第二蒸発器の構成例を示す例示図である。
実施の形態1
(構成)
 本発明の実施の形態1の冷凍サイクル装置を図1に基づいて説明する。図1に示す冷凍サイクル装置は、圧縮機101、凝縮器102、第一膨張弁103、冷媒と該冷媒と異なる液熱媒体との間で熱交換を行う第一蒸発器104及び第二蒸発器106、及びエジェクタ105を備えた室外ユニット100として構成される。なお、凝縮器102は冷媒と空気との間で熱交換する空気熱交換器であり、第一蒸発器104及び第二蒸発器106は冷媒と液熱媒体(水又はブラインなどの液体)との間で熱交換するものであり、以下では水熱交換器とも称する。
 圧縮機101、凝縮器102、第一膨張弁103、第一蒸発器104、エジェクタ105の冷媒吸引部205は、冷媒配管で接続されて第1冷媒回路を形成している。また、凝縮器102と第一膨張弁103との間の冷媒配管から分岐した配管が、エジェクタ105の冷媒流入部204に接続されて第2冷媒回路を形成している。さらに、エジェクタ105の冷媒流出部203、第二蒸発器106、圧縮機101の冷媒吸入部が冷媒配管で接続されて第3冷媒回路を形成している。なお、これらの各要素、各要素を接続するための配管は1つの筐体内に収まっている。
 第一蒸発器104と第二蒸発器106は、図示するように、冷媒と液熱媒体が対向して流れて熱交換が行われるように構成されている。第一蒸発器104と第二蒸発器106の液熱媒体の流入流出部は、外部(たとえば室内ユニット108)との接続のため筐体内から出ている。
 第一蒸発器104と第二蒸発器106は、熱負荷側となる室内ユニット108の室内熱交換器109と接続され、液熱媒体を搬送するための送水機107とともに液熱媒体循環回路を形成している。送水機107は、液熱媒体が第二蒸発器106から第一蒸発器104の順に流れる向きに設置されている。
 図2にエジェクタ105の一例を示す。図2ではその構成と対応する内部の圧力分布を合わせて示している。エジェクタ105は、ノズル部201、混合部202、ディフューザー部(冷媒流出部)203、冷媒流入部204、冷媒吸引部205を備えている。ノズル部201は、さらに減圧部201a、ノズル喉部201b、末広部201cで構成される。なお、図2における「e,f」のアルファベットは、後述するモリエル線図の各点を表している。
 図2のエジェクタ105は次のように動作する。冷媒流入部204から流入した冷媒は、減圧部201aで流路面積の低下に伴い減圧膨張する。その後、冷媒は減圧により速度が上昇しノズル喉部201bで音速となる。音速となった冷媒は、末広部201cで更に速度を上昇させながら減圧する。これにより超高速の気液二相冷媒がノズル部201から流出する。一方、エジェクタ105の冷媒吸引部205から吸引される冷媒は、冷媒吸引部205とノズル部201の出口との圧力差により、超高速の冷媒に引き込まれる(吸引冷媒)。ノズル部201の出口、つまり、混合部202の入口から超高速の冷媒と低速の吸引冷媒とが混合(混合冷媒)し始める。混合冷媒では、超高速の冷媒と吸引冷媒との運動量交換により、圧力が回復(上昇)する。そしてさらに、ディフューザー部(冷媒流出部)203においても流路拡大による減速により、動圧が静圧に変換されて圧力が上昇して、混合冷媒はディフューザー部(冷媒流出部)203から流出する。
 第一蒸発器104及び第二蒸発器106には、例えば特開2012-2425号公報に開示されているようなプレート式熱交換器が利用できる。図3に示すように、プレート式熱交換器は、伝熱プレート1042と伝熱プレート1043とが交互に積層されている。また、最前面に補強用サイドプレート1041が積層され、最背面に補強用サイドプレート1044が積層されている。補強用サイドプレート1041は、略矩形の板状に形成され、四隅に、第1流入管1045、第1流出管1046、第2流出管1047、第2流入管1048が設けられている。
 各伝熱プレート1042,1043は、補強用サイドプレート1041と同様に、略矩形の板状に形成され、四隅に第1流入口、第1流出口、第2流入口、第2流出口が設けられている。また、各伝熱プレート1042,1043は、プレートの積層方向に変位する波形状を有し、積層方向から見た場合に略V字状に形成された波形状が形成される。なお、伝熱プレート1042に形成された波形状と、伝熱プレート1043に形成された波形状とでは、略V字状の向きが逆向きになっている。
 背面側の補強用サイドプレート1044は、補強用サイドプレート1041等と同様に、略矩形の板状に形成される。ただし、背面側の補強用サイドプレート1044には、第1流入管、第1流出管、第2流入管、第2流出管が設けられていない。
 伝熱プレート1042と伝熱プレート1043とを積層した場合、向きの異なる略V字状の波形状が重なり合うことにより、伝熱プレート1042と伝熱プレート1043との間に複雑な流れを引き起こす流路が形成される。
 第1流入管1045から流入した第1流体(例えば、水)が第1流出管1046から流出する第1流路が、伝熱プレート1043の背面と伝熱プレート1042の前面との間に形成される。同様に、第2流入管1048から流入した第2流体(例えば、冷媒)が第2流出管1047から流出する第2流路が、伝熱プレート1042の背面と伝熱プレート1043の前面との間に形成される。
 外部から第1流入管1045へ流入した第1流体は、各伝熱プレート1042,1043の第1流入口が重なり合うことで形成された通路を流れ、各第1流路へ流入する。第1流路へ流入した第1流体は、短軸方向へ徐々に広がりながら、長軸方向へ流れて、第1流出口から流出する。第1流出口から流出した第1流体は、第1流出口が重なり合うことで形成された通路を流れ、第1流出管1046から外部へ流出する。
 同様に、外部から第2流入管1048へ流入した第2流体は、各伝熱プレート1042,1043の第2流入口が重なり合うことで形成された通路を流れ、各第2流路へ流入する。第2流路へ流入した第2流体は、短軸方向へ徐々に広がりながら、長軸方向へ流れて、第2流出口から流出する。第2流出口から流出した第2流体は、第2流出口が重なり合うことで形成された通路を流れ、第2流出管1047から外部へ流出する。
 第1流路を流れる第1流体と第2流路を流れる第2流体とは、波形状が形成された部分を流れる際、伝熱プレート1042,1043を介して熱交換される。第1流路と第2流路とにおいて、波形状が形成された部分は熱交換流路と呼ばれる。
 凝縮器102は、たとえば図4に示すように、送風機1026と空気熱交換器1027とを備えている。送風機1026は、翼型のプロペラと、このプロペラを回転駆動させるモーターとが組み合わされており、外部から供給される電力によりモーターとプロペラが所定の回転数で回転するようになっている。空気熱交換器1027は、アルミ薄板のフィンが多数密着した長い冷媒配管が略L字平板状に曲げ成形されており、冷媒配管内の冷媒とフィン周辺の空気との間で熱交換が行われる。そして、送風機1026により各フィン間を流れて通過する空気の風量が増やされて調節され、熱交換の量が増やされて調節されている。
(動作)
 図5は実施の形態1の冷凍サイクル装置の動作状態を示すモリエル線図である。図中のアルファベット記号は、図1に示す黒丸印における位置を示す。圧縮機101により送出された状態aの高温高圧のガス冷媒は、凝縮器102で外気との熱交換器により凝縮して高温高圧の液冷媒(状態b)となる。状態bの冷媒は、第一膨張弁103側とエジェクタ105側とに分流する。第一膨張弁103側に流れる冷媒は、第一膨張弁103で減圧して状態cとなり、第一蒸発器104において、第二蒸発器106で冷却された比較的温度の低い液熱媒体により加熱、気化されて状態dとなり、エジェクタ105の冷媒吸引部205へ吸引される。一方、凝縮器102から分流してエジェクタ105の冷媒流入部204に流れる冷媒は、エジェクタ105のノズル部201で減圧し(状態e)、第一蒸発器104で気化された冷媒を吸引して状態fとなる。さらに、冷媒はエジェクタ105の混合部202とディフューザー部(冷媒流出部)203で昇圧して状態gとなり、第二蒸発器106へ流入する。第二蒸発器106では室内熱交換器109で加熱された比較的温度の高い液熱媒体との熱交換により気化して状態hとなり、圧縮機101に吸入される。以上の状態を繰り替えして冷凍サイクルが構成されている。
(第一蒸発器104と第二蒸発器106における冷媒と液熱媒体との流れ方向の温度分布)
 図6は図1における第一蒸発器104と第二蒸発器106の冷媒と液熱媒体の流れ方向の温度分布の説明図である。図6中の601は液熱媒体の温度、602は第一蒸発器104の冷媒温度、603は第二蒸発器106の冷媒温度を示す。室内熱交換器109で高温となって室外ユニット100に戻った液熱媒体は、第一蒸発器104、第二蒸発器106を通過することで冷却され温度が低下する。第一蒸発器104の蒸発温度はエジェクタ105で昇圧する前であるため、第二蒸発器106の蒸発温度よりも比較的低い。しかし、第一蒸発器104から出た冷媒を、エジェクタ105で昇圧させて第二蒸発器106へ流入させることで、蒸発温度をΔTejeだけ上昇させることができる。そして、第二蒸発器106から出た冷媒を圧縮機101の吸入側に戻している。
(効果)
 上記のエジェクタ105の昇圧効果により、第二蒸発器106の蒸発温度を第一蒸発器104の蒸発温度より高くでき、また、暖められた液熱媒体を第二蒸発器106から第一蒸発器104の順に流すことで、液熱媒体を徐々に冷却することができる。これにより、第一蒸発器104の蒸発温度よりも高い蒸発温度で冷媒を圧縮機101に吸入させることができるため、冷凍サイクルのCOPが向上し、運転効率の改善を図れる。
 なお、従来、2つの水熱交換器のそれぞれの水側流路が直列に接続されるとともに、各水熱交換器の冷媒流路が1台の圧縮機を有した別々の冷媒回路の冷凍サイクルに接続される構成によって、運転効率を上げる冷凍空調装置があった(例えば、特許第4651627号公報)。これに対して、この実施の形態1では、圧縮機が1台の冷媒回路で、経済的に効率の良い冷凍サイクルを構築できる利点を有する。
実施の形態2
(構成)
 本発明の実施の形態2に係る冷凍サイクル装置は、実施の形態1における第一蒸発器104と第二蒸発器106の容量とを、異なる容量としたものである。具体的には、図22に示すように、第二蒸発器106の容量を第一蒸発器104の容量よりも大きくしたものである。
(動作)
 第一蒸発器104と第二蒸発器106を異容量にすることで、冷凍サイクルのCOPが向上する。その原理は以下のとおりである。
 凝縮器102から流出した高温高圧の冷媒は、第一膨張弁103側とエジェクタ105側に分流する。第一蒸発器104の容量が減少した分、第一蒸発器104の処理能力が低下するため、第一膨張弁103へ分流する冷媒は減少し、一方、第二蒸発器106の容量が増大した分、第二蒸発器106の処理能力は増大するため、エジェクタ105側へ分流する冷媒は増える。
 エジェクタ105での動力回収により得られる昇圧量は次式で定義され、エジェクタ105へ流入する冷媒が多いほど昇圧量は増える。
Figure JPOXMLDOC01-appb-M000001
 ここに、Gnはエジェクタ105へ流入する冷媒流量、hgはエジェクタ105の冷媒流入部204のエンタルピ、heは図2に示すノズル部201の入口から出口まで断熱膨張したときのエンタルピ、Geはエジェクタ105が吸引した冷媒流量、ρeはエジェクタ105の冷媒吸引部205の密度である。
(効果)
 第二蒸発器106の容量を大きくすることでエジェクタ105の駆動流が増え、エジェクタ105での回収動力量が増大し、第二蒸発器106の蒸発温度が上昇するとともに圧縮機101の吸入温度が上昇し、冷凍サイクルのCOPが向上し、運転効率の改善を図れる。
 図7は第一蒸発器104の容量と第二蒸発器106の容量の合計値を固定し、第一蒸発器104の閉める割合を変えたときの冷凍サイクルのCOP特性を示しており、横軸の50%は第一蒸発器104と第二蒸発器106の容量が同じ場合のCOPを示す。図7より、エジェクタ効率にかかわらず、第一蒸発器104の容量を小さく、第二蒸発器106の容量を大きくすることで、COPが改善することがわかる。具体的には、第一蒸発器104の容量が30%~50%の範囲のときCOPの改善に有効で、特に、第一蒸発器第104が全体容量の40%付近のときCOPが最も改善している。
 なお、第一蒸発器104の容量を過度に小さくすると、第二蒸発器106での処理能力が増えるため、第一蒸発器104を流れる冷媒の蒸発温度が低下し、その結果、圧縮機101の吸入圧力が下がることで、COPが逆に低下する。また、第一蒸発器104の容量を大きくするとエジェクタ105へ流入する冷媒流量Gnが減少し、Geが増大するため昇圧量が低下するので、COPの改善とならない。第一蒸発器104と第二蒸発器106の容量の過度の相違は適切ではない。
実施の形態3
(第1実施例の構成)
 本発明の実施の形態3の第1実施例に係る冷凍サイクル装置は、実施の形態1、2における第一蒸発器104と第二蒸発器106とを、上下に重ねて配置したものである。
 図8は上記第1実施例における第一蒸発器104、第二蒸発器106及びエジェクタ105の設置例を示したものである。図8のように、第一蒸発器104が第二蒸発器106よりも上側に位置するように配置している。また、エジェクタ105は、冷媒流入部204がディフューザー部(冷媒流出部)203よりも上側になるように配置されている。第一蒸発器104の冷媒流出口802は、エジェクタ105の冷媒吸引部205と配管805で接続されている。エジェクタ105のディフューザー部(冷媒流出部)203と第二蒸発器106は配管806で接続されている。
 一方、第一蒸発器104の液熱媒体入口811は第二蒸発器106の液熱媒体出口814と、配管815で接続されている。
(動作)
 第一蒸発器104へ流入した液単相もしくは気液二相の冷媒は、液熱媒体循環回路を流れる液熱媒体により加熱、気化されながら、第一蒸発器104の下部から上部へ向かって流れる。第一蒸発器104の冷媒流出口802から流出た冷媒は、配管805を通ってエジェクタ105の冷媒吸引部205に吸引される。エジェクタ105では、その冷媒流入部204から流入した冷媒と第一蒸発器104から冷媒吸引部205で吸引した冷媒は、エジェクタ105の混合部202、ディフューザー部(冷媒流出部)203、配管806を順次流れ、第二蒸発器106の冷媒流入口803へ流入する。第二蒸発器106に流入した気液二相冷媒は、液熱媒体循環回路を流れる液熱媒体により加熱、気化されながら第二蒸発器106の上側に向かって流れ、冷媒流出口804から流出する。
 液熱媒体循環回路の液熱媒体は、液熱媒体入口813から第二蒸発器106に流入する。そこで、液熱媒体はエジェクタ105により昇圧された比較的温度の高い冷媒により冷却され、液熱媒体出口814から流出する。さらに、配管815を通って第一蒸発器104の液熱媒体入口811から第一蒸発器104へ流入する。そしてそこで、エジェクタ105で昇圧される直前の比較的温度の低い冷媒により冷却されて、液熱媒体出口812から流出する。なお、ここでは、冷媒と液熱媒体が互いに対向して流れる対交流の形式としている。
(効果)
 以上のように、第一蒸発器104を上段側及び第二蒸発器106を下段側に、並びにエジェクタ105のディフューザー部(冷媒流出部)203をエジェクタ105の冷媒流入部204及び冷媒吸引部205よりも下側にすることで、配管805と配管806が短くなる。このため、接続配管での圧力損失が低減し、冷凍サイクルを高効率化できる。また、エジェクタ105と第一蒸発器104と第二蒸発器106をコンパクトに設置することができ、省スペース化とコストの低減を図れる。
 さらに、図9に示すように、第一蒸発器104と第二蒸発器106の冷媒及び液熱媒体の流入流出口を対角線上に取り付けても同様の効果を得ることができ、この場合には、さらに配管接続の溶接性が向上する。
 なお、図8、図9では冷媒と液熱媒体の流れが対向する構成であるが、図10に示すように、冷媒と液熱媒体とが並行して流れる並行流としてもほぼ同様の効果を得ることができる。この場合、エジェクタ105の接続方法は変えず、液熱媒体の配管の接続を、図10に示すようにするのみで対応できる。
(第2実施例の構成)
 本発明の実施の形態3の第2実施例に係る冷凍サイクル装置は、第一蒸発器104と第二蒸発器106を水平方向に並べて、即ち横並びに配置し、エジェクタ105の冷媒流入部204をエジェクタ105のディフューザー部(冷媒流出部)203よりも上側に設置したものである。その他の構成及び動作は、実施の形態1や実施の形態3の第1実施例と同じである。
 図11は上記第2実施例における第一蒸発器104、第二蒸発器106及びエジェクタ105の設置例を示している。図11のように、第一蒸発器104と第二蒸発器106は横並びに配置している。エジェクタ105は、冷媒流入部204がディフューザー部(冷媒流出部)203よりも上側になるように配置されている。第一蒸発器104の冷媒流出口802はエジェクタ105の冷媒吸引部205と配管805で接続されている。エジェクタ105のディフューザー部(冷媒流出部)203と第二蒸発器106が配管806で接続されている。第一蒸発器104の液熱媒体出口812は第二蒸発器106の液熱媒体入口813と配管815で接続されている。
(効果)
 実施の形態3の第2実施例は、第一蒸発器104と第二蒸発器106を横並びに設置し、エジェクタ105のディフューザー部(冷媒流出部)203をエジェクタ105の冷媒流入部204及び冷媒吸引部205よりも下側にしているので、配管805と配管806が短くなる。この構成は、設置高さの制約を受ける場合に有効な接続方法であり、図8~図10で示した設置方法と同様に、接続配管での圧力損失が低減し、冷凍サイクルを高効率化できる。
(効果のまとめ)
(1)エジェクタ105の駆動流の冷媒流入部204をエジェクタ105の冷媒流出部203より上側にすることで、エジェクタ105と第二蒸発器106との接続配管を短縮し、配管短縮によりエジェクタ105の冷媒流出部203から第二蒸発器106までの圧力損失が低減を図れ、第二蒸発器106の蒸発温度が上昇することで、圧縮機101の吸入圧力が上昇し、冷凍サイクルの高効率運転を図ることができる。
(2)エジェクタ105の吸引部と第一蒸発器104の出口とを直線に接続することで、第一蒸発器104の出口からエジェクタ105の冷媒吸引部205までの圧力損失を軽減できるため、エジェクタ105の冷媒流出部203の圧力を上昇させることができ、圧縮機101の吸入圧力が上昇することにより、冷凍サイクルの高効率化を図ることができる。
(3)各蒸発器とエジェクタ105を最短で接続することができ、配管資材を削減できコスト低減を図れる。
実施の形態4
(構成)
 図12は本発明の実施の形態4に係る冷凍サイクル装置の構成図である。図12に示す冷凍サイクル装置は、圧縮機101、凝縮器102、第一膨張弁103、第一蒸発器104、エジェクタ105、第二蒸発器106に加えて、冷媒同士で熱交換を行う第一高低圧熱交換器1101及び第二高低圧熱交換器1102を備えた、室外ユニット100として構成される。
 そして、圧縮機101、凝縮器102、第一高低圧熱交換器1101の高圧側、第二高低圧熱交換器1102の高圧側、第一膨張弁103、第一蒸発器104、第二高低圧熱交換器1102の低圧側、エジェクタ105の冷媒吸引部205が順に接続されて、第1冷媒回路を構成している。実施の形態4の第1冷媒回路は、実施の形態1~3の第1冷媒回路の凝縮器102と第一膨張弁103との間に、第一高低圧熱交換器1101の高圧側流路及び第二高低圧熱交換器1102の高圧側流路を追加し、第一蒸発器104とエジェクタ105の冷媒吸引部205との間に第二高低圧熱交換器1102の低圧側流路を追加したものである。
 また、凝縮器102と第一高低圧熱交換器1101との間の冷媒配管から分岐した配管がエジェクタ105の冷媒流入部204に接続されて第2冷媒回路を形成している。さらに、エジェクタ105のディフューザー部(冷媒流出部)203、第二蒸発器106、第一高低圧熱交換器1101の低圧側、圧縮機101の冷媒吸入部が冷媒配管で接続されて第3冷媒回路を形成している。実施の形態4の第3冷媒回路は、実施の形態1~3の第3冷媒回路の第二蒸発器106と圧縮機101との間に、第一高低圧熱交換器1101の低圧側流路を追加したものである。
 なお、これらの各要素、各要素を接続するための配管は1つの筐体内に収まっている。
 実施の形態4で使用する高低圧熱交換器の例を図13に示す。図13の(a)に示すように高低圧熱交換器1101、1102は二重管で構成され、内管の内側1201に低圧低温の冷媒が、内管の外側に位置する外管の環状部1202に高温高圧の冷媒が流れて、それらの冷媒間で熱交換が行われる。図13の(b)に示した高低圧熱交換器は、外管2101と内管2102の二重管で構成され、内管2102に複数のフィン2102aを軸方向に複数設けて、内管2102の内側2104を流れる冷媒と、外管2101の環状部2103を流れる冷媒との間での熱交換性能を向上させたものである。この他、内管に複数の管を配し、それらの管が螺旋形状に捻られた構成としてもよい。
(動作)
 図14は図12の冷凍サイクル装置の動作状態を示すモリエル線図である。凝縮器102の出口での冷媒の状態は実施の形態1と同じである。凝縮器102を流出し、第一膨張弁103へ向かう冷媒は、第一高低圧熱交換器1101で第二蒸発器106を流出した低温低圧の冷媒との熱交換により、冷却されて状態b’となる。さらに、第二高低圧熱交換器1102で第一蒸発器104を流出した低温低圧の冷媒との熱交換器により状態b’’となり、第一膨張弁103に流入する。第一膨張弁103で減圧された冷媒は状態cとなり、さらに第一蒸発器104を通って状態d’となる。その冷媒は第二高低圧熱交換器1102で高温高圧の冷媒に加熱されて状態dとなりエジェクタ105に吸引される。さらに、冷媒はエジェクタ105及び第二蒸発器106を通過して冷媒は状態hとなり、その後、第一高低圧熱交換器1101により加熱されて状態h’となって圧縮機101へ吸入される。
(効果)
 実施の形態4の冷凍サイクル装置によれば、高低圧熱交換器1101,1102を用いたことで、第一及び第二蒸発器104,106を流出する冷媒を二相冷媒にすることができる。具体的には、図15に示すように、高低圧熱交換器が無い構成(a)と比較すると、高低圧熱交換器が有る構成(b)では、第一及び第二蒸発器104,106の出口を二相状態で流出させ、高低圧熱交換器で過熱状態にすることができる。そのため、第一及び第二蒸発器104,106の熱通過率を上昇させることができ、その結果、エジェクタ105の冷媒吸引部205の圧力と圧縮機101の吸入圧力が上昇し、さらに圧縮機101へ吸入される冷媒の温度が上昇して、冷凍サイクルの高効率化を図れる。
 なお、高低圧熱交換器1101,1102の熱交換部分の長さとCOP比との関係を見ると、図16に示すように、ある長さまではCOP比が徐々に増加するため、適切な長さにすることが好ましい。
実施の形態5
(構成)
 図17は本発明の実施の形態5に係る冷凍サイクル装置の構成図である。図17に示す冷凍サイクル装置は、圧縮機101、凝縮器102、第一膨張弁103、第一蒸発器104、エジェクタ105、第二蒸発器106に加えて、気液分離器1701を備えた、室外ユニット100として構成される。圧縮機101、凝縮器102、第一膨張弁103、第一蒸発器104、エジェクタ105が冷媒配管で接続されて第1冷媒回路を構成している。また、凝縮器102と第一膨張弁103との間の冷媒配管から分岐してエジェクタ105の冷媒流入部204に接続された第2冷媒回路を有している。また、エジェクタ105の冷媒流出部203、気液分離器1701、第二蒸発器106、圧縮機101の冷媒吸入部が冷媒配管で接続されて第3冷媒回路を構成している。実施の形態5の第3冷媒回路は、実施の形態1~3の第3冷媒回路のエジェクタ105と第二蒸発器106との間に、気液分離器1701が挿入されたものである。
 さらに、気液分離器1701のガス冷媒流出口と第二蒸発器106の出口とを第一流量制御手段1703を介して接続するバイパス回路1702が備わっている。バイパス回路1702はキャピラリーチューブで構成しても良い。
 これらの冷媒回路の各要素、各要素を接続するための配管は1つの筐体内に収まっている。
(気液分離器)
 気液分離器1701は冷媒流入口とガス冷媒の流出口と液冷媒の流出口で構成されている。図18は気液分離器1701の一例を示す説明図である。気液分離器1701は、筒状の側壁301a、頂壁301b及び底壁301cを持つ容器301と、頂壁301bを貫通して取り付けられた流入配管302と、流入配管302に並置されて頂壁301bに取り付けられた上部流出配管303と、容器301の底壁301cに取り付けられた下部流出配管304とを備えている。
 流入配管302に形成された横穴から吹き出した冷媒液306は、容器301の側壁301aに衝突してそこに付着して冷媒液307bとなり、冷媒蒸気308と分離して、側壁301aに沿って重力により落下し、容器301の底部に冷媒液307eとして溜まる。一方、冷媒蒸気308は、上部流出配管303を通って容器301から流出する。また、流入配管302の横穴から吹き出さずに下部に進んだ冷媒液307aは、流入配管302の底面に溜まり、その下穴から冷媒液307cとなって下向きに流出し、冷媒液307bとともに容器301の底に溜まった冷媒液307eと合流し、下部流出配管304を通って容器301から流出する。
(動作)
 図19は図17の冷凍サイクル装置の動作状態を示すモリエル線図である。ここでは、実施の形態1~3との相違点を説明する。エジェクタ105から流出した状態gの冷媒は、気液分離器1701で液冷媒(状態g’)とガス冷媒(状態g’’)に分離する。液冷媒は第二蒸発器106で液熱媒体により加熱される。一方、ガス冷媒は第一流量制御手段1703で流量調整されたのち、第二蒸発器106を流出した冷媒と合流して状態hとなり、圧縮機101へ吸入される。
(効果)
 上記のように構成された冷凍サイクル装置によれば、気液分離器1701で分離した液冷媒を第二蒸発器106に流入させることで、第二蒸発器106の冷媒速度が低下し、第二蒸発器106の圧力損失が低減する。第二蒸発器106の圧力損失低減により第二蒸発器106の蒸発温度が上昇するため、圧縮機101の吸入圧力が上昇し、冷凍サイクルの高効率運転を図ることができる。
実施の形態6
(構成)
 図20は本発明の実施の形態6に係る冷凍サイクル装置の構成図である。実施の形態6の冷凍サイクル装置は、圧縮機101、凝縮器102、第一膨張弁103、第一蒸発器104、エジェクタ105、第二蒸発器106に加えて、内部熱交換器2001と第二流量制御手段2002を備えた室外ユニット100として構成される。
 そして、圧縮機101、凝縮器102、内部熱交換器2001の高圧側、第一膨張弁103、第一蒸発器104、エジェクタ105の冷媒吸引部205が順に接続されて、第1冷媒回路(実施の形態1~3の第1冷媒回路の凝縮器102と第一膨張弁103との間に、内部熱交換器2001の高圧側流路を追加したもの)を構成している。
 また、凝縮器102と内部熱交換器2001との間の冷媒配管から分岐した配管がエジェクタ105の冷媒流入部204に接続されて第2冷媒回路を形成している。また、エジェクタ105のディフューザー部(冷媒流出部)203、第二蒸発器106、圧縮機101の冷媒吸入部が冷媒配管で接続されて第3冷媒回路を形成している。
 さらに、凝縮器102の出口側と内部熱交換器2001の入口側との間から分岐し、第二流量制御手段2002、内部熱交換器2001の低圧側流路を介して、圧縮機101の中間圧力ポートに接続されたインジェクション回路2003を備えている。
 これらの回路の各要素、各要素を接続するための配管は1つの筐体内に収まっている。
 内部熱交換器2001は、先に説明した高低圧熱交換器と同じ構造とすることができるし、また、先に説明した水熱交換器を内部熱交換器として使用してもよい。
(動作)
 図21は図20の冷凍サイクル装置の動作状態を示すモリエル線図である。ここでは、図1の動作と異なる部分について説明する。凝縮器102から流出した高温高圧の状態bの冷媒は、内部熱交換器2001に向かう冷媒とエジェクタ105に向かう冷媒とに分岐する。内部熱交換器2001へ向かう冷媒は、さらに内部熱交換器2001に向かう冷媒と第二流量制御手段2002に向かう冷媒とに分岐する。第二流量制御手段2002で流量調整されて減圧した状態iの冷媒は、内部熱交換器2001で高温高圧の冷媒との熱交換器により加熱されて状態jとなり、圧縮機101の中間圧力付近に流入する。圧縮機101の中間圧力へ流入した冷媒は、圧縮機101の吸入部から流入して圧縮された冷媒と混合し、状態kとなったのち、再圧縮される。一方、内部熱交換器2001の高圧側へ流入した状態bの冷媒は、内部熱交換器2001の低圧側を流れる低温冷媒との熱交換器により冷却されて状態c’となり、第一膨張弁103へ流入する。これ以後は、図5の場合と同じであるため説明を省略する。
(効果)
 凝縮器102の出口側と内部熱交換器2001の入口側との間の冷媒配管から分岐して、第二流量制御手段2002で低温とした冷媒を内部熱交換器2001で高温冷媒と熱交換させる。熱交換した冷媒を圧縮機101の中間圧ポートに流入(インジェクション)させることで、圧縮機101で圧縮された冷媒を一旦冷却し、再圧縮する。これにより、インジェクションしない場合と比べて圧縮機101の吐出温度が低下し、圧縮機101のモーターの過熱を抑制でき、信頼性を向上させることができる。また、従来ではモーター過熱保護のため、運転不可能であった低温水をつくることが可能となる効果も奏する。
 100 室外ユニット、101 圧縮機、102 凝縮器、103 第一膨張弁、104 第一蒸発器、105 エジェクタ、106 第二蒸発器、107 送水機、108 室内ユニット、109 室内熱交換器、201 エジェクタのノズル部、202、エジェクタの混合部、203 エジェクタのディフューザー部(冷媒流出部)、204 エジェクタの冷媒流入部、205 エジェクタの冷媒吸引部、1101 第一高低圧熱交換器、1102 第二高低圧熱交換器、1701 気液分離器、1702 バイパス回路、1703 第一流量制御手段、2001 内部熱交換器、2002 第二流量制御手段、2003 インジェクション回路。

Claims (10)

  1.  圧縮機の冷媒吐出部、凝縮器、第一膨張弁、第一蒸発器、エジェクタの冷媒吸引部が接続された第1冷媒回路と、
     前記凝縮器の出口側と前記第一膨張弁との間の接続配管から分岐して、前記エジェクタの冷媒流入部に接続された第2冷媒回路と、
     前記エジェクタの冷媒流出部、第二蒸発器、前記圧縮機の冷媒吸入部が接続された第3冷媒回路と、を備え、
     前記第一蒸発器と前記第二蒸発器は、それぞれの蒸発器が配置されている冷媒回路を流れる冷媒と該冷媒とは異なる液熱媒体との間で熱交換を行う水熱交換器であり、
     前記液熱媒体は外部から供給され、前記第二蒸発器、前記第一蒸発器の順に流れて前記外部に流出するようにされている
     ことを特徴とする冷凍サイクル装置。
  2.  前記第二蒸発器の容量を前記第一蒸発器よりも大きくしていることを特徴とする請求項1記載の冷凍サイクル装置。
  3.  前記第一蒸発器と前記第二蒸発器との合計容量に対して、前記第一蒸発器の容量を30%以上としていることを特徴とする請求項2記載の冷凍サイクル装置。
  4.  前記第一蒸発器が前記第二蒸発器の上段に配置され、
     前記エジェクタは、該エジェクタの冷媒流入部が該エジェクタの冷媒流出部より高い位置にあるように設置されていることを特徴とする請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記第一蒸発器と前記第二蒸発器とが水平方向に並置され、
     前記エジェクタは、該エジェクタの冷媒流入部が該エジェクタの冷媒流出部より高い位置にあるように設置されていることを特徴とする請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  6.  前記第一蒸発器の冷媒出口と前記エジェクタの冷媒吸引部とが水平の配管で接続されていることを特徴とする請求項4または5に記載の冷凍サイクル装置。
  7.  高圧側の冷媒と低圧側の冷媒との間で熱交換を行う第一高低圧熱交換器と第二高低圧熱交換器とをさらに備え、
     前記第1冷媒回路の前記凝縮器の冷媒出口側と前記第一膨張弁の冷媒入口側との間に、前記第一高低圧熱交換器と前記第二高低圧熱交換器の高圧側流路を直列に接続し、
     前記第一蒸発器の冷媒出口側と前記エジェクタの前記冷媒吸引部との間に、前記第二高低圧熱交換器の低圧側流路を接続し、
     前記第二蒸発器の冷媒出口側と前記圧縮機の冷媒吸入部との間に前記第一高低圧熱交換器の低圧側流路を接続していることを特徴とする請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  8.  冷媒の気相と液相を分離する気液分離器と、前記気液分離器で分離された気相冷媒を、前記第二蒸発器をバイパスして前記圧縮機の冷媒吸入部に流すバイパス回路とをさらに備え、
     前記第3冷媒回路の前記エジェクタの前記冷媒流出部と前記第二蒸発器の冷媒入口側との間に前記気液分離器を接続し、
     液相冷媒は前記第二蒸発器を介して前記圧縮機の冷媒吸入部に流し、
     気相冷媒は前記バイパス回路を介して前記圧縮機の冷媒吸入部に流すようにしている
     ことを特徴とする請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  9.  高圧側の冷媒と低圧側の冷媒との間で熱交換を行う内部熱交換器をさらに備え、
     前記第1冷媒回路の前記凝縮器の冷媒出口側と前記第一膨張弁の冷媒入口側との間に、前記内部熱交換器の高圧側流路を接続し、
     前記凝縮器の冷媒出口側と前記内部熱交換器の冷媒入口側との間から分岐し、第二流量制御手段、前記内部熱交換器の低圧側流路を介して、前記圧縮機の中間圧ポートにつながるインジェクション回路を備えたことを特徴とする請求項1~6のいずれか1項に記載の冷凍サイクル装置。
  10.  前記第一蒸発器及び前記第二蒸発器は、前記冷媒と前記液熱媒体とが対向流となるように構成されていることを特徴とする請求項1~9のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2013/074012 2012-12-27 2013-09-06 冷凍サイクル装置 WO2014103436A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13868444.4A EP2942585B1 (en) 2012-12-27 2013-09-06 Refrigeration cycle device
JP2014554186A JPWO2014103436A1 (ja) 2012-12-27 2013-09-06 冷凍サイクル装置
CN201320897498.7U CN203704419U (zh) 2012-12-27 2013-12-27 制冷循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285786 2012-12-27
JP2012285786 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103436A1 true WO2014103436A1 (ja) 2014-07-03

Family

ID=51020540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074012 WO2014103436A1 (ja) 2012-12-27 2013-09-06 冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP2942585B1 (ja)
JP (1) JPWO2014103436A1 (ja)
CN (1) CN203704419U (ja)
WO (1) WO2014103436A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159638A1 (ja) * 2018-02-13 2019-08-22 株式会社デンソー 冷凍サイクル装置
WO2019230435A1 (ja) * 2018-05-31 2019-12-05 株式会社デンソー 冷凍サイクル装置
CN112594950A (zh) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 一种低温冷水制冷机组及控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009255A1 (de) * 2015-07-16 2017-01-19 Linde Aktiengesellschaft Verfahren zum Abkühlen eines Prozessstromes
CN106016613B (zh) * 2016-05-31 2020-04-21 广东美的制冷设备有限公司 节能空调系统
JP6547781B2 (ja) * 2016-06-16 2019-07-24 株式会社デンソー 冷凍サイクル装置
CN112815561B (zh) * 2019-10-31 2022-03-25 广东美的白色家电技术创新中心有限公司 制冷设备
CN114484946A (zh) * 2020-10-28 2022-05-13 江森自控科技公司 具有串流蒸发器的冷却器系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329601A (ja) 2005-05-30 2006-12-07 Mayekawa Mfg Co Ltd 冷却器及びその運転方法
JP2007051833A (ja) * 2005-08-18 2007-03-01 Denso Corp エジェクタ式冷凍サイクル
JP2007057177A (ja) * 2005-08-25 2007-03-08 Denso Corp 蒸気圧縮式冷凍サイクル装置
JP2007147198A (ja) * 2005-11-29 2007-06-14 Denso Corp エジェクタを用いた蒸気圧縮式冷凍サイクルおよびその低圧系部品
JP2007212121A (ja) * 2006-01-13 2007-08-23 Denso Corp エジェクタ式冷凍サイクル
JP2008267721A (ja) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp 冷凍空調装置
JP2009133624A (ja) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp 冷凍空調装置
JP2009138952A (ja) * 2007-12-03 2009-06-25 Denso Corp ブライン式冷却装置
JP2009275969A (ja) * 2008-05-14 2009-11-26 Daikin Ind Ltd 冷凍装置
JP4651627B2 (ja) 2007-01-19 2011-03-16 三菱電機株式会社 冷凍空調装置
WO2011048662A1 (ja) * 2009-10-20 2011-04-28 三菱電機株式会社 ヒートポンプ装置
JP2012002425A (ja) 2010-06-16 2012-01-05 Mitsubishi Electric Corp プレート式熱交換器及びヒートポンプ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024211A1 (de) * 2005-05-24 2007-01-25 Denso Corp., Kariya Ejektorpumpe und Ejektorpumpenkreisvorrichtung

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133624A (ja) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp 冷凍空調装置
JP2006329601A (ja) 2005-05-30 2006-12-07 Mayekawa Mfg Co Ltd 冷却器及びその運転方法
JP2007051833A (ja) * 2005-08-18 2007-03-01 Denso Corp エジェクタ式冷凍サイクル
JP2007057177A (ja) * 2005-08-25 2007-03-08 Denso Corp 蒸気圧縮式冷凍サイクル装置
JP2007147198A (ja) * 2005-11-29 2007-06-14 Denso Corp エジェクタを用いた蒸気圧縮式冷凍サイクルおよびその低圧系部品
JP2007212121A (ja) * 2006-01-13 2007-08-23 Denso Corp エジェクタ式冷凍サイクル
JP4651627B2 (ja) 2007-01-19 2011-03-16 三菱電機株式会社 冷凍空調装置
JP2008267721A (ja) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp 冷凍空調装置
JP2009138952A (ja) * 2007-12-03 2009-06-25 Denso Corp ブライン式冷却装置
JP2009275969A (ja) * 2008-05-14 2009-11-26 Daikin Ind Ltd 冷凍装置
WO2011048662A1 (ja) * 2009-10-20 2011-04-28 三菱電機株式会社 ヒートポンプ装置
JP2012002425A (ja) 2010-06-16 2012-01-05 Mitsubishi Electric Corp プレート式熱交換器及びヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2942585A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159638A1 (ja) * 2018-02-13 2019-08-22 株式会社デンソー 冷凍サイクル装置
JP2019138577A (ja) * 2018-02-13 2019-08-22 株式会社デンソー 冷凍サイクル装置
WO2019230435A1 (ja) * 2018-05-31 2019-12-05 株式会社デンソー 冷凍サイクル装置
CN112594950A (zh) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 一种低温冷水制冷机组及控制方法
CN112594950B (zh) * 2020-12-29 2024-02-09 深圳市海吉源科技有限公司 一种低温冷水制冷机组及控制方法

Also Published As

Publication number Publication date
EP2942585B1 (en) 2021-03-17
EP2942585A4 (en) 2016-11-30
JPWO2014103436A1 (ja) 2017-01-12
EP2942585A1 (en) 2015-11-11
CN203704419U (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
WO2014103436A1 (ja) 冷凍サイクル装置
WO2012043377A1 (ja) 冷凍回路
US20140102131A1 (en) Outdoor unit of refrigeration system
WO2017179630A1 (ja) 蒸発器、これを備えたターボ冷凍装置
US10458687B2 (en) Vapor compression system
JP6779383B2 (ja) 凝縮器および凝縮器を備えた冷凍装置
CN104185765A (zh) 制冷装置
KR101452690B1 (ko) 냉동 장치
JP2019500572A (ja) 水室を備えた熱交換器
JP2018535378A (ja) ヒートポンプシステムの配管経路上に設置する流体撹拌による液化促進装置
CN104011471A (zh) 空调装置
JP2006003022A (ja) 冷凍装置及び中間圧レシーバ
JP4899641B2 (ja) 混合流体分離装置
WO2016021141A1 (ja) 蒸発器
JP2014031944A (ja) 冷凍サイクル装置、並びに、この冷凍サイクル装置を備えた冷凍装置及び空調装置
CN107709792A (zh) 离心压缩机械的返回流路形成部及离心压缩机械
CN107532826B (zh) 涡轮制冷装置
JP2009024939A (ja) 冷媒タンクおよびヒートポンプシステム
JP6169199B2 (ja) 熱交換器及び冷凍サイクル装置
JP2014109416A (ja) 空気調和装置
JP2007078317A (ja) 冷却装置用熱交換器及び冷却装置
JP6149485B2 (ja) 冷凍装置
WO2014162764A1 (ja) 冷凍サイクル装置
JP2010236707A (ja) 熱交換器
JP2013015258A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013868444

Country of ref document: EP